1
|
Chen S, Xu L, Leng J, Chen Z, Chen Y, Li L, Zhang H, Li M, Cao J. Identification of SNPs in the second intron of IGF2BP1 and their Association with growth traits in Nanjiang Yellow goat. Anim Biotechnol 2025; 36:2461176. [PMID: 39962798 DOI: 10.1080/10495398.2025.2461176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 01/27/2025] [Indexed: 05/09/2025]
Abstract
Insulin-like Growth Factor 2 mRNA-binding Protein 1 (IGF2BP1) is a candidate gene of significant interest for modulating economically important traits in livestock and poultry. The second intron of IGF2BP1 has been implicated in growth-related traits, though its precise mechanistic role remains elusive. Initial resequencing analyses in our laboratory indicated strong selective pressures on the IGF2BP1 genomic region, prompting the selection and identification of several single nucleotide polymorphisms (SNPs). Seven SNPs were mapped to the conserved region of the second intron, necessitating further investigation into their functional relevance and association with growth traits. In this study, 348 Nanjiang Yellow goats were analyzed, and the association analysis via the GLM program in SAS 9.4 identified five SNPs significantly correlated with growth traits. Notably, rs652062749(A > G) emerged as a critical locus influencing later-stage growth traits. Furthermore, strong linkage disequilibrium was observed among three SNPs, with the rs638185407 (T > A) variant markedly enhancing luciferase activity in H293T cells. Combination genotypes TTAACT, TTCCCC, and ATCACT were identified as superior for growth traits, offering theoretical insights for genetic co-breeding. This study underscores the potential utility of IGF2BP1 as a functional genetic marker in Nanjiang Yellow goat breeding programs.
Collapse
Affiliation(s)
- Shuheng Chen
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Liang Xu
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Junchen Leng
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Zitong Chen
- Xinjiang Yili Prefecture Animal Husbandry Station, Yining, China
| | - Yu Chen
- Sichuan Nanjiang Yellow goat Breeding Farm, Nanjiang, China
| | - Li Li
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Hongping Zhang
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Mingzhou Li
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| | - Jiaxue Cao
- Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Key Laboratory of Livestock and Poultry Multiomics, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Wen Z, Cai X, Liu Z, Tan L, Kong Y, Wang Y, Zhao Y. Genomic analyses reveal a lack of widespread strong selection in indigenous chickens. Poult Sci 2025; 104:105081. [PMID: 40138972 PMCID: PMC11985164 DOI: 10.1016/j.psj.2025.105081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025] Open
Abstract
The study of domestication has been revolutionized with the advent of molecular genetics. Chickens, with their clear domestication history, emerge as an excellent model for study into the paths of evolution in domestication and improvement. Here we used genomic data from wild, indigenous, and commercial chickens to better understand how genetic drift and selection translate into their differentiations. Our investigation into the patterns of allelic change and divergence reveals a polygenic architecture governing genetic differentiation during domestication and improvement. We uncover distinctive population-specific differentiations in terms of genes and functions among wild, indigenous, and commercial chickens. Using Runs Of Homozygosity (ROH) based mixed model approach developed in this study, we identified only directional selection signatures occurring in wild and commercial chickens. Notably, our findings suggest that indigenous chickens serve as reservoirs of genetic diversity, necessary for rapid adaptation to new environments or subsequent modern breeding. This work provides unprecedented insights into the chicken domestication and improvement, and it illuminates our understanding of the domestication of other animal species.
Collapse
Affiliation(s)
- Zilong Wen
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xinyu Cai
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Zexuan Liu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lizhi Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuan Kong
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yuzhan Wang
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yiqiang Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China; National Research Facility for Phenotypic and Genotypic Analysis of Model Animals (Beijing), China Agricultural University, Beijing 100193, China.
| |
Collapse
|
3
|
Liu Y, Weng K, Li G, Wang H, Tan Y, He D. Genetic and metabolic mechanisms underlying webbed feet pigmentation in geese: Insights from histological, transcriptomic, and metabolomic analyses. Poult Sci 2025; 104:105233. [PMID: 40367570 DOI: 10.1016/j.psj.2025.105233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/19/2025] [Accepted: 04/29/2025] [Indexed: 05/16/2025] Open
Abstract
This study systematically investigated the genetic and metabolic mechanisms underlying pigmentation in goose webbed feet by integrating histological, transcriptomic, and metabolomic analyses. Histological examinations revealed significant differences in melanin deposition among webbed feet of varying colors. Dark black webbed feet exhibited the highest melanin content, light black webbed feet showed moderate levels, and colorless webbed feet lacked detectable melanin. Transcriptomic analysis identified substantial variations in the expression levels of key genes involved in melanin biosynthesis, including TYRP1, PMEL, DCT, TYR, OCA2, MC1R, RAB38, WNT16, CAMK2A, and MLANA, between pigmented and colorless webbed feet. Notably, the OCA2 gene exhibited significantly higher expression in dark black webbed feet compared to light black webbed feet, underscoring its pivotal role in regulating pigmentation intensity. Enrichment analysis emphasized the importance of pathways related to tyrosine metabolism, melanin production, and amino acid biosynthesis in determining pigmentation differences. Metabolomic profiling supported these findings, revealing that L-tyrosine and 5,6-dihydroxyindole-2-carboxylic acid are critical metabolites in the melanin biosynthesis pathway. Specifically, elevated levels of L-tyrosine were detected in colorless webbed feet, likely due to inhibited melanin synthesis, whereas 5,6-dihydroxyindole-2-carboxylic acid levels were highest in dark black webbed feet, reflecting active melanin production. Correlation analysis between transcriptomic and metabolomic data further validated the central role of tyrosine metabolism and melanin biosynthesis pathways in pigmentation. In conclusion, this study employed multi-omics approaches to elucidate the critical role of the OCA2-centered genetic-metabolic regulatory network in melanin deposition of goose webbed feet, providing important insights into the molecular mechanisms of avian pigmentation and valuable references for poultry breeding.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Kaiqi Weng
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Huiying Wang
- Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yu Tan
- Hunan Wugang Tong Geese Agricultural Development Co. Ltd., Hunan, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Shanghai, China.
| |
Collapse
|
4
|
Zhang Z, Ni Z, Li T, Ning M, Gao C, Hu J, Han M, Yang J, Wu F, Chen L, Lu L, Wu Z, Ai H, Huang Y. Nine high-quality Anas genomes provide insights into Anas evolution and domestication. Cell Rep 2025; 44:115477. [PMID: 40173044 DOI: 10.1016/j.celrep.2025.115477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/18/2024] [Accepted: 03/06/2025] [Indexed: 04/04/2025] Open
Abstract
Evolutionary studies of wild and domestic organisms have yielded fascinating discoveries, while the species diversity and the domestication of ducks remain unclear. Here, we assembled eight chromosome-level Anas genomes, combined with the Pekin duck genome, to investigate Anas evolution and domestication. We found that, compared to autosomes, the Z chromosome was less affected by introgression and exhibited relatively stable local phylogenies. From the Z chromosome perspective, we proposed that the speciation of Anas platyrhynchos and Anas zonorhyncha was accompanied by continuous female-biased gene flow and remodeled duck domestication history. Moreover, we constructed an Anas pan-genome and identified several differentiated structural variations (SVs) between domestic and wild ducks. These SVs likely regulate their neighboring genes (i.e., GHR and FER), which represented the promising "domestication genes." Furthermore, a long terminal repeat (LTR) retrotransposon burst was found to have accelerated duck domestication, specifically contributing to functional shifts of the notable MITF and IGF2BP1 genes. These findings presented a live example for understanding animal evolutionary processes.
Collapse
Affiliation(s)
- Zhou Zhang
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China; National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330000, China
| | - Zijia Ni
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Te Li
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Mengfei Ning
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Chuze Gao
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Jiaxiang Hu
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Mengying Han
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China
| | - Jiawen Yang
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330000, China
| | - Fusheng Wu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330000, China
| | - Li Chen
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary Medicine, Zhejiang Academy of Agricultural Sciences, Hangzhou 310000, China
| | - Zhongzi Wu
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330000, China
| | - Huashui Ai
- National Key Laboratory for Swine Genetic Improvement and Germplasm Innovation, Jiangxi Agricultural University, Nanchang 330000, China
| | - Yinhua Huang
- State Key Laboratory for Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, Beijing 100000, China.
| |
Collapse
|
5
|
Liu D, Fan W, Yang Y, Guo Z, Xu Y, Hu J, Liu T, Yu S, Zhang H, Tang J, Hou S, Zhou Z. Metabolome genome-wide association analyses identify a splice mutation in AADAT affects lysine degradation in duck skeletal muscle. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2882-x. [PMID: 40208415 DOI: 10.1007/s11427-024-2882-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 02/21/2025] [Indexed: 04/11/2025]
Abstract
Metabolites in skeletal muscles play an important role in their growth, development, immunity and other physiological activities. However, the genetic basis of metabolites in skeletal muscle remains poorly understood. Here, we identified 247 candidate divergent regions containing 905 protein-coding genes closely related to metabolic pathways, including lysine degradation and fatty acid biosynthesis. We then profiled 3,060 metabolites in 246 skeletal muscle samples from F2 segregating population generated by mallard×Pekin duck crosses using metabolomic approaches. We identified 2,044 significant metabolome-based GWAS signals and 21 candidate genes potentially modulating metabolite contents in skeletal muscle. Among them, the levels of 2-aminoadipic acid in skeletal muscle were significantly correlated with body weight and intramuscular fat content, determined by a 939-bp CR1 LINE insertion in AADAT. We further found that the CR1 LINE insertion most possibly led to a splice mutation in AADAT, resulting in the downregulation of the lysine degradation pathway in skeletal muscle. Moreover, intramuscular fat content and fatty acids biosynthesis pathway was significantly increased in individuals with CR1 LINE insertion. This study enhances our understanding of the genetic basis of skeletal muscle metabolic traits and promotes the efficient utilization of metabolite traits in the genetic improvement of animals.
Collapse
Affiliation(s)
- Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Wenlei Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Youyou Yang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yaxi Xu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jing Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
6
|
Wang Y, Zhu C, Wang Z, Song W, Lu L, Tao Z, Xu W, Zhang S, Zhou W, Liu H, Li H. RNA sequencing analysis reveals key genes and pathways associated with feather pigmentation in mule ducks. Anim Genet 2025; 56:e70007. [PMID: 40091485 DOI: 10.1111/age.70007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Feather color is an important morphological trait of poultry. At present, the reports on the inheritance of plumage color of mule ducks at the molecular level are few, and the regulatory mechanism in white plumage rates of different mule ducks remains unclear. This study aimed to broaden the understanding of the white plumage rates in mule ducks to improve their production value. We used RNA sequencing to analyze and compare the mRNA expression profiles in hair follicle tissues from 10-week-old mule ducks with black and white plumages, thereby revealing the temporal gene expression patterns and pathways associated with plumage color regulation. In total, 1672 annotated differentially expressed genes (DEGs) were identified in black and white plumages from different databases between mule ducks with the 2 plumage colors. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment in hair follicle tissues indicated that the aforementioned DEGs were mainly involved in the melanin signaling pathway. Concurrently, we use weighted gene co-expression network analysis to detect core modules and hub genes associated with melanin biosynthesis in feathers. The green module exhibited the strongest correlation with the phenotypic traits, encompassing a total of 1049 genes. Subsequent Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified 11 genes as pivotal in the melanin biosynthetic pathway, including EDRNB2, TYR, KIT, EDNRB, and MC1R. The differential expression of eight selected DEGs was verified using quantitative reverse transcription-PCR, and the results were consistent with RNA-seq data. This study provides a basis for understanding the differences in plumage color development in mule ducks.
Collapse
Affiliation(s)
- Yifei Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Chunhong Zhu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Zhicheng Wang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Weitao Song
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Zhiyun Tao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Wenjuan Xu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Shuangjie Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Wei Zhou
- Jiangsu Guiliu Livestock Group Co., Ltd, Xuzhou, China
| | - Hongxiang Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| | - Huifang Li
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, China
- Jiangsu Institute of Poultry Sciences, Yangzhou, China
| |
Collapse
|
7
|
Zhang B, Hu P, Wu X, Zheng L, Li X, Wang K, Han X, Wang Y, Hong Y, Qiao R. Mining of candidate genes related to body size in Chinese native pig breeds based on public data. Sci Rep 2025; 15:9793. [PMID: 40118904 PMCID: PMC11928613 DOI: 10.1038/s41598-025-88583-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 01/29/2025] [Indexed: 03/24/2025] Open
Abstract
To study the key genes that influence the body size of local pig breeds in China. Genome-wide SNP chip data from a total of 129 pigs from eight breeds, consisting of four large body size breeds (MZ, HT, ST, RC) and four small body size breeds (XI, BX, WZ, DN) were analyzed. Principal Component Analysis (PCA) was employed to assess the genetic clustering of the eight breeds. Fst and XP-CLR were used to detect selective signals between the large ans small body size breeds groups. The PCA results indicated a clear clustering of small breeds and a dispersion distribution among large breeds. Fst and XP-CLR identified 142 overlapping regions within a 500 kb up & down stream of significant loci. These regions encompassed 520 annotated genes, which were enriched in 34 biological pathways. Gene network analysis highlighted nine key genes, of which five (NPR3, TNFSF11, TBC1D7, FGF2, IGF1R) are known to be associated with bone growth and body size traits in animals. Additionally, four novel candidate genes (IKBKB, SFRP1, LRP6, SPRY1) were identified that might be related to pig body size. Our findings provide a theoretical basis for further revealing the genetic mechanism of pig body size traits.
Collapse
Affiliation(s)
- Ben Zhang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Panyang Hu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiangzhe Wu
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Lixiang Zheng
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuling Li
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Kejun Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuelei Han
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yining Wang
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuan Hong
- College of Animal Science and Technology, FuJian Vocational College of Agriculture, FuZhou, 350119, China.
| | - Ruimin Qiao
- College of Animal Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Tao Q, Huang A, Qi J, Yang Z, Guo S, Lu Y, He X, Han X, Jiang S, Xu M, Bai Y, Zhang T, Hu S, Li L, Bai L, Liu H. An mRNA expression atlas for the duck with public RNA-seq datasets. BMC Genomics 2025; 26:268. [PMID: 40102741 PMCID: PMC11916966 DOI: 10.1186/s12864-025-11385-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 02/19/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND Ducks are globally important poultry species and a major source of farm animal products, including meat, eggs, and feathers. A thorough understanding of the functional genomic and transcriptomic sequences is crucial for improving production efficiency. RESULT This study constructed the largest duck mRNA expression atlas among all waterfowl species to date. The atlas encompasses 1,257 tissue samples across 30 tissue types, representing all major organ systems. Using advanced clustering analysis, we established co-expression network clusters to describe the transcriptional features in the duck mRNA expression atlas and, when feasible, assign these features to unique tissue types or pathways. Additionally, we identified 27 low-variance, highly expressed housekeeping genes suitable for gene expression experiments. Furthermore, in-depth analysis revealed potential sex-biased gene expression patterns within tissues and specific gene expression profiles in meat-type and egg-type ducks, providing valuable resources to understand the genetic basis of sex differences and particular phenotypes. This research elucidates the biological processes affecting duck productivity. CONCLUSION This study presents the most extensive gene expression atlas for any waterfowl species to date. These findings are of significant value for advancing duck biological research and industrial applications.
Collapse
Affiliation(s)
- Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Anqi Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Jingjing Qi
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Zhao Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shihao Guo
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Shenqiang Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, 611130, P.R. China.
| |
Collapse
|
9
|
Yu M, Kim YB, Cho HM, Hong JS, Nawarathne SR, Oketch EO, Heo JM. Standardized ileal digestible lysine requirements based on growth performance of White Pekin ducks for 21 days after hatch. JOURNAL OF ANIMAL SCIENCE AND TECHNOLOGY 2025; 67:383-392. [PMID: 40264529 PMCID: PMC12010226 DOI: 10.5187/jast.2024.e25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/24/2025]
Abstract
The purpose of this study was to assess the optimal standardized ileal digestible (SID) lysine (Lys) requirement for male White Pekin ducklings with a specific focus on growth performance for the 3 weeks following hatching. A total of 384 one-day-old male White Pekin ducklings were allocated to six different dietary treatments, each containing varying levels of digestible Lys content ranging from 0.72% to 1.12%. All amino acids in the diets remained consistent except for Lys. The ducklings were randomly distributed into 24-floor pens, with each treatment group comprising eight pens, and each pen housing eight ducklings. The diets were offered ad-libitum throughout the study. Weekly measurements of body weight and feed intake were recorded to calculate the feed conversion ratio. The SID Lys requirement was determined by analyzing the data using both linear-plateau and quadratic-plateau models and calculating the mean value. The results demonstrated a significant linear (p < 0.001) and quadratic (p < 0.001) improvement in body weight gain and feed efficiency with increasing SID Lys content in the diet. According to the linear-plateau regression analysis, the estimated SID Lys requirements for final body weight, weight gain, and feed efficiency were 1.00%, 1.00%, and 0.98%, respectively. Conversely, the quadratic-plateau regression analysis yielded estimated SID Lys requirements of 1.11%, 1.11%, and 1.10%, respectively, for the same parameters. In summary, this study established that the recommended SID Lys levels for White Pekin ducklings for the 3 wk period after hatching were found to be 1.05%, 1.05%, and 1.04% for achieving the finest final body weight, daily gain, and feed efficiency, respectively.
Collapse
Affiliation(s)
- Myunghwan Yu
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Yu Bin Kim
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Hyun Min Cho
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jun Seon Hong
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Shan Randima Nawarathne
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Elijah Ogola Oketch
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| | - Jung Min Heo
- Department of Animal Science and
Biotechnology, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
10
|
Huang M, Wen Z, Huang T, Zhou X, Wang Z, Yang S, Zhao A. The Impact of Mutant EDNRB on the Two-End Black Coat Color Phenotype in Chinese Local Pigs. Animals (Basel) 2025; 15:478. [PMID: 40002960 PMCID: PMC11851453 DOI: 10.3390/ani15040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/21/2025] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
Endothelin Receptor Type B (EDNRB) is expressed in a variety of cells during embryonic stage, including melanocyte precursors cells. Our previous studies found that 11 bp deletion of EDNRB caused the two-end black (TEB) coat color in Chinese pigs. In this study, we aimed to explore the mutant EDNRB on the formation of TEB coat color in Chinese pigs. We constructed recombinant plasmid for wild and mutant EDNRB and EDN1, respectively, and transfected the recombinant plasmid into mouse B16 melanoma cells in groups. Real-time fluorescent quantitative PCR (RT-qPCR) was performed to detect expression of genes that participate in melanin pathway, including PLCγ, Raf, MITF. Comparing to the wild-type EDNRB cells, expression of the three genes in the cell line expressing mutant EDNRB cells was significantly reduced. We measured the melanin content produced by transfected recombinant granulocytes of wild and mutant EDNRB and found that the amount of melanin in mutant EDNRB cells was significantly lower than that of the wild. Wound-healing assay confirmed that the migration and mobility rate of mutant EDNRB cells were significantly lower than the wild. Co-immunoprecipitation further confirmed that mutant EDNRB could not interact with the EDN1 protein. In conclusion, this study revealed that the 11 bp deletion of EDNRB reduced the melanin production, which may be caused by inhibiting the expression of PLCγ, Raf, and MITF. The mutant EDNRB reduced melanocyte migration and could not interact with the EDN1 protein. We explored the effect of mutant EDNRB in Chinese pigs with TEB coat color, and the results provided a reference for exploring molecular mechanism of mutant EDNRB on the formation of TEB coat color pigs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ayong Zhao
- College of Animal Science and Technology · College of Veterinary Medicine, Zhejiang A&F University, Hangzhou 311300, China; (M.H.); (Z.W.); (T.H.); (X.Z.); (Z.W.); (S.Y.)
| |
Collapse
|
11
|
Zhang X, Yang F, Zhang J, Zhu T, Zhao X, Liu Y, Wen J, Gu H, Wang G, Ren X, Chen A, Qu L. Genomic variation responding to artificial selection on different lines of Pekin duck. Poult Sci 2025; 104:104785. [PMID: 39813863 PMCID: PMC11783388 DOI: 10.1016/j.psj.2025.104785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/05/2025] [Indexed: 01/18/2025] Open
Abstract
Understanding the genomic variation in Pekin duck under artificial selection is important for improving the utilization of duck genetic resources. Here, the genomic changes in Pekin duck were analyzed by using the genome resequencing data from 96 individual samples, including 2 conservation populations and 4 breeding populations with different breeding backgrounds. The population structure, runs of homozygosity (ROH), effective population number (Ne), and other genetic parameters were analyzed. The breeding populations showed lower genetic diversity compared to the conservation populations. Maple Leaf duck and Cherry Valley duck retained low genetic diversity compared to other breeding populations, with Cherry Valley duck showing the lowest diversity and the highest inbreeding coefficient. This suggested that Cherry Valley and Maple Leaf ducks have undergone intensive selection compared to other breeding populations. By the analysis of runs of homozygosity (ROHs), some genes (e.g., IGF1R) associated with growth traits were identified. By the analysis of the selection signal, strong selection characteristics in certain genomic regions during the breeding of Peking duck across different selected lines were observed. In addition, copy number variations (CNVs) in Pekin duck populations were analyzed. Six regions of interest were identified, containing RPA1, DOT1L, SLC25A42, RALYL, TRPA1, and IGFBP2. Furthermore, the allele frequency distribution of these genes showed significant differences between breeding populations and conservation populations, indicating that these candidate genes could have undergone strong selection pressure during long-term selection for improved production. These findings contribute to a deeper understanding of the distinct evolutionary processes in Pekin ducks under artificial selection and provide valuable insights for future breeding strategies.
Collapse
Affiliation(s)
- Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Fangxi Yang
- Beijing Nankou Duck Breeding Technology Co. Ltd., Beijing, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Yuchen Liu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Hongchang Gu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Yuanmingyuan West Road 2#, Beijing 100193, China.
| |
Collapse
|
12
|
Zhou Y, Liu J, Lei Q, Han H, Liu W, Li D, Sun Y, Hao D, Li F, Cao D, Wang J. Identification of quantitative trait loci and candidate genes associated with growth curve parameters in chinese wenshang barred chickens. Poult Sci 2025; 104:104767. [PMID: 39778364 PMCID: PMC11761894 DOI: 10.1016/j.psj.2025.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/23/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025] Open
Abstract
The growth curve is a vital instrument for assessing and forecasting weight and developmental shifts in livestock and poultry, which reflects the changes of bodyweight traits with time and plays a key role in guiding breeding and production approaches. This study performed a genome-wide association study (GWAS) for growth curve parameters generated by nonlinear models which fit original weight-age records, to discover the SNPs and candidate genes correlated with growth traits. Data from 362 Chinese Wenshang Barred Chickens weighed at the age of 0, 2, 4, 6, 8, 10, 12, 14, 16, and 18 weeks were used to fit the Gompertz, Logistic, and von Bertalanffy growth models. The Gompertz model showed the highest coefficient of determination (R2 = 0.974). The mature body weight (A), time scale (b), and maturity rate (k) were treated as phenotypes for single-trait GWAS. The GWAS identified 44, 103, and 5 significant single nucleotide polymorphisms (SNPs) associated with A, b, and K, respectively. Among them, several candidate genes, including LDB2, TOB2, RCBTB1, KPNA3, SLIT2, LCORL, LAP3, and TPRA1, were previously reported to be associated with growth and development. Two lead SNPs (4:76022389, 4:76070237) on the LDB2 gene were significantly associated with the growth curve. Further research of these candidate genes could help explore the full genetic architecture underlying growth and development traits in poultry.
Collapse
Affiliation(s)
- Yan Zhou
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Jie Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Qiuxia Lei
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Haixia Han
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Wei Liu
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Dapeng Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Yan Sun
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Dan Hao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Fuwei Li
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Dingguo Cao
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China
| | - Jie Wang
- Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan 250023, Shandong, China; Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan 250023, Shandong, China; Shandong Provincial Key Laboratory of Livestock and Poultry Breeding (PKL2024B15), Jinan 250023, Shandong, China.
| |
Collapse
|
13
|
Wang Z, Guo Z, Liu H, Liu T, Liu D, Yu S, Tang H, Zhang H, Mou Q, Zhang B, Cao J, Schroyen M, Hou S, Zhou Z. A high-quality assembly revealing the PMEL gene for the unique plumage phenotype in Liancheng ducks. Gigascience 2025; 14:giae114. [PMID: 39804725 PMCID: PMC11727711 DOI: 10.1093/gigascience/giae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 10/05/2024] [Accepted: 12/05/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Plumage coloration is a distinctive trait in ducks, and the Liancheng duck, characterized by its white plumage and black beak and webbed feet, serves as an excellent subject for such studies. However, academic comprehension of the genetic mechanisms underlying duck plumage coloration remains limited. To this end, the Liancheng duck genome (GCA_039998735.1) was hereby de novo assembled using HiFi reads, and F2 segregating populations were generated from Liancheng and Pekin ducks. The aim was to identify the genetic mechanism of white plumage in Liancheng ducks. RESULTS In this study, 1.29 Gb Liancheng duck genome was de novo assembled, involving a contig N50 of 12.17 Mb and a scaffold N50 of 83.98 Mb. Beyond the epistatic effect of the MITF gene, genome-wide association study analysis pinpointed a 0.8-Mb genomic region encompassing the PMEL gene. This gene encoded a protein specific to pigment cells and was essential for the formation of fibrillar sheets within melanosomes, the organelles responsible for pigmentation. Additionally, linkage disequilibrium analysis revealed 2 candidate single-nucleotide polymorphisms (Chr33: 5,303,994A>G; 5,303,997A>G) that might alter PMEL transcription, potentially influencing plumage coloration in Liancheng ducks. CONCLUSIONS Our study has assembled a high-quality genome for the Liancheng duck and has presented compelling evidence that the white plumage characteristic of this breed is attributable to the PMEL gene. Overall, these findings offer significant insights and direction for future studies and breeding programs aimed at understanding and manipulating avian plumage coloration.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hongfei Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Tong Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Simeng Yu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Hehe Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiming Mou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Bo Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Junting Cao
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
14
|
Wang G, Zhang X, Zhao X, Ren X, Chen A, Dai W, Zhang L, Lu Y, Jiang Z, Wang H, Liu Y, Zhao X, Wen J, Cheng X, Zhang Y, Ning Z, Ban L, Qu L. Genomic evidence for hybridization and introgression between blue peafowl and endangered green peafowl and molecular foundation of leucistic plumage of blue peafowl. Gigascience 2025; 14:giae124. [PMID: 39965774 PMCID: PMC11835448 DOI: 10.1093/gigascience/giae124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/10/2024] [Accepted: 12/26/2024] [Indexed: 02/20/2025] Open
Abstract
INTRODUCTION The blue peafowl (Pavo cristatus) and the green peafowl (Pavo muticus) have garnered significant public affection due to their stunning appearance, although the green peafowl is currently endangered. The causative mutation that causes the leucistic plumage of the blue peafowl (also called white peafowl) remains unknown. RESULTS In this study, we generated a chromosome-level reference genome of the blue peafowl with a contig N50 of 30.6 Mb, including the autosomes, Z and W sex chromosomes, and a complete mitochondria DNA sequence. Data from 77 peafowl whole genomes, 76 peafowl mitochondrial genomes, and 33 peafowl W chromosomes genomes provided the first substantial genetic evidence for recent hybridization between green peafowls and blue peafowls. We found 3 hybrid green peafowls in zoo samples rather than in the wild samples, with a blue peafowl genomic content of 16-34%. Maternal genetic analysis showed that 2 of the hybrid female green peafowls contained complete blue peafowl mitochondrial genomes and W chromosomes. Some animal protection agencies release captive green peafowls in order to maintain the wild population of green peafowls. Therefore, to better protect the endangered green peafowl, we suggest that purebred identification must be carried out before releasing green peafowls from zoos into the wild in order to prevent the hybrid green peafowl from contaminating the wild green peafowl. In addition, we also found that there were historical introgression events of green peafowl to blue peafowl in 4 zoo blue peafowl individuals. The introgressed genomic regions contain IGFBP1 and IGFBP3 genes that could affect blue peafowl body size. Finally, we identified that the nonsense mutation (g.4:12583552G>A) in the EDNRB2 gene is the genetic causative mutation for leucistic plumage of blue peafowl, preventing melanocytes from being transported into plumage, thereby inhibiting melanin deposition. CONCLUSION Our research provides both theoretical and empirical support for the conservation of the endangered green peafowl. The high-quality genome and genomic data also provide a valuable resource for blue peafowl genomics-assisted breeding.
Collapse
Affiliation(s)
- Gang Wang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xinye Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xiurong Zhao
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xufang Ren
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Anqi Chen
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Wenting Dai
- College of Grassland Science and Technology, China Agricultural University, Beijing 100091, China
| | - Li Zhang
- Beijing Key Laboratory of Captive Wildlife Technologies, Beijing Zoo, Beijing 100091, China
| | - Yan Lu
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing 100097, China
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164, USA
| | - Huie Wang
- School of Animal Science and technology, Tarim University, Xinjiang 843300, China
| | - Yong Liu
- Nongxiao Breeding Poultry Breeding Co., Ltd. Beijing 102400, China
| | - Xiaoyu Zhao
- Xingrui Technology Co., Ltd. Hebei 072557, China
| | - Junhui Wen
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Xue Cheng
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Yalan Zhang
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Zhonghua Ning
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| | - Liping Ban
- College of Grassland Science and Technology, China Agricultural University, Beijing 100091, China
| | - Lujiang Qu
- College of Animal Science and Technology, China Agricultural University, Beijing 100091, China
| |
Collapse
|
15
|
Chen H, Huang Y, Xue J, Luo K, Tang H, Zheng S, Xiong Y, Wu Y, Li J, Xuan R, Xiong R, Gong Y, Fang X, Wang L, Miao J, Zhou J, Tan H, Wang Y, Wu L, Ouyang J, Shen Y, Yan X. Genomic insights into the specialisation and selection of the Jinding duck. Animal 2025; 19:101374. [PMID: 39765181 DOI: 10.1016/j.animal.2024.101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 11/04/2024] [Accepted: 11/05/2024] [Indexed: 01/21/2025] Open
Abstract
The domestication of ducks represents a pivotal evolutionary shift from the unguided propagation of wild species to deliberate human-mediated selection, culminating in distinct behavioural, morphological, and physiological traits that differentiate domesticated ducks from their wild counterparts. This transition has yielded breeds with traits fine-tuned to specific economic roles, such as egg production, meat yield, or dual-purpose functionality. Duck domestication plays a significant role in poultry production globally, meeting the growing demand for eggs and meat in various regions. Here, we focus on the Jinding Duck (JDD), a breed renowned for its prolific egg-laying traits. Employing whole-genome resequencing data from 325 individuals across five Chinese indigenous duck breeds, we aimed to dissect the unique population structure and assess the genetic diversity within the JDD cohort. The findings reveal the distinct genetic heritage of JDD, diverged from other domesticated breeds, and show a relative paucity of genetic diversity. A salient discovery was a 200 kb genomic interval containing three genes (NCF2, SMG7, and ARPC5) with almost exclusive haplotypes, which were inherited from Anas platyrhynchos or Anas zonorhyncha, impacting the morphological attributes of JDD. The study highlights a c.28G>A non-synonymous mutation in the first exon of the LAMC1 gene, which is potentially influencing feather morphology in JDD. Our findings suggest that unique blue eggshell colouration in JDD is likely attributable to variations within the promoter element of the ABCG2 gene, distinguishing it from other breeds. Moreover, the MAP7 and FHL1 genes emerge as significant factors in the laying performance of JDD. These genetic insights are not only crucial for improving the JDD breed but also provide valuable information that could be applied to duck breeding programmes worldwide, helping enhance productivity and meet international demands for high-efficiency poultry breeds.
Collapse
Affiliation(s)
- H Chen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Huang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - J Xue
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - K Luo
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - H Tang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - S Zheng
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Xiong
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Wu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - J Li
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - R Xuan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - R Xiong
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Gong
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - X Fang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - L Wang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - J Miao
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - J Zhou
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - H Tan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Wang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - L Wu
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - J Ouyang
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - Y Shen
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China
| | - X Yan
- Jiangxi Key Laboratory of Bioprocess Engineering, College of Life Sciences, Jiangxi Science and Technology Normal University, Nanchang 330013, China.
| |
Collapse
|
16
|
Luo C, Xu X, Zhao C, Wang Q, Wang R, Lang D, Zhang J, Hu W, Mu Y. Insight Into Body Size Evolution in Aves: Based on Some Body Size-Related Genes. Integr Zool 2024. [PMID: 39663511 DOI: 10.1111/1749-4877.12927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/21/2024] [Accepted: 10/31/2024] [Indexed: 12/13/2024]
Abstract
Birds exhibit remarkable variations in body size, making them an ideal group for the study of adaptive evolution. However, the genetic mechanisms underlying body size evolution in avian species remain inadequately understood. This study investigates the evolutionary patterns of avian body size by analyzing 15 body-size-related genes, including GHSR, IGF2BP1, and IGFBP7 from the growth hormone/insulin-like growth factor axis, EIF2AK3, GALNS, NCAPG, PLOD1, and PLAG1 associated with tall stature, and ACAN, OBSL1, and GRB10 associated with short stature, four genes previously reported in avian species: ATP11A, PLXDC2, TNS3, and TUBGCP3. The results indicate significant adaptive evolution of body size-related genes across different avian lineages. Notably, in the IGF2BP1 gene, a significant positive correlation was observed between the evolutionary rate and body size, suggesting that larger bird species exhibit higher evolutionary rates of the IGF2BP1 gene. Furthermore, the IGFBP7 and PLXDC2 genes demonstrated accelerated evolution in large- and medium-sized birds, respectively, indicating distinct evolutionary patterns for these genes among birds of different sizes. The branch-site model analysis identified numerous positively selected sites, primarily concentrated near functional domains, thereby reinforcing the critical role of these genes in body size evolution. Interestingly, extensive convergent evolution was detected in lineages with larger body sizes. This study elucidates the genetic basis of avian body size evolution for the first time, identifying adaptive evolutionary patterns of body size-related genes across birds of varying sizes and documenting patterns of convergent evolution. These findings provide essential genetic data and novel insights into the adaptive evolution of body size in birds.
Collapse
Affiliation(s)
- Chaoyang Luo
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Xionghui Xu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Chengfa Zhao
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Qiuping Wang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Rongxing Wang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
| | - Datian Lang
- Department of Agronomy and Life Science, Zhaotong University, Zhaotong, Yunnan, China
| | - Juan Zhang
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Key Laboratory of Ecological Adaptive Evolution and Conservation on Animals-Plants in Southwest Mountain Ecosystem of Yunnan Province Higher Institutes College, School of Life Sciences, Yunnan Normal University, Kunming, Yunnan, China
| | - Wenxian Hu
- Erhai Watershed Ecological Environment Quality Testing Engineering Research Center of Yunnan Provincial Universities, Erhai Research Institute, West Yunnan University of Applied Sciences, Dali, Yunnan, China
| | - Yuan Mu
- Institute of Eastern-Himalaya Biodiversity Research, Dali University, Dali, Yunnan, China
- Collaborative Innovation Center for Biodiversity and Conservation in the Three Parallel Rivers Region of China, Dali, Yunnan, China
| |
Collapse
|
17
|
Yang Y, Wang H, Liu Y, Zhai S, Liu H, He D. A novel codominant plumage color pattern of white breast patches in WugangTong geese was controlled by EDNRB2. Poult Sci 2024; 103:104324. [PMID: 39353325 PMCID: PMC11472611 DOI: 10.1016/j.psj.2024.104324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/05/2024] [Accepted: 09/07/2024] [Indexed: 10/04/2024] Open
Abstract
Two basic plumage color patterns are observed in adult geese: solid grey (G) or colorless white (W). However, a Chinese indigenous breed, the Wugangtong goose (WGT), continues to be subject to selective breeding efforts as it displays segregation of plumage colors, including G, W, and a novel color pattern designated Wb (G with white breast circles). The underlying genetic mechanisms responsible for the Wb phenotype are yet to be determined. The current study employed the population differentiation index (FST) to analyze 90 geese exhibiting diverse plumage colors, identifying the fifth intron of EDNRB2 as a particularly noteworthy region with the highest FST values. Sanger sequencing of the region surrounding the EDNRB2 gene identified a 14-bp insertion within exon 3 as the causal mutation. The heterozygosity of this 14-bp insertion and wild-type alleles was completely associated with the Wb phenotype, thereby substantiating the codominant nature of the G and W phenotypes. An inter-species corroborated this finding cross between the graylag (no 14-bp insertion) and the swan goose (homozygous for the 14-bp insertion) breeds, as hybrids from this cross exhibited the Wb phenotype. Transcriptomes from white breast patches and gray dorsal skins of 4 Wb geese were compared. A significant downregulation of genes involved in melanin synthesis and melanocyte development was observed, including EDRNB2 and MLANA. The downregulation of MLANA indicated that the mutated EDNRB2 resulted in melanocyte loss in specific body regions, as MLANA is a marker gene for melanocytes. The findings were corroborated by melanin staining using the Mansson-Fontana method, which revealed no melanin particles deposited in the white breast patches. In summary, the gray plumage color was codominant to the white color in WGT geese, and plumage color variations were controlled by EDNRB2. The findings of our study offer valuable and practical guidance for the purification of plumage colors among WGT, whether through traditional phenotype selection or molecular breeding methods.
Collapse
Affiliation(s)
- Yunzhou Yang
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Huiying Wang
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Yi Liu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China
| | - Shaojia Zhai
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China; College of Animal Science and Technology, Yunnan Agricultural University, Kunming, 650500, PR China
| | - Haodong Liu
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China; College of Animal Science and Technology, Shanghai Ocean University, Shanghai, 201306, PR China
| | - Daqian He
- Institute of Animal Husbandry & Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, PR China.
| |
Collapse
|
18
|
Zhang M, Lu L, Li Y, Wu Q, Liu Y, Liu H, Tang H, Lin R, Chen H, Zeng T, Tian Y, Yan Y, Wei Y, Ren C, Li W, Liu M, Yu J, Liu J, Lin X, Zeng G, Cheng C, Jiang X, Sun Y. Identification of SNPs and INDELS associated with duck egg quality traits through a genome-wide association analysis. Poult Sci 2024; 103:104459. [PMID: 39504828 PMCID: PMC11577198 DOI: 10.1016/j.psj.2024.104459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/08/2024] Open
Abstract
Egg quality traits are economically important in the poultry industry. To explore the genetic architecture and identify potential candidate genes, a genome-wide association study (GWAS) was performed for 13 egg quality traits using data from whole-genome sequencing of 299 Longyan Shan-ma female ducks, including 12 quantitative traits and one qualitative trait, eggshell color (ESC; white, light green, green). From estimation of pedigree genetic parameters, heritability (h2) ranged from 0.022 to 0.996 for the 12 quantitative traits, with the highest h2 (0.996) for eggshell color a* value (ESCA) and the lowest h2 (0.022) for egg yolk percentage relative to EW. A total of 8,874 single nucleotide polymorphism (SNP)-based significant associations (1.0 × 10-6) and 247 insertion-deletion (indel)-based significant associations (1.00 × 10-5) were identified, including 5,980 SNPs and 159 indel markers. From 5,924 SNPs and 143 indels associated with ESC traits, 181 potential candidate genes were identified, and most significant SNPs and indels (P < 1.0 × 10-20) were located at 1.86 Mb (44.29-46.15 Mb) on chromosome 4. The top SNP (chr4:45325309:C>A; P = 7.97 × 10-43) and the top indel (chr4:45299595:delTTCCACTCCAC; P = 4.20 × 10-36) for the ESC a* value were within two known ESC candidate genes; ATP-binding cassette subfamily G member 2 (ABCG2) and protein kinase cGMP-dependent 2 (PRKG2). Of 56 SNPs and 16 indels associated with other egg quality traits, 46 potential candidate genes were identified including synapse differentiation-inducing 1-like (SYNDIG1L) for EW, and core histone macro-H2A.1 (LOC101795967) and neurogenin 1 (NEUROG1) for egg shape index; and four genes including collagen type VI alpha 3 chain (COL6A3), lysine demethylase 7A (KDM7A), LOC101802169, and sperm-associated antigen 16 (SPAG16) for egg yolk weight and the percentage of yolk to total egg weight. Of the 46 genes, the molecular functions of 22 are related to protein binding, indicating important roles in the formation of egg quality traits. Our findings provide new insight into the genetic basis of egg quality traits in ducks.
Collapse
Affiliation(s)
- Min Zhang
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Lizhi Lu
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yan Li
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Qiong Wu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Yanhui Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Hongfei Liu
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China
| | - Hehe Tang
- Institute of Animal Science (IAS), Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, PR China
| | - Rulong Lin
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, PR China
| | - Hongping Chen
- Longyan Shan-ma Duck Original Breeding Farm, Agricultural Bureau of Xinluo District, Longyan, 364031, PR China
| | - Tao Zeng
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yong Tian
- Institute of Animal Science and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, PR China
| | - Yuting Yan
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Yanning Wei
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Chenyu Ren
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Wenfu Li
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Min Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Jie Yu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Jiawen Liu
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Xin Lin
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Guanghua Zeng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Chunmei Cheng
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China
| | - Xiaobing Jiang
- Fujian Provincial Animal Husbandry Headquarters, Fuzhou, Fujian 350003, PR China
| | - Yanfa Sun
- College of Life Science, Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Fujian Provincial Universities Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Longyan University, Longyan, Fujian, 364012, PR China.
| |
Collapse
|
19
|
Yang Z, Xi Y, Qi J, Li L, Bai L, Zhang J, Lv J, Li B, Liu H. Genome-wide association studies reveal the genetic basis of growth and carcass traits in Sichuan Shelduck. Poult Sci 2024; 103:104211. [PMID: 39216264 PMCID: PMC11402601 DOI: 10.1016/j.psj.2024.104211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/09/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024] Open
Abstract
China has abundant local duck resource populations, and evaluating the characteristics of these breeds will help improve development and utilization. In this study, we conducted the first investigations of growth and slaughter performance on Sichuan Shelduck (n = 240), an endangered duck local breed. The average body weight is 1497.91 g at 90 d of age. According to the growth curve through data recorded every 2 wk, we observed a low relative growth rate (RGR) for the early growth stage. The RGR shows a decreasing trend with age increasing in the stage from 0 to 56 d of age. The SNP-based heritability estimation showed the growth rate has a relatively high heritability, indicating high genetic stability for this trait. In the correlation analysis, the percentage of leg muscle is positively correlated with the absolute growth rate (AGR) at 28 to 42 d of age, whereas it is negatively correlated with the earlier stages, exhibiting a time-specific correlation result. Additionally, genome-wide association studies (GWAS) identified PCSK6, TOX2, and TOMM7 as potential candidate genes influencing AGR (42-56) and AGR (56-90), while the candidate genes of slaughter traits were PTP4A2, FAM110B, TOX, UBXN2B, and FCHSD2. These results provide an important reference for further understanding the genetic basis of growth and meat production performance of Sichuan Shelduck.
Collapse
Affiliation(s)
- Zhao Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Lili Bai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China
| | - Jun Zhang
- Rural Revitalization Development Service Centre, Zigong, China
| | - Jia Lv
- Rural Revitalization Development Service Centre, Zigong, China
| | - Bo Li
- Farming Service Centre, Rong County, Zigong, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 610000, China.
| |
Collapse
|
20
|
Ren P, Yang L, Khan MZ, Jing Y, Zhang M, Qi C, Zhang X, Liu X, Liu Z, Zhang S, Zhu M. Joint Genomic and Transcriptomic Analysis Reveals Candidate Genes Associated with Plumage Color Traits in Matahu Ducks. Animals (Basel) 2024; 14:3111. [PMID: 39518834 PMCID: PMC11544815 DOI: 10.3390/ani14213111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Plumage color is a key trait for identifying waterfowl breeds with significant economic importance. A white-feathered group has recently emerged within the native Matahu duck population, presenting an opportunity for breeding new lines. However, the genetic basis for this plumage variation is still unknown, necessitating further research. This study aims to identify the genetic mechanisms underlying the emergence of white-feathered individuals in the Matahu duck population through combined genome and transcriptome analysis, providing insights for selective breeding and the development of new white-feathered lines. In this study, a total of 1344 selected genes and 1406 significantly differentially expressed genes were identified through selection signal analysis and transcriptomic analysis, respectively. The functional enrichment of these genes revealed several key signaling pathways, including those related to cGMP-PKG, cAMP, PI3K-Akt, and MAPK. Furthermore, important candidate genes involved in melanin biosynthesis, such as MITF, MC1R, TYR, TYRP1, and ABCB6, were identified. Notably, 107 genes were detected by both methods, and, among these, DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9 are suggested to play a role in melanin formation and potentially influence plumage traits. Through the integrative approach combining genomic selection signals and transcriptomic analyses, we identified several candidate genes directly associated with plumage color, including MITF, TYR, TYRP1, and MC1R, along with multiple signaling pathways linked to melanin formation. We hypothesize that the expression of DGKI, GPRC5B, HMX1, STS, ADGRA1, PRKAR2B, and HOXB9, detected by both methods, may be closely related to the regulation of plumage color traits. These findings provide a foundational basis for further research aimed at elucidating the genetic mechanisms governing plumage color variation in ducks.
Collapse
Affiliation(s)
- Pengwei Ren
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Liu Yang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Muhammad Zahoor Khan
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Yadi Jing
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Meixia Zhang
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Chao Qi
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Xin Zhang
- Jining Animal Husbandry and Veterinary Career Development Centre, Jining 272002, China
| | - Xiang Liu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| | - Zhansheng Liu
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Shuer Zhang
- Shandong Animal Husbandry Station, Jinan 250010, China
| | - Mingxia Zhu
- College of Agriculture and Biology, Liaocheng University, Liaocheng 252000, China
| |
Collapse
|
21
|
Shen L, Bai X, Zhao L, Zhou J, Chang C, Li X, Cao Z, Li Y, Luan P, Li H, Zhang H. Integrative 3D genomics with multi-omics analysis and functional validation of genetic regulatory mechanisms of abdominal fat deposition in chickens. Nat Commun 2024; 15:9274. [PMID: 39468045 PMCID: PMC11519623 DOI: 10.1038/s41467-024-53692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
Chickens are the most abundant agricultural animals globally, with controlling abdominal fat deposition being a key objective in poultry breeding. While GWAS can identify genetic variants associated with abdominal fat deposition, the precise roles and mechanisms of these variants remain largely unclear. Here, we use male chickens from two lines divergently selected for abdominal fat deposition as experimental models. Through the integration of genomic, epigenomic, 3D genomic, and transcriptomic data, we build a comprehensive chromatin 3D regulatory network map to identify the genetic regulatory mechanisms that influence abdominal fat deposition in chickens. Notably, we find that the rs734209466 variant functions as an allele-specific enhancer, remotely enhancing the transcription of IGFBP2 and IGFBP5 by the binding transcription factor IRF4. This interaction influences the differentiation and proliferation of preadipocytes, which ultimately affects phenotype. This work presents a detailed genetic regulatory map for chicken abdominal fat deposition, offering molecular targets for selective breeding.
Collapse
Affiliation(s)
- Linyong Shen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xue Bai
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Liru Zhao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Jiamei Zhou
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Cheng Chang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Xinquan Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Zhiping Cao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Yumao Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Peng Luan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China
| | - Hui Li
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| | - Hui Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, PR China.
- Key Laboratory of Chicken Genetics and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, 150030, PR China.
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Education Department of Heilongjiang Province, Harbin, 150030, PR China.
| |
Collapse
|
22
|
Zhang Y, Li X, Guo Q, Wang Z, Jiang Y, Yuan X, Chen G, Chang G, Bai H. Genome-wide association study reveals 2 copy number variations associated with the variation of plumage color in the white duck hybrid population. Poult Sci 2024; 103:104107. [PMID: 39094499 PMCID: PMC11342262 DOI: 10.1016/j.psj.2024.104107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/05/2024] [Accepted: 07/13/2024] [Indexed: 08/04/2024] Open
Abstract
Plumage color is an intuitive external poultry characteristic with rich manifestations and complex genetic mechanisms. In our previous study, we observed that there were more dark variations in plumage color in the F2 population derived from the hybridization of 2 white duck varieties. Therefore, based on the statistics of plumage color of 308 F2 populations, we further used the resequencing data of these individuals to detect copy number variations (CNVs) in the whole genome and conducted genome-wide association studies (GWAS) to determine the genetic basis related to plumage color traits. The CNV detection revealed 9,337 CNVs, with an average length of 15,950 bp and a total length of 142.02 MB, accounting for approximately 12.91% of the reference genome. The CNV distribution on the chromosomes was relatively uniform, and the number of CNVs on each chromosome positively correlated with the length of the chromosome. In the pure black plumage group, 2,101 CNVs were only identified, and 1,714 were specifically identified in the pure white plumage group. Ten CNVs were randomly selected for validation using quantitative real-time PCR, and 9 CNVs had the same CNV types as predicted, with an accuracy of 90%. Based on GWAS, we identified 2 CNVs potentially associated with plumage color variations, with the associated CNV regions covering 9 genes. Enrichment analysis of these 9 candidate genes showed significant enrichment of 3 pathways (ribosome biogenesis in eukaryotes, RNA transport, and protein export) and 17 gene ontology terms. Among these, VWA5A can downregulate MITF by binding to the regulatory factors SOX10. The occurrence of CNV may indirectly contribute to duck plumage color variation by affecting the regulatory factors of the switch gene MITF in the melanogenesis pathway. These findings have improved the understanding of the genetic basis of duck plumage color variation and have been beneficial for developing and using plumage color traits in subsequent poultry breeding.
Collapse
Affiliation(s)
- Yi Zhang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaofan Li
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Qixin Guo
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Zhixiu Wang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Yong Jiang
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiaoya Yuan
- Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guohong Chen
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Guobin Chang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China; Key Laboratory of Animal Genetics and Breeding and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Hao Bai
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Institutes of Agricultural Science and Technology Development, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
23
|
Shi L, Zhang P, Liu Q, Liu C, Cheng L, Yu B, Chen H. Genome-Wide Analysis of Genetic Diversity and Selection Signatures in Zaobei Beef Cattle. Animals (Basel) 2024; 14:2447. [PMID: 39199980 PMCID: PMC11350888 DOI: 10.3390/ani14162447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 08/17/2024] [Accepted: 08/21/2024] [Indexed: 09/01/2024] Open
Abstract
This investigation provides a comprehensive analysis of genomic diversity and selection signatures in Zaobei beef cattle, an indigenous breed known for its adaptation to hot and humid climates and superior meat quality. Whole-genome resequencing was conducted on 23 Zaobei cattle, compared with 46 Simmental cattle to highlight genetic distinctions. Population structure analysis confirmed the genetic uniqueness of Zaobei cattle. Using methods such as DASDC v1.01, XPEHH, and θπ ratio, we identified 230, 232, and 221 genes through DASDC, including hard sweeps, soft sweeps, and linkage sweeps, respectively. Coincidentally, 109 genes were identified when using XPEHH and θπ ratio methods. Together, these analyses revealed eight positive selection genes (ARHGAP15, ZNF618, USH2A, PDZRN4, SPATA6, ROR2, KCNIP3, and VWA3B), which are linked to critical traits such as heat stress adaptation, fertility, and meat quality. Moreover, functional enrichment analyses showed pathways related to autophagy, immune response, energy metabolism, and muscle development. The comprehensive genomic insights gained from this study provide valuable knowledge for breeding programs aimed at enhancing the beneficial traits in Zaobei cattle.
Collapse
Affiliation(s)
- Liangyu Shi
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Pu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Qing Liu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Chenhui Liu
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Lei Cheng
- Institute of Animal Science and Veterinary Medicine, Wuhan Academy of Agricultural Sciences, Wuhan 430208, China; (C.L.); (L.C.)
| | - Bo Yu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming & Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (L.S.); (P.Z.); (Q.L.)
| |
Collapse
|
24
|
Wang D, Tan L, Zhi Y, Bu L, Wang Y, Wang Z, Guo Y, Tian W, Xu C, Li D, Li Z, Jiang R, Han R, Li G, Wang Y, Xia D, Tian Y, Dunn IC, Hu X, Li H, Zhao Y, Kang X, Liu X. Genome-wide variation study and inter-tissue communication analysis unveil regulatory mechanisms of egg-laying performance in chickens. Nat Commun 2024; 15:7069. [PMID: 39152103 PMCID: PMC11329784 DOI: 10.1038/s41467-024-50809-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 07/22/2024] [Indexed: 08/19/2024] Open
Abstract
Egg-laying performance is of great economic importance in poultry, but the underlying genetic mechanisms are still elusive. In this work, we conduct a multi-omics and multi-tissue integrative study in hens with distinct egg production, to detect the hub candidate genes and construct hub molecular networks contributing to egg-laying phenotypic differences. We identifiy three hub candidate genes as egg-laying facilitators: TFPI2, which promotes the GnRH secretion in hypothalamic neuron cells; CAMK2D, which promotes the FSHβ and LHβ secretion in pituitary cells; and OSTN, which promotes granulosa cell proliferation and the synthesis of sex steroid hormones. We reveal key endocrine factors involving egg production by inter-tissue crosstalk analysis, and demonstrate that both a hepatokine, APOA4, and an adipokine, ANGPTL2, could increase egg production by inter-tissue communication with hypothalamic-pituitary-ovarian axis. Together, These results reveal the molecular mechanisms of multi-tissue coordinative regulation of chicken egg-laying performance and provide key insights to avian reproductive regulation.
Collapse
Affiliation(s)
- Dandan Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Lizhi Tan
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yihao Zhi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Lina Bu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yangyang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Zhang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Yulong Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Weihua Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
| | - Chunlin Xu
- Henan Sangao Agriculture and Animal Husbandry Co, Ltd, Gushi, China
| | - Donghua Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruirui Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Guoxi Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Yongqiang Wang
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Dong Xia
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China
| | - Ian C Dunn
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK
| | - Xiaoxiang Hu
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China.
| | - Yiqiang Zhao
- State Key Laboratory of Animal Biotech Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China.
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, China.
- International Joint Research Laboratory for Poultry Breeding of Henan, Zhengzhou, China.
| |
Collapse
|
25
|
Yu JZ, Zhou J, Yang FX, Hao JP, Hou ZC, Zhu F. Genome-Wide Association Analysis Identifies Important Haplotypes and Candidate Gene XKR4 for Body Size Traits in Pekin Ducks. Animals (Basel) 2024; 14:2349. [PMID: 39199882 PMCID: PMC11350698 DOI: 10.3390/ani14162349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/05/2024] [Accepted: 08/12/2024] [Indexed: 09/01/2024] Open
Abstract
Body size is an important growth indicator in ducks and is a primary selection criterion for physical improvement. An excessively rapid growth rate in meat ducks can result in excessive body size, which may hinder subsequent processing and slaughter operations. However, only a few molecular markers related to body size have been studied in meat ducks. In this study, we performed a genome-wide association study (GWAS) to identify candidate genes and QTLs affecting body length (BL), keel bone length (KBL), neck length (NL), and breast width (BrW) in Pekin ducks (Anas platyrhynchos domestica). Our results indicate the significant SNP for NL is located within a pseudogene, whereas the significant SNP for BrW is located in an intergenic region. More importantly, our analysis identified a haplotype that was significantly associated with both BL and KBL. This haplotype, containing 48 single-nucleotide polymorphisms (SNPs), is localized within the XKR4 gene. The identification of this haplotype suggests that XKR4 may be a key candidate gene influencing BL and KBL in Pekin ducks. These findings have important implications for the breeding and genetic improvement of Pekin ducks, and provide valuable insights into the genetic architecture of body size traits in this species.
Collapse
Affiliation(s)
- Jiang-Zhou Yu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Jun Zhou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Fang-Xi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Jin-Ping Hao
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing 102202, China; (F.-X.Y.); (J.-P.H.)
| | - Zhuo-Cheng Hou
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| | - Feng Zhu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics, Breeding and Reproduction of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China; (J.-Z.Y.); (J.Z.); (Z.-C.H.)
| |
Collapse
|
26
|
Ma L, Lyu W, Zeng T, Wang W, Chen Q, Zhao J, Zhang G, Lu L, Yang H, Xiao Y. Duck gut metagenome reveals the microbiome signatures linked to intestinal regional, temporal development, and rearing condition. IMETA 2024; 3:e198. [PMID: 39135685 PMCID: PMC11316934 DOI: 10.1002/imt2.198] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 08/15/2024]
Abstract
The duck gastrointestinal tract (GIT) harbors an abundance of microorganisms that play an important role in duck health and production. Here, we constructed the first relatively comprehensive duck gut microbial gene catalog (24 million genes) and 4437 metagenome-assembled genomes using 375 GIT metagenomic samples from four different duck breeds across five intestinal segments under two distinct rearing conditions. We further characterized the intestinal region-specific microbial taxonomy and their assigned functions, as well as the temporal development and maturation of the duck gut microbiome. Our metagenomic analysis revealed the similarity within the microbiota of the foregut and hindgut compartments, but distinctive taxonomic and functional differences between distinct intestinal segments. In addition, we found a significant shift in the microbiota composition of newly hatched ducks (3 days), followed by increased diversity and enhanced stability across growth stages (14, 42, and 70 days), indicating that the intestinal microbiota develops into a relatively mature and stable community as the host duck matures. Comparing the impact of different rearing conditions (with and without water) on duck cecal microbiota communities and functions, we found that the bacterial capacity for lipopolysaccharide biosynthesis was significantly increased in ducks that had free access to water, leading to the accumulation of pathogenic bacteria and antibiotic-resistance genes. Taken together, our findings expand the understanding of the microbiome signatures linked to intestinal regional, temporal development, and rearing conditions in ducks, which highlight the significant impact of microbiota on poultry health and production.
Collapse
Affiliation(s)
- Lingyan Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wentao Lyu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Tao Zeng
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Qu Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Jiangchao Zhao
- Department of Animal Science, Division of AgricultureUniversity of ArkansasFayettevilleArkansasUSA
| | - Guolong Zhang
- Department of Animal and Food SciencesOklahoma State UniversityStillwaterOklahomaUSA
| | - Lizhi Lu
- Institute of Animal Husbandry and Veterinary MedicineZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Agro‐product Safety and NutritionZhejiang Academy of Agricultural SciencesHangzhouChina
| |
Collapse
|
27
|
Zhang Y, Jia C, Li S, Wang S, He Z, Wu G, Yu M, Lu Y, Yu D. Comparative genome-wide association study on body weight in Chinese native ducks using four models. Poult Sci 2024; 103:103899. [PMID: 38909509 PMCID: PMC11253684 DOI: 10.1016/j.psj.2024.103899] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/18/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
The Jinling White duck represents a newly developed breed characterized by a rapid growth rate and a superior meat quality, offering significant economic value and research potential; however, the genetic basis underlying their body weight traits remains less understood. Here, we performed whole-genome resequencing for 201 diverse Jinling White male ducks and conducted population genomic analyses, suggesting a rich genetic diversity within the Jinling White duck population. Equipped with our genomic resources, we applied genome-wide association analysis for body weight on birth (BWB), body weight on 1 wk (BW1), body weight on 3 wk (BW3), body weight on 5 wk (BW5) and body weight on 7 wk (BW7) using 4 statistical models. Comparative studies indicated that factored spectrally transformed linear mixed models (FaST-LMM) demonstrated the most superior efficiency, yielding more results with the minimal false positives. We discovered that PUS7, FBXO11, FOXN2, MSH6, and SLC4A4 were associated with BWB. RAG2, and TMEFF2 were candidate genes for BW1, and STARD13, Klotho, ZAR1L are likely candidates for BW3 and BW5. PLXNC1, ATP1A1, CD58, FRYL, OCIAD1, and OCIAD2 were linked to BW7. These findings provide a genetic reference for the selection and breeding of Jinling White ducks, while also deepened our understanding of Growth and development phenotypic in ducks.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Chao Jia
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Shiwei Li
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Sike Wang
- College of Animal Science, Xizang Agricultural and Animal Husbandry University, Linzhi 860000, China
| | - Zongliang He
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Guansuo Wu
- Nanjing Academy of Animal Husbandry and Poultry, Nanjing, Jiangsu, 210000, China
| | - Minli Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yinglin Lu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Debing Yu
- Department of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China.
| |
Collapse
|
28
|
Li T, Wang Y, Zhang Z, Ji C, Zheng N, Huang Y. A comparative analysis reveals the genomic diversity among 8 Muscovy duck populations. G3 (BETHESDA, MD.) 2024; 14:jkae112. [PMID: 38789099 PMCID: PMC11228869 DOI: 10.1093/g3journal/jkae112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/05/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The Muscovy duck (Cairina moschata) is a waterfowl indigenous to the neotropical regions of Central and South America. It has low demand for concentrated feed and strong adaptability to different rearing conditions. After introduced to China through Eurasian commercial trade, Muscovy ducks have a domestication history of around 300 years in the Fujian Province of China. In the 1990s, the commodity Muscovy duck breed "Crimo," cultivated in Europe, entered the Chinese market for consumption and breeding purposes. Due to the different selective breeding processes, Muscovy ducks have various populational traits and lack transparency of their genetic background. To remove this burden in the Muscovy duck breeding process, we analyzed genomic data from 8 populations totaling 83 individuals. We identify 11.24 million single nucleotide polymorphisms (SNPs) and categorized these individuals into the Fujian-bred and the Crimo populations according to phylogenetic analyses. We then delved deeper into their evolutionary relationships through assessing population structure, calculating fixation index (FST) values, and measuring genetic distances. Our exploration of runs of homozygosity (ROHs) and homozygous-by-descent (HBD) uncovered genomic regions enriched for genes implicated in fatty acid metabolism, development, and immunity pathways. Selective sweep analyses further indicated strong selective pressures exerted on genes including TECR, STAT2, and TRAF5. These findings provide insights into genetic variations of Muscovy ducks, thus offering valuable information regarding genetic diversity, population conservation, and genome associated with the breeding of Muscovy ducks.
Collapse
Affiliation(s)
- Te Li
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Yiming Wang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| | - Zhou Zhang
- National Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Congliang Ji
- Technology Department (Research Institute) Livestock and Poultry Breeding Research Office, Wens Foodstuff Group Co. Ltd, Huineng North Road, Xincheng Town, Xinxing County, Yunfu City, Guangdong Province 527400, China
| | - Nengzhu Zheng
- Institute of Animal Husbandry and Veterinary Medicine, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China
| | - Yinhua Huang
- State Key Laboratory of Farm Animal Biotech Breeding, College of Biology Sciences, China Agricultural University, No.2 Yuan Ming Yuan West Road, Hai Dian District, Beijing 100193, China
| |
Collapse
|
29
|
Quan J, Yang M, Wang X, Cai G, Ding R, Zhuang Z, Zhou S, Tan S, Ruan D, Wu J, Zheng E, Zhang Z, Liu L, Meng F, Wu J, Xu C, Qiu Y, Wang S, Lin M, Li S, Ye Y, Zhou F, Lin D, Li X, Deng S, Zhang Y, Yao Z, Gao X, Yang Y, Liu Y, Zhan Y, Liu Z, Zhang J, Ma F, Yang J, Chen Q, Yang J, Ye J, Dong L, Gu T, Huang S, Xu Z, Li Z, Yang J, Huang W, Wu Z. Multi-omic characterization of allele-specific regulatory variation in hybrid pigs. Nat Commun 2024; 15:5587. [PMID: 38961076 PMCID: PMC11222378 DOI: 10.1038/s41467-024-49923-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/25/2024] [Indexed: 07/05/2024] Open
Abstract
Hybrid mapping is a powerful approach to efficiently identify and characterize genes regulated through mechanisms in cis. In this study, using reciprocal crosses of the phenotypically divergent Duroc and Lulai pig breeds, we perform a comprehensive multi-omic characterization of regulatory variation across the brain, liver, muscle, and placenta through four developmental stages. We produce one of the largest multi-omic datasets in pigs to date, including 16 whole genome sequenced individuals, as well as 48 whole genome bisulfite sequencing, 168 ATAC-Seq and 168 RNA-Seq samples. We develop a read count-based method to reliably assess allele-specific methylation, chromatin accessibility, and RNA expression. We show that tissue specificity was much stronger than developmental stage specificity in all of DNA methylation, chromatin accessibility, and gene expression. We identify 573 genes showing allele specific expression, including those influenced by parent-of-origin as well as allele genotype effects. We integrate methylation, chromatin accessibility, and gene expression data to show that allele specific expression can be explained in great part by allele specific methylation and/or chromatin accessibility. This study provides a comprehensive characterization of regulatory variation across multiple tissues and developmental stages in pigs.
Collapse
Affiliation(s)
- Jianping Quan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
| | - Ming Yang
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Xingwang Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Gengyuan Cai
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Rongrong Ding
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Zhanwei Zhuang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shenping Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Suxu Tan
- Department of Animal Science, Michigan State University, East Lansing, MI, USA
| | - Donglin Ruan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jiajin Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Enqin Zheng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zebin Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Langqing Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fanming Meng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, Guangdong, China
| | - Jie Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Cineng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yibin Qiu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shiyuan Wang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Meng Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaoyun Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yong Ye
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fuchen Zhou
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Danyang Lin
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xuehua Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Shaoxiong Deng
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuling Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zekai Yao
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xin Gao
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yingshan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yiyi Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yuexin Zhan
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihong Liu
- College of Animal Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Jiaming Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fucai Ma
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jifei Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiaoer Chen
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jisheng Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jian Ye
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Linsong Dong
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China
| | - Ting Gu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Sixiu Huang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zheng Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zicong Li
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- State Regional Livestock and Poultry Genebank, Guangdong Genebank of Livestock and Poultry, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, Guangdong, China.
| | - Wen Huang
- Department of Animal Science, Michigan State University, East Lansing, MI, USA.
| | - Zhenfang Wu
- State Key Laboratory of Swine and Poultry Breeding Industry, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, China.
- Guangdong Zhongxin Breeding Technology Co., Ltd, Guangzhou, Guangdong, China.
- Yunfu Subcenter of Guangdong Laboratory for Lingnan Modern Agriculture, Yunfu, Guangdong, China.
| |
Collapse
|
30
|
Wang Z, Guo Z, Mou Q, Liu H, Liu D, Tang H, Hou S, Schroyen M, Zhou Z. Unique feather color characteristics and transcriptome analysis of hair follicles in Liancheng White ducks. Poult Sci 2024; 103:103794. [PMID: 38718539 PMCID: PMC11097064 DOI: 10.1016/j.psj.2024.103794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/19/2024] Open
Abstract
Avian feather color is a fascinating trait, and the genetic mechanism of duck plumage formation is still in the preliminary stage. In this study, feather color of Liancheng White ducks was analyzed by determination of melanin content and RNA-seq analysis. In this research, 9 ducks from Mallards (n = 3), Liancheng White (n = 3) and Pekin ducks (n = 3) were used by high performance liquid chromatography (HPLC) and Masson-Fontana staining to reveal the difference of feather melanin content. RNA-seq from 11 hair follicle tissues (1- and 8-wk-old) of Liancheng White ducks (n = 5) and Pekin ducks (n = 7) was used to analyze the candidate genes for the feather melanin synthesis, and Immunofluorescence experiment was used to show the protein expression in 6 black- and white-feathered ducks. Pectorale, skin, liver, fat, brain, heart, kidney, lung, spleen of an 8-wk-old black-feathered Mallard were collected for candidate gene expression. The results showed that the contents of feathers, beak, web melanin in Liancheng White ducks were higher than in Pekin ducks (p < 0.05). Melanin within hair follicles was located in the barb ridge and hair matrix of black feather duck, also we found that TYRP1, TYR, SOX10 genes were differentially expressed between Liancheng White and Pekin ducks (p < 0.05), and these genes were mainly expressed showed in duck skin tissues. This study revealed the unique feather color phenotype of Liancheng White duck shedding light on the transcriptome that underlies it.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China; Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhanbao Guo
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Qiming Mou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hongfei Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Dapeng Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Hehe Tang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Shuisheng Hou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liège, Gembloux 5030, Belgium
| | - Zhengkui Zhou
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| |
Collapse
|
31
|
Han X, Yang Q, Lu Y, Xu M, Tao Q, Jiang S, He X, Bai Y, Zhang T, Bai L, Hu J, Zhu Y, Liu H, Li L. Genome-wide association study reveals the candidate genes of humerus quality in laying duck. Poult Sci 2024; 103:103851. [PMID: 38806002 PMCID: PMC11154710 DOI: 10.1016/j.psj.2024.103851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/30/2024] [Accepted: 05/09/2024] [Indexed: 05/30/2024] Open
Abstract
Bone plays a crucial role in poultry's health and production. However, during the selection and cage farming, there has been a decline in bone quality. As the development of breeding theory, researchers find that it's possible to enhance bone quality through selective breeding.This study measure 8 humerus quality in 260 samples of the 350-day-old female duck. By descripting the basic characteristic traits, mechanical property traits we found that all the bone quality traits had a large variable coefficient, especially mechanical properties trait (20-70%), indicating that there was a large difference in bone health status among laying ducks. The phenotypic correlations showed a high correlation between weight and density, diameter and perimeter, breaking and toughness (r = 0.52-0.68). And then, we performed the Genome-wide association study (GWAS) to reveal the candidate genes of humerus quality in ducks. Seven candidate protein-coding genes were identified with perimeter trait, and 52 protein-coding genes were associated with toughness trait. We also analysed the candidate region and performed KEGG and GO analyse for 75 candidate genes. Furthermore, the expression analyse of the above candidate genes in different stage of humerus and different tissues were performed. Finally, AP2A2, SMAD3, SMNDC1, NFIA, EPHB2, PMEPA1, UNC5C, ESR1, VAV3, NFATC2 deserve further focus. The obtained results can contribute to new insight into bone quality and provide new genetic biomarkers for application in duck breeding programs.
Collapse
Affiliation(s)
- Xu Han
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qinglan Yang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yinjuan Lu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Mengru Xu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Qiuyu Tao
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Shuaixue Jiang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Xinxin He
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuan Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Tao Zhang
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Lili Bai
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Jiwei Hu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Yuanchun Zhu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - HeHe Liu
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China
| | - Liang Li
- State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, PR China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, PR China.
| |
Collapse
|
32
|
Xiong H, Zhang Y, Zhao Z, Sha Q. Whole-genome SNP allele frequency differences between Tibetan and Large white pigs reveal genes associated with skeletal muscle growth. BMC Genomics 2024; 25:588. [PMID: 38862895 PMCID: PMC11167949 DOI: 10.1186/s12864-024-10508-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The skeletal muscle growth rate and body size of Tibetan pigs (TIB) are lower than Large white pigs (LW). However, the underlying genetic basis attributing to these differences remains uncertain. To address this knowledge gap, the present study employed whole-genome sequencing of TIB (slow growth) and LW (fast growth) individuals, and integrated with existing NCBI sequencing datasets of TIB and LW individuals, enabling the identification of a comprehensive set of genetic variations for each breed. The specific and predominant SNPs in the TIB and LW populations were detected by using a cutoff value of 0.50 for SNP allele frequency and absolute allele frequency differences (△AF) between the TIB and LW populations. RESULTS A total of 21,767,938 SNPs were retrieved from 44 TIB and 29 LW genomes. The analysis detected 2,893,106 (13.29%) and 813,310 (3.74%) specific and predominant SNPs in the TIB and LW populations, and annotated to 24,560 genes. Further GO analysis revealed 291 genes involved in biological processes related to striated and/or skeletal muscle differentiation, proliferation, hypertrophy, regulation of striated muscle cell differentiation and proliferation, and myoblast differentiation and fusion. These 291 genes included crucial regulators of muscle cell determination, proliferation, differentiation, and hypertrophy, such as members of the Myogenic regulatory factors (MRF) (MYOD, MYF5, MYOG, MYF6) and Myocyte enhancer factor 2 (MEF2) (MEF2A, MEF2C, MEF2D) families, as well as muscle growth inhibitors (MSTN, ACVR1, and SMAD1); KEGG pathway analysis revealed 106 and 20 genes were found in muscle growth related positive and negative regulatory signaling pathways. Notably, genes critical for protein synthesis, such as MTOR, IGF1, IGF1R, IRS1, INSR, and RPS6KA6, were implicated in these pathways. CONCLUSION This study employed an effective methodology to rigorously identify the potential genes associated with skeletal muscle development. A substantial number of SNPs and genes that potentially play roles in the divergence observed in skeletal muscle growth between the TIB and LW breeds were identified. These findings offer valuable insights into the genetic underpinnings of skeletal muscle development and present opportunities for enhancing meat production through pig breeding.
Collapse
Affiliation(s)
- Heli Xiong
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, 650224, China.
| | - Yan Zhang
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, 650224, China
| | - Zhiyong Zhao
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, 650224, China
| | - Qian Sha
- Animal Nutrition and Swine Institute, Yunnan Academy of Animal Husbandry and Veterinary Sciences, Kunming, 650224, China
| |
Collapse
|
33
|
Zhang X, Yang F, Zhu T, Zhao X, Zhang J, Wen J, Zhang Y, Wang G, Ren X, Chen A, Wang X, Wang L, Lv X, Yang W, Qu C, Wang H, Ning Z, Qu L. Whole genome resequencing reveals genomic regions related to red plumage in ducks. Poult Sci 2024; 103:103694. [PMID: 38663207 PMCID: PMC11068611 DOI: 10.1016/j.psj.2024.103694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/15/2024] [Accepted: 03/25/2024] [Indexed: 05/07/2024] Open
Abstract
Plumage color is a characteristic trait of ducks that originates as a result of natural and artificial selection. As a conspicuous phenotypic feature, it is a breed characteristic. Previous studies have identified some genes associated with the formation of black and white plumage in ducks. However, studies on the genetic basis underlying the red plumage phenotype in ducks are limited. Here, genome-wide association analysis (GWAS) and selection signal detection (Fst, θπ ratio, and cross-population composite likelihood ratio [XP-CLR]) were conducted to identify candidate regions and genes underlying duck plumage color phenotype. Selection signal detection revealed 29 overlapping genes (including ENPP1 and ULK1) significantly associated with red plumage color in Ji'an Red ducks. ENSAPLG00000012679, ESRRG, and SPATA5 were identified as candidate genes associated with red plumage using GWAS. Selection signal detection revealed that 19 overlapping genes (including GMDS, PDIA6, and ODC1) significantly correlated with light brown plumage in Brown Tsaiya ducks. GWAS to narrow down the significant regions further revealed nine candidate genes (AKT1, ATP6V1C2, GMDS, LRP4, MAML3, PDIA6, PLD5, TMEM63B, and TSPAN8). Notably, in Brown Tsaiya ducks, GMDS, ODC1, and PDIA6 exhibit significantly differentiated allele frequencies among other feather-colored ducks, while in Ji'an Red ducks, ENSAPLG00000012679 has different allele frequency distributions compared with that in other feather-colored ducks. This study offers new insights into the variation and selection of the red plumage phenotype using GWAS and selective signals.
Collapse
Affiliation(s)
- Xinye Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Fangxi Yang
- Beijing Nankou Duck Breeding Technology Co., Ltd., Beijing, China
| | - Tao Zhu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiurong Zhao
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinxin Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Junhui Wen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yalan Zhang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Gang Wang
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xufang Ren
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Anqi Chen
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xue Wang
- VVBK Animal Medical Diagnostic Technology (Beijing) Co., Ltd, Daxing District, Beijing, China
| | - Liang Wang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Xueze Lv
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Weifang Yang
- Beijing Municipal General Station of Animal Science, Beijing, China
| | - Changqing Qu
- Engineering Technology Research Center of Anti-aging Chinese Herbal Medicine of Anhui Province, Fuyang Normal University, Fuyang, China
| | - Huie Wang
- College of Animal Science, Tarim University, Xinjiang, China
| | - Zhonghua Ning
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lujiang Qu
- Department of Animal Genetics and Breeding, National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
34
|
Yuan B, Qi Y, Zhang X, Hu J, Fan Y, Ji X. The relationship of MITF gene expression and promoter methylation with plumage colour in quail. Br Poult Sci 2024; 65:259-264. [PMID: 38578288 DOI: 10.1080/00071668.2024.2326962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/16/2024] [Indexed: 04/06/2024]
Abstract
1. This study focused on the relationship between MITF mRNA expression and plumage colour in quail and the effect of promoter methylation on the expression of MITF mRNA.2. The CDS region of MITF mRNA was cloned by RT-PCR, followed by DNA sequencing. The RT-qPCR method was used to analyse the expression levels of MITF mRNA in dorsal skin tissue in Korean quail and Beijing white quail. The promoter region of the MITF gene was cloned, and the CpG island was predicted by the CpGplot program. The methylation levels of the CpG island were analysed using BS-PCR technology.3. Quail MITF mRNA contains a 1,476 bp complete ORF, which encodes a 492 amino acid residue protein. The MITF protein has no signal peptide or transmembrane region. The expression of MITF mRNA in dorsal tissue of Korean quail was significantly higher than that in Beijing white quail (p < 0.01). Abundant cis-elements and a 346 bp CpG island were found in the promoter region of the MITF gene. The average methylation level of the CpG island was 22 (22%) in Korean quail, and 46 (30%) in Beijing white quail (p < 0.05).4. The hypermethylation of the MITF gene promoter region in Beijing white quail resulted in a decrease in expression level, which was related to white feather colour.
Collapse
Affiliation(s)
- B Yuan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Qi
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - X Zhang
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - J Hu
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Y Fan
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| | - Xingyu Ji
- College of Animal Science, Henan University of Science and Technology, Luoyang, P.R.China
| |
Collapse
|
35
|
Recuerda M, Campagna L. How structural variants shape avian phenotypes: Lessons from model systems. Mol Ecol 2024; 33:e17364. [PMID: 38651830 DOI: 10.1111/mec.17364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/25/2024]
Abstract
Despite receiving significant recent attention, the relevance of structural variation (SV) in driving phenotypic diversity remains understudied, although recent advances in long-read sequencing, bioinformatics and pangenomic approaches have enhanced SV detection. We review the role of SVs in shaping phenotypes in avian model systems, and identify some general patterns in SV type, length and their associated traits. We found that most of the avian SVs so far identified are short indels in chickens, which are frequently associated with changes in body weight and plumage colouration. Overall, we found that relatively short SVs are more frequently detected, likely due to a combination of their prevalence compared to large SVs, and a detection bias, stemming primarily from the widespread use of short-read sequencing and associated analytical methods. SVs most commonly involve non-coding regions, especially introns, and when patterns of inheritance were reported, SVs associated primarily with dominant discrete traits. We summarise several examples of phenotypic convergence across different species, mediated by different SVs in the same or different genes and different types of changes in the same gene that can lead to various phenotypes. Complex rearrangements and supergenes, which can simultaneously affect and link several genes, tend to have pleiotropic phenotypic effects. Additionally, SVs commonly co-occur with single-nucleotide polymorphisms, highlighting the need to consider all types of genetic changes to understand the basis of phenotypic traits. We end by summarising expectations for when long-read technologies become commonly implemented in non-model birds, likely leading to an increase in SV discovery and characterisation. The growing interest in this subject suggests an increase in our understanding of the phenotypic effects of SVs in upcoming years.
Collapse
Affiliation(s)
- María Recuerda
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
| | - Leonardo Campagna
- Fuller Evolutionary Biology Program, Cornell Lab of Ornithology, Ithaca, New York, USA
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
36
|
Wei C, Niu Y, Chen B, Wang Y, Cai H, Han R, Tian Y, Liu X, Guo W, Kang X, Li Z. Divergent Regulatory Roles of Transcriptional Variants of the Chicken LDB3 Gene in Muscle Shaping. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12240-12250. [PMID: 38764183 DOI: 10.1021/acs.jafc.4c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
LIM domain binding 3 (LDB3) serves as a striated muscle-specific Z-band alternatively spliced protein that plays an important role in mammalian skeletal muscle development, but its regulatory role and molecular mechanism in avian muscle development are still unclear. In this study, we reanalyzed RNA sequencing data sets of 1415 samples from 21 chicken tissues published in the NCBI GEO database. First, three variants (LDB3-X, LDB3-XN1, and LDB3-XN2) generated by alternative splicing of the LDB3 gene were identified in chicken skeletal muscle, among which LDB3-XN1 and LDB3-XN2 are novel variants. LDB3-X and LDB3-XN1 are derived from exon skipping in chicken skeletal muscle at the E18-D7 stage and share three LIM domains, but LDB3-XN2 lacks a LIM domain. Our results preliminarily suggest that the formation of three variants of LDB3 is regulated by RBM20. The three splice isomers have divergent functions in skeletal muscle according to in vitro and in vivo assays. Finally, we identified the mechanism by which different variants play different roles through interactions with IGF2BP1 and MYHC, which promote the proliferation and differentiation of chicken myoblasts, in turn regulating chicken myogenesis. In conclusion, this study revealed the divergent roles of three LDB3 variants in chicken myogenesis and muscle remodeling and demonstrated their regulatory mechanism through protein-protein interactions.
Collapse
Affiliation(s)
- Chengjie Wei
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yufang Niu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Bingjie Chen
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Yanxing Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
| | - Ruili Han
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Yadong Tian
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Xiaojun Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Wei Guo
- Departmentof Animal and Dairy Sciences, University of Wisconsin-Madison, 1933 Observatory Dr., Madison, Wisconsin 54706, United States
| | - Xiangtao Kang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| | - Zhuanjian Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Zhengzhou 450046, China
| |
Collapse
|
37
|
Lin R, Li H, Lin W, Yang F, Bao X, Pan C, Lai L, Lin W. Whole-genome selection signature differences between Chaohu and Ji'an red ducks. BMC Genomics 2024; 25:522. [PMID: 38802792 PMCID: PMC11131323 DOI: 10.1186/s12864-024-10339-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Assessing the genetic structure of local varieties and understanding their genetic data are crucial for effective management and preservation. However, the genetic differences among local breeds require further explanation. To enhance our understanding of their population structure and genetic diversity, we conducted a genome-wide comparative study of Chaohu and Ji'an Red ducks using genome sequence and restriction site-associated DNA sequencing technology. Our analysis revealed a distinct genetic distinction between the two breeds, leading to divided groups. The phylogenetic tree for Chaohu duck displayed two branches, potentially indicating minimal impact from artificial selection. Additionally, our ROH (runs of homozygosity) analysis revealed that Chaohu ducks had a lower average inbreeding coefficient than Ji'an Red ducks. We identified several genomic regions with high genetic similarity in these indigenous duck breeds. By conducting a selective sweep analysis, we identified 574 candidate genes associated with muscle growth (BMP2, ITGA8, MYLK, and PTCH1), fat deposits (ELOVL1 and HACD2), and pigmentation (ASIP and LOC101797494). These results offer valuable insights for the further enhancement and conservation of Chinese indigenous duck breeds.
Collapse
Affiliation(s)
- Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, People's Republic of China.
| |
Collapse
|
38
|
Liu Y, Li G, Guo Z, Zhang H, Wei B, He D. Transcriptome analysis of sexual dimorphism in dorsal down coloration in goslings. BMC Genomics 2024; 25:505. [PMID: 38778258 PMCID: PMC11110362 DOI: 10.1186/s12864-024-10394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
BACKGROUND In day-old Hungarian white goose goslings, there is a noticeable difference in dorsal down coloration between males and females, with females having darker dorsal plumage and males having lighter plumage. The ability to autosex day-old goslings based on their dorsal down coloration is important for managing them efficiently and planning their nutrition in the poultry industry. The aim of this study was to determine the biological and genetic factors underlying this difference in dorsal down colorationthrough histological analysis, biochemical assays, transcriptomic profiling, and q‒PCR analysis. RESULTS Tissue analysis and biochemical assays revealed that compared with males, 17-day-old embryos and day-old goslings of female geese exhibited a greater density of melanin-containing feather follicles and a greater melanin concentration in these follicles during development. Both female and male goslings had lower melanin concentrations in their dorsal skin compared to 17-day-old embryos. Transcriptome analysis identified a set of differentially expressed genes (DEGs) (MC1R, TYR, TYRP1, DCT and MITF) associated with melanogenesis pathways that were downregulated or silenced specifically in the dorsal skin of day-old goslings compared to 17-day-old embryos, affecting melanin synthesis in feather follicles. Additionally, two key genes (MC1R and MITF) associated with feather coloration showed differences between males and females, with females having higher expression levels correlated with increased melanin synthesis and darker plumage. CONCLUSION The expression of multiple melanogenesis genes determines melanin synthesis in goose feather follicles. The dorsal down coloration of day-old Hungarian white goose goslings shows sexual dimorphism, likely due to differences in the expression of the MC1R and MITF genes between males and females. These results could help us better understand why male and female goslings exhibit different plumage patterns.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Guangquan Li
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China
| | - Zhanbao Guo
- Chinese Academy of Agricultural Sciences, Institute of Animal Sciences, Beijing, China
| | - Huiling Zhang
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Baozhi Wei
- Shandong Rongda Agricultural Development Co., Ltd, Shandong, China
| | - Daqian He
- Shanghai Academy of Agricultural Sciences, Institute of Animal Husbandry and Veterinary Science, Shanghai, China.
| |
Collapse
|
39
|
Gao G, Liu R, Hu S, He M, Zhang J, Gao D, Li J, Hu J, Wang J, Wang Q, Li M, Jin L. Exploring the dynamic three-dimensional chromatin architecture and transcriptional landscape in goose liver tissues underlying metabolic adaptations induced by a high-fat diet. J Anim Sci Biotechnol 2024; 15:60. [PMID: 38693536 PMCID: PMC11064361 DOI: 10.1186/s40104-024-01016-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/29/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Goose, descendants of migratory ancestors, have undergone extensive selective breeding, resulting in their remarkable ability to accumulate fat in the liver and exhibit a high tolerance for significant energy intake. As a result, goose offers an excellent model for studying obesity, metabolic disorders, and liver diseases in mammals. Although the impact of the three-dimensional arrangement of chromatin within the cell nucleus on gene expression and transcriptional regulation is widely acknowledged, the precise functions of chromatin architecture reorganization during fat deposition in goose liver tissues still need to be fully comprehended. RESULTS In this study, geese exhibited more pronounced changes in the liver index and triglyceride (TG) content following the consumption of the high-fat diet (HFD) than mice without significant signs of inflammation. Additionally, we performed comprehensive analyses on 10 goose liver tissues (5 HFD, 5 normal), including generating high-resolution maps of chromatin architecture, conducting whole-genome gene expression profiling, and identifying H3K27ac peaks in the livers of geese and mice subjected to the HFD. Our results unveiled a multiscale restructuring of chromatin architecture, encompassing Compartment A/B, topologically associated domains, and interactions between promoters and enhancers. The dynamism of the three-dimensional genome architecture, prompted by the HFD, assumed a pivotal role in the transcriptional regulation of crucial genes. Furthermore, we identified genes that regulate chromatin conformation changes, contributing to the metabolic adaptation process of lipid deposition and hepatic fat changes in geese in response to excessive energy intake. Moreover, we conducted a cross-species analysis comparing geese and mice exposed to the HFD, revealing unique characteristics specific to the goose liver compared to a mouse. These chromatin conformation changes help elucidate the observed characteristics of fat deposition and hepatic fat regulation in geese under conditions of excessive energy intake. CONCLUSIONS We examined the dynamic modifications in three-dimensional chromatin architecture and gene expression induced by an HFD in goose liver tissues. We conducted a cross-species analysis comparing that of mice. Our results contribute significant insights into the chromatin architecture of goose liver tissues, offering a novel perspective for investigating mammal liver diseases.
Collapse
Affiliation(s)
- Guangliang Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Rui Liu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Silu Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Mengnan He
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiaman Zhang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Dengfeng Gao
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jing Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwen Wang
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qigui Wang
- Chongqing Engineering Research Center of Goose Genetic Improvement, Institute of Poultry Science, Chongqing Academy of Animal Sciences, Rongchang District, Chongqing, 402460, China
| | - Mingzhou Li
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Long Jin
- Livestock and Poultry Multi-Omics Key Laboratory of Ministry of Agriculture and Rural Affairs, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
40
|
Cai W, Hu J, Zhang Y, Guo Z, Zhou Z, Hou S. Cis-eQTLs in seven duck tissues identify novel candidate genes for growth and carcass traits. BMC Genomics 2024; 25:429. [PMID: 38689208 PMCID: PMC11061949 DOI: 10.1186/s12864-024-10338-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 04/23/2024] [Indexed: 05/02/2024] Open
Abstract
BACKGROUND Expression quantitative trait loci (eQTL) studies aim to understand the influence of genetic variants on gene expression. The colocalization of eQTL mapping and GWAS strategy could help identify essential candidate genes and causal DNA variants vital to complex traits in human and many farm animals. However, eQTL mapping has not been conducted in ducks. It is desirable to know whether eQTLs within GWAS signals contributed to duck economic traits. RESULTS In this study, we conducted an eQTL analysis using publicly available RNA sequencing data from 820 samples, focusing on liver, muscle, blood, adipose, ovary, spleen, and lung tissues. We identified 113,374 cis-eQTLs for 12,266 genes, a substantial fraction 39.1% of which were discovered in at least two tissues. The cis-eQTLs of blood were less conserved across tissues, while cis-eQTLs from any tissue exhibit a strong sharing pattern to liver tissue. Colocalization between cis-eQTLs and genome-wide association studies (GWAS) of 50 traits uncovered new associations between gene expression and potential loci influencing growth and carcass traits. SRSF4, GSS, and IGF2BP1 in liver, NDUFC2 in muscle, ELF3 in adipose, and RUNDC1 in blood could serve as the candidate genes for duck growth and carcass traits. CONCLUSIONS Our findings highlight substantial differences in genetic regulation of gene expression across duck primary tissues, shedding light on potential mechanisms through which candidate genes may impact growth and carcass traits. Furthermore, this availability of eQTL data offers a valuable resource for deciphering further genetic association signals that may arise from ongoing extensive endeavors aimed at enhancing duck production traits.
Collapse
Affiliation(s)
- Wentao Cai
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Jian Hu
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yunsheng Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhanbao Guo
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Zhengkui Zhou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Shuisheng Hou
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
41
|
Huang J, Xiong X, Zhang W, Chen X, Wei Y, Li H, Xie J, Wei Q, Zhou Q. Integrating miRNA and full-length transcriptome profiling to elucidate the mechanism of muscle growth in Muscovy ducks reveals key roles for miR-301a-3p/ANKRD1. BMC Genomics 2024; 25:340. [PMID: 38575872 PMCID: PMC10993543 DOI: 10.1186/s12864-024-10138-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 02/19/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The popularity of Muscovy ducks is attributed not only to their conformation traits but also to their slightly higher content of breast and leg meat, as well as their stronger-tasting meat compared to that of typical domestic ducks. However, there is a lack of comprehensive systematic research on the development of breast muscle in Muscovy ducks. In addition, since the number of skeletal muscle myofibers is established during the embryonic period, this study conducted a full-length transcriptome sequencing and microRNA sequencing of the breast muscle. Muscovy ducks at four developmental stages, namely Embryonic Day 21 (E21), Embryonic Day 27 (E27), Hatching Day (D0), and Post-hatching Day 7 (D7), were used to isolate total RNA for analysis. RESULTS A total of 68,161 genes and 472 mature microRNAs were identified. In order to uncover deeper insights into the regulation of mRNA by miRNAs, we conducted an integration of the differentially expressed miRNAs (known as DEMs) with the differentially expressed genes (referred to as DEGs) across various developmental stages. This integration allowed us to make predictions regarding the interactions between miRNAs and mRNA. Through this analysis, we identified a total of 274 DEGs that may serve as potential targets for the 68 DEMs. In the predicted miRNA‒mRNA interaction networks, let-7b, miR-133a-3p, miR-301a-3p, and miR-338-3p were the hub miRNAs. In addition, multiple DEMs also showed predicted target relationships with the DEGs associated with skeletal system development. These identified DEGs and DEMs as well as their predicted interaction networks involved in the regulation of energy homeostasis and muscle development were most likely to play critical roles in facilitating the embryo-to-hatchling transition. A candidate miRNA, miR-301a-3p, exhibited increased expression during the differentiation of satellite cells and was downregulated in the breast muscle tissues of Muscovy ducks at E21 compared to E27. A dual-luciferase reporter assay suggested that the ANKRD1 gene, which encodes a transcription factor, is a direct target of miR-301a-3p. CONCLUSIONS miR-301a-3p suppressed the posttranscriptional activity of ANKRD1, which is an activator of satellite cell proliferation, as determined with gain- and loss-of-function experiments. miR-301a-3p functions as an inducer of myogenesis by targeting the ANKRD1 gene in Muscovy ducks. These results provide novel insights into the early developmental process of black Muscovy breast muscles and will improve understanding of the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Jiangnan Huang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolan Xiong
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Weihong Zhang
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Xiaolian Chen
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Yue Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Jinfang Xie
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China
| | - Qipeng Wei
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| | - Quanyong Zhou
- Institute of Animal Husbandry and Veterinary Medicine, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, China.
| |
Collapse
|
42
|
Wang J, Liu J, Lei Q, Liu Z, Han H, Zhang S, Qi C, Liu W, Li D, Li F, Cao D, Zhou Y. Elucidation of the genetic determination of body weight and size in Chinese local chicken breeds by large-scale genomic analyses. BMC Genomics 2024; 25:296. [PMID: 38509464 PMCID: PMC10956266 DOI: 10.1186/s12864-024-10185-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/04/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Body weight and size are important economic traits in chickens. While many growth-related quantitative trait loci (QTLs) and candidate genes have been identified, further research is needed to confirm and characterize these findings. In this study, we investigate genetic and genomic markers associated with chicken body weight and size. This study provides new insights into potential markers for genomic selection and breeding strategies to improve meat production in chickens. METHODS We performed whole-genome resequencing of and Wenshang Barred (WB) chickens (n = 596) and three additional breeds with varying body sizes (Recessive White (RW), WB, and Luxi Mini (LM) chickens; (n = 50)). We then used selective sweeps of mutations coupled with genome-wide association study (GWAS) to identify genomic markers associated with body weight and size. RESULTS We identified over 9.4 million high-quality single nucleotide polymorphisms (SNPs) among three chicken breeds/lines. Among these breeds, 287 protein-coding genes exhibited positive selection in the RW and WB populations, while 241 protein-coding genes showed positive selection in the LM and WB populations. Genomic heritability estimates were calculated for 26 body weight and size traits, including body weight, chest breadth, chest depth, thoracic horn, body oblique length, keel length, pelvic width, shank length, and shank circumference in the WB breed. The estimates ranged from 0.04 to 0.67. Our analysis also identified a total of 2,522 genome-wide significant SNPs, with 2,474 SNPs clustered around two genomic regions. The first region, located on chromosome 4 (7.41-7.64 Mb), was linked to body weight after ten weeks and body size traits. LCORL, LDB2, and PPARGC1A were identified as candidate genes in this region. The other region, located on chromosome 1 (170.46-171.53 Mb), was associated with body weight from four to eighteen weeks and body size traits. This region contained CAB39L and WDFY2 as candidate genes. Notably, LCORL, LDB2, and PPARGC1A showed highly selective signatures among the three breeds of chicken with varying body sizes. CONCLUSION Overall this study provides a comprehensive map of genomic variants associated with body weight and size in chickens. We propose two genomic regions, one on chromosome 1 and the other on chromosome 4, that could helpful for developing genome selection breeding strategies to enhance meat yield in chickens.
Collapse
Affiliation(s)
- Jie Wang
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Jie Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Qiuxia Lei
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Zhihe Liu
- Sichuan agricultural university college of animal science and technology, Chengdu, 611130, China
| | - Haixia Han
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Shuer Zhang
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Chao Qi
- Shandong Animal Husbandry General Station, Jinan, 250023, China
| | - Wei Liu
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Dapeng Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Fuwei Li
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Dingguo Cao
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China
| | - Yan Zhou
- Poultry Breeding Engineering Technology Center of Shandong Province, Poultry Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong, 250023, China.
- Jinan Key Laboratory of Poultry Germplasm Resources Innovation and Healthy Breeding, Jinan, Shandong, 250023, China.
| |
Collapse
|
43
|
Qi J, Liu H, Zhou Z, Jiang Y, Fan W, Hu J, Li J, Guo Z, Xie M, Huang W, Zhang Q, Hou S. Genome-wide association study identifies multiple loci influencing duck serum biochemical indicators in the laying period. Br Poult Sci 2024; 65:8-18. [PMID: 38284741 DOI: 10.1080/00071668.2023.2272982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 09/12/2023] [Indexed: 01/30/2024]
Abstract
1. Laying performance is an important economic trait in poultry. The blood is essential in transporting nutrients to the yolk and albumen and is necessary for egg formation.2. This study calculated the phenotypic relationships of duck egg quality, egg production efficiency and 22 serum parameters in the egg-laying stage. Using a variety of methodologies, a genome-wide association study (GWAS) was carried out to uncover the genetic foundations of the 22 serum biochemical markers of laying ducks.3. Spearman correlation coefficients between the egg production (226-329 per day) and the serum parameters were all weak, being less than 0.3. This analysis was done on 22 serum parameters, with total protein (TP), total triglycerides (TG), calcium (Ca) and phosphorous (P) having the highest correlation coefficients (r = 0.56-0.88). The coefficients for blood markers, such as total cholesterol (CHOL), total bilirubin (TBIL), low-density lipoprotein cholesterol (LDL-C) and high-density lipoprotein cholesterol (HDL-C) varied from 0.70-0.94.4. Based on single-marker single-trait genome-wide analyses by a mixed linear model program of EMMAX, nine candidate genes were associated with enzyme traits (AST/ALT aspartate transaminase/glutamic-pyruvic transaminase, creatine kinase) and 19 candidate genes were associated with metabolism and protein-related serum parameters (glucose, total bile acid, uric acid (UA), albumin (ALB).5. The mvLMM (multivariate linear mixed model) of GEMMA software was used to carry out multiple trait integrated GWAS. Two candidate genes were found in the TP-TG-CA-P analysis and seven candidate genes in the CHOL_LDL-C_HDL-C_TBIL study. There was a high genetic correlation between the two groups.
Collapse
Affiliation(s)
- J Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - H Liu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Z Zhou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Y Jiang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Fan
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Hu
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - J Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Z Guo
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - M Xie
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - W Huang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Q Zhang
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - S Hou
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture and Rural Affairs, Beijing, China
- Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture and Rural Affairs, Beijing, China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
44
|
Wu Q, Liu H, Yang Q, Qi J, Xi Y, Tang Q, Wang R, Hu J, Li L. Transcriptome-based comparison reveals key genes regulating allometry growth of forelimb and hindlimb bone in duck embryos. Poult Sci 2024; 103:103317. [PMID: 38160613 PMCID: PMC10792745 DOI: 10.1016/j.psj.2023.103317] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/29/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Allometric growth of the forelimb and hindlimb is a widespread phenomenon observed in vertebrates. As a typical precocial bird, ducks exhibit more advanced development of their hindlimbs compared to their forelimbs, enabling them to walk shortly after hatching. This phenomenon is closely associated with the development of long bones in the embryonic stage. However, the molecular mechanism governing the allometric growth of duck forelimb and hindlimb bones is remains elusive. In this study, we employed phenotypic, histological, and gene expression analyses to investigate developmental differences between the humerus (forelimb bone) and tibia/femur (hindlimb bones) in duck embryos. Our results revealed a gradual increase in weight and length disparity between the tibia and humerus from E12 to E28 (embryo age). At E12, endochondral ossification was observed solely in the tibia but not in the humerus. The number of differentially expressed genes (DEGs) gradually increased at H12 vs. T12, H20 vs. T20, and H28 vs. T28 stages consistent with phenotypic variations. A total of 38 DEGs were found across all 3 stages. Protein-protein interaction network analysis demonstrated strong interactions among members of HOXD gene family (HOXD3/8/9/10/11/12), HOXB gene family (HOXB8/9), TBX gene family (TBX4/5/20), HOXA11, SHOX2, and MEIS2. Gene expression profiling indicated higher expression levels for all HOXD genes in the humerus compared to tibia while opposite trends were observed for HOXA/HOXB genes with low or no expression detected in the humerus. These findings suggest distinct roles played by different clusters within HOX gene family during skeletal development regulation of duck embryo's forelimbs versus hind limbs. Notably, TBX4 exhibited high expression levels specifically in tibia whereas TBX5 showed similar patterns exclusively within humerus as seen previously across other species' studies. In summary, this study identified key regulatory genes involved in allometric growth of duck forelimb and hindlimb bones during embryonic development. Skeletal development is a complex physiological process, and further research is needed to elucidate the regulatory role of candidate genes in endochondral ossification.
Collapse
Affiliation(s)
- Qifan Wu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China; Ministry of Agriculture, Forestry and Food Engineering, Yibin University, Yibin, 644000, China
| | - Hehe Liu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qinglan Yang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jingjing Qi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yang Xi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Tang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Rui Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jiwei Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China
| | - Liang Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
45
|
Wang K, Hua G, Li J, Yang Y, Zhang C, Yang L, Hu X, Scheben A, Wu Y, Gong P, Zhang S, Fan Y, Zeng T, Lu L, Gong Y, Jiang R, Sun G, Tian Y, Kang X, Hu H, Li W. Duck pan-genome reveals two transposon insertions caused bodyweight enlarging and white plumage phenotype formation during evolution. IMETA 2024; 3:e154. [PMID: 38868520 PMCID: PMC10989122 DOI: 10.1002/imt2.154] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 11/07/2023] [Indexed: 06/14/2024]
Abstract
Structural variations (SVs) are a major source of domestication and improvement traits. We present the first duck pan-genome constructed using five genome assemblies capturing ∼40.98 Mb new sequences. This pan-genome together with high-depth sequencing data (∼46.5×) identified 101,041 SVs, of which substantial proportions were derived from transposable element (TE) activity. Many TE-derived SVs anchoring in a gene body or regulatory region are linked to duck's domestication and improvement. By combining quantitative genetics with molecular experiments, we, for the first time, unraveled a 6945 bp Gypsy insertion as a functional mutation of the major gene IGF2BP1 associated with duck bodyweight. This Gypsy insertion, to our knowledge, explains the largest effect on bodyweight among avian species (27.61% of phenotypic variation). In addition, we also examined another 6634 bp Gypsy insertion in MITF intron, which triggers a novel transcript of MITF, thereby contributing to the development of white plumage. Our findings highlight the importance of using a pan-genome as a reference in genomics studies and illuminate the impact of transposons in trait formation and livestock breeding.
Collapse
Affiliation(s)
- Kejun Wang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
| | - Jingyi Li
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Intelligent Husbandry Department, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yu Yang
- Wuhan Academy of Agricultural ScienceWuhanChina
| | - Chenxi Zhang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Lan Yang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Xiaoyu Hu
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Armin Scheben
- Simons Center for Quantitative BiologyCold Spring Harbor LaboratoryCold Spring HarborNew YorkUSA
| | - Yanan Wu
- Department of preventive veterinary medicine, College of Veterinary MedicineHenan Agricultural UniversityZhengzhouChina
- International Joint Research Center for National Animal ImmunologyZhengzhouHenanChina
| | - Ping Gong
- Wuhan Academy of Agricultural ScienceWuhanChina
| | - Shuangjie Zhang
- Quality Safety and Processing LaboratoryJiangsu Institute of Poultry SciencesYangzhouChina
| | - Yanfeng Fan
- Quality Safety and Processing LaboratoryJiangsu Institute of Poultry SciencesYangzhouChina
| | - Tao Zeng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Lizhi Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐Products, Institute of Animal Husbandry and Veterinary ScienceZhejiang Academy of Agricultural SciencesHangzhouChina
| | - Yanzhang Gong
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Intelligent Husbandry Department, College of Animal Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ruirui Jiang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Guirong Sun
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Yadong Tian
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Xiangtao Kang
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| | - Haifei Hu
- Rice Research Institute, Guangdong Key Laboratory of New Technology in Rice Breeding and Guangdong Rice Engineering LaboratoryGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Wenting Li
- Henan Key Laboratory for Innovation and Utilization of Chicken Germplasm Resources, Department of Animal Genetic and Breeding, College of Animal Science and TechnologyHenan Agricultural UniversityZhengzhouChina
- The Shennong LaboratoryZhengzhouChina
| |
Collapse
|
46
|
Gebreselase HB, Nigussie H, Wang C, Luo C. Genetic Diversity, Population Structure and Selection Signature in Begait Goats Revealed by Whole-Genome Sequencing. Animals (Basel) 2024; 14:307. [PMID: 38254476 PMCID: PMC10812714 DOI: 10.3390/ani14020307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/21/2023] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Goats belong to a group of animals called small ruminants and are critical sources of livelihood for rural people. Genomic sequencing can provide information ranging from basic knowledge about goat diversity and evolutionary processes that shape genomes to functional information about genes/genomic regions. In this study, we exploited a whole-genome sequencing data set to analyze the genetic diversity, population structure and selection signatures of 44 individuals belonging to 5 Ethiopian goat populations: 12 Aberegalle (AB), 5 Afar (AF), 11 Begait (BG), 12 Central highlands (CH) and 5 Meafure (MR) goats. Our results revealed the highest genetic diversity in the BG goat population compared to the other goat populations. The pairwise genetic differentiation (FST) among the populations varied and ranged from 0.011 to 0.182, with the closest pairwise value (0.003) observed between the AB and CH goats and a distant correlation (FST = 0.182) between the BG and AB goats, indicating low to moderate genetic differentiation. Phylogenetic tree, ADMIXTURE and principal component analyses revealed a classification of the five Ethiopian goat breeds in accordance with their geographic distribution. We also found three top genomic regions that were detected under selection on chromosomes 2, 5 and 13. Moreover, this study identified different candidate genes related to milk characteristics (GLYCAM1 and SRC), carcass (ZNF385B, BMP-7, PDE1B, PPP1R1A, FTO and MYOT) and adaptive and immune response genes (MAPK13, MAPK14, SCN7A, IL12A, EST1 DEFB116 and DEFB119). In conclusion, this information could be helpful for understanding the genetic diversity and population structure and selection scanning of these important indigenous goats for future genetic improvement and/or as an intervention mechanism.
Collapse
Affiliation(s)
- Haile Berihulay Gebreselase
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Department of Biotechnology, College of Natural and Computational Science, Aksum University, Aksum 1010, Tigray, Ethiopia
| | | | - Changfa Wang
- Agricultural Science and Engineering School, Liaocheng University, Liaocheng 252000, China;
| | - Chenglong Luo
- State Key Laboratory of Swine and Poultry Breeding Industry Guangdong Key Laboratory of Animal Breeding and Nutrition Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| |
Collapse
|
47
|
Mirchandani CD, Shultz AJ, Thomas GWC, Smith SJ, Baylis M, Arnold B, Corbett-Detig R, Enbody E, Sackton TB. A Fast, Reproducible, High-throughput Variant Calling Workflow for Population Genomics. Mol Biol Evol 2024; 41:msad270. [PMID: 38069903 PMCID: PMC10764099 DOI: 10.1093/molbev/msad270] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/27/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
The increasing availability of genomic resequencing data sets and high-quality reference genomes across the tree of life present exciting opportunities for comparative population genomic studies. However, substantial challenges prevent the simple reuse of data across different studies and species, arising from variability in variant calling pipelines, data quality, and the need for computationally intensive reanalysis. Here, we present snpArcher, a flexible and highly efficient workflow designed for the analysis of genomic resequencing data in nonmodel organisms. snpArcher provides a standardized variant calling pipeline and includes modules for variant quality control, data visualization, variant filtering, and other downstream analyses. Implemented in Snakemake, snpArcher is user-friendly, reproducible, and designed to be compatible with high-performance computing clusters and cloud environments. To demonstrate the flexibility of this pipeline, we applied snpArcher to 26 public resequencing data sets from nonmammalian vertebrates. These variant data sets are hosted publicly to enable future comparative population genomic analyses. With its extensibility and the availability of public data sets, snpArcher will contribute to a broader understanding of genetic variation across species by facilitating the rapid use and reuse of large genomic data sets.
Collapse
Affiliation(s)
- Cade D Mirchandani
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Allison J Shultz
- Ornithology Department, Natural History Museum of Los Angeles County, Los Angeles, CA 90007, USA
| | | | - Sara J Smith
- Informatics Group, Harvard University, Cambridge, MA, USA
- Biology, Mount Royal University, Calgary, AB T3E 6K6, Canada
| | - Mara Baylis
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Brian Arnold
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Russ Corbett-Detig
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | - Erik Enbody
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, CA 95064, USA
| | | |
Collapse
|
48
|
Xu Z, Wu J, Zhang Y, Qiao M, Zhou J, Feng Y, Li Z, Sun H, Lin R, Song Z, Zhao H, Li L, Chen N, Li Y, Oyelami FO, Peng X, Mei S. Genome-wide detection of selection signatures in Jianli pigs reveals novel cis-regulatory haplotype in EDNRB associated with two-end black coat color. BMC Genomics 2024; 25:23. [PMID: 38166718 PMCID: PMC10763394 DOI: 10.1186/s12864-023-09943-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Jianli pig, a renowned indigenous breed in China, has the characteristics of a two-end black (TEB) coat color, excellent meat quality, strong adaptability and increased prolificacy. However, there is limited information available regarding the genetic diversity, population structure and genomic regions under selection of Jianli pig. On the other hand, the genetic mechanism of TEB coat color has remained largely unknown. RESULTS In this study, the whole genome resequencing of 30 Jianli pigs within a context of 153 individuals representing 13 diverse breeds was performed. The population structure analysis revealed that Jianli pigs have close genetic relationships with the Tongcheng pig breed, their geographical neighbors. Three methods (observed heterozygosity, expected heterozygosity, and runs of homozygosity) implied a relatively high level of genetic diversity and, a low inbreeding coefficient in Jianli compared with other pigs. We used Fst and XP-EHH to detect the selection signatures in Jianli pigs compared with Asian wild boar. A total of 451 candidate genes influencing meat quality (CREBBP, ADCY9, EEPD1 and HDAC9), reproduction (ESR1 and FANCA), and coat color (EDNRB, MITF and MC1R), were detected by gene annotation analysis. Finally, to fine-map the genomic region for the two-end black (TEB) coat color phenotype in Jianli pigs, we performed three signature selection methods between the TEB coat color and no-TEB coat color pig breeds. The current study, further confirmed that the EDNRB gene is a candidate gene for TEB color phenotype found in Chinese pigs, including Jinhua pigs, and the haplotype harboring 25 SNPs in the EDNRB gene may promote the formation of TEB coat color. Further ATAC-seq and luciferase reporter assays of these regions suggest that the 25-SNPs region was a strong candidate causative mutation that regulates the TEB coat color phenotype by altering enhancer function. CONCLUSION Our results advanced the understanding of the genetic mechanism behind artificial selection, and provided further resources for the protection and breeding improvement of Jianli pigs.
Collapse
Affiliation(s)
- Zhong Xu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Junjing Wu
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yu Zhang
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Mu Qiao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Jiawei Zhou
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yue Feng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Zipeng Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Hua Sun
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Ruiyi Lin
- (College of Animal Sciences, College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhongxu Song
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Haizhong Zhao
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Lianghua Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Nanqi Chen
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | - Yujie Li
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China
| | | | - Xianwen Peng
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Hongshan Laboratory, Wuhan, 430064, China.
| | - Shuqi Mei
- Hubei Key Laboratory of Animal Embryo and Molecular Breeding, Institute of Animal Husbandry and Veterinary, Hubei Provincial Academy of Agricultural Sciences, Wuhan, 430064, China.
- Hubei Hongshan Laboratory, Wuhan, 430064, China.
| |
Collapse
|
49
|
Li L, Quan J, Liu H, Yu H, Chen H, Xia C, Zhao S, Gao C. Identification of the genetic characteristics of copy number variations in experimental specific pathogen-free ducks using whole-genome resequencing. BMC Genomics 2024; 25:17. [PMID: 38166615 PMCID: PMC10759622 DOI: 10.1186/s12864-023-09928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Specific pathogen-free ducks are a valuable laboratory resource for waterfowl disease research and poultry vaccine development. High throughput sequencing allows the systematic identification of structural variants in genomes. Copy number variation (CNV) can explain the variation of important duck genetic traits. Herein, the genome-wide CNVs of the three experimental duck species in China (Jinding ducks (JD), Shaoxing ducks (SX), and Fujian Shanma ducks (SM)) were characterized using resequencing to determine their genetic characteristics and selection signatures. RESULTS We obtained 4,810 CNV regions (CNVRs) by merging 73,012 CNVs, covering 4.2% of the duck genome. Functional analysis revealed that the shared CNVR-harbored genes were significantly enriched for 31 gene ontology terms and 16 Kyoto Encyclopedia of Genes and Genomes pathways (e.g., olfactory transduction and immune system). Based on the genome-wide fixation index for each CNVR, growth (SPAG17 and PTH1R), disease resistance (CATHL3 and DMBT1), and thermoregulation (TRPC4 and SLIT3) candidate genes were identified in strongly selected signatures specific to JD, SM, and SX, respectively. CONCLUSIONS In conclusion, we investigated the genome-wide distribution of experimental duck CNVs, providing a reference to establish the genetic basis of different phenotypic traits, thus contributing to the management of experimental animal genetic resources.
Collapse
Affiliation(s)
- Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
- College of Animal Science & Technology, Ningxia University, Yinchuan, 750021, P.R. China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China.
| | - Hongyi Liu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Haibo Yu
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Hongyan Chen
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Changyou Xia
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China
| | - Shengguo Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou, 730070, P.R. China
| | - Caixia Gao
- State Key Laboratory of Veterinary Biotechnology, Heilongjiang Provincial Key Laboratory of Laboratory Animal and Comparative Medicine, National Poultry Laboratory Animal Resource Center, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Harbin, 150069, P.R. China.
| |
Collapse
|
50
|
Tan X, Liu R, Zhao D, He Z, Li W, Zheng M, Li Q, Wang Q, Liu D, Feng F, Zhu D, Zhao G, Wen J. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J Adv Res 2024; 55:1-16. [PMID: 36871617 PMCID: PMC10770282 DOI: 10.1016/j.jare.2023.02.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/26/2023] [Indexed: 03/07/2023] Open
Abstract
INTRODUCTION Investigating the genetic markers and genomic signatures related to chicken meat production by combing multi-omics methods could provide new insights into modern chicken breeding technology systems. OBJECT Chicken is one of the most efficient and environmentally friendly livestock, especially the fast-growing white-feathered chicken (broiler), which is well known for high meat yield, but the underlying genetic basis is poorly understood. METHOD We generated whole-genome resequencing of three purebred broilers (n = 748) and six local breeds/lines (n = 114), and sequencing data of twelve chicken breeds (n = 199) were obtained from the NCBI database. Additionally, transcriptome sequencing of six tissues from two chicken breeds (n = 129) at two developmental stages was performed. A genome-wide association study combined with cis-eQTL mapping and the Mendelian randomization was applied. RESULT We identified > 17 million high-quality SNPs, of which 21.74% were newly identified, based on 21 chicken breeds/lines. A total of 163 protein-coding genes underwent positive selection in purebred broilers, and 83 genes were differentially expressed between purebred broilers and local chickens. Notably, muscle development was proven to be the major difference between purebred broilers and local chickens, or ancestors, based on genomic and transcriptomic evidence from multiple tissues and stages. The MYH1 gene family showed the top selection signatures and muscle-specific expression in purebred broilers. Furthermore, we found that the causal gene SOX6 influenced breast muscle yield and also related to myopathy occurrences. A refined haplotype was provided, which had a significant effect on SOX6 expression and phenotypic changes. CONCLUSION Our study provides a comprehensive atlas comprising the typical genomic variants and transcriptional characteristics for muscle development and suggests a new regulatory target (SOX6-MYH1s axis) for breast muscle yield and myopathy, which could aid in the development of genome-scale selective breeding aimed at high meat yield in broiler chickens.
Collapse
Affiliation(s)
- Xiaodong Tan
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Di Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhengxiao He
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qinghe Li
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qiao Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Dan Zhu
- Foshan Gaoming Xinguang Agricultural and Animal Industrials Corporation, Foshan 528515, China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Jie Wen
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|