1
|
Simoni MK, Negatu SG, Park JY, Mani S, Arreguin MC, Amses KR, Huh DD, Mainigi M, Jurado KA. Type I interferon exposure of an implantation-on-a-chip device alters invasive extravillous trophoblast function. Cell Rep Med 2025; 6:101991. [PMID: 40054459 PMCID: PMC11970386 DOI: 10.1016/j.xcrm.2025.101991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 12/06/2024] [Accepted: 02/05/2025] [Indexed: 03/12/2025]
Abstract
Inappropriate type I interferon (IFN) signaling during embryo implantation and placentation is linked to poor pregnancy outcomes. Here, we evaluate the consequence of elevated type I IFN exposure on implantation using a human implantation in an organ-on-a-chip device. We reveal that type I IFN reduces extravillous trophoblast (EVT) invasion capacity. Analyzing single-cell transcriptomes, we uncover that IFN truncates invasive EVT emergence in the implantation-on-a-chip device by stunting EVT epithelial-to-mesenchymal transition. Disruptions to the epithelial-to-mesenchymal transition are associated with the pathogenesis of preeclampsia, a life-threatening disorder of pregnancy. Strikingly, IFN stimulation induces genes associated with increased preeclampsia risk in EVTs. These dysregulated EVT phenotypes ultimately reduce EVT-mediated endothelial cell vascular remodeling in the implantation-on-a-chip device. Overall, our work implicates unwarranted type I IFN as a maternal disturbance that can result in abnormal EVT function that could trigger preeclampsia.
Collapse
Affiliation(s)
- Michael K Simoni
- Department of Obstetrics and Gynecology, Hospital at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Seble G Negatu
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Ju Young Park
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sneha Mani
- Department of Obstetrics and Gynecology, Hospital at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Montserrat C Arreguin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Kevin R Amses
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Dan Dongeun Huh
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica Mainigi
- Department of Obstetrics and Gynecology, Hospital at the University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Kellie A Jurado
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
2
|
Li Q, Zhou J, Jiang S, Fu Y, Su M. Single-Cell Array Enhanced Cell Damage Recognition Using Artificial Intelligence for Anticancer Drug Discovery. Anal Chem 2025; 97:4202-4208. [PMID: 39928967 DOI: 10.1021/acs.analchem.4c06646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2025]
Abstract
This work developed a cell damage recognition method based on single-cell arrays using an artificial intelligence tool. The method uses micropatterns (single-cell micropatches and microwells) to isolate each cell in an ordered array to minimize cell overlapping and to maintain cell contours. After exposure to a therapeutic drug (e.g., doxorubicin), a large number of single cells are monitored, and the cell damage levels are determined with both morphology and intensity changes in reactive oxygen species recorded under fluorescence microscopy. The convolutional neural network model is trained by the time-series cancer cell images before and after low and high concentrations of drug exposure. The trained model can identify cancer cell status (live/dead) and classify damage levels (major/moderate/minor) with high accuracy. The single-cell pattern allows cells physically segmented at the single-cell level, which not only eliminates the need for computational cell segmentation but also reduces background noise and neighboring interference, which highly enhances the accuracy of analysis via image recognition. The single-cell array accelerates the computational analysis for toxicity with a trained AI model, which can be used to predict cell damage response for screening potential anticancer drugs.
Collapse
Affiliation(s)
- Qingxuan Li
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Jiangshan Zhou
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Songyao Jiang
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Yun Fu
- Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Ming Su
- Department of Chemical Engineering, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
3
|
Ong RCS, Tang AD. Subthreshold repetitive transcranial magnetic stimulation induces cortical layer-, brain region-, and protocol-dependent neural plasticity. SCIENCE ADVANCES 2025; 11:eado6705. [PMID: 39772671 PMCID: PMC11708880 DOI: 10.1126/sciadv.ado6705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is commonly used to study the brain or as a treatment for neurological disorders, but the neural circuits and molecular mechanisms it affects remain unclear. To determine the molecular mechanisms of rTMS and the brain regions they occur in, we used spatial transcriptomics to map changes to gene expression across the mouse brain in response to two commonly used rTMS protocols. Our results revealed that rTMS alters the expression of genes related to several cellular processes and neural plasticity mechanisms across the brain, which was both brain region- and rTMS protocol-dependent. In the cortex, the effect of rTMS was dependent not only on the cortical region but also on each cortical layer. These findings uncover the diverse molecular mechanisms induced by rTMS, which will be useful in interpreting its effects on cortical and subcortical circuits.
Collapse
Affiliation(s)
- Rebecca C. S. Ong
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
| | - Alexander D. Tang
- Experimental and Regenerative Neurosciences, The University of Western Australia, Perth, Australia
- Perron Institute for Neurological and Translational Sciences, Perth, Australia
- Pharmacology and Toxicology Discipline, School of Biomedical Sciences, The University of Western Australia, Perth, Australia
| |
Collapse
|
4
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Zhang K, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Stereo-seq of the prefrontal cortex in aging and Alzheimer's disease. Nat Commun 2025; 16:482. [PMID: 39779708 PMCID: PMC11711495 DOI: 10.1038/s41467-024-54715-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/20/2024] [Indexed: 01/11/2025] Open
Abstract
Aging increases the risk for Alzheimer's disease (AD), driving pathological changes like amyloid-β (Aβ) buildup, inflammation, and oxidative stress, especially in the prefrontal cortex (PFC). We present the first subcellular-resolution spatial transcriptome atlas of the human prefrontal cortex (PFC), generated with Stereo-seq from six male AD cases at varying neuropathological stages and six age-matched male controls. Our analyses revealed distinct transcriptional alterations across PFC layers, highlighted disruptions in laminar structure, and exposed AD-related shifts in layer-to-layer and cell-cell interactions. Notably, we identified genes highly upregulated in stressed neurons and nearby glial cells, where AD diminished stress-response interactions that promote Aβ clearance. Further, cell-type-specific co-expression analysis highlighted three neuronal modules linked to neuroprotection, protein dephosphorylation, and Aβ regulation, with all modules downregulated as AD progresses. We identified ZNF460 as a transcription factor regulating these modules, offering a potential therapeutic target. In summary, this spatial transcriptome atlas provides valuable insight into AD's molecular mechanisms.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA, 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Kai Zhang
- Department of Environmental Health Sciences, College of Integrated Health Sciences, University at Albany, Albany, NY, 12222, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA.
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA.
| |
Collapse
|
5
|
Molitor M, Menge A, Mandel S, George S, Müller S, Knapp S, Hofmann B, Steinhilber D, Häfner AK. Unlocking the potential: unveiling tyrphostins with Michael-reactive cyanoacrylate motif as promising inhibitors of human 5-lipoxygenase. Pflugers Arch 2024; 476:1913-1928. [PMID: 39347835 PMCID: PMC11582101 DOI: 10.1007/s00424-024-03019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 10/01/2024]
Abstract
Human 5-lipoxygenase (5-LO) is the key enzyme in the biosynthesis of leukotrienes, mediators of the innate immune system that also play an important role in inflammatory diseases and cancer. In this study, we present compounds, containing a Michael-reactive cyanoacrylate moiety as potent inhibitors of 5-LO. Representatives of the tyrosine kinase inhibitor family called tyrphostins, structurally related to known 5-LO inhibitors, were screened for their 5-LO inhibitory properties using recombinant human 5-LO, intact human PMNL (polymorphonuclear leukocytes), and PMNL homogenates. Their mode of action was characterized by the addition of glutathione, using a fourfold cysteine 5-LO mutant and mass spectrometry analysis. SAR studies revealed several members of the tyrphostin family containing a Michael-reactive cyanoacrylate to efficiently inhibit 5-LO. We identified degrasyn (IC50 0.11 µM), tyrphostin A9 (IC50 0.8 µM), AG879 (IC50 78 nM), and AG556 (IC50 64 nM) as potent 5-LO inhibitors. Mass spectrometry analysis revealed that degrasyn and AG556 covalently bound to up to four cysteines, including C416 and/or C418 which surround the substrate entry site. Furthermore, the 5-LO inhibitory effect of degrasyn was remarkably impaired by the addition of glutathione or by the mutation of cysteines to serines at the surface of 5-LO. We successfully identified several tyrphostins as potent inhibitors of human 5-LO. Degrasyn and AG556 were able to covalently bind to 5-LO via their cyanoacrylate moiety. This provides a promising mechanism for targeting 5-LO by Michael acceptors, leading to new therapeutic opportunities in the field of inflammation and cancer.
Collapse
Affiliation(s)
- Maximilian Molitor
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Amelie Menge
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Sebastian Mandel
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Sven George
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Susanne Müller
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Stefan Knapp
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
- Buchmann Institute for Molecular Life Sciences and Structural Genomics Consortium (SGC), Max-von-Laue-Str. 15, 60438, Frankfurt Am Main, Germany
| | - Bettina Hofmann
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Dieter Steinhilber
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany
| | - Ann-Kathrin Häfner
- Institute of Pharmaceutical Chemistry, Goethe University, Max-von-Laue-Str. 9, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
6
|
Ganz T, Fainstein N, Theotokis P, Elgavish S, Vardi-Yaakov O, Lachish M, Sofer L, Zveik O, Grigoriadis N, Ben-Hur T. Targeting CNS myeloid infiltrates provides neuroprotection in a progressive multiple sclerosis model. Brain Behav Immun 2024; 122:497-509. [PMID: 39179123 DOI: 10.1016/j.bbi.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 08/17/2024] [Indexed: 08/26/2024] Open
Abstract
Demyelination and axonal injury in chronic-progressive Multiple Sclerosis (MS) are presumed to be driven by a neurotoxic bystander effect of meningeal-based myeloid infiltrates. There is an unmet clinical need to attenuate disease progression in such forms of CNS-compartmentalized MS. The failure of systemic immune suppressive treatments has highlighted the need for neuroprotective and repair-inducing strategies. Here, we examined whether direct targeting of CNS myeloid cells and modulating their toxicity may prevent irreversible tissue injury in chronic immune-mediated demyelinating disease. To that end, we utilized the experimental autoimmune encephalomyelitis (EAE) model in Biozzi mice, a clinically relevant MS model. We continuously delivered intracerebroventricularly (ICV) a retinoic acid receptor alpha agonist (RARα), as a potent regulator of myeloid cells, in the chronic phase of EAE. We assessed disease severity and performed pathological evaluations, functional analyses of immune cells, and single-cell RNA sequencing on isolated spinal CD11b+ cells. Although initiating treatment in the chronic phase of the disease, the RARα agonist successfully improved clinical outcomes and prevented axonal loss. ICV RARα agonist treatment inhibited pro-inflammatory pathways and shifted CNS myeloid cells toward neuroprotective phenotypes without affecting peripheral infiltrating myeloid cell phenotypes, or peripheral immunity. The treatment regulated cell-death pathways across multiple myeloid cell populations and suppressed apoptosis, resulting in paradoxically marked increased neuroinflammatory infiltrates, consisting mainly of microglia and CNS / border-associated macrophages. This work establishes the notion of bystander neurotoxicity by CNS immune infiltrates in chronic demyelinating disease. Furthermore, it shows that targeting compartmentalized neuroinflammation by selective regulation of CNS myeloid cell toxicity and survival reduces irreversible tissue injury, and may serve as a novel disease-modifying approach.
Collapse
Affiliation(s)
- Tal Ganz
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nina Fainstein
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Sharona Elgavish
- Info-CORE, Bioinformatics Unit of the 1-CORE, Hebrew University of Jerusalem, Israel
| | - Oriya Vardi-Yaakov
- Info-CORE, Bioinformatics Unit of the 1-CORE, Hebrew University of Jerusalem, Israel; Department of Bioinformatics, Jerusalem College of Technology, Israel
| | - Marva Lachish
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Lihi Sofer
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Omri Zveik
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Tamir Ben-Hur
- Faculty of Medicine, Hebrew University of Jerusalem, Israel; The Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah - Hebrew University Medical Center, Jerusalem, Israel.
| |
Collapse
|
7
|
Khatun J, Gelles JD, Chipuk JE. Dynamic death decisions: How mitochondrial dynamics shape cellular commitment to apoptosis and ferroptosis. Dev Cell 2024; 59:2549-2565. [PMID: 39378840 PMCID: PMC11469553 DOI: 10.1016/j.devcel.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/15/2024] [Accepted: 09/03/2024] [Indexed: 10/10/2024]
Abstract
The incorporation of mitochondria into early eukaryotes established organelle-based biochemistry and enabled metazoan development. Diverse mitochondrial biochemistry is essential for life, and its homeostatic control via mitochondrial dynamics supports organelle quality and function. Mitochondrial crosstalk with numerous regulated cell death (RCD) pathways controls the decision to die. In this review, we will focus on apoptosis and ferroptosis, two distinct forms of RCD that utilize divergent signaling to kill a targeted cell. We will highlight how proteins and processes involved in mitochondrial dynamics maintain biochemically diverse subcellular compartments to support apoptosis and ferroptosis machinery, as well as unite disparate RCD pathways through dual control of organelle biochemistry and the decision to die.
Collapse
Affiliation(s)
- Jesminara Khatun
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jesse D Gelles
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Jerry Edward Chipuk
- Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Dermatology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; The Diabetes, Obesity, and Metabolism Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
8
|
Cheng G, Xu J, Wang H, Chen J, Huang L, Qian ZR, Fan Y. mtPCDI: a machine learning-based prognostic model for prostate cancer recurrence. Front Genet 2024; 15:1430565. [PMID: 39296545 PMCID: PMC11408181 DOI: 10.3389/fgene.2024.1430565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/22/2024] [Indexed: 09/21/2024] Open
Abstract
Background This research seeks to formulate a prognostic model for forecasting prostate cancer recurrence by examining the interaction between mitochondrial function and programmed cell death (PCD). Methods The research involved analyzing four gene expression datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) using univariate Cox regression. These analyses identified genes linked with mitochondrial function and PCD that correlate with recurrence prognosis. Various machine learning algorithms were then employed to construct an optimal predictive model. Results A key outcome was the creation of a mitochondrial-related programmed cell death index (mtPCDI), which effectively predicts the prognosis of prostate cancer patients. It was observed that individuals with lower mtPCDI exhibited higher immune activity, correlating with better recurrence outcomes. Conclusion The study demonstrates that mtPCDI can be used for personalized risk assessment and therapeutic decision-making, highlighting its clinical significance and providing insights into the biological processes affecting prostate cancer recurrence.
Collapse
Affiliation(s)
- Guoliang Cheng
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Junrong Xu
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Honghua Wang
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| | - Jingzhao Chen
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Liwei Huang
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Zhi Rong Qian
- Beidou Precision Medicine Institute, Guangzhou, China
| | - Yong Fan
- Department of Urology Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong, China
| |
Collapse
|
9
|
Bao H, Wu M, Xing J, Li Z, Zhang Y, Wu A, Li J. Enzyme-like nanoparticle-engineered mesenchymal stem cell secreting HGF promotes visualized therapy for idiopathic pulmonary fibrosis in vivo. SCIENCE ADVANCES 2024; 10:eadq0703. [PMID: 39167646 PMCID: PMC11338238 DOI: 10.1126/sciadv.adq0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Stem cell therapy is being explored as a potential treatment for idiopathic pulmonary fibrosis (IPF), but its effectiveness is hindered by factors like reactive oxygen species (ROS) and inflammation in fibrotic lungs. Moreover, the distribution, migration, and survival of transplanted stem cells are still unclear, impeding the clinical advancement of stem cell therapy. To tackle these challenges, we fabricate AuPtCoPS trimetallic-based nanocarriers (TBNCs), with enzyme-like activity and plasmid loading capabilities, aiming to efficiently eradicate ROS, facilitate delivery of therapeutic genes, and ultimately improve the therapeutic efficacy. TBNCs also function as a computed tomography contrast agent for tracking mesenchymal stem cells (MSCs) during therapy. Accordingly, we enhanced the antioxidant stress and anti-inflammatory capabilities of engineered MSCs and successfully visualized their biological behavior in IPF mice in vivo. Overall, this study provides an efficient and forward-looking treatment approach for IPF and establishes a framework for a stem cell-based therapeutic system aimed at addressing lung disease.
Collapse
Affiliation(s)
- Hongying Bao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Manxiang Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
10
|
Sprang M, Möllmann J, Andrade-Navarro MA, Fontaine JF. Overlooked poor-quality patient samples in sequencing data impair reproducibility of published clinically relevant datasets. Genome Biol 2024; 25:222. [PMID: 39152483 PMCID: PMC11328481 DOI: 10.1186/s13059-024-03331-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/08/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Reproducibility is a major concern in biomedical studies, and existing publication guidelines do not solve the problem. Batch effects and quality imbalances between groups of biological samples are major factors hampering reproducibility. Yet, the latter is rarely considered in the scientific literature. RESULTS Our analysis uses 40 clinically relevant RNA-seq datasets to quantify the impact of quality imbalance between groups of samples on the reproducibility of gene expression studies. High-quality imbalance is frequent (14 datasets; 35%), and hundreds of quality markers are present in more than 50% of the datasets. Enrichment analysis suggests common stress-driven effects among the low-quality samples and highlights a complementary role of transcription factors and miRNAs to regulate stress response. Preliminary ChIP-seq results show similar trends. Quality imbalance has an impact on the number of differential genes derived by comparing control to disease samples (the higher the imbalance, the higher the number of genes), on the proportion of quality markers in top differential genes (the higher the imbalance, the higher the proportion; up to 22%) and on the proportion of known disease genes in top differential genes (the higher the imbalance, the lower the proportion). We show that removing outliers based on their quality score improves the resulting downstream analysis. CONCLUSIONS Thanks to a stringent selection of well-designed datasets, we demonstrate that quality imbalance between groups of samples can significantly reduce the relevance of differential genes, consequently reducing reproducibility between studies. Appropriate experimental design and analysis methods can substantially reduce the problem.
Collapse
Affiliation(s)
- Maximilian Sprang
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Jannik Möllmann
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
| | - Miguel A Andrade-Navarro
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany.
| | - Jean-Fred Fontaine
- Faculty of Biology, Johannes Gutenberg-Universität Mainz, Biozentrum I, Hans-Dieter-Hüsch-Weg 15, Mainz, 55128, Germany
- Central Institute for Decision Support Systems in Crop Protection (ZEPP), Rüdesheimer Str. 60-68, Bad Kreuznach, 55545, Germany
| |
Collapse
|
11
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. Nat Commun 2024; 15:6979. [PMID: 39143079 PMCID: PMC11324877 DOI: 10.1038/s41467-024-51016-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 07/24/2024] [Indexed: 08/16/2024] Open
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the brain. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expands concurrently with a change in subcellular partitioning towards the distal processes. These changes are followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion take 3 days. Oligodendrocyte mitochondria are stationary over days while OPC mitochondrial motility is modulated by animal arousal state within minutes. Aged OPCs also display decreased mitochondrial size, volume fraction, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
12
|
Bakhsh T, Alyami NM. Inducing breast cancer cell death: The impact of taxodone on proliferation through apoptosis. Heliyon 2024; 10:e34044. [PMID: 39055854 PMCID: PMC11269907 DOI: 10.1016/j.heliyon.2024.e34044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/19/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Breast cancer is the most prevalent form of cancer in women and a major contributor to cancer-related fatalities worldwide. Several factors play a role in the development of breast cancer, encompassing age, hormone levels, etc. Taxodone has shown significant anti-tumor properties in both laboratory experiments and living organisms. However, its impact on the human MCF-7 breast cancer cell line has not been researched. This investigation explores the chemo-preventive potential of taxodone in the MCF-7 breast cancer cells. The anticancer potential of taxodone against MCF-7 cells was determined by MTT assay. Further, the induction of apoptosis in MCF-7 breast cancer cells was confirmed via ELISA, which indicated the increased incidences of chromatin condensation and ssDNA breakage in the MCF-7 apoptotic cells upon 24 h of taxodone treatment. The intracellular reactive oxygen species (ROS) level was evaluated using H2DCFDA fluorescent dye to elucidate the mechanism of action triggered upon taxodone treatment. The increasing intercellular ROS level sequentially activated the caspase-mediated apoptosis pathway. Consequently, the outcomes revealed that taxodone decreased the cell viability of MCF-7 dose-dependently. Taxodone triggers apoptosis in MCF-7 cells by increasing intracellular ROS levels and activating the caspase cascade through the mitochondrial apoptosis-induced channel, an early marker of apoptosis onset. Our results indicate that taxodone exhibits anti-proliferative and apoptotic properties against human MCF-7 breast cancer cells, suggesting it to be a natural anticancer agent.
Collapse
Affiliation(s)
- Tahani Bakhsh
- Department of Biology, College of Science, University of Jeddah, Jeddah, 21589, Saudi Arabia
| | - Nouf M. Alyami
- Department of Zoology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Gong Y, Haeri M, Zhang X, Li Y, Liu A, Wu D, Zhang Q, Jazwinski SM, Zhou X, Wang X, Jiang L, Chen YP, Yan X, Swerdlow RH, Shen H, Deng HW. Spatial Dissection of the Distinct Cellular Responses to Normal Aging and Alzheimer's Disease in Human Prefrontal Cortex at Single-Nucleus Resolution. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24306783. [PMID: 38826275 PMCID: PMC11142279 DOI: 10.1101/2024.05.21.24306783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Aging significantly elevates the risk for Alzheimer's disease (AD), contributing to the accumulation of AD pathologies, such as amyloid-β (Aβ), inflammation, and oxidative stress. The human prefrontal cortex (PFC) is highly vulnerable to the impacts of both aging and AD. Unveiling and understanding the molecular alterations in PFC associated with normal aging (NA) and AD is essential for elucidating the mechanisms of AD progression and developing novel therapeutics for this devastating disease. In this study, for the first time, we employed a cutting-edge spatial transcriptome platform, STOmics® SpaTial Enhanced Resolution Omics-sequencing (Stereo-seq), to generate the first comprehensive, subcellular resolution spatial transcriptome atlas of the human PFC from six AD cases at various neuropathological stages and six age, sex, and ethnicity matched controls. Our analyses revealed distinct transcriptional alterations across six neocortex layers, highlighted the AD-associated disruptions in laminar architecture, and identified changes in layer-to-layer interactions as AD progresses. Further, throughout the progression from NA to various stages of AD, we discovered specific genes that were significantly upregulated in neurons experiencing high stress and in nearby non-neuronal cells, compared to cells distant from the source of stress. Notably, the cell-cell interactions between the neurons under the high stress and adjacent glial cells that promote Aβ clearance and neuroprotection were diminished in AD in response to stressors compared to NA. Through cell-type specific gene co-expression analysis, we identified three modules in excitatory and inhibitory neurons associated with neuronal protection, protein dephosphorylation, and negative regulation of Aβ plaque formation. These modules negatively correlated with AD progression, indicating a reduced capacity for toxic substance clearance in AD subject samples. Moreover, we have discovered a novel transcription factor, ZNF460, that regulates all three modules, establishing it as a potential new therapeutic target for AD. Overall, utilizing the latest spatial transcriptome platform, our study developed the first transcriptome-wide atlas with subcellular resolution for assessing the molecular alterations in the human PFC due to AD. This atlas sheds light on the potential mechanisms underlying the progression from NA to AD.
Collapse
Affiliation(s)
- Yun Gong
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Mohammad Haeri
- Department of Pathology & Laboratory Medicine, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Xiao Zhang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yisu Li
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Anqi Liu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Di Wu
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Qilei Zhang
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - S. Michal Jazwinski
- Tulane Center for Aging, Deming Department of Medicine, Tulane University School of Medicne, New Orleans, LA 70112, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Departments of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Lindong Jiang
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Yi-Ping Chen
- Department of Cell and Molecular Biology, School of Science of Engineering, Tulane University, New Orleans, LA, 70118, USA
| | - Xiaoxin Yan
- School of Basic Medical Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Russell H. Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, MO, 66160, USA
| | - Hui Shen
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| | - Hong-Wen Deng
- Tulane Center for Biomedical Informatics and Genomics, Deming Department of Medicine, School of Medicine, Tulane University, New Orleans, LA, 70112, USA
| |
Collapse
|
14
|
Ramos-Acosta C, Huerta-Pantoja L, Salazar-Hidalgo ME, Mayol E, Jiménez-Vega S, García-Peña P, Jordi-Cruz J, Baquero C, Porras A, Íñigo-Rodríguez B, Benavente CM, López-Pastor AR, Gómez-Delgado I, Urcelay E, Candel FJ, Anguita E. Tigecycline Opposes Bortezomib Effect on Myeloma Cells Decreasing Mitochondrial Reactive Oxygen Species Production. Int J Mol Sci 2024; 25:4887. [PMID: 38732105 PMCID: PMC11084384 DOI: 10.3390/ijms25094887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/23/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Multiple myeloma is an incurable plasma cell malignancy. Most patients end up relapsing and developing resistance to antineoplastic drugs, like bortezomib. Antibiotic tigecycline has activity against myeloma. This study analyzed tigecycline and bortezomib combination on cell lines and plasma cells from myeloma patients. Apoptosis, autophagic vesicles, mitochondrial mass, mitochondrial superoxide, cell cycle, and hydrogen peroxide were studied by flow cytometry. In addition, mitochondrial antioxidants and electron transport chain complexes were quantified by reverse transcription real-time PCR (RT-qPCR) or western blot. Cell metabolism and mitochondrial activity were characterized by Seahorse and RT-qPCR. We found that the addition of tigecycline to bortezomib reduces apoptosis in proportion to tigecycline concentration. Supporting this, the combination of both drugs counteracts bortezomib in vitro individual effects on the cell cycle, reduces autophagy and mitophagy markers, and reverts bortezomib-induced increase in mitochondrial superoxide. Changes in mitochondrial homeostasis and MYC upregulation may account for some of these findings. These data not only advise to avoid considering tigecycline and bortezomib combination for treating myeloma, but caution on the potential adverse impact of treating infections with this antibiotic in myeloma patients under bortezomib treatment.
Collapse
Affiliation(s)
- Carlos Ramos-Acosta
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Laura Huerta-Pantoja
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Milton Eduardo Salazar-Hidalgo
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Elsa Mayol
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Selene Jiménez-Vega
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Pablo García-Peña
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Jenifeer Jordi-Cruz
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Cristina Baquero
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Almudena Porras
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (C.B.); (A.P.)
| | - Belén Íñigo-Rodríguez
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Celina M. Benavente
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| | - Andrea R. López-Pastor
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Irene Gómez-Delgado
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Elena Urcelay
- Laboratory of Genetics and Molecular Bases of Complex Diseases, Instituto de Investigación Sanitaria San Carlos (IdISSC), 28040 Madrid, Spain; (A.R.L.-P.); (I.G.-D.); (E.U.)
- Networks for Cooperative Research in Health Results (RICORS, REI), 28089 Madrid, Spain
| | - Francisco Javier Candel
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Clinical Microbiology & Infectious Diseases, Transplant Coordination, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, 28040 Madrid, Spain
| | - Eduardo Anguita
- Department of Medicine, Medical School, Universidad Complutense de Madrid (UCM), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain (E.M.); (S.J.-V.); (J.J.-C.); (C.M.B.); (F.J.C.)
- Hematology Department, IML, Instituto de Investigación Sanitaria San Carlos (IdISSC), Hospital Clínico San Carlos, Profesor Martín Lagos s/n, 28040 Madrid, Spain (B.Í.-R.)
| |
Collapse
|
15
|
Simoni MK, Negatu SG, Park JY, Mani S, Arreguin MC, Amses K, Huh DD, Mainigi M, Jurado KA. Type I interferon alters invasive extravillous trophoblast function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.11.584521. [PMID: 38559122 PMCID: PMC10979977 DOI: 10.1101/2024.03.11.584521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Inappropriate type I interferon (IFN) signaling during embryo implantation and placentation is linked to poor pregnancy outcomes. Here, we evaluated the consequence of elevated type I IFN exposure on implantation using a biomimetic model of human implantation in an organ-on-a-chip device. We found that type I IFN reduced extravillous trophoblast (EVT) invasion capacity. Analyzing single-cell transcriptomes, we uncovered that IFN truncated endovascular EVT emergence in the implantation-on-a-chip device by stunting EVT epithelial-to-mesenchymal transition. Disruptions to the epithelial-to-mesenchymal transition is associated with the pathogenesis of preeclampsia, a life-threatening hypertensive disorder of pregnancy. Strikingly, unwarranted IFN stimulation induced genes associated with increased preeclampsia risk and a preeclamptic gene-like signature in EVTs. These dysregulated EVT phenotypes ultimately reduced EVT-mediated endothelial cell vascular remodeling in the implantation-on-a-chip device. Overall, our work indicates IFN signaling can alter EVT epithelial-to-mesenchymal transition progression which results in diminished EVT-mediated spiral artery remodeling and a preeclampsia gene signature upon sustained stimulation. Our work implicates unwarranted type I IFN as a maternal disturbance that can result in abnormal EVT function that could trigger preeclampsia.
Collapse
|
16
|
Asmar AJ, Benson ZA, Peskin AP, Chalfoun J, Simon M, Halter M, Plant AL. High-volume, label-free imaging for quantifying single-cell dynamics in induced pluripotent stem cell colonies. PLoS One 2024; 19:e0298446. [PMID: 38377138 PMCID: PMC10878516 DOI: 10.1371/journal.pone.0298446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
To facilitate the characterization of unlabeled induced pluripotent stem cells (iPSCs) during culture and expansion, we developed an AI pipeline for nuclear segmentation and mitosis detection from phase contrast images of individual cells within iPSC colonies. The analysis uses a 2D convolutional neural network (U-Net) plus a 3D U-Net applied on time lapse images to detect and segment nuclei, mitotic events, and daughter nuclei to enable tracking of large numbers of individual cells over long times in culture. The analysis uses fluorescence data to train models for segmenting nuclei in phase contrast images. The use of classical image processing routines to segment fluorescent nuclei precludes the need for manual annotation. We optimize and evaluate the accuracy of automated annotation to assure the reliability of the training. The model is generalizable in that it performs well on different datasets with an average F1 score of 0.94, on cells at different densities, and on cells from different pluripotent cell lines. The method allows us to assess, in a non-invasive manner, rates of mitosis and cell division which serve as indicators of cell state and cell health. We assess these parameters in up to hundreds of thousands of cells in culture for more than 36 hours, at different locations in the colonies, and as a function of excitation light exposure.
Collapse
Affiliation(s)
- Anthony J. Asmar
- Biosystems and Biomaterials Division Material Measurement Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Zackery A. Benson
- Biosystems and Biomaterials Division Material Measurement Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Adele P. Peskin
- Software and Systems Division Information Technology Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Joe Chalfoun
- Software and Systems Division Information Technology Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Mylene Simon
- Software and Systems Division Information Technology Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Michael Halter
- Biosystems and Biomaterials Division Material Measurement Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| | - Anne L. Plant
- Biosystems and Biomaterials Division Material Measurement Lab, NIST Gaithersburg, Gaithersburg, Maryland, United States of America
| |
Collapse
|
17
|
Bai H, Olson KNP, Pan M, Marshall T, Singh H, Ma J, Gilbride P, Yuan Y, McCormack J, Si L, Maharjan S, Huang D, Qian X, Livermore C, Zhang YS, Xie X. Rapid Prototyping of Thermoplastic Microfluidic 3D Cell Culture Devices by Creating Regional Hydrophilicity Discrepancy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304332. [PMID: 38032118 PMCID: PMC10870023 DOI: 10.1002/advs.202304332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Microfluidic 3D cell culture devices that enable the recapitulation of key aspects of organ structures and functions in vivo represent a promising preclinical platform to improve translational success during drug discovery. Essential to these engineered devices is the spatial patterning of cells from different tissue types within a confined microenvironment. Traditional fabrication strategies lack the scalability, cost-effectiveness, and rapid prototyping capabilities required for industrial applications, especially for processes involving thermoplastic materials. Here, an approach to pattern fluid guides inside microchannels is introduced by establishing differential hydrophilicity using pressure-sensitive adhesives as masks and a subsequent selective coating with a biocompatible polymer. Optimal coating conditions are identified using polyvinylpyrrolidone, which resulted in rapid and consistent hydrogel flow in both the open-chip prototype and the fully bonded device containing additional features for medium perfusion. The suitability of the device for dynamic 3D cell culture is tested by growing human hepatocytes in the device under controlled fluid flow for a 14-day period. Additionally, the study demonstrated the potential of using the device for pharmaceutical high-throughput screening applications, such as predicting drug-induced liver injury. The approach offers a facile strategy of rapid prototyping thermoplastic microfluidic organ chips with varying geometries, microstructures, and substrate materials.
Collapse
Affiliation(s)
| | | | - Ming Pan
- Xellar BiosystemsCambridgeMA02458USA
| | | | | | | | | | | | | | - Longlong Si
- CAS Key Laboratory of Quantitative Engineering BiologyShenzhen Institute of Synthetic BiologyShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhen518055P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sushila Maharjan
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02142USA
| | - Di Huang
- Research Center for Nano‐biomaterials & Regenerative MedicineCollege of Biomedical EngineeringTaiyuan University of TechnologyTaiyuan030024P. R. China
| | | | - Carol Livermore
- Department of Mechanical and Industrial EngineeringNortheastern UniversityBostonMA02115USA
| | - Yu Shrike Zhang
- Division of Engineering in MedicineDepartment of MedicineBrigham and Women's HospitalHarvard Medical SchoolCambridgeMA02142USA
| | - Xin Xie
- Xellar BiosystemsCambridgeMA02458USA
| |
Collapse
|
18
|
Zala M, Lipinski B, Costechareyre C, Jarrosson L, Teinturier R, Julia E, Lacourrège M, Verney A, Guitton J, Traverse-Glehen A, Bachy E, Salles G, Huet S, Genestier L, Castellani V, Delloye-Bourgeois C, Sujobert P. Functional precision oncology for follicular lymphoma with patient-derived xenograft in avian embryos. Leukemia 2024; 38:430-434. [PMID: 38225454 PMCID: PMC11514868 DOI: 10.1038/s41375-024-02150-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Despite achieving high rates of complete remission with RCHOP immuno-chemotherapy, almost all patients with follicular lymphoma (FL) will experience multiple relapses after treatment. The lack of experimental model of FL limits our understanding of heterogeneity in treatment response. Here we characterized a new model of FL patient-derived xenograft (PDX) in avian embryos. Based on 20 biopsies, we observed that tumor volume reduction upon RCHOP treatment in ovo predicted progression free survival in multivariate analysis. To further explore the model, we performed single-cell RNA sequencing and discovered a signature of 21 genes upregulated after RCHOP exposure, with significant intratumoral heterogeneity. Among these genes, we functionally validated BAX as a critical effector of RCHOP which can be targeted with venetoclax in vitro and in ovo . Overall, the FL-AVI-PDX model is a platform for functional precision oncology in FL, which captures both interpatient and intratumoral heterogeneity, and opens an avenue for drug development.
Collapse
Affiliation(s)
- Manon Zala
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Boris Lipinski
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Clélia Costechareyre
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Loraine Jarrosson
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Romain Teinturier
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Edith Julia
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Marjorie Lacourrège
- OncoFactory, an ERBC company, Faculté de Médecine et de Pharmacie, 8 avenue Rockefeller, 69008, Lyon, France
| | - Aurélie Verney
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Jérôme Guitton
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service de biochimie, 69310, Pierre Bénite, France
| | - Alexandra Traverse-Glehen
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'Anatomopathologie, 69310, Pierre Bénite, France
| | - Emmanuel Bachy
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Gilles Salles
- Lymphoma Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Huet
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, 69310, Pierre Bénite, France
| | - Laurent Genestier
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France
| | - Valérie Castellani
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France
| | - Céline Delloye-Bourgeois
- University of Lyon, University Claude Bernard Lyon 1, MeLiS, CNRS UMR5284, INSERM U1314, NeuroMyoGene Institute, 69008, Lyon, France
- Cancer Research Center of Lyon (CRCL, INSERM U1052-CNRS UMR5286, University of Lyon), University Claude Bernard Lyon 1, Centre Léon Bérard, 69008, Lyon, France
| | - Pierre Sujobert
- Centre International de Recherche en Infectiologie (CIRI, INSERM U1111, CNRS UMR 5308, École Normale supérieure de Lyon), Lymphoma ImmunoBiology team, Faculté de Médecine Lyon sud, Université Claude Bernard Lyon 1, 69007, Lyon, France.
- Hospices Civils de Lyon, Hôpital Lyon Sud, Service d'hématologie biologique, 69310, Pierre Bénite, France.
| |
Collapse
|
19
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2024; 241:253-266. [PMID: 37865885 PMCID: PMC10843042 DOI: 10.1111/nph.19334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/26/2023] [Indexed: 10/23/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LIPID TRANSFER PROTEIN 2 (LTP2) greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild-type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany 1099
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
20
|
Yuan M, Mahmud I, Katsushima K, Joshi K, Saulnier O, Pokhrel R, Lee B, Liyanage W, Kunhiraman H, Stapleton S, Gonzalez-Gomez I, Kannan RM, Eisemann T, Kolanthai E, Seal S, Garrett TJ, Abbasi S, Bockley K, Hanes J, Chapagain P, Jallo G, Wechsler-Reya RJ, Taylor MD, Eberhart CG, Ray A, Perera RJ. miRNA-211 maintains metabolic homeostasis in medulloblastoma through its target gene long-chain acyl-CoA synthetase 4. Acta Neuropathol Commun 2023; 11:203. [PMID: 38115140 PMCID: PMC10729563 DOI: 10.1186/s40478-023-01684-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/05/2023] [Indexed: 12/21/2023] Open
Abstract
The prognosis of childhood medulloblastoma (MB) is often poor, and it usually requires aggressive therapy that adversely affects quality of life. microRNA-211 (miR-211) was previously identified as an important regulator of cells that descend from neural cells. Since medulloblastomas primarily affect cells with similar ontogeny, we investigated the role and mechanism of miR-211 in MB. Here we showed that miR-211 expression was highly downregulated in cell lines, PDXs, and clinical samples of different MB subgroups (SHH, Group 3, and Group 4) compared to normal cerebellum. miR-211 gene was ectopically expressed in transgenic cells from MB subgroups, and they were subjected to molecular and phenotypic investigations. Monoclonal cells stably expressing miR-211 were injected into the mouse cerebellum. miR-211 forced expression acts as a tumor suppressor in MB both in vitro and in vivo, attenuating growth, promoting apoptosis, and inhibiting invasion. In support of emerging regulatory roles of metabolism in various forms of cancer, we identified the acyl-CoA synthetase long-chain family member (ACSL4) as a direct miR-211 target. Furthermore, lipid nanoparticle-coated, dendrimer-coated, and cerium oxide-coated miR-211 nanoparticles were applied to deliver synthetic miR-211 into MB cell lines and cellular responses were assayed. Synthesizing nanoparticle-miR-211 conjugates can suppress MB cell viability and invasion in vitro. Our findings reveal miR-211 as a tumor suppressor and a potential therapeutic agent in MB. This proof-of-concept paves the way for further pre-clinical and clinical development.
Collapse
Affiliation(s)
- Menglang Yuan
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Iqbal Mahmud
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Keisuke Katsushima
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Kandarp Joshi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Olivier Saulnier
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Rudramani Pokhrel
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Bongyong Lee
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Wathsala Liyanage
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Haritha Kunhiraman
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Stacie Stapleton
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Ignacio Gonzalez-Gomez
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tanja Eisemann
- National Cancer Institute-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA, 92037, USA
| | - Elayaraja Kolanthai
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Sudipta Seal
- Advanced Materials Processing and Analysis Centre, Nanoscience Technology Center, Materials Science and Engineering, College of Medicine, University of Central Florida, Orlando, FL, 32826, USA
| | - Timothy J Garrett
- Department Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Saed Abbasi
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
| | - Kimberly Bockley
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Justin Hanes
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21231, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Prem Chapagain
- Department of Physics, Florida International University, Miami, FL, 33199, USA
| | - George Jallo
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA
| | - Robert J Wechsler-Reya
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, NY, 10032, USA
| | - Michael D Taylor
- The Arthur and Sonia Labatt Brain Tumour Research Centre and the Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Texas Children's Cancer Center, Hematology-Oncology Section, Houston, TX, 77030, USA
- Department of Pediatrics-Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Charles G Eberhart
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Animesh Ray
- Riggs School of Applied Life Sciences, Keck Graduate Institute, Claremont, CA, 91711, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ranjan J Perera
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, 1650 Orleans St., Baltimore, MD, 21231, USA.
- Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
21
|
Lenz LS, Torgo D, Buss JH, Pereira LC, Bueno M, Filippi-Chiela EC, Lenz G. Mitochondrial response of glioma cells to temozolomide. Exp Cell Res 2023; 433:113825. [PMID: 37866459 DOI: 10.1016/j.yexcr.2023.113825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/03/2023] [Accepted: 10/16/2023] [Indexed: 10/24/2023]
Abstract
Metabolic adaptations are central for carcinogenesis and response to therapy, but little is known about the contribution of mitochondrial dynamics to the response of glioma cells to the standard treatment with temozolomide (TMZ). Glioma cells responded to TMZ with mitochondrial mass increased and the production of round structures of dysfunctional mitochondria. At single-cell level, asymmetric mitosis contributed to the heterogeneity of mitochondrial levels. It affected the fitness of cells in control and treated condition, indicating that the mitochondrial levels are relevant for glioma cell fitness in the presence of TMZ.
Collapse
Affiliation(s)
- Luana Suéling Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Daphne Torgo
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Julieti Huch Buss
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Luiza Cherobini Pereira
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Mardja Bueno
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil
| | - Eduardo Cremonese Filippi-Chiela
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Serviço de Pesquisa Experimental, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Rio Grande do Sul, Brazil; Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre 90050-170, Rio Grande do Sul, Brazil
| | - Guido Lenz
- Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil; Departamento de Biofísica, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Rio Grande do Sul, Brazil.
| |
Collapse
|
22
|
Bame X, Hill RA. Mitochondrial network reorganization and transient expansion during oligodendrocyte generation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570104. [PMID: 38106204 PMCID: PMC10723275 DOI: 10.1101/2023.12.05.570104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oligodendrocyte precursor cells (OPCs) give rise to myelinating oligodendrocytes of the central nervous system. This process persists throughout life and is essential for recovery from neurodegeneration. To better understand the cellular checkpoints that occur during oligodendrogenesis, we determined the mitochondrial distribution and morphometrics across the oligodendrocyte lineage in mouse and human cerebral cortex. During oligodendrocyte generation, mitochondrial content expanded concurrently with a change in subcellular partitioning towards the distal processes. These changes were followed by an abrupt loss of mitochondria in the oligodendrocyte processes and myelin, coinciding with sheath compaction. This reorganization and extensive expansion and depletion took 3 days. Oligodendrocyte mitochondria were stationary over days while OPC mitochondrial motility was modulated by animal arousal state within minutes. Aged OPCs also displayed decreased mitochondrial size, content, and motility. Thus, mitochondrial dynamics are linked to oligodendrocyte generation, dynamically modified by their local microenvironment, and altered in the aging brain.
Collapse
Affiliation(s)
- Xhoela Bame
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Robert A Hill
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| |
Collapse
|
23
|
Chowdhury PR, Salvamani S, Gunasekaran B, Peng HB, Ulaganathan V. H19: An Oncogenic Long Non-coding RNA in Colorectal Cancer. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2023; 96:495-509. [PMID: 38161577 PMCID: PMC10751868 DOI: 10.59249/tdbj7410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Colorectal cancer (CRC) has been recorded amongst the most common cancers in the world, with high morbidity and mortality rates, and relatively low survival rates. With risk factors such as chronic illness, age, and lifestyle associated with the development of CRC, the incidence of CRC is increasing each year. Thus, the discovery of novel biomarkers to improve the diagnosis and prognosis of CRC has become beneficial. Long non-coding RNAs (lncRNAs) have been emerging as potential players in several tumor types, one among them is the lncRNA H19. The paternally imprinted oncofetal gene is expressed in the embryo, downregulated at birth, and reappears in tumors. H19 aids in CRC cell growth, proliferation, invasion, and metastasis via various mechanisms of action, significantly through the lncRNA-microRNA (miRNA)-messenger RNA (mRNA)-competitive endogenous RNA (ceRNA) network, where H19 behaves as a miRNA sponge. The RNA transcript of H19 obtained from the first exon of the H19 gene, miRNA-675 also promotes CRC carcinogenesis. Overexpression of H19 in malignant tissues compared to adjacent non-malignant tissues marks H19 as an independent prognostic marker in CRC. Besides its prognostic value, H19 serves as a promising target for therapy in CRC treatment.
Collapse
Affiliation(s)
- Prerana R. Chowdhury
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Shamala Salvamani
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Baskaran Gunasekaran
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Hoh B. Peng
- Division of Applied Biomedical Sciences and
Biotechnology, School of Health Sciences, International Medical University,
Kuala Lumpur, Malaysia
| | - Vaidehi Ulaganathan
- Department of Biotechnology, Faculty of Applied
Sciences, UCSI University, Kuala Lumpur, Malaysia
| |
Collapse
|
24
|
Bekebrede AF, de Boer VCJ, Gerrits WJJ, Keijer J. Functional and molecular profiling of fasted piglets reveals decreased energy metabolic function and cell proliferation in the small intestine. Am J Physiol Gastrointest Liver Physiol 2023; 325:G539-G555. [PMID: 37847725 PMCID: PMC10894671 DOI: 10.1152/ajpgi.00240.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/22/2023] [Accepted: 10/09/2023] [Indexed: 10/19/2023]
Abstract
The small intestine requires energy to exert its important role in nutrient uptake and barrier function. Pigs are an important source of food and a model for humans. Young piglets and infants can suffer from periods of insufficient food intake. Whether this functionally affects the small intestinal epithelial cell (IEC) metabolic capacity and how this may be associated with an increased vulnerability to intestinal disease is unknown. We therefore performed a 48-h fasting intervention in young piglets. After feeding a standard weaning diet for 2 wk, 6-wk-old piglets (n = 16/group) were fasted for 48 h, and midjejunal IECs were collected upon euthanasia. Functional metabolism of isolated IECs was analyzed with the Seahorse XF analyzer and gene expression was assessed using RNA-sequencing. Fasting decreased the mitochondrial and glycolytic function of the IECs by 50% and 45%, respectively (P < 0.0001), signifying that overall metabolic function was decreased. The RNA-sequencing results corroborated our functional metabolic measurements, showing that particularly pathways related to mitochondrial energy production were decreased. Besides oxidative metabolic pathways, decreased cell-cycle progression pathways were most regulated in the fasted piglets, which were confirmed by 43% reduction of Ki67-stained cells (P < 0.05). Finally, the expression of barrier function genes was reduced upon fasting. In conclusion, we found that the decreased IEC energy metabolic function in response to fasting is supported by a decreased gene expression of mitochondrial pathways and is likely linked to the observed decreased intestinal cell proliferation and barrier function, providing insight into the vulnerability of piglets, and infants, to decreased food intake.NEW & NOTEWORTHY Fasting is identified as one of the underlying causes potentiating diarrhea development, both in piglets and humans. With this study, we demonstrate that fasting decreases the metabolism of intestinal epithelial cells, on a functional and transcriptional level. Transcriptional and histological data also show decreased intestinal cell proliferation. As such, fasting-induced intestinal energy shortage could contribute to intestinal dysfunction upon fasting.
Collapse
Affiliation(s)
- Anna F Bekebrede
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Vincent C J de Boer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| | - Walter J J Gerrits
- Animal Nutrition Group, Wageningen University, Wageningen, The Netherlands
| | - Jaap Keijer
- Human and Animal Physiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
25
|
Cheng H, Tang Y, Li Z, Guo Z, Heath JR, Xue M, Wei W. Non-Mass Spectrometric Targeted Single-Cell Metabolomics. Trends Analyt Chem 2023; 168:117300. [PMID: 37840599 PMCID: PMC10569257 DOI: 10.1016/j.trac.2023.117300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Metabolic assays serve as pivotal tools in biomedical research, offering keen insights into cellular physiological and pathological states. While mass spectrometry (MS)-based metabolomics remains the gold standard for comprehensive, multiplexed analyses of cellular metabolites, innovative technologies are now emerging for the targeted, quantitative scrutiny of metabolites and metabolic pathways at the single-cell level. In this review, we elucidate an array of these advanced methodologies, spanning synthetic and surface chemistry techniques, imaging-based methods, and electrochemical approaches. We summarize the rationale, design principles, and practical applications for each method, and underscore the synergistic benefits of integrating single-cell metabolomics (scMet) with other single-cell omics technologies. Concluding, we identify prevailing challenges in the targeted scMet arena and offer a forward-looking commentary on future avenues and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Hanjun Cheng
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Yin Tang
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Zhonghan Li
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Zhili Guo
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - James R. Heath
- Institute for Systems Biology, Seattle, WA, 98109, United States
| | - Min Xue
- Department of Chemistry, University of California, Riverside, CA, 92521, United States
| | - Wei Wei
- Institute for Systems Biology, Seattle, WA, 98109, United States
| |
Collapse
|
26
|
Tian Q, Zhang P, Wang Y, Si Y, Yin D, Weber CR, Fishel ML, Pollok KE, Qiu B, Xiao F, Chong AS. A novel triptolide analog downregulates NF-κB and induces mitochondrial apoptosis pathways in human pancreatic cancer. eLife 2023; 12:e85862. [PMID: 37877568 PMCID: PMC10861173 DOI: 10.7554/elife.85862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 10/24/2023] [Indexed: 10/26/2023] Open
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related death worldwide, and despite advancements in disease management, the 5 -year survival rate stands at only 12%. Triptolides have potent anti-tumor activity against different types of cancers, including pancreatic cancer, however poor solubility and toxicity limit their translation into clinical use. We synthesized a novel pro-drug of triptolide, (E)-19-[(1'-benzoyloxy-1'-phenyl)-methylidene]-Triptolide (CK21), which was formulated into an emulsion for in vitro and in vivo testing in rats and mice, and used human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids. A time-course transcriptomic profiling of tumor organoids treated with CK21 in vitro was conducted to define its mechanism of action, as well as transcriptomic profiling at a single time point post-CK21 administration in vivo. Intravenous administration of emulsified CK21 resulted in the stable release of triptolide, and potent anti-proliferative effects on human pancreatic cancer cell lines and patient-derived pancreatic tumor organoids in vitro, and with minimal toxicity in vivo. Time course transcriptomic profiling of tumor organoids treated with CK21 in vitro revealed <10 differentially expressed genes (DEGs) at 3 hr and ~8,000 DEGs at 12 hr. Overall inhibition of general RNA transcription was observed, and Ingenuity pathway analysis together with functional cellular assays confirmed inhibition of the NF-κB pathway, increased oxidative phosphorylation and mitochondrial dysfunction, leading ultimately to increased reactive oxygen species (ROS) production, reduced B-cell-lymphoma protein 2 (BCL2) expression, and mitochondrial-mediated tumor cell apoptosis. Thus, CK21 is a novel pro-drug of triptolide that exerts potent anti-proliferative effects on human pancreatic tumors by inhibiting the NF-κB pathway, leading ultimately to mitochondrial-mediated tumor cell apoptosis.
Collapse
Affiliation(s)
- Qiaomu Tian
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Peng Zhang
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Yihan Wang
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Youhui Si
- Department of Surgery, The University of ChicagoChicagoUnited States
| | - Dengping Yin
- Department of Surgery, The University of ChicagoChicagoUnited States
| | | | - Melissa L Fishel
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Karen E Pollok
- Department of Pediatrics, Indiana UniversityIndianapolisUnited States
| | - Bo Qiu
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Fei Xiao
- Cinkate Pharmaceutical Corp, ZhangJiang DistrictShanghaiChina
| | - Anita S Chong
- Department of Surgery, The University of ChicagoChicagoUnited States
| |
Collapse
|
27
|
Kwon SH, Parthiban S, Tippani M, Divecha HR, Eagles NJ, Lobana JS, Williams SR, Mak M, Bharadwaj RA, Kleinman JE, Hyde TM, Page SC, Hicks SC, Martinowich K, Maynard KR, Collado-Torres L. Influence of Alzheimer's disease related neuropathology on local microenvironment gene expression in the human inferior temporal cortex. GEN BIOTECHNOLOGY 2023; 2:399-417. [PMID: 39329069 PMCID: PMC11426291 DOI: 10.1089/genbio.2023.0019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Neuropathological lesions in the brains of individuals affected with neurodegenerative disorders are hypothesized to trigger molecular and cellular processes that disturb homeostasis of local microenvironments. Here, we applied the 10x Genomics Visium Spatial Proteogenomics (Visium-SPG) platform, which couples spatial gene expression with immunofluorescence protein co-detection, to evaluate its ability to quantify changes in spatial gene expression with respect to amyloid-β (Aβ) and hyperphosphorylated tau (pTau) pathology in post-mortem human brain tissue from individuals with Alzheimer's disease (AD). We identified transcriptomic signatures associated with proximity to Aβ in the human inferior temporal cortex (ITC) during late-stage AD, which we further investigated at cellular resolution with combined immunofluorescence and single molecule fluorescent in situ hybridization (smFISH). The study provides a data analysis workflow for Visium-SPG, and the data represent a proof-of-principal for the power of multi-omic profiling in identifying changes in molecular dynamics that are spatially-associated with pathology in the human brain. We provide the scientific community with web-based, interactive resources to access the datasets of the spatially resolved AD-related transcriptomes at https://research.libd.org/Visium_SPG_AD/.
Collapse
Affiliation(s)
- Sang Ho Kwon
- The Biochemistry, Cellular, and Molecular Biology Graduate Program, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sowmya Parthiban
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Heena R. Divecha
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Nicholas J. Eagles
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Jashandeep S. Lobana
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | | | | | - Rahul A. Bharadwaj
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Joel E. Kleinman
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Stephanie C. Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
- The Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
28
|
Alexandre CM, Bubb KL, Schultz KM, Lempe J, Cuperus JT, Queitsch C. LTP2 hypomorphs show genotype-by-environment interaction in early seedling traits in Arabidopsis thaliana. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540469. [PMID: 37214854 PMCID: PMC10197655 DOI: 10.1101/2023.05.11.540469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Isogenic individuals can display seemingly stochastic phenotypic differences, limiting the accuracy of genotype-to-phenotype predictions. The extent of this phenotypic variation depends in part on genetic background, raising questions about the genes involved in controlling stochastic phenotypic variation. Focusing on early seedling traits in Arabidopsis thaliana, we found that hypomorphs of the cuticle-related gene LTP2 greatly increased variation in seedling phenotypes, including hypocotyl length, gravitropism and cuticle permeability. Many ltp2 hypocotyls were significantly shorter than wild-type hypocotyls while others resembled the wild type. Differences in epidermal properties and gene expression between ltp2 seedlings with long and short hypocotyls suggest a loss of cuticle integrity as the primary determinant of the observed phenotypic variation. We identified environmental conditions that reveal or mask the increased variation in ltp2 hypomorphs, and found that increased expression of its closest paralog LTP1 is necessary for ltp2 phenotypes. Our results illustrate how decreased expression of a single gene can generate starkly increased phenotypic variation in isogenic individuals in response to an environmental challenge.
Collapse
Affiliation(s)
| | - Kerry L Bubb
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Karla M Schultz
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Janne Lempe
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Dresden, Germany
| | - Josh T Cuperus
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
| | - Christine Queitsch
- Department of Genome Sciences, University of Washington, Seattle WA 98195, USA
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
| |
Collapse
|
29
|
Tian X, Xu J, Ye Y, Xiao X, Yan L, Yu S, Cai4 J, Du Q, Dong X, Zhou L, Shan L, Yuan Q. Gallic acid in theabrownin suppresses cell proliferation and migration in non‑small cell lung carcinoma via autophagy inhibition. Oncol Lett 2023; 26:294. [PMID: 37274480 PMCID: PMC10236267 DOI: 10.3892/ol.2023.13880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 03/17/2023] [Indexed: 06/06/2023] Open
Abstract
The bioactive extract of green tea, theabrownin (TB), is known to exhibit pro-apoptotic and antitumor effects on non-small cell lung cancer (NSCLC). Gallic acid (GA) is a crucial component of TB; however, its mechanism of action in NSCLC has been rarely studied. To date, little attention has been paid to the anti-NSCLC activity of GA. Therefore, the present study investigated the effects of GA in vivo and in vitro. Cell Counting Kit (CCK)-8 assay, DAPI staining and flow cytometry, wound-healing assay and western blotting were used to assess cell viability, apoptosis, migration and protein expression, respectively. In addition, a xenograft model was generated, and TUNEL assay and immunohistochemistry analysis were performed. The CCK-8 data showed that the viability of H1299 cells was significantly inhibited by GA in a dose- and time-dependent manner. DAPI staining, Annexin-V/PI staining and wound-healing data showed that GA exerted pro-apoptotic and anti-migratory effects on H1299 cells in a dose-dependent manner. Furthermore, the results of western blotting showed that GA significantly upregulated the levels of pro-apoptotic proteins [cleaved (c-)PARP, c-caspase8, c-caspase-9 and the ratio of γ-H2A.X/H2A.X]. In vivo data confirmed the antitumor effect of GA through apoptosis induction in an autophagy-dependent manner. In conclusion, the present study confirmed the anti-proliferative, pro-apoptotic and anti-migratory effects of GA against NSCLC in vitro and in vivo, providing considerable evidence for its potential as a novel candidate for the treatment of NSCLC.
Collapse
Affiliation(s)
- Xue Tian
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jiaan Xu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Yonghua Ye
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Xiujuan Xiao
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Li Yan
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd.), Hangzhou, Zhejiang 311200, P.R. China
| | - Shihui Yu
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Jianyong Cai4
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Quan Du
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaoqiao Dong
- Department of Neurosurgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Li Zhou
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd.), Hangzhou, Zhejiang 311200, P.R. China
| | - Letian Shan
- The First Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
- Cell Resource Bank and Integrated Cell Preparation Center of Xiaoshan District, Hangzhou Regional Cell Preparation Center (Shangyu Biotechnology Co., Ltd.), Hangzhou, Zhejiang 311200, P.R. China
| | - Qiang Yuan
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| |
Collapse
|
30
|
Moreno A, Taffet A, Tjahjono E, Anderson QL, Kirienko NV. Examining Sporadic Cancer Mutations Uncovers a Set of Genes Involved in Mitochondrial Maintenance. Genes (Basel) 2023; 14:1009. [PMID: 37239369 PMCID: PMC10218105 DOI: 10.3390/genes14051009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Mitochondria are key organelles for cellular health and metabolism and the activation of programmed cell death processes. Although pathways for regulating and re-establishing mitochondrial homeostasis have been identified over the past twenty years, the consequences of disrupting genes that regulate other cellular processes, such as division and proliferation, on affecting mitochondrial function remain unclear. In this study, we leveraged insights about increased sensitivity to mitochondrial damage in certain cancers, or genes that are frequently mutated in multiple cancer types, to compile a list of candidates for study. RNAi was used to disrupt orthologous genes in the model organism Caenorhabditis elegans, and a series of assays were used to evaluate these genes' importance for mitochondrial health. Iterative screening of ~1000 genes yielded a set of 139 genes predicted to play roles in mitochondrial maintenance or function. Bioinformatic analyses indicated that these genes are statistically interrelated. Functional validation of a sample of genes from this set indicated that disruption of each gene caused at least one phenotype consistent with mitochondrial dysfunction, including increased fragmentation of the mitochondrial network, abnormal steady-state levels of NADH or ROS, or altered oxygen consumption. Interestingly, RNAi-mediated knockdown of these genes often also exacerbated α-synuclein aggregation in a C. elegans model of Parkinson's disease. Additionally, human orthologs of the gene set showed enrichment for roles in human disorders. This gene set provides a foundation for identifying new mechanisms that support mitochondrial and cellular homeostasis.
Collapse
Affiliation(s)
| | | | | | | | - Natalia V. Kirienko
- Department of BioSciences, Rice University, 6100 Main St, MS140, Houston, TX 77005, USA; (A.M.); (A.T.); (E.T.); (Q.L.A.)
| |
Collapse
|
31
|
Przanowski P, Przanowska RK, Guertin MJ. ANKLE1 cleaves mitochondrial DNA and contributes to cancer risk by promoting apoptosis resistance and metabolic dysregulation. Commun Biol 2023; 6:231. [PMID: 36859531 PMCID: PMC9977882 DOI: 10.1038/s42003-023-04611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 02/20/2023] [Indexed: 03/03/2023] Open
Abstract
Alleles within the chr19p13.1 locus are associated with increased risk of both ovarian and breast cancer and increased expression of the ANKLE1 gene. ANKLE1 is molecularly characterized as an endonuclease that efficiently cuts branched DNA and shuttles between the nucleus and cytoplasm. However, the role of ANKLE1 in mammalian development and homeostasis remains unknown. In normal development ANKLE1 expression is limited to the erythroblast lineage and we found that ANKLE1's role is to cleave the mitochondrial genome during erythropoiesis. We show that ectopic expression of ANKLE1 in breast epithelial-derived cells leads to genome instability and mitochondrial DNA (mtDNA) cleavage. mtDNA degradation then leads to mitophagy and causes a shift from oxidative phosphorylation to glycolysis (Warburg effect). Moreover, mtDNA degradation activates STAT1 and expression of epithelial-mesenchymal transition (EMT) genes. Reduction in mitochondrial content contributes to apoptosis resistance, which may allow precancerous cells to avoid apoptotic checkpoints and proliferate. These findings provide evidence that ANKLE1 is the causal cancer susceptibility gene in the chr19p13.1 locus and describe mechanisms by which higher ANKLE1 expression promotes cancer risk.
Collapse
Affiliation(s)
- Piotr Przanowski
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA.
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Michael J Guertin
- Center for Cell Analysis and Modeling, University of Connecticut, Farmington, CT, USA.
- Department of Genetics and Genome Sciences, University of Connecticut, Farmington, CT, USA.
| |
Collapse
|
32
|
Macnair W, Robinson M. SampleQC: robust multivariate, multi-cell type, multi-sample quality control for single-cell data. Genome Biol 2023; 24:23. [PMID: 36765378 PMCID: PMC9912498 DOI: 10.1186/s13059-023-02859-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Quality control (QC) is a critical component of single-cell RNA-seq (scRNA-seq) processing pipelines. Current approaches to QC implicitly assume that datasets are comprised of one cell type, potentially resulting in biased exclusion of rare cell types. We introduce SampleQC, which robustly fits a Gaussian mixture model across multiple samples, improves sensitivity, and reduces bias compared to current approaches. We show via simulations that SampleQC is less susceptible to exclusion of rarer cell types. We also demonstrate SampleQC on a complex real dataset (867k cells over 172 samples). SampleQC is general, is implemented in R, and could be applied to other data types.
Collapse
Affiliation(s)
- Will Macnair
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- Current address: Neuroscience and Rare Diseases, Roche Innovation Center, Grenzacherstrasse 124, 4070 Basel, Switzerland
| | - Mark Robinson
- Department of Molecular Life Sciences, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
- SIB Swiss Institute of Bioinformatics, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| |
Collapse
|
33
|
Chen J, Sun M, Cui X, Zhang X. Ginsenoside compound K induces mitochondrial apoptosis in human hepatoma cells through Bclaf1-mediated modulation of ERK signaling. FOOD AGR IMMUNOL 2022. [DOI: 10.1080/09540105.2022.2134313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Jiaxin Chen
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Manqing Sun
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Xinmu Cui
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| | - Xuewu Zhang
- College of Medicine, Yanbian University, Yanji, People’s Republic of China
| |
Collapse
|
34
|
Shahbandi A, Chiu FY, Ungerleider NA, Kvadas R, Mheidly Z, Sun MJS, Tian D, Waizman DA, Anderson AY, Machado HL, Pursell ZF, Rao SG, Jackson JG. Breast cancer cells survive chemotherapy by activating targetable immune-modulatory programs characterized by PD-L1 or CD80. NATURE CANCER 2022; 3:1513-1533. [PMID: 36482233 PMCID: PMC9923777 DOI: 10.1038/s43018-022-00466-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 10/14/2022] [Indexed: 04/16/2023]
Abstract
Breast cancer cells must avoid intrinsic and extrinsic cell death to relapse following chemotherapy. Entering senescence enables survival from mitotic catastrophe, apoptosis and nutrient deprivation, but mechanisms of immune evasion are poorly understood. Here we show that breast tumors surviving chemotherapy activate complex programs of immune modulation. Characterization of residual disease revealed distinct tumor cell populations. The first population was characterized by interferon response genes, typified by Cd274, whose expression required chemotherapy to enhance chromatin accessibility, enabling recruitment of IRF1 transcription factor. A second population was characterized by p53 signaling, typified by CD80 expression. Treating mammary tumors with chemotherapy followed by targeting the PD-L1 and/or CD80 axes resulted in marked accumulation of T cells and improved response; however, even combination strategies failed to fully eradicate tumors in the majority of cases. Our findings reveal the challenge of eliminating residual disease populated by senescent cells expressing redundant immune inhibitory pathways and highlight the need for rational immune targeting strategies.
Collapse
Affiliation(s)
- Ashkan Shahbandi
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Fang-Yen Chiu
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Nathan A Ungerleider
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Raegan Kvadas
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zeinab Mheidly
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Meijuan J S Sun
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Di Tian
- Department of Pathology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Daniel A Waizman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ashlyn Y Anderson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Heather L Machado
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Zachary F Pursell
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - Sonia G Rao
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA
| | - James G Jackson
- Department of Biochemistry and Molecular Biology, Tulane School of Medicine, New Orleans, LA, USA.
| |
Collapse
|
35
|
Wang Y, Li S, Weng L, Du H, Wang J, Xu X. LASS2 overexpression enhances early apoptosis of lung cancer cells through the caspase‑dependent pathway. Oncol Rep 2022; 48:220. [PMID: 36300249 DOI: 10.3892/or.2022.8435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 06/27/2022] [Indexed: 11/06/2022] Open
Abstract
In a previous study by the authors, the longevity assurance homolog 2 (LASS2) gene was determined to inhibit activity of vacuolar H+‑ATPase (V‑ATPase) by combining with the C subunit (ATP6L) of V‑ATPase. However, the influence of LASS2 overexpression and silencing on apoptosis of human lung cancer cells 95D or 95C remains unclear. Thus, the effect of LASS2 on apoptosis and its potential mechanisms were investigated in 95D and 95C cells. Using the lentiviral transfection method, lentiviral vectors of LASS2 overexpression and silencing were transfected into 95D and 95C cells, respectively. The apoptotic ability of tumor cells was observed by flow cytometry. The expression levels of LASS2, Bcl‑2, Bax, cytochrome c, caspase‑9, and caspase‑3 were detected by western blotting. CCK‑8 assay was used to detect the growth ability of tumor cells in vitro. Flow cytometric analysis revealed that LASS2 overexpression could promote the early apoptosis of lung cancer cells 95D. CCK‑8 assay demonstrated that LASS2 overexpression inhibited the proliferation of 95D cells. Additionally, LASS2 overexpression decreased the expression of Bcl‑2, induced the release of cytochrome c from mitochondria, and promoted the activation of caspase‑9 and caspase‑3. There was a significant difference in the expression of Bcl‑2, cytochrome c, caspase‑9 and caspase‑3 in the LASS2‑overexpression group compared with the normal and negative control groups. Alternatively, the aforementioned experiments in lung cancer cells 95C following LASS2 silencing produced the opposite effects. LASS2 may induce early apoptosis of lung cancer cells by influencing the caspase‑dependent mitochondrial pathway.
Collapse
Affiliation(s)
- Yamei Wang
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Shirong Li
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Lixin Weng
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Hua Du
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Jingyuan Wang
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| | - Xiaoyan Xu
- Department of Pathology, College of Basic Medical Sciences, Inner Mongolia Medical University, Hohhot, Inner Mongolia Autonomous Region 010059, P.R. China
| |
Collapse
|
36
|
Biswas S, Tikader B, Kar S, Viswanathan GA. Modulation of signaling cross-talk between pJNK and pAKT generates optimal apoptotic response. PLoS Comput Biol 2022; 18:e1010626. [PMID: 36240239 PMCID: PMC9604984 DOI: 10.1371/journal.pcbi.1010626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/26/2022] [Accepted: 10/03/2022] [Indexed: 01/25/2023] Open
Abstract
Tumor necrosis factor alpha (TNFα) is a well-known modulator of apoptosis by maintaining a balance between proliferation and cell-death in normal cells. Cancer cells often evade apoptotic response following TNFα stimulation by altering signaling cross-talks. Thus, varying the extent of signaling cross-talk could enable optimal TNFα mediated apoptotic dynamics. Herein, we use an experimental data-driven mathematical modeling to quantitate the extent of synergistic signaling cross-talk between the intracellular entities phosphorylated JNK (pJNK) and phosphorylated AKT (pAKT) that orchestrate the phenotypic apoptosis level by modulating the activated Caspase3 dynamics. Our study reveals that this modulation is orchestrated by the distinct dynamic nature of the synergism at early and late phases. We show that this synergism in signal flow is governed by branches originating from either TNFα receptor and NFκB, which facilitates signaling through survival pathways. We demonstrate that the experimentally quantified apoptosis levels semi-quantitatively correlates with the model simulated Caspase3 transients. Interestingly, perturbing pJNK and pAKT transient dynamics fine-tunes this accumulated Caspase3 guided apoptotic response. Thus, our study offers useful insights for identifying potential targeted therapies for optimal apoptotic response.
Collapse
Affiliation(s)
- Sharmila Biswas
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
| | - Baishakhi Tikader
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
| | - Sandip Kar
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| | - Ganesh A. Viswanathan
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Mumbai, India
- * E-mail: (SK); (GAV)
| |
Collapse
|
37
|
Jaroušek R, Mikulová A, Daďová P, Tauš P, Kurucová T, Plevová K, Tichý B, Kubala L. Single-cell RNA sequencing analysis of T helper cell differentiation and heterogeneity. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119321. [PMID: 35779629 DOI: 10.1016/j.bbamcr.2022.119321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/02/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Single-cell transcriptomics has emerged as a powerful tool to investigate cells' biological landscape and focus on the expression profile of individual cells. Major advantage of this approach is an analysis of highly complex and heterogeneous cell populations, such as a specific subpopulation of T helper cells that are known to differentiate into distinct subpopulations. The need for distinguishing the specific expression profile is even more important considering the T cell plasticity. However, importantly, the universal pipelines for single-cell analysis are usually not sufficient for every cell type. Here, the aims are to analyze the diversity of T cell phenotypes employing classical in vitro cytokine-mediated differentiation of human T cells isolated from human peripheral blood by single-cell transcriptomic approach with support of labelled antibodies and a comprehensive bioinformatics analysis using combination of Seurat, Nebulosa, GGplot and others. The results showed high expression similarities between Th1 and Th17 phenotype and very distinct Th2 expression profile. In a case of Th2 highly specific marker genes SPINT2, TRIB3 and CST7 were expressed. Overall, our results demonstrate how donor difference, Th plasticity and cell cycle influence the expression profiles of distinct T cell populations. The results could help to better understand the importance of each step of the analysis when working with T cell single-cell data and observe the results in a more practical way by using our analyzed datasets.
Collapse
Affiliation(s)
- Radim Jaroušek
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Antónia Mikulová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petra Daďová
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Petr Tauš
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Terézia Kurucová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic; Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Karla Plevová
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic; Institute of Medical Genetics and Genomics, University Hospital Brno and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Boris Tichý
- Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Lukáš Kubala
- Institute of Biophysics, Czech Academy of Sciences, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
38
|
Protocol for fast scRNA-seq raw data processing using scKB and non-arbitrary quality control with COPILOT. STAR Protoc 2022; 3:101729. [PMID: 36181683 PMCID: PMC9530667 DOI: 10.1016/j.xpro.2022.101729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/14/2022] [Accepted: 09/02/2022] [Indexed: 02/08/2023] Open
Abstract
We describe a protocol to perform fast and non-arbitrary quality control of single-cell RNA sequencing (scRNA-seq) raw data using scKB and COPILOT. scKB is a wrapper script of kallisto and bustools for accelerated alignment and transcript count matrix generation, which runs significantly faster than the popular tool Cell Ranger. COPILOT then offers non-arbitrary background noise removal by comparing distributions of low-quality and high-quality cells. Together, this protocol streamlines the processing workflow and provides an easy entry for new scRNA-seq users. For complete details on the use and execution of this protocol, please refer to Shahan et al. (2022).
Collapse
|
39
|
Haddow K, Kind PC, Hardingham GE. NMDA Receptor C-Terminal Domain Signalling in Development, Maturity, and Disease. Int J Mol Sci 2022; 23:ijms231911392. [PMID: 36232696 PMCID: PMC9570437 DOI: 10.3390/ijms231911392] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 11/18/2022] Open
Abstract
The NMDA receptor is a Ca2+-permeant glutamate receptor which plays key roles in health and disease. Canonical NMDARs contain two GluN2 subunits, of which 2A and 2B are predominant in the forebrain. Moreover, the relative contribution of 2A vs. 2B is controlled both developmentally and in an activity-dependent manner. The GluN2 subtype influences the biophysical properties of the receptor through difference in their N-terminal extracellular domain and transmembrane regions, but they also have large cytoplasmic Carboxyl (C)-terminal domains (CTDs) which have diverged substantially during evolution. While the CTD identity does not influence NMDAR subunit specific channel properties, it determines the nature of CTD-associated signalling molecules and has been implicated in mediating the control of subunit composition (2A vs. 2B) at the synapse. Historically, much of the research into the differential function of GluN2 CTDs has been conducted in vitro by over-expressing mutant subunits, but more recently, the generation of knock-in (KI) mouse models have allowed CTD function to be probed in vivo and in ex vivo systems without heterologous expression of GluN2 mutants. In some instances, findings involving KI mice have been in disagreement with models that were proposed based on earlier approaches. This review will examine the current research with the aim of addressing these controversies and how methodology may contribute to differences between studies. We will also discuss the outstanding questions regarding the role of GluN2 CTD sequences in regulating NMDAR subunit composition, as well as their relevance to neurodegenerative disease and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kirsty Haddow
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Peter C. Kind
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
| | - Giles E. Hardingham
- UK Dementia Research Institute, Edinburgh Medical School, University of Edinburgh, Chancellor’s Building, Edinburgh EH16 4SB, UK
- Simons Initiative for the Developing Brain, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Centre for Discovery Brain Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh EH8 9XD, UK
- Correspondence:
| |
Collapse
|
40
|
Sinha N, Yang H, Janse D, Hendriks L, Rand U, Hauser H, Köster M, van de Vosse FN, de Greef TFA, Tel J. Microfluidic chip for precise trapping of single cells and temporal analysis of signaling dynamics. COMMUNICATIONS ENGINEERING 2022; 1:18. [PMCID: PMC10955935 DOI: 10.1038/s44172-022-00019-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2024]
Abstract
Microfluidic designs are versatile examples of technology miniaturisation that find their applications in various cell biology research, especially to investigate the influence of environmental signals on cellular response dynamics. Multicellular systems operate in intricate cellular microenvironments where environmental signals govern well-orchestrated and robust responses, the understanding of which can be realized with integrated microfluidic systems. In this study, we present a fully automated and integrated microfluidic chip that can deliver input signals to single and isolated suspension or adherent cells in a precisely controlled manner. In respective analyses of different single cell types, we observe, in real-time, the temporal dynamics of caspase 3 activation during DMSO-induced apoptosis in single cancer cells (K562) and the translocation of STAT-1 triggered by interferon γ (IFNγ) in single fibroblasts (NIH3T3). Our investigations establish the employment of our versatile microfluidic system in probing temporal single cell signaling networks where alternations in outputs uncover signal processing mechanisms. Nidhi Sinha, Haowen Yang and colleagues report a microfluidic large-scale integration chip to probe temporal single-cell signalling networks via the delivery of patterns of input signalling molecules. The researchers use their device to investigate drug-induced cancer cell apoptosis and single cell transcription (STAT-1) protein signalling dynamics.
Collapse
Affiliation(s)
- Nidhi Sinha
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Haowen Yang
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - David Janse
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Luc Hendriks
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Ulfert Rand
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Hansjörg Hauser
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mario Köster
- Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Frans N. van de Vosse
- Cardiovascular Biomechanics Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Tom F. A. de Greef
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Computational Biology Group, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| | - Jurjen Tel
- Laboratory of Immunoengineering, Department of Biomedical Engineering, TU Eindhoven, 5600 MB Eindhoven, Netherlands
- Institute of Complex Molecular Systems, TU Eindhoven, 5600 MB Eindhoven, Netherlands
| |
Collapse
|
41
|
NiONP-Induced Oxidative Stress and Mitochondrial Impairment in an In Vitro Pulmonary Vascular Cell Model Mimicking Endothelial Dysfunction. Antioxidants (Basel) 2022; 11:antiox11050847. [PMID: 35624710 PMCID: PMC9137840 DOI: 10.3390/antiox11050847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/20/2022] [Accepted: 04/24/2022] [Indexed: 01/27/2023] Open
Abstract
The development and use of nanomaterials, especially of nickel oxide nanoparticles (NiONPs), is expected to provide many benefits but also has raised concerns about the potential human health risks. Inhaled NPs are known to exert deleterious cardiovascular side effects, including pulmonary hypertension. Consequently, patients with pulmonary hypertension (PH) could be at increased risk for morbidity. The objective of this study was to compare the toxic effects of NiONPs on human pulmonary artery endothelial cells (HPAEC) under physiological and pathological conditions. The study was conducted with an in vitro model mimicking the endothelial dysfunction observed in PH. HPAEC were cultured under physiological (static and normoxic) or pathological (20% cycle stretch and hypoxia) conditions and exposed to NiONPs (0.5–5 μg/cm2) for 4 or 24 h. The following endpoints were studied: (i) ROS production using CM-H2DCF-DA and MitoSOX probes, (ii) nitrite production by the Griess reaction, (iii) IL-6 secretion by ELISA, (iv) calcium signaling with a Fluo-4 AM probe, and (v) mitochondrial dysfunction with TMRM and MitoTracker probes. Our results evidenced that under pathological conditions, ROS and nitrite production, IL-6 secretions, calcium signaling, and mitochondria alterations increased compared to physiological conditions. Human exposure to NiONPs may be associated with adverse effects in vulnerable populations with cardiovascular risks.
Collapse
|
42
|
Khan ZA, Sumsuzzman DM, Choi J, Hong Y. Neurodegenerative effect of DAPK1 after cerebral hypoxia-ischemia is associated with its post-transcriptional and signal transduction regulations: A systematic review and meta-analysis. Ageing Res Rev 2022; 76:101593. [PMID: 35202858 DOI: 10.1016/j.arr.2022.101593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 01/10/2022] [Accepted: 02/18/2022] [Indexed: 01/07/2023]
Abstract
Cerebral hypoxia-ischemia (CHI) causes brain aging, neurological disorders, cognitive decline, motor function impairment, and mortality. Inhibiting death-associated protein kinase 1 (DAPK1) has shown therapeutic potential against CHI, but several reports contradict its protective function, mechanism of activation, and signal transduction. Here, we systematically reviewed the role and the activation mechanism of DAPK1, and quantitatively assess the efficacy of DAPK1 inhibition (DI) methods in neuroprotection, following a CHI in animal models. Embase and PubMed were searched for relevant studies. Overall, 13 studies met the inclusion criteria, and the SYRCLE Risk of bias tool (RoB) tool was used to assess RoB. StataSE 16 was used for meta-analysis and network meta-analysis (NMA). Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated to estimate the effect size. DI was associated with the reduction of brain infarct volume (BIV) [SMD = -1.70, 95% CI (-2.10, -1.30); p = 0.00], neurological score (N.S.), neuronal degeneration, with no change in the level of in cell death [SMD = -0.83, 95% CI (-2.00, 0.35); p = 0.17], indicating the protective role of DI against CHI. No differences were found in DAPK1 mRNA and protein levels [SMD = 0.50, 95% CI (-0.05, 1.04); p = 0.07] {single-study driven; upregulated after exclusion (p = 0.01, I2 = 36.43)}, whereas phospho-DAPK1 [SMD = -2.22, 95% CI (-3.69, -0.75); p = 0.00] was downregulated and phosphorylated myosin light chain [SMD = 3.37, 95% CI (2.51, 4.96); p = 0.00] was upregulated between CHI and sham groups. Furthermore, we performed NMA to understand the molecular level at which DI offers maximum protection against BIV. Post-transcriptional inhibition (PTI; SUCRA, 82.6%) and gene knockout showed best (KO; SUCRA, 81.3%), signal transduction inhibition (STI; SUCRA, 49.5%) offered 3rd best, while catalytic activity inhibition (CAI; SUCRA, 0.3%) exhibited the lowest reduction in BIV against CHI. The results demonstrate that DI has a neuroprotective effect against CHI and DAPK1 might be regulated at the post-transcriptional and post-translational levels after CHI. Inhibiting DAPK1 at the post-transcriptional level and blocking multiple signal transduction pathways of DAPK1 could lead to better functional recovery against CHI. AVAILABILITY OF DATA AND MATERIALS: The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.
Collapse
|
43
|
Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27041439. [PMID: 35209227 PMCID: PMC8878468 DOI: 10.3390/molecules27041439] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
Phenotypical screening is a widely used approach in drug discovery for the identification of small molecules with cellular activities. However, functional annotation of identified hits often poses a challenge. The development of small molecules with narrow or exclusive target selectivity such as chemical probes and chemogenomic (CG) libraries, greatly diminishes this challenge, but non-specific effects caused by compound toxicity or interference with basic cellular functions still pose a problem to associate phenotypic readouts with molecular targets. Hence, each compound should ideally be comprehensively characterized regarding its effects on general cell functions. Here, we report an optimized live-cell multiplexed assay that classifies cells based on nuclear morphology, presenting an excellent indicator for cellular responses such as early apoptosis and necrosis. This basic readout in combination with the detection of other general cell damaging activities of small molecules such as changes in cytoskeletal morphology, cell cycle and mitochondrial health provides a comprehensive time-dependent characterization of the effect of small molecules on cellular health in a single experiment. The developed high-content assay offers multi-dimensional comprehensive characterization that can be used to delineate generic effects regarding cell functions and cell viability, allowing an assessment of compound suitability for subsequent detailed phenotypic and mechanistic studies.
Collapse
|
44
|
Dashti A, Shokrzadeh M, Karami M, Habibi E. Phytochemical identification, acute and subchronic oral toxicity assessments of hydroalcoholic extract of Acroptilon repens in BALB/c mice: A toxicological and mechanistic study. Heliyon 2022; 8:e08940. [PMID: 35198790 PMCID: PMC8850729 DOI: 10.1016/j.heliyon.2022.e08940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 12/04/2021] [Accepted: 02/08/2022] [Indexed: 11/16/2022] Open
Abstract
Acroptilon repens (L.) DC, commonly known as Rhaponticum repens, is a popular traditional phytomedicine. The current study was conducted to evaluate the acute and subchronic toxicity of the hydroalcoholic extract of this herb with regard to its terpenoid contents in a BALB/c mice model and to investigate the toxicity of this medicinal herb. Identification of extract components of the plant was done using gas chromatography (GC)-mass spectrometry. In order to establish the acute toxicity model, a single dose of 2000 mg/kg of the extract was given orally to male mice and in the subchronic toxicity study, the extract was consecutively administered at doses 250, 500, and 1000 mg/kg for 28 days. After 28 and 42 days, signs of toxicity and mortality were observed. Organ weight changes and the toxicity-associated parameters such as biochemical indicators, oxidative stress indices, mitochondrial parameters, apoptosis-associated gene expression levels, and pro-inflammatory cytokines were evaluated along with the histopathological examination. GC analysis showed that the terpenoids are the major components of the extract. The LD50 value (2 g/kg) was obtained in the acute toxicity assay; the subchronic administration caused a significant elevation in the serum biomarkers as well as in the levels of lipid peroxidation, protein carbonyl, and ROS. Besides, significant reductions in the superoxide dismutase and catalase activities were observed. This toxic effect was further confirmed by histological studies, cytokine assay, and gene expression assays. Following the treatment discontinuation, the abnormalities in the values of biochemical parameters and histopathological changes returned to normal. These findings demonstrate that the subchronic administration of the hydroalcoholic extract of A. repens can reversibly cause toxicity by inducing oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Ayat Dashti
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Shokrzadeh
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Karami
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Emran Habibi
- Department of Pharmacognosy, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
45
|
Longchamps RJ, Yang SY, Castellani CA, Shi W, Lane J, Grove ML, Bartz TM, Sarnowski C, Liu C, Burrows K, Guyatt AL, Gaunt TR, Kacprowski T, Yang J, De Jager PL, Yu L, Bergman A, Xia R, Fornage M, Feitosa MF, Wojczynski MK, Kraja AT, Province MA, Amin N, Rivadeneira F, Tiemeier H, Uitterlinden AG, Broer L, Van Meurs JBJ, Van Duijn CM, Raffield LM, Lange L, Rich SS, Lemaitre RN, Goodarzi MO, Sitlani CM, Mak ACY, Bennett DA, Rodriguez S, Murabito JM, Lunetta KL, Sotoodehnia N, Atzmon G, Ye K, Barzilai N, Brody JA, Psaty BM, Taylor KD, Rotter JI, Boerwinkle E, Pankratz N, Arking DE. Genome-wide analysis of mitochondrial DNA copy number reveals loci implicated in nucleotide metabolism, platelet activation, and megakaryocyte proliferation. Hum Genet 2022; 141:127-146. [PMID: 34859289 PMCID: PMC8758627 DOI: 10.1007/s00439-021-02394-w] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 10/22/2021] [Indexed: 12/18/2022]
Abstract
Mitochondrial DNA copy number (mtDNA-CN) measured from blood specimens is a minimally invasive marker of mitochondrial function that exhibits both inter-individual and intercellular variation. To identify genes involved in regulating mitochondrial function, we performed a genome-wide association study (GWAS) in 465,809 White individuals from the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium and the UK Biobank (UKB). We identified 133 SNPs with statistically significant, independent effects associated with mtDNA-CN across 100 loci. A combination of fine-mapping, variant annotation, and co-localization analyses was used to prioritize genes within each of the 133 independent sites. Putative causal genes were enriched for known mitochondrial DNA depletion syndromes (p = 3.09 × 10-15) and the gene ontology (GO) terms for mtDNA metabolism (p = 1.43 × 10-8) and mtDNA replication (p = 1.2 × 10-7). A clustering approach leveraged pleiotropy between mtDNA-CN associated SNPs and 41 mtDNA-CN associated phenotypes to identify functional domains, revealing three distinct groups, including platelet activation, megakaryocyte proliferation, and mtDNA metabolism. Finally, using mitochondrial SNPs, we establish causal relationships between mitochondrial function and a variety of blood cell-related traits, kidney function, liver function and overall (p = 0.044) and non-cancer mortality (p = 6.56 × 10-4).
Collapse
Affiliation(s)
- R J Longchamps
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - S Y Yang
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - C A Castellani
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Laboratory Medicine, Western University, London, ON, Canada
| | - W Shi
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - J Lane
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - M L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - T M Bartz
- Cardiovascular Health Research Unit, Departments of Medicine and Biostatistics, University of Washington, Seattle, WA, USA
| | - C Sarnowski
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - C Liu
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - K Burrows
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - A L Guyatt
- Department of Health Sciences, University of Leicester, University Road, Leicester, UK
| | - T R Gaunt
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - T Kacprowski
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, Greifswald, Germany
- Data Science in Biomedicine, Peter L. Reichertz Institute for Medical Informatics, TU Braunschweig and Hannover Medical School, Brunswick, Germany
| | - J Yang
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - P L De Jager
- Center for Translational and Systems Neuroimmunology, Department of Neurology, Columbia University Medical Center, New York, NY, USA
- Program in Medical and Population Genetics, Broad Institute, Cambridge, MA, USA
| | - L Yu
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - A Bergman
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - R Xia
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - M Fornage
- Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, USA
| | - M F Feitosa
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M K Wojczynski
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - A T Kraja
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - M A Province
- Division of Statistical Genomics, Department of Genetics, Washington University School of Medicine, St. Louis, USA
| | - N Amin
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - F Rivadeneira
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Tiemeier
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Social and Behavioral Science, Harvard T.H. School of Public Health, Boston, USA
| | - A G Uitterlinden
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L Broer
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - J B J Van Meurs
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C M Van Duijn
- Department of Epidemiology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - L M Raffield
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - L Lange
- Department of Medicine, University of Colorado Denver, Anschutz Medical Campus, Aurora, CO, USA
| | - S S Rich
- Center for Public Health Genomics, University of Virginia, Charlottesville, VA, USA
| | - R N Lemaitre
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - M O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - C M Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - A C Y Mak
- Cardiovascular Research Institute and Institute for Human Genetics, University of California, San Francisco, CA, USA
| | - D A Bennett
- Rush Alzheimer's Disease Center and Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - S Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Oakfield House, Oakfield Grove, Bristol, UK
| | - J M Murabito
- Boston University School of Medicine, Boston University, Boston, MA, USA
| | - K L Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - N Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, University of Washington, Seattle, WA, USA
| | - G Atzmon
- Department of Natural Science, University of Haifa, Haifa, Israel
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - K Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - N Barzilai
- Departments of Medicine and Genetics, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - J A Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, WA, USA
| | - B M Psaty
- Cardiovascular Health Research Unit, Departments of Epidemiology, Medicine and Health Services, University of Washington, Seattle, WA, USA
| | - K D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - J I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - E Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, Human Genetics Center, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Baylor College of Medicine, Human Genome Sequencing Center, Houston, TX, USA
| | - N Pankratz
- Department of Laboratory Medicine and Pathology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - D E Arking
- Department of Genetic Medicine, McKusick-Nathans Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
46
|
He X, Li S, Zhang J, Cao L, Yang C, Rong P, Yi S, Ghimire K, Ma X, Wang W. Benefit of Belatacept in Cord Blood-Derived Regulatory T Cell-Mediated Suppression of Alloimmune Response. Cell Transplant 2021; 30:9636897211046556. [PMID: 34570631 PMCID: PMC8718163 DOI: 10.1177/09636897211046556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The role of Regulatory T cells (Tregs) in tolerance induction post-transplantation is well-established, but Tregs adoptive transfer alone without combined immunosuppressants have failed so far in achieving clinical outcomes. Here we applied a set of well-designed criteria to test the influence of commonly used immunosuppressants (belatacept, tacrolimus, and mycophenolate) on cord blood-derived Tregs (CB-Tregs). Our study shows that while none of these immunosuppressants modulated the stability and expression of homing molecules by CB-Tregs, belatacept met all other selective criteria, shown by its ability to enhance CB-Tregs-mediated in vitro suppression of the allogeneic response without affecting their viability, proliferation, mitochondrial metabolism and expression of functional markers. In contrast, treatment with tacrolimus or mycophenolate led to reduced expression of functional molecule GITR in CB-Tregs, impaired their viability, proliferation and mitochondrial metabolism. These findings indicate that belatacept could be considered as a candidate in Tregs-based clinical immunomodulation regimens to induce transplant tolerance.
Collapse
Affiliation(s)
- Xing He
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Sang Li
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Juan Zhang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Lu Cao
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Cejun Yang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Pengfei Rong
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shounan Yi
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China.,Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Kedar Ghimire
- Centre for Transplant and Renal Research (CTRR), Westmead Institute for Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Xiaoqian Ma
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Wei Wang
- Institute for Cell Transplantation and Gene Therapy, the 3rd Xiangya Hospital of Central South University, Changsha, People's Republic of China
| |
Collapse
|
47
|
Research updates on the clinical implication of long noncoding RNA in digestive system cancers and chemoresistance. 3 Biotech 2021; 11:423. [PMID: 34603923 DOI: 10.1007/s13205-021-02971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/19/2021] [Indexed: 10/20/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are implicated in various biological processes, such as cell proliferation, differentiation, apoptosis, migration, and invasion. They are also key players in various biological pathways. LncRNA was considered as 'translational noise' before 1980s. It has been reported that lncRNAs are aberrantly expressed in different cancers, either as oncogene or tumor suppressor gene. Therefore, more and more lncRNAs are recognized as potential diagnostic biomarkers and/or therapeutic targets. As competitive endogenous RNA, lncRNAs can interact with microRNA to alter the expression of target genes, which may have extensive clinical implications in cancers, including diagnosis, treatment, prognosis, and chemoresistance. This review comprehensively summarizes the functions and clinical relevance of lncRNAs in digestive system cancers, especially as a potential tool to overcome chemoresistance.
Collapse
|
48
|
Valdebenito S, Malik S, Luu R, Loudig O, Mitchell M, Okafo G, Bhat K, Prideaux B, Eugenin EA. Tunneling nanotubes, TNT, communicate glioblastoma with surrounding non-tumor astrocytes to adapt them to hypoxic and metabolic tumor conditions. Sci Rep 2021; 11:14556. [PMID: 34267246 PMCID: PMC8282675 DOI: 10.1038/s41598-021-93775-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 02/07/2023] Open
Abstract
Cell-to-cell communication is essential for the development and proper function of multicellular systems. We and others demonstrated that tunneling nanotubes (TNT) proliferate in several pathological conditions such as HIV, cancer, and neurodegenerative diseases. However, the nature, function, and contribution of TNT to cancer pathogenesis are poorly understood. Our analyses demonstrate that TNT structures are induced between glioblastoma (GBM) cells and surrounding non-tumor astrocytes to transfer tumor-derived mitochondria. The mitochondrial transfer mediated by TNT resulted in the adaptation of non-tumor astrocytes to tumor-like metabolism and hypoxia conditions. In conclusion, TNT are an efficient cell-to-cell communication system used by cancer cells to adapt the microenvironment to the invasive nature of the tumor.
Collapse
Affiliation(s)
- Silvana Valdebenito
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Shaily Malik
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Ross Luu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Olivier Loudig
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Megan Mitchell
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | | | - Krishna Bhat
- Department of Translational Molecular Pathology, Division of Pathology and Laboratory Medicine, M.D. Anderson, Houston, TX, USA
| | - Brendan Prideaux
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA
| | - Eliseo A Eugenin
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch (UTMB), Research Building 17, Fifth Floor, 105 11th Street, Galveston, TX, 77555, USA.
| |
Collapse
|
49
|
Berger RML, Weck JM, Kempe SM, Hill O, Liedl T, Rädler JO, Monzel C, Heuer-Jungemann A. Nanoscale FasL Organization on DNA Origami to Decipher Apoptosis Signal Activation in Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101678. [PMID: 34057291 DOI: 10.1002/smll.202101678] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/13/2021] [Indexed: 05/27/2023]
Abstract
Cell signaling is initiated by characteristic protein patterns in the plasma membrane, but tools to decipher their molecular organization and activation are hitherto lacking. Among the well-known signaling pattern is the death inducing signaling complex with a predicted hexagonal receptor architecture. To probe this architecture, DNA origami-based nanoagents with nanometer precise arrangements of the death receptor ligand FasL are introduced and presented to cells. Mimicking different receptor geometries, these nanoagents act as signaling platforms inducing fastest time-to-death kinetics for hexagonal FasL arrangements with 10 nm inter-molecular spacing. Compared to naturally occurring soluble FasL, this trigger is faster and 100× more efficient. Nanoagents with different spacing, lower FasL number or higher coupling flexibility impede signaling. The results present DNA origami as versatile signaling scaffolds exhibiting unprecedented control over molecular number and geometry. They define molecular benchmarks in apoptosis signal initiation and constitute a new strategy to drive particular cell responses.
Collapse
Affiliation(s)
- Ricarda M L Berger
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Johann M Weck
- Max Planck Institute of Biochemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Simon M Kempe
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Oliver Hill
- Apogenix AG, University of Heidelberg, Im Neuenheimer Feld 584, 69120, Heidelberg, Germany
| | - Tim Liedl
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Joachim O Rädler
- Faculty of Physics and Center for NanoScience (CeNS), Ludwig-Maximilians-University, Geschwister-Scholl-Platz 1, 80539, Munich, Germany
| | - Cornelia Monzel
- Experimental Medical Physics, Heinrich-Heine University, Universitätsstrasse 1, 40225, Düsseldorf, Germany
| | - Amelie Heuer-Jungemann
- Max Planck Institute of Biochemistry and Center for Nanoscience (CeNS), Ludwig-Maximilians-University, Am Klopferspitz 18, 82152, Martinsried, Germany
| |
Collapse
|
50
|
Marshall AS, Jones NS. Discovering Cellular Mitochondrial Heteroplasmy Heterogeneity with Single Cell RNA and ATAC Sequencing. BIOLOGY 2021; 10:503. [PMID: 34198745 PMCID: PMC8230039 DOI: 10.3390/biology10060503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/26/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing technologies have revolutionised the study of biological systems by enabling the examination of a broad range of tissues. Its application to single-cell genomics has generated a dynamic and evolving field with a vast amount of research highlighting heterogeneity in transcriptional, genetic and epigenomic state between cells. However, compared to these aspects of cellular heterogeneity, relatively little has been gleaned from single-cell datasets regarding cellular mitochondrial heterogeneity. Single-cell sequencing techniques can provide coverage of the mitochondrial genome which allows researchers to probe heteroplasmies at the level of the single cell, and observe interactions with cellular function. In this review, we give an overview of two popular single-cell modalities-single-cell RNA sequencing and single-cell ATAC sequencing-whose throughput and widespread usage offers researchers the chance to probe heteroplasmy combined with cell state in detailed resolution across thousands of cells. After summarising these technologies in the context of mitochondrial research, we give an overview of recent methods which have used these approaches for discovering mitochondrial heterogeneity. We conclude by highlighting current limitations of these approaches and open problems for future consideration.
Collapse
Affiliation(s)
| | - Nick S. Jones
- Department of Mathematics, Imperial College London, Huxley Building, South Kensington Campus, London SW7 2AZ, UK;
| |
Collapse
|