1
|
Yuasa-Kawada J, Kinoshita-Kawada M, Hiramoto M, Yamagishi S, Mishima T, Yasunaga S, Tsuboi Y, Hattori N, Wu JY. Neuronal guidance signaling in neurodegenerative diseases: Key regulators that function at neuron-glia and neuroimmune interfaces. Neural Regen Res 2026; 21:612-635. [PMID: 39995079 DOI: 10.4103/nrr.nrr-d-24-01330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 01/27/2025] [Indexed: 02/26/2025] Open
Abstract
The nervous system processes a vast amount of information, performing computations that underlie perception, cognition, and behavior. During development, neuronal guidance genes, which encode extracellular cues, their receptors, and downstream signal transducers, organize neural wiring to generate the complex architecture of the nervous system. It is now evident that many of these neuroguidance cues and their receptors are active during development and are also expressed in the adult nervous system. This suggests that neuronal guidance pathways are critical not only for neural wiring but also for ongoing function and maintenance of the mature nervous system. Supporting this view, these pathways continue to regulate synaptic connectivity, plasticity, and remodeling, and overall brain homeostasis throughout adulthood. Genetic and transcriptomic analyses have further revealed many neuronal guidance genes to be associated with a wide range of neurodegenerative and neuropsychiatric disorders. Although the precise mechanisms by which aberrant neuronal guidance signaling drives the pathogenesis of these diseases remain to be clarified, emerging evidence points to several common themes, including dysfunction in neurons, microglia, astrocytes, and endothelial cells, along with dysregulation of neuron-microglia-astrocyte, neuroimmune, and neurovascular interactions. In this review, we explore recent advances in understanding the molecular and cellular mechanisms by which aberrant neuronal guidance signaling contributes to disease pathogenesis through altered cell-cell interactions. For instance, recent studies have unveiled two distinct semaphorin-plexin signaling pathways that affect microglial activation and neuroinflammation. We discuss the challenges ahead, along with the therapeutic potentials of targeting neuronal guidance pathways for treating neurodegenerative diseases. Particular focus is placed on how neuronal guidance mechanisms control neuron-glia and neuroimmune interactions and modulate microglial function under physiological and pathological conditions. Specifically, we examine the crosstalk between neuronal guidance signaling and TREM2, a master regulator of microglial function, in the context of pathogenic protein aggregates. It is well-established that age is a major risk factor for neurodegeneration. Future research should address how aging and neuronal guidance signaling interact to influence an individual's susceptibility to various late-onset neurological diseases and how the progression of these diseases could be therapeutically blocked by targeting neuronal guidance pathways.
Collapse
Affiliation(s)
| | | | | | - Satoru Yamagishi
- Department of Optical Neuroanatomy, Institute of Photonics Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Takayasu Mishima
- Division of Neurology, Department of Internal Medicine, Sakura Medical Center, Toho University, Sakura, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Fukuoka University Faculty of Medicine, Fukuoka, Japan
| | - Yoshio Tsuboi
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Jane Y Wu
- Department of Neurology, Center for Genetic Medicine, Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Kumar S, Kahle AD, Keeler AB, Zunder ER, Deppmann CD. Characterizing Microglial Signaling Dynamics During Inflammation Using Single-Cell Mass Cytometry. Glia 2025; 73:1022-1035. [PMID: 39780484 PMCID: PMC11920681 DOI: 10.1002/glia.24670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025]
Abstract
Microglia play a critical role in maintaining central nervous system (CNS) homeostasis and display remarkable plasticity in their response to inflammatory stimuli. However, the specific signaling profiles that microglia adopt during such challenges remain incompletely understood. Traditional transcriptomic approaches provide valuable insights, but fail to capture dynamic post-translational changes. In this study, we utilized time-resolved single-cell mass cytometry (CyTOF) to measure distinct signaling pathways activated in microglia upon exposure to bacterial and viral mimetics-lipopolysaccharide (LPS) and polyinosinic-polycytidylic acid (Poly(I:C)), respectively. Furthermore, we evaluated the immunomodulatory role of astrocytes on microglial signaling in mixed cultures. Microglia or mixed cultures derived from neonatal mice were treated with LPS or Poly(I:C) for 48 h. Cultures were stained with a panel of 33 metal-conjugated antibodies targeting signaling and identity markers. High-dimensional clustering analysis was used to identify emergent signaling modules. We found that LPS treatment led to more robust early activation of pp38, pERK, pRSK, and pCREB compared to Poly(I:C). Despite these differences, both LPS and Poly(I:C) upregulated the classical reactivity markers CD40 and CD86 at later time points. Strikingly, the presence of astrocytes significantly blunted microglial responses to both stimuli, particularly dampening CD40 upregulation. Our studies demonstrate that single-cell mass cytometry effectively captures the dynamic signaling landscape of microglia under pro-inflammatory conditions. This approach may pave the way for targeted therapeutic investigations of various neuroinflammatory disorders. Moreover, our findings underscore the necessity of considering cellular context, such as astrocyte presence, in interpreting microglial behavior during inflammation.
Collapse
Affiliation(s)
- Sushanth Kumar
- Department of Biology, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate Program, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - August D. Kahle
- Department of Biology, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Austin B. Keeler
- Department of Biology, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Eli R. Zunder
- Department of Biomedical Engineering, School of EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental Neuroscience, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Christopher D. Deppmann
- Department of Biology, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
- Neuroscience Graduate Program, School of MedicineUniversity of VirginiaCharlottesvilleVirginiaUSA
- Department of Biomedical Engineering, School of EngineeringUniversity of VirginiaCharlottesvilleVirginiaUSA
- Program in Fundamental Neuroscience, College of Arts and SciencesUniversity of VirginiaCharlottesvilleVirginiaUSA
| |
Collapse
|
3
|
Xu J, Yan Z, Bang S, Velmeshev D, Ji RR. GPR37L1 identifies spinal cord astrocytes and protects neuropathic pain after nerve injury. Neuron 2025; 113:1206-1222.e6. [PMID: 39952243 PMCID: PMC12005970 DOI: 10.1016/j.neuron.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 09/10/2024] [Accepted: 01/16/2025] [Indexed: 02/17/2025]
Abstract
Astrocytes in the spinal cord dorsal horn (SDH) play a pivotal role in synaptic transmission and neuropathic pain. However, the precise classification of SDH astrocytes in health and disease remains elusive. Here, we reveal Gpr37l1 as a marker and functional regulator of spinal astrocytes. Through single-nucleus RNA sequencing, we identified Gpr37l1 as a selective G-protein-coupled receptor (GPCR) marker for spinal cord astrocytes. Notably, SDH displayed reactive astrocyte phenotypes and exacerbated neuropathic pain following nerve injury combined with Gpr37l1 deficiency. In naive animals, Gpr37l1 knockdown in SDH astrocytes induces astrogliosis and pain hypersensitivity, while Gpr37l1-/- mice fail to recover from neuropathic pain. GPR37L1 activation by maresin 1 increased astrocyte glutamate transporter 1 (GLT-1) activity and reduced spinal EPSCs and neuropathic pain. Selective overexpression of Gpr37l1 in SDH astrocytes reversed neuropathic pain and astrogliosis after nerve injury. Our findings illuminate astrocyte GPR37l1 as an essential negative regulator of pain, which protects against neuropathic pain through astrocyte signaling in SDH.
Collapse
Affiliation(s)
- Jing Xu
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Zihan Yan
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Sangsu Bang
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dmitry Velmeshev
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ru-Rong Ji
- Center for Translational Pain Medicine, Department of Anesthesiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA; Department of Cell Biology, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
4
|
Eguchi R, Higashida Y, Oouchi M, Yamaguchi S, Otsuguro KI. Epidermal growth factor increases cystathionine β-synthase expression in cultured embryonic spinal cord cells. In Vitro Cell Dev Biol Anim 2025; 61:416-424. [PMID: 40374833 DOI: 10.1007/s11626-025-01043-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/23/2025] [Indexed: 05/18/2025]
Abstract
In the central nervous system (CNS), cystathionine β-synthase (CBS) is localized in astrocytes. CBS degrades cytotoxic homocysteine and produces cytoprotective hydrogen sulfide; thus the proper expression of CBS is required to maintain CNS functions. CBS expression is very low at the late embryonic stage and increases after birth. This study examined CBS expression in cultured spinal cord cells derived from fetal rats. Treatment of spinal cord cells with epidermal growth factor (EGF) promoted the proliferation and maturation of astrocytes during development. EGF (30 ng/ml, 4 days) increased CBS protein expression and the number of CBS-expressing astrocytes in the culture. A high cell density also increased CBS expression, and EGF was able to increase CBS expression when cellular proliferation was inhibited. The EGF receptor was predominately expressed in neural stem cells rather than astrocytes. These results suggest that EGF acts on neural stem cells, leading to increase in CBS-expressing astrocytes. This effect may reflect the maturation process of astrocytes during embryonic development.
Collapse
Affiliation(s)
- Ryota Eguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Yuya Higashida
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Mizuki Oouchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Soichiro Yamaguchi
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan
| | - Ken-Ichi Otsuguro
- Laboratory of Pharmacology, Department of Basic Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita 19 Nishi 9, Kita-Ku, Sapporo, 0600818, Japan.
| |
Collapse
|
5
|
Hiew JY, Lim YS, Liu H, Ng CS. Integrated transcriptomic profiling reveals a STING-mediated Type II Interferon signature in SOD1-mutant amyotrophic lateral sclerosis models. Commun Biol 2025; 8:347. [PMID: 40025162 PMCID: PMC11873215 DOI: 10.1038/s42003-025-07790-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 02/20/2025] [Indexed: 03/04/2025] Open
Abstract
Inflammation is a hallmark of amyotrophic lateral sclerosis (ALS), particularly in cases with SOD1 mutations. Using integrative transcriptomics, we analyzed gene expression changes in mouse models throughout progression, human induced-pluripotent stem cells (hiPSCs), and post-mortem spinal cord tissue from ALS patients. We identified a conserved upregulation of interferon (IFN) genes and IFN-stimulating genes (ISGs) in both mouse models and human ALS, with a predominance Type I IFNs (IFN-α/β) in mice and Type II IFNs (IFN-γ) in humans. In mouse models, we observed robust and sustained upregulation of Type I and II ISGs, including ATF3, beginning at disease onset stage and persisting throughout disease progression. Single-cell transcriptomics further pinpointed vascular endothelial cells as a major source of ISGs. Furthermore, we found that the STING-TBK1 axis is essential for the induction of Type II ISGs in ALS, as its deletion impaired their expression. Our study uncovers a conserved ISGs signature across ALS models and patients, highlighting the potential role of innate immune activation in ALS pathogenesis. These findings suggest that ISGs may serve as potential biomarkers and therapeutic targets for ALS.
Collapse
Affiliation(s)
- Jen Young Hiew
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia
| | - Yi Shan Lim
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia
| | - Huitao Liu
- School of Biological Engineering, College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, 100 Lianhua Street, Zhongyuan District, Zhengzhou, 450001, China
| | - Chen Seng Ng
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Selangor, Malaysia.
| |
Collapse
|
6
|
Majewski S, Klein P, Boillée S, Clarke BE, Patani R. Towards an integrated approach for understanding glia in Amyotrophic Lateral Sclerosis. Glia 2025; 73:591-607. [PMID: 39318236 PMCID: PMC11784848 DOI: 10.1002/glia.24622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/03/2024] [Accepted: 09/15/2024] [Indexed: 09/26/2024]
Abstract
Substantial advances in technology are permitting a high resolution understanding of the salience of glia, and have helped us to transcend decades of predominantly neuron-centric research. In particular, recent advances in 'omic' technologies have enabled unique insights into glial biology, shedding light on the cellular and molecular aspects of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Here, we review studies using omic techniques to attempt to understand the role of glia in ALS across different model systems and post mortem tissue. We also address caveats that should be considered when interpreting such studies, and how some of these may be mitigated through either using a multi-omic approach and/or careful low throughput, high fidelity orthogonal validation with particular emphasis on functional validation. Finally, we consider emerging technologies and their potential relevance in deepening our understanding of glia in ALS.
Collapse
Affiliation(s)
- Stanislaw Majewski
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Pierre Klein
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Séverine Boillée
- Sorbonne Université, Institut du Cerveau—Paris Brain Institute—ICM, Inserm, CNRS, APHPHôpital de la Pitié‐SalpêtrièreParisFrance
| | - Benjamin E. Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of NeurologyUniversity College LondonLondonUK
- The Francis Crick InstituteLondonUK
| |
Collapse
|
7
|
McComish SF, O'Sullivan J, Copas AMM, Imiolek M, Boyle NT, Crompton LA, Lane JD, Caldwell MA. Reactive astrocytes generated from human iPSC are pro-inflammatory and display altered metabolism. Exp Neurol 2024; 382:114979. [PMID: 39357593 DOI: 10.1016/j.expneurol.2024.114979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/04/2024]
Abstract
Astrocytes are the most abundant type of glial cell in the central nervous system and they play pivotal roles in both normal health and disease. Their dysfunction is detrimental to many brain related pathologies. Under pathological conditions, such as Alzheimer's disease, astrocytes adopt an activated reactive phenotype which can contribute to disease progression. A prominent risk factor for many neurodegenerative diseases is neuroinflammation which is the purview of glial cells, such as astrocytes and microglia. Human in vitro models have the potential to reveal relevant disease specific mechanisms, through the study of individual cell types such as astrocytes or the addition of specific factors, such as those secreted by microglia. The aim of this study was to generate human cortical astrocytes, in order to assess their protein and gene expression, examine their reactivity profile in response to exposure to the microglial secreted factors IL-1α, TNFα and C1q and assess their functionality in terms of calcium signalling and metabolism. The successfully differentiated and stimulated reactive astrocytes display increased IL-6, RANTES and GM-CSF secretion, and increased expression of genes associated with reactivity including, IL-6, ICAM1, LCN2, C3 and SERPINA3. Functional assessment of these reactive astrocytes showed a delayed and sustained calcium response to ATP and a concomitant decrease in the expression of connexin-43. Furthermore, it was demonstrated these astrocytes had an increased glycolytic capacity with no effect on oxidative phosphorylation. These findings not only increase our understanding of astrocyte reactivity but also provides a functional platform for drug discovery.
Collapse
Affiliation(s)
- Sarah F McComish
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Julia O'Sullivan
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Adina Mac Mahon Copas
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Magdalena Imiolek
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Noreen T Boyle
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Lucy A Crompton
- Regenerative Medicine Laboratory, School of Clinical Sciences, University of Bristol, Bristol, UK; Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Jon D Lane
- Cell Biology Laboratories, School of Biochemistry, University of Bristol, Bristol, UK
| | - Maeve A Caldwell
- Discipline of Physiology & School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland; Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
8
|
Soubannier V, Chaineau M, Gursu L, Lépine S, Kalaydjian D, Sirois J, Haghi G, Rouleau G, Durcan TM, Stifani S. Early nuclear phenotypes and reactive transformation in human iPSC-derived astrocytes from ALS patients with SOD1 mutations. Glia 2024; 72:2079-2094. [PMID: 39092466 DOI: 10.1002/glia.24598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/04/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by the progressive death of motor neurons (MNs). Glial cells play roles in MN degeneration in ALS. More specifically, astrocytes with mutations in the ALS-associated gene Cu/Zn superoxide dismutase 1 (SOD1) promote MN death. The mechanisms by which SOD1-mutated astrocytes reduce MN survival are incompletely understood. To characterize the impact of SOD1 mutations on astrocyte physiology, we generated astrocytes from human induced pluripotent stem cell (iPSC) derived from ALS patients carrying SOD1 mutations, together with control isogenic iPSCs. We report that astrocytes harboring SOD1(A4V) and SOD1(D90A) mutations exhibit molecular and morphological changes indicative of reactive astrogliosis when compared to isogenic astrocytes. We show further that a number of nuclear phenotypes precede, or coincide with, reactive transformation. These include increased nuclear oxidative stress and DNA damage, and accumulation of the SOD1 protein in the nucleus. These findings reveal early cell-autonomous phenotypes in SOD1-mutated astrocytes that may contribute to the acquisition of a reactive phenotype involved in alterations of astrocyte-MN communication in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mathilde Chaineau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Lale Gursu
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Sarah Lépine
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - David Kalaydjian
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Julien Sirois
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Ghazal Haghi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Thomas M Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Neuro's Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
- The Structural Genomics Consortium, Toronto, Ontario, Canada
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
9
|
Germeys C, Vandoorne T, Davie K, Poovathingal S, Heeren K, Vermeire W, Nami F, Moisse M, Quaegebeur A, Sierksma A, Rué L, Sicart A, Eykens C, De Cock L, De Strooper B, Carmeliet P, Van Damme P, De Bock K, Van Den Bosch L. Targeting EGLN2/PHD1 protects motor neurons and normalizes the astrocytic interferon response. Cell Rep 2024; 43:114719. [PMID: 39255062 DOI: 10.1016/j.celrep.2024.114719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/08/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Neuroinflammation and dysregulated energy metabolism are linked to motor neuron degeneration in amyotrophic lateral sclerosis (ALS). The egl-9 family hypoxia-inducible factor (EGLN) enzymes, also known as prolyl hydroxylase domain (PHD) enzymes, are metabolic sensors regulating cellular inflammation and metabolism. Using an oligonucleotide-based and a genetic approach, we showed that the downregulation of Egln2 protected motor neurons and mitigated the ALS phenotype in two zebrafish models and a mouse model of ALS. Single-nucleus RNA sequencing of the murine spinal cord revealed that the loss of EGLN2 induced an astrocyte-specific downregulation of interferon-stimulated genes, mediated via the stimulator of interferon genes (STING) protein. In addition, we found that the genetic deletion of EGLN2 restored this interferon response in patient induced pluripotent stem cell (iPSC)-derived astrocytes, confirming the link between EGLN2 and astrocytic interferon signaling. In conclusion, we identified EGLN2 as a motor neuron protective target normalizing the astrocytic interferon-dependent inflammatory axis in vivo, as well as in patient-derived cells.
Collapse
Affiliation(s)
- Christine Germeys
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Kristofer Davie
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Bioinformatics Unit, 3000 Leuven, Belgium
| | - Suresh Poovathingal
- VIB-KU Leuven, Center for Brain & Disease Research Technologies, Single Cell Microfluidics & Analytics Unit, 3000 Leuven, Belgium; VIB, Center for AI & Computational Biology (VIB.AI), 3000 Leuven, Belgium
| | - Kara Heeren
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Wendy Vermeire
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - FatemehArefeh Nami
- KU Leuven - University of Leuven, Department of Development and Regeneration, Stem Cell Institute Leuven (SCIL), 3000 Leuven, Belgium
| | - Matthieu Moisse
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Annelies Quaegebeur
- University of Cambridge, Department of Clinical Neurosciences, CB2 2PY Cambridge, UK; Cambridge University Hospitals, Department of Histopathology, CB2 0QQ Cambridge, UK
| | - Annerieke Sierksma
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium
| | - Laura Rué
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Adrià Sicart
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Caroline Eykens
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Lenja De Cock
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Bart De Strooper
- KU Leuven - University of Leuven, Department of Neurosciences, Research Group Molecular Neurobiology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory for the Research of Neurodegenerative Diseases, 3000 Leuven, Belgium; Dementia Research Institute, University College London, WC1E 6BT London, UK
| | - Peter Carmeliet
- KU Leuven - University of Leuven, Department of Oncology and Leuven Cancer Institute (LKI), Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, 3000 Leuven, Belgium; Khalifa University of Science and Technology, Center for Biotechnology, Abu Dhabi, United Arab Emirates
| | - Philip Van Damme
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium; University Hospitals Leuven, Department of Neurology, 3000 Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, 8092 Zürich, Switzerland
| | - Ludo Van Den Bosch
- KU Leuven - University of Leuven, Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), 3000 Leuven, Belgium; VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium.
| |
Collapse
|
10
|
Szebényi K, Vargová I, Petrova V, Turečková J, Gibbons GM, Řehořová M, Abdelgawad M, Sándor A, Marekova D, Kwok JCF, Jendelová P, Fawcett JW, Lakatos A. Inhibition of PHLDA3 expression in human superoxide dismutase 1-mutant amyotrophic lateral sclerosis astrocytes protects against neurotoxicity. Brain Commun 2024; 6:fcae244. [PMID: 39144751 PMCID: PMC11323778 DOI: 10.1093/braincomms/fcae244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 05/06/2024] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Pleckstrin homology-like domain family A-member 3 (PHLDA3) has recently been identified as a player in adaptive and maladaptive cellular stress pathways. The outcome of pleckstrin homology-like domain family A-member 3 signalling was shown to vary across different cell types and states. It emerges that its expression and protein level are highly increased in amyotrophic lateral sclerosis (ALS) patient-derived astrocytes. Whether it orchestrates a supportive or detrimental function remains unexplored in the context of neurodegenerative pathologies. To directly address the role of pleckstrin homology-like domain family A-member 3 in healthy and ALS astrocytes, we used overexpression and knockdown strategies. We generated cultures of primary mouse astrocytes and also human astrocytes from control and ALS patient-derived induced pluripotent stem cells harbouring the superoxide dismutase 1 mutation. Then, we assessed astrocyte viability and the impact of their secretome on oxidative stress responses in human stem cell-derived cortical and spinal neuronal cultures. Here, we show that PHLDA3 overexpression or knockdown in control astrocytes does not significantly affect astrocyte viability or reactive oxygen species production. However, PHLDA3 knockdown in ALS astrocytes diminishes reactive oxygen species concentrations in their supernatants, indicating that pleckstrin homology-like domain family A-member 3 can facilitate stress responses in cells with altered homeostasis. In support, supernatants of PHLDA3-silenced ALS and even control spinal astrocytes with a lower pleckstrin homology-like domain family A-member 3 protein content could prevent sodium arsenite-induced stress granule formation in spinal neurons. Our findings provide evidence that reducing pleckstrin homology-like domain family A-member 3 levels may transform astrocytes into a more neurosupportive state relevant to targeting non-cell autonomous ALS pathology.
Collapse
Affiliation(s)
- Kornélia Szebényi
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- Research Centre of Natural Sciences, Institute of Molecular Life Sciences, Budapest, 1117, Hungary
| | - Ingrid Vargová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Veselina Petrova
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Jana Turečková
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - George M Gibbons
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Monika Řehořová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, 150 06, Czech Republic
| | - Mai Abdelgawad
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
| | - Alexandra Sándor
- Research Centre of Natural Sciences, Institute of Molecular Life Sciences, Budapest, 1117, Hungary
- Doctoral School of Molecular Medicine, Semmelweis University, Budapest, 1085, Hungary
| | - Dana Marekova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - Jessica C F Kwok
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- School of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Pavla Jendelová
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
- Second Faculty of Medicine, Charles University, Prague, 150 06, Czech Republic
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, 142 20, Czech Republic
| | - András Lakatos
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, CB2 0PY, UK
- MRC-WT Cambridge Stem Cell Institute, Biomedical Campus, Cambridge, CB2 0AW, UK
| |
Collapse
|
11
|
Kim JH, Michiko N, Choi IS, Kim Y, Jeong JY, Lee MG, Jang IS, Suk K. Aberrant activation of hippocampal astrocytes causes neuroinflammation and cognitive decline in mice. PLoS Biol 2024; 22:e3002687. [PMID: 38991663 PMCID: PMC11239238 DOI: 10.1371/journal.pbio.3002687] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 05/21/2024] [Indexed: 07/13/2024] Open
Abstract
Reactive astrocytes are associated with neuroinflammation and cognitive decline in diverse neuropathologies; however, the underlying mechanisms are unclear. We used optogenetic and chemogenetic tools to identify the crucial roles of the hippocampal CA1 astrocytes in cognitive decline. Our results showed that repeated optogenetic stimulation of the hippocampal CA1 astrocytes induced cognitive impairment in mice and decreased synaptic long-term potentiation (LTP), which was accompanied by the appearance of inflammatory astrocytes. Mechanistic studies conducted using knockout animal models and hippocampal neuronal cultures showed that lipocalin-2 (LCN2), derived from reactive astrocytes, mediated neuroinflammation and induced cognitive impairment by decreasing the LTP through the reduction of neuronal NMDA receptors. Sustained chemogenetic stimulation of hippocampal astrocytes provided similar results. Conversely, these phenomena were attenuated by a metabolic inhibitor of astrocytes. Fiber photometry using GCaMP revealed a high level of hippocampal astrocyte activation in the neuroinflammation model. Our findings suggest that reactive astrocytes in the hippocampus are sufficient and required to induce cognitive decline through LCN2 release and synaptic modulation. This abnormal glial-neuron interaction may contribute to the pathogenesis of cognitive disturbances in neuroinflammation-associated brain conditions.
Collapse
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| | - Nakamura Michiko
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - In-Sun Choi
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Yujung Kim
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
| | - Il-Sung Jang
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Brain Science & Engineering Institute, Kyungpook National University, Daegu, Republic of Korea
- Brain Korea 21 four KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
12
|
Guo X, Yang Y, Tang J, Xiang J. Ephs in cancer progression: complexity and context-dependent nature in signaling, angiogenesis and immunity. Cell Commun Signal 2024; 22:299. [PMID: 38811954 PMCID: PMC11137953 DOI: 10.1186/s12964-024-01580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 03/23/2024] [Indexed: 05/31/2024] Open
Abstract
Eph receptors constitute the largest family of receptor tyrosine kinases, comprising 14 distinct members classified into two subgroups: EphAs and EphBs.. Despite their essential functions in normal physiological processes, accumulating evidence suggests that the involvement of the Eph family in cancer is characterized by a dual and often contradictory nature. Research indicates that Eph/ephrin bidirectional signaling influences cell-cell communication, subsequently regulating cell migration, adhesion, differentiation and proliferation. The contradictory functionalities may arise from the diversity of Eph signaling pathways and the heterogeneity of different cancer microenvironment. In this review, we aim to discuss the dual role of the Eph receptors in tumor development, attempting to elucidate the paradoxical functionality through an exploration of Eph receptor signaling pathways, angiogenesis, immune responses, and more. Our objective is to provide a comprehensive understanding of the molecular mechanisms underlying tumor development. Additionally, we will explore the evolving landscape of utilizing Eph receptors as potential targets for tumor therapy and diagnostic tools.
Collapse
Affiliation(s)
- Xiaoting Guo
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, the Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingqun Tang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Department of Thoracic Surgery, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
| | - Juanjuan Xiang
- Hunan Key Laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, the Second Xiangya Hospital, Central South University, Changsha, 410013, Hunan, China.
- Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
13
|
Jovanovic VM, Mesch KT, Tristan CA. hPSC-Derived Astrocytes at the Forefront of Translational Applications in Neurological Disorders. Cells 2024; 13:903. [PMID: 38891034 PMCID: PMC11172187 DOI: 10.3390/cells13110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/23/2024] [Indexed: 06/20/2024] Open
Abstract
Astrocytes, the most abundant glial cell type in the brain, play crucial roles in maintaining homeostasis within the central nervous system (CNS). Impairment or abnormalities of typical astrocyte functions in the CNS serve as a causative or contributing factor in numerous neurodevelopmental, neurodegenerative, and neuropsychiatric disorders. Currently, disease-modeling and drug-screening approaches, primarily focused on human astrocytes, rely on human pluripotent stem cell (hPSC)-derived astrocytes. However, it is important to acknowledge that these hPSC-derived astrocytes exhibit notable differences across studies and when compared to their in vivo counterparts. These differences may potentially compromise translational outcomes if not carefully accounted for. This review aims to explore state-of-the-art in vitro models of human astrocyte development, focusing on the developmental processes, functional maturity, and technical aspects of various hPSC-derived astrocyte differentiation protocols. Additionally, it summarizes their successful application in modeling neurological disorders. The discussion extends to recent advancements in the large-scale production of human astrocytes and their application in developing high-throughput assays conducive to therapeutic drug discovery.
Collapse
Affiliation(s)
- Vukasin M. Jovanovic
- Stem Cell Translation Laboratory (SCTL), Division of Preclinical Innovation (DPI), National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA (C.A.T.)
| | | | | |
Collapse
|
14
|
Feng J, Song H, Province M, Li G, Payne PRO, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. Front Cell Neurosci 2024; 18:1369242. [PMID: 38846640 PMCID: PMC11155453 DOI: 10.3389/fncel.2024.1369242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/30/2024] [Indexed: 06/09/2024] Open
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex signaling mechanisms within the microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. However, the background signaling networks are highly complex and interactive. It remains challenging to infer the core intra- and inter-multi-cell signaling communication networks using scRNA-seq data. In this study, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy. This model divides complex signaling networks into signaling paths, which are then scored and ranked using a novel graph transformer architecture to infer intra- and inter-cell signaling communications. We evaluated the performance of PathFinder using two scRNA-seq data cohorts. The first cohort is an APOE4 genotype-specific AD, and the second is a human cirrhosis cohort. The evaluation confirms the promising potential of using PathFinder as a general signaling network inference model.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Haoran Song
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University in St. Louis, St. Louis, MO, United States
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, United States
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, United States
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, United States
| | - Philip R. O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University in St. Louis, St. Louis, MO, United States
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
15
|
Nunes MJ, Carvalho AN, Sá-Lemos C, Colaço M, Cervenka I, Ciraci V, Santos SG, Ribeiro MM, Castanheira M, Jannig PR, Gama MJ, Castro-Caldas M, Rodrigues CMP, Rodrigues E, Ruas JL. Sustained PGC-1α2 or PGC-1α3 expression induces astrocyte dysfunction and degeneration. Eur J Cell Biol 2024; 103:151377. [PMID: 38006841 DOI: 10.1016/j.ejcb.2023.151377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 11/14/2023] [Accepted: 11/17/2023] [Indexed: 11/27/2023] Open
Abstract
Peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) transcriptional coactivators are key regulators of energy metabolism-related genes and are expressed in energy-demanding tissues. There are several PGC-1α variants with different biological functions in different tissues. The brain is one of the tissues where the role of PGC-1α isoforms remains less explored. Here, we used a toxin-based mouse model of Parkinson's disease (PD) and observed that the expression levels of variants PGC-1α2 and PGC-1α3 in the nigrostriatal pathway increases at the onset of dopaminergic cell degeneration. This increase occurs concomitant with an increase in glial fibrillary acidic protein levels. Since PGC-1α coactivators regulate cellular adaptive responses, we hypothesized that they could be involved in the modulation of astrogliosis induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Therefore, we analysed the transcriptome of astrocytes transduced with expression vectors encoding PGC-1α1 to 1α4 by massively parallel sequencing (RNA-seq) and identified the main cellular pathways controlled by these isoforms. Interestingly, in reactive astrocytes the inflammatory and antioxidant responses, adhesion, migration, and viability were altered by PGC-1α2 and PGC-1α3, showing that sustained expression of these isoforms induces astrocyte dysfunction and degeneration. This work highlights PGC-1α isoforms as modulators of astrocyte reactivity and as potential therapeutic targets for the treatment of PD and other neurodegenerative disorders.
Collapse
Affiliation(s)
- M J Nunes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - A N Carvalho
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - C Sá-Lemos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M Colaço
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - I Cervenka
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - V Ciraci
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - S G Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M M Ribeiro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M Castanheira
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - P R Jannig
- Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - M J Gama
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - M Castro-Caldas
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - C M P Rodrigues
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - E Rodrigues
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - J L Ruas
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal; Department of Physiology and Pharmacology, Karolinska Institutet, Biomedicum, Stockholm, Sweden.
| |
Collapse
|
16
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
17
|
Xie Y, Zhang L, Wang L, Chen B, Guo X, Yang Y, Shi W, Chen A, Yi J, Tang J, Xiang J. EphB1 promotes the differentiation and maturation of dendritic cells in non-small cell lung cancer. Cancer Lett 2024; 582:216567. [PMID: 38070822 DOI: 10.1016/j.canlet.2023.216567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/12/2023] [Accepted: 11/27/2023] [Indexed: 01/16/2024]
Abstract
EphB1 is implicated in numerous physiological and pathological processes, including nervous system diseases, cardiovascular diseases and cancers. It binds to membrane-bound ligands and drives bidirectional signaling. EphB1, along with its ligand ehrinB, plays a pivotal role in activating immune cells. However, despite its presence in dendritic cells (DCs), EphB1's involvement in the differentiation and maturation of DCs in cancers remains inadequately understood. In this study, we found compromised differentiation and maturation of DCs in EphB1-/- mice bearing lung adenocarcinoma syngeneic tumors. Our in vitro assays revealed that EphB1 phosphorylation induced DC differentiation and maturation. Cox-2, a key enzyme involved in the production of proinflammatory molecules, is implicated in DC differentiation induced by phosphorylated EphB1. Additionally, the study has identified lead compounds that specifically target EphB1 phosphorylation sites. Collectively, this research on EphB1 phosphorylation has provided valuable insights into the regulation of immune cell functionality and holds the potential for the development of innovative therapeutic strategies for a range of diseases.
Collapse
Affiliation(s)
- Yaohuan Xie
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lujuan Wang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bo Chen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China; Hypothalamic-pituitary Research Center, Xiangya Hospital, Central South University, Changsha, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaoting Guo
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yanyi Yang
- Health Management Center, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Wenhua Shi
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Anqi Chen
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Junqi Yi
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China
| | - Jingqun Tang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Department of Thoracic Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China.
| | - Juanjuan Xiang
- Hunan Key laboratory of Early Diagnosis and Precise Treatment of Lung Cancer, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410013, China; Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan, China; NHC Key Laboratory of Carcinogenesis and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
18
|
Urban MW, Charsar BA, Heinsinger NM, Markandaiah SS, Sprimont L, Zhou W, Brown EV, Henderson NT, Thomas SJ, Ghosh B, Cain RE, Trotti D, Pasinelli P, Wright MC, Dalva MB, Lepore AC. EphrinB2 knockdown in cervical spinal cord preserves diaphragm innervation in a mutant SOD1 mouse model of ALS. eLife 2024; 12:RP89298. [PMID: 38224498 PMCID: PMC10945582 DOI: 10.7554/elife.89298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.
Collapse
Affiliation(s)
- Mark W Urban
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Brittany A Charsar
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Nicolette M Heinsinger
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Shashirekha S Markandaiah
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Lindsay Sprimont
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Wei Zhou
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Eric V Brown
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Nathan T Henderson
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Samantha J Thomas
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Biswarup Ghosh
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Rachel E Cain
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Thomas Jefferson UniversityPhiladelphiaUnited States
| | - Megan C Wright
- Department of Biology, Arcadia UniversityGlensideUnited States
| | - Matthew B Dalva
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
- Department of Cell and Molecular Biology, Tulane Brain Institute, Tulane UniversityNew OrleansUnited States
| | - Angelo C Lepore
- Department of Neuroscience, Jefferson Synaptic Biology Center, Vickie and Jack Farber Institute for Neuroscience, Sidney Kimmel Medical College at Thomas Jefferson UniversityPhiladelphiaUnited States
| |
Collapse
|
19
|
Feng J, Province M, Li G, Payne PR, Chen Y, Li F. PathFinder: a novel graph transformer model to infer multi-cell intra- and inter-cellular signaling pathways and communications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.13.575534. [PMID: 38293243 PMCID: PMC10827077 DOI: 10.1101/2024.01.13.575534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Recently, large-scale scRNA-seq datasets have been generated to understand the complex and poorly understood signaling mechanisms within microenvironment of Alzheimer's Disease (AD), which are critical for identifying novel therapeutic targets and precision medicine. Though a set of targets have been identified, however, it remains a challenging to infer the core intra- and inter-multi-cell signaling communication networks using the scRNA-seq data, considering the complex and highly interactive background signaling network. Herein, we introduced a novel graph transformer model, PathFinder, to infer multi-cell intra- and inter-cellular signaling pathways and signaling communications among multi-cell types. Compared with existing models, the novel and unique design of PathFinder is based on the divide-and-conquer strategy, which divides the complex signaling networks into signaling paths, and then score and rank them using a novel graph transformer architecture to infer the intra- and inter-cell signaling communications. We evaluated PathFinder using scRNA-seq data of APOE4-genotype specific AD mice models and identified novel APOE4 altered intra- and inter-cell interaction networks among neurons, astrocytes, and microglia. PathFinder is a general signaling network inference model and can be applied to other omics data-driven signaling network inference.
Collapse
Affiliation(s)
- Jiarui Feng
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Michael Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Guangfu Li
- Department of Surgery, University of Missouri-Columbia, Columbia, MO, 65212, USA
- Department of Molecular Microbiology and Immunology, University of Missouri-Columbia, Columbia, MO, 65212, USA
- NextGen Precision Health Institute, University of Missouri-Columbia, Columbia, MO, 65212, USA
| | - Philip R.O. Payne
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Yixin Chen
- Department of Computer Science and Engineering, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Fuhai Li
- Institute for Informatics (I2), Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Department of Pediatrics, Washington University School of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
20
|
Paris A, Lakatos A. Cell and gene therapy for amyotrophic lateral sclerosis. HANDBOOK OF CLINICAL NEUROLOGY 2024; 205:217-241. [PMID: 39341656 DOI: 10.1016/b978-0-323-90120-8.00017-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal and incurable neurodegenerative disorder with rapidly progressive skeletal muscle weakness, which can also cause a variable cognitive deficit. Genetic causes are only identified in approximately 10% of all cases, with complex genotype-phenotype associations, making it challenging to identify treatment targets. What further hampers therapeutic development is a broad heterogeneity in mechanisms, possible targets, and disturbances across various cell types, aside from the cortical and spinal motor neurons that lie at the heart of the pathology of ALS. Over the last decade, significant progress in biotechnologic techniques, cell and ribonucleic acid (RNA) engineering, animal models, and patient-specific human stem cell and organoid models have accelerated both mechanistic and therapeutic discoveries. The growing number of clinical trials mirrors this. This chapter reviews the current state of human preclinical models supporting trial strategies as well as recent clinical cell and gene therapy approaches.
Collapse
Affiliation(s)
- Alvar Paris
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - András Lakatos
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom; Department of Neurology, Cambridge University Hospitals NHS Trust, Addenbrooke's Hospital, Cambridge, United Kingdom.
| |
Collapse
|
21
|
Carlos AF, Sekiya H, Koga S, Gatto RG, Casey MC, Pham NTT, Sintini I, Machulda MM, Jack CR, Lowe VJ, Whitwell JL, Petrucelli L, Reichard RR, Petersen RC, Dickson DW, Josephs KA. Clinicopathologic features of a novel star-shaped transactive response DNA-binding protein 43 (TDP-43) pathology in the oldest old. J Neuropathol Exp Neurol 2023; 83:36-52. [PMID: 38086178 PMCID: PMC10746697 DOI: 10.1093/jnen/nlad105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023] Open
Abstract
Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-β in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.
Collapse
Affiliation(s)
- Arenn F Carlos
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hiroaki Sekiya
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Shunsuke Koga
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Rodolfo G Gatto
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Mary M Machulda
- Department of Psychiatry (Psychology), Mayo Clinic, Rochester, Minnesota, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | | | | | - R Ross Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
22
|
Urban MW, Charsar BA, Heinsinger NM, Markandaiah SS, Sprimont L, Zhou W, Brown EV, Henderson NT, Thomas SJ, Ghosh B, Cain RE, Trotti D, Pasinelli P, Wright MC, Dalva MB, Lepore AC. EphrinB2 knockdown in cervical spinal cord preserves diaphragm innervation in a mutant SOD1 mouse model of ALS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.538887. [PMID: 37215009 PMCID: PMC10197713 DOI: 10.1101/2023.05.10.538887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by motor neuron loss. Importantly, non-neuronal cell types such as astrocytes also play significant roles in disease pathogenesis. However, mechanisms of astrocyte contribution to ALS remain incompletely understood. Astrocyte involvement suggests that transcellular signaling may play a role in disease. We examined contribution of transmembrane signaling molecule ephrinB2 to ALS pathogenesis, in particular its role in driving motor neuron damage by spinal cord astrocytes. In symptomatic SOD1-G93A mice (a well-established ALS model), ephrinB2 expression was dramatically increased in ventral horn astrocytes. Reducing ephrinB2 in the cervical spinal cord ventral horn via viral-mediated shRNA delivery reduced motor neuron loss and preserved respiratory function by maintaining phrenic motor neuron innervation of diaphragm. EphrinB2 expression was also elevated in human ALS spinal cord. These findings implicate ephrinB2 upregulation as both a transcellular signaling mechanism in mutant SOD1-associated ALS and a promising therapeutic target.
Collapse
|
23
|
Kim Y, Ahmed S, Miller WT. Colorectal cancer-associated mutations impair EphB1 kinase function. J Biol Chem 2023; 299:105115. [PMID: 37527777 PMCID: PMC10463257 DOI: 10.1016/j.jbc.2023.105115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023] Open
Abstract
Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.
Collapse
Affiliation(s)
- Yunyoung Kim
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - Sultan Ahmed
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, New York, USA; Department of Veterans Affairs Medical Center, Northport, New York, USA.
| |
Collapse
|
24
|
Szebényi K, Barrio-Hernandez I, Gibbons GM, Biasetti L, Troakes C, Beltrao P, Lakatos A. A human proteogenomic-cellular framework identifies KIF5A as a modulator of astrocyte process integrity with relevance to ALS. Commun Biol 2023; 6:678. [PMID: 37386082 PMCID: PMC10310856 DOI: 10.1038/s42003-023-05041-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 06/13/2023] [Indexed: 07/01/2023] Open
Abstract
Genome-wide association studies identified several disease-causing mutations in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). However, the contribution of genetic variants to pathway disturbances and their cell type-specific variations, especially in glia, is poorly understood. We integrated ALS GWAS-linked gene networks with human astrocyte-specific multi-omics datasets to elucidate pathognomonic signatures. It predicts that KIF5A, a motor protein kinesin-1 heavy-chain isoform, previously detected only in neurons, can also potentiate disease pathways in astrocytes. Using postmortem tissue and super-resolution structured illumination microscopy in cell-based perturbation platforms, we provide evidence that KIF5A is present in astrocyte processes and its deficiency disrupts structural integrity and mitochondrial transport. We show that this may underly cytoskeletal and trafficking changes in SOD1 ALS astrocytes characterised by low KIF5A levels, which can be rescued by c-Jun N-terminal Kinase-1 (JNK1), a kinesin transport regulator. Altogether, our pipeline reveals a mechanism controlling astrocyte process integrity, a pre-requisite for synapse maintenance and suggests a targetable loss-of-function in ALS.
Collapse
Affiliation(s)
- Kornélia Szebényi
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | | | - George M Gibbons
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK
| | - Luca Biasetti
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Claire Troakes
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Pedro Beltrao
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, CB10 1SD, UK.
- Institute of Molecular Systems Biology, ETH Zürich, Zürich, 8093, Switzerland.
| | - András Lakatos
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0PY, UK.
- Wellcome Trust-MRC Cambridge Stem Cell Institute, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
| |
Collapse
|
25
|
Chen D, Li J, Liu H, Liu X, Zhang C, Luo H, Wei Y, Xi Y, Liang H, Zhang Q. Genome-Wide Epistasis Study of Cerebrospinal Fluid Hyperphosphorylated Tau in ADNI Cohort. Genes (Basel) 2023; 14:1322. [PMID: 37510227 PMCID: PMC10379656 DOI: 10.3390/genes14071322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Alzheimer's disease (AD) is the main cause of dementia worldwide, and the genetic mechanism of which is not yet fully understood. Much evidence has accumulated over the past decade to suggest that after the first large-scale genome-wide association studies (GWAS) were conducted, the problem of "missing heritability" in AD is still a great challenge. Epistasis has been considered as one of the main causes of "missing heritability" in AD, which has been largely ignored in human genetics. The focus of current genome-wide epistasis studies is usually on single nucleotide polymorphisms (SNPs) that have significant individual effects, and the amount of heritability explained by which was very low. Moreover, AD is characterized by progressive cognitive decline and neuronal damage, and some studies have suggested that hyperphosphorylated tau (P-tau) mediates neuronal death by inducing necroptosis and inflammation in AD. Therefore, this study focused on identifying epistasis between two-marker interactions at marginal main effects across the whole genome using cerebrospinal fluid (CSF) P-tau as quantitative trait (QT). We sought to detect interactions between SNPs in a multi-GPU based linear regression method by using age, gender, and clinical diagnostic status (cds) as covariates. We then used the STRING online tool to perform the PPI network and identify two-marker epistasis at the level of gene-gene interaction. A total of 758 SNP pairs were found to be statistically significant. Particularly, between the marginal main effect SNP pairs, highly significant SNP-SNP interactions were identified, which explained a relatively high variance at the P-tau level. In addition, 331 AD-related genes were identified, 10 gene-gene interaction pairs were replicated in the PPI network. The identified gene-gene interactions and genes showed associations with AD in terms of neuroinflammation and neurodegeneration, neuronal cells activation and brain development, thereby leading to cognitive decline in AD, which is indirectly associated with the P-tau pathological feature of AD and in turn supports the results of this study. Thus, the results of our study might be beneficial for explaining part of the "missing heritability" of AD.
Collapse
Affiliation(s)
- Dandan Chen
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
- School of Automation Engineering, Northeast Electric Power University, Jilin 132012, China
| | - Jin Li
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Hongwei Liu
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Xiaolong Liu
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Chenghao Zhang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Haoran Luo
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yiming Wei
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Yang Xi
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| | - Hong Liang
- College of Intelligent Systems Science and Engineering, Harbin Engineering University, Harbin 150001, China
| | - Qiushi Zhang
- School of Computer Science, Northeast Electric Power University, Jilin 132012, China
| |
Collapse
|
26
|
Valori CF, Sulmona C, Brambilla L, Rossi D. Astrocytes: Dissecting Their Diverse Roles in Amyotrophic Lateral Sclerosis and Frontotemporal Dementia. Cells 2023; 12:1450. [PMID: 37296571 PMCID: PMC10252425 DOI: 10.3390/cells12111450] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/04/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are fatal neurodegenerative disorders often co-occurring in the same patient, a feature that suggests a common origin of the two diseases. Consistently, pathological inclusions of the same proteins as well as mutations in the same genes can be identified in both ALS/FTD. Although many studies have described several disrupted pathways within neurons, glial cells are also regarded as crucial pathogenetic contributors in ALS/FTD. Here, we focus our attention on astrocytes, a heterogenous population of glial cells that perform several functions for optimal central nervous system homeostasis. Firstly, we discuss how post-mortem material from ALS/FTD patients supports astrocyte dysfunction around three pillars: neuroinflammation, abnormal protein aggregation, and atrophy/degeneration. Furthermore, we summarize current attempts at monitoring astrocyte functions in living patients using either novel imaging strategies or soluble biomarkers. We then address how astrocyte pathology is recapitulated in animal and cellular models of ALS/FTD and how we used these models both to understand the molecular mechanisms driving glial dysfunction and as platforms for pre-clinical testing of therapeutics. Finally, we present the current clinical trials for ALS/FTD, restricting our discussion to treatments that modulate astrocyte functions, directly or indirectly.
Collapse
Affiliation(s)
- Chiara F. Valori
- Molecular Neuropathology of Neurodegenerative Diseases, German Centre for Neurodegenerative Diseases (DZNE), 72072 Tübingen, Germany
- Department of Neuropathology, University of Tübingen, 72076 Tübingen, Germany
| | - Claudia Sulmona
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Liliana Brambilla
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| | - Daniela Rossi
- Laboratory for Research on Neurodegenerative Disorders, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy
| |
Collapse
|
27
|
Qian Z, Qin J, Lai Y, Zhang C, Zhang X. Large-Scale Integration of Single-Cell RNA-Seq Data Reveals Astrocyte Diversity and Transcriptomic Modules across Six Central Nervous System Disorders. Biomolecules 2023; 13:692. [PMID: 37189441 PMCID: PMC10135484 DOI: 10.3390/biom13040692] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/30/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
The dysfunction of astrocytes in response to environmental factors contributes to many neurological diseases by impacting neuroinflammation responses, glutamate and ion homeostasis, and cholesterol and sphingolipid metabolism, which calls for comprehensive and high-resolution analysis. However, single-cell transcriptome analyses of astrocytes have been hampered by the sparseness of human brain specimens. Here, we demonstrate how large-scale integration of multi-omics data, including single-cell and spatial transcriptomic and proteomic data, overcomes these limitations. We created a single-cell transcriptomic dataset of human brains by integration, consensus annotation, and analyzing 302 publicly available single-cell RNA-sequencing (scRNA-seq) datasets, highlighting the power to resolve previously unidentifiable astrocyte subpopulations. The resulting dataset includes nearly one million cells that span a wide variety of diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), multiple sclerosis (MS), epilepsy (Epi), and chronic traumatic encephalopathy (CTE). We profiled the astrocytes at three levels, subtype compositions, regulatory modules, and cell-cell communications, and comprehensively depicted the heterogeneity of pathological astrocytes. We constructed seven transcriptomic modules that are involved in the onset and progress of disease development, such as the M2 ECM and M4 stress modules. We validated that the M2 ECM module could furnish potential markers for AD early diagnosis at both the transcriptome and protein levels. In order to accomplish a high-resolution, local identification of astrocyte subtypes, we also carried out a spatial transcriptome analysis of mouse brains using the integrated dataset as a reference. We found that astrocyte subtypes are regionally heterogeneous. We identified dynamic cell-cell interactions in different disorders and found that astrocytes participate in key signaling pathways, such as NRG3-ERBB4, in epilepsy. Our work supports the utility of large-scale integration of single-cell transcriptomic data, which offers new insights into underlying multiple CNS disease mechanisms where astrocytes are involved.
Collapse
Affiliation(s)
- Zhenwei Qian
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Jinglin Qin
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Yiwen Lai
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| | - Chen Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
- State Key Laboratory of Translational Medicine and Innovative Drug Development, Nanjing 210000, China
| | - Xiannian Zhang
- School of Basic Medical Sciences, Beijing Key Laboratory of Neural Regeneration and Repair, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing 100069, China
| |
Collapse
|
28
|
Fan T, Yu Y, Chen YL, Gu P, Wong S, Xia ZY, Liu JA, Cheung CW. Histone deacetylase 5-induced deficiency of signal transducer and activator of transcription-3 acetylation contributes to spinal astrocytes degeneration in painful diabetic neuropathy. Glia 2023; 71:1099-1119. [PMID: 36579750 DOI: 10.1002/glia.24328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/24/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022]
Abstract
Diabetes patients with painful diabetic neuropathy (PDN) show severe spinal atrophy, suggesting pathological changes of the spinal cord contributes to central sensitization. However, the cellular changes and underlying molecular mechanisms within the diabetic spinal cord are less clear. By using a rat model of type 1 diabetes (T1D), we noted an extensive and irreversible spinal astrocyte degeneration at an early stage of T1D, which is highly associated with the chronification of PDN. Molecularly, acetylation of astrocytic signal transducer and activator of transcription-3 (STAT3) that is essential for maintaining the homeostatic astrocytes population was significantly impaired in the T1D model, resulting in a dramatic loss of spinal astrocytes and consequently promoting pain hypersensitivity. Mechanistically, class IIa histone deacetylase, HDAC5 were aberrantly activated in spinal astrocytes of diabetic rats, which promoted STAT3 deacetylation by direct protein-protein interactions, leading to the PDN phenotypes. Restoration of STAT3 signaling or inhibition of HDAC5 rescued astrocyte deficiency and attenuated PDN in the T1D model. Our work identifies the inhibitory axis of HDAC5-STAT3 induced astrocyte deficiency as a key mechanism underlying the pathogenesis of the diabetic spinal cord that paves the way for potential therapy development for PDN.
Collapse
Affiliation(s)
- Tingting Fan
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Ying Yu
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Yong-Long Chen
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Pan Gu
- Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| | - Stanley Wong
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR
| | - Zheng-Yuan Xia
- Department of Medicine, State Key Laboratory of Pharmaceutical Biotechnology, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR
| | - Chi-Wai Cheung
- Department of Anaesthesiology, Laboratory and Clinical Research Institute for Pain, The University of Hong Kong, Hong Kong, Hong Kong SAR.,Department of Anaesthesiology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
29
|
Hagemann TL, Coyne S, Levin A, Wang L, Feany MB, Messing A. STAT3 Drives GFAP Accumulation and Astrocyte Pathology in a Mouse Model of Alexander Disease. Cells 2023; 12:cells12070978. [PMID: 37048051 PMCID: PMC10093589 DOI: 10.3390/cells12070978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 04/14/2023] Open
Abstract
Alexander disease (AxD) is caused by mutations in the gene for glial fibrillary acidic protein (GFAP), an intermediate filament expressed by astrocytes in the central nervous system. AxD-associated mutations cause GFAP aggregation and astrogliosis, and GFAP is elevated with the astrocyte stress response, exacerbating mutant protein toxicity. Studies in mouse models suggest disease severity is tied to Gfap expression levels, and signal transducer and activator of transcription (STAT)-3 regulates Gfap during astrocyte development and in response to injury and is activated in astrocytes in rodent models of AxD. In this report, we show that STAT3 is also activated in the human disease. To determine whether STAT3 contributes to GFAP elevation, we used a combination of genetic approaches to knockout or reduce STAT3 activation in AxD mouse models. Conditional knockout of Stat3 in cells expressing Gfap reduced Gfap transactivation and prevented protein accumulation. Astrocyte-specific Stat3 knockout in adult mice with existing pathology reversed GFAP accumulation and aggregation. Preventing STAT3 activation reduced markers of reactive astrocytes, stress-related transcripts, and microglial activation, regardless of disease stage or genetic knockout approach. These results suggest that pharmacological inhibition of STAT3 could potentially reduce GFAP toxicity and provide a therapeutic benefit in patients with AxD.
Collapse
Affiliation(s)
- Tracy L Hagemann
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sierra Coyne
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Alder Levin
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Liqun Wang
- Wyss Institute, Harvard University, Boston, MA 02115, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Albee Messing
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
30
|
Fernández-Felipe J, López LL, Cano V, Sánchez-Hita E, Belén Sanz A, Chowen JA, Del Olmo N, Ruiz-Gayo M, Merino B. Regional specific effect of saturated vs unsaturated fat on leptin receptor signalling in mice brain areas regulating feeding. Neurosci Lett 2023; 793:136996. [PMID: 36481371 DOI: 10.1016/j.neulet.2022.136996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/27/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022]
Abstract
Leptin receptors (LepR) are expressed in brain areas controlling food intake homeostasis, such as the hypothalamus, the hippocampus and the prefrontal cortex. In a previous study we reported that long-term intake of saturated and monounsaturated fat alters hypothalamic LepR signalling. The current study aims at investigating the effect of foods high in either saturated (SOLF) or monounsaturated fat (UOLF) on LepR functionality in the hippocampus and the prefrontal cortex. Male mice were placed on SOLF/UOLF (eight weeks), then treated with recombinant murine leptin (1 mg/kg). After 60 min, brain regions were dissected and processed for western blot of phosphorylated STAT3 (pSTAT3), Akt (pAkt) and AMPK (pAMPK). Levels of SOCS3 were also quantified. SOLF itself increased basal levels of pSTAT3, while UOLF impaired leptin-induced phosphorylation of both Akt and AMPK. SOCS3 levels were specifically increased by UOLF within the prefrontal cortex. Our results show that SOLF and UOLF differently affect LepR signalling within the hippocampus and the prefrontal cortex, which points to the complex effect of saturated and unsaturated fat on brain function, particularly in areas regulating food intake.
Collapse
Affiliation(s)
- Jesús Fernández-Felipe
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Lucía L López
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Victoria Cano
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Enrique Sánchez-Hita
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - A Belén Sanz
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Julie A Chowen
- Departamento de Endocrinología, Hospital Infantil Universitario Niño Jesús, Instituto de Investigación La Princesa, 28009 Madrid, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III (CIBEROBN, ISCIII), 28029, Madrid, Spain; IMDEA Alimentación, CEI UAM + CSIC, 28049 Madrid, Spain
| | - Nuria Del Olmo
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Mariano Ruiz-Gayo
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain
| | - Beatriz Merino
- AdipoBrain, Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, 28660 Madrid, Spain.
| |
Collapse
|
31
|
Endothelial cells regulate astrocyte to neural progenitor cell trans-differentiation in a mouse model of stroke. Nat Commun 2022; 13:7812. [PMID: 36535938 PMCID: PMC9763251 DOI: 10.1038/s41467-022-35498-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
The concept of the neurovascular unit emphasizes the importance of cell-cell signaling between neural, glial, and vascular compartments. In neurogenesis, for example, brain endothelial cells play a key role by supplying trophic support to neural progenitors. Here, we describe a surprising phenomenon where brain endothelial cells may release trans-differentiation signals that convert astrocytes into neural progenitor cells in male mice after stroke. After oxygen-glucose deprivation, brain endothelial cells release microvesicles containing pro-neural factor Ascl1 that enter into astrocytes to induce their trans-differentiation into neural progenitors. In mouse models of focal cerebral ischemia, Ascl1 is upregulated in endothelium prior to astrocytic conversion into neural progenitor cells. Injecting brain endothelial-derived microvesicles amplifies the process of astrocyte trans-differentiation. Endothelial-specific overexpression of Ascl1 increases the local conversion of astrocytes into neural progenitors and improves behavioral recovery. Our findings describe an unexpected vascular-regulated mechanism of neuroplasticity that may open up therapeutic opportunities for improving outcomes after stroke.
Collapse
|
32
|
Chen YL, Feng XL, Cheung CW, Liu JA. Mode of action of astrocytes in pain: From the spinal cord to the brain. Prog Neurobiol 2022; 219:102365. [DOI: 10.1016/j.pneurobio.2022.102365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 09/09/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022]
|
33
|
O'Shea TM, Ao Y, Wang S, Wollenberg AL, Kim JH, Ramos Espinoza RA, Czechanski A, Reinholdt LG, Deming TJ, Sofroniew MV. Lesion environments direct transplanted neural progenitors towards a wound repair astroglial phenotype in mice. Nat Commun 2022; 13:5702. [PMID: 36171203 PMCID: PMC9519954 DOI: 10.1038/s41467-022-33382-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 09/14/2022] [Indexed: 01/30/2023] Open
Abstract
Neural progenitor cells (NPC) represent potential cell transplantation therapies for CNS injuries. To understand how lesion environments influence transplanted NPC fate in vivo, we derived NPC expressing a ribosomal protein-hemagglutinin tag (RiboTag) for transcriptional profiling of transplanted NPC. Here, we show that NPC grafted into uninjured mouse CNS generate cells that are transcriptionally similar to healthy astrocytes and oligodendrocyte lineages. In striking contrast, NPC transplanted into subacute CNS lesions after stroke or spinal cord injury in mice generate cells that share transcriptional, morphological and functional features with newly proliferated host astroglia that restrict inflammation and fibrosis and isolate lesions from adjacent viable neural tissue. Our findings reveal overlapping differentiation potentials of grafted NPC and proliferating host astrocytes; and show that in the absence of other interventions, non-cell autonomous cues in subacute CNS lesions direct the differentiation of grafted NPC towards a naturally occurring wound repair astroglial phenotype.
Collapse
Affiliation(s)
- T M O'Shea
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA.
| | - Y Ao
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - S Wang
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - A L Wollenberg
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - J H Kim
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA
| | - R A Ramos Espinoza
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215-2407, USA
| | - A Czechanski
- The Jackson Laboratory, Bar Harbor, ME, 04609, USA
| | | | - T J Deming
- Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095-1600, USA
| | - M V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095-1763, USA.
| |
Collapse
|
34
|
Kiryu-Seo S, Matsushita R, Tashiro Y, Yoshimura T, Iguchi Y, Katsuno M, Takahashi R, Kiyama H. Impaired disassembly of the axon initial segment restricts mitochondrial entry into damaged axons. EMBO J 2022; 41:e110486. [PMID: 36004759 PMCID: PMC9574747 DOI: 10.15252/embj.2021110486] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
The proteasome is essential for cellular responses to various physiological stressors. However, how proteasome function impacts the stress resilience of regenerative damaged motor neurons remains unclear. Here, we develop a unique mouse model using a regulatory element of the activating transcription factor (Atf3) gene to label mitochondria in a damage‐induced manner while simultaneously genetically disrupting the proteasome. Using this model, we observed that in injury‐induced proteasome‐deficient mouse motor neurons, the increase of mitochondrial influx from soma into axons is inhibited because neurons fail to disassemble ankyrin G, an organizer of the axon initial segment (AIS), in a proteasome‐dependent manner. Further, these motor neurons exhibit amyotrophic lateral sclerosis (ALS)‐like degeneration despite having regenerative potential. Selectively vulnerable motor neurons in SOD1G93A ALS mice, which induce ATF3 in response to pathological damage, also fail to disrupt the AIS, limiting the number of axonal mitochondria at a pre‐symptomatic stage. Thus, damage‐induced proteasome‐sensitive AIS disassembly could be a critical post‐translational response for damaged motor neurons to temporarily transit to an immature state and meet energy demands for axon regeneration or preservation.
Collapse
Affiliation(s)
- Sumiko Kiryu-Seo
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Reika Matsushita
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshitaka Tashiro
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Yoshimura
- Department of Child Development and Molecular Brain Science, United Graduate School of Child Development, Osaka University, Osaka, Japan.,Department of Neuroscience, Baylor College of Medicine, Houston, TX, USA
| | - Yohei Iguchi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
35
|
Cornelison C, Fadel S. Clickable Biomaterials for Modulating Neuroinflammation. Int J Mol Sci 2022; 23:8496. [PMID: 35955631 PMCID: PMC9369181 DOI: 10.3390/ijms23158496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/27/2022] [Indexed: 02/04/2023] Open
Abstract
Crosstalk between the nervous and immune systems in the context of trauma or disease can lead to a state of neuroinflammation or excessive recruitment and activation of peripheral and central immune cells. Neuroinflammation is an underlying and contributing factor to myriad neuropathologies including neurodegenerative diseases like Alzheimer's disease and Parkinson's disease; autoimmune diseases like multiple sclerosis; peripheral and central nervous system infections; and ischemic and traumatic neural injuries. Therapeutic modulation of immune cell function is an emerging strategy to quell neuroinflammation and promote tissue homeostasis and/or repair. One such branch of 'immunomodulation' leverages the versatility of biomaterials to regulate immune cell phenotypes through direct cell-material interactions or targeted release of therapeutic payloads. In this regard, a growing trend in biomaterial science is the functionalization of materials using chemistries that do not interfere with biological processes, so-called 'click' or bioorthogonal reactions. Bioorthogonal chemistries such as Michael-type additions, thiol-ene reactions, and Diels-Alder reactions are highly specific and can be used in the presence of live cells for material crosslinking, decoration, protein or cell targeting, and spatiotemporal modification. Hence, click-based biomaterials can be highly bioactive and instruct a variety of cellular functions, even within the context of neuroinflammation. This manuscript will review recent advances in the application of click-based biomaterials for treating neuroinflammation and promoting neural tissue repair.
Collapse
Affiliation(s)
- Chase Cornelison
- Department of Biomedical Engineering, University of Massachusetts Amherst, Amherst, MA 01003, USA;
| | | |
Collapse
|
36
|
Jensen BK, McAvoy KJ, Heinsinger NM, Lepore AC, Ilieva H, Haeusler AR, Trotti D, Pasinelli P. Targeting TNFα produced by astrocytes expressing amyotrophic lateral sclerosis-linked mutant fused in sarcoma prevents neurodegeneration and motor dysfunction in mice. Glia 2022; 70:1426-1449. [PMID: 35474517 PMCID: PMC9540310 DOI: 10.1002/glia.24183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/24/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
Genetic mutations that cause amyotrophic lateral sclerosis (ALS), a progressively lethal motor neuron disease, are commonly found in ubiquitously expressed genes. In addition to direct defects within motor neurons, growing evidence suggests that dysfunction of non-neuronal cells is also an important driver of disease. Previously, we demonstrated that mutations in DNA/RNA binding protein fused in sarcoma (FUS) induce neurotoxic phenotypes in astrocytes in vitro, via activation of the NF-κB pathway and release of pro-inflammatory cytokine TNFα. Here, we developed an intraspinal cord injection model to test whether astrocyte-specific expression of ALS-causative FUSR521G variant (mtFUS) causes neuronal damage in vivo. We show that restricted expression of mtFUS in astrocytes is sufficient to induce death of spinal motor neurons leading to motor deficits through upregulation of TNFα. We further demonstrate that TNFα is a key toxic molecule as expression of mtFUS in TNFα knockout animals does not induce pathogenic changes. Accordingly, in mtFUS-transduced animals, administration of TNFα neutralizing antibodies prevents neurodegeneration and motor dysfunction. Together, these studies strengthen evidence that astrocytes contribute to disease in ALS and establish, for the first time, that FUS-ALS astrocytes induce pathogenic changes to motor neurons in vivo. Our work identifies TNFα as the critical driver of mtFUS-astrocytic toxicity and demonstrates therapeutic success of targeting TNFα to attenuate motor neuron dysfunction and death. Ultimately, through defining and subsequently targeting this toxic mechanism, we provide a viable FUS-ALS specific therapeutic strategy, which may also be applicable to sporadic ALS where FUS activity and cellular localization are frequently perturbed.
Collapse
Affiliation(s)
- Brigid K. Jensen
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Kevin J. McAvoy
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Present address:
Manfredi LaboratoryWeill Cornell Medicine, Cornell UniversityNew YorkNYUSA
| | - Nicolette M. Heinsinger
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Angelo C. Lepore
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Hristelina Ilieva
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Aaron R. Haeusler
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Davide Trotti
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| | - Piera Pasinelli
- Jefferson Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
- Vickie and Jack Farber Institute for Neuroscience, Department of NeuroscienceThomas Jefferson UniversityPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
37
|
Abstract
VEGF was initially discovered due to its angiogenic activity and therefore named "vascular endothelial growth factor." However, its more recently discovered neurotrophic activity may be evolutionarily more ancient. Our previous work showed that all the changes produced by axotomy on the firing activity and synaptic inputs of abducens motoneurons were completely restored after VEGF administration. Therefore, we hypothesized that the lack of VEGF delivered by retrograde transport from the periphery should also affect the physiology of otherwise intact abducens motoneurons. For VEGF retrograde blockade, we chronically applied a neutralizing VEGF antibody to the lateral rectus muscle. Recordings of extracellular single-unit activity and eye movements were made in alert cats before and after the application of the neutralizing antibody. Our data revealed that intact, noninjured abducens motoneurons retrogradely deprived of VEGF exhibited noticeable changes in their firing pattern. There is a general decrease in firing rate and a significant reduction in eye position and eye velocity sensitivity (i.e., a decrease in the tonic and phasic components of their discharge, respectively). Moreover, by means of confocal immunocytochemistry, motoneurons under VEGF blockade showed a marked reduction in the density of afferent synaptic terminals contacting with their cell bodies. Altogether, the present findings demonstrate that the lack of retrogradely delivered VEGF renders abducens motoneurons into an axotomy-like state. This indicates that VEGF is an essential retrograde factor for motoneuronal synaptic drive and discharge activity.
Collapse
|
38
|
Prenatal glucocorticoid exposure selectively impairs neuroligin 1-dependent neurogenesis by suppressing astrocytic FGF2-neuronal FGFR1 axis. Cell Mol Life Sci 2022; 79:294. [PMID: 35562616 PMCID: PMC9106608 DOI: 10.1007/s00018-022-04313-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 11/03/2022]
Abstract
Exposure to maternal stress irreversibly impairs neurogenesis of offspring by inducing life-long effects on interaction between neurons and glia under raging differentiation process, culminating in cognitive and neuropsychiatric abnormalities in adulthood. We identified that prenatal exposure to stress-responsive hormone glucocorticoid impaired neurogenesis and induced abnormal behaviors in ICR mice. Then, we used human induced pluripotent stem cell (iPSC)-derived neural stem cell (NSC) to investigate how neurogenesis deficits occur. Following glucocorticoid treatment, NSC-derived astrocytes were found to be A1-like neurotoxic astrocytes. Moreover, cortisol-treated astrocytic conditioned media (ACM) then specifically downregulated AMPA receptor-mediated glutamatergic synaptic formation and transmission in differentiating neurons, by inhibiting localization of ionotropic glutamate receptor (GluR)1/2 into synapses. We then revealed that downregulated astrocytic fibroblast growth factor 2 (FGF2) and nuclear fibroblast growth factor receptor 1 (FGFR1) of neurons are key pathogenic factors for reducing glutamatergic synaptogenesis. We further confirmed that cortisol-treated ACM specifically decreased the binding of neuronal FGFR1 to the synaptogenic NLGN1 promoter, but this was reversed by FGFR1 restoration. Upregulation of neuroligin 1, which is important in scaffolding GluR1/2 into the postsynaptic compartment, eventually normalized glutamatergic synaptogenesis and subsequent neurogenesis. Moreover, pretreatment of FGF2 elevated neuroligin 1 expression and trafficking of GluR1/2 into the postsynaptic compartment of mice exposed to prenatal corticosterone, improving spatial memory and depression/anxiety-like behaviors. In conclusion, we identified neuroligin 1 restoration by astrocytic FGF2 and its downstream neuronal nuclear FGFR1 as a critical target for preventing prenatal stress-induced dysfunction in glutamatergic synaptogenesis, which recovered both neurogenesis and hippocampal-related behaviors.
Collapse
|
39
|
Taha DM, Clarke BE, Hall CE, Tyzack GE, Ziff OJ, Greensmith L, Kalmar B, Ahmed M, Alam A, Thelin EP, Garcia NM, Helmy A, Sibley CR, Patani R. Astrocytes display cell autonomous and diverse early reactive states in familial amyotrophic lateral sclerosis. Brain 2022; 145:481-489. [PMID: 35042241 PMCID: PMC9014746 DOI: 10.1093/brain/awab328] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 07/14/2021] [Accepted: 08/08/2021] [Indexed: 01/01/2023] Open
Abstract
Amyotrophic lateral sclerosis is a rapidly progressive and fatal disease. Although astrocytes are increasingly recognized contributors to the underlying pathogenesis, the cellular autonomy and uniformity of astrocyte reactive transformation in different genetic forms of amyotrophic lateral sclerosis remain unresolved. Here we systematically examine these issues by using highly enriched and human induced pluripotent stem cell-derived astrocytes from patients with VCP and SOD1 mutations. We show that VCP mutant astrocytes undergo cell-autonomous reactive transformation characterized by increased expression of complement component 3 (C3) in addition to several characteristic gene expression changes. We then demonstrate that isochronic SOD1 mutant astrocytes also undergo a cell-autonomous reactive transformation, but that this is molecularly distinct from VCP mutant astrocytes. This is shown through transcriptome-wide analyses, identifying divergent gene expression profiles and activation of different key transcription factors in SOD1 and VCP mutant human induced pluripotent stem cell-derived astrocytes. Finally, we show functional differences in the basal cytokine secretome between VCP and SOD1 mutant human induced pluripotent stem cell-derived astrocytes. Our data therefore reveal that reactive transformation can occur cell autonomously in human amyotrophic lateral sclerosis astrocytes and with a striking degree of early molecular and functional heterogeneity when comparing different disease-causing mutations. These insights may be important when considering astrocyte reactivity as a putative therapeutic target in familial amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
- Doaa M Taha
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK.,Zoology Department, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Claire E Hall
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Giulia E Tyzack
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| | - Linda Greensmith
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Bernadett Kalmar
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Mhoriam Ahmed
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK
| | - Aftab Alam
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Eric P Thelin
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Nuria Marco Garcia
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Adel Helmy
- Division of Neurosurgery and Wolfson Brain Imaging Centre, Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh EH8 9JZ, UK.,Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.,Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK.,Euan MacDonald Centre for MND Research, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK.,The Francis Crick Institute, London NW1 1AT, UK
| |
Collapse
|
40
|
Lin CH, Chou CC, Lee YH, Hung CC. Curcumin Facilitates Aryl Hydrocarbon Receptor Activation to Ameliorate Inflammatory Astrogliosis. Molecules 2022; 27:2507. [PMID: 35458704 PMCID: PMC9024799 DOI: 10.3390/molecules27082507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Curcumin is an anti-inflammatory and neuroprotective compound in turmeric. It is a potential ligand of the aryl hydrocarbon receptor (AhR) that mediates anti-inflammatory signaling. However, the AhR-mediated anti-inflammatory effect of curcumin within the brain remains unclear. We investigated the role of AhR on the curcumin effect in inflammatory astrogliosis. Curcumin attenuated lipopolysaccharide (LPS)-induced proinflammatory IL-6 and TNF-α gene expression in primary cultured rat astrocytes. When AhR was knocked down, LPS-induced IL-6 and TNF-α were increased and curcumin-decreased activation of the inflammation mediator NF-κB p65 by LPS was abolished. Although LPS increased AhR and its target gene CYP1B1, curcumin further enhanced LPS-induced CYP1B1 and indoleamine 2,3-dioxygenase (IDO), which metabolizes tryptophan to AhR ligands kynurenine (KYN) and kynurenic acid (KYNA). Potential interactions between curcumin and human AhR analyzed by molecular modeling of ligand-receptor docking. We identified a new ligand binding site on AhR different from the classical 2,3,7,8-tetrachlorodibenzo-p-dioxin site. Curcumin docked onto the classical binding site, whereas KYN and KYNA occupied the novel one. Moreover, curcumin and KYNA collaboratively bound onto AhR during molecular docking, potentially resulting in synergistic effects influencing AhR activation. Curcumin may enhance the inflammation-induced IDO/KYN axis and allosterically regulate endogenous ligand binding to AhR, facilitating AhR activation to regulate inflammatory astrogliosis.
Collapse
Affiliation(s)
- Chun-Hua Lin
- Department of Nursing, Kang-Ning University, Taipei 11485, Taiwan
- School of Nursing, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Cheng Chou
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei 115202, Taiwan;
| | - Yi-Hsuan Lee
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Chia-Chi Hung
- Department and Institute of Physiology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| |
Collapse
|
41
|
Masrori P, Beckers J, Gossye H, Van Damme P. The role of inflammation in neurodegeneration: novel insights into the role of the immune system in C9orf72 HRE-mediated ALS/FTD. Mol Neurodegener 2022; 17:22. [PMID: 35303907 PMCID: PMC8932121 DOI: 10.1186/s13024-022-00525-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 02/25/2022] [Indexed: 12/13/2022] Open
Abstract
Neuroinflammation is an important hallmark of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). An inflammatory reaction to neuronal injury is deemed vital for neuronal health and homeostasis. However, a continued activation of the inflammatory response can be detrimental to remaining neurons and aggravate the disease process. Apart from a disease modifying role, some evidence suggests that neuroinflammation may also contribute to the upstream cause of the disease. In this review, we will first focus on the role of neuroinflammation in the pathogenesis of chromosome 9 open reading frame 72 gene (C9orf72) hexanucleotide repeat expansions (HRE)-mediated ALS/FTD (C9-ALS/FTD). Additionally, we will discuss evidence from ex vivo and in vivo studies and finally, we briefly summarize the trials and progress of anti-inflammatory therapies.
Collapse
Affiliation(s)
- Pegah Masrori
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium.,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.,Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium
| | - Jimmy Beckers
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium.,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium
| | - Helena Gossye
- Department of Neurology, University Hospital Antwerp, 2650, Edegem, Belgium.,VIB Center for Molecular Neurology, Neurodegenerative Brain Diseases, University of Antwerp, 2000, Antwerp, Belgium.,Department of Biomedical Sciences, University of Antwerp, 2000, Antwerp, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven-University of Leuven, 3000, Leuven, Belgium. .,Laboratory of Neurobiology, Experimental Neurology, Center for Brain and Disease Research, VIB, Campus Gasthuisberg, O&N5, Herestraat 49, 602, 3000, Leuven, PB, Belgium. .,Neurology Department, University Hospitals Leuven, Campus Gasthuisberg, Herestraat 49, 3000, Leuven, Belgium.
| |
Collapse
|
42
|
Insights into Human-Induced Pluripotent Stem Cell-Derived Astrocytes in Neurodegenerative Disorders. Biomolecules 2022; 12:biom12030344. [PMID: 35327542 PMCID: PMC8945600 DOI: 10.3390/biom12030344] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Most neurodegenerative disorders have complex and still unresolved pathology characterized by progressive neuronal damage and death. Astrocytes, the most-abundant non-neuronal cell population in the central nervous system, play a vital role in these processes. They are involved in various functions in the brain, such as the regulation of synapse formation, neuroinflammation, and lactate and glutamate levels. The development of human-induced pluripotent stem cells (iPSCs) reformed the research in neurodegenerative disorders allowing for the generation of disease-relevant neuronal and non-neuronal cell types that can help in disease modeling, drug screening, and, possibly, cell transplantation strategies. In the last 14 years, the differentiation of human iPSCs into astrocytes allowed for the opportunity to explore the contribution of astrocytes to neurodegenerative diseases. This review discusses the development protocols and applications of human iPSC-derived astrocytes in the most common neurodegenerative conditions.
Collapse
|
43
|
Soubannier V, Chaineau M, Gursu L, Haghi G, Franco Flores AK, Rouleau G, Durcan TM, Stifani S. Rapid Generation of Ventral Spinal Cord-like Astrocytes from Human iPSCs for Modeling Non-Cell Autonomous Mechanisms of Lower Motor Neuron Disease. Cells 2022; 11:cells11030399. [PMID: 35159209 PMCID: PMC8834281 DOI: 10.3390/cells11030399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/16/2022] [Accepted: 01/21/2022] [Indexed: 12/26/2022] Open
Abstract
Astrocytes play important roles in the function and survival of neuronal cells. Dysfunctions of astrocytes are associated with numerous disorders and diseases of the nervous system, including motor neuron diseases such as amyotrophic lateral sclerosis (ALS). Human-induced pluripotent stem cell (iPSC)-based approaches are becoming increasingly important for the study of the mechanisms underlying the involvement of astrocytes in non-cell autonomous processes of motor neuron degeneration in ALS. These studies must account for the molecular and functional diversity among astrocytes in different regions of the brain and spinal cord. It is essential that the most pathologically relevant astrocyte preparations are used when investigating non-cell autonomous mechanisms of either upper or lower motor neuron degeneration in ALS. Here, we describe the efficient and streamlined generation of human iPSC-derived astrocytes with molecular and biological properties similar to physiological astrocytes in the ventral spinal cord. These induced astrocytes exhibit spontaneous and ATP-induced calcium transients, and lack signs of overt activation. Human iPSC-derived astrocytes with ventral spinal cord features offer advantages over more generic astrocyte preparations for the study of both ventral spinal cord astrocyte biology and the involvement of astrocytes in mechanisms of lower motor neuron degeneration in ALS.
Collapse
Affiliation(s)
- Vincent Soubannier
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Mathilde Chaineau
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Lale Gursu
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Ghazal Haghi
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Anna Kristyna Franco Flores
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Guy Rouleau
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
| | - Thomas M. Durcan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Early Drug Discovery Unit, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (M.C.); (L.G.); (G.H.); (A.K.F.F.)
| | - Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC H3A 2B4, Canada; (V.S.); (G.R.); (T.M.D.)
- Correspondence:
| |
Collapse
|
44
|
Grekhnev DA, Kaznacheyeva EV, Vigont VA. Patient-Specific iPSCs-Based Models of Neurodegenerative Diseases: Focus on Aberrant Calcium Signaling. Int J Mol Sci 2022; 23:624. [PMID: 35054808 PMCID: PMC8776084 DOI: 10.3390/ijms23020624] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 02/04/2023] Open
Abstract
The development of cell reprogramming technologies became a breakthrough in the creation of new models of human diseases, including neurodegenerative pathologies. The iPSCs-based models allow for the studying of both hereditary and sporadic cases of pathologies and produce deep insight into the molecular mechanisms underlying neurodegeneration. The use of the cells most vulnerable to a particular pathology makes it possible to identify specific pathological mechanisms and greatly facilitates the task of selecting the most effective drugs. To date, a large number of studies on patient-specific models of neurodegenerative diseases has been accumulated. In this review, we focused on the alterations of such a ubiquitous and important intracellular regulatory pathway as calcium signaling. Here, we reviewed and analyzed the data obtained from iPSCs-based models of different neurodegenerative disorders that demonstrated aberrant calcium signaling.
Collapse
Affiliation(s)
| | | | - Vladimir A. Vigont
- Laboratory of Ionic Channels of Cell Membranes, Department of Molecular Physiology of the Cell, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., 194064 St. Petersburg, Russia; (D.A.G.); (E.V.K.)
| |
Collapse
|
45
|
Lotti F, Przedborski S. Motoneuron Diseases. ADVANCES IN NEUROBIOLOGY 2022; 28:323-352. [PMID: 36066831 DOI: 10.1007/978-3-031-07167-6_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Motoneuron diseases (MNDs) represent a heterogeneous group of progressive paralytic disorders, mainly characterized by the loss of upper (corticospinal) motoneurons, lower (spinal) motoneurons or, often both. MNDs can occur from birth to adulthood and have a highly variable clinical presentation, even within gene-positive forms, suggesting the existence of environmental and genetic modifiers. A combination of cell autonomous and non-cell autonomous mechanisms contributes to motoneuron degeneration in MNDs, suggesting multifactorial pathogenic processes.
Collapse
Affiliation(s)
- Francesco Lotti
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Serge Przedborski
- Departments of Neurology, Pathology & Cell Biology, and Neuroscience, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
46
|
Ziff OJ, Clarke BE, Taha DM, Crerar H, Luscombe NM, Patani R. Meta-analysis of human and mouse ALS astrocytes reveals multi-omic signatures of inflammatory reactive states. Genome Res 2022; 32:71-84. [PMID: 34963663 PMCID: PMC8744676 DOI: 10.1101/gr.275939.121] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/27/2021] [Indexed: 11/25/2022]
Abstract
Astrocytes contribute to motor neuron death in amyotrophic lateral sclerosis (ALS), but whether they adopt deleterious features consistent with inflammatory reactive states remains incompletely resolved. To identify inflammatory reactive features in ALS human induced pluripotent stem cell (hiPSC)-derived astrocytes, we examined transcriptomics, proteomics, and glutamate uptake in VCP-mutant astrocytes. We complemented this by examining other ALS mutations and models using a systematic meta-analysis of all publicly-available ALS astrocyte sequencing data, which included hiPSC-derived astrocytes carrying SOD1, C9orf72, and FUS gene mutations as well as mouse ALS astrocyte models with SOD1G93A mutation, Tardbp deletion, and Tmem259 (also known as membralin) deletion. ALS astrocytes were characterized by up-regulation of genes involved in the extracellular matrix, endoplasmic reticulum stress, and the immune response and down-regulation of synaptic integrity, glutamate uptake, and other neuronal support processes. We identify activation of the TGFB, Wnt, and hypoxia signaling pathways in both hiPSC and mouse ALS astrocytes. ALS changes positively correlate with TNF, IL1A, and complement pathway component C1q-treated inflammatory reactive astrocytes, with significant overlap of differentially expressed genes. By contrasting ALS changes with models of protective reactive astrocytes, including middle cerebral artery occlusion and spinal cord injury, we uncover a cluster of genes changing in opposing directions, which may represent down-regulated homeostatic genes and up-regulated deleterious genes in ALS astrocytes. These observations indicate that ALS astrocytes augment inflammatory processes while concomitantly suppressing neuronal supporting mechanisms, thus resembling inflammatory reactive states and offering potential therapeutic targets.
Collapse
Affiliation(s)
- Oliver J Ziff
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, United Kingdom
| | - Benjamin E Clarke
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Doaa M Taha
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21511, Egypt
| | - Hamish Crerar
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Nicholas M Luscombe
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- UCL Genetics Institute, University College London, London WC1E 6BT, United Kingdom
- Okinawa Institute of Science and Technology Graduate University, Okinawa 904-0495, Japan
| | - Rickie Patani
- Department of Neuromuscular Diseases, Queen Square Institute of Neurology, University College London, London WC1N 3BG, United Kingdom
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London WC1N 3BG, United Kingdom
| |
Collapse
|
47
|
Immune Signaling Kinases in Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD). Int J Mol Sci 2021; 22:ijms222413280. [PMID: 34948077 PMCID: PMC8707599 DOI: 10.3390/ijms222413280] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disorder of motor neurons in adults, with a median survival of 3-5 years after appearance of symptoms, and with no curative treatment currently available. Frontotemporal dementia (FTD) is also an adult-onset neurodegenerative disease, displaying not only clinical overlap with ALS, but also significant similarities at genetic and pathologic levels. Apart from the progressive loss of neurons and the accumulation of protein inclusions in certain cells and tissues, both disorders are characterized by chronic inflammation mediated by activated microglia and astrocytes, with an early and critical impact of neurodegeneration along the disease course. Despite the progress made in the last two decades in our knowledge around these disorders, the underlying molecular mechanisms of such non-cell autonomous neuronal loss still need to be clarified. In particular, immune signaling kinases are currently thought to have a key role in determining the neuroprotective or neurodegenerative nature of the central and peripheral immune states in health and disease. This review provides a comprehensive and updated view of the proposed mechanisms, therapeutic potential, and ongoing clinical trials of immune-related kinases that have been linked to ALS and/or FTD, by covering the more established TBK1, RIPK1/3, RACK I, and EPHA4 kinases, as well as other emerging players in ALS and FTD immune signaling.
Collapse
|
48
|
Stifani S. Taking Cellular Heterogeneity Into Consideration When Modeling Astrocyte Involvement in Amyotrophic Lateral Sclerosis Using Human Induced Pluripotent Stem Cells. Front Cell Neurosci 2021; 15:707861. [PMID: 34602979 PMCID: PMC8485040 DOI: 10.3389/fncel.2021.707861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/24/2021] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are a large group of glial cells that perform a variety of physiological functions in the nervous system. They provide trophic, as well as structural, support to neuronal cells. Astrocytes are also involved in neuroinflammatory processes contributing to neuronal dysfunction and death. Growing evidence suggests important roles for astrocytes in non-cell autonomous mechanisms of motor neuron degeneration in amyotrophic lateral sclerosis (ALS). Understanding these mechanisms necessitates the combined use of animal and human cell-based experimental model systems, at least in part because human astrocytes display a number of unique features that cannot be recapitulated in animal models. Human induced pluripotent stem cell (hiPSC)-based approaches provide the opportunity to generate disease-relevant human astrocytes to investigate the roles of these cells in ALS. These approaches are facing the growing recognition that there are heterogenous populations of astrocytes in the nervous system which are not functionally equivalent. This review will discuss the importance of taking astrocyte heterogeneity into consideration when designing hiPSC-based strategies aimed at generating the most informative preparations to study the contribution of astrocytes to ALS pathophysiology.
Collapse
Affiliation(s)
- Stefano Stifani
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Satake E, Saulnier PJ, Kobayashi H, Gupta MK, Looker HC, Wilson JM, Md Dom ZI, Ihara K, O’Neil K, Krolewski B, Pipino C, Pavkov ME, Nair V, Bitzer M, Niewczas MA, Kretzler M, Mauer M, Doria A, Najafian B, Kulkarni RN, Duffin KL, Pezzolesi MG, Kahn CR, Nelson RG, Krolewski AS. Comprehensive Search for Novel Circulating miRNAs and Axon Guidance Pathway Proteins Associated with Risk of ESKD in Diabetes. J Am Soc Nephrol 2021; 32:2331-2351. [PMID: 34140396 PMCID: PMC8729832 DOI: 10.1681/asn.2021010105] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/23/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Mechanisms underlying the pro gression of diabetic kidney disease to ESKD are not fully understood. METHODS We performed global microRNA (miRNA) analysis on plasma from two cohorts consisting of 375 individuals with type 1 and type 2 diabetes with late diabetic kidney disease, and targeted proteomics analysis on plasma from four cohorts consisting of 746 individuals with late and early diabetic kidney disease. We examined structural lesions in kidney biopsy specimens from the 105 individuals with early diabetic kidney disease. Human umbilical vein endothelial cells were used to assess the effects of miRNA mimics or inhibitors on regulation of candidate proteins. RESULTS In the late diabetic kidney disease cohorts, we identified 17 circulating miRNAs, represented by four exemplars (miR-1287-5p, miR-197-5p, miR-339-5p, and miR-328-3p), that were strongly associated with 10-year risk of ESKD. These miRNAs targeted proteins in the axon guidance pathway. Circulating levels of six of these proteins-most notably, EFNA4 and EPHA2-were strongly associated with 10-year risk of ESKD in all cohorts. Furthermore, circulating levels of these proteins correlated with severity of structural lesions in kidney biopsy specimens. In contrast, expression levels of genes encoding these proteins had no apparent effects on the lesions. In in vitro experiments, mimics of miR-1287-5p and miR-197-5p and inhibitors of miR-339-5p and miR-328-3p upregulated concentrations of EPHA2 in either cell lysate, supernatant, or both. CONCLUSIONS This study reveals novel mechanisms involved in progression to ESKD and points to the importance of systemic factors in the development of diabetic kidney disease. Some circulating miRNAs and axon guidance pathway proteins represent potential targets for new therapies to prevent and treat this condition.
Collapse
Affiliation(s)
- Eiichiro Satake
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Pierre-Jean Saulnier
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
- Poitiers University Hospital, University of Poitiers, Institut National de la Santé et de la Recherche Médicale (INSERM), Clinical Investigation Center CIC1402, Poitiers, France
| | - Hiroki Kobayashi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Manoj K. Gupta
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Helen C. Looker
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Jonathan M. Wilson
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Zaipul I. Md Dom
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Katsuhito Ihara
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kristina O’Neil
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Bozena Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Caterina Pipino
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Department of Medical, Oral and Biotechnological Sciences, Center for Advanced Studies and Technology (CAST), University G. d’Annunzio, Chieti, Italy
| | - Meda E. Pavkov
- Division of Diabetes Translation, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Viji Nair
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Markus Bitzer
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Monika A. Niewczas
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Matthias Kretzler
- Nephrology/Internal Medicine and Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Michael Mauer
- Department of Pediatrics and Medicine, University of Minnesota, Minneapolis, Minnesota
| | - Alessandro Doria
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Behzad Najafian
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - Rohit N. Kulkarni
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Kevin L. Duffin
- Diabetes and Complication Department, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, Indiana
| | - Marcus G. Pezzolesi
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
- Division of Nephrology and Hypertension, University of Utah, Salt Lake City, Utah
| | - C. Ronald Kahn
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Robert G. Nelson
- Chronic Kidney Disease Section, National Institute of Diabetes and Digestive and Kidney Diseases, Phoenix, Arizona
| | - Andrzej S. Krolewski
- Research Division, Joslin Diabetes Center, Boston, Massachusetts
- Department of Medicine, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
50
|
Unraveling Axon Guidance during Axotomy and Regeneration. Int J Mol Sci 2021; 22:ijms22158344. [PMID: 34361110 PMCID: PMC8347220 DOI: 10.3390/ijms22158344] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 02/06/2023] Open
Abstract
During neuronal development and regeneration axons extend a cytoskeletal-rich structure known as the growth cone, which detects and integrates signals to reach its final destination. The guidance cues “signals” bind their receptors, activating signaling cascades that result in the regulation of the growth cone cytoskeleton, defining growth cone advance, pausing, turning, or collapse. Even though much is known about guidance cues and their isolated mechanisms during nervous system development, there is still a gap in the understanding of the crosstalk between them, and about what happens after nervous system injuries. After neuronal injuries in mammals, only axons in the peripheral nervous system are able to regenerate, while the ones from the central nervous system fail to do so. Therefore, untangling the guidance cues mechanisms, as well as their behavior and characterization after axotomy and regeneration, are of special interest for understanding and treating neuronal injuries. In this review, we present findings on growth cone guidance and canonical guidance cues mechanisms, followed by a description and comparison of growth cone pathfinding mechanisms after axotomy, in regenerative and non-regenerative animal models.
Collapse
|