1
|
Jadhav DB, Roy S. Circadian Proteomics Reassesses the Temporal Regulation of Metabolic Rhythms by Chlamydomonas Clock. PLANT, CELL & ENVIRONMENT 2025; 48:3512-3528. [PMID: 39777639 DOI: 10.1111/pce.15354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
Circadian clocks execute temporal regulation of metabolism by modulating the timely expression of genes. Clock regulation of mRNA synthesis was envisioned as the primary driver of these daily rhythms. mRNA oscillations often do not concur with the downstream protein oscillations, revealing the importance to study protein oscillations. Chlamydomonas reinhardtii is a well-studied miniature plant model. We quantitatively probed the Chlamydomonas proteome for two subsequent circadian cycles using high throughput SWATH-DIA mass spectrometry. We quantified > 1000 proteins, half of which demonstrate circadian rhythms. Among these rhythmic proteins, > 90% peak around subjective midday or midnight. We uncovered key enzymes involved in Box C/D pathway, amino acid biosynthesis, fatty acid (FA) biosynthesis and peroxisomal β-oxidation of FAs are driven by the clock, which were undocumented from earlier transcriptomic studies. Proteins associated with key biological processes such as photosynthesis, redox, carbon fixation, glycolysis and TCA cycle show extreme temporal regulation. We conclude that circadian proteomics is required to complement transcriptomic studies to understand the complex clock regulation of organismal biology. We believe our study will not only refine and enrich the evaluation of temporal metabolic processes in C. reinhardtii but also provide a novel understanding of clock regulation across species.
Collapse
Affiliation(s)
| | - Sougata Roy
- Department of Biology, Trivedi School of Biosciences, Ashoka University, Sonipat, India
| |
Collapse
|
2
|
Yang S, Ren X, Liu J, Lei Y, Li M, Wang F, Cheng S, Ying J, Ding J, Chen X. Knockdown of the Clock gene in the liver aggravates MASLD in mice via inhibiting lipophagy. Mol Cell Biochem 2025; 480:2455-2469. [PMID: 39276171 DOI: 10.1007/s11010-024-05109-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 08/27/2024] [Indexed: 09/16/2024]
Abstract
The increased global prevalence of metabolic dysfunction-associated steatohepatitis (MASLD) has been closely associated with chronic disorders of the circadian clock. Herein, we investigate the role of Clock, a core circadian gene, in the pathogenesis of MASLD. Wild-type (WT) and liver-specific Clock knockdown (Clock-KD) mice were fed a Western diet for 20 weeks to induce MASLD. A cellular MASLD model was established by treating AML12 cells with free fatty acids and the effects of Clock knockdown were examined following transfection with Clock siRNA. Increased lipid deposition and more severe steatohepatitis and fibrosis were observed in the livers of Western diet-fed but not normal chow diet-fed Clock-KD mice after 20 weeks compared to WT mice. Moreover, the Clock gene was found to be significantly downregulated in WT MASLD mice. The Clock gene was shown to regulate the expression of lipophagy-related proteins (LC3B, P62, RAB7, and PLIN2) in vivo and in vitro. Knockdown of Clock was found to inhibit lipophagy resulting in increased accumulation of lipid droplets in the mouse liver and AML12 cells. Interestingly, the CLOCK protein was shown to interact with P62. However, knockdown of the Clock gene did not promote transcription of the P62 gene but suppressed degradation of the P62 protein during lipophagy in AML12 cells. The hepatic Clock gene regulates lipophagy and affects lipid droplet deposition in liver cells, and thus plays a critical role in the development of MASLD induced by a Western diet.
Collapse
Affiliation(s)
- Shuhong Yang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China.
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xinxin Ren
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Jia Liu
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Yan Lei
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Minqian Li
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Fang Wang
- School of Life Science and Engineering, Lanzhou University of Technology, Lanzhou, Gansu, 730050, People's Republic of China
| | - Shuting Cheng
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Junjie Ying
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jie Ding
- The Second Hospital of Lanzhou University, Lanzhou University, Lanzhou, 730050, China
| | - Xiaohui Chen
- Gansu Province Maternity and Child Health Hospital (Gansu Province Central Hospital), Lanzhou, 730050, China
| |
Collapse
|
3
|
Mortimer T, Smith JG, Muñoz-Cánoves P, Benitah SA. Circadian clock communication during homeostasis and ageing. Nat Rev Mol Cell Biol 2025; 26:314-331. [PMID: 39753699 DOI: 10.1038/s41580-024-00802-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2024] [Indexed: 03/28/2025]
Abstract
Maintaining homeostasis is essential for continued health, and the progressive decay of homeostatic processes is a hallmark of ageing. Daily environmental rhythms threaten homeostasis, and circadian clocks have evolved to execute physiological processes in a manner that anticipates, and thus mitigates, their effects on the organism. Clocks are active in almost all cell types; their rhythmicity and functional output are determined by a combination of tissue-intrinsic and systemic inputs. Numerous inputs for a specific tissue are produced by the activity of circadian clocks of other tissues or cell types, generating a form of crosstalk known as clock communication. In mammals, the central clock in the hypothalamus integrates signals from external light-dark cycles to align peripheral clocks elsewhere in the body. This regulation is complemented by a tissue-specific milieu of external, systemic and niche inputs that modulate and cooperate with the cellular circadian clock machinery of a tissue to tailor its functional output. These mechanisms of clock communication decay during ageing, and growing evidence suggests that this decline might drive ageing-related morbidities. Dietary, behavioural and pharmacological interventions may offer the possibility to overcome these changes and in turn improve healthspan.
Collapse
Affiliation(s)
- Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Jacob G Smith
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain.
- Institute of Biomedicine of the University of Barcelona (IBUB), University of Barcelona, Barcelona, Spain.
| | - Pura Muñoz-Cánoves
- Department of Medicine and Life Sciences (MELIS), Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
- Altos Labs Inc., San Diego Institute of Science, San Diego, CA, USA.
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| |
Collapse
|
4
|
Monnier C, Ganbold M, Auclair M, Roblot N, Boutin AB, Boutin PK, Fève B, Antoine B. RORα fine-tunes the circadian control of hepatic triglyceride synthesis and gluconeogenesis. Sci Rep 2025; 15:10464. [PMID: 40140523 PMCID: PMC11947083 DOI: 10.1038/s41598-025-95228-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
Circadian rhythms play a fundamental role in hepatic metabolism, orchestrating lipid synthesis and glucose homeostasis. RORα, a nuclear receptor involved in circadian regulation, has been implicated in fine-tuning these metabolic processes. We previously showed a therapeutic potential of antagonizing RORα to reduce body fat in mice. Our current aim is to investigate the impact of the whole-body RORα deletion on hepatic lipid metabolism over a complete circadian cycle. Using RORα-knockout (staggerer) mice, this study reveals a time-dependent disruption in hepatic triglyceride synthesis, with reduced lipogenesis during the light-phase and altered transcriptional regulation of key metabolic genes, including Srebp1c and Insigs. Despite increased Srebp1c transcription at night, the anticipated rise in lipid synthesis was prevented by phase-shifted Insig expression, modulating precursor maturation. Moreover, core clock genes rhythmic expression was attenuated and phase-shifted for Reverbα. Pharmacological inhibition of RORα using an inverse agonist (SR3335) mirrored the metabolic effects observed in staggerer mice, further supporting the role of RORα as a crucial regulator of lipid and glucose homeostasis in mice fed a chow diet. These findings highlight the intricate interaction between the circadian clock and hepatic metabolism, situating RORα as a promising target to prevent metabolic disorders such as obesity and dyslipidemia.
Collapse
Affiliation(s)
- Chloé Monnier
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Munkhzul Ganbold
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Martine Auclair
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Natacha Roblot
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Andréas Barnabé Boutin
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Paul Ketil Boutin
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
| | - Bruno Fève
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France
- APHP, Department of Endocrinology and CRMR PRISIS, Saint-Antoine Hospital, Paris, France
| | - Bénédicte Antoine
- UMR_S938, Centre de Recherche Saint-Antoine, IHU ICAN, Faculté de Médecine Site Saint-Antoine, Sorbonne Université-Inserm, 27 Rue Chaligny, 75012, Paris, France.
| |
Collapse
|
5
|
Mohallem R, Schaser AJ, Aryal UK. Proteomic and phosphoproteomic signatures of aging mouse liver. GeroScience 2025:10.1007/s11357-025-01601-0. [PMID: 40087212 DOI: 10.1007/s11357-025-01601-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
The liver is a metabolic powerhouse, crucial for regulating carbohydrates, fats, and protein metabolism. In this study, we conducted a comparative proteomic and phosphoproteomic analysis of aging mouse livers from young adults (3-4 months) and old (19-21 months) mice to identify age-related changes in liver proteins and phosphosites, which were linked to various metabolic pathways. In old mice, proteins associated with the "complement and coagulation cascade," "age-rage signaling in diabetic complications," and "biosynthesis of unsaturated fatty acids" were increased, while those linked to "oxidative phosphorylation," "steroid hormone biosynthesis," and "tryptophan metabolism" were decreased. Interestingly, aging was marked by a significant decrease in liver protein phosphorylation, with nearly 90% of significant phosphosites being downregulated. Pathway analysis of the downregulated phosphosites highlighted connections to "non-small cell lung cancer," "lysine degradation," "cell differentiation," and "glycerophospholipid metabolism." Decreased phosphorylation of several kinases that are linked to cell proliferation, particularly those in the MAPK signaling pathway, including Erk1, EGFR, RAF1, and BRAF was also observed highlighting their important role in the liver. This study identified an important relationship between proteins, phosphosites, and their connections to known as well as new pathways, expanding upon our current knowledge and providing a basis for future studies focused on age-related metabolic traits.
Collapse
Affiliation(s)
- Rodrigo Mohallem
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA
| | - Allison J Schaser
- Department of Speech, Language, and Hearing Sciences, Purdue University, West Lafayette, IN, 47907, USA.
| | - Uma K Aryal
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, 47907, USA.
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
6
|
Zhang Y, Ding H, Huo Z, Chen L. A novel Bayesian hierarchical model for detecting differential circadian pattern in transcriptomic applications. Brief Bioinform 2025; 26:bbaf139. [PMID: 40234105 PMCID: PMC11998590 DOI: 10.1093/bib/bbaf139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/28/2025] [Accepted: 03/01/2025] [Indexed: 04/17/2025] Open
Abstract
Circadian rhythm plays a critical role in regulating various physiological processes, and disruptions in these rhythms have been linked to a wide range of diseases. Identifying molecular biomarkers showing differential circadian (DC) patterns between biological conditions or disease status is important for disease prevention, diagnosis, and treatment. However, circadian pattern is characterized by three key components: amplitude, phase, and MESOR, which poses a great challenge for DC analysis. Existing statistical methods focus on detecting differential shape (amplitude and phase) but often overlook MESOR difference. Additionally, these methods lack flexibility to incorporate external knowledge such as differential circadian information from similar clinical and biological context to improve the current DC analysis. To address these limitation, we introduce a novel Bayesian hierarchical model, BayesDCirc, designed for detecting differential circadian patterns in a two-group experimental design, which offer the advantage of testing MESOR difference and incorporating external knowledge. Benefiting from explicitly testing MESOR within the Bayesian modeling framework, BayesDCirc demonstrates superior FDR control over existing methods, with further performance improvement by leveraging external knowledge of DC genes. Applied to two real datasets, BayesDCirc successfully identify key circadian genes, particularly with external knowledge incorporated. The R package "BayesDCirc" for the method is publicly available on GitHub at https://github.com/lichen-lab/BayesDCirc.
Collapse
Affiliation(s)
- Yutao Zhang
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, United States
| | - Haocheng Ding
- Department of Biostatistics, Augusta University, Augusta, GA, 30912, United States
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, United States
| | - Li Chen
- Department of Biostatistics, University of Florida, Gainesville, FL, 32603, United States
| |
Collapse
|
7
|
Jha PK, Valekunja UK, Reddy AB. Chronic sleep curtailment expediates brain aging by activating the complement and coagulation cascades in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.18.638886. [PMID: 40027811 PMCID: PMC11870557 DOI: 10.1101/2025.02.18.638886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Chronic sleep insufficiency is prevalent in modern society and has been associated with age-related neurodegenerative diseases. Loss of sleep accelerates the progression of neurodegeneration in animal models of neurological diseases. Here, we study whether chronic sleep curtailment leads to brain aging in wild-type animals without a genetic predisposition. We used a wild-type mouse model to simulate modern-day conditions of restricted sleep and compared the brain (cortex) proteome of young sleep-restricted animals with different aged control groups. We report the alteration of 149 proteins related to sleep and 1269 related to age with 96 proteins common between them. Through pathway analysis of proteins common to sleep restriction and aging, we discovered that the complement and coagulation cascade pathways were enriched by alterations of complement component 3 (C3), alpha-2-macroglobulin (A2M), fibrinogen alfa and beta chain (FGA and FGB). This is the first study indicating the possible role of the complement and coagulation pathways in brain aging and by chronic sleep restriction (CSR) in mice.
Collapse
Affiliation(s)
- Pawan K. Jha
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Utham K. Valekunja
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Akhilesh B. Reddy
- Department of Systems Pharmacology & Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
8
|
Zhao B, Nepovimova E, Wu Q. The role of circadian rhythm regulator PERs in oxidative stress, immunity, and cancer development. Cell Commun Signal 2025; 23:30. [PMID: 39825442 PMCID: PMC11740368 DOI: 10.1186/s12964-025-02040-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/11/2025] [Indexed: 01/20/2025] Open
Abstract
The complex interaction between circadian rhythms and physiological functions is essential for maintaining human health. At the heart of this interaction lies the PERIOD proteins (PERs), pivotal to the circadian clock, influencing the timing of physiological and behavioral processes and impacting oxidative stress, immune functionality, and tumorigenesis. PER1 orchestrates the cooperation of the enzyme GPX1, modulating mitochondrial dynamics in sync with daily rhythms and oxidative stress, thus regulating the mechanisms managing energy substrates. PERs in innate immune cells modulate the temporal patterns of NF-κB and TNF-α activities, as well as the response to LPS-induced toxic shock, initiating inflammatory responses that escalate into chronic inflammatory conditions. Crucially, PERs modulate cancer cell behaviors including proliferation, apoptosis, and migration by influencing the levels of cell cycle proteins and stimulating the expression of oncogenes c-Myc and MDM2. PER2/3, as antagonists in cancer stem cell biology, play important roles in differentiating cancer stem cells and in maintaining their stemness. Importantly, the expression of Pers serve as a significant factor for early cancer diagnosis and prognosis. This review delves into the link between circadian rhythm regulator PERs, disruptions in circadian rhythm, and oncogenesis. We examine the evidence that highlights how dysfunctions in PERs activities initiate cancer development, aid tumor growth, and modify cancer cell metabolism through pathways involved in oxidative stress and immune system. Comprehending these connections opens new pathways for the development of circadian rhythm-based therapeutic strategies, with the aims of boosting immune responses and enhancing cancer treatments.
Collapse
Affiliation(s)
- Baimei Zhao
- College of Life Science, Yangtze University, Jingzhou, 434025, China
| | - Eugenie Nepovimova
- Department of Chemistry, Faculty of Science, University of Hradec Králové, Hradec Králové , 500 03, Czech Republic
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
9
|
Burns JN, Jenkins AK, Xue X, Petersen KA, Ketchesin KD, Perez MS, Vadnie CA, Scott MR, Seney ML, Tseng GC, McClung CA. Comparative transcriptomic rhythms in the mouse and human prefrontal cortex. Front Neurosci 2025; 18:1524615. [PMID: 39872996 PMCID: PMC11769989 DOI: 10.3389/fnins.2024.1524615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Introduction Alterations in multiple subregions of the human prefrontal cortex (PFC) have been heavily implicated in psychiatric diseases. Moreover, emerging evidence suggests that circadian rhythms in gene expression are present across the brain, including in the PFC, and that these rhythms are altered in disease. However, investigation into the potential circadian mechanisms underlying these diseases in animal models must contend with the fact that the human PFC is highly evolved and specialized relative to that of rodents. Methods Here, we use RNA sequencing to lay the groundwork for translational studies of molecular rhythms through a sex-specific, cross species comparison of transcriptomic rhythms between the mouse medial PFC (mPFC) and two subregions of the human PFC, the anterior cingulate cortex (ACC) and the dorsolateral PFC (DLPFC). Results We find that while circadian rhythm signaling is conserved across species and subregions, there is a phase shift in the expression of core clock genes between the mouse mPFC and human PFC subregions that differs by sex. Furthermore, we find that the identity of rhythmic transcripts is largely unique between the mouse mPFC and human PFC subregions, with the most overlap (20%, 236 transcripts) between the mouse mPFC and the human ACC in females. Nevertheless, we find that basic biological processes are enriched for rhythmic transcripts across species, with key differences between regions and sexes. Discussion Together, this work highlights both the evolutionary conservation of transcriptomic rhythms and the advancement of the human PFC, underscoring the importance of considering cross-species differences when using animal models.
Collapse
Affiliation(s)
- Jennifer N. Burns
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aaron K. Jenkins
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Xiangning Xue
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kaitlyn A. Petersen
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Megan S. Perez
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chelsea A. Vadnie
- David O. Robbins Neuroscience Program, Department of Psychology, Ohio Wesleyan University, Delaware, OH, United States
| | - Madeline R. Scott
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, PA, United States
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
10
|
Leow SS, Khoo JS, Lee WK, Hoh CC, Fairus S, Sambanthamurthi R, Hayes KC. RNA-Seq transcriptome profiling of Nile rat livers reveals novel insights on the anti-diabetic mechanisms of Water-Soluble Palm Fruit Extract. J Appl Genet 2024; 65:867-895. [PMID: 38890243 DOI: 10.1007/s13353-024-00880-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/20/2024]
Abstract
Water-Soluble Palm Fruit Extract (WSPFE) has been shown to confer anti-diabetic effects in the Nile rat (NR) (Arvicanthis niloticus). Liquid and powder WSPFE both deterred diabetes onset in NRs fed a high-carbohydrate (hiCHO) diet, but the liquid form provided better protection. In this study, NRs were fed either a hiCHO diet or the same diet added with liquid or powder WSPFE. Following feeding of the diets for 8 weeks, random blood glucose levels were measured to categorize NRs as either diabetes-resistant or diabetes-susceptible, based on a cut-off value of 75 mg/dL. Livers were then obtained for Illumina HiSeq 4000 paired end RNA-sequencing (RNA-Seq) and the data were mapped to the reference genome. Consistent with physiological and biochemical parameters, the gene expression data obtained indicated that WSPFE was associated with protection against diabetes. Among hepatic genes upregulated by WSPFE versus controls, were genes related to insulin-like growth factor binding protein, leptin receptor, and processes of hepatic metabolism maintenance, while those downregulated were related to antigen binding, immunoglobulin receptor, inflammation- and cancer-related processes. WSPFE supplementation thus helped inhibit diabetes progression in NRs by increasing insulin sensitivity and reducing both the inflammatory effects of a hiCHO diet and the related DNA-damage compensatory mechanisms contributing to liver disease progression. In addition, the genetic permissiveness of susceptible NRs to develop diabetes was potentially associated with dysregulated compensatory mechanisms involving insulin signaling and oxidative stress over time. Further studies on other NR organs associated with diabetes and its complications are warranted.
Collapse
Affiliation(s)
- Soon-Sen Leow
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | - Jia-Shiun Khoo
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Wei-Kang Lee
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Chee-Choong Hoh
- Codon Genomics Sdn Bhd, No. 26, Jalan Dutamas 7, Taman Dutamas Balakong, 43200, Seri Kembangan, Selangor, Malaysia
| | - Syed Fairus
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Ravigadevi Sambanthamurthi
- Malaysian Palm Oil Board, No. 6, Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
- Academy of Sciences Malaysia, Level 20, West Wing, MATRADE Tower, Jalan Sultan Haji Ahmad Shah, Off Jalan Tuanku Abdul Halim, 50480, Kuala Lumpur, Malaysia
| | - K C Hayes
- Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
11
|
Colita CI, Hermann DM, Filfan M, Colita D, Doepnner TR, Tica O, Glavan D, Popa-Wagner A. Optimizing Chronotherapy in Psychiatric Care: The Impact of Circadian Rhythms on Medication Timing and Efficacy. Clocks Sleep 2024; 6:635-655. [PMID: 39584972 PMCID: PMC11586979 DOI: 10.3390/clockssleep6040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/15/2024] [Accepted: 10/31/2024] [Indexed: 11/26/2024] Open
Abstract
In many medical settings, medications are typically administered in the morning or evening, aligning with patients' daily routines. This practice does not stem from chronotherapy, which involves scheduling drug administration to enhance its effectiveness, but rather from the way clinical operations are structured. The timing of drug administration can significantly affect a medication's effectiveness and side effects, with the impact varying by up to ten times based on circadian rhythms. Disorders such as major depression, bipolar disorder, and schizophrenia are linked to disruptions in these rhythms. Recent studies have found that circadian dysfunctions, including genetic and neurohumoral changes, underlie many psychiatric conditions. Issues such as an altered glucocorticoid rhythm due to impaired HPA axis function, disturbed melatonin balance, and sleep disturbances have been noted in psychotic disorders. Furthermore, mood disorders have been associated with changes in the expression of circadian rhythm genes such as Clock, Bmal1, and Per. Considering that the absorption, biodistribution, effects on target organs, half-life, metabolism, and elimination of drugs are all influenced by the body's circadian rhythms, this narrative review explores the optimal timing of medication administration to maximize efficacy and minimize side effects in the treatment of psychiatric disorders. By closely monitoring circadian variations in cortisol, melatonin, and key clock genes, as well as by deepening our understanding of the metabolisms and pharmacokinetics of antipsychotic medications, we propose a chronotherapy approach for psychiatric patients that could significantly enhance patient care.
Collapse
Affiliation(s)
- Cezar-Ivan Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Dirk M. Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Madalina Filfan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Colita
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
| | - Thorsten R. Doepnner
- Department of Neurology, University Medical Center, Klinikstraße 33, 35392 Gießen, Germany;
| | - Oana Tica
- Department of Pharmacology, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Daniela Glavan
- Department of Psychiatry, University of Medicine and Pharmacy, 200349 Craiova, Romania;
| | - Aurel Popa-Wagner
- Doctoral School, University of Medicine and Pharmacy Carol Davila, 050474 Bucharest, Romania; (C.-I.C.); (D.C.)
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany;
| |
Collapse
|
12
|
Ding H, Meng L, Zhang Y, Bryant AJ, Xing C, Esser KA, Chen L, Huo Z. A Bayesian Framework for Genome-wide Circadian Rhythmicity Biomarker Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620703. [PMID: 39554018 PMCID: PMC11565714 DOI: 10.1101/2024.10.28.620703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Circadian rhythms are endogenous ∼24-hour cycles that significantly influence physiological and behavioral processes. These rhythms are governed by a transcriptional-translational feedback loop of core circadian genes and are essential for maintaining overall health. The study of circadian rhythms has expanded into various omics datasets, necessitating accurate analytical methodology for circadian biomarker detection. Here, we introduce a novel Bayesian framework for the genome-wide detection of circadian rhythms that is capable of incorporating prior biological knowledge and adjusting for multiple testing issue via a false discovery rate approach. Our framework leverages a Bayesian hierarchical model and employs a reverse jump Markov chain Monte Carlo (rjMCMC) technique for model selection. Through extensive simulations, our method, BayesCircRhy, demonstrated superior false discovery rate control over competing methods, robustness against heavier-tailed error distributions, and better performance compared to existing approaches. The method's efficacy was further validated in two RNA-Sequencing data, including a human resitrcted feeding data and a mouse aging data, where it successfully identified known and novel circadian genes. R package "BayesianCircadian" for the method is publicly available on GitHub https://github.com/jxncdhc/BayesianCircadian .
Collapse
|
13
|
Ferrell JM. Chronobiology of Cancers in the Liver and Gut. Cancers (Basel) 2024; 16:2925. [PMID: 39272783 PMCID: PMC11394324 DOI: 10.3390/cancers16172925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Circadian rhythms dictate the timing of cellular and organismal physiology to maintain homeostasis. Within the liver and gut, circadian rhythms influence lipid and glucose homeostasis, xenobiotic metabolism, and nutrient absorption. Disruption of this orchestrated timing is known to negatively impact human health and contribute to disease progression, including carcinogenesis. Dysfunctional core clock timing has been identified in malignant growths and may be used as a molecular signature of disease progression. Likewise, the circadian clock and its downstream effectors also represent potential for novel therapeutic targets. Here, the role of circadian rhythms in the pathogenesis of cancers of the liver and gut will be reviewed, and chronotherapy and chronopharmacology will be explored as potential treatment options.
Collapse
Affiliation(s)
- Jessica M Ferrell
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| |
Collapse
|
14
|
Gabriel CH, del Olmo M, Rizki Widini A, Roshanbin R, Woyde J, Hamza E, Gutu NN, Zehtabian A, Ewers H, Granada A, Herzel H, Kramer A. Circadian period is compensated for repressor protein turnover rates in single cells. Proc Natl Acad Sci U S A 2024; 121:e2404738121. [PMID: 39141353 PMCID: PMC11348271 DOI: 10.1073/pnas.2404738121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/07/2024] [Indexed: 08/15/2024] Open
Abstract
Most mammalian cells have molecular circadian clocks that generate widespread rhythms in transcript and protein abundance. While circadian clocks are robust to fluctuations in the cellular environment, little is known about the mechanisms by which the circadian period compensates for fluctuating metabolic states. Here, we exploit the heterogeneity of single cells both in circadian period and a metabolic parameter-protein stability-to study their interdependence without the need for genetic manipulation. We generated cells expressing key circadian proteins (CRYPTOCHROME1/2 (CRY1/2) and PERIOD1/2 (PER1/2)) as endogenous fusions with fluorescent proteins and simultaneously monitored circadian rhythms and degradation in thousands of single cells. We found that the circadian period compensates for fluctuations in the turnover rates of circadian repressor proteins and uncovered possible mechanisms using a mathematical model. In addition, the stabilities of the repressor proteins are circadian phase dependent and correlate with the circadian period in a phase-dependent manner, in contrast to the prevailing model.
Collapse
Affiliation(s)
- Christian H. Gabriel
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Marta del Olmo
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Arunya Rizki Widini
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Rashin Roshanbin
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Jonas Woyde
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Ebrahim Hamza
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| | - Nica-Nicoleta Gutu
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Amin Zehtabian
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Helge Ewers
- Department of Biology, Chemistry and Pharmacy, Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin14195, Germany
| | - Adrian Granada
- Charité Comprehensive Cancer Center, Charité–Universitätsmedizin Berlin, Berlin10117, Germany
| | - Hanspeter Herzel
- Institute for Theoretical Biology, Charité–Universitätsmedizin Berlin, Berlin10115, Germany
| | - Achim Kramer
- Charité–Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Division of Chronobiology, Berlin10117, Germany
| |
Collapse
|
15
|
McHill AW, Butler MP. Eating Around the Clock: Circadian Rhythms of Eating and Metabolism. Annu Rev Nutr 2024; 44:25-50. [PMID: 38848598 PMCID: PMC11849495 DOI: 10.1146/annurev-nutr-062122-014528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
The time of day that we eat is increasingly recognized as contributing as importantly to overall health as the amount or quality of the food we eat. The endogenous circadian clock has evolved to promote intake at optimal times when an organism is intended to be awake and active, but electric lights and abundant food allow eating around the clock with deleterious health outcomes. In this review, we highlight literature pertaining to the effects of food timing on health, beginning with animal models and then translation into human experiments. We emphasize the pitfalls and opportunities that technological advances bring in bettering understanding of eating behaviors and their association with health and disease. There is great promise for restricting the timing of food intake both in clinical interventions and in public health campaigns for improving health via nonpharmacological therapies.
Collapse
Affiliation(s)
- Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Health & Science University, Portland, Oregon, USA
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| | - Matthew P Butler
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, Oregon, USA;
- Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
16
|
Zhao T, Li Q, Wang X, Tang B, Zhang X, Yu H, Li Z. Time-dependent effects of high-fat diet on cognition and cerebral insulin signaling: Window for recovery and potential therapeutic target. Mech Ageing Dev 2024; 220:111955. [PMID: 38852746 DOI: 10.1016/j.mad.2024.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/11/2024]
Abstract
While high-fat diet (HFD)-induced obesity is a major threat to global public health, the effect of HFD on cognition and insulin signaling during ageing remains controversial. The aim of this study was to characterize the dynamic alterations in cognition and cerebral insulin signaling during 6-month HFD consumption, and to investigate the potential therapeutic target and optimal timing to rescue obesity-related cognitive deficits. In the present study, impaired memory retention induced by 2-month HFD was recovered after 4 months on HFD. Prolonged (6-month) HFD did not further enhance tau hyperphosphorylation and β-amyloid deposition, which was consistent with the alleviation of memory retention. In brain insulin signaling, 2-month HFD increased IRS-1 and p-IRS-1(Ser307)/IRS-1, while decreasing pAKT(Ser473)/AKT, PI3K and mTOR; 4-month HFD decreased IRS-1 and pAKT(Ser473)/AKT, while increasing AKT; 6-month HFD increased IRS-1, pAKT(Ser473)/AKT, and mTOR, while decreasing p-IRS-1(Ser307)/IRS-1, PI3K and AKT. Notably, bioinformatic analysis revealed a rhythmic process presented only in 4-month HFD group, with Srebf1 emerging as a link between circadian rhythms and insulin signaling pathway. These results suggest that prolonged HFD prevents further cognitive decline and the progression of Alzheimer's disease (AD)-related pathologies during ageing. Moreover, there may be a window for recovery, in which Srebf1 acts as a self-recovery switch to address obesity-related cognitive disorders in elders.
Collapse
Affiliation(s)
- Tianchuang Zhao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China; College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Qi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China
| | - Xiaodan Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China
| | - Bo Tang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Xueming Zhang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin 130062, China
| | - Hao Yu
- College of Animal Science, Jilin University, Changchun, Jilin 130062, China
| | - Ziyi Li
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, First Hospital, Jilin University, Changchun 130021, China.
| |
Collapse
|
17
|
Laosuntisuk K, Vennapusa A, Somayanda IM, Leman AR, Jagadish SK, Doherty CJ. A normalization method that controls for total RNA abundance affects the identification of differentially expressed genes, revealing bias toward morning-expressed responses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:1241-1257. [PMID: 38289828 DOI: 10.1111/tpj.16654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
RNA-Sequencing is widely used to investigate changes in gene expression at the transcription level in plants. Most plant RNA-Seq analysis pipelines base the normalization approaches on the assumption that total transcript levels do not vary between samples. However, this assumption has not been demonstrated. In fact, many common experimental treatments and genetic alterations affect transcription efficiency or RNA stability, resulting in unequal transcript abundance. The addition of synthetic RNA controls is a simple correction that controls for variation in total mRNA levels. However, adding spike-ins appropriately is challenging with complex plant tissue, and carefully considering how they are added is essential to their successful use. We demonstrate that adding external RNA spike-ins as a normalization control produces differences in RNA-Seq analysis compared to traditional normalization methods, even between two times of day in untreated plants. We illustrate the use of RNA spike-ins with 3' RNA-Seq and present a normalization pipeline that accounts for differences in total transcriptional levels. We evaluate the effect of normalization methods on identifying differentially expressed genes in the context of identifying the effect of the time of day on gene expression and response to chilling stress in sorghum.
Collapse
Affiliation(s)
- Kanjana Laosuntisuk
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Amaranatha Vennapusa
- Department of Agriculture and Natural Resources, Delaware State University, Dover, Delaware, USA
| | - Impa M Somayanda
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
| | - Adam R Leman
- Department of Science and Technology, The Good Food Institute, Washington, District of Columbia, 20090, USA
| | - Sv Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas, 79410, USA
- Department of Agronomy, Kansas State University, Manhattan, Kansas, 66506, USA
| | - Colleen J Doherty
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
18
|
Song Z, Ho CT, Zhang X. Gut Microbiota Mediate the Neuroprotective Effect of Oolong Tea Polyphenols in Cognitive Impairment Induced by Circadian Rhythm Disorder. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12184-12197. [PMID: 38745351 DOI: 10.1021/acs.jafc.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Oolong tea polyphenols (OTP) have attracted wide attention due to their ability to reduce inflammatory response, regulate gut microbiota, and improve cognitive function. However, exactly how the gut microbiota modulates nervous system activity is still an open question. We previously expounded that supplementing with OTP alleviated neuroinflammation in circadian rhythm disorder (CRD) mice. Here, we showed that OTP can relieve microglia activation by reducing harmful microbial metabolites lipopolysaccharide (LPS) that alleviate CRD-induced cognitive decline. Mechanistically, OTP suppressed the inflammation response by regulating the gut microbiota composition, including upregulating the relative abundance of Muribaculaceae and Clostridia_UCG-014 and downregulating Desulfovibrio, promoting the production of short-chain fatty acids (SCFAs). Moreover, the use of OTP alleviated intestinal barrier damage and decreased the LPS transport to the serum. These results further inhibited the activation of microglia, thus alleviating cognitive impairment by inhibiting neuroinflammation, neuron damage, and neurotoxicity metabolite glutamate elevation. Meanwhile, OTP upregulated the expression of synaptic plasticity-related protein postsynaptic density protein 95 (PSD-95) and synaptophysin (SYN) by elevating the brain-derived neurotrophic factor (BDNF) level. Taken together, our findings suggest that the OTP has the potential to prevent CRD-induced cognition decline by modulating gut microbiota and microbial metabolites.
Collapse
Affiliation(s)
- Zheyi Song
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
19
|
Patlin BH, Mok H, Arra M, Haspel JA. Circadian rhythms in solid organ transplantation. J Heart Lung Transplant 2024; 43:849-857. [PMID: 38310995 PMCID: PMC11070314 DOI: 10.1016/j.healun.2024.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/17/2024] [Accepted: 01/29/2024] [Indexed: 02/06/2024] Open
Abstract
Circadian rhythms are daily cycles in physiology that can affect medical interventions. This review considers how these rhythms may relate to solid organ transplantation. It begins by summarizing the mechanism for circadian rhythm generation known as the molecular clock, and basic research connecting the clock to biological activities germane to organ acceptance. Next follows a review of clinical evidence relating time of day to adverse transplantation outcomes. The concluding section discusses knowledge gaps and practical areas where applying circadian biology might improve transplantation success.
Collapse
Affiliation(s)
- Brielle H Patlin
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Huram Mok
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Monaj Arra
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey A Haspel
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.
| |
Collapse
|
20
|
Wang Y, Zhao Z, Guo T, Wu T, Zhang M, Luo D, Dou K, Yang Y, Jin C, Zhang B, Zhang B, Han B. SOCS5-RBMX stimulates SREBP1-mediated lipogenesis to promote metastasis in steatotic HCC with HBV-related cirrhosis. NPJ Precis Oncol 2024; 8:58. [PMID: 38429411 PMCID: PMC10907597 DOI: 10.1038/s41698-024-00545-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024] Open
Abstract
Abnormal lipid metabolism promotes hepatocellular carcinoma (HCC) progression, which engenders therapeutic difficulties owing to unclear mechanisms of the phenomenon. We precisely described a special steatotic HCC subtype with HBV-related cirrhosis and probed its drivers. Hematoxylin-eosin (HE) staining of 245 HCC samples revealed a special HCC subtype (41 cases) characterized by HBV-related cirrhosis and intratumoral steatosis without fatty liver background, defined as steatotic HCC with HBV-related cirrhosis (SBC-HCC). SBC-HCC exhibits a larger tumor volume and worse prognosis than non-SBC-HCC. Screening for driver genes promoting fatty acid (FA) biosynthesis in the Gao's HBV-related cirrhosis HCC cases and GSE121248' HBV-related HCC cases revealed that high expression of SOCS5 predicts increased FA synthesis and that SOCS5 is upregulated in SBC-HCC. Through proteomics, metabolomics, and both in vivo and in vitro experiments, we demonstrated that SOCS5 induces lipid accumulation to promote HCC metastasis. Mechanistically, through co-IP and GST-pulldown experiments, we found that the SOCS5-SH2 domain, especially the amino acids Y413 and D443, act as critical binding sites for the RBMX-RRM domain. SOCS5-RBMX costimulates the promoter of SREBP1, inducing de novo lipogenesis, while mutations in the SH2 domain, Y413, and D443 reverse this effect. These findings precisely identified SBC-HCC as a special steatotic HCC subtype and highlighted a new mechanism by which SOCS5 promotes SBC-HCC metastasis.
Collapse
Affiliation(s)
- Youpeng Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Ziyin Zhao
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Tingting Guo
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tiansong Wu
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Mao Zhang
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Dingan Luo
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kunpeng Dou
- College of Information Science and Engineering, Ocean University of China, Qingdao, China
| | - Yeni Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Cheng Jin
- Institute of Medical Robotics, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Bingyuan Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Bin Zhang
- Organ Transplantation Center, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
| | - Bing Han
- Department of Hepatobiliary and Pancreatic Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China.
| |
Collapse
|
21
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
22
|
Qian L, Gu Y, Zhai Q, Xue Z, Liu Y, Li S, Zeng Y, Sun R, Zhang Q, Cai X, Ge W, Dong Z, Gao H, Zhou Y, Zhu Y, Xu Y, Guo T. Multitissue Circadian Proteome Atlas of WT and Per1 -/-/Per2 -/- Mice. Mol Cell Proteomics 2023; 22:100675. [PMID: 37940002 PMCID: PMC10750102 DOI: 10.1016/j.mcpro.2023.100675] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
The molecular basis of circadian rhythm, driven by core clock genes such as Per1/2, has been investigated on the transcriptome level, but not comprehensively on the proteome level. Here we quantified over 11,000 proteins expressed in eight types of tissues over 46 h with an interval of 2 h, using WT and Per1/Per2 double knockout mouse models. The multitissue circadian proteome landscape of WT mice shows tissue-specific patterns and reflects circadian anticipatory phenomena, which are less obvious on the transcript level. In most peripheral tissues of double knockout mice, reduced protein cyclers are identified when compared with those in WT mice. In addition, PER1/2 contributes to controlling the anticipation of the circadian rhythm, modulating tissue-specific cyclers as well as key pathways including nucleotide excision repair. Severe intertissue temporal dissonance of circadian proteome has been observed in the absence of Per1 and Per2. The γ-aminobutyric acid might modulate some of these temporally correlated cyclers in WT mice. Our study deepens our understanding of rhythmic proteins across multiple tissues and provides valuable insights into chronochemotherapy. The data are accessible at https://prot-rhythm.prottalks.com/.
Collapse
Affiliation(s)
- Liujia Qian
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yue Gu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Qiaocheng Zhai
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Zhangzhi Xue
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Youqi Liu
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Sainan Li
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yizhun Zeng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China
| | - Rui Sun
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Qiushi Zhang
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Xue Cai
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology Co, Ltd, Hangzhou, Zhejiang Province, China
| | - Zhen Dong
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Huanhuan Gao
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yan Zhou
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China
| | - Yi Zhu
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| | - Ying Xu
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Cambridge-Suda Genomic Resource Center, Soochow University, Suzhou, Jiangsu Province, China.
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang Province, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang Province, China; Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang, China.
| |
Collapse
|
23
|
He Z, Liu Y, Li Z, Sun T, Li Z, Manyande A, Xiang H, Xiong J. Gut microbiota regulates circadian oscillation in hepatic ischemia-reperfusion injury-induced cognitive impairment by interfering with hippocampal lipid metabolism in mice. Hepatol Int 2023; 17:1645-1658. [PMID: 37004699 PMCID: PMC10661774 DOI: 10.1007/s12072-023-10509-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/28/2023] [Indexed: 04/04/2023]
Abstract
BACKGROUND Hepatic ischemia-reperfusion injury (HIRI) is a common complication of liver surgery, which can lead to extrahepatic metabolic disorders, such as cognitive impairment. Recent observations have emphasized the critical effects of gut microbial metabolites in regulating the development of liver injury. Herein, we investigated the potential contribution of gut microbiota to HIRI-related cognitive impairment. METHODS HIRI murine models were established by ischemia-reperfusion surgery in the morning (ZT0, 08:00) and evening (ZT12, 20:00), respectively. Antibiotic-induced pseudo-germ-free mice were gavaged with fecal bacteria of the HIRI models. Behavioral test was used to assess cognitive function. 16S rRNA gene sequencing and metabolomics were used for microbial and hippocampal analysis. RESULTS Our results established that cognitive impairment caused by HIRI underwent diurnal oscillations; HIRI mice performed poorly on the Y-maze test and the novel object preference test when surgery occurred in the evening compared with the morning. In addition, fecal microbiota transplantation (FMT) from the ZT12-HIRI was demonstrated to induce cognitive impairment behavior. The specific composition and metabolites of gut microbiota were analyzed between the ZT0-HIRI and ZT12-HIRI, and bioinformatic analysis showed that the differential fecal metabolites were significantly enriched in lipid metabolism pathways. After FMT, the hippocampal lipid metabolome between the P-ZT0-HIRI and P-ZT12-HIRI groups was analyzed to reveal a series of lipid molecules with significant differences. CONCLUSIONS Our findings indicate that gut microbiota are involved in circadian differences of HIRI-related cognitive impairment by affecting hippocampal lipid metabolism.
Collapse
Affiliation(s)
- Zhigang He
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yanbo Liu
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tianning Sun
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhixiao Li
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, London, UK
| | - Hongbing Xiang
- Department of Anesthesiology and Pain Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jun Xiong
- Hepatobiliary Surgery Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
24
|
Bolshette N, Ibrahim H, Reinke H, Asher G. Circadian regulation of liver function: from molecular mechanisms to disease pathophysiology. Nat Rev Gastroenterol Hepatol 2023; 20:695-707. [PMID: 37291279 DOI: 10.1038/s41575-023-00792-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/27/2023] [Indexed: 06/10/2023]
Abstract
A wide variety of liver functions are regulated daily by the liver circadian clock and via systemic circadian control by other organs and cells within the gastrointestinal tract as well as the microbiome and immune cells. Disruption of the circadian system, as occurs during jetlag, shift work or an unhealthy lifestyle, is implicated in several liver-related pathologies, ranging from metabolic diseases such as obesity, type 2 diabetes mellitus and nonalcoholic fatty liver disease to liver malignancies such as hepatocellular carcinoma. In this Review, we cover the molecular, cellular and organismal aspects of various liver pathologies from a circadian viewpoint, and in particular how circadian dysregulation has a role in the development and progression of these diseases. Finally, we discuss therapeutic and lifestyle interventions that carry health benefits through support of a functional circadian clock that acts in synchrony with the environment.
Collapse
Affiliation(s)
- Nityanand Bolshette
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hussam Ibrahim
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany
| | - Hans Reinke
- University of Düsseldorf, Medical Faculty, Institute of Clinical Chemistry and Laboratory Diagnostics, Düsseldorf, Germany.
| | - Gad Asher
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
25
|
Kirchner SJ, Lei V, Kim PT, Patel M, Shannon JL, Corcoran D, Hughes D, Waters DK, Dzirasa K, Erdmann D, Coers J, MacLeod AS, Zhang JY. An aging-susceptible circadian rhythm controls cutaneous antiviral immunity. JCI Insight 2023; 8:e171548. [PMID: 37725438 PMCID: PMC10619492 DOI: 10.1172/jci.insight.171548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/12/2023] [Indexed: 09/21/2023] Open
Abstract
Aged skin is prone to viral infections, but the mechanisms responsible for this immunosenescent immune risk are unclear. We observed that aged murine and human skin expressed reduced levels of antiviral proteins (AVPs) and circadian regulators, including Bmal1 and Clock. Bmal1 and Clock were found to control rhythmic AVP expression in skin, and such circadian control of AVPs was diminished by disruption of immune cell IL-27 signaling and deletion of Bmal1/Clock genes in mouse skin, as well as siRNA-mediated knockdown of CLOCK in human primary keratinocytes. We found that treatment with the circadian-enhancing agents nobiletin and SR8278 reduced infection of herpes simplex virus 1 in epidermal explants and human keratinocytes in a BMAL1/CLOCK-dependent manner. Circadian-enhancing treatment also reversed susceptibility of aging murine skin and human primary keratinocytes to viral infection. These findings reveal an evolutionarily conserved and age-sensitive circadian regulation of cutaneous antiviral immunity, underscoring circadian restoration as an antiviral strategy in aging populations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kafui Dzirasa
- Department of Neurobiology
- Department of Psychiatry and Behavioral Sciences
- Department of Biomedical Engineering, and
- Department of Neurosurgery, Duke University, Durham, North Carolina, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland, USA
| | - Detlev Erdmann
- Department of Surgery, Division of Plastic, Maxillofacial, and Oral Surgery, and
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology
- Department of Immunology
| | - Amanda S. MacLeod
- Department of Dermatology
- Department of Molecular Genetics and Microbiology
- Department of Immunology
| | - Jennifer Y. Zhang
- Department of Dermatology
- Department of Pathology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
26
|
Millius A, Yamada RG, Fujishima H, Maeda K, Standley DM, Sumiyama K, Perrin D, Ueda HR. Circadian ribosome profiling reveals a role for the Period2 upstream open reading frame in sleep. Proc Natl Acad Sci U S A 2023; 120:e2214636120. [PMID: 37769257 PMCID: PMC10556633 DOI: 10.1073/pnas.2214636120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 08/29/2023] [Indexed: 09/30/2023] Open
Abstract
Many mammalian proteins have circadian cycles of production and degradation, and many of these rhythms are altered posttranscriptionally. We used ribosome profiling to examine posttranscriptional control of circadian rhythms by quantifying RNA translation in the liver over a 24-h period from circadian-entrained mice transferred to constant darkness conditions and by comparing ribosome binding levels to protein levels for 16 circadian proteins. We observed large differences in ribosome binding levels compared to protein levels, and we observed delays between peak ribosome binding and peak protein abundance. We found extensive binding of ribosomes to upstream open reading frames (uORFs) in circadian mRNAs, including the core clock gene Period2 (Per2). An increase in the number of uORFs in the 5'UTR was associated with a decrease in ribosome binding in the main coding sequence and a reduction in expression of synthetic reporter constructs. Mutation of the Per2 uORF increased luciferase and fluorescence reporter expression in 3T3 cells and increased luciferase expression in PER2:LUC MEF cells. Mutation of the Per2 uORF in mice increased Per2 mRNA expression, enhanced ribosome binding on Per2, and reduced total sleep time compared to that in wild-type mice. These results suggest that uORFs affect mRNA posttranscriptionally, which can impact physiological rhythms and sleep.
Collapse
Affiliation(s)
- Arthur Millius
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Rikuhiro G. Yamada
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Hiroshi Fujishima
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
| | - Kazuhiko Maeda
- Laboratory for Host Defense, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Daron M. Standley
- Laboratory for Systems Immunology, Immunology Frontier Research Center, Suita, Osaka565-0871, Japan
| | - Kenta Sumiyama
- Laboratory of Animal Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya464-8601, Japan
| | - Dimitri Perrin
- School of Computer Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
- Centre for Data Science, Queensland University of Technology, BrisbaneQLD 4000, Australia
| | - Hiroki R. Ueda
- Laboratory for Synthetic Biology, RIKEN Quantitative Biology Center, Suita, Osaka565-0871, Japan
- Department of Systems Pharmacology, Graduate School of Medicine, The University of Tokyo, Tokyo113-0033, Japan
| |
Collapse
|
27
|
Bhatnagar A, Murray G, Ray S. Circadian biology to advance therapeutics for mood disorders. Trends Pharmacol Sci 2023; 44:689-704. [PMID: 37648611 DOI: 10.1016/j.tips.2023.07.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/30/2023] [Accepted: 07/30/2023] [Indexed: 09/01/2023]
Abstract
Mood disorders account for a significant global disease burden, and pharmacological innovation is needed as existing medications are suboptimal. A wide range of evidence implicates circadian and sleep dysfunction in the pathogenesis of mood disorders, and there is growing interest in these chronobiological pathways as a focus for treatment innovation. We review contemporary evidence in three promising areas in circadian-clock-based therapeutics in mood disorders: targeting the circadian system informed by mechanistic molecular advances; time-tailoring of medications; and personalizing treatment using circadian parameters. We also consider the limitations and challenges in accelerating the development of new circadian-informed pharmacotherapies for mood disorders.
Collapse
Affiliation(s)
- Apoorva Bhatnagar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India; Centre for Mental Health, Swinburne University of Technology, Melbourne, Victoria, Australia
| | - Greg Murray
- Centre for Mental Health, Swinburne University of Technology, Melbourne, Victoria, Australia.
| | - Sandipan Ray
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, 502284, Telangana, India.
| |
Collapse
|
28
|
Cheng Y, Chi Y, Sun L, Wang GZ. Dominant constraints on the evolution of rhythmic gene expression. Comput Struct Biotechnol J 2023; 21:4301-4311. [PMID: 37692081 PMCID: PMC10492206 DOI: 10.1016/j.csbj.2023.08.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/12/2023] Open
Abstract
Although the individual transcriptional regulators of the core circadian clock are distinct among different organisms, the autoregulatory feedback loops they form are conserved. This unified design principle explains how daily physiological activities oscillate across species. However, it is unknown whether analogous design principles govern the gene expression output of circadian clocks. In this study, we performed a comparative analysis of rhythmic gene expression in eight diverse species and identified four common distribution patterns of cycling gene expression across these species. We hypothesized that the maintenance of reduced energetic costs constrains the evolution of rhythmic gene expression. Our large-scale computational simulations support this hypothesis by showing that selection against high-energy expenditure completely regenerates all cycling gene patterns. Moreover, we find that the peaks of rhythmic expression have been subjected to this type of selective pressure. The results suggest that selective pressure from circadian regulation efficiently removes unnecessary gene products from the transcriptome, thereby significantly impacting its evolutionary path.
Collapse
Affiliation(s)
| | | | | | - Guang-Zhong Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
29
|
Lee J, Dimitry JM, Song JH, Son M, Sheehan PW, King MW, Travis Tabor G, Goo YA, Lazar MA, Petrucelli L, Musiek ES. Microglial REV-ERBα regulates inflammation and lipid droplet formation to drive tauopathy in male mice. Nat Commun 2023; 14:5197. [PMID: 37626048 PMCID: PMC10457319 DOI: 10.1038/s41467-023-40927-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 08/16/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease, the most common age-related neurodegenerative disease, is characterized by tau aggregation and associated with disrupted circadian rhythms and dampened clock gene expression. REV-ERBα is a core circadian clock protein which also serves as a nuclear receptor and transcriptional repressor involved in lipid metabolism and macrophage function. Global REV-ERBα deletion has been shown to promote microglial activation and mitigate amyloid plaque formation. However, the cell-autonomous effects of microglial REV-ERBα in healthy brain and in tauopathy are unexplored. Here, we show that microglial REV-ERBα deletion enhances inflammatory signaling, disrupts lipid metabolism, and causes lipid droplet (LD) accumulation specifically in male microglia. These events impair microglial tau phagocytosis, which can be partially rescued by blockage of LD formation. In vivo, microglial REV-ERBα deletion exacerbates tau aggregation and neuroinflammation in two mouse tauopathy models, specifically in male mice. These data demonstrate the importance of microglial lipid droplets in tau accumulation and reveal REV-ERBα as a therapeutically accessible, sex-dependent regulator of microglial inflammatory signaling, lipid metabolism, and tauopathy.
Collapse
Affiliation(s)
- Jiyeon Lee
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Julie M Dimitry
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Jong Hee Song
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Minsoo Son
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Patrick W Sheehan
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - Melvin W King
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA
| | - G Travis Tabor
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer's Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Young Ah Goo
- Mass Spectrometry Technology Access Center at McDonnell Genome Institute (MTAC@MGI) at Washington University School of Medicine, St. Louis, MO, USA
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Erik S Musiek
- Department of Neurology and Center On Biological Rhythms And Sleep, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
30
|
Zong W, Seney ML, Ketchesin KD, Gorczyca MT, Liu AC, Esser KA, Tseng GC, McClung CA, Huo Z. Experimental design and power calculation in omics circadian rhythmicity detection using the cosinor model. Stat Med 2023; 42:3236-3258. [PMID: 37265194 PMCID: PMC10425922 DOI: 10.1002/sim.9803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/27/2023] [Accepted: 05/09/2023] [Indexed: 06/03/2023]
Abstract
Circadian clocks are 24-h endogenous oscillators in physiological and behavioral processes. Though recent transcriptomic studies have been successful in revealing the circadian rhythmicity in gene expression, the power calculation for omics circadian analysis have not been fully explored. In this paper, we develop a statistical method, namely CircaPower, to perform power calculation for circadian pattern detection. Our theoretical framework is determined by three key factors in circadian gene detection: sample size, intrinsic effect size and sampling design. Via simulations, we systematically investigate the impact of these key factors on circadian power calculation. We not only demonstrate that CircaPower is fast and accurate, but also show its underlying cosinor model is robust against variety of violations of model assumptions. In real applications, we demonstrate the performance of CircaPower using mouse pan-tissue data and human post-mortem brain data, and illustrate how to perform circadian power calculation using mouse skeleton muscle RNA-Seq pilot as case study. Our method CircaPower has been implemented in an R package, which is made publicly available on GitHub ( https://github.com/circaPower/circaPower).
Collapse
Affiliation(s)
- Wei Zong
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Marianne L. Seney
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Michael T. Gorczyca
- Department of Computational and Systems Biology, University of Pittsburgh, PA, USA
| | - Andrew C. Liu
- Department of Physiology and Aging, University of Florida, FL, USA
| | - Karyn A. Esser
- Department of Physiology and Aging, University of Florida, FL, USA
| | - George C. Tseng
- Department of Biostatistics, University of Pittsburgh, PA, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, Center for Neuroscience, University of Pittsburgh, PA, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, FL, USA
| |
Collapse
|
31
|
Zhu B, Liu S. Preservation of ∼12-h ultradian rhythms of gene expression of mRNA and protein metabolism in the absence of canonical circadian clock. Front Physiol 2023; 14:1195001. [PMID: 37324401 PMCID: PMC10267751 DOI: 10.3389/fphys.2023.1195001] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/19/2023] [Indexed: 06/17/2023] Open
Abstract
Introduction: Besides the ∼24-h circadian rhythms, ∼12-h ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-h rhythms, namely, that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcription factors in a cell autonomous manner, or that they are established by a cell-autonomous ∼12-h oscillator. Methods: To distinguish among these possibilities, we performed a post hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. Results: In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-h rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-h rhythms of gene expression independently of the circadian clock in both fly and mice. Discussion: These findings provide additional evidence to support the existence of an evolutionarily conserved 12-h oscillator that controls ∼12-h rhythms of gene expression of protein and mRNA metabolism in multiple species.
Collapse
Affiliation(s)
- Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
32
|
Shui K, Wang C, Zhang X, Ma S, Li Q, Ning W, Zhang W, Chen M, Peng D, Hu H, Fang Z, Guo A, Gao G, Ye M, Zhang L, Xue Y. Small-sample learning reveals propionylation in determining global protein homeostasis. Nat Commun 2023; 14:2813. [PMID: 37198164 DOI: 10.1038/s41467-023-38414-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 04/28/2023] [Indexed: 05/19/2023] Open
Abstract
Proteostasis is fundamental for maintaining organismal health. However, the mechanisms underlying its dynamic regulation and how its disruptions lead to diseases are largely unclear. Here, we conduct in-depth propionylomic profiling in Drosophila, and develop a small-sample learning framework to prioritize the propionylation at lysine 17 of H2B (H2BK17pr) to be functionally important. Mutating H2BK17 which eliminates propionylation leads to elevated total protein level in vivo. Further analyses reveal that H2BK17pr modulates the expression of 14.7-16.3% of genes in the proteostasis network, and determines global protein level by regulating the expression of genes involved in the ubiquitin-proteasome system. In addition, H2BK17pr exhibits daily oscillation, mediating the influences of feeding/fasting cycles to drive rhythmic expression of proteasomal genes. Our study not only reveals a role of lysine propionylation in regulating proteostasis, but also implements a generally applicable method which can be extended to other issues with little prior knowledge.
Collapse
Affiliation(s)
- Ke Shui
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Chenwei Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Xuedi Zhang
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Shanshan Ma
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Qinyu Li
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Wanshan Ning
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Weizhi Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Miaomiao Chen
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Di Peng
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Hui Hu
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Zheng Fang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Anyuan Guo
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China
| | - Guanjun Gao
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, 201210, Shanghai, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023, Dalian, China
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, 430022, Hubei, China.
| | - Yu Xue
- Key Laboratory of Molecular Biophysics of Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Center for Artificial Intelligence Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, Hubei, China.
- Nanjing University Institute of Artificial Intelligence Biomedicine, Nanjing, 210031, Jiangsu, China.
| |
Collapse
|
33
|
Anderson ST, Meng H, Brooks TG, Tang SY, Lordan R, Sengupta A, Nayak S, Mřela A, Sarantopoulou D, Lahens NF, Weljie A, Grant GR, Bushman FD, FitzGerald GA. Sexual dimorphism in the response to chronic circadian misalignment on a high-fat diet. Sci Transl Med 2023; 15:eabo2022. [PMID: 37196066 DOI: 10.1126/scitranslmed.abo2022] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/14/2023] [Indexed: 05/19/2023]
Abstract
Longitudinal studies associate shiftwork with cardiometabolic disorders but do not establish causation or elucidate mechanisms of disease. We developed a mouse model based on shiftwork schedules to study circadian misalignment in both sexes. Behavioral and transcriptional rhythmicity were preserved in female mice despite exposure to misalignment. Females were protected from the cardiometabolic impact of circadian misalignment on a high-fat diet seen in males. The liver transcriptome and proteome revealed discordant pathway perturbations between the sexes. Tissue-level changes were accompanied by gut microbiome dysbiosis only in male mice, biasing toward increased potential for diabetogenic branched chain amino acid production. Antibiotic ablation of the gut microbiota diminished the impact of misalignment. In the United Kingdom Biobank, females showed stronger circadian rhythmicity in activity and a lower incidence of metabolic syndrome than males among job-matched shiftworkers. Thus, we show that female mice are more resilient than males to chronic circadian misalignment and that these differences are conserved in humans.
Collapse
Affiliation(s)
- Seán T Anderson
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Thomas G Brooks
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soon Yew Tang
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Soumyashant Nayak
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Antonijo Mřela
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dimitra Sarantopoulou
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aalim Weljie
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Frederic D Bushman
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
34
|
Zhu B, Liu S. Preservation of ∼12-hour ultradian rhythms of gene expression of mRNA and protein metabolism in the absence of canonical circadian clock. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.01.538977. [PMID: 37205336 PMCID: PMC10187213 DOI: 10.1101/2023.05.01.538977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Besides the ∼24-hour circadian rhythms, ∼12-hour ultradian rhythms of gene expression, metabolism and behaviors exist in animals ranging from crustaceans to mammals. Three major hypotheses were proposed on the origin and mechanisms of regulation of ∼12-hour rhythms, namely that they are not cell-autonomous and controlled by a combination of the circadian clock and environmental cues, that they are regulated by two anti-phase circadian transcriptional factors in a cell-autonomous manner, or that they are established by a cell-autonomous ∼12-hour oscillator. To distinguish among these possibilities, we performed a post-hoc analysis of two high temporal resolution transcriptome dataset in animals and cells lacking the canonical circadian clock. In both the liver of BMAL1 knockout mice and Drosophila S2 cells, we observed robust and prevalent ∼12-hour rhythms of gene expression enriched in fundamental processes of mRNA and protein metabolism that show large convergence with those identified in wild-type mice liver. Bioinformatics analysis further predicted ELF1 and ATF6B as putative transcription factors regulating the ∼12-hour rhythms of gene expression independently of the circadian clock in both fly and mice. These findings provide additional evidence to support the existence of an evolutionarily conserved 12-hour oscillator that controls ∼12-hour rhythms of gene expression of protein and mRNA metabolism in multiple species.
Collapse
|
35
|
Kirchner S, Lei V, Kim P, Patel M, Shannon J, Corcoran D, Hughes D, Waters D, Dzirasa K, Erdmann D, Coers J, MacLeod A, Zhang JY. An Aging-Susceptible Circadian Rhythm Controls Cutaneous Antiviral Immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.14.536934. [PMID: 37131751 PMCID: PMC10153172 DOI: 10.1101/2023.04.14.536934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Aged skin is prone to viral infections, but the mechanisms responsible for this immunosenescent immune risk are unclear. We observed that aged murine and human skin expressed reduced antiviral proteins (AVPs) and circadian regulators including Bmal1 and Clock. Bmal1 and Clock were found to control rhythmic AVP expression in skin and such circadian-control of AVPs was diminished by disruption of immune cell interleukin 27 signaling and deletion of Bmal1/Clock genes in mouse skins, as well as siRNA-mediated knockdown of CLOCK in human primary keratinocytes. We found that treatment of circadian enhancing agents, nobiletin and SR8278, reduced infection of herpes simplex virus 1 (HSV1) in epidermal explants and human keratinocytes in a Bmal1/Clock-dependent manner. Circadian enhancing treatment also reversed susceptibility of aging murine skin and human primary keratinocytes to viral infection. These findings reveal an evolutionarily conserved and age-sensitive circadian regulation of cutaneous antiviral immunity, underscoring circadian restoration as an antiviral strategy in aging populations.
Collapse
|
36
|
Guan D, Bae H, Zhou D, Chen Y, Jiang C, La CM, Xiao Y, Zhu K, Hu W, Trinh TM, Liu P, Xiong Y, Cai B, Jang C, Lazar MA. Hepatocyte SREBP signaling mediates clock communication within the liver. J Clin Invest 2023; 133:e163018. [PMID: 37066875 PMCID: PMC10104893 DOI: 10.1172/jci163018] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 02/23/2023] [Indexed: 04/18/2023] Open
Abstract
Rhythmic intraorgan communication coordinates environmental signals and the cell-intrinsic clock to maintain organ homeostasis. Hepatocyte-specific KO of core components of the molecular clock Rev-erbα and -β (Reverb-hDKO) alters cholesterol and lipid metabolism in hepatocytes as well as rhythmic gene expression in nonparenchymal cells (NPCs) of the liver. Here, we report that in fatty liver caused by diet-induced obesity (DIO), hepatocyte SREBP cleavage-activating protein (SCAP) was required for Reverb-hDKO-induced diurnal rhythmic remodeling and epigenomic reprogramming in liver macrophages (LMs). Integrative analyses of isolated hepatocytes and LMs revealed that SCAP-dependent lipidomic changes in REV-ERB-depleted hepatocytes led to the enhancement of LM metabolic rhythms. Hepatocytic loss of REV-ERBα and β (REV-ERBs) also attenuated LM rhythms via SCAP-independent polypeptide secretion. These results shed light on the signaling mechanisms by which hepatocytes regulate diurnal rhythms in NPCs in fatty liver disease caused by DIO.
Collapse
Affiliation(s)
- Dongyin Guan
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Hosung Bae
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Dishu Zhou
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Chen
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Chunjie Jiang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Cam Mong La
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yang Xiao
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Kun Zhu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Wenxiang Hu
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China
| | - Trang Minh Trinh
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Panpan Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Ying Xiong
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, California, USA
| | - Mitchell A. Lazar
- Institute for Diabetes, Obesity, and Metabolism, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine and
- Department of Genetics, the University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
37
|
Richardson RB, Mailloux RJ. Mitochondria Need Their Sleep: Redox, Bioenergetics, and Temperature Regulation of Circadian Rhythms and the Role of Cysteine-Mediated Redox Signaling, Uncoupling Proteins, and Substrate Cycles. Antioxidants (Basel) 2023; 12:antiox12030674. [PMID: 36978924 PMCID: PMC10045244 DOI: 10.3390/antiox12030674] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 02/27/2023] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Although circadian biorhythms of mitochondria and cells are highly conserved and crucial for the well-being of complex animals, there is a paucity of studies on the reciprocal interactions between oxidative stress, redox modifications, metabolism, thermoregulation, and other major oscillatory physiological processes. To address this limitation, we hypothesize that circadian/ultradian interaction of the redoxome, bioenergetics, and temperature signaling strongly determine the differential activities of the sleep–wake cycling of mammalians and birds. Posttranslational modifications of proteins by reversible cysteine oxoforms, S-glutathionylation and S-nitrosylation are shown to play a major role in regulating mitochondrial reactive oxygen species production, protein activity, respiration, and metabolomics. Nuclear DNA repair and cellular protein synthesis are maximized during the wake phase, whereas the redoxome is restored and mitochondrial remodeling is maximized during sleep. Hence, our analysis reveals that wakefulness is more protective and restorative to the nucleus (nucleorestorative), whereas sleep is more protective and restorative to mitochondria (mitorestorative). The “redox–bioenergetics–temperature and differential mitochondrial–nuclear regulatory hypothesis” adds to the understanding of mitochondrial respiratory uncoupling, substrate cycling control and hibernation. Similarly, this hypothesis explains how the oscillatory redox–bioenergetics–temperature–regulated sleep–wake states, when perturbed by mitochondrial interactome disturbances, influence the pathogenesis of aging, cancer, spaceflight health effects, sudden infant death syndrome, and diseases of the metabolism and nervous system.
Collapse
Affiliation(s)
- Richard B. Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River, ON K0J 1J0, Canada
- McGill Medical Physics Unit, Cedars Cancer Centre—Glen Site, McGill University, Montreal, QC H4A 3J1, Canada
- Correspondence: or
| | - Ryan J. Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC H9X 3V9, Canada;
| |
Collapse
|
38
|
Abstract
Liver diseases, including viral hepatitis, fatty liver, metabolic-associated fatty liver disease, liver cirrhosis, alcoholic liver disease, and liver neoplasms, are major global health challenges. Despite the continued development of new drugs and technologies, the prognosis of end-stage liver diseases, including advanced liver cirrhosis and liver neoplasms, remains poor. Follistatin-like protein 1 (FSTL1), an extracellular glycoprotein, is secreted by various cell types. It is a glycoprotein that belongs to the family of secreted proteins acidic and rich in cysteine (SPARC). It is also known as transforming growth factor-beta inducible TSC-36 and follistatin-related protein (FRP). FSTL1 plays a key role in cell survival, proliferation, differentiation, and migration, as well as the regulation of inflammation and immunity. Studies have demonstrated that FSTL1 significantly affects the occurrence and development of liver diseases. This article reviews the role and mechanism of FSLT1 in liver diseases.
Collapse
Affiliation(s)
- Chuansha Gu
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Hua Xue
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| | - Xiaoli Yang
- Xinxiang Key Laboratory of Tumor
Microenvironment and Immunotherapy, School of Laboratory Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Yu Nie
- School of Basic Medicine, Xinxiang Medical
University, Xinxiang 453003, China
| | - Xinlai Qian
- The Third Affiliated Hospital of Xinxiang
Medical University, Xinxiang 453000, China
| |
Collapse
|
39
|
Chen YT, Huang PY, Chai CY, Yu S, Hsieh YL, Chang HC, Kuo CW, Lee YC, Yu HS. Early detection of the initial stages of LED light-triggered non-alcoholic fatty liver disease by wax physisorption kinetics-Fourier transform infrared imaging. Analyst 2023; 148:643-653. [PMID: 36621928 DOI: 10.1039/d2an01546c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Light-emitting diodes (LEDs), particularly in the blue waveform range, are regarded as a major source of circadian rhythm dysregulation. A circadian rhythm dysregulation induced by blue LEDs is associated with non-alcoholic fatty liver disease (NAFLD). Hepatocellular accumulation of lipids is a key event in the early stages of NAFLD. Kupffer cells (KCs) have been reported to be lost in the early onset of NAFLD followed by an inflammatory reaction that alters the liver response to lipid overload. This study focused on the detection of the initial stages (subpathological stages) of LED light-triggered NAFLD. Mice were exposed to either blue or white LED irradiation for 44 weeks. Synchrotron radiation-based Fourier-transform infrared microspectroscopy (SR-FTIRM) and wax physisorption kinetic-Fourier transform infrared (WPK-FTIR) imaging were used to evaluate the ratio of lipid to protein and the glycosylation of glycoprotein, respectively. Immunohistopathological studies on KCs and circadian-related proteins were performed. Although liver biopsy showed normal pathology, an SR-FTIRM study revealed a high hepatic lipid-to-protein ratio after receiving LED illumination. The results of WPK-FTIR demonstrated that a high inflammation index was found in the high irradiance of the blue LED illumnation group. These groups showed a decrease in KC number and an increase in Bmal1 and Reverbα circadian protein expression. These findings provide explanations for the reduction of KCs without subsequent inflammation. A significant reduction of Per2 and Cry1 expression is correlated with the findings of WPK-FTIR imaging. WPK-FTIR is a sensitive method for detecting initiative stages of NAFLD induced by long-term blue LED illumination.
Collapse
Affiliation(s)
- Yi-Ting Chen
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Pei-Yu Huang
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chee-Yin Chai
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Pathology, Faculty of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
| | - Sebastian Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,Department of Dermatology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yu-Lin Hsieh
- Department of Anatomy, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| | - Hao-Chao Chang
- Taiwan Instrument Research Institute, National Applied Research Laboratories, Hsinchu 30205, Taiwan
| | - Chin-Wei Kuo
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Yao-Chang Lee
- Life Science Group, National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan.,Department of Optics and Photonics, National Central University, Taoyuan 320317, Taiwan.,Chemistry Department, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Hsin-Su Yu
- Department of Dermatology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan. .,National Institute of Environmental Health Sciences, National Health Research Institutes, Miaoli County 35053, Taiwan.,Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| |
Collapse
|
40
|
Lim JY, Kim E, Douglas CM, Wirianto M, Han C, Ono K, Kim SY, Ji JH, Tran CK, Chen Z, Esser KA, Yoo SH. The circadian E3 ligase FBXL21 regulates myoblast differentiation and sarcomere architecture via MYOZ1 ubiquitination and NFAT signaling. PLoS Genet 2022; 18:e1010574. [PMID: 36574402 PMCID: PMC9829178 DOI: 10.1371/journal.pgen.1010574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 01/09/2023] [Accepted: 12/14/2022] [Indexed: 12/28/2022] Open
Abstract
Numerous molecular and physiological processes in the skeletal muscle undergo circadian time-dependent oscillations in accordance with daily activity/rest cycles. The circadian regulatory mechanisms underlying these cyclic processes, especially at the post-transcriptional level, are not well defined. Previously, we reported that the circadian E3 ligase FBXL21 mediates rhythmic degradation of the sarcomere protein TCAP in conjunction with GSK-3β, and Psttm mice harboring an Fbxl21 hypomorph allele show reduced muscle fiber diameter and impaired muscle function. To further elucidate the regulatory function of FBXL21 in skeletal muscle, we investigated another sarcomere protein, Myozenin1 (MYOZ1), that we identified as an FBXL21-binding protein from yeast 2-hybrid screening. We show that FBXL21 binding to MYOZ1 led to ubiquitination-mediated proteasomal degradation. GSK-3β co-expression and inhibition were found to accelerate and decelerate FBXL21-mediated MYOZ1 degradation, respectively. Previously, MYOZ1 has been shown to inhibit calcineurin/NFAT signaling important for muscle differentiation. In accordance, Fbxl21 KO and MyoZ1 KO in C2C12 cells impaired and enhanced myogenic differentiation respectively compared with control C2C12 cells, concomitant with distinct effects on NFAT nuclear localization and NFAT target gene expression. Importantly, in Psttm mice, both the levels and diurnal rhythm of NFAT2 nuclear localization were significantly diminished relative to wild-type mice, and circadian expression of NFAT target genes associated with muscle differentiation was also markedly dampened. Furthermore, Psttm mice exhibited significant disruption of sarcomere structure with a considerable excess of MYOZ1 accumulation in the Z-line. Taken together, our study illustrates a pivotal role of FBXL21 in sarcomere structure and muscle differentiation by regulating MYOZ1 degradation and NFAT2 signaling.
Collapse
Affiliation(s)
- Ji Ye Lim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Eunju Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Collin M. Douglas
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Marvin Wirianto
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Chorong Han
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Kaori Ono
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Sun Young Kim
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Justin H. Ji
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Celia K. Tran
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Zheng Chen
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Karyn A. Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, Florida, United States of America
| | - Seung-Hee Yoo
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| |
Collapse
|
41
|
Richardson RB, Mailloux RJ. WITHDRAWN: Mitochondria need their sleep: Sleep-wake cycling and the role of redox, bioenergetics, and temperature regulation, involving cysteine-mediated redox signaling, uncoupling proteins, and substrate cycles. Free Radic Biol Med 2022:S0891-5849(22)01013-9. [PMID: 36462628 DOI: 10.1016/j.freeradbiomed.2022.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal
Collapse
Affiliation(s)
- Richard B Richardson
- Radiobiology and Health, Canadian Nuclear Laboratories (CNL), Chalk River Laboratories, Chalk River, Ontario, K0J 1J0, Canada; McGill Medical Physics Unit, McGill University, Cedars Cancer Centre - Glen Site, Montreal, Quebec QC, H4A 3J1, Canada.
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, Quebec, H9X 3V9, Canada
| |
Collapse
|
42
|
Liu H, Liu S, Wang K, Zhang T, Yin L, Liang J, Yang Y, Luo J. Time-Dependent Effects of Physical Activity on Cardiovascular Risk Factors in Adults: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14194. [PMID: 36361072 PMCID: PMC9655086 DOI: 10.3390/ijerph192114194] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
PURPOSE Physical activity is an important non-drug-related method to prevent and treat cardiovascular diseases, but how exercise duration affects the cardiovascular metabolic risk factors in adults remains uncertain. This review systematically examines the time-dependent effects of physical activity on cardiovascular risk factors in adults and aims to further the understanding of the temporal therapeutics of exercise. METHODS Following the PRISMA guidelines, the PubMed, Web of Science, EMBASE, and CNKI databases were systematically searched for relevant scientific studies from January 2000 to June 2022. RESULTS A total of 16 studies met the inclusion criteria and were included in the systematic review. The sample size ranged from 11-275 participants who were diagnosed with obesity, hypertension, diabetes mellitus type 2 (T2DM), and Coronary Heart Disease (CAD), while the subjects in four studies did not report any metabolic or cardiovascular disease. Four studies conducted trials of acute exercise interventions, while the remaining intervention periods ranged from 12 days to 12 weeks. The exercise interventions included aerobic training, resistance training, aerobic training that was combined with resistance training, compound exercise, and high-intensity interval exercise, and the training frequency varied from 2-5 times/week. CONCLUSIONS Overall, this review found some evidence that the cardiovascular risk factors in adults may be time-dependent in response to physical activity. However, it is limited by the small sample size for each of the outcomes and several methodological issues, leading to poor comparability between studies. A randomized controlled trial with a larger sample size is supposed to be designed for the relevant population to completely test whether synchronizing the exercise time point in the day with the individual's circadian rhythm can amplify the benefits of the exercise for improving cardiovascular health.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jiong Luo
- Research Centre for Exercise Detoxification, College of Physical Education, Southwest University, Chongqing 400715, China
| |
Collapse
|
43
|
Hardeland R. Redox Biology of Melatonin: Discriminating Between Circadian and Noncircadian Functions. Antioxid Redox Signal 2022; 37:704-725. [PMID: 35018802 PMCID: PMC9587799 DOI: 10.1089/ars.2021.0275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 12/15/2022]
Abstract
Melatonin has not only to be seen as a regulator of circadian clocks. In addition to its chronobiotic functions, it displays other actions, especially in cell protection. This includes antioxidant, anti-inflammatory, and mitochondria-protecting effects. Although protection is also modulated by the circadian system, the respective actions of melatonin can be distinguished and differ with regard to dose requirements in therapeutic settings. It is the aim of this article to outline these differences in terms of function, signaling, and dosage. Focus has been placed on both the nexus and the dissecting properties between circadian and noncircadian mechanisms. This has to consider details beyond the classic view of melatonin's role, such as widespread synthesis in extrapineal tissues, formation in mitochondria, effects on the mitochondrial permeability transition pore, and secondary signaling, for example, via upregulation of sirtuins and by regulating noncoding RNAs, especially microRNAs. The relevance of these findings, the differences and connections between circadian and noncircadian functions of melatonin shed light on the regulation of inflammation, including macrophage/microglia polarization, damage-associated molecular patterns, avoidance of cytokine storms, and mitochondrial functions, with numerous consequences to antioxidative protection, that is, aspects of high actuality with regard to deadly viral and bacterial diseases. Antioxid. Redox Signal. 37, 704-725.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Goettingen, Goettingen, Germany
| |
Collapse
|
44
|
Lao Y, Li Y, Wang W, Ren L, Qian X, He F, Chen X, Jiang Y. A Cytological Atlas of the Human Liver Proteome from PROTEOME SKY-LIVER Hu 2.0, a Publicly Available Database. J Proteome Res 2022; 21:1916-1929. [PMID: 35820117 DOI: 10.1021/acs.jproteome.2c00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The liver plays a unique role as a metabolic center of the body, and also performs other important functions such as detoxification and immune response. Here, we establish a cell type-resolved healthy human liver proteome including hepatocytes (HCs), hepatic stellate cells (HSCs), Kupffer cells (KCs), and liver sinusoidal endothelial cells (LSECs) by high-resolution mass spectrometry. Overall, we quantify total 8354 proteins for four cell types and over 6000 proteins for each cell type. Analysis of this data set and regulatory pathway reveals the cellular labor division in the human liver follows the pattern that parenchymal cells make the main components of pathways, but nonparenchymal cells trigger these pathways. Human liver cells show some novel molecular features: HCs maintain KCs and LSECs homeostasis by producing cholesterol and ketone bodies; HSCs participate in xenobiotics metabolism as an agent deliverer; KCs and LSECs mediate immune response through MHC class II-TLRs and MHC class I-TGFβ cascade, respectively; and KCs play a central role in diurnal rhythms regulation through sensing diurnal IGF and temperature flux. Together, this work expands our understandings of liver physiology and provides a useful resource for future analyses of normal and diseased livers.
Collapse
Affiliation(s)
- Yuanxiang Lao
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Department of Hepatobiliary Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing 210008, China
| | - Yanyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Institute of Hematology, School of Medicine, Jinan University, Guangzhou 510632, China
| | - Wei Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Liangliang Ren
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xiaohong Qian
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Xinguo Chen
- Institute of Liver Transplantation, The Third Medical Center, Chinese PLA General Hospital, Beijing 100039, China
| | - Ying Jiang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China.,Anhui Medical University, Hefei 230031, China
| |
Collapse
|
45
|
Liu Q, Wang H, Wang H, Li N, He R, Liu Z. Per1/Per2 Disruption Reduces Testosterone Synthesis and Impairs Fertility in Elderly Male Mice. Int J Mol Sci 2022; 23:ijms23137399. [PMID: 35806403 PMCID: PMC9266724 DOI: 10.3390/ijms23137399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 11/22/2022] Open
Abstract
Circadian rhythm disorders caused by genetic or environmental factors lead to decreased male fertility but the mechanisms are poorly understood. The current study reports that the mechanism of Per1/Per2 Double knockout (DKO) reduced the reproductive capacity of elderly male mice. The sperm motility and spermatogenic capacity of male DKO mice were weak. Hormone-targeted metabolomics showed reduced plasma levels of free testosterone in DKO male mice compared with WT male mice. Transcriptomic analysis of testicular tissue showed the down-regulation of testosterone synthesis-related enzymes (Cyp11a1, Cyp17a1, Hsd17b3, Hsd3b1, and Star) in the steroid hormone synthesis pathway. Spermatogenesis genes, Tubd1 and Pafah1b were down-regulated, influencing tubulin dynamics and leading to impaired motility. Seleno-compound metabolic loci, Scly and Sephs2, were up-regulated and Slc7a11 and Selenop were down-regulated. Western-blotting showed that steroid acute regulatory protein (StAR) and p-CREB, PKA and AC1 were reduced in testicular tissue of DKO mice compared to WT. Therefore, Per1/Per2 disruption reduced testosterone synthesis and sperm motility by affecting the PKA-StAR pathway, leading to decreased fertility.
Collapse
Affiliation(s)
| | | | | | | | - Ruyi He
- Correspondence: (R.H.); (Z.L.)
| | | |
Collapse
|
46
|
The intersection between circadian and heat-responsive regulatory networks controls plant responses to increasing temperatures. Biochem Soc Trans 2022; 50:1151-1165. [PMID: 35758233 PMCID: PMC9246330 DOI: 10.1042/bst20190572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/02/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Increasing temperatures impact plant biochemistry, but the effects can be highly variable. Both external and internal factors modulate how plants respond to rising temperatures. One such factor is the time of day or season the temperature increase occurs. This timing significantly affects plant responses to higher temperatures altering the signaling networks and affecting tolerance levels. Increasing overlaps between circadian signaling and high temperature responses have been identified that could explain this sensitivity to the timing of heat stress. ELF3, a circadian clock component, functions as a thermosensor. ELF3 regulates thermoresponsive hypocotyl elongation in part through its cellular localization. The temperature sensitivity of ELF3 depends on the length of a polyglutamine region, explaining how plant temperature responses vary between species. However, the intersection between the circadian system and increased temperature stress responses is pervasive and extends beyond this overlap in thermosensing. Here, we review the network responses to increased temperatures, heat stress, and the impacts on the mechanisms of gene expression from transcription to translation, highlighting the intersections between the elevated temperature and heat stress response pathways and circadian signaling, focusing on the role of ELF3 as a thermosensor.
Collapse
|
47
|
Lacerda JT, Gomes PRL, Zanetti G, Mezzalira N, Lima OG, de Assis LVM, Guler A, Castrucci AM, Moraes MN. Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes. Int J Mol Sci 2022; 23:ijms23137014. [PMID: 35806020 PMCID: PMC9266899 DOI: 10.3390/ijms23137014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.
Collapse
Affiliation(s)
- José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Patrícia R. L. Gomes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Nathana Mezzalira
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Otoniel G. Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Leonardo V. M. de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Ali Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Ana Maria Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence:
| |
Collapse
|
48
|
Ogata S, Ito S, Masuda T, Ohtsuki S. Diurnal Changes in Protein Expression at the Blood-Brain Barrier in Mice. Biol Pharm Bull 2022; 45:751-756. [PMID: 35650102 DOI: 10.1248/bpb.b22-00016] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Circadian rhythms influence the transport function of the blood-brain barrier (BBB) and peripheral organs. However, the influence of circadian rhythms on protein expression in the BBB remains to be completely elucidated. Therefore, we aimed to investigate diurnal changes in protein expression in the mouse BBB using quantitative proteomics. Quantitative proteomics showed that the expression of 67, 10, and 20 proteins in the isolated mouse brain capillary fraction changed significantly at zeitgeber time (ZT) 6, 12, and 18, respectively, compared to ZT0. Among them, the levels of 44 proteins were significantly increased at ZT6 and then returned to the same level as ZT0 at ZT12 and ZT18. Gene ontology analysis indicated that the proteins significantly increased at ZT6 were majorly related to translation. The brain capillary endothelial cell-selective proteins sepiapterin reductase and vascular endothelial growth factor receptor 2 showed diurnal variation. In contrast, the expression of ABC transporters, SLC transporters, and receptors associated with receptor-mediated transcytosis, and tight junction proteins did not change within a day. The present findings demonstrated that protein expression related to transport function and physical barrier at the BBB was maintained throughout the day, although the proteins involved in some biological processes exhibited diurnal variation at the BBB.
Collapse
Affiliation(s)
- Seiryo Ogata
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University
| | - Shingo Ito
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Graduate School of Pharmaceutical Sciences, Kumamoto University.,Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University
| |
Collapse
|
49
|
Aggarwal S, Trehanpati N, Nagarajan P, Ramakrishna G. The Clock-NAD + -Sirtuin connection in nonalcoholic fatty liver disease. J Cell Physiol 2022; 237:3164-3180. [PMID: 35616339 DOI: 10.1002/jcp.30772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 04/27/2022] [Accepted: 05/02/2022] [Indexed: 11/10/2022]
Abstract
Nonalcoholic or metabolic associated fatty liver disease (NAFLD/MAFLD) is a hepatic reflection of metabolic derangements characterized by excess fat deposition in the hepatocytes. Identifying metabolic regulatory nodes in fatty liver pathology is essential for effective drug targeting. Fatty liver is often associated with circadian rhythm disturbances accompanied with alterations in physical and feeding activities. In this regard, both sirtuins and clock machinery genes have emerged as critical metabolic regulators in maintaining liver homeostasis. Knockouts of either sirtuins or clock genes result in obesity associated with the fatty liver phenotype. Sirtuins (SIRT1-SIRT7) are a highly conserved family of nicotinamide adenine dinucleotide (NAD+)-dependent deacetylases, protecting cells from metabolic stress by deacetylating vital proteins associated with lipid metabolism. Circadian rhythm is orchestrated by oscillations in expression of master regulators (BMAL1 and CLOCK), which in turn regulate rhythmic expression of clock-controlled genes involved in lipid metabolism. The circadian metabolite, NAD+ , serves as a crucial link connecting clock genes to sirtuin activity. This is because, NAMPT which is a rate limiting enzyme in NAD+ biosynthesis is transcriptionally regulated by the clock genes and NAD+ in turn is a cofactor regulating the deacetylation activity of sirtuins. Intriguingly, on one hand the core circadian clock regulates the sirtuin activity and on the other hand the activated sirtuins regulate the acetylation status of clock proteins thereby affecting their transcriptional functions. Thus, the Clock-NAD+-Sirtuin connection represents a novel "feedback loop" circuit that regulates the metabolic machinery. The current review underpins the importance of NAD+ on the sirtuin and clock connection in preventing fatty liver disorder.
Collapse
Affiliation(s)
- Savera Aggarwal
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| | - Perumal Nagarajan
- Department of Experimental Animal Facility, National Institute of Immunology, New Delhi, India
| | - Gayatri Ramakrishna
- Department of Molecular and Cellular Medicine, Institute of Liver and Biliary Sciences, New Delhi, India
| |
Collapse
|
50
|
Lin J, Yang Q, Guo J, Li M, Hao Z, He J, Li J. Gut Microbiome Alterations and Hepatic Metabolic Flexibility in the Gansu Zokor, Eospalax cansus: Adaptation to Hypoxic Niches. Front Cardiovasc Med 2022; 9:814076. [PMID: 35402538 PMCID: PMC8984292 DOI: 10.3389/fcvm.2022.814076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The Gansu zokor (Eospalax cansus), a typical subterranean rodent endemic to the Chinese Loess Plateau, spends almost its whole life in its self-constructed underground burrows and has strong adaptability to ambient hypoxia. Energy adaptation is the key to supporting hypoxia tolerance, and recent studies have shown that the intestinal microbiota has an evident effect on energy metabolism. However, how the gut microbiome of Gansu zokor will change in response to hypoxia and the metabolic role played by the microbiome have not been reported. Thus, we exposed Gansu zokors to severe hypoxia of 6.5% of O2 (6 or 44 h) or moderate hypoxia of 10.5% of O2 (44 h or 4 weeks), and then analyzed 16S rRNA sequencing, metagenomic sequencing, metagenomic binning, liver carbohydrate metabolites, and the related molecular levels. Our results showed that the hypoxia altered the microbiota composition of Gansu zokor, and the relative contribution of Ileibacterium to carbohydrate metabolism became increased under hypoxia, such as glycolysis and fructose metabolism. Furthermore, Gansu zokor liver enhanced carbohydrate metabolism under the short-term (6 or 44 h) hypoxia but it was suppressed under the long-term (4 weeks) hypoxia. Interestingly, under all hypoxia conditions, Gansu zokor liver exhibited enhanced fructose-driven metabolism through increased expression of the GLUT5 fructose transporter, ketohexokinase (KHK), aldolase B (ALDOB), and aldolase C (ALDOC), as well as increased KHK enzymatic activity and fructose utilization. Overall, our results suggest that the altered gut microbiota mediates the carbohydrate metabolic pattern under hypoxia, possibly contributing to the hepatic metabolic flexibility in Gansu zokor, which leads to better adaptation to hypoxic environments.
Collapse
|