1
|
Li Y, Sun Y, Yu K, Li Z, Miao H, Xiao W. Keratin: A potential driver of tumor metastasis. Int J Biol Macromol 2025; 307:141752. [PMID: 40049479 DOI: 10.1016/j.ijbiomac.2025.141752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 02/26/2025] [Accepted: 03/03/2025] [Indexed: 03/19/2025]
Abstract
Keratins, as essential components of intermediate filaments in epithelial cells, play a crucial role in maintaining cell structure and function. In various malignant epithelial tumors, abnormal keratin expression is frequently observed and serves not only as a diagnostic marker but also closely correlates with tumor progression. Extensive research has demonstrated that keratins are pivotal in multiple stages of tumor metastasis, including responding to mechanical forces, evading the immune system, reprogramming metabolism, promoting angiogenesis, and resisting apoptosis. Here we emphasize that keratins significantly enhance the migratory and invasive capabilities of tumor cells, making them critical drivers of tumor metastasis. These findings highlight the importance of targeting keratins as a strategic approach to combat tumor metastasis, thereby advancing our understanding of their role in cancer progression and offering new therapeutic opportunities.
Collapse
Affiliation(s)
- Yuening Li
- Army Medical University, Chongqing, China
| | - Yiming Sun
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Kun Yu
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China
| | - Zhixi Li
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China; Jinfeng Laboratory, Chongqing, China.
| | - Weidong Xiao
- Department of General Surgery, the Second Affiliated Hospital of Army Medical University, Chongqing, China.
| |
Collapse
|
2
|
Xiang J, Han J, Wu J, Xu S, Cheng C, Zhang J. Single-cell RNA sequencing revealed cell landscape of tongue dorsal mucosa in rats with gastric intestinal metaplasia. Cell Death Discov 2025; 11:105. [PMID: 40090940 PMCID: PMC11911441 DOI: 10.1038/s41420-025-02386-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/27/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
The formation of tongue coating is closely related with the differentiation of the lingual dorsal mucosa, and a great deal of evidence shows that the variation of tongue coating reflects the pathological and physiological state of the gastric mucosa. However, the detailed mechanism remains elusive. This study established a rat model of gastric intestinal metaplasia (GIM) with 2% sodium salicylate and 20 mmol/L of deoxycholate sodium, and used single-cell RNA sequencing (scRNA-seq) to reveal the cell landscape of tongue dorsal mucosa. In comparison to the control group, the tongue dorsal mucosa of GIM rats became grayish-white, and the histologic characteristics presented an uneven distribution of tongue papilla with many immune cells in the submucosal layer. The expressive levels of pro-inflammatory factors (IL-1β, IL-6, and IL-17) were significantly higher in GIM rats than in the control group. Stratified analysis revealed the significant downregulation of autophagy marker gene Map1lc3a in neutrophils and T cells, and the significant downregulation of cuproptosis marker gene Dlst in fibroblasts of the tongue dorsal mucosa in GIM rats. These changes were closely related to mucosal inflammation and impaired tissue barrier integrity. Significantly, the expression of several keratin genes (Krt7, Krt8, Krt13, Krt16, and Krt76) was significantly downregulated, as well as the expression of the bitter taste receptor gene Rtp4 and the sweet taste receptor gene Tas1r2 in the GIM rats. The data indicated that fewer cells entered regulated cell death in immune cells of tongue mucosa, a more active inflammatory response occurred, the keratinization of tongue dorsal mucosal cells was inhibited, and the taste perception function was weakened. The results bring new perspectives on tongue coating in the application of gastric disorders. Characteristics of the tongue dorsum mucosal cell landscape in the rats with gastric intestinal metaplasia. The abundances of T cells, neutrophils, and macrophages were upregulated, and the autophagy marker gene Map1lc3a in T cells and neutrophils was downregulated, which indicated an actively inflammatory immune response. Downregulation of cuprotosis marker gene Dlst in fibroblasts suggested potential damage to the mucosal barrier. Meanwhile, the expression of bitter receptor Rtp4 and sweet receptor Tas1r2 in mesenchymal stem cells was downregulated. The cell communication ability was reduced, especially between mesenchymal stem cells and epithelial cells. In a word, the abnormal status of tongue dorsum mucosa may accompany the development of gastric intestinal metaplasia.
Collapse
Affiliation(s)
- Jiao Xiang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Jing Han
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Jianping Wu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
- Laboratory Animal Center, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Shuo Xu
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China
| | - Chun Cheng
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| | - Junfeng Zhang
- School of Medicine, Nanjing University of Chinese Medicine, 210023, Nanjing, Jiangsu, China.
| |
Collapse
|
3
|
Sun Y, Li E, Zhong W, Deng Z, Zhou Z, Wong KH, Li X. GSH/pH-responsive copper-based cascade nanocomplexes inducing immunogenic cell death through cuproptosis/ferroptosis/necroptosis in oral squamous cell carcinoma. Mater Today Bio 2025; 30:101434. [PMID: 39839490 PMCID: PMC11750277 DOI: 10.1016/j.mtbio.2024.101434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/11/2024] [Accepted: 12/27/2024] [Indexed: 01/23/2025] Open
Abstract
Oral squamous cell carcinoma (OSCC) remains a formidable challenge due to high recurrence rates and limited efficacy of conventional treatments. Immunotherapy holds potential, but its effectiveness is often restricted by low patient responsiveness. This study presents a novel therapeutic strategy using GSH/pH-responsive copper-based cascade nanocomplexes to induce immunogenic cell death (ICD) in OSCC. The fabricated nanocomplex, PC@B-H, leverages the acidic and reducing tumor microenvironment to release copper ions and plumbagin, triggering a cascade of cell death mechanisms including cuproptosis, ferroptosis, and necroptosis. This multifunctional system not only enhances oxidative stress but also depletes glutathione, promotes lipid peroxidation, and disrupts mitochondrial function, leading to robust tumor inhibition. Additionally, the induction of ICD facilitates dendritic cell maturation and cytotoxic T lymphocyte infiltration, providing durable anti-tumor immunity. The study demonstrates that PC@B-H achieves a 92.3 % tumor growth inhibition rate with minimal systemic toxicity, offering a promising avenue for enhancing the efficacy of OSCC treatment through combined cell death pathways and immune activation.
Collapse
Affiliation(s)
- Yi Sun
- Stomatology Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Enze Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Zhaoming Deng
- Stomatology Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ziyao Zhou
- Stomatology Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| | - Ka Hong Wong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau
| | - Xiangwei Li
- Stomatology Department, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, Guangdong, China
| |
Collapse
|
4
|
Seubert AC, Krafft M, Bopp S, Helal M, Bhandare P, Wolf E, Alemany A, Riedel A, Kretzschmar K. Spatial transcriptomics reveals molecular cues underlying the site specificity of the adult mouse oral mucosa and its stem cell niches. Stem Cell Reports 2024; 19:1706-1719. [PMID: 39547226 PMCID: PMC11751799 DOI: 10.1016/j.stemcr.2024.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/21/2024] [Accepted: 10/21/2024] [Indexed: 11/17/2024] Open
Abstract
The oral cavity is a multifunctional organ composed of structurally heterogeneous mucosal tissues that remain poorly characterized. Oral mucosal tissues are highly stratified and segmented along an epithelial-lamina propria axis. Here, we performed spatial transcriptomics (tomo-seq) on the tongue, cheeks, and palate of the adult mouse to understand the cues that maintain the oral mucosal sites. We define molecular markers of unique and shared cellular niches and differentiation programs across oral sites. Using a comparative approach, we identify fibroblast growth factor (FGF) pathway components as potential stem cell niche factors for oral epithelial stem cells. Using organoid-forming efficiency assays, we validated three FGF ligands (FGF1, FGF7, and FGF10) as site-specific niche factors in the dorsal and ventral tongue. Our dataset of the spatially resolved genes across major oral sites represents a comprehensive resource for unraveling the molecular mechanisms underlying the adult homeostasis of the oral mucosa and its stem cell niches.
Collapse
Affiliation(s)
- Anna C Seubert
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Marion Krafft
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Sarah Bopp
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany
| | - Moutaz Helal
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | | | - Elmar Wolf
- Institute of Biochemistry, Kiel University, Kiel, Germany
| | - Anna Alemany
- Department of Anatomy and Embryology, Leiden University Medical Center (LUMC), Leiden, the Netherlands; Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden, the Netherlands
| | - Angela Riedel
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany
| | - Kai Kretzschmar
- Mildred Scheel Early Career Centre (MSNZ) for Cancer Research Würzburg, IZKF/MSNZ, University Hospital Würzburg, Würzburg, Germany; Graduate School of Life Sciences (GSLS), University of Würzburg, Würzburg, Germany.
| |
Collapse
|
5
|
Jaber Y, Sarusi-Portuguez A, Netanely Y, Naamneh R, Yacoub S, Saar O, Darawshi N, Eli-Berchoer L, Shapiro H, Elinav E, Wilensky A, Hovav AH. Gingival spatial analysis reveals geographic immunological variation in a microbiota-dependent and -independent manner. NPJ Biofilms Microbiomes 2024; 10:142. [PMID: 39627243 PMCID: PMC11615284 DOI: 10.1038/s41522-024-00625-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
In mucosal barriers, tissue cells and leukocytes collaborate to form specialized niches that support host-microbiome symbiosis. Understanding the spatial organization of these barriers is crucial for elucidating the mechanisms underlying health and disease. The gingiva, a unique mucosal barrier with significant health implications, exhibits intricate tissue architecture and likely contains specialized immunological regions. Through spatial transcriptomic analysis, this study reveals distinct immunological characteristics between the buccal and palate regions of the murine gingiva, impacting natural alveolar bone loss. The microbiota primarily affects gingival immunity in the buccal region. Additionally, a significant influence of the microbiota on the junctional epithelium facing the oral biofilm offers new insights into neutrophil recruitment. The microbiota also regulates the proliferation and barrier-sealing function of the gingival epithelium. This underscores the presence of immunological niches in the gingiva, with the microbiota differentially influencing them, highlighting the high complexity of this oral mucosal barrier.
Collapse
Affiliation(s)
- Yasmin Jaber
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | | | - Yasmin Netanely
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Reem Naamneh
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Shahd Yacoub
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Or Saar
- Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel; Department of Periodontology, Hadassah Medical Center, Jerusalem, Israel
| | - Nadeem Darawshi
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Luba Eli-Berchoer
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel
| | - Hagit Shapiro
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
- Microbiome & Cancer Division, DKFZ, Heidelberg, Germany
| | - Asaf Wilensky
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Avi-Hai Hovav
- Institute of Biomedical and Oral Research, Faculty of Dental Medicine, Hebrew University, Jerusalem, Israel.
| |
Collapse
|
6
|
Pu J, Zeng Z, Liu X, Zhong Y, Peng X. The clinical characteristics of 1894 cases of upper respiratory papillomatosis: A single-center retrospective analysis. Am J Otolaryngol 2024; 45:104373. [PMID: 38838480 DOI: 10.1016/j.amjoto.2024.104373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND With advancements in medicine and economy, it would be expected that there will be changes in the clinical characteristics of upper respiratory papillomatosis. The aim of this study was to examine the current clinical characteristics of upper respiratory papillomatosis, as there are no recent data in the literature. METHODS The medical records of 1894 patients with upper respiratory papillomatosis were retrospectively reviewed. Data extracted included clinical features, laryngoscopy images, and surgical procedure data. RESULTS The upper frequency of upper respiratory papillomatosis in the oropharynx was 69.1 %, and in the larynx was held 28.9 %. The overall postoperative relapse rate was 2.4 %. The relapse rate of laryngeal papillomatosis was 6.5 %. Approximately 2.6 % of cases were in children. All postoperative recurrences in children were laryngeal, and the recurrence rate was 30.4 %. CONCLUSION The oropharynx has the highest frequency of upper respiratory papillomatosis. The larynx, however, has the highest rate of postoperative recurrence. Compared to adults, children are more likely to experience a postoperative recurrence.
Collapse
Affiliation(s)
- Jiahui Pu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zichun Zeng
- The First School of Clinical Medicine, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiong Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yanlan Zhong
- The Department of Rheumatology, Guangzhou Women and Children's Medical Centre, Guangzhou, 510623, Guangdong, China.
| | - Xiaohong Peng
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
7
|
Mucignat G, Montanucci L, Elgendy R, Giantin M, Laganga P, Pauletto M, Mutinelli F, Vascellari M, Leone VF, Dacasto M, Granato A. A Whole-Transcriptomic Analysis of Canine Oral Melanoma: A Chance to Disclose the Radiotherapy Effect and Outcome-Associated Gene Signature. Genes (Basel) 2024; 15:1065. [PMID: 39202425 PMCID: PMC11353338 DOI: 10.3390/genes15081065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/03/2024] Open
Abstract
Oral melanoma (OM) is the most common malignant oral tumour among dogs and shares similarities with human mucosal melanoma (HMM), validating the role of canine species as an immunocompetent model for cancer research. In both humans and dogs, the prognosis is poor and radiotherapy (RT) represents a cornerstone in the management of this tumour, either as an adjuvant or a palliative treatment. In this study, by means of RNA-seq, the effect of RT weekly fractionated in 9 Gray (Gy), up to a total dose of 36 Gy (4 weeks), was evaluated in eight dogs affected by OM. Furthermore, possible transcriptomic differences in blood and biopsies that might be associated with a longer overall survival (OS) were investigated. The immune response, glycosylation, cell adhesion, and cell cycle were the most affected pathways by RT, while tumour microenvironment (TME) composition and canonical and non-canonical WNT pathways appeared to be modulated in association with OS. Taking these results as a whole, this study improved our understanding of the local and systemic effect of RT, reinforcing the pivotal role of anti-tumour immunity in the control of canine oral melanoma (COM).
Collapse
Affiliation(s)
- Greta Mucignat
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Ludovica Montanucci
- McGovern Medical School and Center for Neurogenomics, UTHealth, University of Texas Houston, Houston, TX 77030, USA;
| | - Ramy Elgendy
- Discovery Sciences, Centre for Genomics Research, AstraZeneca, 411 10 Gothenburg, Sweden;
| | - Mery Giantin
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Paola Laganga
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Franco Mutinelli
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Marta Vascellari
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| | - Vito Ferdinando Leone
- Anicura—Centro Oncologico Veterinario, Sasso Marconi, 40037 Bologna, Italy; (P.L.); (V.F.L.)
| | - Mauro Dacasto
- Department of Comparative Biomedicine and Food Science, University of Padua, Agripolis Legnaro, 35020 Padua, Italy; (G.M.); (M.G.); (M.P.)
| | - Anna Granato
- Veterinary and Public Health Institute, Legnaro, 35020 Padua, Italy; (F.M.); (M.V.)
| |
Collapse
|
8
|
Shi P, Chen W, Lyu X, Wang Z, Li W, Jia F, Zheng C, Liu T, Wang C, Zhang Y, Mi Z, Sun Y, Chen X, Chen S, Zhou G, Liu Y, Lin Y, Bai F, Sun Q, Ogese MO, Yu Q, Liu J, Liu H, Zhang F. Loss-of-function mutations in Keratin 32 gene disrupt skin immune homeostasis in pityriasis rubra pilaris. Nat Commun 2024; 15:6259. [PMID: 39048559 PMCID: PMC11269665 DOI: 10.1038/s41467-024-50481-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/12/2024] [Indexed: 07/27/2024] Open
Abstract
Pityriasis rubra pilaris (PRP) is an inflammatory papulosquamous dermatosis, characterized by hyperkeratotic follicular papules and erythematous desquamative plaques. The precise pathogenic mechanism underlying PRP remains incompletely understood. Herein, we conduct a case-control study involving a cohort of 102 patients with sporadic PRP and 800 healthy controls of Han Chinese population and identify significant associations (P = 1.73 × 10-6) between PRP and heterozygous mutations in the Keratin 32 gene (KRT32). KRT32 is found to be predominantly localized in basal keratinocytes and exhibits an inhibitory effect on skin inflammation by antagonizing the NF-κB pathway. Mechanistically, KRT32 binds to NEMO, promoting excessive K48-linked polyubiquitination and NEMO degradation, which hinders IKK complex formation. Conversely, loss-of-function mutations in KRT32 among PRP patients result in NF-κB hyperactivation. Importantly, Krt32 knockout mice exhibit a PRP-like dermatitis phenotype, suggesting compromised anti-inflammatory function of keratinocytes in response to external pro-inflammatory stimuli. This study proposes a role for KRT32 in regulating inflammatory immune responses, with damaging variants in KRT32 being an important driver in PRP development. These findings offer insights into the regulation of skin immune homeostasis by keratin and open up the possibility of using KRT32 as a therapeutic target for PRP.
Collapse
Affiliation(s)
- Peidian Shi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Chen
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xinxing Lyu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenchao Li
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fengming Jia
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chunzhi Zheng
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xuechao Chen
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengli Chen
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guizhi Zhou
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yongxia Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yingjie Lin
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fuxiang Bai
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qing Sun
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong, China
| | - Monday O Ogese
- Department of Pharmacology and Therapeutics, University of Liverpool, Liverpool, UK
| | - Qiang Yu
- Genome Institute of Singapore, Singapore, Singapore
| | - Jianjun Liu
- Genome Institute of Singapore, Singapore, Singapore
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China.
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- School of Public Health, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
- Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
| |
Collapse
|
9
|
Su QY, Li HC, Jiang XJ, Jiang ZQ, Zhang Y, Zhang HY, Zhang SX. Exploring the therapeutic potential of regulatory T cell in rheumatoid arthritis: Insights into subsets, markers, and signaling pathways. Biomed Pharmacother 2024; 174:116440. [PMID: 38518605 DOI: 10.1016/j.biopha.2024.116440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 03/24/2024] Open
Abstract
Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.
Collapse
Affiliation(s)
- Qin-Yi Su
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Huan-Cheng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Xiao-Jing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Sheng-Xiao Zhang
- The Second Hospital of Shanxi Medical University, Department of Rheumatology, Taiyuan, China; Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China; Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
| |
Collapse
|
10
|
Jia B, Zhang B, Li J, Qin J, Huang Y, Huang M, Ming Y, Jiang J, Chen R, Xiao Y, Du J. Emerging polymeric materials for treatment of oral diseases: design strategy towards a unique oral environment. Chem Soc Rev 2024; 53:3273-3301. [PMID: 38507263 DOI: 10.1039/d3cs01039b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Oral diseases are prevalent but challenging diseases owing to the highly movable and wet, microbial and inflammatory environment. Polymeric materials are regarded as one of the most promising biomaterials due to their good compatibility, facile preparation, and flexible design to obtain multifunctionality. Therefore, a variety of strategies have been employed to develop materials with improved therapeutic efficacy by overcoming physicobiological barriers in oral diseases. In this review, we summarize the design strategies of polymeric biomaterials for the treatment of oral diseases. First, we present the unique oral environment including highly movable and wet, microbial and inflammatory environment, which hinders the effective treatment of oral diseases. Second, a series of strategies for designing polymeric materials towards such a unique oral environment are highlighted. For example, multifunctional polymeric materials are armed with wet-adhesive, antimicrobial, and anti-inflammatory functions through advanced chemistry and nanotechnology to effectively treat oral diseases. These are achieved by designing wet-adhesive polymers modified with hydroxy, amine, quinone, and aldehyde groups to provide strong wet-adhesion through hydrogen and covalent bonding, and electrostatic and hydrophobic interactions, by developing antimicrobial polymers including cationic polymers, antimicrobial peptides, and antibiotic-conjugated polymers, and by synthesizing anti-inflammatory polymers with phenolic hydroxy and cysteine groups that function as immunomodulators and electron donors to reactive oxygen species to reduce inflammation. Third, various delivery systems with strong wet-adhesion and enhanced mucosa and biofilm penetration capabilities, such as nanoparticles, hydrogels, patches, and microneedles, are constructed for delivery of antibiotics, immunomodulators, and antioxidants to achieve therapeutic efficacy. Finally, we provide insights into challenges and future development of polymeric materials for oral diseases with promise for clinical translation.
Collapse
Affiliation(s)
- Bo Jia
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Beibei Zhang
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianhua Li
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yisheng Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Mingshu Huang
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Yue Ming
- Department of Oral and Maxillofacial Surgery, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangdong, China
| | - Jingjing Jiang
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Yufen Xiao
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
- Department of Polymeric Materials, School of Materials Science and Engineering, Key Laboratory of Advanced Civil Engineering Materials of Ministry of Education, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| |
Collapse
|
11
|
Kitsukawa Y, Fukumoto C, Hyodo T, Komiyama Y, Shiraishi R, Koike A, Yagisawa S, Kunitomi Y, Hasegawa T, Kotani W, Ishida K, Wakui T, Kawamata H. Difference between Keratinized- and Non-Keratinized-Originating Epithelium in the Process of Immune Escape of Oral Squamous Cell Carcinoma. Int J Mol Sci 2024; 25:3821. [PMID: 38612630 PMCID: PMC11011939 DOI: 10.3390/ijms25073821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/14/2024] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-programmed cell death 1 ligand 1 (PD-L1) antibodies, are significantly changing treatment strategies for human malignant diseases, including oral cancer. Cancer cells usually escape from the immune system and acquire proliferative capacity and invasive/metastatic potential. We have focused on the two immune checkpoints, PD-1/PD-L1 and CD47/SIRPα, in the tumor microenvironment of oral squamous cell carcinoma (OSCC), performed a retrospective analysis of the expression of seven immune-related factors (PD-L1, PD-1, CD4, CD8, CD47, CD56 and CD11c), and examined their correlation with clinicopathological status. As a result, there were no significant findings relating to seven immune-related factors and several clinicopathological statuses. However, the immune checkpoint-related factors (PD-1, PD-L1, CD47) were highly expressed in non-keratinized epithelium-originated tumors when compared to those in keratinized epithelium-originated tumors. It is of interest that immunoediting via immune checkpoint-related factors was facilitated in non-keratinized sites. Several researchers reported that the keratinization of oral mucosal epithelia affected the immune response, but our present finding is the first study to show a difference in tumor immunity in the originating epithelium of OSCC, keratinized or non-keratinized. Tumor immunity, an immune escape status of OSCC, might be different in the originating epithelium, keratinized or non-keratinized.
Collapse
Affiliation(s)
- Yoshiaki Kitsukawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Utsunomiya General Service Corps, Japan Ground Self-Defense Forces, Utsunomiya 321-0145, Tochigi, Japan
| | - Chonji Fukumoto
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Toshiki Hyodo
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Section of Dentistry, Oral and Maxillofacial Surgery, Sano Kosei General Hospital, Sano 327-8511, Tochigi, Japan
| | - Yuske Komiyama
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Ryo Shiraishi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Aya Koike
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Shuma Yagisawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Yosuke Kunitomi
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Tomonori Hasegawa
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Section of Dentistry, Oral and Maxillofacial Surgery, Kamitsuga General Hospital, Kanuma 322-8550, Tochigi, Japan
| | - Wataru Kotani
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
- Concier Medical Lounge, Chiyoda, Tokyo 102-0074, Japan
| | - Kazuyuki Ishida
- Department of Diagnostic Pathology, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan;
| | - Takahiro Wakui
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| | - Hitoshi Kawamata
- Department of Oral and Maxillofacial Surgery, Dokkyo Medical University School of Medicine, Shimo-Tsuga, Mibu 321-0293, Tochigi, Japan; (Y.K.); (C.F.); (T.H.); (Y.K.); (R.S.); (A.K.); (S.Y.); (Y.K.); (T.H.); (W.K.)
| |
Collapse
|
12
|
Ko EK, Anderson A, D'souza C, Zou J, Huang S, Cho S, Alawi F, Prouty S, Lee V, Yoon S, Krick K, Horiuchi Y, Ge K, Seykora JT, Capell BC. Disruption of H3K36 methylation provokes cellular plasticity to drive aberrant glandular formation and squamous carcinogenesis. Dev Cell 2024; 59:187-198.e7. [PMID: 38198888 PMCID: PMC10872381 DOI: 10.1016/j.devcel.2023.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/12/2024]
Abstract
Chromatin organization is essential for maintaining cell-fate trajectories and developmental programs. Here, we find that disruption of H3K36 methylation dramatically impairs normal epithelial differentiation and development, which promotes increased cellular plasticity and enrichment of alternative cell fates. Specifically, we observe a striking increase in the aberrant generation of excessive epithelial glandular tissues, including hypertrophic salivary, sebaceous, and meibomian glands, as well as enhanced squamous tumorigenesis. These phenotypic and gene expression manifestations are associated with loss of H3K36me2 and rewiring of repressive H3K27me3, changes we also observe in human patients with glandular hyperplasia. Collectively, these results have identified a critical role for H3K36 methylation in both in vivo epithelial cell-fate decisions and the prevention of squamous carcinogenesis and suggest that H3K36 methylation modulation may offer new avenues for the treatment of numerous common disorders driven by altered glandular function, which collectively affect large segments of the human population.
Collapse
Affiliation(s)
- Eun Kyung Ko
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amy Anderson
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Carina D'souza
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jonathan Zou
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sijia Huang
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Institute of Biomedical Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sohyun Cho
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Faizan Alawi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn School of Dental Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Vivian Lee
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sora Yoon
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Keegan Krick
- Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yoko Horiuchi
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health, Bethesda, MD 20892, USA
| | - John T Seykora
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Brian C Capell
- Department of Dermatology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Penn Epigenetics Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA; Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA; Penn Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
13
|
Mishra R. Oral tumor heterogeneity, its implications for patient monitoring and designing anti-cancer strategies. Pathol Res Pract 2024; 253:154953. [PMID: 38039738 DOI: 10.1016/j.prp.2023.154953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/03/2023]
Abstract
Oral cancer tumors occur in the mouth and are mainly derived from oral mucosa linings. It is one of the most common and fatal malignant diseases worldwide. The intratumor heterogeneity (ITH) of oral cancerous tumor is vast, so it is challenging to study and interpret. Due to environmental selection pressures, ITH arises through diverse genetic, epigenetic, and metabolic alterations. The ITH also talks about peri-tumoral vascular/ lymphatic growth, perineural permeation, tumor necrosis, invasion, and clonal expansion/ the coexistence of multiple subclones in a single tumor. The heterogeneity offers tumors the adaptability to survive, induce growth/ metastasis, and, most importantly, escape antitumor therapy. Unfortunately, the ITH is prioritized less in determining disease pathology than the traditional TNM classifications or tumor grade. Understanding ITH is challenging, but with the advancement of technology, this ITH can be decoded. Tumor genomics, proteomics, metabolomics, and other modern analyses can provide vast information. This information in clinics can assist in understanding a tumor's severity and be used for diagnostic, prognostic, and therapeutic decision-making. Lastly, the oral tumor ITH can lead to individualized, targeted therapy strategies fighting against OC.
Collapse
Affiliation(s)
- Rajakishore Mishra
- Department of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Kamre, Ranchi 835 222, Jharkhand, India.
| |
Collapse
|
14
|
Xu Y, Zhou A, Chen W, Yan Y, Chen K, Zhou X, Tian Z, Zhang X, Wu H, Fu Z, Ning X. An Integrative Bioorthogonal Nanoengineering Strategy for Dynamically Constructing Heterogenous Tumor Spheroids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304172. [PMID: 37801656 DOI: 10.1002/adma.202304172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/13/2023] [Indexed: 10/08/2023]
Abstract
Although tumor models have revolutionized perspectives on cancer aetiology and treatment, current cell culture methods remain challenges in constructing organotypic tumor with in vivo-like complexity, especially native characteristics, leading to unpredictable results for in vivo responses. Herein, the bioorthogonal nanoengineering strategy (BONE) for building photothermal dynamic tumor spheroids is developed. In this process, biosynthetic machinery incorporated bioorthogonal azide reporters into cell surface glycoconjugates, followed by reacting with multivalent click ligand (ClickRod) that is composed of hyaluronic acid-functionalized gold nanorod carrying dibenzocyclooctyne moieties, resulting in rapid construction of tumor spheroids. BONE can effectively assemble different cancer cells and immune cells together to construct heterogenous tumor spheroids is identified. Particularly, ClickRod exhibited favorable photothermal activity, which precisely promoted cell activity and shaped physiological microenvironment, leading to formation of dynamic features of original tumor, such as heterogeneous cell population and pluripotency, different maturation levels, and physiological gradients. Importantly, BONE not only offered a promising platform for investigating tumorigenesis and therapeutic response, but also improved establishment of subcutaneous xenograft model under mild photo-stimulation, thereby significantly advancing cancer research. Therefore, the first bioorthogonal nanoengineering strategy for developing dynamic tumor models, which have the potential for bridging gaps between in vitro and in vivo research is presented.
Collapse
Affiliation(s)
- Yurui Xu
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Anwei Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, School of Physics, Nanjing University, Nanjing, 210093, China
| | - Weiwei Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Yuxin Yan
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Kerong Chen
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Xinyuan Zhou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| | - Zihan Tian
- School of Information Science and Engineering (School of Cyber Science and Engineering), Xinjiang University, Urumqi, 830046, China
| | - Xiaomin Zhang
- Department of Pediatric Stomatology, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Heming Wu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Zhen Fu
- Department of Stomatology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, People's Republic of China
| | - Xinghai Ning
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Chemistry and Biomedicine Innovation Center, College of Engineering and Applied Sciences, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
15
|
Xu X, Chen J, Li W, Feng C, Liu Q, Gao W, He M. Immunology and immunotherapy in gastric cancer. Clin Exp Med 2023; 23:3189-3204. [PMID: 37322134 DOI: 10.1007/s10238-023-01104-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/24/2023] [Indexed: 06/17/2023]
Abstract
Gastric cancer is the fifth leading cause of cancer-related deaths worldwide. As the diagnosis of early gastric cancer is difficult, most patients are at a late stage of cancer progression when diagnosed. The current therapeutic approaches based on surgical or endoscopic resection and chemotherapy indeed improve patients' outcomes. Immunotherapy based on immune checkpoint inhibitors has opened a new era for cancer treatment, and the immune system of the host is reshaped to combat tumor cells and the strategy differs according to the patient's immune system. Thus, an in-depth understanding of the roles of various immune cells in the progression of gastric cancer is beneficial to application for immunotherapy and the discovery of new therapeutic targets. This review describes the functions of different immune cells in gastric cancer development, mainly focusing on T cells, B cells, macrophages, natural killer cells, dendritic cells, neutrophils as well as chemokines or cytokines secreted by tumor cells. And this review also discusses the latest advances in immune-related therapeutic approaches such as immune checkpoint inhibitors, CAR-T or vaccine, to reveal potential and promising strategies for gastric cancer treatment.
Collapse
Affiliation(s)
- Xiaqing Xu
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Jiaxing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenxing Li
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China
| | - Chenlu Feng
- Department of Cancer Center, Nanyang First People's Hospital, Nanyang, 473000, Henan, People's Republic of China
| | - Qian Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Wenfang Gao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450002, Henan, People's Republic of China
| | - Meng He
- Department of Pharmacy, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, 450007, Henan, People's Republic of China.
| |
Collapse
|
16
|
Santorella E, Balsbaugh JL, Ge S, Saboori P, Baker D, Pachter JS. Proteomic interrogation of the meninges reveals the molecular identities of structural components and regional distinctions along the CNS axis. Fluids Barriers CNS 2023; 20:74. [PMID: 37858244 PMCID: PMC10588166 DOI: 10.1186/s12987-023-00473-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/04/2023] [Indexed: 10/21/2023] Open
Abstract
The meninges surround the brain and spinal cord, affording physical protection while also serving as a niche of neuroimmune activity. Though possessing stromal qualities, its complex cellular and extracellular makeup has yet to be elaborated, and it remains unclear whether the meninges vary along the neuroaxis. Hence, studies were carried-out to elucidate the protein composition and structural organization of brain and spinal cord meninges in normal, adult Biozzi ABH mice. First, shotgun, bottom-up proteomics was carried-out. Prominent proteins at both brain and spinal levels included Type II collagen and Type II keratins, representing extracellular matrix (ECM) and cytoskeletal categories, respectively. While the vast majority of total proteins detected was shared between both meningeal locales, more were uniquely detected in brain than in spine. This pattern was also seen when total proteins were subdivided by cellular compartment, except in the case of the ECM category where brain and spinal meninges each had near equal number of unique proteins, and Type V and type III collagen registered exclusively in the spine. Quantitative analysis revealed differential expression of several collagens and cytoskeletal proteins between brain and spinal meninges. High-resolution immunofluorescence and immunogold-scanning electronmicroscopy on sections from whole brain and spinal cord - still encased within bone -identified major proteins detected by proteomics, and highlighted their association with cellular and extracellular elements of variously shaped arachnoid trabeculae. Western blotting aligned with the proteomic and immunohistological analyses, reinforcing differential appearance of proteins in brain vs spinal meninges. Results could reflect regional distinctions in meninges that govern protective and/or neuroimmune functions.
Collapse
Affiliation(s)
- Elise Santorella
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Jeremy L Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources & Equipment, University of Connecticut, Storrs, CT, 06269, USA
| | - Shujun Ge
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA
| | - Parisa Saboori
- Department of Mechanical Engineering, Manhattan College, Bronx, NY, 10071, USA
| | - David Baker
- Blizard Institute, Queen Mary University of London, London, England
| | - Joel S Pachter
- Department of Immunology, UConn Health, 263 Farmington Ave, Farmington, CT, 06030, USA.
| |
Collapse
|
17
|
Kurago Z, Guo G, Shi H, Bollag RJ, Groves MW, Byrd JK, Cui Y. Inhibitors of the CD73-adenosinergic checkpoint as promising combinatory agents for conventional and advanced cancer immunotherapy. Front Immunol 2023; 14:1212209. [PMID: 37435071 PMCID: PMC10330720 DOI: 10.3389/fimmu.2023.1212209] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/31/2023] [Indexed: 07/13/2023] Open
Abstract
The cell surface enzyme CD73 is increasingly appreciated as a pivotal non-redundant immune checkpoint (IC) in addition to PD-1/PD-L1 and CTLA-4. CD73 produces extracellular adenosine (eADO), which not only inhibits antitumor T cell activity via the adenosine receptor (AR) A2AR, but also enhances the immune inhibitory function of cancer-associated fibroblasts and myeloid cells via A2BR. Preclinical studies show that inhibition of the CD73-adenosinergic pathway in experimental models of many solid tumors either as a monotherapy or, more effectively, in combination with PD-1/PD-L1 or CTLA-4 IC blockades, improves antitumor immunity and tumor control. Consequently, approximately 50 ongoing phase I/II clinical trials targeting the CD73-adenosinergic IC are currently listed on https://clinicaltrials.gov. Most of the listed trials employ CD73 inhibitors or anti-CD73 antibodies alone, in combination with A2AR antagonists, and/or with PD-1/PD-L1 blockade. Recent evidence suggests that the distribution of CD73, A2AR and A2BR in tumor microenvironments (TME) is heterogeneous, and this distribution affects CD73-adenosinergic IC function. The new insights have implications for the optimally effective, carefully tailored approaches to therapeutic targeting of this essential IC. In the mini-review, we briefly discuss the cellular and molecular mechanisms of CD73/eADO-mediated immunosuppression during tumor progression and therapy in the spatial context of the TME. We include preclinical data regarding therapeutic CD73-eADO blockade in tumor models as well as available clinical data from completed trials that targeted CD73-adenosinergic IC with or without PD-1/PD-L1 inhibitors and discuss factors that are potentially important for optimal therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Zoya Kurago
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia at Augusta University, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Huidong Shi
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Roni J. Bollag
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Pathology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Michael W. Groves
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - J. Kenneth Byrd
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Department of Otolaryngology, Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA, United States
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, United States
| |
Collapse
|
18
|
Lafleur S, Bodein A, Mbuya Malaïka Mutombo J, Mathieu A, Joly Beauparlant C, Minne X, Chandad F, Droit A, Houde VP. Multi-Omics Data Integration Reveals Key Variables Contributing to Subgingival Microbiome Dysbiosis-Induced Inflammatory Response in a Hyperglycemic Microenvironment. Int J Mol Sci 2023; 24:ijms24108832. [PMID: 37240180 DOI: 10.3390/ijms24108832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
Subgingival microbiome dysbiosis promotes the development of periodontitis, an irreversible chronic inflammatory disease associated with metabolic diseases. However, studies regarding the effects of a hyperglycemic microenvironment on host-microbiome interactions and host inflammatory response during periodontitis are still scarce. Here, we investigated the impacts of a hyperglycemic microenvironment on the inflammatory response and transcriptome of a gingival coculture model stimulated with dysbiotic subgingival microbiomes. HGF-1 cells overlaid with U937 macrophage-like cells were stimulated with subgingival microbiomes collected from four healthy donors and four patients with periodontitis. Pro-inflammatory cytokines and matrix metalloproteinases were measured while the coculture RNA was submitted to a microarray analysis. Subgingival microbiomes were submitted to 16s rRNA gene sequencing. Data were analyzed using an advanced multi-omics bioinformatic data integration model. Our results show that the genes krt76, krt27, pnma5, mansc4, rab41, thoc6, tm6sf2, and znf506 as well as the pro-inflammatory cytokines IL-1β, GM-CSF, FGF2, IL-10, the metalloproteinases MMP3 and MMP8, and bacteria from the ASV 105, ASV 211, ASV 299, Prevotella, Campylobacter and Fretibacterium genera are key intercorrelated variables contributing to periodontitis-induced inflammatory response in a hyperglycemic microenvironment. In conclusion, our multi-omics integration analysis unveiled the complex interrelationships involved in the regulation of periodontal inflammation in response to a hyperglycemic microenvironment.
Collapse
Affiliation(s)
- Sarah Lafleur
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Antoine Bodein
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Joanna Mbuya Malaïka Mutombo
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Alban Mathieu
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Charles Joly Beauparlant
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Xavier Minne
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Fatiha Chandad
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| | - Arnaud Droit
- Molecular Medicine Department, CHU de Québec Research Center, Université Laval, Québec, QC G1V 4G2, Canada
| | - Vanessa P Houde
- Oral Ecology Research Group (GREB), Faculty of Dentistry, Université Laval, 2420 rue de la Terrasse, Québec, QC G1V 0A6, Canada
| |
Collapse
|
19
|
Heryanto YD, Imoto S. Identifying Key Regulators of Keratinization in Lung Squamous Cell Cancer Using Integrated TCGA Analysis. Cancers (Basel) 2023; 15:cancers15072066. [PMID: 37046726 PMCID: PMC10092975 DOI: 10.3390/cancers15072066] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/25/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023] Open
Abstract
Keratinization is one of lung squamous cell cancer’s (LUSC) hallmark histopathology features. Epithelial cells produce keratin to protect their integrity from external harmful substances. In addition to their roles as cell protectors, recent studies have shown that keratins have important roles in regulating either normal cell or tumor cell functions. The objective of this study is to identify the genes and microRNAs (miRNAs) that act as key regulators of the keratinization process in LUSC. To address this goal, we classified LUSC samples from GDC-TCGA databases based on their keratinization molecular signatures. Then, we performed differential analyses of genes, methylation, and miRNA expression between high keratinization and low keratinization samples. By reconstruction and analysis of the differentially expressed genes (DEGs) network, we found that TP63 and SOX2 were the hub genes that were highly connected to other genes and displayed significant correlations with several keratin genes. Methylation analysis showed that the P63, P73, and P53 DNA-binding motif sites were significantly enriched for differentially methylated probes. We identified SNAI2, GRHL3, TP63, ZNF750, and FOXE1 as the top transcription factors associated with these binding sites. Finally, we identified 12 miRNAs that influence the keratinization process by using miRNA–mRNA correlation analysis.
Collapse
Affiliation(s)
- Yusri Dwi Heryanto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Correspondence:
| | - Seiya Imoto
- Division of Health Medical Intelligence, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
- Laboratory of Sequence Analysis, Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| |
Collapse
|
20
|
A Kaleidoscope of Keratin Gene Expression and the Mosaic of Its Regulatory Mechanisms. Int J Mol Sci 2023; 24:ijms24065603. [PMID: 36982676 PMCID: PMC10052683 DOI: 10.3390/ijms24065603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
Keratins are a family of intermediate filament-forming proteins highly specific to epithelial cells. A combination of expressed keratin genes is a defining property of the epithelium belonging to a certain type, organ/tissue, cell differentiation potential, and at normal or pathological conditions. In a variety of processes such as differentiation and maturation, as well as during acute or chronic injury and malignant transformation, keratin expression undergoes switching: an initial keratin profile changes accordingly to changed cell functions and location within a tissue as well as other parameters of cellular phenotype and physiology. Tight control of keratin expression implies the presence of complex regulatory landscapes within the keratin gene loci. Here, we highlight patterns of keratin expression in different biological conditions and summarize disparate data on mechanisms controlling keratin expression at the level of genomic regulatory elements, transcription factors (TFs), and chromatin spatial structure.
Collapse
|
21
|
Chen Q, Ma J, Wang X, Zhu X. Identification of prognostic candidate signatures by systematically revealing transcriptome characteristics in lung adenocarcinoma with differing tumor microenvironment immune phenotypes. Aging (Albany NY) 2022; 14:4786-4818. [PMID: 35675043 PMCID: PMC9217709 DOI: 10.18632/aging.204112] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 05/24/2022] [Indexed: 12/09/2022]
Abstract
Accumulated evidence shows that tumor microenvironment plays crucial roles in predicting clinical outcomes of lung adenocarcinoma (LUAD). The current study aimed to identify some potentially prognostic signatures by systematically revealing the transcriptome characteristics in LUADs with differing immune phenotypes. LUAD gene expression data were retrieved from the public TCGA and GEO databases, and the transcriptome characteristics were systematically revealed using a comprehensive bioinformatics method including single-sample gene set enrichment analysis, differentially expressed gene (DEG) analysis, protein and protein interaction (PPI) network construction, competitive endogenous RNA (ceRNA) network construction, weighted gene coexpression network analysis and prognostic model establishment. Finally, 1169 key DEGs associated with LUAD immune phenotype, including 88 immune DEGs, were excavated. Five essential and eight immune essential DEGs were separately identified by constructing two PPI networks based on the above DEGs. Totals of 1085 key DElncRNAs and 45 key DEmiRNAs were excavated and one ceRNA network consisting of 26 DEmRNAs, 3 DEmiRNAs and 57 DElncRNAs were established. The most significant gene coexpression module (cor=0.63 and p=3e-55) associated with LUAD immune phenotypes and three genes (FGR, BTK, SPI1) related to the immune cell infiltration were identified. Three robust prognostic signatures including a 9-lncRNA, an 8-lncRNA and an 8-mRNA were established. The areas under the curves of 5-year correlated with overall survival rate were separately 0.7319, 0.7228 and 0.713 in the receiver operating characteristic curve. The findings provide novel insights into the immunological mechanism in LUAD biology and in predicting the prognosis of LUAD patients.
Collapse
Affiliation(s)
- Qiang Chen
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Jiakang Ma
- Department of Medical Oncology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiaoyi Wang
- Faculty of Animal Science and Technology, Yunnan Agricultural University, Kunming, China
| | - Xiangqing Zhu
- Basic Medical Laboratory, The 920th Hospital of Joint Logistics Support Force of PLA, Kunming, China
| |
Collapse
|
22
|
Aziz S, Rasheed F, Zahra R, König S. Gastric Cancer Pre-Stage Detection and Early Diagnosis of Gastritis Using Serum Protein Signatures. Molecules 2022; 27:molecules27092857. [PMID: 35566209 PMCID: PMC9099457 DOI: 10.3390/molecules27092857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 04/22/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
Background: A gastric cancer (GC) diagnosis relies on histopathology. Endoscopy rates are increasing. Helicobacter pylori infection is a major GC risk factor. In an effort to elucidate abundant blood biomarkers, and potentially reduce the number of diagnostic surgical interventions, we investigated sera and biopsies from a cohort of 219 H. pylori positive and negative patients diagnosed with GC, gastritis, and ulcers. This allowed the comparative investigation of the different gastroduodenal diseases, and the exclusion of protein changes resulting from bacterial infection or inflammation of the gastric mucosa when searching for GC-dependent proteins. Methods: High-definition mass spectrometry-based expression analysis of tryptically digested proteins was performed, followed by multivariate statistical and network analyses for the different disease groups, with respect to H. pylori infection status. Significantly regulated proteins differing more than two-fold between groups were shortlisted, and their role in gastritis and GC discussed. Results: We present data of comparative protein analyses of biopsies and sera from patients suffering from mild to advanced gastritis, ulcers, and early to advanced GC, in conjunction with a wealth of metadata, clinical information, histopathological evaluation, and H. pylori infection status. We used samples from pre-malignant stages to extract prospective serum markers for early-stage GC, and present a 29-protein marker panel containing, amongst others, integrin β-6 and glutathione peroxidase. Furthermore, ten serum markers specific for advanced GC, independent of H. pylori infection, are provided. They include CRP, protein S100A9, and kallistatin. The majority of these proteins were previously discussed in the context of cancer or GC. In addition, we detected hypoalbuminemia and increased fibrinogen serum levels in gastritis. Conclusion: Two protein panels were suggested for the development of multiplex tests for GC serum diagnostics. For most of the elements contained in these panels, individual commercial tests are available. Thus, we envision the design of multi-protein assays, incorporating several to all of the panel members, in order to gain a level of specificity that cannot be achieved by testing a single protein alone. As their development and validation will take time, gastritis diagnosis based on the fibrinogen to albumin serum ratio may be a quick way forward. Its determination at the primary/secondary care level for early diagnosis could significantly reduce the number of referrals to endoscopy. Preventive measures are in high demand. The protein marker panels presented in this work will contribute to improved GC diagnostics, once they have been transferred from a research result to a practical tool.
Collapse
Affiliation(s)
- Shahid Aziz
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
| | - Faisal Rasheed
- BreathMAT Lab, Pakistan Institute of Nuclear Science and Technology (PINSTEC), Islamabad 44000, Pakistan; (S.A.); (F.R.)
| | - Rabaab Zahra
- Department of Microbiology, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Simone König
- IZKF Core Unit Proteomics, University of Münster, 48149 Münster, Germany
- Correspondence:
| |
Collapse
|
23
|
Liu B, Hu J, Zhao H, Zhao L, Pan S. MicroRNA-155-5p Contributes to 5-Fluorouracil Resistance Through Down-Regulating TP53INP1 in Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:706095. [PMID: 35070952 PMCID: PMC8770267 DOI: 10.3389/fonc.2021.706095] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
The anticancer drug 5-fluorouracil (5-FU) resistance is a major obstacle to reducing the effectiveness of cancer treatment, and its detailed mechanism has not been fully elucidated. Here, in 5-FU-resistant human oral squamous cell carcinoma (OSCC) HSC3 cells (HSC3/5-FU), the levels of 21 miRNA candidates were detected using RT-PCR and miR-155-5p level increased strikingly in HSC3/5-FU cells compared to HSC3 cells. Compared with HSC3 cells, the CCK-8 assay showed that the HSC3/5-FU cells transfected with miR-155-5p inhibitors decreased 5-FU IC50. Ectopic expression of miR-155-5p in HSC3 and HSC4 cells increased 5-FU IC50 (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) abilities. Seven miR-155-5p target candidates were discovered by miRNA prediction algorithms (miRDB, Targetscan, and miRWalk), and the RT-PCR results showed that in HSC3/5-FU cells TP53INP1 was of the lowest mRNA expression level compared with HSC3 cells. The RT-PCR and Western blotting assays showed that ectopic expression of miR-155-5p in HSC3 and HSC4 cells decreased TP53INP1 expression level. Furthermore, the luciferase reporter and RNA pull-down assays determined the interference effect of miR-155-5p on TP53INP1 expression. The enhancement of cell viability (CCK-8 assay), migration (wound-healing and transwell assays) and invasion (transwell assay) by miR-155-5p after 5-FU treatment was reversed by TP53INP1 overexpression. After treatment with 5-FU, HSC3-miR-155-5p tumor-bearing nude mice presented growing tumors, while HSC3-TP53INP1 group possessed shrinking tumors. In conclusion, these results lead to the proposal that miR-155-5p enhances 5-FU resistance by decreasing TP53INP1 expression in OSCC.
Collapse
Affiliation(s)
- Bowen Liu
- Outpatient Department of Oral and Maxillofacial Surgery, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jingchao Hu
- Department of Periodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Han Zhao
- Multi-disciplinary Treatment Center, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Li Zhao
- Department of Prosthodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China.,Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyuan Pan
- Department of Dentistry, Chongqing Huamei Plastic Surgery Hospital, Chongqing, China
| |
Collapse
|
24
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
25
|
Bassler MC, Stefanakis M, Sequeira I, Ostertag E, Wagner A, Bartsch JW, Roeßler M, Mandic R, Reddmann EF, Lorenz A, Rebner K, Brecht M. Comparison of Whiskbroom and Pushbroom darkfield elastic light scattering spectroscopic imaging for head and neck cancer identification in a mouse model. Anal Bioanal Chem 2021; 413:7363-7383. [PMID: 34799750 PMCID: PMC8626402 DOI: 10.1007/s00216-021-03726-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/30/2021] [Accepted: 10/08/2021] [Indexed: 12/20/2022]
Abstract
The early detection of head and neck cancer is a prolonged challenging task. It requires a precise and accurate identification of tissue alterations as well as a distinct discrimination of cancerous from healthy tissue areas. A novel approach for this purpose uses microspectroscopic techniques with special focus on hyperspectral imaging (HSI) methods. Our proof-of-principle study presents the implementation and application of darkfield elastic light scattering spectroscopy (DF ELSS) as a non-destructive, high-resolution, and fast imaging modality to distinguish lingual healthy from altered tissue regions in a mouse model. The main aspect of our study deals with the comparison of two varying HSI detection principles, which are a point-by-point and line scanning imaging, and whether one might be more appropriate in differentiating several tissue types. Statistical models are formed by deploying a principal component analysis (PCA) with the Bayesian discriminant analysis (DA) on the elastic light scattering (ELS) spectra. Overall accuracy, sensitivity, and precision values of 98% are achieved for both models whereas the overall specificity results in 99%. An additional classification of model-unknown ELS spectra is performed. The predictions are verified with histopathological evaluations of identical HE-stained tissue areas to prove the model's capability of tissue distinction. In the context of our proof-of-principle study, we assess the Pushbroom PCA-DA model to be more suitable for tissue type differentiations and thus tissue classification. In addition to the HE-examination in head and neck cancer diagnosis, the usage of HSI-based statistical models might be conceivable in a daily clinical routine.
Collapse
Affiliation(s)
- Miriam C Bassler
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Mona Stefanakis
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edwin Ostertag
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Alexandra Wagner
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany
| | - Jörg W Bartsch
- Department of Neurosurgery, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Marion Roeßler
- Department of Pathology, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Robert Mandic
- Department of Otorhinolaryngology, Philipps University Marburg, Baldingerstraße, 35033, Marburg, Germany
| | - Eike F Reddmann
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Anita Lorenz
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Karsten Rebner
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany
| | - Marc Brecht
- Process Analysis and Technology (PA&T), Reutlingen University, Alteburgstr. 150, 72762, Reutlingen, Germany.
- Institute of Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, 72076, Tübingen, Germany.
| |
Collapse
|
26
|
Li X, Yang W. IRF2-induced Claudin-7 suppresses cell proliferation, invasion and migration of oral squamous cell carcinoma. Exp Ther Med 2021; 23:7. [PMID: 34815759 PMCID: PMC8593875 DOI: 10.3892/etm.2021.10929] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 07/26/2021] [Indexed: 12/24/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a common type of malignant tumor worldwide. Claudin-7 (CLDN7) has been reported to exhibit low expression in tissues of patients with OSCC; however, the underlying mechanisms of CLDN7 remain to be elucidated. The present study aimed to investigate the effects of CLDN7 on the progression of OSCC and identify its potential regulatory mechanisms. CLDN7 and interferon regulatory factor-2 (IRF2) expression in several OSCC cell lines were detected using reverse transcription-quantitative PCR (RT-qPCR) and western blotting. Following CLDN7 overexpression, cell proliferation, invasion and migration were determined using a Cell Counting Kit-8, colony formation, Transwell and wound healing assays, respectively. The potential binding sites of IRF2 on the CLDN7 promoter were analyzed using the PROMO and JASPAR databases, which were verified via chromatin immunoprecipitation and RT-qPCR assays. The effects of IRF2 and CLDN7 on the biological functions of OSCC cells were examined by transfection with short hairpin RNA (shRNA) against CLDN7 (sh-CLDN7), or IRF2 and CLDN7 overexpression plasmids. The results revealed that CLDN7 and IRF2 expression were significantly downregulated in OSCC cell lines, and CLDN7 overexpression reduced the proliferation, invasion and migration of OSCC cells. Additionally, IRF2 was confirmed to combine with the CLDN7 promoter. CLDN7 silencing reversed the inhibitory effects of IRF2 overexpression on the proliferation, invasion and migration of OSCC cells. Taken together, these findings demonstrated that IRF2-induced CLDN7 upregulation suppressed the proliferation, invasion and migration of OSCC cells, suggesting the possibility of CLDN7 and IRF2 as novel targets for the treatment of OSCC.
Collapse
Affiliation(s)
- Xin Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210018, P.R. China
| | - Weidong Yang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210018, P.R. China
| |
Collapse
|
27
|
Pereira D, Sequeira I. A Scarless Healing Tale: Comparing Homeostasis and Wound Healing of Oral Mucosa With Skin and Oesophagus. Front Cell Dev Biol 2021; 9:682143. [PMID: 34381771 PMCID: PMC8350526 DOI: 10.3389/fcell.2021.682143] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Epithelial tissues are the most rapidly dividing tissues in the body, holding a natural ability for renewal and regeneration. This ability is crucial for survival as epithelia are essential to provide the ultimate barrier against the external environment, protecting the underlying tissues. Tissue stem and progenitor cells are responsible for self-renewal and repair during homeostasis and following injury. Upon wounding, epithelial tissues undergo different phases of haemostasis, inflammation, proliferation and remodelling, often resulting in fibrosis and scarring. In this review, we explore the phenotypic differences between the skin, the oesophagus and the oral mucosa. We discuss the plasticity of these epithelial stem cells and contribution of different fibroblast subpopulations for tissue regeneration and wound healing. While these epithelial tissues share global mechanisms of stem cell behaviour for tissue renewal and regeneration, the oral mucosa is known for its outstanding healing potential with minimal scarring. We aim to provide an updated review of recent studies that combined cell therapy with bioengineering exporting the unique scarless properties of the oral mucosa to improve skin and oesophageal wound healing and to reduce fibrotic tissue formation. These advances open new avenues toward the ultimate goal of achieving scarless wound healing.
Collapse
Affiliation(s)
| | - Inês Sequeira
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
28
|
Sequeira I, Rashid M, Tomás IM, Williams MJ, Graham TA, Adams DJ, Vigilante A, Watt FM. Genomic landscape and clonal architecture of mouse oral squamous cell carcinomas dictate tumour ecology. Nat Commun 2020; 11:5671. [PMID: 33168804 PMCID: PMC7652942 DOI: 10.1038/s41467-020-19401-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Accepted: 10/06/2020] [Indexed: 01/10/2023] Open
Abstract
To establish whether 4-nitroquinoline N-oxide-induced carcinogenesis mirrors the heterogeneity of human oral squamous cell carcinoma (OSCC), we have performed genomic analysis of mouse tongue lesions. The mutational signatures of human and mouse OSCC overlap extensively. Mutational burden is higher in moderate dysplasias and invasive SCCs than in hyperplasias and mild dysplasias, although mutations in p53, Notch1 and Fat1 occur in early lesions. Laminin-α3 mutations are associated with tumour invasiveness and Notch1 mutant tumours have an increased immune infiltrate. Computational modelling of clonal dynamics indicates that high genetic heterogeneity may be a feature of those mild dysplasias that are likely to progress to more aggressive tumours. These studies provide a foundation for exploring OSCC evolution, heterogeneity and progression.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
- Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, 4 Newark Street, London, E1 2AT, UK
| | - Mamunur Rashid
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Inês M Tomás
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Marc J Williams
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Trevor A Graham
- Centre for Cancer Genomics and Computational Biology, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - David J Adams
- Experimental Cancer Genetics, The Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Alessandra Vigilante
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
29
|
Ling Z, Cheng B, Tao X. Epithelial-to-mesenchymal transition in oral squamous cell carcinoma: Challenges and opportunities. Int J Cancer 2020; 148:1548-1561. [PMID: 33091960 DOI: 10.1002/ijc.33352] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 10/08/2020] [Accepted: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Oral squamous cell carcinoma (OSCC) is the most common malignancy representing 90% of all forms of oral cancer worldwide. Although great efforts have been made in the past decades, the 5-year survival rate of OSCC patients is no more than 60% due to tumor metastasis and subsequent recurrence. The metastasis from the primary site is due to a complex process known as epithelial-to-mesenchymal transition (EMT). During the EMT, epithelial cells gradually acquire the structural and functional characteristics of mesenchymal cells, leading to the upregulation of cell migration and the promotion of tumor cell dissemination. Therefore, EMT attracted broad attention due to its close relationship with cancer invasion and metastasis. Therefore, in the present review, an extensive description of the current research on OSCC and the role of EMT in this cancer type is provided, including diverse EMT markers, regulatory networks and crucial EMT-inducing transcription factors in OSCC. Moreover, a brief summary was made regarding the current application of EMT-correlated indexes in the prognostic analysis of OSCC patients, and the potential therapeutic approaches against OSCC and difficulties in the development of an effective anti-EMT treatment are discussed. Our aim is to provide novel insights to develop new strategies to combat OSCC by targeting EMT.
Collapse
Affiliation(s)
- Zihang Ling
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Xiaoan Tao
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| |
Collapse
|
30
|
Hedegaard CL, Redondo-Gómez C, Tan BY, Ng KW, Loessner D, Mata A. Peptide-protein coassembling matrices as a biomimetic 3D model of ovarian cancer. SCIENCE ADVANCES 2020; 6:eabb3298. [PMID: 33008910 PMCID: PMC7852381 DOI: 10.1126/sciadv.abb3298] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/20/2020] [Indexed: 05/04/2023]
Abstract
Bioengineered three-dimensional (3D) matrices expand our experimental repertoire to study tumor growth and progression in a biologically relevant, yet controlled, manner. Here, we used peptide amphiphiles (PAs) to coassemble with and organize extracellular matrix (ECM) proteins producing tunable 3D models of the tumor microenvironment. The matrix was designed to mimic physical and biomolecular features of tumors present in patients. We included specific epitopes, PA nanofibers, and ECM macromolecules for the 3D culture of human ovarian cancer, endothelial, and mesenchymal stem cells. The multicellular constructs supported the formation of tumor spheroids with extensive F-actin networks surrounding the spheroids, enabling cell-cell communication, and comparative cell-matrix interactions and encapsulation response to those observed in Matrigel. We conducted a proof-of-concept study with clinically used chemotherapeutics to validate the functionality of the multicellular constructs. Our study demonstrates that peptide-protein coassembling matrices serve as a defined model of the multicellular tumor microenvironment of primary ovarian tumors.
Collapse
Affiliation(s)
- Clara Louise Hedegaard
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Carlos Redondo-Gómez
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS London, UK
| | - Bee Yi Tan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, Singapore 637141, Singapore
- Skin Research Institute of Singapore, Singapore 138648, Singapore
- Department of Environmental Health, Harvard T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
| | - Daniela Loessner
- Centre for Tumour Microenvironment, Barts Cancer Institute, Queen Mary University of London, EC1M 6BQ London, UK
- Department of Chemical Engineering and Department of Materials Science and Engineering, Faculty of Engineering, Monash University, Melbourne, VIC 3800, Australia
- Department of Anatomy and Developmental Biology, Faculty of Medicine, Monash University, Melbourne, VIC 3800, Australia
| | - Alvaro Mata
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, UK.
- Institute of Bioengineering, Queen Mary University of London, Mile End Road, E1 4NS London, UK
- School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, UK
- Department of Chemical and Environmental Engineering, University of Nottingham, NG7 2RD Nottingham, UK
- Biodiscovery Institute, University of Nottingham, NG7 2RD Nottingham, UK
| |
Collapse
|
31
|
Chen S, Wu S, Zhang L, Zhang W, Liu Y, Chen B, Zhao S, Li W, Sun C, Wang L, Jia K, Wang H, Chen P, Wu C, Zhu J, He Y, Zhou C. CD39: the potential target in small cell lung cancer. Transl Lung Cancer Res 2020; 9:1483-1495. [PMID: 32953520 PMCID: PMC7481638 DOI: 10.21037/tlcr-20-798] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background It has been proven that the treatment window of small cell lung cancer (SCLC) is short, so it is vital to find other possible therapeutic targets. CD39 inhibits natural killer (NK) cells and promotes the occurrence and metastasis of tumors. There has been little research about the role of CD39 in SCLC, so we explored the correlation between CD39 and other surface antigens, and its association with survival in SCLC. Methods This study included 75 patients with SCLC from Shanghai Pulmonary Hospital. After paraffin embedding and sectioning, immunohistochemistry (IHC) was applied. Then we identify cutoff value for CD39 and other surface antigens based on the analysis of ROC curve in RFS by SPSS. All statistical analyses were based on SPSS and Graphpad Prism8. Chi-square test, Kendall's tau-b correlation analysis, Logistic regression analysis, Kaplan-Meier method, univariate and multivariate Cox regression analysis were conducted. In all analyses, P = 0.05 distinguished whether they had statistical significance. Results Of the 75 SCLC patients enrolled in this study, 61.33% positively expressed CD39. A correlation between CD39 and programmed cell death-ligand 1 (PD-L1) (P=0.007), CD3 (P<0.001), CD4 (P<0.001), CD8 (P<0.001), and forkhead box P3 (FOXP3) (P<0.001) on tumor-infiltrating lymphocytes (TILs) was identified by correlation analysis and logistic regression analysis. Based on Kaplan-Meier survival analysis, we found that CD39 affected relapse-free survival (RFS) [negative vs. positive, 95% confidence interval (CI): 0.2765-0.9862, P=0.0390]. SCLC patients with high-expressed CD39 and low-expressed PD-L1 had poor prognosis (P<0.001). Positive expression of CD39 and negative expression of CD3, CD4, CD8, and FOXP3 also indicated shorter RFS (P=0.0409). Univariate and multivariate Cox regression analysis was performed to confirm the factors that influenced RFS. Conclusions CD39, programmed cell death-1 (PD-1), and PD-L1 expressed on TILs but not on tumor cells. CD39 has a significant association with PD-L1, CD3, CD4, CD8, and FOXP3 on TILs. The positive expression of CD39 predicts poor prognosis. SCLC patients with low expression of CD39 combined with high expression of PD-L1 or CD3, CD4, CD8, and FOXP3 have a more favorable prognosis.
Collapse
Affiliation(s)
- Shanhao Chen
- Medical College of Soochow University, Suzhou, China
| | - Shengyu Wu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Liping Zhang
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Zhang
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yu Liu
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Bin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Sha Zhao
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chenglong Sun
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Anhui No.2 Provincial People's Hospital, Hefei, China
| | - Lei Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Keyi Jia
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Hao Wang
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Peixin Chen
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.,Medical School, Tongji University, Shanghai, China
| | - Chunyan Wu
- Pathology Department, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Junjie Zhu
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai, China
| | - Yayi He
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Caicun Zhou
- Department of Medical Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
32
|
Sui H, Zhang L, Gu K, Chai N, Ji Q, Zhou L, Wang Y, Ren J, Yang L, Zhang B, Hu J, Li Q. YYFZBJS ameliorates colorectal cancer progression in Apc Min/+ mice by remodeling gut microbiota and inhibiting regulatory T-cell generation. Cell Commun Signal 2020; 18:113. [PMID: 32677955 PMCID: PMC7367414 DOI: 10.1186/s12964-020-00596-9] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Progression of Colorectal cancer (CRC) is influenced by single or compounded environmental factors. Accumulating evidence shows that microbiota can influence the outcome of cancer immunotherapy. T cell, one of the main populations of effector immune cells in antitumor immunity, has been considered as a double-edged sword during the progression of CRC. Our previous studies indicate that traditional Chinese herbs (TCM) have potential anticancer effects in improving quality of life and therapeutic effect. However, little is known about the mechanism of TCM formula in cancer prevention. METHODS Here, we used C57BL/6 J ApcMin/+ mice, an animal model of human intestinal tumorigenesis, to investigate the gut bacterial diversity and their mechanisms of action in gastrointestinal adenomas, and to evaluate the effects of Yi-Yi-Fu-Zi-Bai-Jiang-San (YYFZBJS) on of colon carcinogenesis in vivo and in vitro. Through human-into-mice fecal microbiota transplantation (FMT) experiments from YYFZBJS volunteers or control donors, we were able to differentially modulate the tumor microbiome and affect tumor growth as well as tumor immune infiltration. RESULTS We report herein, YYFZBJS treatment blocked tumor initiation and progression in ApcMin/+ mice with less change of body weight and increased immune function. Moreover, diversity analysis of fecal samples demonstrated that YYFZBJS regulated animal's natural gut flora, including Bacteroides fragilis, Lachnospiraceae and so on. Intestinal tumors from conventional and germ-free mice fed with stool from YYFZBJS volunteers had been decreased. Some inflammation' expression also have been regulated by the gut microbiota mediated immune cells. Intestinal lymphatic, and mesenteric lymph nodes (MLN), accumulated CD4+ CD25+ Foxp3 positive Treg cells were reduced by YYFZBJS treatment in ApcMin/+ mice. Although YYFZBJS had no inhibition on CRC cell proliferation by itself, the altered Tregs mediated by YYFZBJS repressed CRC cancer cell growth, along with reduction of the phosphorylation of β-catenin. CONCLUSIONS In conclusion, we demonstrated that gut microbiota and Treg were involved in CRC development and progression, and we propose YYFZBJS as a new potential drug option for the treatment of CRC. Video abstract.
Collapse
Affiliation(s)
- Hua Sui
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lu Zhang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Kaijuan Gu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China
| | - Ni Chai
- Yueyang Hospital of Integrated of Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, P.R. China
| | - Qing Ji
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Lihong Zhou
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Yan Wang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Junze Ren
- Changhai Hospital of Traditional Chinese Medicine, Naval Medical University, Shanghai, 200433, P.R. China
| | - Limei Yang
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China
| | - Bimeng Zhang
- Department of Acupuncture and Moxibustion, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 100 Haining Rd, Hongkou District, Shanghai, 200080, P.R. China.
| | - Jing Hu
- Preclinical Medicine College of Shanghai University of Traditional Chinese Medicine, 1200 Cailun Rd, Shanghai, 201203, P.R. China.
| | - Qi Li
- Department of Medical Oncology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, 528 Zhangheng Rd, Shanghai, 201203, P.R. China. .,Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, P.R. China.
| |
Collapse
|
33
|
Wang S, Li F, Qiang D, Hu Z, Meng Y, Shi L, Zhao E, Niu Y. Impact of immunodeficiency on lingual carcinogenesis and lymph node metastasis in mice. J Oral Pathol Med 2019; 48:826-831. [PMID: 31206766 DOI: 10.1111/jop.12916] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 05/19/2019] [Accepted: 05/21/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Shan Wang
- Department of Oral Pathology, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
- Institute of Oral Biomedicine Heilongjiang Academy of Medical Science Harbin China
| | - Fang Li
- Department of Oral and Maxillofacial Surgery Heilongjiang Provincial Hospital Harbin China
| | - Dongxia Qiang
- Department of Oral Pathology, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
| | - Zheng Hu
- Laboratory of Sono‐ and Photo‐theranostic Technologies Harbin Institute of Technology Harbin China
| | - Yan Meng
- Department of Oral Pathology, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
| | - Lei Shi
- Department of Oral Pathology, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
| | - Eryang Zhao
- Department of Oral Pathology, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
| | - Yumei Niu
- Institute of Oral Biomedicine Heilongjiang Academy of Medical Science Harbin China
- Department of Oral Medicine, Hospital of Stomatology, the First Affiliated Hospital Harbin Medical University Harbin China
| |
Collapse
|
34
|
Down-regulation of hsa_circ_0092125 is related to the occurrence and development of oral squamous cell carcinoma. Int J Oral Maxillofac Surg 2019; 49:292-297. [PMID: 31427049 DOI: 10.1016/j.ijom.2019.07.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 06/11/2019] [Accepted: 07/25/2019] [Indexed: 01/22/2023]
Abstract
Circular RNA plays an important role in regulating tumour development and progression and can serve as a biomarker for cancer. This study was performed to investigate the clinical significance of hsa_circ_0092125 expression in oral squamous cell carcinoma (OSCC). The expression of hsa_circ_0092125 in OSCC tissues and cell lines was determined by reverse transcription-quantitative PCR analysis. The association between hsa_circ_0092125 expression and clinicopathological data was determined by χ2 test. Overall survival (OS) curves were created using Kaplan-Meier survival analysis, and the differences were examined by log-rank test. Moreover, univariate and multivariate Cox analysis were employed to evaluate the risk factors of the OSCC prognosis. The expression of hsa_circ_0092125 was significantly down-regulated in OSCC tissues and cell lines. A low expression of hsa_circ_0092125 was associated with clinicopathological factors in OSCC patients, including tumour size, TNM stage, and lymph node metastasis. Kaplan-Meier survival analysis indicated that the OS time was shorter in OSCC patients with a lower hsa_circ_0092125 expression level than in those with a higher expression level. In addition, univariate and multivariate Cox analysis identified lower hsa_circ_0092125 expression, tumour size, TNM stage, and lymph node metastasis as independent risk factors for the OSCC prognosis. Thus, down-regulated expression of hsa_circ_0092125 might serve as a biomarker of the OSCC prognosis.
Collapse
|
35
|
Identification of AUNIP as a candidate diagnostic and prognostic biomarker for oral squamous cell carcinoma. EBioMedicine 2019; 47:44-57. [PMID: 31409573 PMCID: PMC6796785 DOI: 10.1016/j.ebiom.2019.08.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/24/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is one of the most common malignant tumors worldwide. Patients with poorly differentiated OSCC often exhibit a poor prognosis. AUNIP (Aurora Kinase A and Ninein Interacting Protein), also known as AIBp, plays a key role in cell cycle and DNA damage repair. However, the function of AUNIP in OSCC remains elusive. Methods The differentially expressed genes (DEGs) were obtained using R language. Receiver operating characteristic curve analysis was performed to identify diagnostic markers for OSCC. The effectiveness of AUNIP in diagnosing OSCC was evaluated by machine learning. AUNIP expression was analyzed in publicly available databases and clinical specimens. Bioinformatics analysis and in vitro experiments were conducted to explore biological functions and prognostic value of AUNIP in OSCC. Findings The gene integration analysis revealed 90 upregulated DEGs. One candidate biomarker, AUNIP, for the diagnosis of OSCC was detected, and its expression gradually increased along with malignant differentiation of OSCC. Bioinformatics analysis demonstrated that AUNIP could be associated with tumor microenvironment, human papillomavirus infection, and cell cycle in OSCC. The suppression of AUNIP inhibited OSCC cell proliferation and resulted in G0/G1 phase arrest in OSCC cells. The survival analysis showed that AUNIP overexpression predicted poor prognosis of OSCC patients. Interpretation: AUNIP could serve as a candidate diagnostic and prognostic biomarker for OSCC and suppression of AUNIP may be a potential approach to preventing and treating OSCC. Fund Taishan Scholars Project in Shandong Province (ts201511106) and the National Natural Science Foundation of China (Nos. 61603218).
Collapse
|
36
|
Canning M, Guo G, Yu M, Myint C, Groves MW, Byrd JK, Cui Y. Heterogeneity of the Head and Neck Squamous Cell Carcinoma Immune Landscape and Its Impact on Immunotherapy. Front Cell Dev Biol 2019; 7:52. [PMID: 31024913 PMCID: PMC6465325 DOI: 10.3389/fcell.2019.00052] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/20/2019] [Indexed: 01/06/2023] Open
Abstract
Head and neck squamous cell carcinomas (HNSCCs) are highly aggressive, multi-factorial tumors in the upper aerodigestive tract affecting more than half a million patients worldwide each year. Alcohol, tobacco, and human papillomavirus (HPV) infection are well known causative factors for HNSCCs. Current treatment options for HNSCCs are surgery, radiotherapy, chemotherapy, or combinatorial remedies. Over the past decade, despite the marked improvement in clinical outcome of many tumor types, the overall 5-year survival rate of HNSCCs remained ∼40–50% largely due to poor availability of effective therapeutic options for HNSCC patients with recurrent disease. Therefore, there is an urgent and unmet need for the identification of specific molecular signatures that better predict the clinical outcomes and markers that serve as better therapeutic targets. With recent technological advances in genomic and epigenetic analyses, our knowledge of HNSCC molecular characteristics and classification has been greatly enriched. Clinical and genomic meta-analysis of multicohort HNSCC gene expression profile has clearly demonstrated that HPV+ and HPV- HNSCCs are not only derived from tissues of different anatomical regions, but also present with different mutation profiles, molecular characteristics, immune landscapes, and clinical prognosis. Here, we briefly review our current understanding of the biology, molecular profile, and immunological landscape of the HPV+ and HPV- HNSCCs with an emphasis on the diversity and heterogeneity of HNSCC clinicopathology and therapeutic responses. After a review of recent advances and specific challenges for effective immunotherapy of HNSCCs, we then conclude with a discussion on the need to further enhance our understanding of the unique characteristics of HNSCC heterogeneity and the plasticity of immune landscape. Increased knowledge regarding the immunological characteristics of HPV+ and HPV- HNSCCs would improve therapeutic targeting and immunotherapy strategies for different subtypes of HNSCCs.
Collapse
Affiliation(s)
- Madison Canning
- Medical College of Georgia, Augusta University, Augusta, GA, United States
| | - Gang Guo
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Miao Yu
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Calvin Myint
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Michael W Groves
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - James Kenneth Byrd
- Department of Otolaryngology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| | - Yan Cui
- Department of Biochemistry and Molecular Biology, Georgia Cancer Center, School of Medicine, Augusta University, Augusta, GA, United States
| |
Collapse
|