1
|
Yiu WK, Mackenzie L, Wilkinson D, Giza M, Vella B, Cariello M, Sproules S, Cooke G, Docampo P. Influence of imide side-chain functionality in the doping characteristics of naphthalenediimide derivatives as electron transport materials. Phys Chem Chem Phys 2025. [PMID: 40420745 DOI: 10.1039/d5cp00828j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Achieving effective doping in n-type organic molecular charge transport materials is critical for the development of high-performance optoelectronic devices. However, the role of side-chains in doping reactions remains incompletely understood in some systems. This study focuses on naphthalenediimide (NDI) derivatives, which offer simple synthetic protocols and potentially lower costs compared to traditional fullerene-derived materials. In particular, we explore two functionalised NDI derivatives, comparing one with polar ethylene glycol side-chains (NDI-G) to a non-polar variant with branched alkyl side-chains (NDI-EtHx). Our results show that the effectiveness and speed of the doping reaction with (4-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)phenyl)dimethylamine (N-DMBI) is much higher with the more polar NDI-G derivative. We postulate that this arises partly from the closer interactions between the dopant and the NDI molecule, facilitated by the polar glycol side-chains. As a result, thin films reach conductivities exceeding 10-2 S cm-1. We additionally demonstrate their incorporation into efficient perovskite solar cells, demonstrating the effectiveness of the doping process. We investigate this process with a combination of spectroscopy and density functional theory (DFT) modelling, showing that a complex is likely formed between the resulting N-DMBI cation and the NDI radical anion which then promotes electron transfer to a neutral NDI molecule, thereby generating free charge in the film. These findings underscore the importance of synthetic design on the doping behaviour, with the incorporation of ethylene glycol side-chains emerging as an effective strategy to achieve better electrical conductivity for NDI based systems.
Collapse
Affiliation(s)
- Wai Kin Yiu
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Lewis Mackenzie
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dylan Wilkinson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Marcin Giza
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Benjamin Vella
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Michele Cariello
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Stephen Sproules
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Graeme Cooke
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Pablo Docampo
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
2
|
Chen Q, Xu X, Bo Z. Application of n-Type or p-Type Dopants in Organic Photovoltaics. CHEMSUSCHEM 2025; 18:e202402525. [PMID: 40059284 DOI: 10.1002/cssc.202402525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/22/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025]
Abstract
Compared to inorganic semiconductors, organic semiconductors (OSCs) exhibit lower permittivity and carrier mobility. This is primarily attributed to their weaker van der Waals forces and the significant structural and energetic disorder, ultimately impeding the commercial application of organic photovoltaics (OPVs). However, the introduction of n-type or p-type dopants offers a solution. These dopants effectively eliminate intrinsic traps in OSCs through trap-filling techniques, elevating carrier concentration and mobility, and consequently enhancing overall performance. This article delves into the systematic exploration of n-type and p-type dopant applications in OPVs. It encompasses doping mechanisms, commonly used n-type and p-type dopants, doping methodologies, the strategic distribution of dopants and the effect of doping on device performance. Ultimately, this concept strives to offer invaluable insights and guidance for advancing OPV performance via doping techniques.
Collapse
Affiliation(s)
- Qiaoling Chen
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Xinjun Xu
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
| | - Zhishan Bo
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing, 100875, China
- Department College of Textiles & Clothing, State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Wang SJ, Pashkin A, Darbandy G, Luferau A, Wolansky J, Winkler LC, Zhang Z, Wong TS, Shaikh MS, Berencén Y, Benduhn J, Kleemann H, Leo K. Doped organic thermoelectric short wavelength infrared detectors. SCIENCE ADVANCES 2025; 11:eadt0006. [PMID: 40315306 PMCID: PMC12047406 DOI: 10.1126/sciadv.adt0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 03/27/2025] [Indexed: 05/04/2025]
Abstract
Photon-based organic photodetector performance drops rapidly when going beyond near-infrared light detection due to nonradiative recombination. Here, we report on a device concept for infrared detection using organic thermoelectrics coupled to an infrared absorption film for heat generation. These short wavelength infrared (SWIR) detectors show an excellent area normalized responsivity of over 109 milliampere per watt per square meter at 1 V, two to three orders of magnitude higher than the conjugated polymer SWIR detector reported in the literature and typical organic photodetectors in the visible and near-infrared wavelength range. Moreover, the devices show a fast switch-on time with an estimated 3-decibel frequency of over 610 kilohertz, making the device suitable for a wide range of applications. However, the specific detectivity of the current device concept is limited to 104 Jones. We discuss strategies for improving the specific detectivities of these detectors with technology computer-aided design simulations.
Collapse
Affiliation(s)
- Shu-Jen Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Alexej Pashkin
- Helmholtz-Zentrum Dresden Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Ghader Darbandy
- NanoP, Technische Hochschule Mittelhessen, University of Applied Science, Gießen, Germany
| | - Andrei Luferau
- Helmholtz-Zentrum Dresden Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
- Institute of Applied Physics (IAP), Technische Universität Dresden, 01062 Dresden, Germany
| | - Jakob Wolansky
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Louis C. Winkler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Zongbao Zhang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Tak Shun Wong
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Mohd Saif Shaikh
- Helmholtz-Zentrum Dresden Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Yonder Berencén
- Helmholtz-Zentrum Dresden Rossendorf (HZDR), Bautzner Landstraße 400, 01328 Dresden, Germany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
4
|
Rosas Villalva D, Derewjanko D, Zhang Y, Liu Y, Bates A, Sharma A, Han J, Gibert-Roca M, Arteaga OZ, Jang S, Moro S, Costantini G, Gu X, Kemerink M, Baran D. Intermolecular-force-driven anisotropy breaks the thermoelectric trade-off in n-type conjugated polymers. NATURE MATERIALS 2025:10.1038/s41563-025-02207-9. [PMID: 40295750 DOI: 10.1038/s41563-025-02207-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 03/12/2025] [Indexed: 04/30/2025]
Abstract
Controlling the molecular orientation of conjugated polymers is a vital yet complex process to modulate their optoelectronic properties along with boosting device performance. Here we propose a molecular-force-driven anisotropy strategy to modulate the molecular orientation of conjugated polymers. This strategy relies on the intermolecular interactions, gauged by the Hansen solubility parameters framework, to provide solvent selection criteria for conjugated polymers that render films with a preferential orientation. We showcase molecular-force-driven anisotropy to overcome the inverse coupling between the electrical conductivity and Seebeck coefficient in solution-processed organic thermoelectrics, a major challenge in the field. Our kinetic Monte Carlo simulations suggest that edge-on orientations break the trade-off by increasing the in-plane delocalization length. The molecular-force-driven anisotropy approach yields a power factor of 115 μW m-1 K-2 and a figure of merit of 0.17 at room temperature for the doped n-type 2DPP-2CNTVT:N-DMBI system. This power factor is 20 times larger than that of conventional doping approaches.
Collapse
Affiliation(s)
- Diego Rosas Villalva
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Dennis Derewjanko
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany
| | - Yongcao Zhang
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Ye Liu
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Andrew Bates
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Anirudh Sharma
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jianhua Han
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Martí Gibert-Roca
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Osnat Zapata Arteaga
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Soyeong Jang
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Stefania Moro
- School of Chemistry, University of Birmingham, Birmingham, UK
| | | | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, MS, USA
| | - Martijn Kemerink
- Institute for Molecular Systems Engineering and Advanced Materials, Heidelberg University, Heidelberg, Germany.
| | - Derya Baran
- Materials Science and Engineering Program (MSE), Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
5
|
Buchholtz SA, Winkler LC, Dorfner MFX, Kretschmer F, Kusber A, Eymann LYM, Schmidt T, Kleemann H, Benduhn J, Ortmann F, Leo K. Novel Cerium-Based p-Dopants with Low Parasitic Absorption for Improved Organic Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414959. [PMID: 39965121 PMCID: PMC11984852 DOI: 10.1002/advs.202414959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/24/2025] [Indexed: 02/20/2025]
Abstract
High electrical conductivity and improved charge carrier injection enabled by molecular doping are pivotal for high-performance, energy-efficient, and stable organic optoelectronic devices. Molecular doping is a key element in device design and manufacturing of active-matrix organic light-emitting diode displays, a multi-billion dollar market. However, it is an inherent feature of state-of-the-art small molecule dopants and their charge-transfer complexes to strongly absorb in the visible and near-infrared spectral range. This parasitic effect results in absorption losses, reducing the performance in light-harvesting and light-emitting applications. Here, a novel class of vacuum-processable cerium-based p-dopants with excellent processing properties and competitive doping strength even in organic hole transport layers with low-lying valence levels is presented. A substantial reduction in parasitic absorption for layers doped by the new dopants in the visible and near-infrared range is found. The reduced polaron absorption of the dopant anions is in excellent agreement with theoretical simulations. By incorporating these dopants into near-infrared narrowband organic photodetectors, the specific detectivity can be increased by one order of magnitude compared to devices with the established dopant 1,3,4,5,7,8-hexafluorotetracyanonaphthoquinodimethane (F6-TCNNQ). The decreased parasitic absorption yields optical-microcavity-enhanced photodetectors with significantly reduced full-width at half maximum, paving the way toward more efficient and wavelength-selective infrared detectors.
Collapse
Affiliation(s)
- Stephanie A. Buchholtz
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - L. Conrad Winkler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Maximilian F. X. Dorfner
- Department of ChemistryTUM School of Natural SciencesTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Fred Kretschmer
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Anncharlott Kusber
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Léonard Y. M. Eymann
- CREDOXYS GmbHInstitute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Theresa Schmidt
- CREDOXYS GmbHInstitute for Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
- Micro‐ and Nanoelectronic Systems (MNES)TU IlmenauInstitute for Micro‐ and NanoelectronicsTechnische Universität IlmenauGustav‐Kirchhoff‐Str.198693IlmenauGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| | - Frank Ortmann
- Department of ChemistryTUM School of Natural SciencesTechnische Universität MünchenLichtenbergstr. 485748GarchingGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute of Applied PhysicsTechnische Universität DresdenNöthnitzer Straße 6101187DresdenGermany
| |
Collapse
|
6
|
Guo J, Chen PA, Yang S, Wei H, Liu Y, Xia J, Chen C, Chen H, Wang S, Li W, Hu Y. Dopant-induced Morphology of Organic Semiconductors Resulting in High Doping Performance. SMALL METHODS 2025; 9:e2400084. [PMID: 38738733 DOI: 10.1002/smtd.202400084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/21/2024] [Indexed: 05/14/2024]
Abstract
Doping plays a crucial role in modulating and enhancing the performance of organic semiconductor (OSC) devices. In this study, the critical role of dopants is underscored in shaping the morphology and structure of OSC films, which in turn profoundly influences their properties. Two dopants, trityl tetrakis(pentafluorophenyl) (TrTPFB) and N,N-dimethylanilinium tetrakis(pentafluorophenyl)borate (DMA-TPFB), are examined for their doping effects on poly(3-hexylthiophene) (P3HT) and PBBT-2T host OSCs. It is found that although TrTPFB exhibits higher doping efficiency, OSCs doped with DMA-TPFB achieve comparable or even enhanced electrical conductivity. Indeed, the electrical conductivity of DMA-TPFB-doped P3HT reaches over 67 S cm-1, which is a record-high value for mixed-solution-doped P3HT. This can be attributed to DMA-TPFB inducing a higher degree of crystallinity and reduced structural disorder. Moreover, the beneficial impact of DMA-TPFB on the OSC films' morphology and structure results in superior thermoelectric performance in the doped OSCs. These findings highlight the significance of dopant-induced morphological and structural considerations in enhancing the film characteristics of OSCs, opening up a new avenue for optimization of dopant performance.
Collapse
Affiliation(s)
- Jing Guo
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- School of Physics and Information Engineering, Shanxi Normal University, Taiyuan, 031000, China
| | - Ping-An Chen
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Shuzhang Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Huan Wei
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Yu Liu
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Chen Chen
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha, 410000, China
| | - Huajie Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, China
| | - Suhao Wang
- Unité de Dynamique et Structure des Matériaux Moléculaires (UDSMM), Université du Littoral Côte d'Opale, 145 Avenue Maurice Schumann, Dunkerque, 59140, France
| | - Wenwu Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Yuanyuan Hu
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| |
Collapse
|
7
|
Deng XY, Zhang Z, Lei T. Integrated Materials Design and Process Engineering for n-Type Polymer Thermoelectrics. JACS AU 2024; 4:4066-4083. [PMID: 39610747 PMCID: PMC11600150 DOI: 10.1021/jacsau.4c00638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 09/25/2024] [Indexed: 11/30/2024]
Abstract
Polymer thermoelectrics (TEs) have attracted increasing interest in recent years, owing to their great potential in intimate integration with wearable electronics for powering small electronics/sensors and personal temperature regulation. Over the past few decades, substantial progress has been made in enhancing polymer TE performance. However, the electrical conductivity and power factor of most n-doped polymers are about an order of magnitude lower than those of their p-type counterparts, impeding the development of highly efficient polymer TE devices. In addition, unlike well-studied inorganic materials, the complex charge transport mechanism and polymer-dopant interactions in polymer TE materials have hindered a comprehensive understanding of the structure-property relationships. This Perspective aims to survey recent achievements in understanding the charge transport mechanism and selectively provide some critical insights into molecular design and process engineering for n-type polymer TEs. We also highlight the great potential of polymer TEs in wearable electronics and offer an outlook for future development.
Collapse
Affiliation(s)
- Xin-Yu Deng
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| | - Zhi Zhang
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| | - Ting Lei
- Key Laboratory of Polymer Chemistry
and Physics of Ministry of Education, School of Materials Science
and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Goldberg I, Elkhouly K, Annavarapu N, Hamdad S, Gonzalez MC, Genoe J, Gehlhaar R, Heremans P. Toward Thin-Film Laser Diodes with Metal Halide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2314193. [PMID: 39177182 DOI: 10.1002/adma.202314193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 06/17/2024] [Indexed: 08/24/2024]
Abstract
Metal halide perovskite semiconductors hold a strong promise for enabling thin-film laser diodes. Perovskites distinguish themselves from other non-epitaxial media primarily through their ability to maintain performance at high current densities, which is a critical requirement for achieving injection lasing. Coming in a wide range of varieties, numerous perovskites delivered low-threshold optical amplified spontaneous emission and optically pumped lasing when combined with a suitable optical cavity. A progression toward electrically pumped lasing requires the development of efficient light-emitting structures with reduced optical losses and high radiative efficiency at lasing-level current densities. This involves a set of important trade-offs in terms of material choice, stack and waveguide design, as well as resonator integration. In this Perspective, the key milestones are highlighted that have been achieved in the study of passive optical waveguides and light-emitting diodes, and these learnings are translated toward more complex laser diode architectures. Finally, a novel resonator integration route is proposed that is capable of relaxing optical and electrical design constraints.
Collapse
Affiliation(s)
- Iakov Goldberg
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Karim Elkhouly
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Nirav Annavarapu
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Sarah Hamdad
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Maider Calderon Gonzalez
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | - Jan Genoe
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| | | | - Paul Heremans
- IMEC, Kapeldreef 75, Leuven, 3001, Belgium
- ESAT, KU Leuven, Kasteelpark Arenberg, Leuven, 3001, Belgium
| |
Collapse
|
9
|
Zojer E. Electrostatically Designing Materials and Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406178. [PMID: 39194368 DOI: 10.1002/adma.202406178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/08/2024] [Indexed: 08/29/2024]
Abstract
Collective electrostatic effects arise from the superposition of electrostatic potentials of periodically arranged (di)polar entities and are known to crucially impact the electronic structures of hybrid interfaces. Here, it is discussed, how they can be used outside the beaten paths of materials design for realizing systems with advanced and sometimes unprecedented properties. The versatility of the approach is demonstrated by applying electrostatic design not only to metal-organic interfaces and adsorbed (complex) monolayers, but also to inter-layer interfaces in van der Waals heterostructures, to polar metal-organic frameworks (MOFs), and to the cylindrical pores of covalent organic frameworks (COFs). The presented design ideas are straightforward to simulate and especially for metal-organic interfaces also their experimental implementation has been amply demonstrated. For van der Waals heterostructures, the needed building blocks are available, while the required assembly approaches are just being developed. Conversely, for MOFs the necessary growth techniques exist, but more work on advanced linker molecules is required. Finally, COF structures exist that contain pores decorated with polar groups, but the electrostatic impact of these groups has been largely ignored so far. All this suggest that the dawn of the age of electrostatic design is currently experienced with potential breakthroughs lying ahead.
Collapse
Affiliation(s)
- Egbert Zojer
- Institute of Solid State Physics, NAWI Graz, Petersgasse 16, Graz, A-8010, Austria
| |
Collapse
|
10
|
Gámez-Valenzuela S, Li J, Ma S, Jeong SY, Woo HY, Feng K, Guo X. High-Performance n-Type Organic Thermoelectrics with Exceptional Conductivity by Polymer-Dopant Matching. Angew Chem Int Ed Engl 2024; 63:e202408537. [PMID: 38973771 DOI: 10.1002/anie.202408537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/20/2024] [Accepted: 07/07/2024] [Indexed: 07/09/2024]
Abstract
Achieving high electrical conductivity (σ) and power factor (PF) simultaneously remains a significant challenge for n-type organic themoelectrics (OTEs). Herein, we demonstrate the state-of-the-art OTEs performance through blending a fused bithiophene imide dimer-based polymer f-BTI2g-SVSCN and its selenophene-substituted analogue f-BSeI2g-SVSCN with a julolidine-functionalized benzimidazoline n-dopant JLBI, vis-à-vis when blended with commercially available n-dopants TAM and N-DMBI. The advantages of introducing a more lipophilic julolidine group into the dopant structure of JLBI are evidenced by the enhanced OTEs performance that JLBI-doped films show when compared to those doped with N-DMBI or TAM. In fact, thanks to the enhanced intermolecular interactions and the lower-lying LUMO level enabled by the increase of selenophene content in polymer backbone, JLBI-doped films of f-BSeI2g-SVSCN exhibit a unprecedent σ of 206 S cm-1 and a PF of 114 μW m-1 K-2. Interestingly, σ can be further enhanced up to 326 S cm-1 by using TAM dopant as a consequence of its favorable diffusion behavior into densely packed crystalline domains. These values are the highest to date for solution-processed molecularly n-doped polymers, demonstrating the effectiveness of the polymer-dopant matching approach carried out in this work.
Collapse
Affiliation(s)
- Sergio Gámez-Valenzuela
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Suxiang Ma
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Sang Young Jeong
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, Korea University, Anamro 145, Seoul, 02841, Republic of Korea
| | - Kui Feng
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
11
|
Xu Y, Yan J, Zhou W, Ouyang J. Development of High Performance Thermoelectric Polymers via Doping or Dedoping Engineering. Chem Asian J 2024; 19:e202400329. [PMID: 38736306 DOI: 10.1002/asia.202400329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
It is of great significance to develop high-performance thermoelectric (TE) materials, because they can be used to harvest waste heat into electricity and there is abundant waste heat on earth. The conventional TE materials are inorganic semimetals or semiconductors like Bi2Te3 and its derivatives. However, they have problems of high cost, scarce/toxic elements, high thermal conductivity, and poor mechanical flexibility. Organic TE materials emerged as the next-generation TE materials because of their merits including solution processability, low cost, abundant element, low intrinsic thermal conductivity, and high mechanical flexibility. Organic TE materials are mainly conducting polymers because of their high conductivity. Both the conductivity and Seebeck coefficient depend on the doping level, and they are interdependent. Hence, the TE properties of polymers can be improved through doping/dedoping engineering. There are three types of doping forms, oxidative (or reductive) doping, protonic acid doping, and charge transfer doping. Accordingly, they can be dedoped by different approaches. In this article, we review the methods to dope and dedope p-type and n-type TE polymers and the combination of doping and dedoping to optimize their TE properties. Secondary doping is also covered, since it can significantly enhance the conductivity of some TE polymers.
Collapse
Affiliation(s)
- Yichen Xu
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, China
| | - Jin Yan
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Wei Zhou
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
| | - Jianyong Ouyang
- National University of Singapore (Suzhou) Research Institute, No. 377 Linquan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China
- Department of Materials Science and Engineering, National University of Singapore, Singapore, 117574, China
| |
Collapse
|
12
|
Fan X, Liu J, Duan X, Li H, Deng S, Kuang Y, Li J, Lin C, Meng B, Hu J, Wang S, Liu J, Wang L. Alcohol-Processable All-Polymer n-Type Thermoelectrics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401952. [PMID: 38647398 PMCID: PMC11220645 DOI: 10.1002/advs.202401952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Indexed: 04/25/2024]
Abstract
The general strategy for n-type organic thermoelectric is to blend n-type conjugated polymer hosts with small molecule dopants. In this work, all-polymer n-type thermoelectric is reported by dissolving a novel n-type conjugated polymer and a polymer dopant, poly(ethyleneimine) (PEI), in alcohol solution, followed by spin-coating to give polymer host/polymer dopant blend film. To this end, an alcohol-soluble n-type conjugated polymer is developed by attaching polar and branched oligo (ethylene glycol) (OEG) side chains to a cyano-substituted poly(thiophene-alt-co-thiazole) main chain. The main chain results in the n-type property and the OEG side chain leads to the solubility in hexafluorineisopropanol (HFIP). In the polymer host/polymer dopant blend film, the Coulombic interaction between the dopant counterions and the negatively charged polymer chains is reduced and the ordered stacking of the polymer host is preserved. As a result, the polymer host/polymer dopant blend exhibits the power factor of 36.9 µW m-1 K-1, which is one time higher than that of the control polymer host/small molecule dopant blend. Moreover, the polymer host/polymer dopant blend shows much better thermal stability than the control polymer host/small molecule dopant blend. This research demonstrates the high performance and excellent stability of all-polymer n-type thermoelectric.
Collapse
Affiliation(s)
- Xinyi Fan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jian Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Xiaozheng Duan
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Hongxiang Li
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Materials EngineeringSichuan UniversityChengduSichuan610065P. R. China
| | - Sihui Deng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Yazhuo Kuang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Jingyu Li
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Chengjiang Lin
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Bin Meng
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Junli Hu
- Key Laboratory of UV‐Emitting Materials and Technology (Northeast Normal University)Ministry of EducationChangchunJilin130024P. R. China
| | - Shumeng Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
| | - Jun Liu
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| | - Lixiang Wang
- State Key Laboratory of Polymer Physics and ChemistryChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchunJilin130022P. R. China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefeiAnhui230026P. R. China
| |
Collapse
|
13
|
Wang S, Yan Q, Hu H, Su X, Xu H, Wang J, Gao Y. Doping Ferrocene-Based Conjugated Microporous Polymers with 7,7,8,8-Tetracyanoquinodimethane for Efficient Photocatalytic CO 2 Reduction. Molecules 2024; 29:1738. [PMID: 38675557 PMCID: PMC11052251 DOI: 10.3390/molecules29081738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The design and synthesis of organic photocatalysts remain a great challenge due to their strict structural constraints. However, this could be mitigated by achieving structural flexibility by constructing permanent porosity into the materials. Conjugated microporous polymers (CMPs) are an emerging class of porous materials with an amorphous, three-dimensional network structure, which makes it possible to integrate the elaborate functional groups to enhance photocatalytic performance. Here, we report the synthesis of a novel CMP, named TAPFc-TFPPy-CMP, constructed by 1,1'3,3'-tetra(4-aminophenyl)ferrocene (TAPFc) and 1,3,6,8-tetrakis(4-formylphenyl)pyrene (TFPPy) monomers. The integration of the p-type dopant 7,7,8,8-tetracyanoquinodimethane (TCNQ) into the TAPFc-TFPPy-CMP improved the light adsorption performance, leading to a decrease in the optical bandgap from 2.00 to 1.43 eV. The doped CMP (TCNQ@TAPFc-TFPPy-CMP) exhibited promising catalytic activity in photocatalytic CO2 reduction under visible light, yielding 546.8 μmol g-1 h-1 of CO with a selectivity of 96% and 5.2 μmol g-1 h-1 of CH4. This represented an 80% increase in the CO yield compared to the maternal TAPFc-TFPPy-CMP. The steady-state photoluminescence (PL) and fluorescence lifetime (FL) measurements reveal faster carrier separation and transport after the doping. This study provides guidance for the development of organic photocatalysts for the utilization of renewable energy.
Collapse
Affiliation(s)
- Shenglin Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Qianqian Yan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Hui Hu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Xiaofang Su
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Huanjun Xu
- School of Science, Qiongtai Normal University, Haikou 571127, China;
| | - Jianyi Wang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| | - Yanan Gao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan University, No 58, Renmin Avenue, Haikou 570228, China; (S.W.); (Q.Y.); (X.S.); (J.W.)
| |
Collapse
|
14
|
Paulino PHS, Guimarães L, Nascimento CS. Chemical modification and doping of poly(p-phenylenes): A theoretical study. J Mol Model 2024; 30:114. [PMID: 38558272 DOI: 10.1007/s00894-024-05920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT Conjugated polymers (CPs) have been recognized as promising materials for the manufacture of electronic devices. However, further studies are still needed to enhance the electrical conductivity of these type of organic materials. The two main strategies for achieving this improvement are the doping process and chemical modification of the polymer chain. Therefore, in this article, we conduct a theoretical investigation, employing DFT calculations to evaluate the structural, energetic, and electronic properties of pristine and push-pull-derived poly(p-phenylene) oligomers (PPPs), as well as the analysis at the molecular level of the polymer doping process. As a primary conclusion, we determined that the PPP oligomer substituted with the push-pull group 4-EtN/CNPhNO2 exhibited the smallest HOMO-LUMO gap (Eg) among the studied oligomers. Moreover, we observed that the doping process, whether through electron removal or the introduction of the dopant anion ClO4-, led to a substantial reduction in the Eg of the PPP, indicating an enhancement in the polymer's electrical conductivity. METHODS DFT calculations were conducted using the PBE0 functional along with the Pople's split valence 6-31G(d,p) basis set, which includes polarization functions on all atoms (B97D/6-31G(d,p)).
Collapse
Affiliation(s)
- Paulo Henrique S Paulino
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Luciana Guimarães
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Clebio S Nascimento
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil.
| |
Collapse
|
15
|
Liu Y, Zhao Z, Kang L, Qiu S, Li Q. Molecular Doping Modulation and Applications of Structure-Sorted Single-Walled Carbon Nanotubes: A Review. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304075. [PMID: 37675833 DOI: 10.1002/smll.202304075] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/26/2023] [Indexed: 09/08/2023]
Abstract
Single-walled carbon nanotubes (SWCNTs) that have a reproducible distribution of chiralities or single chirality are among the most competitive materials for realizing post-silicon electronics. Molecular doping, with its non-destructive and fine-tunable characteristics, is emerging as the primary doping approach for the structure-controlled SWCNTs, enabling their eventual use in various functional devices. This review provides an overview of important advances in the area of molecular doping of structure-controlled SWCNTs and their applications. The first part introduces the underlying physical process of molecular doping, followed by a comprehensive survey of the commonly used dopants for SWCNTs to date. Then, it highlights how the convergence of molecular doping and structure-sorting strategies leads to significantly improved functionality of SWCNT-based field-effect transistor arrays, transparent electrodes in optoelectronics, thermoelectrics, and many emerging devices. At last, several challenges and opportunities in this field are discussed, with the hope of shedding light on promoting the practical application of SWCNTs in future electronics.
Collapse
Affiliation(s)
- Ye Liu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhigang Zhao
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Lixing Kang
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Song Qiu
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Qingwen Li
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Division of Advanced Materials, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
16
|
Sun J, Wang K, Ma K, Park JY, Lin ZY, Savoie BM, Dou L. Emerging Two-Dimensional Organic Semiconductor-Incorporated Perovskites─A Fascinating Family of Hybrid Electronic Materials. J Am Chem Soc 2023; 145:20694-20715. [PMID: 37706467 DOI: 10.1021/jacs.3c02143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Halide perovskites have attracted a great amount of attention owing to their unique materials chemistry, excellent electronic properties, and low-cost manufacturing. Two-dimensional (2D) halide perovskites, originating from three-dimensional (3D) perovskite structures, are structurally more diverse and therefore create functional possibilities beyond 3D perovskites. The much less restrictive size constraints on the organic component of these hybrid materials particularly provide an exciting platform for designing unprecedented materials and functionalities at the molecular level. In this Perspective, we discuss the concept and recent development of a sub-class of 2D perovskites, namely, organic semiconductor-incorporated perovskites (OSiPs). OSiPs combine the electronic functionality of organic semiconductors with the soft and dynamic halide perovskite lattice, offering opportunities for tailoring the energy landscape, lattice and carrier dynamics, and electron/ion transport properties for various fundamental studies, as well as device applications. Specifically, we summarize recent advances in the design, synthesis, and structural analysis of OSiPs with various organic conjugated moieties as well as the application of OSiPs in photovoltaics, light-emitting devices, and transistors. Lastly, challenges and further opportunities for OSiPs in molecular design, integration of novel functionality, film quality, and stability issues are addressed.
Collapse
Affiliation(s)
- Jiaonan Sun
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Kang Wang
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ke Ma
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jee Yung Park
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Zih-Yu Lin
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Brett M Savoie
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Letian Dou
- Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
17
|
Qin C, Wu X, Tang L, Chen X, Li M, Mou Y, Su B, Wang S, Feng C, Liu J, Yuan X, Zhao Y, Wang H. Dual donor-acceptor covalent organic frameworks for hydrogen peroxide photosynthesis. Nat Commun 2023; 14:5238. [PMID: 37640726 PMCID: PMC10462664 DOI: 10.1038/s41467-023-40991-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 08/18/2023] [Indexed: 08/31/2023] Open
Abstract
Constructing photocatalytically active and stable covalent organic frameworks containing both oxidative and reductive reaction centers remain a challenge. In this study, benzotrithiophene-based covalent organic frameworks with spatially separated redox centers are rationally designed for the photocatalytic production of hydrogen peroxide from water and oxygen without sacrificial agents. The triazine-containing framework demonstrates high selectivity for H2O2 photogeneration, with a yield rate of 2111 μM h-1 (21.11 μmol h-1 and 1407 μmol g-1 h-1) and a solar-to-chemical conversion efficiency of 0.296%. Codirectional charge transfer and large energetic differences between linkages and linkers are verified in the double donor-acceptor structures of periodic frameworks. The active sites are mainly concentrated on the electron-acceptor fragments near the imine bond, which regulate the electron distribution of adjacent carbon atoms to optimally reduce the Gibbs free energy of O2* and OOH* intermediates during the formation of H2O2.
Collapse
Affiliation(s)
- Chencheng Qin
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xiaodong Wu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Lin Tang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Xiaohong Chen
- School of Frontier Crossover Studies, Hunan University of Technology and Business, Changsha, 410205, China
| | - Miao Li
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Yi Mou
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China
| | - Bo Su
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350002, China
| | - Sibo Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fujian, 350002, China
| | - Chengyang Feng
- Catalysis Centre, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Jiawei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore
| | - Xingzhong Yuan
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China.
| | - Yanli Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| | - Hou Wang
- College of Environmental Science and Engineering and Key Laboratory of Environmental Biology and Pollution Control (Ministry of Education), Hunan University, Changsha, 410082, China.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, 637371, Singapore, Singapore.
| |
Collapse
|
18
|
Qin D, Chen J, Lu N. A Novel Method to Analyze the Relationship between Thermoelectric Coefficient and Energy Disorder of Any Density of States in an Organic Semiconductor. MICROMACHINES 2023; 14:1509. [PMID: 37630046 PMCID: PMC10456578 DOI: 10.3390/mi14081509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
In this work, a unified method is proposed for analyzing the relationship between the Seebeck coefficient and the energy disorder of organic semiconductors at any multi-parameter density of states (DOS) to study carrier transport in disordered thermoelectric organic semiconductors and the physical meaning of improved DOS parameters. By introducing the Gibbs entropy, a new multi-parameter DOS and traditional Gaussian DOS are used to verify this method, and the simulated result of this method can well fit the experiment data obtained on three organic devices. In particular, the impact of DOS parameters on the Gibbs entropy can also influence the impact of the energy disorder on the Seebeck coefficient.
Collapse
Affiliation(s)
- Dong Qin
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (D.Q.); (J.C.)
| | - Jiezhi Chen
- School of Information Science and Engineering, Shandong University, Qingdao 266237, China; (D.Q.); (J.C.)
| | - Nianduan Lu
- The State key Lab of Fabrication Technologies for Integrated Circuits & Laboratory of Microelectronics Devices and Integrated Technology, Institute of Microelectronics, Chinese Academy of Sciences, Beijing 100029, China
| |
Collapse
|
19
|
Sawatzki-Park M, Wang SJ, Kleemann H, Leo K. Highly Ordered Small Molecule Organic Semiconductor Thin-Films Enabling Complex, High-Performance Multi-Junction Devices. Chem Rev 2023. [PMID: 37315945 DOI: 10.1021/acs.chemrev.2c00844] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Organic semiconductors have opened up many new electronic applications, enabled by properties like flexibility, low-cost manufacturing, and biocompatibility, as well as improved ecological sustainability due to low energy use during manufacturing. Most current devices are made of highly disordered thin-films, leading to poor transport properties and, ultimately, reduced device performance as well. Here, we discuss techniques to prepare highly ordered thin-films of organic semiconductors to realize fast and highly efficient devices as well as novel device types. We discuss the various methods that can be implemented to achieve such highly ordered layers compatible with standard semiconductor manufacturing processes and suitable for complex devices. A special focus is put on approaches utilizing thermal treatment of amorphous layers of small molecules to create crystalline thin-films. This technique has first been demonstrated for rubrene─an organic semiconductor with excellent transport properties─and extended to some other molecular structures. We discuss recent experiments that show that these highly ordered layers show excellent lateral and vertical mobilities and can be electrically doped to achieve high n- and p-type conductivities. With these achievements, it is possible to integrate these highly ordered layers into specialized devices, such as high-frequency diodes or completely new device principles for organics, e.g., bipolar transistors.
Collapse
Affiliation(s)
- Michael Sawatzki-Park
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Shu-Jen Wang
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Photophysics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden 01219, Germany
| |
Collapse
|
20
|
Wei H, Cheng Z, Wu T, Liu Y, Guo J, Chen PA, Xia J, Xie H, Qiu X, Liu T, Zhang B, Hui J, Zeng Z, Bai Y, Hu Y. Novel Organic Superbase Dopants for Ultraefficient N-Doping of Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300084. [PMID: 36929089 DOI: 10.1002/adma.202300084] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/13/2023] [Indexed: 06/02/2023]
Abstract
Doping is a powerful technique for engineering the electrical properties of organic semiconductors (OSCs), yet efficient n-doping of OSCs remains a central challenge. Herein, the discovery of two organic superbase dopants, namely P2-t-Bu and P4-t-Bu as ultra-efficient n-dopants for OSCs is reported. Typical n-type semiconductors such as N2200 and PC61 BM are shown to experience a significant increase of conductivity upon doping by the two dopants. In particular, the optimized electrical conductivity of P2-t-Bu-doped PC61 BM reaches a record-high value of 2.64 S cm-1 . The polaron generation efficiency of P2-t-Bu-doped in PC61 BM is found to be over 35%, which is 2-3 times higher than that of benchmark n-dopant N-DMBI. In addition, a deprotonation-initiated, nucleophilic-attack-based n-doping mechanism is proposed for the organic superbases, which involves the deprotonation of OSC molecules, the nucleophilic attack of the resulting carbanions on the OSC's π-bonds, and the subsequent n-doping through single electron transfer process between the anionized and neutral OSCs. This work highlights organic superbases as promising n-dopants for OSCs and opens up opportunities to explore and develop highly efficient n-dopants.
Collapse
Affiliation(s)
- Huan Wei
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| | - Zehong Cheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Wu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yu Liu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Ping-An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jiangnan Xia
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Haihong Xie
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Tingting Liu
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Bohan Zhang
- Key Laboratory of Natural Medicine and Immune Engineering, Henan University, 85 Minglun Street, Kaifeng, Henan, 475004, China
| | - Jingshu Hui
- College of Energy, Soochow University, 688 Moye Road, Suzhou, Jiangsu, 215123, China
| | - Zebing Zeng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan Province, School of Physics and Electronics, Hunan University, Changsha, 410082, China
- Shenzhen Research Institute of Hunan University, Shenzhen, 518063, China
- Changsha Semiconductor Technology and Application Innovation Research Institute, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha, 410082, China
| |
Collapse
|
21
|
Gunnarsson WB, Roh K, Zhao L, Murphy JP, Grede AJ, Giebink NC, Rand BP. Toward Nonepitaxial Laser Diodes. Chem Rev 2023. [PMID: 37219995 DOI: 10.1021/acs.chemrev.2c00721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Thin-film organic, colloidal quantum dot, and metal halide perovskite semiconductors are all being pursued in the quest for a wavelength-tunable diode laser technology that does not require epitaxial growth on a traditional semiconductor substrate. Despite promising demonstrations of efficient light-emitting diodes and low-threshold optically pumped lasing in each case, there are still fundamental and practical barriers that must be overcome to reliably achieve injection lasing. This review outlines the historical development and recent advances of each material system on the path to a diode laser. Common challenges in resonator design, electrical injection, and heat dissipation are highlighted, as well as the different optical gain physics that make each system unique. The evidence to date suggests that continued progress for organic and colloidal quantum dot laser diodes will likely hinge on the development of new materials or indirect pumping schemes, while improvements in device architecture and film processing are most critical for perovskite lasers. In all cases, systematic progress will require methods that can quantify how close new devices get with respect to their electrical lasing thresholds. We conclude by discussing the current status of nonepitaxial laser diodes in the historical context of their epitaxial counterparts, which suggests that there is reason to be optimistic for the future.
Collapse
Affiliation(s)
- William B Gunnarsson
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Kwangdong Roh
- Department of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Lianfeng Zhao
- Holcombe Department of Electrical and Computer Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - John P Murphy
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Alex J Grede
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Noel C Giebink
- Department of Electrical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Barry P Rand
- Department of Electrical and Computer Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
22
|
Hernández-Ortiz OJ, Castro-Monter D, Rodríguez Lugo V, Moggio I, Arias E, Reyes-Valderrama MI, Veloz-Rodríguez MA, Vázquez-García RA. Synthesis and Study of the Optical Properties of a Conjugated Polymer with Configurational Isomerism for Optoelectronics. MATERIALS (BASEL, SWITZERLAND) 2023; 16:2908. [PMID: 37049202 PMCID: PMC10096395 DOI: 10.3390/ma16072908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/22/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
A π-conjugated polymer (PBQT) containing bis-(2-ethylhexyloxy)-benzo [1,2-b'] bithiophene (BDT) units alternated with a quinoline-vinylene trimer was obtained by the Stille reaction. The chemical structure of the polymer was verified by nuclear magnetic resonance (1H NMR), Fourier transform infrared (FT-IR), and mass spectroscopy (MALDI-TOF). The intrinsic photophysical properties of the solution were evaluated by absorption and (static and dynamic) fluorescence. The polymer PBQT exhibits photochromism with a change in absorption from blue (449 nm) to burgundy (545 nm) and a change in fluorescence emission from green (513 nm) to orange (605 nm) due to conformational photoisomerization from the trans to the cis isomer, which was supported by theoretical calculations DFT and TD-DFT. This optical response can be used in optical sensors, security elements, or optical switches. Furthermore, the polymer forms spin-coated films with absorption properties that cover the entire visible range, with a maximum near the solar emission maximum. The frontier molecular orbitals, HOMO and LUMO, were calculated by cyclic voltammetry, and values of -5.29 eV and -3.69, respectively, and a bandgap of 1.6 eV were obtained, making this material a semiconductor with a good energetic match. These properties could suggest its use in photovoltaic applications.
Collapse
Affiliation(s)
- Oscar Javier Hernández-Ortiz
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional, Av. Acueducto s/n Barrio la Laguna Ticomán, Ciudad de México 07340, Ciudad de México, Mexico
| | - Damaris Castro-Monter
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ventura Rodríguez Lugo
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Ivana Moggio
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - Eduardo Arias
- Centro de Investigación en Química Aplicada, Enrique Reyna H. 140, San José de los Cerritos, Saltillo 25294, Coahuila, Mexico
| | - María Isabel Reyes-Valderrama
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - María Aurora Veloz-Rodríguez
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| | - Rosa Angeles Vázquez-García
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km. 4.5, Ciudad del Conocimiento, Mineral de la Reforma 42184, Hidalgo, Mexico
| |
Collapse
|
23
|
Barrett BJ, Katz HE, Bragg AE. Permittivity Threshold and Thermodynamics of Integer Charge-Transfer Complexation for an Organic Donor-Acceptor Pair. J Phys Chem B 2023; 127:2792-2800. [PMID: 36926897 DOI: 10.1021/acs.jpcb.3c00218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Molecular charge doping involves the formation of donor-acceptor charge-transfer complexes (CTCs) through integer or partial electron transfer; understanding how local chemical environment impacts complexation is important for controlling the properties of organic materials. We present steady-state and temperature-dependent spectroscopic investigations of the p-dopant 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) complexed with the electron donor and hole transport material N,N'-diphenyl-N,N'-di-p-tolylbenzene-1,4-diamine (MPDA). Equilibrium formation constants (KCT) were determined for donor-acceptor pairs dissolved in a series of solvents covering a range of values of permittivity. A threshold for highly favorable complex formation was observed to occur at ϵ ∼ 8-9, with large (>104) and small (<103) values of KCT obtained in solvents of higher and lower permittivity, respectively, but with chloroform (ϵ = 4.81) exhibiting an anomalously high formation constant. Temperature-dependent formation constants were determined in order to evaluate the thermodynamics of complex formation. In 1,2-dichloroethane (ϵ = 10.36) and chlorobenzene (ϵ = 5.62), complex formation is both enthalpically and entropically favorable, with higher enthalpic and entropic stabilization in the solvent with higher permittivity. Complexation in chloroform is exothermic and entropically disfavored, indicating that specific, inner-shell solvent-solute interactions stabilize the charge-separated complex and result in a net increase in local solution structure. Our results provide insight into how modification to the chemical environment may be utilized to support stable integer charge transfer for molecular doping applications and requiring only modest changes in local permittivity.
Collapse
Affiliation(s)
- Brandon J Barrett
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Howard E Katz
- Department of Material Science & Engineering, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| | - Arthur E Bragg
- Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, Maryland 21218, United States
| |
Collapse
|
24
|
Controlling doping efficiency in organic semiconductors by tuning short-range overscreening. Nat Commun 2023; 14:1356. [PMID: 36907955 PMCID: PMC10008838 DOI: 10.1038/s41467-023-36748-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Conductivity doping has emerged as an indispensable method to overcome the inherently low conductivity of amorphous organic semiconductors, which presents a great challenge in organic electronics applications. While tuning ionization potential and electron affinity of dopant and matrix is a common approach to control the doping efficiency, many other effects also play an important role. Here, we show that the quadrupole moment of the dopant anion in conjunction with the mutual near-field host-dopant orientation have a crucial impact on the conductivity. In particular, a large positive quadrupole moment of a dopant leads to an overscreening in host-dopant integer charge transfer complexes. Exploitation of this effect may enhance the conductivity by several orders of magnitude. This finding paves the way to a computer-aided systematic and efficient design of highly conducting amorphous small molecule doped organic semiconductors.
Collapse
|
25
|
Oono T, Okada T, Sasaki T, Inagaki K, Ushiku T, Shimizu T, Hatakeyama T, Fukagawa H. Unlocking the Full Potential of Electron-Acceptor Molecules for Efficient and Stable Hole Injection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2210413. [PMID: 36571784 DOI: 10.1002/adma.202210413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Understanding the hole-injection mechanism and improving the hole-injection property are of pivotal importance in the future development of organic optoelectronic devices. Electron-acceptor molecules with high electron affinity (EA) are widely used in electronic applications, such as hole injection and p-doping. Although p-doping has generally been studied in terms of matching the ionization energy (IE) of organic semiconductors with the EA of acceptor molecules, little is known about the effect of the EA of acceptor molecules on the hole-injection property. In this work, the hole-injection mechanism in devices is completely clarified, and a strategy to optimize the hole-injection property of the acceptor molecule is developed. Efficient and stable hole injection is found to be possible even into materials with IEs as high as 5.8 eV by controlling the charged state of an acceptor molecule with an EA of about 5.0 eV. This excellent hole-injection property enables direct hole injection into an emitting layer, realizing a pure blue organic light-emitting diode with an extraordinarily low turn-on voltage of 2.67 V, a power efficiency of 29 lm W-1 , an external quantum efficiency of 28% and a Commission Internationale de l'Eclairage y coordinate of less than 0.10.
Collapse
Affiliation(s)
- Taku Oono
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuya Okada
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Tsubasa Sasaki
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Kaito Inagaki
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takuma Ushiku
- Department of Physics, Graduate School of Science, Tokyo University of Science, 1-3 Kagurazaka, Shinjuku-ku, Tokyo, 162-8610, Japan
| | - Takahisa Shimizu
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| | - Takuji Hatakeyama
- Department of Chemistry, School of Science, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Hirohiko Fukagawa
- Japan Broadcasting Corporation (NHK), Science and Technology Research Laboratories, 1-10-11, Kinuta, Setagaya-ku, Tokyo, 157-8510, Japan
| |
Collapse
|
26
|
Wang L, Yi Z, Zhao Y, Liu Y, Wang S. Stretchable conductors for stretchable field-effect transistors and functional circuits. Chem Soc Rev 2023; 52:795-835. [PMID: 36562312 DOI: 10.1039/d2cs00837h] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Stretchable electronics have received intense attention due to their broad application prospects in many areas, and can withstand large deformations and form close contact with curved surfaces. Stretchable conductors are vital components of stretchable electronic devices used in wearables, soft robots, and human-machine interactions. Recent advances in stretchable conductors have motivated basic scientific and technological research efforts. Here, we outline and analyse the development of stretchable conductors in transistors and circuits, and examine advances in materials, device engineering, and preparation technologies. We divide the existing approaches to constructing stretchable transistors with stretchable conductors into the following two types: geometric engineering and intrinsic stretchability engineering. Finally, we consider the challenges and outlook in this field for delivering stretchable electronics.
Collapse
Affiliation(s)
- Liangjie Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Zhengran Yi
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yan Zhao
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Yunqi Liu
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China.
| | - Shuai Wang
- Department of Materials Science, Fudan University, Shanghai 200433, P. R. China. .,School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China.
| |
Collapse
|
27
|
Kim SH, Yook H, Sung W, Choi J, Lim H, Chung S, Han JW, Cho K. Extremely Suppressed Energetic Disorder in a Chemically Doped Conjugated Polymer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207320. [PMID: 36271732 DOI: 10.1002/adma.202207320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Chemical doping can be used to tune the optoelectronic properties of conjugated polymers (CPs), extending their applications as conducting materials. Unfortunately, chemically doped CP films containing excess dopants exhibit an increase in energetic disorder upon structural alteration, and Coulomb interactions between charge carriers and dopants also affect such disorder. The increase in energetic disorder leads to a broadening of the density of states, which consequently impedes efficient charge transport in chemically doped CPs. However, the molecular origins that are inherently resistant to such incidental increase of energetic disorder in chemically doped CPs have not been sufficiently explored. Here, it is discovered that energetic disorder in chemically doped CPs can be suppressed to a level close to the theoretical limit. Indacenodithiophene-co-benzothiadiazole (IDTBT) doped with triethyloxonium hexachloroantimonate (OA) exhibits disorder-free charge-transport characteristics and band-like transport behavior with astonishing carrier mobility as a result of reinforced 1D intramolecular transport. Molecular structure of IDTBT provides a capability to lower the energetic disorder that generally arises from the inclusion of heterogeneous dopants. The results suggest the possibilities of implementing disorder-free CPs that exhibit excellent charge transport characteristics in the chemically doped state and satisfy a prerequisite for their availability in the industry.
Collapse
Affiliation(s)
- Seong Hyeon Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyunwoo Yook
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Woong Sung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jinhyeok Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Hyungsub Lim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Sein Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| |
Collapse
|
28
|
Shi Y, Li J, Sun H, Li Y, Wang Y, Wu Z, Jeong SY, Woo HY, Fabiano S, Guo X. Thiazole Imide-Based All-Acceptor Homopolymer with Branched Ethylene Glycol Side Chains for Organic Thermoelectrics. Angew Chem Int Ed Engl 2022; 61:e202214192. [PMID: 36282628 DOI: 10.1002/anie.202214192] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Indexed: 11/22/2022]
Abstract
n-Type semiconducting polymers with high thermoelectric performance remain challenging due to the scarcity of molecular design strategy, limiting their applications in organic thermoelectric (OTE) devices. Herein, we provide a new approach to enhance the OTE performance of n-doped polymers by introducing acceptor-acceptor (A-A) type backbone bearing branched ethylene glycol (EG) side chains. When doped with 4-(2,3-dihydro-1,3-dimethyl-1H-benzimidazol-2-yl)-N,N-dimethylbenzenamine (N-DMBI), the A-A homopolymer PDTzTI-TEG exhibits n-type electrical conductivity (σ) up to 34 S cm-1 and power factor value of 15.7 μW m-1 K-2 . The OTE performance of PDTzTI-TEG is far greater than that of homopolymer PBTI-TEG (σ=0.27 S cm-1 ), indicating that introducing electron-deficient thiazole units in the backbone further improves the n-doping efficiency. These results demonstrate that developing A-A type polymers with EG side chains is an effective strategy to enhance n-type OTE performance.
Collapse
Affiliation(s)
- Yongqiang Shi
- Key Laboratory of Functional Molecular Solids, Ministry of Education, and School of Chemistry and Materials Science, Anhui Normal University, Wuhu, Anhui 241002, China
| | - Jianfeng Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Hengda Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, 2999 North Renmin Road, Shanghai, 201620, China.,Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Yongchun Li
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Yimei Wang
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| | - Ziang Wu
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Sang Young Jeong
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Han Young Woo
- Department of Chemistry, College of Science, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 136-713, Republic of Korea
| | - Simone Fabiano
- Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174, Norrköping, Sweden
| | - Xugang Guo
- Department of Materials Science and Engineering, Southern University of Science and Technology (SUSTech), No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China
| |
Collapse
|
29
|
Guo J, Liu Y, Chen P, Wang X, Wang Y, Guo J, Qiu X, Zeng Z, Jiang L, Yi Y, Watanabe S, Liao L, Bai Y, Nguyen T, Hu Y. Revealing the Electrophilic-Attack Doping Mechanism for Efficient and Universal p-Doping of Organic Semiconductors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203111. [PMID: 36089649 PMCID: PMC9661849 DOI: 10.1002/advs.202203111] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/18/2022] [Indexed: 06/02/2023]
Abstract
Doping is of great importance to tailor the electrical properties of semiconductors. However, the present doping methodologies for organic semiconductors (OSCs) are either inefficient or can only apply to some OSCs conditionally, seriously limiting their general applications. Herein, a novel p-doping mechanism is revealed by investigating the interactions between the dopant trityl tetrakis(pentafluorophenyl) borate (TrTPFB) and poly(3-hexylthiophene) (P3HT). It is found that electrophilic attack of the trityl cations on thiophenes results in the formation of tritylated thiophenium ions, which subsequently induce electron transfer from neighboring P3HT chains to realize p-doping. This unique p-doping mechanism enables TrTPFB to p-dope various OSCs including those with high ionization energy (IE ≈ 5.8 eV). Moreover, this doping mechanism endows TrTPFB with strong doping capability, leading to doping efficiency of over 80% in P3HT. The discovery and elucidation of this novel doping mechanism not only points out that strong electrophiles are a class of efficient p-dopants for OSCs, but also provides new opportunities toward highly efficient doping of various OSCs.
Collapse
Affiliation(s)
- Jing Guo
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| | - Ying Liu
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Ping‐An Chen
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| | - Xinhao Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Yanpei Wang
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Jing Guo
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Xincan Qiu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| | - Zebing Zeng
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Shun Watanabe
- Material Innovation Research Center (MIRC) and Department of Advanced Material ScienceGraduate School of Frontier SciencesThe University of Tokyo5‐1‐5 KashiwanohaKashiwaChiba77‐8561Japan
| | - Lei Liao
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
| | - Yugang Bai
- State Key Laboratory of Chem‐/Bio‐Sensing and ChemometricsSchool of Chemistry and Chemical EngineeringHunan UniversityChangshaHunan410082P. R. China
| | - Thuc‐Quyen Nguyen
- Center for Polymers and Organic SolidsDepartment of Chemistry and BiochemistryUniversity of California at Santa BarbaraSanta BarbaraCA93106USA
| | - Yuanyuan Hu
- International Science and Technology Innovation Cooperation Base for Advanced Display Technologies of Hunan ProvinceCollege of Semiconductors (College of Integrated Circuits)Hunan UniversityChangsha410082P. R. China
- Shenzhen Research Institute of Hunan UniversityShenzhen518063P. R. China
| |
Collapse
|
30
|
Babuji A, Cazorla A, Solano E, Habenicht C, Kleemann H, Ocal C, Leo K, Barrena E. Charge-Transfer Complexes in Organic Field-Effect Transistors: Superior Suitability for Surface Doping. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44632-44641. [PMID: 36126171 PMCID: PMC9542699 DOI: 10.1021/acsami.2c09168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
We demonstrate the key role of charge-transfer complexes in surface doping as a successful methodology for improving channel field-effect mobility and reducing the threshold voltage in organic field-effect transistors (OFETs), as well as raising the film conductivity. Demonstrated here for 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) doped with 2,2'-(perfluoronaphthalene-2,6-diylidene)dimalononitrile (F6TCNNQ), channel doping by sequential deposition is consistently rationalized by the development of a cocrystalline structure that forms and evolves from the surface of the organic semiconductor film without trading the thin-film structure integrity. This scenario brings higher benefits for the device operation than doping by codeposition, where a decrease in the field-effect mobility of the device, even for a dopant content of only 1 mol %, makes codeposition less suitable. Insight into the structural and electronic properties of the interface satisfactorily explains the improved performance of OFETs upon the incorporation of the dopant and provides an understanding of the mechanism of doping in this system.
Collapse
Affiliation(s)
- Adara Babuji
- Institut
de Ciència de Materials de Barcelona (ICMAB), Campus de la UAB, Bellaterra, Barcelona 08193, Spain
| | - Alba Cazorla
- Institut
de Ciència de Materials de Barcelona (ICMAB), Campus de la UAB, Bellaterra, Barcelona 08193, Spain
| | - Eduardo Solano
- NCD-SWEET
beamline, ALBA Synchrotron Light Source, C/ de la Llum 2-26. Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Carsten Habenicht
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP), Dresden 01062, Germany
| | - Hans Kleemann
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP), Dresden 01062, Germany
| | - Carmen Ocal
- Institut
de Ciència de Materials de Barcelona (ICMAB), Campus de la UAB, Bellaterra, Barcelona 08193, Spain
| | - Karl Leo
- Dresden
Integrated Center for Applied Physics and Photonic Materials (IAPP), Dresden 01062, Germany
| | - Esther Barrena
- Institut
de Ciència de Materials de Barcelona (ICMAB), Campus de la UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|
31
|
Yakusheva A, Saranin D, Muratov D, Gostishchev P, Pazniak H, Di Vito A, Le TS, Luchnikov L, Vasiliev A, Podgorny D, Kuznetsov D, Didenko S, Di Carlo A. Photo Stabilization of p-i-n Perovskite Solar Cells with Bathocuproine: MXene. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201730. [PMID: 35957542 DOI: 10.1002/smll.202201730] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Interface engineering is one of the promising strategies for the long-term stabilization of perovskite solar cells (PSCs), preventing chemical decomposition induced by external agents and promoting fast charge transfer. Recently, MXenes-2D structured transition metal carbides and nitrides with various functionalization (O, -F, -OH) have demonstrated high potential for mastering the work function in halide perovskite absorbers and have significantly improved the n-type charge collection in solar cells. This work demonstrates that MXenes allow for efficient stabilization of PSCs besides improving their performances. A mixed composite bathocuproine:MXene, that is, (BCP:MXene) interlayer, is introduced at the interface between an electron-transport layer (ETL) and a metal cathode in the p-i-n device structure. The investigation demonstrates that the use of BCP:MXene interlayer slightly increases the power conversation efficiency (PCE) for PSCs (from 16.5 for reference to 17.5%) but dramatically improves the out of Glove-Box stability. Under ISOS-L-2 light soaking stress at 63 ± 1.5 °C, the T80 (time needed to reduce efficiency down to 80% of the initial one) period increases from 460 to > 2300 hours (h).
Collapse
Affiliation(s)
- Anastasia Yakusheva
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Danila Saranin
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Dmitry Muratov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
- Department of Functional Nanomaterials and High-Temperature Materials, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Pavel Gostishchev
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Hanna Pazniak
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, 3 parvis Louis Néel, Grenoble, 38016, France
| | - Alessia Di Vito
- C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, Rome, 00133, Italy
| | - Thai Son Le
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Lev Luchnikov
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Anton Vasiliev
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Dmitry Podgorny
- Department of Material Science in Semiconductors and Dielectrics, National University of Science and Technology ''MISiS'', Krymskiy val 3, Moscow, 119049, Russia
| | - Denis Kuznetsov
- Department of Functional Nanomaterials and High-Temperature Materials, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Sergey Didenko
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
| | - Aldo Di Carlo
- LASE - Laboratory of Advanced Solar Energy, National University of Science and Technology "MISiS", Leninsky prospect 4, Moscow, 119049, Russia
- C.H.O.S.E. (Centre for Hybrid and Organic Solar Energy), Department of Electronic Engineering, University of Rome Tor Vergata, via del Politecnico 1, Rome, 00133, Italy
| |
Collapse
|
32
|
Anisotropic Charge Transfer Mobility Properties of Systems with Large Conjugation Core and Peripheral Phenyl Rings. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02307-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Wang SJ, Sawatzki M, Darbandy G, Talnack F, Vahland J, Malfois M, Kloes A, Mannsfeld S, Kleemann H, Leo K. Organic bipolar transistors. Nature 2022; 606:700-705. [PMID: 35732763 PMCID: PMC9217747 DOI: 10.1038/s41586-022-04837-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/05/2022] [Indexed: 11/09/2022]
Abstract
Devices made using thin-film semiconductors have attracted much interest recently owing to new application possibilities. Among materials systems suitable for thin-film electronics, organic semiconductors are of particular interest; their low cost, biocompatible carbon-based materials and deposition by simple techniques such as evaporation or printing enable organic semiconductor devices to be used for ubiquitous electronics, such as those used on or in the human body or on clothing and packages1–3. The potential of organic electronics can be leveraged only if the performance of organic transistors is improved markedly. Here we present organic bipolar transistors with outstanding device performance: a previously undescribed vertical architecture and highly crystalline organic rubrene thin films yield devices with high differential amplification (more than 100) and superior high-frequency performance over conventional devices. These bipolar transistors also give insight into the minority carrier diffusion length—a key parameter in organic semiconductors. Our results open the door to new device concepts of high-performance organic electronics with ever faster switching speeds. An organic bipolar junction transistor composed of highly crystalline rubrene thin films has a device architecture that could be used in organic electronics with greatly improved high-frequency performance
Collapse
Affiliation(s)
- Shu-Jen Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
| | - Michael Sawatzki
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
| | - Ghader Darbandy
- NanoP, Technische Hochschule Mittelhessen, University of Applied Science, Gießen, Germany
| | - Felix Talnack
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
| | - Jörn Vahland
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
| | | | - Alexander Kloes
- NanoP, Technische Hochschule Mittelhessen, University of Applied Science, Gießen, Germany
| | - Stefan Mannsfeld
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, Dresden, Germany. .,Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
34
|
Jacobs IE, Lin Y, Huang Y, Ren X, Simatos D, Chen C, Tjhe D, Statz M, Lai L, Finn PA, Neal WG, D'Avino G, Lemaur V, Fratini S, Beljonne D, Strzalka J, Nielsen CB, Barlow S, Marder SR, McCulloch I, Sirringhaus H. High-Efficiency Ion-Exchange Doping of Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2102988. [PMID: 34418878 DOI: 10.1002/adma.202102988] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Molecular doping-the use of redox-active small molecules as dopants for organic semiconductors-has seen a surge in research interest driven by emerging applications in sensing, bioelectronics, and thermoelectrics. However, molecular doping carries with it several intrinsic problems stemming directly from the redox-active character of these materials. A recent breakthrough was a doping technique based on ion-exchange, which separates the redox and charge compensation steps of the doping process. Here, the equilibrium and kinetics of ion exchange doping in a model system, poly(2,5-bis(3-alkylthiophen-2-yl)thieno(3,2-b)thiophene) (PBTTT) doped with FeCl3 and an ionic liquid, is studied, reaching conductivities in excess of 1000 S cm-1 and ion exchange efficiencies above 99%. Several factors that enable such high performance, including the choice of acetonitrile as the doping solvent, which largely eliminates electrolyte association effects and dramatically increases the doping strength of FeCl3 , are demonstrated. In this high ion exchange efficiency regime, a simple connection between electrochemical doping and ion exchange is illustrated, and it is shown that the performance and stability of highly doped PBTTT is ultimately limited by intrinsically poor stability at high redox potential.
Collapse
Affiliation(s)
- Ian E Jacobs
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yue Lin
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yuxuan Huang
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Xinglong Ren
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Dimitrios Simatos
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Chen Chen
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Dion Tjhe
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Martin Statz
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lianglun Lai
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Peter A Finn
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - William G Neal
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, B-7000, Belgium
| | - Simone Fratini
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - David Beljonne
- Laboratory for Chemistry of Novel Materials, University of Mons, Mons, B-7000, Belgium
| | - Joseph Strzalka
- X-Ray Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Christian B Nielsen
- School of Biological and Chemical Sciences, Queen Mary University of London, Mile End Road, London, E1 4NS, UK
| | - Stephen Barlow
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Seth R Marder
- School of Chemistry and Biochemistry and Center for Organic Photonics and Electronics, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Iain McCulloch
- KAUST Solar Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955, Saudi Arabia
- Department of Chemistry, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Henning Sirringhaus
- Optoelectronics Group, Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge, CB3 0HE, UK
| |
Collapse
|
35
|
Abstract
Double doping, in which a single dopant molecule induces two charge carriers in an organic semiconductor (OSC), was recently experimentally observed and promises to enhance the efficiency of molecular doping. Here we present a theoretical investigation of p-type molecular double doping in a CN6-CP:bithiophene-thienothiophene OSC system. Our analysis is based on density functional theory (DFT) calculations for the electronic ground state. In a molecular complex with two OSC oligomers and one CN6-CP dopant molecule, we explicitly demonstrate double integer charge transfer and find the formation of two individual polarons on the OSC molecules and a dianion dopant molecule. We show that the vibrational modes and related infrared absorption spectrum of this complex can be traced back to those of the charged dopant and OSC molecules in their isolated forms. The near-infrared optical absorption spectrum calculated by time-dependent DFT shows features of both typical intramolecular polaron excitations and weak intermolecular charge transfer excitations associated with the doping-induced polaron states.
Collapse
Affiliation(s)
- Thomas Bathe
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Chuan-Ding Dong
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany
| | - Stefan Schumacher
- Department of Physics and Center for Optoelectronics and Photonics Paderborn (CeOPP), Paderborn University, Warburger Strasse 100, 33098 Paderborn, Germany.,Wyant College of Optical Sciences, University of Arizona, Tucson, Arizona 85721, United States
| |
Collapse
|
36
|
Wang SJ, Panhans M, Lashkov I, Kleemann H, Caglieris F, Becker-Koch D, Vahland J, Guo E, Huang S, Krupskaya Y, Vaynzof Y, Büchner B, Ortmann F, Leo K. Highly efficient modulation doping: A path toward superior organic thermoelectric devices. SCIENCE ADVANCES 2022; 8:eabl9264. [PMID: 35353575 PMCID: PMC8967228 DOI: 10.1126/sciadv.abl9264] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
We investigate the charge and thermoelectric transport in modulation-doped large-area rubrene thin-film crystals with different crystal phases. We show that modulation doping allows achieving superior doping efficiencies even for high doping densities, when conventional bulk doping runs into the reserve regime. Modulation-doped orthorhombic rubrene achieves much improved thermoelectric power factors, exceeding 20 μW m-1 K-2 at 80°C. Theoretical studies give insight into the energy landscape of the heterostructures and its influence on qualitative trends of the Seebeck coefficient. Our results show that modulation doping together with high-mobility crystalline organic semiconductor films is a previosly unexplored strategy for achieving high-performance organic thermoelectrics.
Collapse
Affiliation(s)
- Shu-Jen Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
- Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Michel Panhans
- Technische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtz Str. 18, 01069 Dresden, Germany
| | - Ilia Lashkov
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Federico Caglieris
- Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
- CNR-SPIN Institute, Corso F. M. Perrone 24, 16152 Genova, Italy
| | - David Becker-Koch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtz Str. 18, 01069 Dresden, Germany
| | - Jörn Vahland
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Erjuan Guo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Shiyu Huang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| | - Yulia Krupskaya
- Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Yana Vaynzof
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtz Str. 18, 01069 Dresden, Germany
| | - Bernd Büchner
- Leibnitz Institute for Solid State and Materials Research, IFW, Helmholtzstraße 20, 01069 Dresden, Germany
| | - Frank Ortmann
- Technische Universität München, Department of Chemistry, Lichtenbergstr. 4, 85748 Garching b. München, Germany
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, Helmholtz Str. 18, 01069 Dresden, Germany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP), Technische Universität Dresden, 01069 Dresden, Germany
| |
Collapse
|
37
|
Memon WA, Zhang Y, Zhang J, Yan Y, Wang Y, Wei Z. Alignment of organic conjugated molecules for high-performance device applications. Macromol Rapid Commun 2022; 43:e2100931. [PMID: 35338681 DOI: 10.1002/marc.202100931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 03/17/2022] [Indexed: 11/11/2022]
Abstract
High-performance organic semiconductor materials as the electroactive components of optoelectronic devices have attracted much attention and made them ideal candidates for solution-processable, large-area, and low-cost flexible electronics. Especially, organic field-effect transistors (OFETs) based on conjugated semiconductor materials have experienced stunning progress in device performance. To make these materials economically viable, comprehensive knowledge of charge transport mechanisms is required. The alignment of organic conjugated molecules in the active layer is vital to charge transport properties of devices. The present review highlights the recent progress of processing-structure-transport correlations that allow the precise and uniform alignment of organic conjugated molecules over large areas for multiple electronic applications, including OFETs, organic thermoelectric devices (OTEs), and organic phototransistors (OPTs). Different strategies for regulating crystallinity and macroscopic orientation of conjugated molecules are introduced to correlate the molecular packing, the device performance and charge transport anisotropy in multiple organic electronic devices. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Waqar Ali Memon
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yajie Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianqi Zhang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yangjun Yan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Yuheng Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Zhixiang Wei
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| |
Collapse
|
38
|
Xing S, Kublitski J, Hänisch C, Winkler LC, Li T, Kleemann H, Benduhn J, Leo K. Photomultiplication-Type Organic Photodetectors for Near-Infrared Sensing with High and Bias-Independent Specific Detectivity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105113. [PMID: 34994114 PMCID: PMC8895121 DOI: 10.1002/advs.202105113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/09/2021] [Indexed: 06/09/2023]
Abstract
Highly responsive organic photodetectors allow a plethora of applications in fields like imaging, health, security monitoring, etc. Photomultiplication-type organic photodetectors (PM-OPDs) are a desirable option due to their internal amplification mechanism. However, for such devices, significant gain and low dark currents are often mutually excluded since large operation voltages often induce high shot noise. Here, a fully vacuum-processed PM-OPD is demonstrated using trap-assisted electron injection in BDP-OMe:C60 material system. By applying only -1 V, compared with the self-powered working condition, the responsivity is increased by one order of magnitude, resulting in an outstanding specific detectivity of ≈1013 Jones. Remarkably, the superior detectivity in the near-infrared region is stable and almost voltage-independent up to -10 V. Compared with two photovoltaic-type photodetectors, these PM-OPDs exhibit the great potential to be easily integrated with state-of-the-art readout electronics in terms of their high responsivity, fast response speed, and bias-independent specific detectivity. The employed vacuum fabrication process and the easy-to-adapt PM-OPD concept enable seamless upscaling of production, paving the way to a commercially relevant photodetector technology.
Collapse
Affiliation(s)
- Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Christian Hänisch
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Louis Conrad Winkler
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Tian‐yi Li
- Department of Physical ChemistryUniversity of Science and Technology BeijingBeijing100083China
| | - Hans Kleemann
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied PhysicsTechnische Universität Dresden01187DresdenGermany
| |
Collapse
|
39
|
Thermal Grafting of Benzaldehyde for Preparing Catalytically Active Silicon Surface Evaluated by Electrical Methods. Top Catal 2022. [DOI: 10.1007/s11244-022-01582-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Xie G, Leo K. Catalysing n-doping. Innovation (N Y) 2022; 3:100219. [PMID: 35280230 PMCID: PMC8904609 DOI: 10.1016/j.xinn.2022.100219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/16/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, China
- Corresponding author
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, 01187 Dresden, Germany
- Corresponding author
| |
Collapse
|
41
|
Wang Y, Kublitski J, Xing S, Dollinger F, Spoltore D, Benduhn J, Leo K. Narrowband organic photodetectors - towards miniaturized, spectroscopic sensing. MATERIALS HORIZONS 2022; 9:220-251. [PMID: 34704585 DOI: 10.1039/d1mh01215k] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Omnipresent quality monitoring in food products, blood-oxygen measurement in lightweight conformal wrist bands, or data-driven automated industrial production: Innovation in many fields is being empowered by sensor technology. Specifically, organic photodetectors (OPDs) promise great advances due to their beneficial properties and low-cost production. Recent research has led to rapid improvement in all performance parameters of OPDs, which are now on-par or better than their inorganic counterparts, such as silicon or indium gallium arsenide photodetectors, in several aspects. In particular, it is possible to directly design OPDs for specific wavelengths. This makes expensive and bulky optical filters obsolete and allows for miniature detector devices. In this review, recent progress of such narrowband OPDs is systematically summarized covering all aspects from narrow-photo-absorbing materials to device architecture engineering. The recent challenges for narrowband OPDs, like achieving high responsivity, low dark current, high response speed, and good dynamic range are carefully addressed. Finally, application demonstrations covering broadband and narrowband OPDs are discussed. Importantly, several exciting research perspectives, which will stimulate further research on organic-semiconductor-based photodetectors, are pointed out at the very end of this review.
Collapse
Affiliation(s)
- Yazhong Wang
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Jonas Kublitski
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Shen Xing
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Felix Dollinger
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Donato Spoltore
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Johannes Benduhn
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| | - Karl Leo
- Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and Institute for Applied Physics, Technische Universität Dresden, Nöthnitzer Str. 61, 01187 Dresden, Germany.
| |
Collapse
|
42
|
Tsunashima R. Molecular solid solutions for advanced materials – homeomorphic or heteromorphic. CrystEngComm 2022. [DOI: 10.1039/d1ce01632f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Crystalline molecular solid solutions are discussed on the basis of homeomorphism and heteromorphism of blended molecules.
Collapse
Affiliation(s)
- Ryo Tsunashima
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yoshida 1677-1, Yamaguchi, 753-8512, Japan
| |
Collapse
|
43
|
Comin M, Fratini S, Blase X, D'Avino G. Doping-Induced Dielectric Catastrophe Prompts Free-Carrier Release in Organic Semiconductors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2105376. [PMID: 34647372 DOI: 10.1002/adma.202105376] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The control over material properties attainable through molecular doping is essential to many technological applications of organic semiconductors, such as organic light-emitting diodes or thermoelectrics. These excitonic semiconductors typically reach the degenerate limit only at impurity concentrations of 5-10%, a phenomenon that has been put in relation with the strong Coulomb binding between charge carriers and ionized dopants, and whose comprehension remained elusive so far. This study proposes a general mechanism for the release of carriers at finite doping in terms of collective screening phenomena. A multiscale model for the dielectric properties of doped organic semiconductor is set up by combining first principles and microelectrostatic calculations. The results predict a large nonlinear enhancement of the dielectric constant (tenfold at 8% load) as the system approaches a dielectric instability (catastrophe) upon increasing doping. This can be attributed to the presence of highly polarizable host-dopant complexes, plus a nontrivial leading contribution from dipolar interactions in the disordered and heterogeneous system. The enhanced screening in the material drastically reduces the (free) energy barriers for electron-hole separation, rationalizing the possibility for thermal charge release. The proposed mechanism is consistent with conductivity data and sets the basis for achieving higher conductivities at lower doping loads.
Collapse
Affiliation(s)
- Massimiliano Comin
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - Simone Fratini
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - Xavier Blase
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| | - Gabriele D'Avino
- Grenoble Alpes University, CNRS, Grenoble INP, Institut Néel, 25 rue des Martyrs, Grenoble, 38042, France
| |
Collapse
|
44
|
Mombrú D, Romero M, Faccio R, Mombrú ÁW. Ab Initio Molecular Dynamics Assessment on the Mixed Ionic–Electronic Transport for Crystalline Poly(3-Hexylthiophene) Using Full Explicit Lithium-Based Dopants and Additives. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c02009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Dominique Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Mariano Romero
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Ricardo Faccio
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| | - Álvaro W. Mombrú
- Centro NanoMat & Área Física, Departamento de Experimentación y Teoría de la Estructura de la Materia y sus Aplicaciones (DETEMA), Facultad de Química, Universidad de la República, Montevideo C.P. 11800, Uruguay
| |
Collapse
|
45
|
Scaccabarozzi AD, Basu A, Aniés F, Liu J, Zapata-Arteaga O, Warren R, Firdaus Y, Nugraha MI, Lin Y, Campoy-Quiles M, Koch N, Müller C, Tsetseris L, Heeney M, Anthopoulos TD. Doping Approaches for Organic Semiconductors. Chem Rev 2021; 122:4420-4492. [PMID: 34793134 DOI: 10.1021/acs.chemrev.1c00581] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Electronic doping in organic materials has remained an elusive concept for several decades. It drew considerable attention in the early days in the quest for organic materials with high electrical conductivity, paving the way for the pioneering work on pristine organic semiconductors (OSCs) and their eventual use in a plethora of applications. Despite this early trend, however, recent strides in the field of organic electronics have been made hand in hand with the development and use of dopants to the point that are now ubiquitous. Here, we give an overview of all important advances in the area of doping of organic semiconductors and their applications. We first review the relevant literature with particular focus on the physical processes involved, discussing established mechanisms but also newly proposed theories. We then continue with a comprehensive summary of the most widely studied dopants to date, placing particular emphasis on the chemical strategies toward the synthesis of molecules with improved functionality. The processing routes toward doped organic films and the important doping-processing-nanostructure relationships, are also discussed. We conclude the review by highlighting how doping can enhance the operating characteristics of various organic devices.
Collapse
Affiliation(s)
- Alberto D Scaccabarozzi
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Aniruddha Basu
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Filip Aniés
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Jian Liu
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Osnat Zapata-Arteaga
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Ross Warren
- Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Yuliar Firdaus
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia.,Research Center for Electronics and Telecommunication, Indonesian Institute of Science, Jalan Sangkuriang Komplek LIPI Building 20 level 4, Bandung 40135, Indonesia
| | - Mohamad Insan Nugraha
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Yuanbao Lin
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| | - Mariano Campoy-Quiles
- Materials Science Institute of Barcelona, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Norbert Koch
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Kekulé-Strasse 5, 12489 Berlin, Germany.,Institut für Physik & IRIS Adlershof, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Christian Müller
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Göteborg 412 96, Sweden
| | - Leonidas Tsetseris
- Department of Physics, National Technical University of Athens, Athens GR-15780, Greece
| | - Martin Heeney
- Department of Chemistry and Centre for Processable Electronics, Imperial College London, London W12 0BZ, U.K
| | - Thomas D Anthopoulos
- King Abdullah University of Science and Technology (KAUST), KAUST Solar Center (KSC), Thuwal 23955, Saudi Arabia
| |
Collapse
|
46
|
Krauss G, Hochgesang A, Mohanraj J, Thelakkat M. Highly Efficient Doping of Conjugated Polymers Using Multielectron Acceptor Salts. Macromol Rapid Commun 2021; 42:e2100443. [PMID: 34599788 DOI: 10.1002/marc.202100443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Indexed: 11/06/2022]
Abstract
Chemical doping is a vital tool for tuning electronic properties of conjugated polymers. Most single electron acceptors used for p-doping necessitate high dopant concentrations to achieve good electrical conductivity. However, high-molar doping ratios hamper doping efficiency. Here a new concept of using multielectron acceptor (MEA) salts as dopants for conjugated polymers is presented. Two novel MEA salts are synthesized and their doping efficiency towards two polymers differing in their dielectric properties are compared with two single electron acceptors such as NOPF6 and magic blue. Cutting-edge methods such as ultraviolet photoelectron spectroscopy/X-ray photoelectron spectroscopy (XPS), impedance spectroscopy, and density of states analysis in addition to UV-vis-NIR absorption, spectroelectrochemistry, and Raman spectroscopy methods are used to characterize the doped systems. The tetracation salt improves the conductivity by two orders of magnitude and quadruples the charge carrier concentration compared to single electron acceptors for the same molar ratio. The differences in charge carrier density and activation energy on doping are delineated. Further, a strong dependency of the carrier release on the polymer polarity is observed. High carrier densities at reduced dopant loadings and improved doping efficacies using MEA dopants offer a highly efficient doping strategy for conjugated polymers.
Collapse
Affiliation(s)
- Gert Krauss
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - Adrian Hochgesang
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - John Mohanraj
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany
| | - Mukundan Thelakkat
- Applied Functional Polymers, Macromolecular Chemistry I, University of Bayreuth, Bayreuth, 95440, Germany.,Bavarian Polymer Institute, University of Bayreuth, Bayreuth, 95440, Germany
| |
Collapse
|
47
|
Upadhyaya M, Lu‐Díaz M, Samanta S, Abdullah M, Dusoe K, Kittilstved KR, Venkataraman D, Akšamija Z. Raising Dielectric Permittivity Mitigates Dopant-Induced Disorder in Conjugated Polymers. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101087. [PMID: 34382366 PMCID: PMC8498903 DOI: 10.1002/advs.202101087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Conjugated polymers need to be doped to increase charge carrier density and reach the electrical conductivity necessary for electronic and energy applications. While doping increases carrier density, Coulomb interactions between the dopant molecules and the localized carriers are poorly screened, causing broadening and a heavy tail in the electronic density-of-states (DOS). The authors examine the effects of dopant-induced disorder on two complimentary charge transport properties of semiconducting polymers, the Seebeck coefficient and electrical conductivity, and demonstrate a way to mitigate them. Their simulations, based on a modified Gaussian disorder model with Miller-Abrahams hopping rates, show that dopant-induced broadening of the DOS negatively impacts the Seebeck coefficient versus electrical conductivity trade-off curve. Increasing the dielectric permittivity of the polymer mitigates dopant-carrier Coulomb interactions and improves charge transport, evidenced by simultaneous increases in conductivity and the Seebeck coefficient. They verified this increase experimentally in iodine-doped P3HT and P3HT blended with barium titanate (BaTiO3 ) nanoparticles. The addition of 2% w/w BaTiO3 nanoparticles increased conductivity and Seebeck across a broad range of doping, resulting in a fourfold increase in power factor. Thus, these results show a promising path forward to reduce the dopant-charge carrier Coulomb interactions and mitigate their adverse impact on charge transport.
Collapse
Affiliation(s)
- Meenakshi Upadhyaya
- Electrical and Computer EngineeringUniversity of Massachusetts AmherstAmherstUSA
| | | | | | | | - Keith Dusoe
- Polymer Science and EngineeringUniversity of Massachusetts AmherstAmherstUSA
- Institute for Applied Life SciencesUniversity of Massachusetts AmherstAmherstUSA
| | | | | | - Zlatan Akšamija
- Electrical and Computer EngineeringUniversity of Massachusetts AmherstAmherstUSA
| |
Collapse
|
48
|
Xu H, Lin J, Jiang X, Jin Y, Lin Z, Zhang X, Li X, Yang H, Wu Z. Study on the difference in exciton generation processes for a single host and exciplex-type co-host. OPTICS LETTERS 2021; 46:4840-4843. [PMID: 34598213 DOI: 10.1364/ol.439516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
We distinctly reveal the difference in the exciton generation processes in phosphorescent organic light-emitting devices with an exciplex-type co-host and a single host. Excitons in the co-host consisting of 4,4,4-tris(N-carbazolyl)-triphenylamine and 1,3,5-tris(N-phenylbenzimidazol-2-yl)benzene are created via efficient energy transfer from the exciplex to the phosphorescent dopant. In contrast, excitons in the single host of 4,4,4-tris(N-carbazolyl)-triphenylamine are formed by the combination of holes and electrons trapped by the phosphorescent dopants. The optimized device utilizing the co-host system exhibits highly superior performance relative to the single-host device. The maximum external quantum efficiency and maximum luminance are 14.88% and 90,700cd/m2 for the co-host device, being 1.6 times and 3.6 times the maximum external efficiency and maximum luminance for the single-host device, respectively. Significantly, the critical current density, evaluating the device efficiency roll-off characteristic, is as high as 327.8mA/cm2, which is highly superior to 120.8mA/cm2 for the single-host device, indicating the notable alleviation in efficiency roll-off for the co-host device. The significant improvement in device performance is attributed to eliminating the exciton quenching resulting from the captured holes and the efficient energy transfer from the exciplex-type co-host to the phosphorescent emitter incurred by the reverse intersystem crossing process.
Collapse
|
49
|
Sakai N, Warren R, Zhang F, Nayak S, Liu J, Kesava SV, Lin YH, Biswal HS, Lin X, Grovenor C, Malinauskas T, Basu A, Anthopoulos TD, Getautis V, Kahn A, Riede M, Nayak PK, Snaith HJ. Adduct-based p-doping of organic semiconductors. NATURE MATERIALS 2021; 20:1248-1254. [PMID: 33888905 DOI: 10.1038/s41563-021-00980-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 03/09/2021] [Indexed: 06/12/2023]
Abstract
Electronic doping of organic semiconductors is essential for their usage in highly efficient optoelectronic devices. Although molecular and metal complex-based dopants have already enabled significant progress of devices based on organic semiconductors, there remains a need for clean, efficient and low-cost dopants if a widespread transition towards larger-area organic electronic devices is to occur. Here we report dimethyl sulfoxide adducts as p-dopants that fulfil these conditions for a range of organic semiconductors. These adduct-based dopants are compatible with both solution and vapour-phase processing. We explore the doping mechanism and use the knowledge we gain to 'decouple' the dopants from the choice of counterion. We demonstrate that asymmetric p-doping is possible using solution processing routes, and demonstrate its use in metal halide perovskite solar cells, organic thin-film transistors and organic light-emitting diodes, which showcases the versatility of this doping approach.
Collapse
Affiliation(s)
- Nobuya Sakai
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Ross Warren
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Fengyu Zhang
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Simantini Nayak
- Department of Chemistry, University of Oxford, Inorganic Chemistry Laboratory, Oxford, UK
- Materials Chemistry Department, CSIR-Institute of Mineral and Materials Technology, Bhubaneswar, India
| | - Junliang Liu
- Department of Materials, University of Oxford, Oxford, UK
| | - Sameer V Kesava
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Yen-Hung Lin
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Himansu S Biswal
- School of Chemical Sciences, National Institute of Science Education and Research, Bhubaneswar, India
| | - Xin Lin
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Chris Grovenor
- Department of Materials, University of Oxford, Oxford, UK
| | - Tadas Malinauskas
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Aniruddha Basu
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Thomas D Anthopoulos
- KAUST Solar Center (KSC), King Abdullah University of Science and Technology (KAUST), Thuwal, Kingdom of Saudi Arabia
| | - Vytautas Getautis
- Department of Organic Chemistry, Kaunas University of Technology, Kaunas, Lithuania
| | - Antoine Kahn
- Department of Electrical and Computer Engineering, Princeton University, Princeton, NJ, USA
| | - Moritz Riede
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Pabitra K Nayak
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- TIFR Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, Hyderabad, India.
| | - Henry J Snaith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
| |
Collapse
|
50
|
Lu Y, Wang JY, Pei J. Achieving Efficient n-Doping of Conjugated Polymers by Molecular Dopants. Acc Chem Res 2021; 54:2871-2883. [PMID: 34152131 DOI: 10.1021/acs.accounts.1c00223] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ConspectusMolecular doping is one of the most central propositions in the field of organic electronics. Unlike classical inorganic semiconductors doped by atomic substitution, organic conjugated materials react with molecular dopants, and then intermolecular charge transfer is involved within. Therefore, the complex noncovalent interactions between two components often cause the molecular dopant to destroy the orderly stacking of the host organic materials and reduce the original properties of the material, such as carrier mobility, which here we call the "doping dilemma." Recently, many studies focus on improving p-doping efficiency and electrical conductivity of doped conjugated polymers; however, the development of n-type molecular doping currently lags far behind that of its p-counterpart. It is well-known that both efficient p- and n-type molecular doping are indispensable in various organic electronic devices, including light-emitting diodes, photovoltaics, field-effect transistors, and thermoelectrics. It is thus an urgent requirement to achieve efficient n-doping in conjugated polymers.In this Account, we give a brief overview of our efforts to improve the n-doping efficiency in conjugated polymers with several strategies from the aspects of the polymer/dopant molecular design and the exploration of the n-type molecular doping mechanism and charge transport mechanism in n-doped organic materials. For the conjugated polymer engineering, we first demonstrate that increasing the electron affinity of the host polymer through halogen substitution can boost the n-doping efficiency. Still, the rigid coplanar backbones of conjugated polymers play a crucial role in the polaron delocalization and final electrical performance. In addition, we emphasize the importance of morphology control in the doped polymers to address the "doping dilemma." For n-dopants designing, we summarize some basic guidelines from molecular sizes and shapes, the interaction between dopants (or dopant cations) and polymers, and the effects of dopants on morphology to design high-efficacy n-type molecular dopants. We propose that the polymers and the dopants need to be treated as a whole system; while enhancing the ionization efficiency, more attention should be paid to the carrierization (free-carrier generation) efficiency of these binary systems. In the end, we adopt the n-type polymer thermoelectric material as an example to discuss the grand challenges encountered in practical applications of n-doped conjugated polymers. The air stability and micrometer-thick thermo-leg processing of n-doped polymers are highlighted for thermoelectric applications. It is our hope that this Account showcases a blueprint for rational approaches and a deep understanding toward the design and development of efficient n-doping in conjugated polymers, bringing n-doped organic materials into the next era.
Collapse
Affiliation(s)
- Yang Lu
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie-Yu Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jian Pei
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, Center of Soft Matter Science and Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|