1
|
Pawar SV, Paranjape SM, Kalowsky GK, Peiffer M, McCartney N, Ali JG, Felton GW. Tomato Defenses Under Stress: The Impact of Salinity on Direct Defenses Against Insect Herbivores. PLANT, CELL & ENVIRONMENT 2025; 48:3647-3659. [PMID: 39806825 PMCID: PMC11963492 DOI: 10.1111/pce.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 12/17/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025]
Abstract
Abiotic stressors, such as salt stress, can reduce crop productivity, and when combined with biotic pressures, such as insect herbivory, can exacerbate yield losses. However, salinity-induced changes to plant quality and defenses can in turn affect insect herbivores feeding on plants. This study investigates how salinity stress in tomato plants (Solanum Lycopersicum cv. Better Boy) impacts the behavior and performance of a devastating insect pest, the tomato fruitworm caterpillar (Helicoverpa zea). Through choice assays and performance experiments, we demonstrate that salt-stressed tomato plants are poor hosts for H. zea, negatively affecting caterpillar feeding preferences and growth rates. While changes in plant nutritional quality were observed, the primary factor influencing insect performance appears to be direct ionic toxicity, which significantly impairs multiple life history parameters of H. zea including survival, pupation, adult emergence, and fecundity. Plant defense responses show complex interactions between salt stress and herbivory, with two proteinase inhibitor genes - PIN2 and AspPI, showing a higher induced response to insect herbivory under salt conditions. However, plant defenses do not seem to be the main driver of reduced caterpillar performance on salt-treated plants. Furthermore, we report reduced oviposition by H. zea moths on salt-treated plants, which was correlated with altered volatile emissions. Our findings reveal that H. zea exhibits optimal host selection behaviours for both larval feeding and adult oviposition decisions, which likely contribute to its success as an agricultural pest. This research provides insights into the complex interactions between abiotic stress, plant physiology, and insect behaviour, with potential implications for pest management strategies in saline agricultural environments.
Collapse
Affiliation(s)
- Sahil V. Pawar
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Sujay M. Paranjape
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Grace K. Kalowsky
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Michelle Peiffer
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Nate McCartney
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Jared G. Ali
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| | - Gary W. Felton
- Department of EntomologyThe Pennsylvania State UniversityUniversity ParkPennsylvaniaUSA
| |
Collapse
|
2
|
Yip EC, Mescher MC, De Moraes CM, Tooker JF. An insect pheromone primes tolerance of herbivory in goldenrod plants. Ecology 2025; 106:e4486. [PMID: 39608409 DOI: 10.1002/ecy.4486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/13/2024] [Accepted: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Environmental cues that predict increased risk of herbivory can prime plant defenses; however, few studies have explored how such cues elicit broader plant responses, including potential effects on plant growth and other resource allocations that may affect tolerance to herbivore damage. We exposed goldenrod plants (Solidago altissima) to varying concentrations of the putative sex pheromone of a gall-inducing herbivore, which has previously been implicated in defense priming. In experiments with two plant genotypes and three herbivore populations, any level of exposure to the pheromone enhanced tolerance of galling, rescuing flower production to levels observed for ungalled plants. Exposure to low doses of the pheromone elicited greater resistance to galling than exposure to high doses, with unexposed plants exhibiting intermediate resistance, suggesting a nonlinear relationship between exposure and defense priming. These findings suggest plant responses to environmental cues associated with biotic stressors are broader and more complex than previously appreciated.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | | | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
3
|
Pellegrini BA, Pintado LS, Souza PN, Bhavanam SP, Orians CM, Orrock JL, Preisser EL. Herbivore kairomones affect germination speed, seedling growth, and herbivory. Oecologia 2024; 206:215-223. [PMID: 39340640 PMCID: PMC11599366 DOI: 10.1007/s00442-024-05621-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Seeds and seedlings are particularly vulnerable to herbivory. Unlike mature plants, which can wait until herbivory is experienced to induce defense, seeds and seedlings face mortality if they wait. Slug mucus functions as a kairomone, a non-attack-related substance emitted by consumers that is detected by a prey species (in this case, plants). While snail mucus has been shown to induce defense in seedlings, it is not widely confirmed whether slugs have the same effect and whether seeds can also detect and react to such herbivore cues. We investigated how exposure to Arion subfuscus mucus affected growth and defense in Brassica nigra seeds and seedlings. Seeds exposed to slug mucus germinated 5% faster than control (water only) seeds, but the resulting seedlings weighed 16% less than control seedlings. To test whether this difference results from herbivore-exposed plants allocating energy from growth to defense, we conducted choice bioassays assessing slug preference for control seedlings versus seedlings that were either (A) exposed to mucus only as a seed; or (B) exposed to mucus as a seed and seedling. While slugs did not differentiate between control seedlings and ones exposed to herbivore cues only as a seed, they ate 88% less biomass of seedlings exposed to mucus as both seeds and seedlings. These results suggest that slug mucus induces changes in plant traits related to defense and growth/competitive ability. Future research should determine the chemical mechanisms of this induced defense.
Collapse
Affiliation(s)
- Brooke A Pellegrini
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA.
| | - Lina S Pintado
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | - Paige N Souza
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| | | | - Colin M Orians
- Department of Biology, Tufts University, Medford, MA, USA
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, 02881, USA
| |
Collapse
|
4
|
Huve MAP, Bittner N, Kunze R, Hilker M, Remus-Emsermann MNP, Paniagua Voirol LR, Lortzing V. Butterfly eggs prime anti-herbivore defense in an annual but not perennial Arabidopsis species. PLANTA 2024; 260:112. [PMID: 39361039 PMCID: PMC11450040 DOI: 10.1007/s00425-024-04541-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/24/2024] [Indexed: 10/05/2024]
Abstract
MAIN CONCLUSION Unlike Arabidopsis thaliana, defenses of Arabidopsis lyrata against Pieris brassicae larval feeding are not primable by P. brassicae eggs. Thus, egg primability of plant anti-herbivore defenses is not phylogenetically conserved in the genus Arabidopsis. While plant anti-herbivore defenses of the annual species Arabidopsis thaliana were shown to be primable by Pieris brassicae eggs, the primability of the phylogenetically closely related perennial Arabidopsis lyrata has not yet been investigated. Previous studies revealed that closely related wild Brassicaceae plant species, the annual Brassica nigra and the perennial B. oleracea, exhibit an egg-primable defense trait, even though they have different life spans. Here, we tested whether P. brassicae eggs prime anti-herbivore defenses of the perennial A. lyrata. We exposed A. lyrata to P. brassicae eggs and larval feeding and assessed their primability by (i) determining the biomass of P. brassicae larvae after feeding on plants with and without prior P. brassicae egg deposition and (ii) investigating the plant transcriptomic response after egg deposition and/or larval feeding. For comparison, these studies were also conducted with A. thaliana. Consistent with previous findings, A. thaliana's response to prior P. brassicae egg deposition negatively affected conspecific larvae feeding upon A. thaliana. However, this was not observed in A. lyrata. Arabidopsis thaliana responded to P. brassicae eggs with strong transcriptional reprogramming, whereas A. lyrata responses to eggs were negligible. In response to larval feeding, A. lyrata exhibited a greater transcriptome change compared to A. thaliana. Among the strongly feeding-induced A. lyrata genes were those that are egg-primed in feeding-induced A. thaliana, i.e., CAX3, PR1, PR5, and PDF1.4. These results suggest that A. lyrata has evolved a robust feeding response that is independent from prior egg exposure.
Collapse
Affiliation(s)
- Maryse A P Huve
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany
| | - Mitja N P Remus-Emsermann
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany
| | - Luis R Paniagua Voirol
- Microbiology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Königin-Luise-Str. 12-16, 14195, Berlin, Germany.
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Haderslebener Str. 9, 12163, Berlin, Germany.
| |
Collapse
|
5
|
Escobar-Bravo R, Schimmel BCJ, Zhang Y, Wang L, Robert CAM, Glauser G, Ballaré CL, Erb M. Far-red light increases maize volatile emissions in response to volatile cues from neighbouring plants. PLANT, CELL & ENVIRONMENT 2024; 47:3979-3998. [PMID: 38872585 DOI: 10.1111/pce.14995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/13/2024] [Accepted: 05/28/2024] [Indexed: 06/15/2024]
Abstract
Plants perceive the presence and defence status of their neighbours through light and volatile cues, but how plants integrate both stimuli is poorly understood. We investigated if and how low Red to Far red light (R:FR) ratios, indicative of shading or canopy closure, affect maize (Zea mays) responses to herbivore-induced plant volatiles (HIPVs), including the green leaf volatile (Z)-3-hexenyl acetate. We modulated light signalling and perception by using FR supplementation and a phyB1phyB2 mutant, and we determined volatile release as a response readout. To gain mechanistic insights, we examined expression of volatile biosynthesis genes, hormone accumulation, and photosynthesis. Exposure to a full blend of HIPVs or (Z)-3-hexenyl acetate induced maize volatile release. Short-term FR supplementation increased this response. In contrast, prolonged FR supplementation or constitutive phytochrome B inactivation in phyB1phyB2 plants showed the opposite response. Short-term FR supplementation enhanced photosynthesis and stomatal conductance and (Z)-3-hexenyl acetate-induced JA-Ile levels. We conclude that a FR-enriched light environment can prompt maize plants to respond more strongly to HIPVs emitted by neighbours, which might be explained by changes in photosynthetic processes and phytochrome B signalling. Our findings reveal interactive responses to light and volatile cues with potentially important consequences for plant-plant and plant-herbivore interactions.
Collapse
Affiliation(s)
| | | | - Yaqin Zhang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Lei Wang
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Gaétan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos L Ballaré
- Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
- 2IIBio, Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Rahman-Soad A, Bittner N, Hilker M. Pine Response to Sawfly Pheromones: Effects on Sawfly's Oviposition and Larval Growth. INSECTS 2024; 15:458. [PMID: 38921172 PMCID: PMC11203435 DOI: 10.3390/insects15060458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/27/2024]
Abstract
Insect pheromones have been intensively studied with respect to their role in insect communication. However, scarce knowledge is available on the impact of pheromones on plant responses, and how these in turn affect herbivorous insects. A previous study showed that exposure of pine (Pinus sylvestris) to the sex pheromones of the pine sawfly Diprion pini results in enhanced defenses against the eggs of this sawfly; the egg survival rate on pheromone-exposed pine needles was lower than that on unexposed pine. The long-lasting common evolutionary history of D. pini and P. sylvestris suggests that D. pini has developed counter-adaptations to these pine responses. Here, we investigated by behavioral assays how D. pini copes with the defenses of pheromone-exposed pine. The sawfly females did not discriminate between the odor of pheromone-exposed and unexposed pine. However, when they had the chance to contact the trees, more unexposed than pheromone-exposed trees received eggs. The exposure of pine to the pheromones did not affect the performance of larvae and their pupation success. Our findings indicate that the effects that responses of pine to D. pini sex pheromones exert on the sawfly eggs and sawfly oviposition behavior do not extend to effects on the larvae.
Collapse
Affiliation(s)
- Asifur Rahman-Soad
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
| | - Norbert Bittner
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
- Institute of Translational Genomics, Helmholtz Zentrum München Deutsches Forschungszentrum für Gesundheit und Umwelt, 85764 Neuherberg, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany; (A.R.-S.); (N.B.)
| |
Collapse
|
7
|
Thompson MN, Arriaga J, Bradford BJ, Kurian R, Strozier G, Helms AM. Belowground insect herbivory induces systemic volatile emissions that strengthen neighbouring plant resistance aboveground. PLANT, CELL & ENVIRONMENT 2024; 47:714-725. [PMID: 37961782 DOI: 10.1111/pce.14762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 10/20/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Plants transmit ecologically relevant messages to neighbouring plants through chemical cues. For instance, insect herbivory triggers the production of herbivore-induced plant volatiles (HIPVs), which can enhance neighbouring plant defences. HIPVs are emitted from directly damaged plant tissues and from systemic, nondamaged tissues. Although volatile-mediated interplant interactions have been observed both above- and belowground, it remains unknown whether belowground herbivory induces systemic HIPVs aboveground that influence neighbouring plants. To explore how belowground herbivory affects interplant interactions aboveground, we characterised systemic HIPVs from squash induced by belowground striped cucumber beetle (Acalymma vittatum) larval herbivory. We exposed squash 'receiver plants' to systemic HIPVs or volatiles from nondamaged plants. We then measured herbivore resistance by challenging 'receiver plants' with aboveground-feeding herbivores: adult beetles (A. vittatum) or squash bugs (Anasa tristis). We discovered belowground-damaged plants emitted more (E)-β-ocimene, a key volatile from the systemic HIPV blend, than nondamaged controls, and that exposure to systemic HIPVs enhanced neighbouring plant resistance to aboveground squash bugs, but not adult beetles. Further investigations into the mechanism of interplant interaction revealed β-ocimene alone can elicit plant resistance against squash bugs. Overall, our findings reveal a novel form of volatile-mediated interactions between plants spanning across aboveground-belowground plant systems.
Collapse
Affiliation(s)
- Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| | - Jayda Arriaga
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Biomedical Sciences Interdisciplinary Program, Texas A&M University, College Station, Texas, USA
| | - B Jack Bradford
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas, USA
| | - Rachel Kurian
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, Texas, USA
| | - Gage Strozier
- Department of Entomology, Texas A&M University, College Station, Texas, USA
- Department of Horticultural Sciences, Texas A&M University, College Station, Texas, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
8
|
Xiang X, Liu S, Li H, Danso Ofori A, Yi X, Zheng A. Defense Strategies of Rice in Response to the Attack of the Herbivorous Insect, Chilo suppressalis. Int J Mol Sci 2023; 24:14361. [PMID: 37762665 PMCID: PMC10531896 DOI: 10.3390/ijms241814361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Chilo suppressalis is a notorious pest that attacks rice, feeding throughout the entire growth period of rice and posing a serious threat to rice production worldwide. Due to the boring behavior and overlapping generations of C. suppressalis, the pest is difficult to control. Moreover, no rice variety with high resistance to the striped stem borer (SSB) has been found in the available rice germplasm, which also poses a challenge to controlling the SSB. At present, chemical control is widely used in agricultural production to manage the problem, but its effect is limited and it also pollutes the environment. Therefore, developing genetic resistance is the only way to avoid the use of chemical insecticides. This article primarily focuses on the research status of the induced defense of rice against the SSB from the perspective of immunity, in which plant hormones (such as jasmonic acid and ethylene) and mitogen-activated protein kinases (MAPKs) play an important role in the immune response of rice to the SSB. The article also reviews progress in using transgenic technology to study the relationship between rice and the SSB as well as exploring the resistance genes. Lastly, the article discusses prospects for future research on rice's resistance to the SSB.
Collapse
Affiliation(s)
| | | | | | | | | | - Aiping Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu 611130, China; (X.X.); (S.L.); (H.L.); (A.D.O.); (X.Y.)
| |
Collapse
|
9
|
Thomas G, Rusman Q, Morrison WR, Magalhães DM, Dowell JA, Ngumbi E, Osei-Owusu J, Kansman J, Gaffke A, Pagadala Damodaram KJ, Kim SJ, Tabanca N. Deciphering Plant-Insect-Microorganism Signals for Sustainable Crop Production. Biomolecules 2023; 13:997. [PMID: 37371577 PMCID: PMC10295935 DOI: 10.3390/biom13060997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Agricultural crop productivity relies on the application of chemical pesticides to reduce pest and pathogen damage. However, chemical pesticides also pose a range of ecological, environmental and economic penalties. This includes the development of pesticide resistance by insect pests and pathogens, rendering pesticides less effective. Alternative sustainable crop protection tools should therefore be considered. Semiochemicals are signalling molecules produced by organisms, including plants, microbes, and animals, which cause behavioural or developmental changes in receiving organisms. Manipulating semiochemicals could provide a more sustainable approach to the management of insect pests and pathogens across crops. Here, we review the role of semiochemicals in the interaction between plants, insects and microbes, including examples of how they have been applied to agricultural systems. We highlight future research priorities to be considered for semiochemicals to be credible alternatives to the application of chemical pesticides.
Collapse
Affiliation(s)
- Gareth Thomas
- Protecting Crops and the Environment, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Quint Rusman
- Department of Systematic and Evolutionary Botany, University of Zürich, Zollikerstrasse 107, 8008 Zürich, Switzerland;
| | - William R. Morrison
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Grain and Animal Health Research, 1515 College Ave., Manhattan, KS 66502, USA;
| | - Diego M. Magalhães
- Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba 13418-900, SP, Brazil;
| | - Jordan A. Dowell
- Department of Plant Sciences, University of California, Davis, One Shields Ave., Davis, CA 95616, USA;
| | - Esther Ngumbi
- Department of Entomology, University of Illinois at Urbana Champaign, Urbana, IL 61801, USA;
| | - Jonathan Osei-Owusu
- Department of Biological, Physical and Mathematical Sciences, University of Environment and Sustainable Development, Somanya EY0329-2478, Ghana;
| | - Jessica Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA 16802, USA;
| | - Alexander Gaffke
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Center for Medical, Agricultural, and Veterinary Entomology, 6383 Mahan Dr., Tallahassee, FL 32308, USA;
| | | | - Seong Jong Kim
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Natural Products Utilization Research Unit, University, MS 38677, USA;
| | - Nurhayat Tabanca
- United States Department of Agriculture-Agricultural Research Service (USDA-ARS), Subtropical Horticulture Research Station, 13601 Old Cutler Rd., Miami, FL 33158, USA
| |
Collapse
|
10
|
Escobar-Bravo R, Lin PA, Waterman JM, Erb M. Dynamic environmental interactions shaped by vegetative plant volatiles. Nat Prod Rep 2023; 40:840-865. [PMID: 36727645 PMCID: PMC10132087 DOI: 10.1039/d2np00061j] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 02/03/2023]
Abstract
Covering: up to November 2022Plants shape terrestrial ecosystems through physical and chemical interactions. Plant-derived volatile organic compounds in particular influence the behavior and performance of other organisms. In this review, we discuss how vegetative plant volatiles derived from leaves, stems and roots are produced and released into the environment, how their production and release is modified by abiotic and biotic factors, and how they influence other organisms. Vegetative plant volatiles are derived from different biosynthesis and degradation pathways and are released via distinct routes. Both biosynthesis and release are regulated by other organisms as well as abiotic factors. In turn, vegetative plant volatiles modify the physiology and the behavior of a wide range of organisms, from microbes to mammals. Several concepts and frameworks can help to explain and predict the evolution and ecology of vegetative plant volatile emission patterns of specific pathways: multifunctionality of specialized metabolites, chemical communication displays and the information arms race, and volatile physiochemistry. We discuss how these frameworks can be leveraged to understand the evolution and expression patterns of vegetative plant volatiles. The multifaceted roles of vegetative plant volatiles provide fertile grounds to understand ecosystem dynamics and harness their power for sustainable agriculture.
Collapse
Affiliation(s)
| | - Po-An Lin
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Jamie M Waterman
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
11
|
Thompson MN, Grunseich JM, Marmolejo LO, Aguirre NM, Bradicich PA, Behmer ST, Suh CPC, Helms AM. Undercover operation: Belowground insect herbivory modifies systemic plant defense and repels aboveground foraging insect herbivores. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1033730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plants attacked by insects may induce defenses locally in attacked plant tissues and/or systemically in non-attacked tissues, such as aboveground herbivory affecting belowground roots or belowground herbivory modifying aboveground tissues (i.e., cross-compartment systemic defense). Through induced systemic plant defenses, above-and belowground insect herbivores indirectly interact when feeding on a shared host plant. However, determining the systemic effects of herbivory on cross-compartment plant tissues and cascading consequences for herbivore communities remains underexplored. The goal of this study was to determine how belowground striped cucumber beetle (Acalymma vittatum) larval herbivory alters aboveground zucchini squash (Cucurbita pepo subsp. pepo) defenses and interactions with herbivores, including adult cucumber beetles and squash bugs (Anasa tristis). To explore this question, field and laboratory experiments were conducted to compare responses of aboveground herbivores to belowground larvae-damaged plants and non-damaged control plants. We also characterized changes in defensive chemicals and nutritional content of aboveground plant structures following belowground herbivory. We discovered belowground herbivory enhanced aboveground plant resistance and deterred aboveground foraging herbivores. We also found that larvae-damaged plants emitted higher amounts of a key volatile compound, (E)-β-ocimene, compared to non-damaged controls. Further investigation suggests that other mechanisms, such as plant nutrient content, may additionally contribute to aboveground herbivore foraging decisions. Collectively, our findings underscore connections between above-and belowground herbivore communities as mediated through induced systemic defenses of a shared host plant. Specifically, these findings indicate that belowground larval herbivory systemically enhances plant defenses and deters a suite of aboveground herbivores, suggesting larvae may manipulate aboveground plant defenses for their own benefit, while plants may benefit from enhanced systemic defenses against multi-herbivore attack.
Collapse
|
12
|
Valsamakis G, Bittner N, Kunze R, Hilker M, Lortzing V. Priming of Arabidopsis resistance to herbivory by insect egg deposition depends on the plant's developmental stage. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4996-5015. [PMID: 35522985 PMCID: PMC9366327 DOI: 10.1093/jxb/erac199] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 05/05/2022] [Indexed: 06/14/2023]
Abstract
While traits of plant resistance to herbivory often change during ontogeny, it is unknown whether the primability of this resistance depends on the plant's developmental stage. Resistance in non-flowering Arabidopsis thaliana against Pieris brassicae larvae is known to be primable by prior egg deposition on leaves. We investigated whether this priming effect is maintained in plants at the flowering stage. Larval performance assays revealed that flowering plants' resistance to herbivory was not primable by egg deposition. Accordingly, transcriptomes of flowering plants showed almost no response to eggs. In contrast, egg deposition on non-flowering plants enhanced the expression of genes induced by subsequent larval feeding. Strikingly, flowering plants showed constitutively high expression levels of these genes. Larvae performed generally worse on flowering than on non-flowering plants, indicating that flowering plants constitutively resist herbivory. Furthermore, we determined the seed weight in regrown plants that had been exposed to eggs and larvae during the non-flowering or flowering stage. Non-flowering plants benefitted from egg priming with a smaller loss in seed yield. The seed yield of flowering plants was unaffected by the treatments, indicating tolerance towards the larvae. Our results show that the primability of anti-herbivore defences in Arabidopsis depends on the plant's developmental stage.
Collapse
Affiliation(s)
| | | | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Albrecht-Thaer-Weg 6, 14195 Berlin, Germany
| | - Monika Hilker
- Applied Zoology/ Animal Ecology, Institute of Biology, Freie Universität Berlin, Haderslebener Str. 9, 12163 Berlin, Germany
| | | |
Collapse
|
13
|
Tan Y, Liu Q, Wang Z, Pu Q, Shi S, Su J. Plateau zokors (Eospalax baileyi) respond to secondary metabolites from the roots of Stellera chamaejasme by enhancing hepatic inflammatory factors and metabolic pathway genes. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109368. [PMID: 35589064 DOI: 10.1016/j.cbpc.2022.109368] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/01/2022] [Accepted: 05/08/2022] [Indexed: 11/19/2022]
Abstract
Herbivores rarely consume toxic plants. An increase in the proportion of toxic plant secondary metabolites (PSMs) in poisonous plants can promote detoxification and related metabolic capacity of animals. Poisonous plants with thick taproots like Stellera chamaejasme (SC) are important stored food for the plateau zokor (Eospalax baileyi) during the winter and promote the development of detoxification mechanisms in this animal. In this study, plateau zokors were administered gavages of 0.2, 1.05, and 2.10 ml/kg SC water extracts. Serum samples were collected from plateau zokors to measure the levels of transaminases and oxidative stress. Transcriptome analysis was conducted to evaluate the differential genes of multiple metabolic pathways to investigate the relationship between the physiological processes and metabolic adaptation capacity of these animals in response to SC. After SC administration, plateau zokors showed significant hepatic granular degeneration and inflammatory reactions in the liver and aspartate aminotransferase, alanine aminotransferase, and malondialdehyde levels increased in a dose-dependent manner. Further, differential expression was also found in the plateau zokor livers, with most enrichment in inflammation and detoxification metabolism pathways. The metabolic adaptation responses in P450 xenobiotic clearance, bile secretion, and pancreatic secretion (Gusb, Hmgcr, Gstm1, Gstp1, and Eobag004630005095) were verified by mRNA network analysis as key factors related to the mechanism. Plateau zokors respond to SC PSMs through changes in liver physiology, biochemistry, and genes in multiple metabolic pathways, validating our hypothesis that plateau zokors can metabolize PSMs when they ingest toxic plants.
Collapse
Affiliation(s)
- Yuchen Tan
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qianqian Liu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhicheng Wang
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Qiangsheng Pu
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China
| | - Shangli Shi
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China
| | - Junhu Su
- College of Grassland Science, Key Laboratory of Grassland Ecosystem (Ministry of Education), Gansu Agricultural University, Lanzhou 730070, China; Gansu Agricultural University-Massey University Research Centre for Grassland Biodiversity, Gansu Agricultural University, Lanzhou 730070, China; Gansu Qilianshan Grassland Ecosystem Observation and Research Station, Wuwei 733200, China.
| |
Collapse
|
14
|
Jones AC, Felton GW, Tumlinson JH. The dual function of elicitors and effectors from insects: reviewing the 'arms race' against plant defenses. PLANT MOLECULAR BIOLOGY 2022; 109:427-445. [PMID: 34618284 DOI: 10.1007/s11103-021-01203-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
This review provides an overview, analysis, and reflection on insect elicitors and effectors (particularly from oral secretions) in the context of the 'arms race' with host plants. Following injury by an insect herbivore, plants rapidly activate induced defenses that may directly or indirectly affect the insect. Such defense pathways are influenced by a multitude of factors; however, cues from the insect's oral secretions are perhaps the most well studied mediators of such plant responses. The relationship between plants and their insect herbivores is often termed an 'evolutionary arms race' of strategies for each organism to either overcome defenses or to avoid attack. However, these compounds that can elicit a plant defense response that is detrimental to the insect may also benefit the physiology or metabolism of an insect species. Indeed, several insect elicitors of plant defenses (such as the fatty acid-amino acid conjugate, volicitin) are known to enhance an insect's ability to obtain nutritionally important compounds from plant tissue. Here we re-examine the well-known elicitors and effectors from chewing insects to demonstrate not only our incomplete understanding of the specific biochemical and molecular cascades involved in these interactions but also to consider the role of these compounds for the insect species itself. Finally, this overview discusses opportunities for research in the field of plant-insect interactions by utilizing tools such as genomics and proteomics to integrate the future study of these interactions through ecological, physiological, and evolutionary disciplines.
Collapse
Affiliation(s)
- Anne C Jones
- Biological Sciences Department, Virginia Polytechnic State and University, Blacksburg, VA, USA.
| | - Gary W Felton
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| | - James H Tumlinson
- Entomology Department, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
15
|
Dong Y, Zhang W, Li J, Wang D, Bai H, Li H, Shi L. The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis. BMC PLANT BIOLOGY 2022; 22:289. [PMID: 35698036 PMCID: PMC9190104 DOI: 10.1186/s12870-022-03660-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) transcription factors (TFs), as one of the largest families of TFs, are essential regulators of plant terpenoid biosynthesis and response to stresses. Lavender has more than 75 volatile terpenoids, yet few TFs have been identified to be involved in the terpenoid biosynthesis. RESULTS Based on RNA-Seq, reverse transcription-quantitative polymerase chain reaction, and transgenic technology, this study characterized the stress-responsive transcription factor LaMYC4 regulates terpenoid biosynthesis. Methyl jasmonate (MeJA) treatment increased volatile terpenoid emission, and the differentially expressed gene LaMYC4 was isolated. LaMYC4 expression level was higher in leaf than in other tissues. The expression of LaMYC4 decreased during flower development. The promoter of LaMYC4 contained hormone and stress-responsive regulatory elements and was responsive to various treatments, including UV, MeJA treatment, drought, low temperature, Pseudomonas syringae infection, and NaCl treatment. LaMYC4 overexpression increased the levels of sesquiterpenoids, including caryophyllenes, in Arabidopsis and tobacco plants. Furthermore, the expression of crucial node genes involved in terpenoid biosynthesis and glandular trichome number and size increased in transgenic tobacco. CONCLUSIONS We have shown that the stress-responsive MYC TF LaMYC4 from 'Jingxun 2' lavender regulates volatile terpenoid synthesis. This study is the first to describe the cloning of LaMYC4, and the results help understand the role of LaMYC4 in terpenoid biosynthesis.
Collapse
Affiliation(s)
- Yanmei Dong
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Wenying Zhang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
- University of Chinese Academy of Sciences, Beijing, 100015 China
| | - Jingrui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Di Wang
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hongtong Bai
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Hui Li
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| | - Lei Shi
- Key Laboratory of Plant Resources and Beijing Botanical Garden, Institute of Botany, Chinese Academy of Sciences, Xiangshan, Beijing, 100093 China
| |
Collapse
|
16
|
Snoeck S, Guayazán-Palacios N, Steinbrenner AD. Molecular tug-of-war: Plant immune recognition of herbivory. THE PLANT CELL 2022; 34:1497-1513. [PMID: 35026025 PMCID: PMC9048929 DOI: 10.1093/plcell/koac009] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 01/07/2022] [Indexed: 05/22/2023]
Abstract
Plant defense responses against insect herbivores are induced through wound-induced signaling and the specific perception of herbivore-associated molecular patterns (HAMPs). In addition, herbivores can deliver effectors that suppress plant immunity. Here we review plant immune recognition of HAMPs and effectors, and argue that these initial molecular interactions upon a plant-herbivore encounter mediate and structure effective resistance. While the number of distinct HAMPs and effectors from both chewing and piercing-sucking herbivores has expanded rapidly with omics-enabled approaches, paired receptors and targets in the host are still not well characterized. Herbivore-derived effectors may also be recognized as HAMPs depending on the host plant species, potentially through the evolution of novel immune receptor functions. We compile examples of HAMPs and effectors where natural variation between species may inform evolutionary patterns and mechanisms of plant-herbivore interactions. Finally, we discuss the combined effects of wounding and HAMP recognition, and review potential signaling hubs, which may integrate both sensing functions. Understanding the precise mechanisms for plant sensing of herbivores will be critical for engineering resistance in agriculture.
Collapse
Affiliation(s)
- Simon Snoeck
- Department of Biology, University of Washington, Seattle, Washington, USA
| | | | | |
Collapse
|
17
|
Maurya AK, Pazouki L, Frost CJ. Priming Seeds with Indole and (Z)-3-Hexenyl Acetate Enhances Resistance Against Herbivores and Stimulates Growth. J Chem Ecol 2022; 48:441-454. [PMID: 35394556 DOI: 10.1007/s10886-022-01359-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 02/14/2022] [Accepted: 03/07/2022] [Indexed: 11/28/2022]
Abstract
A striking feature of plant ecology is the ability of plants to detect and respond to environmental cues such as herbivore-induced plant volatiles (HIPVs) by priming or directly activating defenses against future herbivores. However, whether seeds also respond to compounds that are common constituents of HIPV blends and initiate future plant resistance is unknown. Considering that seeds depend on other environmental cues to determine basic survival traits such as germination timing, we predicted that seeds exposed to synthetic constituents of HIPV blends would generate well-defended plants. We investigated the effect of seed exposure to common volatiles on growth, reproduction, and resistance characteristics in the model plants Arabidopsis thaliana and Medicago truncatula using herbivores from two feeding guilds. After seed scarification and vernalization, we treated seeds with one of seven different plant-derived volatile compounds for 24 h. Seeds were then germinated and the resulting plants were assayed for growth, herbivore resistance, and expression of inducible defense genes. Of all the synthetic volatiles tested, indole specifically reduced both beet armyworm growth on A. thaliana and pea aphid fecundity on M. truncatula. The induction of defense genes was not affected by seed exposure to indole in either plant species, indicating that activation of direct resistance rather than inducible resistance is the mechanism by which seed priming operates. Moreover, neither plant species showed any negative effect of seed exposure to any synthetic volatile on vegetative and reproductive growth. Rather, M. truncatula plants derived from seeds exposed to (Z)-3-hexanol and (Z)-3-hexenyl acetate grew larger compared to controls. Our results indicate that seeds are sensitive to specific volatiles in ways that enhance resistance profiles with no apparent costs in terms of growth. Seed priming by HIPVs may represent a novel ecological mechanism of plant-to-plant interactions, with broad potential applications in agriculture and seed conservation.
Collapse
Affiliation(s)
- Abhinav K Maurya
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Leila Pazouki
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA
| | - Christopher J Frost
- Department of Biology, University of Louisville, 40292, Louisville, KY, USA. .,BIO5 Institute, University of Arizona, 85721, Tucson, AZ, USA.
| |
Collapse
|
18
|
Agbessenou A, Akutse KS, Yusuf AA, Khamis FM. The Endophyte Trichoderma asperellum M2RT4 Induces the Systemic Release of Methyl Salicylate and ( Z)-jasmone in Tomato Plant Affecting Host Location and Herbivory of Tuta absoluta. FRONTIERS IN PLANT SCIENCE 2022; 13:860309. [PMID: 35449888 PMCID: PMC9016226 DOI: 10.3389/fpls.2022.860309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/11/2022] [Indexed: 05/30/2023]
Abstract
The use of endophytic fungi has dramatically increased plant performance through the enhancement of plant protection against abiotic and biotic stressors. We previously demonstrated that the endophytic fungus Trichoderma asperellum M2RT4 improves tomato defenses against the tomato leafminer Tuta absoluta through the reduction of oviposition, leafmining, pupation, and adult emergence. However, the underlying mechanism by which the presence of this endophytic fungus within tomato host plant affects T. absoluta host selection and life-history traits is unknown. We tested the behavioral responses of T. absoluta in Y-tube olfactometer bioassays and found that females preferred non-inoculated tomato plants against those inoculated by endophytes. Additionally, T. absoluta females were not attracted to non-inoculated infested nor to inoculated-infested tomato plants. Chemical analysis revealed the emission of methyl salicylate in inoculated tomato plant and an increase in the amounts of monoterpenes emitted from non-inoculated infested plants. Additionally, we found that upon herbivory, T. asperellum M2RT4 modulates tomato plant chemistry through the production of (Z)-jasmone thus activating both salicylic and jasmonic acid defense pathways. Further, T. absoluta females were attracted to monoterpernes including α-pinene, 2-carene, and β-phellandrene but repelled by methyl salicylate. Methyl salicylate could therefore be considered as a good semiochemical-based candidate for sustainable T. absoluta management using a "push-pull" approach. However, in dose-response bioassays, females of T. absoluta did not show any preference to the four component-blend (α-pinene, 2-carene, β-phellandrene, and methyl salicylate). (Z)-jasmone-treated tomato leaflets significantly reduced the leafmining activity of the pest at the concentration of 10 ng/μL and causing the highest larval mortality rate (83%) with the shortest LT50 (1.73 days) 7 days post-treatment. T. asperellum M2RT4 effect on herbivore performance was then (Z)-jasmone-mediated. These findings expand our understanding of how the endophytic fungus T. asperellum M2RT4 could mediate chemical interactions between T. absoluta and its host plant which are potentially important for development of environmentally friendly T. absoluta management programs.
Collapse
Affiliation(s)
- Ayaovi Agbessenou
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
| | - Komivi S. Akutse
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Abdullahi A. Yusuf
- Department of Zoology and Entomology, University of Pretoria, Hatfield, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Hatfield, South Africa
| | - Fathiya M. Khamis
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
19
|
Zielonka MW, Pope TW, Leather SR. Effect of host plant on the life history of the carnation tortrix moth Cacoecimorpha pronubana (Lepidoptera: Tortricidae). BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:44-50. [PMID: 34229772 DOI: 10.1017/s0007485321000493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The carnation tortrix moth, Cacoecimorpha pronubana (Hübner, [1799]) (Lepidoptera: Tortricidae), is one of the most economically important insect species affecting the horticultural industry in the UK. The larvae consume foliage, flowers or fruits, and/or rolls leaves together with silken threads, negatively affecting the growth and/or aesthetics of the crop. In order to understand the polyphagous behaviour of this species within an ornamental crop habitat, we hypothesized that different host plant species affect its life history traits differently. This study investigated the effects of the host plant species on larval and pupal durations and sizes, and fecundity (the number of eggs and the number and size of egg clutches). At 20°C, 60% RH and a 16L:8D photoperiod larvae developed 10, 14, 20 and 36 days faster when reared on Christmas berry, Photinia (Rosaceae), than on cherry laurel, Prunus laurocerasus (Rosaceae), New Zealand broadleaf, Griselinia littoralis (Griseliniaceae), Mexican orange, Choisya ternata (Rutaceae), and firethorn, Pyracantha angustifolia (Rosaceae), respectively. Female pupae were 23.8 mg heavier than male pupae, and pupal weight was significantly correlated with the duration of larval development. The lowest and the highest mean numbers of eggs were produced by females reared on Pyracantha (41) and Photinia (202), respectively. Clutch size differed significantly among moths reared on different host plants, although the total number of eggs did not differ. This study showed that different ornamental host plants affect the development of C. pronubana differently. Improved understanding of the influence of host plant on the moth's life history parameters measured here will help in determining the economic impact that this species may have within the ornamental plant production environment, and may be used in developing more accurate crop protection methodologies within integrated pest management of this insect.
Collapse
Affiliation(s)
- Marcin W Zielonka
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| | - Tom W Pope
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| | - Simon R Leather
- Agriculture & Environment Department, Harper Adams University, Newport, ShropshireTF10 8NB, UK
| |
Collapse
|
20
|
Ojeda-Martinez D, Diaz I, Santamaria ME. Transcriptomic Landscape of Herbivore Oviposition in Arabidopsis: A Systematic Review. FRONTIERS IN PLANT SCIENCE 2022; 12:772492. [PMID: 35126411 PMCID: PMC8815302 DOI: 10.3389/fpls.2021.772492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Herbivore oviposition produces all sorts of responses in plants, involving wide and complex genetic rearrangements. Many transcriptomic studies have been performed to understand this interaction, producing a bulk of transcriptomic data. However, the use of many transcriptomic techniques across the years, the lack of comparable transcriptomic context at the time of publication, and the use of outdated databases are limitations to understand this biological process. The current analysis intends to retrieve oviposition studies and process them with up-to-date techniques and updated databases. To reduce heterogeneities, the same processing techniques were applied, and Arabidopsis was selected to avoid divergencies on plant taxa stress response strategies. By doing so, we intended to understand the major mechanisms and regulatory processes linked to oviposition response. Differentially expressed gene (DEG) identification and co-expression network-based analyses were the main tools to achieve this goal. Two microarray studies and three RNA-seq analyses passed the screening criteria. The collected data pertained to the lepidopteran Pieris brassicae and the mite Tetranychus urticae, and covered a timeline from 3 to 144 h. Among the 18, 221 DEGs found, 15, 406 were exclusive of P. brassicae (72 h) and 801 were exclusive for the rest of the experiments. Excluding P. brassicae (72 h), shared genes on the rest of the experiments were twice the unique genes, indicating common response mechanisms were predominant. Enrichment analyses indicated that shared processes were circumscribed to earlier time points, and after 24 h, the divergences escalated. The response was characterized by patterns of time-dependent waves of unique processes. P. brassicae oviposition induced a rich response that shared functions across time points, while T. urticae eggs triggered less but more diverse time-dependent functions. The main processes altered were associated with hormonal cascades [e.g., salicilic acid (SA) and jasmonic acid (JA)], defense [reactive oxygen species (ROS) and glucosinolates], cell wall rearrangements, abiotic stress responses, and energy metabolism. Key gene drivers of the identified processes were also identified and presented. The current results enrich and clarify the information regarding the molecular behavior of the plant in response to oviposition by herbivores. This information is valuable for multiple stress response engineering tools, among other applications.
Collapse
Affiliation(s)
- Dairon Ojeda-Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M. Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentación, Madrid, Spain
| |
Collapse
|
21
|
|
22
|
Olean (1,7-dioxaspiro[5.5]undecane): A Novel Intraspecific Chemical Cue in Coraebus undatus (F.) (Coleoptera: Buprestidae). INSECTS 2021; 12:insects12121085. [PMID: 34940173 PMCID: PMC8707708 DOI: 10.3390/insects12121085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The flathead oak borer Coraebus undatus (F.) (Coleoptera: Buprestidae) is a major pest of cork oak (Quercus suber) along the Mediterranean Basin that generates significant economic losses in the cork industry. Larvae bore long galleries and feed on the cork generating layer, thus affecting its quality. At present, the semiochemistry of this species is poorly known, and therefore the elucidation of chemicals involved in its intraspecific communication may allow the development of novel control tools. We determined that both sexes release the compound 1,7-dioxaspiro[5.5]undecane, and the biological activity of the compound was addressed by means of electroantennography and behavioral assays. The attractiveness of the compound on both sexes under laboratory conditions contrasts to its performance in field trials, which may be explained by features inherent to the methodological design (e.g., the absence of a contextually related visual stimulus or trap deployment height). This is the first time in which an intraspecific compound has been reported as attractive for the species, and practical implications for the assessment of its activity under natural conditions are also further discussed. Abstract The main aim of this work was to identify semiochemicals from the jewel beetle Coraebus undatus (F.) (Coleoptera: Buprestidae) that may aid in the improvement of current monitoring tools. First, HS-SPME collections revealed that individually sampled adults (>7 days old) of both sexes release the spiroacetal 1,7-dioxaspiro[5.5]undecane (olean). Electroantennographic recordings from both sexes exposed to increasing amounts of olean followed a dose-dependent pattern, with females being more responsive than males to the highest amount of the compound (100 µg). In double-choice assays, adults older than seven days were significantly attracted to olean, whereas this attraction was not detected in insects aged less than seven days. Indeed, a repellent effect was observed in young females. Subsequent field trials employing sticky purple prism traps revealed that there were no differences among the number of insects caught in control and olean-baited traps at two different release rates (0.75 and 3.75 mg/day). Interestingly, all the trapped specimens were determined as mated females, regardless of the presence of olean. Overall, these findings provide a basis for unraveling the chemical ecology of the species, although further research is still needed to determine the specific role of this compound within the chemical communication of the species.
Collapse
|
23
|
Marmolejo LO, Thompson MN, Helms AM. Defense Suppression through Interplant Communication Depends on the Attacking Herbivore Species. J Chem Ecol 2021; 47:1049-1061. [PMID: 34541611 PMCID: PMC8642252 DOI: 10.1007/s10886-021-01314-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/11/2021] [Indexed: 12/21/2022]
Abstract
In response to herbivory, plants emit volatile compounds that play important roles in plant defense. Herbivore-induced plant volatiles (HIPVs) can deter herbivores, recruit natural enemies, and warn other plants of possible herbivore attack. Following HIPV detection, neighboring plants often respond by enhancing their anti-herbivore defenses, but a recent study found that herbivores can manipulate HIPV-interplant communication for their own benefit and suppress defenses in neighboring plants. Herbivores induce species-specific blends of HIPVs and how these different blends affect the specificity of plant defense responses remains unclear. Here we assessed how HIPVs from zucchini plants (Cucurbita pepo) challenged with different herbivore species affect resistance in neighboring plants. Volatile "emitter" plants were damaged by one of three herbivore species: saltmarsh caterpillars (Estigmene acrea), squash bugs (Anasa tristis), or striped cucumber beetles (Acalymma vittatum), or were left as undamaged controls. Neighboring "receiver" plants were exposed to HIPVs or control volatiles and then challenged by the associated herbivore species. As measures of plant resistance, we quantified herbivore feeding damage and defense-related phytohormones in receivers. We found that the three herbivore species induced different HIPV blends from squash plants. HIPVs induced by saltmarsh caterpillars suppressed defenses in receivers, leading to greater herbivory and lower defense induction compared to controls. In contrast, HIPVs induced by cucumber beetles and squash bugs did not affect plant resistance to subsequent herbivory in receivers. Our study shows that herbivore species identity affects volatile-mediated interplant communication in zucchini, revealing a new example of herbivore defense suppression through volatile cues.
Collapse
Affiliation(s)
- Laura O Marmolejo
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843-2475, USA.
| |
Collapse
|
24
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the detoxification enzymes of the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2021; 108:e21850. [PMID: 34750851 DOI: 10.1002/arch.21850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 09/27/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Detoxification enzymes are necessary for insects to metabolize toxic substances and maintain physiological activities. Cytochromes P450 (CYPs), glutathione S-transferases (GSTs), and carboxylesterase (CarEs) are the main detoxification enzymes in insects. In addition, UDP-glucosyltransferase and ATP-binding cassette transporter also participate in the process of material metabolism. This study collected proteins related to detoxification in the silkworm, Bombyx mori (Lepidoptera: Bombycidae). And we performed Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis on these proteins to understand their biological function. We constructed the protein-protein interaction network for the silkworm's detoxification enzymes and analyzed the network's topological properties. We found that BGIBMGA014046-TA, BGIBMGA003221-TA, BGIBMGA011092-TA, BGIBMGA000074-TA, and LOC732976 are the essential proteins in the network. These proteins are primarily involved in the process of ribosome biogenesis and may be related to protein synthesis. We integrated GO, KEGG, and network analysis and found that ribosome-associated protein and GSTs played a vital role in the detoxification process.
Collapse
Affiliation(s)
- ShangHong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - WenJun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
25
|
Grunseich JM, Aguirre NM, Thompson MN, Ali JG, Helms AM. Chemical Cues from Entomopathogenic Nematodes Vary Across Three Species with Different Foraging Strategies, Triggering Different Behavioral Responses in Prey and Competitors. J Chem Ecol 2021; 47:822-833. [PMID: 34415500 PMCID: PMC8613145 DOI: 10.1007/s10886-021-01304-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/09/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]
Abstract
Chemical cues play important roles in predator-prey interactions. Semiochemicals can aid predator foraging and alert prey organisms to the presence of predators. Previous work suggests that predator traits differentially influence prey behavior, however, empirical data on how prey organisms respond to chemical cues from predator species with different hunting strategies, and how foraging predators react to cues from potential competitors, is lacking. Furthermore, most research in this area has focused on aquatic and aboveground terrestrial systems, while interactions among belowground, soiling-dwelling organisms have received relatively little attention. Here, we assessed how chemical cues from three species of entomopathogenic nematodes (EPNs), each with a different foraging strategy, influenced herbivore (cucumber beetle) and natural enemy (EPN) foraging behavior. We predicted these cues could serve as chemical indicators of increased predation risk, prey availability, or competition. Our findings revealed that foraging cucumber beetle larvae avoided chemical cues from Heterorhabditis bacteriophora (active-foraging cruiser EPNs), but not Steinernema carpocapsae (ambusher EPNs) or Steinernema riobrave (intermediate-foraging EPNs). In contrast, foraging H. bacteriophora EPNs were attracted to cues produced by the two Steinernema species but not conspecific cues. Notably, the three EPN species produced distinct blends of olfactory cues, with only a few semi-conserved compounds across species. These results indicate that a belowground insect herbivore responds differently to chemical cues from different EPN species, with some EPN species avoiding prey detection. Moreover, the active-hunting EPNs were attracted to heterospecific cues, suggesting these cues indicate a greater probability of available prey, rather than strong interspecific competition.
Collapse
Affiliation(s)
- John M Grunseich
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Natalie M Aguirre
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Morgan N Thompson
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA
| | - Jared G Ali
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
26
|
Brosset A, Islam M, Bonzano S, Maffei ME, Blande JD. Exposure to (Z)-11-hexadecenal [(Z)-11-16:Ald] increases Brassica nigra susceptibility to subsequent herbivory. Sci Rep 2021; 11:13532. [PMID: 34188152 PMCID: PMC8242006 DOI: 10.1038/s41598-021-93052-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 12/16/2022] Open
Abstract
It is well established that plants emit, detect and respond to volatile organic compounds; however, knowledge on the ability of plants to detect and respond to volatiles emitted by non-plant organisms is limited. Recent studies indicated that plants detect insect-emitted volatiles that induce defence responses; however, the mechanisms underlying this detection and defence priming is unknown. Therefore, we explored if exposure to a main component of Plutella xylostella female sex pheromone namely (Z)-11-hexadecenal [(Z)-11-16:Ald] induced detectable early and late stage defence-related plant responses in Brassica nigra. Exposure to biologically relevant levels of vapourised (Z)-11-16:Ald released from a loaded septum induced a change in volatile emissions of receiver plants after herbivore attack and increased the leaf area consumed by P. xylostella larvae. Further experiments examining the effects of the (Z)-11-16:Ald on several stages of plant defence-related responses showed that exposure to 100 ppm of (Z)-11-16:Ald in liquid state induced depolarisation of the transmembrane potential (Vm), an increase in cytosolic calcium concentration [Ca2+]cyt, production of H2O2 and an increase in expression of reactive oxygen species (ROS)-mediated genes and ROS-scavenging enzyme activity. The results suggest that exposure to volatile (Z)-11-16:Ald increases the susceptibility of B. nigra to subsequent herbivory. This unexpected finding, suggest alternative ecological effects of detecting insect pheromone to those reported earlier. Experiments conducted in vitro showed that high doses of (Z)-11-16:Ald induced defence-related responses, but further experiments should assess how specific the response is to this particular aldehyde.
Collapse
Affiliation(s)
- Agnès Brosset
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland.
| | - Monirul Islam
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Department of Sustainable Crop Production, Università Cattolica Del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Sara Bonzano
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy.,Neuroscience Institute Cavalieri Ottolenghi (NICO) Regione Gonzole, 10 - 10043, Orbassano (TO), Italy
| | - Massimo E Maffei
- Plant Physiology Unit, Department of Life Sciences and Systems Biology, University of Turin, Via Quarello 15/A, 10135, Turin, Italy
| | - James D Blande
- Department of Environmental and Biological Sciences, University of Eastern Finland, Yliopistonranta 1 E, N70211, Kuopio, Finland
| |
Collapse
|
27
|
Yip EC, Mikó I, Ulmer JM, Cherim NA, Townley MA, Poltak S, Helms AM, De Moraes CM, Mescher MC, Tooker JF. Giant polyploid epidermal cells and male pheromone production in the tephritid fruit fly Eurosta solidaginis (Diptera: Tephritidae). JOURNAL OF INSECT PHYSIOLOGY 2021; 130:104210. [PMID: 33610542 DOI: 10.1016/j.jinsphys.2021.104210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/16/2020] [Accepted: 02/11/2021] [Indexed: 06/12/2023]
Abstract
Eurosta solidaginis males produce large amounts of putative sex pheromone compared to other insect species; however, neither the site of pheromone production nor the release mechanism has been characterized. We compared E. solidaginis males and females, focusing on sexually dimorphic structures that are known to be involved in pheromone production in other tephritid species. Morphological and chemical analyses indicated that the rectum and pleural epidermis are involved in male E. solidaginis pheromone production, storage, or emission. We detected large quantities of pheromone in the enlarged rectum, suggesting that it stores pheromone for subsequent release through the anus. However, pheromone might also discharge through the pleural cuticle with the involvement of unusual pleural attachments of the tergosternal muscles, which, when contracted in males, realign specialized cuticular surface elements and expose less-sclerotized areas of cuticle. In males, pheromone components were also detected in epidermal cells of the pleuron. These cells were 60-100 times larger in mature males than in females and, to our knowledge, are the largest animal epithelial cells ever recorded. Furthermore, because these large cells in males are multinucleated, we presume that they develop through somatic polyploidization by endomitosis. Consequently, the pheromone-associated multinuclear pleural epidermal cells of Eurosta solidaginis may provide an interesting new system for understanding polyploidization.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - István Mikó
- UNH Collection of Insects and other Arthropods, Department of Biological Sciences, University of New Hampshire, Durham, NH, USA
| | - Jonah M Ulmer
- Department of Entomology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Nancy A Cherim
- University Instrumentation Center, University of New Hampshire, Durham, NH, USA
| | - Mark A Townley
- University Instrumentation Center, University of New Hampshire, Durham, NH, USA
| | - Steffen Poltak
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | | | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
28
|
Frank L, Wenig M, Ghirardo A, van der Krol A, Vlot AC, Schnitzler JP, Rosenkranz M. Isoprene and β-caryophyllene confer plant resistance via different plant internal signalling pathways. PLANT, CELL & ENVIRONMENT 2021; 44:1151-1164. [PMID: 33522606 DOI: 10.1111/pce.14010] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/23/2021] [Accepted: 01/26/2021] [Indexed: 05/12/2023]
Abstract
Isoprene and other terpenoids are important biogenic volatile organic compounds in terms of atmospheric chemistry. Isoprene can aid plant performance under abiotic stresses, but the fundamental biological reasons for the high emissions are not completely understood. Here, we provide evidence of a previously unrecognized ecological function for isoprene and for the sesquiterpene, ß-caryophyllene. We show that isoprene and ß-caryophyllene act as core components of plant signalling networks, inducing resistance against microbial pathogens in neighbouring plants. We challenged Arabidopsis thaliana with Pseudomonas syringae, after exposure to pure volatile terpenoids or to volatile emissions of transformed poplar or Arabidopsis plants. The data suggest that isoprene induces a defence response in receiver plants that is similar to that elicited by monoterpenes and depended on salicylic acid (SA) signalling. In contrast, the sesquiterpene, ß-caryophyllene, induced resistance via jasmonic acid (JA)-signalling. The experiments in an open environment show that natural biological emissions are enough to induce resistance in neighbouring Arabidopsis. Our results show that both isoprene and ß-caryophyllene function as allelochemical components in complex plant signalling networks. Knowledge of this system may be used to boost plant immunity against microbial pathogens in various crop management schemes.
Collapse
Affiliation(s)
- Lena Frank
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Marion Wenig
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Andrea Ghirardo
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | | | - A Corina Vlot
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Neuherberg, Germany
| | - Jörg-Peter Schnitzler
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| | - Maaria Rosenkranz
- Helmholtz Zentrum München, Institute of Biochemical Plant Pathology, Research Unit Environmental Simulation, Neuherberg, Germany
| |
Collapse
|
29
|
Arimura GI. Making Sense of the Way Plants Sense Herbivores. TRENDS IN PLANT SCIENCE 2021; 26:288-298. [PMID: 33277185 DOI: 10.1016/j.tplants.2020.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 09/21/2020] [Accepted: 11/02/2020] [Indexed: 06/12/2023]
Abstract
Plants are constantly threatened by herbivore attacks and must devise survival strategies. Some plants sense and respond to elicitors including specific molecules secreted by herbivores and molecules that are innate to plants. Elicitors activate diverse arrays of plant defense mechanisms that confer resistance to the predator. Recent new insights into the cellular pathways by which plants sense elicitors and elicit defense responses against herbivores are opening doors to a myriad of agricultural applications. This review focuses on the machinery of herbivory-sensing and on cellular and systemic/airborne signaling via elicitors, exemplified by the model case of interactions between Arabidopsis hosts and moths of the genus Spodoptera.
Collapse
Affiliation(s)
- Gen-Ichiro Arimura
- Department of Biological Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Tokyo, Japan.
| |
Collapse
|
30
|
Gupta S, Kumble ALK, Dey K, Bessière JM, Borges RM. The Scent of Life: Phoretic Nematodes Use Wasp Volatiles and Carbon Dioxide to Choose Functional Vehicles for Dispersal. J Chem Ecol 2021; 47:139-152. [PMID: 33475939 DOI: 10.1007/s10886-021-01242-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/18/2020] [Accepted: 01/04/2021] [Indexed: 10/22/2022]
Abstract
Hitchhikers (phoretic organisms) need vehicles to disperse out of unsuitable habitats. Therefore, finding vehicles with the right functional attributes is essential for phoretic organisms. To locate these vehicles, phoretic organisms employ cues within modalities, ranging from visual to chemical senses. However, how hitchhikers discriminate between individual vehicles has rarely been investigated. Using a phoretic nematode community associated with an obligate fig-fig wasp pollination mutualism, we had earlier established that hitchhiking nematodes make decisions based on vehicle species identity and number of conspecific hitchhikers already present on the vehicle. Here we investigate if hitchhikers can differentiate between physiological states of vehicles. We asked whether phoretic nematodes choose between live or dead vehicles present in a chemically crowded environment and we investigated the basis for any discrimination. We conducted two-choice and single-choice behavioral assays using single nematodes and found that plant- and animal-parasitic nematodes preferred live over dead vehicles and used volatiles as a sensory cue to make this decision. However, in single-choice assays, animal-parasitic nematodes were also attracted towards naturally dead or freeze-killed wasps. The volatile profile of the wasps was dominated by terpenes and spiroketals. We examined the volatile blend emitted by the different wasp physiological states and determined a set of volatiles that the phoretic nematodes might use to discriminate between these states which is likely coupled with respired CO2. We determined that CO2 levels emitted by single wasps are sufficient to attract nematodes, demonstrating the high sensitivity of nematodes to this metabolic product.
Collapse
Affiliation(s)
- Satyajeet Gupta
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Anusha L K Kumble
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India
| | - Kaveri Dey
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India
| | | | - Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
31
|
Valsamakis G, Bittner N, Fatouros NE, Kunze R, Hilker M, Lortzing V. Priming by Timing: Arabidopsis thaliana Adjusts Its Priming Response to Lepidoptera Eggs to the Time of Larval Hatching. FRONTIERS IN PLANT SCIENCE 2020; 11:619589. [PMID: 33362842 PMCID: PMC7755604 DOI: 10.3389/fpls.2020.619589] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 11/18/2020] [Indexed: 05/20/2023]
Abstract
Plants can respond to eggs laid by herbivorous insects on their leaves by preparing (priming) their defense against the hatching larvae. Egg-mediated priming of defense is known for several plant species, including Brassicaceae. However, it is unknown yet for how long the eggs need to remain on a plant until a primed defense state is reached, which is ecologically manifested by reduced performance of the hatching larvae. To address this question, we used Arabidopsis thaliana, which carried eggs of the butterfly Pieris brassicae for 1-6 days prior to exposure to larval feeding. Our results show that larvae gained less biomass the longer the eggs had previously been on the plant. The strongest priming effect was obtained when eggs had been on the plant for 5 or 6 days, i.e., for (almost) the entire development time of the Pieris embryo inside the egg until larval hatching. Transcript levels of priming-responsive genes, levels of jasmonic acid-isoleucine (JA-Ile), and of the egg-inducible phytoalexin camalexin increased with the egg exposure time. Larval performance studies on mutant plants revealed that camalexin is dispensable for anti-herbivore defense against P. brassicae larvae, whereas JA-Ile - in concert with egg-induced salicylic acid (SA) - seems to be important for signaling egg-mediated primed defense. Thus, A. thaliana adjusts the kinetics of its egg-primed response to the time point of larval hatching. Hence, the plant is optimally prepared just in time prior to larval hatching.
Collapse
Affiliation(s)
- Georgios Valsamakis
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Norbert Bittner
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Nina E. Fatouros
- Biosystematics Group, Wageningen University, Wageningen, Netherlands
| | - Reinhard Kunze
- Applied Genetics, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
32
|
Xin S, Zhang W. Construction and analysis of the protein-protein interaction network for the olfactory system of the silkworm Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 105:e21737. [PMID: 32926465 DOI: 10.1002/arch.21737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 06/11/2023]
Abstract
Olfaction plays an essential role in feeding and information exchange in insects. Previous studies on the olfaction of silkworms have provided a wealth of information about genes and proteins, yet, most studies have only focused on a single gene or protein related to the insect's olfaction. The aim of the current study is to determine key proteins in the olfactory system of the silkworm, and further understand protein-protein interactions (PPIs) in the olfactory system of Lepidoptera. To achieve this goal, we integrated Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and network analyses. Furthermore, we selected 585 olfactory-related proteins and constructed a (PPI) network for the olfactory system of the silkworm. Network analysis led to the identification of several key proteins, including GSTz1, LOC733095, BGIBMGA002169-TA, BGIBMGA010939-TA, GSTs2, GSTd2, Or-2, and BGIBMGA013255-TA. A comprehensive evaluation of the proteins showed that glutathione S-transferases (GSTs) had the highest ranking. GSTs also had the highest enrichment levels in GO and KEGG. In conclusion, our analysis showed that key nodes in the biological network had a significant impact on the network, and the key proteins identified via network analysis could serve as new research targets to determine their functions in olfaction.
Collapse
Affiliation(s)
- Shanghong Xin
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Wenjun Zhang
- School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Lortzing T, Kunze R, Steppuhn A, Hilker M, Lortzing V. Arabidopsis, tobacco, nightshade and elm take insect eggs as herbivore alarm and show similar transcriptomic alarm responses. Sci Rep 2020; 10:16281. [PMID: 33004864 PMCID: PMC7530724 DOI: 10.1038/s41598-020-72955-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Plants respond to insect eggs with transcriptional changes, resulting in enhanced defence against hatching larvae. However, it is unknown whether phylogenetically distant plant species show conserved transcriptomic responses to insect eggs and subsequent larval feeding. We used Generally Applicable Gene set Enrichment (GAGE) on gene ontology terms to answer this question and analysed transcriptome data from Arabidopsis thaliana, wild tobacco (Nicotiana attenuata), bittersweet nightshade (Solanum dulcamara) and elm trees (Ulmus minor) infested by different insect species. The different plant-insect species combinations showed considerable overlap in their transcriptomic responses to both eggs and larval feeding. Within these conformable responses across the plant-insect combinations, the responses to eggs and feeding were largely analogous, and about one-fifth of these analogous responses were further enhanced when egg deposition preceded larval feeding. This conserved transcriptomic response to eggs and larval feeding comprised gene sets related to several phytohormones and to the phenylpropanoid biosynthesis pathway, of which specific branches were activated in different plant-insect combinations. Since insect eggs and larval feeding activate conserved sets of biological processes in different plant species, we conclude that plants with different lifestyles share common transcriptomic alarm responses to insect eggs, which likely enhance their defence against hatching larvae.
Collapse
Affiliation(s)
- Tobias Lortzing
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Reinhard Kunze
- Applied Genetics, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Anke Steppuhn
- Molecular Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Molecular Botany, Institute of Biology, University of Hohenheim, Stuttgart, Germany
| | - Monika Hilker
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Vivien Lortzing
- Applied Zoology/Animal Ecology, Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
34
|
Calvo P, Trewavas A. Cognition and intelligence of green plants. Information for animal scientists. Biochem Biophys Res Commun 2020; 564:78-85. [PMID: 32838964 DOI: 10.1016/j.bbrc.2020.07.139] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/08/2020] [Accepted: 07/10/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Paco Calvo
- Minimal Intelligence Laboratory, Universidad de Murcia, Murcia, Spain.
| | - Anthony Trewavas
- Institute of Molecular Plant Science, Kings Buildings, University of Edinburgh, Edinburgh, Scotland, UK
| |
Collapse
|
35
|
Sheriff MJ, Orrock JL, Ferrari MCO, Karban R, Preisser EL, Sih A, Thaler JS. Proportional fitness loss and the timing of defensive investment: a cohesive framework across animals and plants. Oecologia 2020; 193:273-283. [PMID: 32542471 DOI: 10.1007/s00442-020-04681-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 06/06/2020] [Indexed: 11/25/2022]
Abstract
The risk of consumption is a pervasive aspect of ecology and recent work has focused on synthesis of consumer-resource interactions (e.g., enemy-victim ecology). Despite this, theories pertaining to the timing and magnitude of defenses in animals and plants have largely developed independently. However, both animals and plants share the common dilemma of uncertainty of attack, can gather information from the environment to predict future attacks and alter their defensive investment accordingly. Here, we present a novel, unifying framework based on the way an organism's ability to defend itself during an attack can shape their pre-attack investment in defense. This framework provides a useful perspective on the nature of information use and variation in defensive investment across the sequence of attack-related events, both within and among species. It predicts that organisms with greater proportional fitness loss if attacked will gather and respond to risk information earlier in the attack sequence, while those that have lower proportional fitness loss may wait until attack is underway. This framework offers a common platform to compare and discuss consumer effects and provides novel insights into the way risk information can propagate through populations, communities, and ecosystems.
Collapse
Affiliation(s)
- Michael J Sheriff
- Biology Department, University of Massachusetts Dartmouth, Dartmouth, MA, USA.
| | - John L Orrock
- Department of Integrative Biology, University of Wisconsin, Madison, WI, USA
| | - Maud C O Ferrari
- Department of Biomedical Sciences, WCVM, University of Saskatchewan, Saskatoon, SK, Canada
| | - Richard Karban
- Department of Entomology, University of California, Davis, CA, USA
| | - Evan L Preisser
- Department of Biological Sciences, University of Rhode Island, Kingston, RI, USA
| | - Andrew Sih
- Department of Environmental Science and Policy, University of California, Davis, CA, USA
| | | |
Collapse
|
36
|
Leaf vibrations produced by chewing provide a consistent acoustic target for plant recognition of herbivores. Oecologia 2020; 194:1-13. [DOI: 10.1007/s00442-020-04672-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/16/2020] [Indexed: 12/11/2022]
|
37
|
Pashalidou FG, Eyman L, Sims J, Buckley J, Fatouros NE, De Moraes CM, Mescher MC. Plant volatiles induced by herbivore eggs prime defences and mediate shifts in the reproductive strategy of receiving plants. Ecol Lett 2020; 23:1097-1106. [PMID: 32314512 DOI: 10.1111/ele.13509] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 02/22/2020] [Accepted: 03/10/2020] [Indexed: 12/24/2022]
Abstract
Plants can detect cues associated with the risk of future herbivory and modify defence phenotypes accordingly; however, our current understanding is limited both with respect to the range of early warning cues to which plants respond and the nature of the responses. Here we report that exposure to volatile emissions from plant tissues infested with herbivore eggs promotes stronger defence responses to subsequent herbivory in two Brassica species. Furthermore, exposure to these volatile cues elicited an apparent shift from growth to reproduction in Brassica nigra, with exposed plants exhibiting increased flower and seed production, but reduced leaf production, relative to unexposed controls. Our results thus document plant defence priming in response to a novel environmental cue, oviposition-induced plant volatiles, while also showing that plant responses to early warning cues can include changes in both defence and life-history traits.
Collapse
Affiliation(s)
- Foteini G Pashalidou
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.,UMR Agronomie, INRAE, AgroParisTech, Universite Paris-Saclay, 78850, Thiverval-Grignon, France
| | - Lisa Eyman
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Sims
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - James Buckley
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University, Droevendaalsesteeg 1, 6708 PB, Wageningen, Netherlands
| | - Consuelo M De Moraes
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Mark C Mescher
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| |
Collapse
|
38
|
Scala V, Pietricola C, Farina V, Beccaccioli M, Zjalic S, Quaranta F, Fornara M, Zaccaria M, Momeni B, Reverberi M, Iori A. Tramesan Elicits Durum Wheat Defense against the Septoria Disease Complex. Biomolecules 2020; 10:biom10040608. [PMID: 32295231 PMCID: PMC7225966 DOI: 10.3390/biom10040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 11/16/2022] Open
Abstract
The Septoria Leaf Blotch Complex (SLBC), caused by the two ascomycetes Zymoseptoria tritici and Parastagonospora nodorum, can reduce wheat global yearly yield by up to 50%. In the last decade, SLBC incidence has increased in Italy; notably, durum wheat has proven to be more susceptible than common wheat. Field fungicide treatment can efficiently control these pathogens, but it leads to the emergence of resistant strains and adversely affects human and animal health and the environment. Our previous studies indicated that active compounds produced by Trametes versicolor can restrict the growth of mycotoxigenic fungi and the biosynthesis of their secondary metabolites (e.g., mycotoxins). Specifically, we identified Tramesan: a 23 kDa α-heteropolysaccharide secreted by T. versicolor that acts as a pro-antioxidant molecule in animal cells, fungi, and plants. Foliar-spray of Tramesan (3.3 μM) on SLBC-susceptible durum wheat cultivars, before inoculation of causal agents of Stagonospora Nodorum Blotch (SNB) and Septoria Tritici Blotch (STB), significantly decreased disease incidence both in controlled conditions (SNB: -99%, STB: -75%) and field assays (SNB: -25%, STB: -30%). We conducted these tests were conducted under controlled conditions as well as in field. We showed that Tramesan increased the levels of jasmonic acid (JA), a plant defense-related hormone. Tramesan also increased the early expression (24 hours after inoculation - hai) of plant defense genes such as PR4 for SNB infected plants, and RBOH, PR1, and PR9 for STB infected plants. These results suggest that Tramesan protects wheat by eliciting plant defenses, since it has no direct fungicidal activity. In field experiments, the yield of durum wheat plants treated with Tramesan was similar to that of healthy untreated plots. These results encourage the use of Tramesan to protect durum wheat against SLBC.
Collapse
Affiliation(s)
- Valeria Scala
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di Ricerca Difesa e Certificazione, Via C.G. Bertero, 22, 00156 Roma, Italy;
| | - Chiara Pietricola
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Valentina Farina
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Marzia Beccaccioli
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
| | - Slaven Zjalic
- Department of Ecology, Agronomy and Aquaculture, University of Zadar, Ulica Mihovila Pavlinovića bb, 23000 ZADAR, Croatia;
| | - Fabrizio Quaranta
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| | - Mauro Fornara
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| | - Marco Zaccaria
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA; (M.Z.); (B.M.)
| | - Babak Momeni
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA; (M.Z.); (B.M.)
| | - Massimo Reverberi
- Università Sapienza, Dip. Biologia Ambientale, P.le Aldo Moro 5, 00185 Roma, Italy; (C.P.); (V.F.); (M.B.)
- Correspondence:
| | - Angela Iori
- Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Centro di ricerca Ingegneria e Trasformazioni agroalimentari, Via Manziana 30, 00189 Roma, Italy; (F.Q.); (M.F.); (A.I.)
| |
Collapse
|
39
|
Bittner N, Hundacker J, Achotegui-Castells A, Anderbrant O, Hilker M. Defense of Scots pine against sawfly eggs ( Diprion pini) is primed by exposure to sawfly sex pheromones. Proc Natl Acad Sci U S A 2019; 116:24668-24675. [PMID: 31748269 PMCID: PMC6900732 DOI: 10.1073/pnas.1910991116] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Plants respond to insect infestation with defenses targeting insect eggs on their leaves and the feeding insects. Upon perceiving cues indicating imminent herbivory, such as damage-induced leaf odors emitted by neighboring plants, they are able to prime their defenses against feeding insects. Yet it remains unknown whether plants can amplify their defenses against insect eggs by responding to cues indicating imminent egg deposition. Here, we tested the hypothesis that a plant strengthens its defenses against insect eggs by responding to insect sex pheromones. Our study shows that preexposure of Pinus sylvestris to pine sawfly sex pheromones reduces the survival rate of subsequently laid sawfly eggs. Exposure to pheromones does not significantly affect the pine needle water content, but results in increased needle hydrogen peroxide concentrations and increased expression of defense-related pine genes such as SOD (superoxide dismutase), LOX (lipoxygenase), PAL (phenylalanine ammonia lyase), and PR-1 (pathogenesis related protein 1) after egg deposition. These results support our hypothesis that plant responses to sex pheromones emitted by an herbivorous insect can boost plant defensive responses to insect egg deposition, thus highlighting the ability of a plant to mobilize its defenses very early against an initial phase of insect attack, the egg deposition.
Collapse
Affiliation(s)
- Norbert Bittner
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Janik Hundacker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany
| | - Ander Achotegui-Castells
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), Barcelona, 08193 Catalonia, Spain
- Global Ecology Unit, CREAF-Consejo Superior de Investigaciones Científicas, Universitat Autònoma de Barcelona, Barcelona, 08193 Catalonia, Spain
| | | | - Monika Hilker
- Dahlem Centre of Plant Sciences, Institute of Biology, Freie Universität Berlin, 12163 Berlin, Germany;
| |
Collapse
|
40
|
Bouwmeester H, Schuurink RC, Bleeker PM, Schiestl F. The role of volatiles in plant communication. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 100:892-907. [PMID: 31410886 PMCID: PMC6899487 DOI: 10.1111/tpj.14496] [Citation(s) in RCA: 166] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 05/31/2019] [Accepted: 06/17/2019] [Indexed: 05/08/2023]
Abstract
Volatiles mediate the interaction of plants with pollinators, herbivores and their natural enemies, other plants and micro-organisms. With increasing knowledge about these interactions the underlying mechanisms turn out to be increasingly complex. The mechanisms of biosynthesis and perception of volatiles are slowly being uncovered. The increasing scientific knowledge can be used to design and apply volatile-based agricultural strategies.
Collapse
Affiliation(s)
- Harro Bouwmeester
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Robert C. Schuurink
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Petra M. Bleeker
- University of AmsterdamSwammerdam Institute for Life SciencesGreen Life Science research clusterScience Park 9041098 XHAmsterdamThe Netherlands
| | - Florian Schiestl
- Department of Systematic and Evolutionary BotanyUniversity of ZürichZollikerstrasse 107CH‐8008ZürichSwitzerland
| |
Collapse
|
41
|
Shi JH, Sun Z, Hu XJ, Jin H, Foba CN, Liu H, Wang C, Liu L, Li FF, Wang MQ. Rice defense responses are induced upon leaf rolling by an insect herbivore. BMC PLANT BIOLOGY 2019; 19:514. [PMID: 31767006 PMCID: PMC6878700 DOI: 10.1186/s12870-019-2116-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Accepted: 11/04/2019] [Indexed: 06/01/2023]
Abstract
BACKGROUND Plant defense against herbivores begins with perception. The earlier plant detects the harm, the greater plant will benefit in its arm race with the herbivore. Before feeding, the larvae of the rice pest Cnaphalocrocis medinalis, initially spin silk and fold up a leaf. Rice can detect and protect itself against C. medinalis feeding. However, whether rice could perceive C. medinalis leaf rolling behavior is currently unknown. Here, we evaluated the role of leaf rolling by C. medinalis and artificial leaf rolling in rice plant defense and its indirect effect on two important C. medinalis parasitoids (Itoplectis naranyae and Apanteles sp.) through a combination of volatile profiling, gene-transcriptional and phytohormonal profiling. RESULTS Natural leaf rolling by C. medinalis resulted in an increased attraction of I. naranyae when compared to the undamaged plant after 12 h. Volatile analysis revealed that six out of a total 22 components significantly increased in the headspace of C. medinalis rolled plant when compared to undamaged plant. Principal component analysis of these components revealed similarities in the headspace of undamaged plant and artificially rolled plant while the headspace volatiles of C. medinalis rolled plant deferred significantly. Leaf rolling and feeding by C. medinalis up-regulated the plant transcriptome and a series of jasmonic acid (JA) and salicylic acid (SA) related genes. While feeding significantly increased JA level after 12 to 36 h, rolling significantly increased SA level after 2 to 12 h. Compared to artificial rolling, natural rolling significantly increased JA level after 36 h and SA level after 2 and 12 h. CONCLUSIONS Our findings suggest that natural leaf rolling by C. medinalis can be perceived by rice plant. The detection of this behavior may serve as an early warning signal in favor of the rice plant defenses against C. medinalis.
Collapse
Affiliation(s)
- Jin-Hua Shi
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Ze Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Xin-Jun Hu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Huanan Jin
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Caroline Ngichop Foba
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Hao Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Chao Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Le Liu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Feng-Feng Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| | - Man-Qun Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070 People’s Republic of China
| |
Collapse
|
42
|
Yip EC, Tooker JF, Mescher MC, De Moraes CM. Costs of plant defense priming: exposure to volatile cues from a specialist herbivore increases short-term growth but reduces rhizome production in tall goldenrod (Solidago altissima). BMC PLANT BIOLOGY 2019; 19:209. [PMID: 31113387 PMCID: PMC6528222 DOI: 10.1186/s12870-019-1820-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 05/07/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND By sensing environmental cues indicative of pathogens or herbivores, plants can "prime" appropriate defenses and deploy faster, stronger responses to subsequent attack. Such priming presumably entails costs-else the primed state should be constitutively expressed-yet those costs remain poorly documented, in part due to a lack of studies conducted under realistic ecological conditions. We explored how defence priming in goldenrod (Solidago altissima) influenced growth and reproduction under semi-natural field conditions by manipulating exposure to priming cues (volatile emissions of a specialist herbivore, Eurosta solidaginis), competition between neighbouring plants, and herbivory (via insecticide application). RESULTS We found that primed plants grew faster than unprimed plants, but produced fewer rhizomes, suggesting reduced capacity for clonal reproduction. Unexpectedly, this effect was apparent only in the absence of insecticide, prompting a follow-up experiment that revealed direct effects of the pesticide esfenvalerate on plant growth (contrary to previous reports from goldenrod). Meanwhile, even in the absence of pesticide, priming had little effect on herbivore damage levels, likely because herbivores susceptible to the primed defences were rare or absent due to seasonality. CONCLUSIONS Reduced clonal reproduction in primed plants suggest that priming can entail significant costs for plants. These costs, however, may only become apparent when priming cues fail to provide accurate information about prevailing threats, as was the case in this study. Additionally, our insecticide data indicate that pesticides or their carrier compounds can subtly, but significantly, affect plant physiology and may interact with plant defences.
Collapse
Affiliation(s)
- Eric C Yip
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John F Tooker
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mark C Mescher
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland
| | - Consuelo M De Moraes
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Environmental Systems Science, ETH Zürich, 8092, Zürich, Switzerland.
| |
Collapse
|
43
|
Lipophilic Metabolites and Anatomical Acclimatization of Cleome amblyocarpa in the Drought and Extra-Water Areas of the Arid Desert of UAE. PLANTS 2019; 8:plants8050132. [PMID: 31100925 PMCID: PMC6572330 DOI: 10.3390/plants8050132] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 04/20/2019] [Accepted: 05/14/2019] [Indexed: 01/13/2023]
Abstract
Plants adapt to different environmental conditions by developing structural and metabolic mechanisms. In this study, anatomical features and lipophilic metabolites were investigated in Cleome amblyocarpa Barr. & Murb., Cleomaceae plants growing in the arid desert of United Arab Emirates (UAE) in either low-water or extra-water areas, which were caused by the surrounding road run-off. The plant showed the presence of shaggy-like trichomes. The plant also developed special mechanisms to ensure its survival via release of lipophilic metabolites. The lipophilic metabolites, stained red with Sudan III, were apparently released by glandular trichomes and idioblasts of the shoot and roots, respectively. The identified lipophilic metabolites included those required for drought tolerance, protection against pathogens invasion, and detoxification. Plants growing in the low-water area caused an increase in the production of lipophilic metabolites-in particular, hydrocarbons and terpenoids. The lipophilic metabolites are known to provide the plant with unique waxy surfaces that reduce water loss and avoid penetration by pathogens. The release of lipid metabolites and the presence of shaggy-like trichomes represented unique features of the species that have never been reported. The provided chemical ecology information can be extended for several plant-related applications, particularly including drought tolerance.
Collapse
|
44
|
Magalhães DM, Da Silva ITFA, Borges M, Laumann RA, Blassioli-Moraes MC. Anthonomus grandis aggregation pheromone induces cotton indirect defence and attracts the parasitic wasp Bracon vulgaris. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1891-1901. [PMID: 30722044 DOI: 10.1093/jxb/erz040] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 01/21/2019] [Indexed: 06/09/2023]
Abstract
Insect-derived volatiles seem to provide reliable chemical cues that plants could employ to defend themselves. Here we investigated the effect of pheromone emission from a closely associated (Anthonomus grandis; boll weevil) and an unassociated (Tibraca limbativentris) herbivore on cotton volatile emission. Exposure to A. grandis aggregation pheromone induced cotton defence response by enhancing the emission of volatiles attractive to the natural enemy of A. grandis, the parasitic wasp Bracon vulgaris, but only when the pheromonal blend was complete (all four components). Individual components of A. grandis aggregation pheromone were not able to induce cotton plants to increase the release of volatiles. On the other hand, T. limbativentris sex pheromone did not induce any change in the cotton constitutive volatile profile. Our results support the hypothesis that plants are able to detect pheromones of tightly co-evolved herbivores. Moreover, A. grandis pheromone exposure induced similar volatile compounds to herbivore-induced cotton, such as linalool, (E)-ocimene, (E)-4,8-dimethylnona-1,3,7-triene (DMNT), and (E,E)-4,8,12-trimethyltrideca-1,3,7,11-tetraene (TMTT). We also showed that the larval ectoparasitoid B. vulgaris relies on boll weevil's aggregation pheromone and pheromone-induced plant volatiles as kairomones to locate suitable hosts.
Collapse
Affiliation(s)
- Diego Martins Magalhães
- Department of Zoology, Institute of Biological Sciences, University of Brasília, Brasília-DF, Brazil
- Department of Biological Control, EMBRAPA Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | - Izabela Thaís Fidelis Alves Da Silva
- Department of Biological Control, EMBRAPA Genetic Resources and Biotechnology, Brasília-DF, Brazil
- Department of Plant and Environmental Science, Centre for Agricultural Science, Federal University of Paraíba, Areia-PB, Brazil
| | - Miguel Borges
- Department of Biological Control, EMBRAPA Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | - Raúl Alberto Laumann
- Department of Biological Control, EMBRAPA Genetic Resources and Biotechnology, Brasília-DF, Brazil
| | | |
Collapse
|
45
|
Hu L, Ye M, Erb M. Integration of two herbivore-induced plant volatiles results in synergistic effects on plant defence and resistance. PLANT, CELL & ENVIRONMENT 2019; 42:959-971. [PMID: 30195252 PMCID: PMC6392123 DOI: 10.1111/pce.13443] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 08/25/2018] [Accepted: 09/02/2018] [Indexed: 05/03/2023]
Abstract
Plants can use induced volatiles to detect herbivore- and pathogen-attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress-related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore-induced volatile priming cues with complementary information content, the green leaf volatile (Z)-3-hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile-exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile-exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual-exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.
Collapse
Affiliation(s)
- Lingfei Hu
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Meng Ye
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Matthias Erb
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| |
Collapse
|
46
|
Lortzing V, Oberländer J, Lortzing T, Tohge T, Steppuhn A, Kunze R, Hilker M. Insect egg deposition renders plant defence against hatching larvae more effective in a salicylic acid-dependent manner. PLANT, CELL & ENVIRONMENT 2019; 42:1019-1032. [PMID: 30252928 DOI: 10.1111/pce.13447] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/15/2018] [Indexed: 05/06/2023]
Abstract
Plants can improve their antiherbivore defence by taking insect egg deposition as cue of impending feeding damage. Previous studies showed that Pieris brassicae larvae feeding upon egg-deposited Brassicaceae perform worse and gain less weight than larvae on egg-free plants. We investigated how P. brassicae oviposition on Arabidopsis thaliana affects the plant's molecular and chemical responses to larvae. A transcriptome comparison of feeding-damaged leaves without and with prior oviposition revealed about 200 differently expressed genes, including enhanced expression of PR5, which is involved in salicylic acid (SA)-signalling. SA levels were induced by larval feeding to a slightly greater extent in egg-deposited than egg-free plants. The adverse effect of egg-deposited wild-type (WT) plants on larval weight was absent in an egg-deposited PR5-deficient mutant or other mutants impaired in SA-mediated signalling, that is, sid2/ics1, ald1, and pad4. In contrast, the adverse effect of egg-deposited WT plants on larvae was retained in egg-deposited npr1 and wrky70 mutants impaired further downstream in SA-signalling. Oviposition induced accumulation of flavonols in WT plants with and without feeding damage, but not in the PR5-deficient mutant. We demonstrated that egg-mediated improvement of A. thaliana's antiherbivore defence involves SA-signalling in an NPR1-independent manner and is associated with accumulation of flavonols.
Collapse
Affiliation(s)
- Vivien Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Jana Oberländer
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Tobias Lortzing
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, Department Secondary Metabolism, Potsdam, Germany
| | - Anke Steppuhn
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Reinhard Kunze
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Monika Hilker
- Institute of Biology, Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
47
|
Michmizos D, Hilioti Z. A roadmap towards a functional paradigm for learning & memory in plants. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:209-215. [PMID: 30537608 DOI: 10.1016/j.jplph.2018.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/15/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
In plants, the acquisition, processing and storage of empirical information can result in the modification of their behavior according to the nature of the stimulus, and yet this area of research remained relatively understudied until recently. As the body of evidence supporting the inclusion of plants among the higher organisms demonstrating the adaptations to accomplish these tasks keeps increasing, the resistance by traditional botanists and agricultural scientists, who were at first cautious in allowing the application of animal models onto plant physiology and development, subsides. However, the debate retains much of its heat, a good part of it originating from the controversial use of nervous system terms to describe plant processes. By focusing on the latest findings on the cellular and molecular mechanisms underlying the well established processes of Learning and Memory, recognizing what has been accomplished and what remains to be explored, and without seeking to bootstrap neuronal characteristics where none are to be found, a roadmap guiding towards a comprehensive paradigm for Learning and Memory in plants begins to emerge. Meanwhile the applications of the new field of Plant Gnosophysiology look as promising as ever.
Collapse
Affiliation(s)
- Dimitrios Michmizos
- Dept. of Agriculture, Crop Production & Rural Environment, University of Thessaly, Fytokos st, Volos, Magnesia, 384 46, Greece.
| | - Zoe Hilioti
- Institute of Applied Biosciences, Center for Research & Technology (CERTH), Thessaloniki, Greece
| |
Collapse
|
48
|
Cofer TM, Seidl-Adams I, Tumlinson JH. From Acetoin to ( Z)-3-Hexen-1-ol: The Diversity of Volatile Organic Compounds that Induce Plant Responses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:11197-11208. [PMID: 30293420 DOI: 10.1021/acs.jafc.8b03010] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Evidence that plants can respond to volatile organic compounds (VOCs) was first presented 35 years ago. Since then, over 40 VOCs have been found to induce plant responses. These include VOCs that are produced not only by plants but also by microbes and insects. Here, we summarize what is known about how these VOCs are produced and how plants detect and respond to them. In doing so, we highlight notable observations we believe are worth greater consideration. For example, the VOCs that induce plant responses appear to have little in common. They are derived from many different biosynthetic pathways and have few distinguishing chemical or structural features. Likewise, plants appear to use several mechanisms to detect VOCs rather than a single dedicated "olfactory" system. Considering these observations, we advocate for more discovery-oriented experiments and propose that future research take a fresh look at the ways plants detect and respond to VOCs.
Collapse
Affiliation(s)
- Tristan M Cofer
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Irmgard Seidl-Adams
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - James H Tumlinson
- Center for Chemical Ecology, Department of Entomology , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
49
|
Erb M. Volatiles as inducers and suppressors of plant defense and immunity-origins, specificity, perception and signaling. CURRENT OPINION IN PLANT BIOLOGY 2018; 44:117-121. [PMID: 29674130 DOI: 10.1016/j.pbi.2018.03.008] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/22/2018] [Accepted: 03/30/2018] [Indexed: 05/08/2023]
Abstract
Volatiles from attacked plants, microbes and herbivores can enhance plant defenses. However, the absence of volatiles rather than their presence has sometimes been associated with enhanced defense, suggesting that volatiles may also act as defense suppressors. Recent work provides a potential mechanistic explanation for these observations by showing that volatile cues can modulate different hormonal pathways, including jasmonate (JA), salicylic acid (SA) and auxin (IAA) signaling. Many of these pathways interact with each other through crosstalk. Thus, volatiles may suppress plant defenses through negative hormonal crosstalk. Hormonal crosstalk may also allow plants to integrate different volatile cues to respond specifically and appropriately to environmental change.
Collapse
Affiliation(s)
- Matthias Erb
- Institute of Plant Sciences, University of Bern, Switzerland.
| |
Collapse
|
50
|
Karban R, Orrock JL. A judgment and decision‐making model for plant behavior. Ecology 2018; 99:1909-1919. [DOI: 10.1002/ecy.2418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 03/20/2018] [Accepted: 05/14/2018] [Indexed: 11/05/2022]
Affiliation(s)
- Richard Karban
- Department of Entomology and Nematology University of California, Davis Davis California 95616 USA
| | - John L. Orrock
- Department of Integrative Biology University of Wisconsin Madison Wisconsin 53704 USA
| |
Collapse
|