1
|
Brisse ME, Hickman HD. Viral Infection and Dissemination Through the Lymphatic System. Microorganisms 2025; 13:443. [PMID: 40005808 PMCID: PMC11858409 DOI: 10.3390/microorganisms13020443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/27/2025] Open
Abstract
Many viruses induce viremia (virus in the blood) and disseminate throughout the body via the bloodstream from the initial infection site. However, viruses must often pass through the lymphatic system to reach the blood. The lymphatic system comprises a network of vessels distinct from blood vessels, along with interconnected lymph nodes (LNs). The complex network has become increasingly appreciated as a crucial host factor that contributes to both the spread and control of viral infections. Viruses can enter the lymphatics as free virions or along with migratory cells. Once virions arrive in the LN, sinus-resident macrophages remove infectious virus from the lymph. Depending on the virus, macrophages can eliminate infection or propagate the virus. A virus released from an LN is eventually deposited into the blood. This unique pathway highlights LNs as targets for viral infection control and for modulation of antiviral response development. Here, we review the lymphatic system and viruses that disseminate through this network. We discuss infection of the LN, the generation of adaptive antiviral immunity, and current knowledge of protection within the infected node. We conclude by sharing insights from ongoing efforts to optimize lymphatic targeting by vaccines and pharmaceuticals. Understanding the lymphatic system's role during viral infection enhances our knowledge of antiviral immunity and virus-host interactions and reveals potential targets for next-generation therapies.
Collapse
Affiliation(s)
| | - Heather D. Hickman
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20852, USA;
| |
Collapse
|
2
|
Tso P, Bernier-Latmani J, Petrova TV, Liu M. Transport functions of intestinal lymphatic vessels. Nat Rev Gastroenterol Hepatol 2025; 22:127-145. [PMID: 39496888 DOI: 10.1038/s41575-024-00996-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/17/2024] [Indexed: 11/06/2024]
Abstract
Lymphatic vessels are crucial for fluid absorption and the transport of peripheral immune cells to lymph nodes. However, in the small intestine, the lymphatic fluid is rich in diet-derived lipids incorporated into chylomicrons and gut-specific immune cells. Thus, intestinal lymphatic vessels have evolved to handle these unique cargoes and are critical for systemic dietary lipid delivery and metabolism. This Review covers mechanisms of lipid absorption from epithelial cells to the lymphatics as well as unique features of the gut microenvironment that affect these functions. Moreover, we discuss details of the intestinal lymphatics in gut immune cell trafficking and insights into the role of inter-organ communication. Lastly, we highlight the particularities of fat absorption that can be harnessed for efficient lipid-soluble drug distribution for novel therapies, including the ability of chylomicron-associated drugs to bypass first-pass liver metabolism for systemic delivery. In all, this Review will help to promote an understanding of intestinal lymphatic-systemic interactions to guide future research directions.
Collapse
Affiliation(s)
- Patrick Tso
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA.
| | - Jeremiah Bernier-Latmani
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Tatiana V Petrova
- Department of Oncology, University of Lausanne and Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, EPFL, Lausanne, Switzerland
| | - Min Liu
- Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
3
|
Shao X, Li J, Shao Q, Qu R, Ouyang X, Wang Y, Chen C. Water-soluble garlic polysaccharide (WSGP) improves ulcerative volitis by modulating the intestinal barrier and intestinal flora metabolites. Sci Rep 2024; 14:21504. [PMID: 39277703 PMCID: PMC11401863 DOI: 10.1038/s41598-024-72797-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024] Open
Abstract
WSGP has demonstrated significant potential for various bioactive effects. However, limited research has explored their anti-ulcerative colitis (UC) effects and mechanism on the colonic system and gut microbial metabolites. We evaluated the ameliorative effects of WSGP on the UC mice model. Using H&E to assess histological injury of colon morphology, AB-PAS staining to detect mucin secretion from goblet cells and the mucous layer, IF to evaluate the expression of intercellular tight junction proteins, ELISA to measure inflammatory factors, WB analysis to measure protein expression of inflammatory signaling pathways, RT-qPCR to quantify gene transcription of inflammatory factors, and LC-MS to analyze metabolites in mouse cecum contents. WSGP supplementation increased food intake, body weight, and colon length while reducing disease activity and histological scores in colitis-afflicted mice. WSGP mitigated colonic tissue damage and restored intestinal barrier integrity by suppressing NF-κB/STAT3 signaling, thereby decreasing gene transcription, protein expression of proinflammatory factors, and nitric oxide production. Additionally, WSGP improved UC by altering the variety of intestinal microbial metabolites. This study demonstrates that WSGP supplementation attenuates UC mice by suppressing the NF-κB/STAT3 signaling pathway, enhancing mucosal barrier function, reducing pro-inflammatory cytokines, and modulating gut microbial metabolites.
Collapse
Affiliation(s)
- Xin Shao
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - JiaLong Li
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Qi Shao
- Department of Cell Biology, Jinan University, Guangzhou, 510632, Guangdong, China
| | - Rong Qu
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Xin Ouyang
- Department of Intensive Care Unit of Cardiac Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, Guangdong, China
| | - Yong Wang
- Department of Food Science and Engineering, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - ChunBo Chen
- Department of Critical Care Medicine, Maoming People's Hospital, Maoming, 525000, Guangdong, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
4
|
Levescot A, Cerf-Bensussan N. Loss of tolerance to dietary proteins: From mouse models to human model diseases. Immunol Rev 2024; 326:173-190. [PMID: 39295093 DOI: 10.1111/imr.13395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The critical importance of the immunoregulatory mechanisms, which prevent adverse responses to dietary proteins is demonstrated by the consequences of their failure in two common but distinct human pathological conditions, food allergy and celiac disease. The mechanisms of tolerance to dietary proteins have been extensively studied in mouse models but the extent to which the results in mice can be extrapolated to humans remains unclear. Here, after summarizing the mechanisms known to control oral tolerance in mouse models, we discuss how the monogenic immune disorders associated with food allergy on the one hand, and celiac disease, on the other hand, represent model diseases to gain insight into the key immunoregulatory pathways that control immune responses to food antigens in humans. The spectrum of monogenic disorders, in which the dysfunction of a single gene, is strongly associated with TH2-mediated food allergy suggests an important overlap between the mechanisms that regulate TH2 and IgE responses to food antigens in humans and mice. In contrast, celiac disease provides a unique example of the link between autoimmunity and loss of tolerance to a food antigen.
Collapse
Affiliation(s)
- Anais Levescot
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| | - Nadine Cerf-Bensussan
- Laboratory of Intestinal Immunity, INSERM UMR 1163 and Imagine Institute, Université Paris Cité, Paris, France
| |
Collapse
|
5
|
McCartney EE, Chung Y, Buechler MB. Life of Pi: Exploring functions of Pi16+ fibroblasts. F1000Res 2024; 13:126. [PMID: 38919948 PMCID: PMC11196929 DOI: 10.12688/f1000research.143511.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 06/27/2024] Open
Abstract
Fibroblasts are mesenchymal cells that are responsible for creating and maintaining tissue architecture through the production of extracellular matrix. These cells also play critical roles in processes such as wound repair and immune modulation in normal tissues and various disease states including fibrosis, autoimmunity, and cancer. Fibroblasts have a complex repertoire of functions that vary by organ, inflammatory state, and the developmental stage of an organism. How fibroblasts manage so many functions in such a context-dependent manner represents a gap in our understanding of these cells. One possibility is that a tissue-resident precursor cell state exists that provides the fibroblast lineage with flexibility during growth, inflammation, or other contexts that require dynamic tissue changes. Recent work has suggested that a precursor fibroblast cell state is marked by expression of Peptidase inhibitor 16 ( Pi16). This review aims to concatenate and compare studies on fibroblasts that express Pi16 to clarify the roles of this cell state in fibroblast lineage development and other functions.
Collapse
Affiliation(s)
- Erika E. McCartney
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Yein Chung
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| | - Matthew B. Buechler
- Department of Immunology, University of Toronto, Toronto, Ontario, M5S1A8, Canada
| |
Collapse
|
6
|
Tucker JS, Khan H, D’Orazio SEF. Lymph node stromal cells vary in susceptibility to infection but can support the intracellular growth of Listeria monocytogenes. J Leukoc Biol 2024; 116:132-145. [PMID: 38416405 PMCID: PMC11212796 DOI: 10.1093/jleuko/qiae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
Lymph node stromal cells (LNSCs) are an often overlooked component of the immune system but play a crucial role in maintaining tissue homeostasis and orchestrating immune responses. Our understanding of the functions these cells serve in the context of bacterial infections remains limited. We previously showed that Listeria monocytogenes, a facultative intracellular foodborne bacterial pathogen, must replicate within an as-yet-unidentified cell type in the mesenteric lymph node (MLN) to spread systemically. Here, we show that L. monocytogenes could invade, escape from the vacuole, replicate exponentially, and induce a type I interferon response in the cytosol of 2 LNSC populations infected in vitro, fibroblastic reticular cells (FRCs) and blood endothelial cells (BECs). Infected FRCs and BECs also produced a significant chemokine and proinflammatory cytokine response after in vitro infection. Flow cytometric analysis confirmed that GFP+ L. monocytogenes were associated with a small percentage of MLN stromal cells in vivo following foodborne infection of mice. Using fluorescent microscopy, we showed that these cell-associated bacteria were intracellular L. monocytogenes and that the number of infected FRCs and BECs changed over the course of a 3-day infection in mice. Ex vivo culturing of these infected LNSC populations revealed viable, replicating bacteria that grew on agar plates. These results highlight the unexplored potential of FRCs and BECs to serve as suitable growth niches for L. monocytogenes during foodborne infection and to contribute to the proinflammatory environment within the MLN that promotes clearance of listeriosis.
Collapse
Affiliation(s)
- Jamila S. Tucker
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Hiba Khan
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| | - Sarah E. F. D’Orazio
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY
| |
Collapse
|
7
|
Velankar K, Liu W, Hartmeier PR, Veleke SR, Reddy GA, Clegg B, Gawalt ES, Fan Y, Meng WS. Fibril-Guided Three-Dimensional Assembly of Human Fibroblastic Reticular Cells. ACS APPLIED BIO MATERIALS 2024; 7:3953-3963. [PMID: 38805413 PMCID: PMC11190984 DOI: 10.1021/acsabm.4c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/21/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Fibroblastic reticular cells (FRCs) are stromal cells (SCs) that can be isolated from lymph node (LN) biopsies. Studies have shown that these nonhematopoietic cells have the capacity to shape and regulate adaptive immunity and can become a form of personalized cell therapy. Successful translational efforts, however, require the cells to be formulated as injectable units, with their native architecture preserved. The intrinsic reticular organization of FRCs, however, is lost in the monolayer cultures. Organizing FRCs into three-dimensional (3D) clusters would recapitulate their structural and functional attributes. Herein, we report a scaffolding method based on the self-assembling peptide (SAP) EAKII biotinylated at the N-terminus (EAKbt). Cross-linking with avidin transformed the EAKbt fibrils into a dense network of coacervates. The combined forces of fibrillization and bioaffinity interactions in the cross-linked EAKbt likely drove the cells into a cohesive 3D reticula. This facile method of generating clustered FRCs (clFRCs) can be completed within 10 days. In vitro clFRCs attracted the infiltration of T cells and rendered an immunosuppressive milieu in the cocultures. These results demonstrate the potential of clFRCs as a method for stromal cell delivery.
Collapse
Affiliation(s)
- Ketki
Y. Velankar
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Wen Liu
- Allegheny
Health Network Cancer Institute, Allegheny Health Network, Pittsburgh Pennsylvania 15212, United States
| | - Paul R. Hartmeier
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Samuel R. Veleke
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Gayathri Aparnasai Reddy
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
| | - Benjamin Clegg
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
| | - Ellen S. Gawalt
- Department
of Chemistry and Biochemistry, Duquesne
University, Pittsburgh, Pennsylvania 15282, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| | - Yong Fan
- Allegheny
Health Network Cancer Institute, Allegheny Health Network, Pittsburgh Pennsylvania 15212, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh,Pennsylvania 15213, United States
| | - Wilson S. Meng
- Graduate
School of Pharmaceutical Sciences, Duquesne
University, Pittsburgh Pennsylvania 15282, United States
- McGowan
Institute for Regenerative Medicine, University
of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
8
|
Zou M, Pezoldt J, Mohr J, Philipsen L, Leufgen A, Cerovic V, Wiechers C, Pils M, Ortiz D, Hao L, Yang J, Beckstette M, Dupont A, Hornef M, Dersch P, Strowig T, Müller AJ, Raila J, Huehn J. Early-life vitamin A treatment rescues neonatal infection-induced durably impaired tolerogenic properties of celiac lymph nodes. Cell Rep 2024; 43:114153. [PMID: 38687643 DOI: 10.1016/j.celrep.2024.114153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 11/23/2023] [Accepted: 04/10/2024] [Indexed: 05/02/2024] Open
Abstract
Gut-draining mesenteric and celiac lymph nodes (mLNs and celLNs) critically contribute to peripheral tolerance toward food and microbial antigens by supporting the de novo induction of regulatory T cells (Tregs). These tolerogenic properties of mLNs and celLNs are stably imprinted within stromal cells (SCs) by microbial signals and vitamin A (VA), respectively. Here, we report that a single, transient gastrointestinal infection in the neonatal, but not adult, period durably abrogates the efficient Treg-inducing capacity of celLNs by altering the subset composition and gene expression profile of celLNSCs. These cells carry information about the early-life pathogen encounter until adulthood and durably instruct migratory dendritic cells entering the celLN with reduced tolerogenic properties. Mechanistically, transiently reduced VA levels cause long-lasting celLN functional impairment, which can be rescued by early-life treatment with VA. Together, our data highlight the therapeutic potential of VA to prevent sequelae post gastrointestinal infections in infants.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Juliane Mohr
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Lars Philipsen
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | - Andrea Leufgen
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Vuk Cerovic
- Institute of Molecular Medicine, RWTH Aachen University, 52074 Aachen, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Marina Pils
- Mouse Pathology Platform, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Diego Ortiz
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Lianxu Hao
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Juhao Yang
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Aline Dupont
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Mathias Hornef
- Institute of Medical Microbiology, University Hospital RWTH Aachen, 52074 Aachen, Germany
| | - Petra Dersch
- Institute for Infectiology, University of Münster, 48149 Münster, Germany; German Center for Infection Research (DZIF), Associated Site University of Münster, 48149 Münster, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Andreas J Müller
- Institute of Molecular and Clinical Immunology, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Multi-Parametric Bioimaging and Cytometry (MPBIC) Platform, Medical Faculty, Otto-von-Guericke University, 39120 Magdeburg, Germany; Intravital Microscopy in Infection and Immunity, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Jens Raila
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany.
| |
Collapse
|
9
|
Paucar Iza YA, Brown CC. Early life imprinting of intestinal immune tolerance and tissue homeostasis. Immunol Rev 2024; 323:303-315. [PMID: 38501766 PMCID: PMC11102293 DOI: 10.1111/imr.13321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/02/2024] [Indexed: 03/20/2024]
Abstract
Besides its canonical role in protecting the host from pathogens, the immune system plays an arguably equally important role in maintaining tissue homeostasis. Within barrier tissues that interface with the external microenvironment, induction of immune tolerance to innocuous antigens, such as commensal, dietary, and environmental antigens, is key to establishing immune homeostasis. The early postnatal period represents a critical window of opportunity in which parallel development of the tissue, immune cells, and microbiota allows for reciprocal regulation that shapes the long-term immunological tone of the tissue and subsequent risk of immune-mediated diseases. During early infancy, the immune system appears to sacrifice pro-inflammatory functions, prioritizing the establishment of tissue tolerance. In this review, we discuss mechanisms underlying early life windows for intestinal tolerance with a focus on newly identified RORγt+ antigen-presenting cells-Thetis cells-and highlight the role of the intestinal microenvironment in shaping intestinal immune system development and tolerance.
Collapse
Affiliation(s)
- Yoselin A. Paucar Iza
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Chrysothemis C. Brown
- Immunology and Microbial Pathogenesis Program, Weill Cornell Medicine Graduate School of Medical Sciences, New York, New York, USA
- Immuno-Oncology, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York, USA
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
10
|
DaMata JP, Zelkoski AE, Nhan PB, Ennis KHE, Kim JS, Lu Z, Malloy AMW. Dissociation protocols influence the phenotypes of lymphocyte and myeloid cell populations isolated from the neonatal lymph node. Front Immunol 2024; 15:1368118. [PMID: 38756770 PMCID: PMC11097666 DOI: 10.3389/fimmu.2024.1368118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Frequencies and phenotypes of immune cells differ between neonates and adults in association with age-specific immune responses. Lymph nodes (LN) are critical tissue sites to quantify and define these differences. Advances in flow cytometry have enabled more multifaceted measurements of complex immune responses. Tissue processing can affect the immune cells under investigation that influence key findings. To understand the impact on immune cells in the LN after processing for single-cell suspension, we compared three dissociation protocols: enzymatic digestion, mechanical dissociation with DNase I treatment, and mechanical dissociation with density gradient separation. We analyzed cell yields, viability, phenotypic and maturation markers of immune cells from the lung-draining LN of neonatal and adult mice two days after intranasal respiratory syncytial virus (RSV) infection. While viability was consistent across age groups, the protocols influenced the yield of subsets defined by important phenotypic and activation markers. Moreover, enzymatic digestion did not show higher overall yields of conventional dendritic cells and macrophages from the LN. Together, our findings show that the three dissociation protocols have similar impacts on the number and viability of cells isolated from the neonatal and adult LN. However, enzymatic digestion impacts the mean fluorescence intensity of key lineage and activation markers that may influence experimental findings.
Collapse
Affiliation(s)
- Jarina P. DaMata
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Amanda E. Zelkoski
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
| | - Paula B. Nhan
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Katherine H. E. Ennis
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Ji Sung Kim
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Zhongyan Lu
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Allison M. W. Malloy
- Laboratory of Infectious Diseases and Host Defense, Department of Pediatrics, Uniformed Services University of Health Sciences (USUHS), Bethesda, MD, United States
| |
Collapse
|
11
|
Cruz de Casas P, Knöpper K, Dey Sarkar R, Kastenmüller W. Same yet different - how lymph node heterogeneity affects immune responses. Nat Rev Immunol 2024; 24:358-374. [PMID: 38097778 DOI: 10.1038/s41577-023-00965-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 05/04/2024]
Abstract
Lymph nodes are secondary lymphoid organs in which immune responses of the adaptive immune system are initiated and regulated. Distributed throughout the body and embedded in the lymphatic system, local lymph nodes are continuously informed about the state of the organs owing to a constant drainage of lymph. The tissue-derived lymph carries products of cell metabolism, proteins, carbohydrates, lipids, pathogens and circulating immune cells. Notably, there is a growing body of evidence that individual lymph nodes differ from each other in their capacity to generate immune responses. Here, we review the structure and function of the lymphatic system and then focus on the factors that lead to functional heterogeneity among different lymph nodes. We will discuss how lymph node heterogeneity impacts on cellular and humoral immune responses and the implications for vaccination, tumour development and tumour control by immunotherapy.
Collapse
Affiliation(s)
- Paulina Cruz de Casas
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Konrad Knöpper
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Rupak Dey Sarkar
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wolfgang Kastenmüller
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany.
| |
Collapse
|
12
|
Robert PA, Arulraj T, Meyer-Hermann M. Germinal centers are permissive to subdominant antibody responses. Front Immunol 2024; 14:1238046. [PMID: 38274834 PMCID: PMC10808553 DOI: 10.3389/fimmu.2023.1238046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 12/13/2023] [Indexed: 01/27/2024] Open
Abstract
Introduction A protective humoral response to pathogens requires the development of high affinity antibodies in germinal centers (GC). The combination of antigens available during immunization has a strong impact on the strength and breadth of the antibody response. Antigens can display various levels of immunogenicity, and a hierarchy of immunodominance arises when the GC response to an antigen dampens the response to other antigens. Immunodominance is a challenge for the development of vaccines to mutating viruses, and for the development of broadly neutralizing antibodies. The extent by which antigens with different levels of immunogenicity compete for the induction of high affinity antibodies and therefore contribute to immunodominance is not known. Methods Here, we perform in silico simulations of the GC response, using a structural representation of antigens with complex surface amino acid composition and topology. We generate antigens with complex domains of different levels of immunogenicity and perform simulations with combinations of these domains. Results We found that GC dynamics were driven by the most immunogenic domain and immunodominance arose as affinity maturation to less immunogenic domain was inhibited. However, this inhibition was moderate since the less immunogenic domain exhibited a weak GC response in the absence of the most immunogenic domain. Less immunogenic domains reduced the dominance of GC responses to more immunogenic domains, albeit at a later time point. Discussion The simulations suggest that increased vaccine valency may decrease immunodominance of the GC response to strongly immunogenic domains and therefore, act as a potential strategy for the natural induction of broadly neutralizing antibodies in GC reactions.
Collapse
Affiliation(s)
- Philippe A. Robert
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Theinmozhi Arulraj
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michael Meyer-Hermann
- Department of Systems Immunology and Braunschweig Integrated Centre of Systems Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
13
|
De Martin A, Stanossek Y, Pikor NB, Ludewig B. Protective fibroblastic niches in secondary lymphoid organs. J Exp Med 2024; 221:e20221220. [PMID: 38038708 PMCID: PMC10691961 DOI: 10.1084/jem.20221220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) are specialized fibroblasts of secondary lymphoid organs that provide the structural foundation of the tissue. Moreover, FRCs guide immune cells to dedicated microenvironmental niches where they provide lymphocytes and myeloid cells with homeostatic growth and differentiation factors. Inflammatory processes, including infection with pathogens, induce rapid morphological and functional adaptations that are critical for the priming and regulation of protective immune responses. However, adverse FRC reprogramming can promote immunopathological tissue damage during infection and autoimmune conditions and subvert antitumor immune responses. Here, we review recent findings on molecular pathways that regulate FRC-immune cell crosstalk in specialized niches during the generation of protective immune responses in the course of pathogen encounters. In addition, we discuss how FRCs integrate immune cell-derived signals to ensure protective immunity during infection and how therapies for inflammatory diseases and cancer can be developed through improved understanding of FRC-immune cell interactions.
Collapse
Affiliation(s)
- Angelina De Martin
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Yves Stanossek
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Department of Otorhinolaryngology, Head and Neck Surgery, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Natalia Barbara Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
- Institute of Microbiology, ETH Zurich, Zurich, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
14
|
Jayewickreme T, Benoist C, Mathis D. Lymph node stromal cell responses to perinatal T cell waves, a temporal atlas. Proc Natl Acad Sci U S A 2023; 120:e2316957120. [PMID: 38079541 PMCID: PMC10740392 DOI: 10.1073/pnas.2316957120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023] Open
Abstract
The perinatal period is a critical time window in establishing T cell tolerance. Regulatory T cells (Tregs) made during the first 2 wk of life are key drivers of perinatal tolerance induction, but how these cells are generated and operate has not been established. To elucidate the unique environment murine perinatal Tregs encounter within the lymph nodes (LNs) as they first emerge from the thymus, and how it evolves over the succeeding days, we employed single-cell RNA sequencing to generate an atlas of the early LN niche. A highly dynamic picture emerged, the stromal cell compartment showing the most striking changes and putative interactions with other LN cell compartments. In particular, LN stromal cells showed increasing potential for lymphocyte interactions with age. Analogous studies on mice lacking α:β T cells or enriched for autoreactive α:β T cells revealed an acute stromal cell response to α:β T cell dysfunction, largely reflecting dysregulation of Tregs. Punctual ablation of perinatal Tregs induced stromal cell activation that was dependent on both interferon-gamma signaling and activation of conventional CD4+ T cells. These findings elucidate some of the earliest cellular and molecular events in perinatal induction of T cell tolerance, providing a framework for future explorations.
Collapse
Affiliation(s)
| | | | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
15
|
Freuchet A, Roy P, Armstrong SS, Oliaeimotlagh M, Kumar S, Orecchioni M, Ali AJ, Khan A, Makings J, Lyu Q, Winkels H, Wang E, Durant C, Ghosheh Y, Gulati R, Nettersheim F, Ley K. Identification of human exT reg cells as CD16 +CD56 + cytotoxic CD4 + T cells. Nat Immunol 2023; 24:1748-1761. [PMID: 37563308 PMCID: PMC11022744 DOI: 10.1038/s41590-023-01589-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 07/13/2023] [Indexed: 08/12/2023]
Abstract
In atherosclerosis, some regulatory T (Treg) cells become exTreg cells. We crossed inducible Treg and exTreg cell lineage-tracker mice (FoxP3eGFP-Cre-ERT2ROSA26CAG-fl-stop-fl-tdTomato) to atherosclerosis-prone Apoe-/- mice, sorted Treg cells and exTreg cells and determined their transcriptomes by bulk RNA sequencing (RNA-seq). Genes that were differentially expressed between mouse Treg cells and exTreg cells and filtered for their presence in a human single-cell RNA-sequencing (scRNA-seq) panel identified exTreg cell signature genes as CST7, NKG7, GZMA, PRF1, TBX21 and CCL4. Projecting these genes onto the human scRNA-seq with CITE-seq data identified human exTreg cells as CD3+CD4+CD16+CD56+, which was validated by flow cytometry. Bulk RNA-seq of sorted human exTreg cells identified them as inflammatory and cytotoxic CD4+T cells that were significantly distinct from both natural killer and Treg cells. DNA sequencing for T cell receptor-β showed clonal expansion of Treg cell CDR3 sequences in exTreg cells. Cytotoxicity was functionally demonstrated in cell killing and CD107a degranulation assays, which identifies human exTreg cells as cytotoxic CD4+T cells.
Collapse
Affiliation(s)
| | - Payel Roy
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | | | - Sunil Kumar
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Marco Orecchioni
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Amal J Ali
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Amir Khan
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | | | - Qingkang Lyu
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA
| | - Holger Winkels
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic III for Internal Medicine, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Erpei Wang
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Yanal Ghosheh
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Rishab Gulati
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | | | - Klaus Ley
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Immunology Center of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
16
|
D'Rozario J, Knoblich K, Lütge M, Shibayama CP, Cheng HW, Alexandre YO, Roberts D, Campos J, Dutton EE, Suliman M, Denton AE, Turley SJ, Boyd RL, Mueller SN, Ludewig B, Heng TSP, Fletcher AL. Fibroblastic reticular cells provide a supportive niche for lymph node-resident macrophages. Eur J Immunol 2023; 53:e2250355. [PMID: 36991561 PMCID: PMC10947543 DOI: 10.1002/eji.202250355] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/13/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.
Collapse
Affiliation(s)
- Joshua D'Rozario
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Konstantin Knoblich
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Mechthild Lütge
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Hung-Wei Cheng
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Yannick O Alexandre
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - David Roberts
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Joana Campos
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Emma E Dutton
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Muath Suliman
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| | - Alice E Denton
- Department of Immunology and Inflammation, Imperial College London, London, UK
| | - Shannon J Turley
- Department of Cancer Immunology, Genentech Inc., South San Francisco, CA, USA
| | - Richard L Boyd
- Cartherics Pty Ltd, Hudson Institute for Medical Research, Clayton, Australia
| | - Scott N Mueller
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, The University of Melbourne, VIC, Melbourne, Australia
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- ARC Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, Australia
| | - Anne L Fletcher
- Department of Biochemistry and Molecular Biology, and Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
| |
Collapse
|
17
|
Yang R, Huang BY, Wang YN, Meng Q, Guo Y, Wang S, Yin XY, Feng H, Gong M, Wang S, Niu CY, Shi Y, Shi HS. Excision of mesenteric lymph nodes alters gut microbiota and impairs social dominance in adult mice. Brain Behav 2023:e3053. [PMID: 37157948 DOI: 10.1002/brb3.3053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/22/2023] [Accepted: 04/26/2023] [Indexed: 05/10/2023] Open
Abstract
INTRODUCTION Mesenteric lymph nodes (MLNs) are central in immune anatomy. MLNs are associated with the composition of gut microbiota, affecting the central system and immune system. Gut microbiota was found to differ among individuals of different social hierarchies. Nowadays, excision of MLNs is more frequently involved in gastrointestinal surgery; however, the potential side effects of excision of MLNs on social dominance are still unknown. METHODS MLNs were removed from male mice (7-8 weeks old). Four weeks after MLN removal, social dominance test was performed to investigate social dominance; hippocampal and serum interleukin (IL)-1β, IL-10, and tumor necrosis factor-alpha (TNF-α) were investigated; and histopathology was used to evaluate local inflammation of the ileum. The composition of the gut microbiota was then examined to understand the possible mechanism, and finally intraperitoneal injection of IL-10 was used to validate the effect of IL-10 on social dominance. RESULTS There was a decrease in social dominance in the operation group compared to the control group, as well as a decrease in serum and hippocampal IL-10 levels, but no difference in serum and hippocampal IL-1β and TNF-α levels, and no local inflammation of the ileum after MLN removal. 16S rRNA sequencing analysis showed that the relative abundance of the class Clostridia was decreased in the operation group. This decrease was positively associated with serum IL-10 levels. Furthermore, intraperitoneal injection of IL-10 in a subset of mice increased social dominance. CONCLUSIONS Our findings suggested that MLNs contributed to maintaining social dominance, which might be associated with reduced IL-10 and the imbalance of specific flora in gut microbiota.
Collapse
Affiliation(s)
- Rui Yang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Bo-Ya Huang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yu-Ning Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Qian Meng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Yi Guo
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Shuang Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Xue-Yong Yin
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Hao Feng
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Miao Gong
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, China
| | - Sheng Wang
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
| | - Chun-Yu Niu
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
| | - Yun Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Department of Biochemistry and Molecular Biology, Hebei Medical University, Shijiazhuang, China
| | - Hai-Shui Shi
- Neuroscience Research Center, Institute of Medical and Health Science, Hebei Medical University, Shijiazhuang, China
- Hebei Key laboratory of Neurophysiology, Hebei Medical University, Shijiazhuang, China
- Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang, China
| |
Collapse
|
18
|
Li L, Wu L, Kensiski A, Zhao J, Shirkey MW, Song Y, Piao W, Zhang T, Mei Z, Gavzy SJ, Ma B, Saxena V, Lee YS, Xiong Y, Li X, Fan X, Abdi R, Bromberg JS. FRC transplantation restores lymph node conduit defects in laminin α4-deficient mice. JCI Insight 2023; 8:e167816. [PMID: 37092548 PMCID: PMC10243809 DOI: 10.1172/jci.insight.167816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 03/03/2023] [Indexed: 04/25/2023] Open
Abstract
Fibroblastic reticular cells (FRCs) play important roles in tolerance by producing laminin α4 (Lama4) and altering lymph node (LN) structure and function. The present study revealed the specific roles of extracellular matrix Lama4 in regulating LN conduits using FRC-specific KO mouse strains. FRC-derived Lama4 maintained conduit fiber integrity, as its depletion altered conduit morphology and structure and reduced homeostatic conduit flow. Lama4 regulated the lymphotoxin β receptor (LTβR) pathway, which is critical for conduit and LN integrity. Depleting LTβR in FRCs further reduced conduits and impaired reticular fibers. Lama4 was indispensable for FRC generation and survival, as FRCs lacking Lama4 displayed reduced proliferation but upregulated senescence and apoptosis. During acute immunization, FRC Lama4 deficiency increased antigen flow through conduits. Importantly, adoptive transfer of WT FRCs to FRC Lama4-deficient mice rescued conduit structure, ameliorated Treg and chemokine distribution, and restored transplant allograft acceptance, which were all impaired by FRC Lama4 depletion. Single-cell RNA sequencing analysis of LN stromal cells indicated that the laminin and collagen signaling pathways linked crosstalk among FRC subsets and endothelial cells. This study demonstrated that FRC Lama4 is responsible for maintaining conduits by FRCs and can be harnessed to potentiate FRC-based immunomodulation.
Collapse
Affiliation(s)
- Lushen Li
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Long Wu
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Allison Kensiski
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jing Zhao
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Marina W. Shirkey
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenji Piao
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | | | | - Samuel J. Gavzy
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Bing Ma
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Vikas Saxena
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Young S. Lee
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Yanbao Xiong
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Xiaofei Li
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Xiaoxuan Fan
- Flow Cytometry Shared Service, Greenebaum Comprehensive Cancer Center, Baltimore, Maryland, USA
| | - Reza Abdi
- Transplantation Research Center, Renal Division, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan S. Bromberg
- Department of Surgery, and
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Wong ZY, Nee E, Coles M, Buckley CD. Why does understanding the biology of fibroblasts in immunity really matter? PLoS Biol 2023; 21:e3001954. [PMID: 36745597 PMCID: PMC9901782 DOI: 10.1371/journal.pbio.3001954] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Fibroblasts are known for their ability to make and modify the extracellular matrix. However, there is more to them than meets the eye. It is now clear that they help define tissue microenvironments and support immune responses in organs. As technology advances, we have started to uncover the secrets of fibroblasts. In this Essay, we present fibroblasts as not only the builders and renovators of tissue environments but also the rheostat cells for immune circuits. Although they perform location-specific functions, they do not have badges of fixed identity. Instead, they display a spectrum of functional states and can swing between these states depending on the needs of the organ. As fibroblasts participate in a range of activities both in health and disease, finding the key factors that alter their development and functional states will be an important goal to restore homeostasis in maladapted tissues.
Collapse
Affiliation(s)
- Zhi Yi Wong
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Eloise Nee
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | - Mark Coles
- Kennedy Institute of Rheumatology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
20
|
Pezoldt J, Wiechers C, Zou M, Litovchenko M, Biocanin M, Beckstette M, Sitnik K, Palatella M, van Mierlo G, Chen W, Gardeux V, Floess S, Ebel M, Russeil J, Arampatzi P, Vafardanejad E, Saliba AE, Deplancke B, Huehn J. Postnatal expansion of mesenteric lymph node stromal cells towards reticular and CD34 + stromal cell subsets. Nat Commun 2022; 13:7227. [PMID: 36433946 PMCID: PMC9700677 DOI: 10.1038/s41467-022-34868-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/09/2022] [Indexed: 11/26/2022] Open
Abstract
Gut-draining mesenteric lymph nodes (LN) provide the framework to shape intestinal adaptive immune responses. Based on the transcriptional signatures established by our previous work, the composition and immunomodulatory function of LN stromal cells (SC) vary according to location. Here, we describe the single-cell composition and development of the SC compartment within mesenteric LNs derived from postnatal to aged mice. We identify CD34+ SC and fibroblastic reticular stromal cell (FRC) progenitors as putative progenitors, both supplying the typical rapid postnatal mesenteric LN expansion. We further establish the location-specific chromatin accessibility and DNA methylation landscape of non-endothelial SCs and identify a microbiota-independent core epigenomic signature, showing characteristic differences between SCs from mesenteric and skin-draining peripheral LNs. The epigenomic landscape of SCs points to dynamic expression of Irf3 along the differentiation trajectories of FRCs. Accordingly, a mesenchymal stem cell line acquires a Cxcl9+ FRC molecular phenotype upon lentiviral overexpression of Irf3, and the relevance of Irf3 for SC biology is further underscored by the diminished proportion of Ccl19+ and Cxcl9+ FRCs in LNs of Irf3-/- mice. Together, our data constitute a comprehensive transcriptional and epigenomic map of mesenteric LNSC development in early life and dissect location-specific, microbiota-independent properties of non-endothelial SCs.
Collapse
Affiliation(s)
- Joern Pezoldt
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Carolin Wiechers
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Mangge Zou
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Litovchenko
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Marjan Biocanin
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Michael Beckstette
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.512472.7Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, 30625 Hannover, Germany ,grid.7491.b0000 0001 0944 9128Genome Informatics Group, Bielefeld Institute for Bioinformatics Infrastructure, Department of Technology, Bielefeld University, 33615 Bielefeld, Germany
| | - Katarzyna Sitnik
- grid.6583.80000 0000 9686 6466Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Martina Palatella
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Guido van Mierlo
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Wanze Chen
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Vincent Gardeux
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Stefan Floess
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Maria Ebel
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Julie Russeil
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Panagiota Arampatzi
- grid.8379.50000 0001 1958 8658Core Unit Systems Medicine, University of Wuerzburg, 97080 Wuerzburg, Germany
| | - Ehsan Vafardanejad
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- grid.498164.6Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), 97080 Würzburg, Germany
| | - Bart Deplancke
- grid.5333.60000000121839049Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jochen Huehn
- grid.7490.a0000 0001 2238 295XDepartment Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany ,grid.10423.340000 0000 9529 9877Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
21
|
Shaikh H, Pezoldt J, Mokhtari Z, Gamboa Vargas J, Le DD, Peña Mosca J, Arellano Viera E, Kern MA, Graf C, Beyersdorf N, Lutz MB, Riedel A, Büttner-Herold M, Zernecke A, Einsele H, Saliba AE, Ludewig B, Huehn J, Beilhack A. Fibroblastic reticular cells mitigate acute GvHD via MHCII-dependent maintenance of regulatory T cells. JCI Insight 2022; 7:154250. [PMID: 36227687 DOI: 10.1172/jci.insight.154250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/07/2022] [Indexed: 12/15/2022] Open
Abstract
Acute graft versus host disease (aGvHD) is a life-threatening complication of allogeneic hematopoietic cell transplantation (allo-HCT) inflicted by alloreactive T cells primed in secondary lymphoid organs (SLOs) and subsequent damage to aGvHD target tissues. In recent years, Treg transfer and/or expansion has emerged as a promising therapy to modulate aGvHD. However, cellular niches essential for fostering Tregs to prevent aGvHD have not been explored. Here, we tested whether and to what extent MHC class II (MHCII) expressed on Ccl19+ fibroblastic reticular cells (FRCs) shape the donor CD4+ T cell response during aGvHD. Animals lacking MHCII expression on Ccl19-Cre-expressing FRCs (MHCIIΔCcl19) showed aberrant CD4+ T cell activation in the effector phase, resulting in exacerbated aGvHD that was associated with significantly reduced expansion of Foxp3+ Tregs and invariant NK T (iNKT) cells. Skewed Treg maintenance in MHCIIΔCcl19 mice resulted in loss of protection from aGvHD provided by adoptively transferred donor Tregs. In contrast, although FRCs upregulated costimulatory surface receptors, and although they degraded and processed exogenous antigens after myeloablative irradiation, FRCs were dispensable to activate alloreactive CD4+ T cells in 2 mouse models of aGvHD. In summary, these data reveal an immunoprotective, MHCII-mediated function of FRC niches in secondary lymphoid organs (SLOs) after allo-HCT and highlight a framework of cellular and molecular interactions that regulate CD4+ T cell alloimmunity.
Collapse
Affiliation(s)
- Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.,Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Michael Ag Kern
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Caroline Graf
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Niklas Beyersdorf
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Manfred B Lutz
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany.,Institute for Virology and Immunobiology, Würzburg University, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Centre, University Hospital of Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Alma Zernecke
- Institute of Experimental Biomedicine, University Hospital Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Center for Infection (HZI), Würzburg, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.,Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF), Experimental Stem Cell Transplantation Laboratory, and.,Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany.,Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
22
|
Bianchimano P, Britton GJ, Wallach DS, Smith EM, Cox LM, Liu S, Iwanowski K, Weiner HL, Faith JJ, Clemente JC, Tankou SK. Mining the microbiota to identify gut commensals modulating neuroinflammation in a mouse model of multiple sclerosis. MICROBIOME 2022; 10:174. [PMID: 36253847 PMCID: PMC9575236 DOI: 10.1186/s40168-022-01364-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The gut microbiome plays an important role in autoimmunity including multiple sclerosis and its mouse model called experimental autoimmune encephalomyelitis (EAE). Prior studies have demonstrated that the multiple sclerosis gut microbiota can contribute to disease, hence making it a potential therapeutic target. In addition, antibiotic treatment has been shown to ameliorate disease in the EAE mouse model of multiple sclerosis. Yet, to this date, the mechanisms mediating these antibiotic effects are not understood. Furthermore, there is no consensus on the gut-derived bacterial strains that drive neuroinflammation in multiple sclerosis. RESULTS Here, we characterized the gut microbiome of untreated and vancomycin-treated EAE mice over time to identify bacteria with neuroimmunomodulatory potential. We observed alterations in the gut microbiota composition following EAE induction. We found that vancomycin treatment ameliorates EAE, and that this protective effect is mediated via the microbiota. Notably, we observed increased abundance of bacteria known to be strong inducers of regulatory T cells, including members of Clostridium clusters XIVa and XVIII in vancomycin-treated mice during the presymptomatic phase of EAE, as well as at disease peak. We identified 50 bacterial taxa that correlate with EAE severity. Interestingly, several of these taxa exist in the human gut, and some of them have been implicated in multiple sclerosis including Anaerotruncus colihominis, a butyrate producer, which had a positive correlation with disease severity. We found that Anaerotruncus colihominis ameliorates EAE, and this is associated with induction of RORγt+ regulatory T cells in the mesenteric lymph nodes. CONCLUSIONS We identified vancomycin as a potent modulator of the gut-brain axis by promoting the proliferation of bacterial species that induce regulatory T cells. In addition, our findings reveal 50 gut commensals as regulator of the gut-brain axis that can be used to further characterize pathogenic and beneficial host-microbiota interactions in multiple sclerosis patients. Our findings suggest that elevated Anaerotruncus colihominis in multiple sclerosis patients may represent a protective mechanism associated with recovery from the disease. Video Abstract.
Collapse
Affiliation(s)
- Paola Bianchimano
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David S Wallach
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Emma M Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Laura M Cox
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Shirong Liu
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
- Present address: Department of Medical Oncology, Bing Center for Waldenström's Macroglobulinemia, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Kacper Iwanowski
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
| | - Howard L Weiner
- Ann Romney Center for Neurologic Diseases, Harvard Medical School, Brigham and Women's Hospital, Boston, MA, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jose C Clemente
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Stephanie K Tankou
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, 5E 98th Street, New York, NY, 10029, USA.
| |
Collapse
|
23
|
Canesso MCC, Moreira TG, Faria AMC. Compartmentalization of gut immune responses: mucosal niches and lymph node peculiarities. Immunol Lett 2022; 251-252:86-90. [DOI: 10.1016/j.imlet.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/16/2022] [Accepted: 10/25/2022] [Indexed: 11/05/2022]
|
24
|
Ataide MA, Knöpper K, Cruz de Casas P, Ugur M, Eickhoff S, Zou M, Shaikh H, Trivedi A, Grafen A, Yang T, Prinz I, Ohlsen K, Gomez de Agüero M, Beilhack A, Huehn J, Gaya M, Saliba AE, Gasteiger G, Kastenmüller W. Lymphatic migration of unconventional T cells promotes site-specific immunity in distinct lymph nodes. Immunity 2022; 55:1813-1828.e9. [PMID: 36002023 DOI: 10.1016/j.immuni.2022.07.019] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 06/06/2022] [Accepted: 07/27/2022] [Indexed: 12/31/2022]
Abstract
Lymphatic transport of molecules and migration of myeloid cells to lymph nodes (LNs) continuously inform lymphocytes on changes in drained tissues. Here, using LN transplantation, single-cell RNA-seq, spectral flow cytometry, and a transgenic mouse model for photolabeling, we showed that tissue-derived unconventional T cells (UTCs) migrate via the lymphatic route to locally draining LNs. As each tissue harbored a distinct spectrum of UTCs with locally adapted differentiation states and distinct T cell receptor repertoires, every draining LN was thus populated by a distinctive tissue-determined mix of these lymphocytes. By making use of single UTC lineage-deficient mouse models, we found that UTCs functionally cooperated in interconnected units and generated and shaped characteristic innate and adaptive immune responses that differed between LNs that drained distinct tissues. Lymphatic migration of UTCs is, therefore, a key determinant of site-specific immunity initiated in distinct LNs with potential implications for vaccination strategies and immunotherapeutic approaches.
Collapse
Affiliation(s)
- Marco A Ataide
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| | - Konrad Knöpper
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Paulina Cruz de Casas
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Milas Ugur
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Sarah Eickhoff
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Mangge Zou
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany
| | - Haroon Shaikh
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Apurwa Trivedi
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Anika Grafen
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Tao Yang
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Knut Ohlsen
- Institute for Molecular Infection Biology (IMIB), 97078 Würzburg, Germany
| | - Mercedes Gomez de Agüero
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Andreas Beilhack
- Department of Medicine II and Pediatrics, Würzburg University Hospital, ZEMM, 97078 Würzburg, Germany
| | - Jochen Huehn
- Experimental Immunology, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, 30625 Hannover, Germany
| | - Mauro Gaya
- Centre d'Immunologie de Marseille-Luminy (CIML), Department of Immunology, 13288 Marseille, France
| | - Antoine-Emmanuel Saliba
- Helmholtz Institute for RNA-Based Infection Research (HIRI), Helmholtz-Center for Infection Research (HZI), 97078 Würzburg, Germany
| | - Georg Gasteiger
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany
| | - Wolfgang Kastenmüller
- Würzburg Institute of Systems Immunology, Max Planck Research Group at the Julius-Maximilians-Universität Würzburg, 97078 Würzburg, Germany.
| |
Collapse
|
25
|
Schlöder J, Shahneh F, Schneider FJ, Wieschendorf B. Boosting regulatory T cell function for the treatment of autoimmune diseases – That’s only half the battle! Front Immunol 2022; 13:973813. [PMID: 36032121 PMCID: PMC9400058 DOI: 10.3389/fimmu.2022.973813] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 01/04/2023] Open
Abstract
Regulatory T cells (Treg) represent a subset of specialized T cells that are essential for the regulation of immune responses and maintenance of peripheral tolerance. Once activated, Treg exert powerful immunosuppressive properties, for example by inhibiting T cell-mediated immune responses against self-antigens, thereby protecting our body from autoimmunity. Autoimmune diseases such as multiple sclerosis, rheumatoid arthritis or systemic lupus erythematosus, exhibit an immunological imbalance mainly characterized by a reduced frequency and impaired function of Treg. In addition, there has been increasing evidence that – besides Treg dysfunction – immunoregulatory mechanisms fail to control autoreactive T cells due to a reduced responsiveness of T effector cells (Teff) for the suppressive properties of Treg, a process termed Treg resistance. In order to efficiently treat autoimmune diseases and thus fully induce immunological tolerance, a combined therapy aimed at both enhancing Treg function and restoring Teff responsiveness could most likely be beneficial. This review provides an overview of immunomodulating drugs that are currently used to treat various autoimmune diseases in the clinic and have been shown to increase Treg frequency as well as Teff sensitivity to Treg-mediated suppression. Furthermore, we discuss strategies on how to boost Treg activity and function, and their potential use in the treatment of autoimmunity. Finally, we present a humanized mouse model for the preclinical testing of Treg-activating substances in vivo.
Collapse
Affiliation(s)
- Janine Schlöder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- *Correspondence: Janine Schlöder,
| | - Fatemeh Shahneh
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Franz-Joseph Schneider
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| | - Björn Wieschendorf
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
- ActiTrexx GmbH, University Medical Center of the Johannes Gutenberg-University, Mainz, Germany
| |
Collapse
|
26
|
Immunomodulatory Responses of Subcapsular Sinus Floor Lymphatic Endothelial Cells in Tumor-Draining Lymph Nodes. Cancers (Basel) 2022; 14:cancers14153602. [PMID: 35892863 PMCID: PMC9330828 DOI: 10.3390/cancers14153602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 11/17/2022] Open
Abstract
Tumor-draining lymph nodes (LNs), composed of lymphocytes, antigen-presenting cells, and stromal cells, are highly relevant for tumor immunity and the efficacy of immunotherapies. Lymphatic endothelial cells (LECs) represent an important stromal cell type within LNs, and several distinct subsets of LECs that interact with various immune cells and regulate immune responses have been identified. In this study, we used single-cell RNA sequencing (scRNA-seq) to characterize LECs from LNs draining B16F10 melanomas compared to non-tumor-draining LNs. Several upregulated genes with immune-regulatory potential, especially in LECs lining the subcapsular sinus floor (fLECs), were identified and validated. Interestingly, some of these genes, namely, podoplanin, CD200, and BST2, affected the adhesion of macrophages to LN LECs in vitro. Congruently, lymphatic-specific podoplanin deletion led to a decrease in medullary sinus macrophages in tumor-draining LNs in vivo. In summary, our data show that tumor-derived factors induce transcriptional changes in LECs of the draining LNs, especially the fLECs, and that these changes may affect tumor immunity. We also identified a new function of podoplanin, which is expressed on all LECs, in mediating macrophage adhesion to LECs and their correct localization in LN sinuses.
Collapse
|
27
|
Yang Z, Liu X, Wu Y, Peng J, Wei H. Effect of the Microbiome on Intestinal Innate Immune Development in Early Life and the Potential Strategy of Early Intervention. Front Immunol 2022; 13:936300. [PMID: 35928828 PMCID: PMC9344006 DOI: 10.3389/fimmu.2022.936300] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/23/2022] [Indexed: 12/15/2022] Open
Abstract
Early life is a vital period for mammals to be colonized with the microbiome, which profoundly influences the development of the intestinal immune function. For neonates to resist pathogen infection and avoid gastrointestinal illness, the intestinal innate immune system is critical. Thus, this review summarizes the development of the intestinal microbiome and the intestinal innate immune barrier, including the intestinal epithelium and immune cells from the fetal to the weaning period. Moreover, the impact of the intestinal microbiome on innate immune development and the two main way of early-life intervention including probiotics and fecal microbiota transplantation (FMT) also are discussed in this review. We hope to highlight the crosstalk between early microbial colonization and intestinal innate immunity development and offer some information for early intervention.
Collapse
Affiliation(s)
- Zhipeng Yang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiangchen Liu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jian Peng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Hongkui Wei
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
- The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| |
Collapse
|
28
|
Wiechers C, Pezoldt J, Beckstette M, Berner J, Schraml BU, Huehn J. Lymph node stromal cells support the maturation of pre‐DCs into cDC‐like cells via colony‐stimulating factor 1. Immunology 2022; 166:475-491. [DOI: 10.1111/imm.13497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Carolin Wiechers
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| | - Joern Pezoldt
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne Lausanne Switzerland
| | - Michael Beckstette
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine Helmholtz Centre for Infection Research and Hannover Medical School Hannover Germany
| | - Johanna Berner
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Barbara U. Schraml
- Institute for Cardiovascular Physiology and Pathophysiology, Biomedical Center, Faculty of Medicine, LMU Munich Planegg‐Martinsried Germany
- Walter‐Brendel‐Centre of Experimental Medicine University Hospital, LMU Munich Planegg‐Martinsried Germany
| | - Jochen Huehn
- Department Experimental Immunology Helmholtz Centre for Infection Research Braunschweig Germany
| |
Collapse
|
29
|
Tissue Niches Formed by Intestinal Mesenchymal Stromal Cells in Mucosal Homeostasis and Immunity. Int J Mol Sci 2022; 23:ijms23095181. [PMID: 35563571 PMCID: PMC9100044 DOI: 10.3390/ijms23095181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/28/2022] [Accepted: 05/04/2022] [Indexed: 12/17/2022] Open
Abstract
The gastrointestinal tract is the largest mucosal surface in our body and accommodates the majority of the total lymphocyte population. Being continuously exposed to both harmless antigens and potentially threatening pathogens, the intestinal mucosa requires the integration of multiple signals for balancing immune responses. This integration is certainly supported by tissue-resident intestinal mesenchymal cells (IMCs), yet the molecular mechanisms whereby IMCs contribute to these events remain largely undefined. Recent studies using single-cell profiling technologies indicated a previously unappreciated heterogeneity of IMCs and provided further knowledge which will help to understand dynamic interactions between IMCs and hematopoietic cells of the intestinal mucosa. In this review, we focus on recent findings on the immunological functions of IMCs: On one hand, we discuss the steady-state interactions of IMCs with epithelial cells and hematopoietic cells. On the other hand, we summarize our current knowledge about the contribution of IMCs to the development of intestinal inflammatory conditions, such as infections, inflammatory bowel disease, and fibrosis. By providing a comprehensive list of cytokines and chemokines produced by IMCs under homeostatic and inflammatory conditions, we highlight the significant immunomodulatory and tissue niche forming capacities of IMCs.
Collapse
|
30
|
Lenti E, Genovese L, Bianchessi S, Maurizio A, Sain SB, di Lillo A, Mattavelli G, Harel I, Bernassola F, Hehlgans T, Pfeffer K, Crosti M, Abrignani S, Evans SM, Sitia G, Guimarães-Camboa N, Russo V, van de Pavert SA, Garcia-Manteiga JM, Brendolan A. Fate mapping and scRNA sequencing reveal origin and diversity of lymph node stromal precursors. Immunity 2022; 55:606-622.e6. [PMID: 35358427 DOI: 10.1016/j.immuni.2022.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/30/2021] [Accepted: 03/03/2022] [Indexed: 11/25/2022]
Abstract
Lymph node (LN) stromal cells play a crucial role in LN development and in supporting adaptive immune responses. However, their origin, differentiation pathways, and transcriptional programs are still elusive. Here, we used lineage-tracing approaches and single-cell transcriptome analyses to determine origin, transcriptional profile, and composition of LN stromal and endothelial progenitors. Our results showed that all major stromal cell subsets and a large proportion of blood endothelial cells originate from embryonic Hoxb6+ progenitors of the lateral plate mesoderm (LPM), whereas lymphatic endothelial cells arise from Pax3+ progenitors of the paraxial mesoderm (PXM). Single-cell RNA sequencing revealed the existence of different Cd34+ and Cxcl13+ stromal cell subsets and showed that embryonic LNs contain proliferating progenitors possibly representing the amplifying populations for terminally differentiated cells. Taken together, our work identifies the earliest embryonic sources of LN stromal and endothelial cells and demonstrates that stromal diversity begins already during LN development.
Collapse
Affiliation(s)
- Elisa Lenti
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luca Genovese
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Bianchessi
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Aurora Maurizio
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Simona Baghai Sain
- Center for Omics Sciences, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia di Lillo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Greta Mattavelli
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Itamar Harel
- Department of Genetics, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome "Tor Vergata", Rome 00133, Italy
| | - Thomas Hehlgans
- Leibniz Institute of Immunotherapy (LIT), Chair for Immunology, University of Regensburg, 93053 Regensburg, Germany
| | - Klaus Pfeffer
- Institute of Medical, Microbiology and Hospital Hygiene, University Hospital Düsseldorf, 40225 Düsseldorf, Germany
| | - Mariacristina Crosti
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy
| | - Sergio Abrignani
- INGM, Istituto Nazionale di Genetica Molecolare 'Romeo ed Enrica Invernizzi', Milan, Italy; Department of Clinical Science and Community Health (DISCCO), University of Milan, Milan, Italy
| | - Sylvia M Evans
- Skaggs School of Pharmacy, University of California at San Diego, La Jolla, CA 92093, USA
| | - Giovanni Sitia
- Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Nuno Guimarães-Camboa
- Institute of Cardiovascular Regeneration, Goethe-University, Frankfurt 60590, Germany; German Center for Cardiovascular Research, Berlin (partner site Frankfurt Rhine-Main), Germany
| | - Vincenzo Russo
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Serge A van de Pavert
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix Marseille Université, INSERM, CNRS, Marseille, France
| | | | - Andrea Brendolan
- Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
31
|
TGF-β production by eosinophils drives the expansion of peripherally induced neuropilin - RORγt + regulatory T-cells during bacterial and allergen challenge. Mucosal Immunol 2022; 15:504-514. [PMID: 35169233 PMCID: PMC9038533 DOI: 10.1038/s41385-022-00484-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 01/04/2022] [Accepted: 01/13/2022] [Indexed: 02/04/2023]
|
32
|
Onder L, Cheng HW, Ludewig B. Visualization and functional characterization of lymphoid organ fibroblasts. Immunol Rev 2021; 306:108-122. [PMID: 34866192 PMCID: PMC9300201 DOI: 10.1111/imr.13051] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells of lymphoid organs that generate the structural foundation of the tissue and actively interact with immune cells. Distinct FRC subsets position lymphocytes and myeloid cells in specialized niches where they present processed or native antigen and provide essential growth factors and cytokines for immune cell activation and differentiation. Niche‐specific functions of FRC subpopulations have been defined using genetic targeting, high‐dimensional transcriptomic analyses, and advanced imaging methods. Here, we review recent findings on FRC‐immune cell interaction and the elaboration of FRC development and differentiation. We discuss how imaging approaches have not only shaped our understanding of FRC biology, but have critically advanced the niche concept of immune cell maintenance and control of immune reactivity.
Collapse
Affiliation(s)
- Lucas Onder
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Hung-Wei Cheng
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St.Gallen, St.Gallen, Switzerland
| |
Collapse
|
33
|
Single-cell transcriptional profiling of splenic fibroblasts reveals subset-specific innate immune signatures in homeostasis and during viral infection. Commun Biol 2021; 4:1355. [PMID: 34857864 PMCID: PMC8640036 DOI: 10.1038/s42003-021-02882-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 11/11/2021] [Indexed: 01/12/2023] Open
Abstract
Our understanding of the composition and functions of splenic stromal cells remains incomplete. Here, based on analysis of over 20,000 single cell transcriptomes of splenic fibroblasts, we characterized the phenotypic and functional heterogeneity of these cells in healthy state and during virus infection. We describe eleven transcriptionally distinct fibroblastic cell clusters, reassuring known subsets and revealing yet unascertained heterogeneity amongst fibroblasts occupying diverse splenic niches. We further identify striking differences in innate immune signatures of distinct stromal compartments in vivo. Compared to other fibroblasts and to endothelial cells, Ly6C+ fibroblasts of the red pulp were selectively endowed with enhanced interferon-stimulated gene expression in homeostasis, upon systemic interferon stimulation and during virus infection in vivo. Collectively, we provide an updated map of fibroblastic cell diversity in the spleen that suggests a specialized innate immune function for splenic red pulp fibroblasts.
Collapse
|
34
|
Brown H, Esterházy D. Intestinal immune compartmentalization: implications of tissue specific determinants in health and disease. Mucosal Immunol 2021; 14:1259-1270. [PMID: 34211125 DOI: 10.1038/s41385-021-00420-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/05/2021] [Accepted: 05/24/2021] [Indexed: 02/04/2023]
Abstract
The emerging concept of tissue specific immunity has opened the gates to new inquiries into what factors drive immune cell niche adaptation and the implications on immune homeostasis, organ specific immune diseases, and therapeutic efficacy. These issues are particularly complicated at barrier sites, which are directly exposed to an ever-changing environment. In particular, the gastrointestinal (GI) tract faces even further challenges given the profound functional and structural differences along its length, raising the possibility that it may even have to be treated as multiple organs when seeking to answer these questions. In this review, we evaluate what is known about the tissue intrinsic and extrinsic factors shaping immune compartments in the intestine. We then discuss the physiological and pathological consequences of a regionally distinct immune system in a single organ, but also discuss where our insight into the role of the compartment for disease development is still very limited. Finally, we discuss the technological and therapeutic implications this compartmentalization has. While the gut is perhaps one of the most intensely studied systems, many of these aspects apply to understanding tissue specific immunity of other organs, most notably other barrier sites such as skin, lung, and the urogenital tract.
Collapse
Affiliation(s)
- Hailey Brown
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Daria Esterházy
- Committee on Immunology, University of Chicago, Chicago, IL, USA. .,Department of Pathology, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
35
|
Acton SE, Onder L, Novkovic M, Martinez VG, Ludewig B. Communication, construction, and fluid control: lymphoid organ fibroblastic reticular cell and conduit networks. Trends Immunol 2021; 42:782-794. [PMID: 34362676 DOI: 10.1016/j.it.2021.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 01/16/2023]
Abstract
Fibroblastic reticular cells (FRCs) are a crucial part of the stromal cell infrastructure of secondary lymphoid organs (SLOs). Lymphoid organ fibroblasts form specialized niches for immune cell interactions and thereby govern lymphocyte activation and differentiation. Moreover, FRCs produce and ensheath a network of extracellular matrix (ECM) microfibers called the conduit system. FRC-generated conduits contribute to fluid and immune cell control by funneling fluids containing antigens and inflammatory mediators through the SLOs. We review recent progress in FRC biology that has advanced our understanding of immune cell functions and interactions. We discuss the intricate relationships between the cellular FRC and the fibrillar conduit networks, which together form the basis for efficient communication between immune cells and the tissues they survey.
Collapse
Affiliation(s)
- Sophie E Acton
- Stromal Immunology Group, Medical Research Council (MRC) Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Lucas Onder
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Mario Novkovic
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Victor G Martinez
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland.
| |
Collapse
|
36
|
Jacobse J, Li J, Rings EHHM, Samsom JN, Goettel JA. Intestinal Regulatory T Cells as Specialized Tissue-Restricted Immune Cells in Intestinal Immune Homeostasis and Disease. Front Immunol 2021; 12:716499. [PMID: 34421921 PMCID: PMC8371910 DOI: 10.3389/fimmu.2021.716499] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/16/2021] [Indexed: 12/28/2022] Open
Abstract
FOXP3+ regulatory T cells (Treg cells) are a specialized population of CD4+ T cells that restrict immune activation and are essential to prevent systemic autoimmunity. In the intestine, the major function of Treg cells is to regulate inflammation as shown by a wide array of mechanistic studies in mice. While Treg cells originating from the thymus can home to the intestine, the majority of Treg cells residing in the intestine are induced from FOXP3neg conventional CD4+ T cells to elicit tolerogenic responses to microbiota and food antigens. This process largely takes place in the gut draining lymph nodes via interaction with antigen-presenting cells that convert circulating naïve T cells into Treg cells. Notably, dysregulation of Treg cells leads to a number of chronic inflammatory disorders, including inflammatory bowel disease. Thus, understanding intestinal Treg cell biology in settings of inflammation and homeostasis has the potential to improve therapeutic options for patients with inflammatory bowel disease. Here, the induction, maintenance, trafficking, and function of intestinal Treg cells is reviewed in the context of intestinal inflammation and inflammatory bowel disease. In this review we propose intestinal Treg cells do not compose fixed Treg cell subsets, but rather (like T helper cells), are plastic and can adopt different programs depending on microenvironmental cues.
Collapse
Affiliation(s)
- Justin Jacobse
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jing Li
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
| | - Edmond H. H. M. Rings
- Department of Pediatrics, Willem-Alexander Children’s Hospital, Leiden University Medical Center, Leiden, Netherlands
- Department of Pediatrics, Sophia Children’s Hospital, Erasmus University, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janneke N. Samsom
- Laboratory of Pediatrics, Division of Gastroenterology and Nutrition, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jeremy A. Goettel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University, Nashville, TN, United States
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Vanderbilt University Medical Center, Nashville, TN, United States
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, United States
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, United States
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, TN, United States
| |
Collapse
|
37
|
Shaikh H, Vargas JG, Mokhtari Z, Jarick KJ, Ulbrich M, Mosca JP, Viera EA, Graf C, Le DD, Heinze KG, Büttner-Herold M, Rosenwald A, Pezoldt J, Huehn J, Beilhack A. Mesenteric Lymph Node Transplantation in Mice to Study Immune Responses of the Gastrointestinal Tract. Front Immunol 2021; 12:689896. [PMID: 34381447 PMCID: PMC8352558 DOI: 10.3389/fimmu.2021.689896] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 07/08/2021] [Indexed: 02/02/2023] Open
Abstract
Mesenteric lymph nodes (mLNs) are sentinel sites of enteral immunosurveillance and immune homeostasis. Immune cells from the gastrointestinal tract (GIT) are constantly recruited to the mLNs in steady-state and under inflammatory conditions resulting in the induction of tolerance and immune cells activation, respectively. Surgical dissection and transplantation of lymph nodes (LN) is a technique that has supported seminal work to study LN function and is useful to investigate resident stromal and endothelial cell biology and their cellular interactions in experimental disease models. Here, we provide a detailed protocol of syngeneic mLN transplantation and report assays to analyze effective mLN engraftment in congenic recipients. Transplanted mLNs allow to study T cell activation and proliferation in preclinical mouse models. Donor mLNs proved viable and functional after surgical transplantation and regenerated blood and lymphatic vessels. Immune cells from the host completely colonized the transplanted mLNs within 7-8 weeks after the surgical intervention. After allogeneic hematopoietic cell transplantation (allo-HCT), adoptively transferred allogeneic CD4+ T cells from FVB/N (H-2q) mice homed to the transplanted mLNs in C57BL/6 (H-2b) recipients during the initiation phase of acute graft-versus-host disease (aGvHD). These CD4+ T cells retained full proliferative capacity and upregulated effector and gut homing molecules comparable to those in mLNs from unmanipulated wild-type recipients. Wild type mLNs transplanted into MHCII deficient syngeneic hosts sufficed to activate alloreactive T cells upon allogeneic hematopoietic cell transplantation, even in the absence of MHCII+ CD11c+ myeloid cells. These data support that orthotopically transplanted mLNs maintain physiological functions after transplantation. The technique of LN transplantation can be applied to study migratory and resident cell compartment interactions in mLNs as well as immune reactions from and to the gut under inflammatory and non-inflammatory conditions.
Collapse
Affiliation(s)
- Haroon Shaikh
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Juan Gamboa Vargas
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Zeinab Mokhtari
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Katja J. Jarick
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Maria Ulbrich
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Josefina Peña Mosca
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| | - Estibaliz Arellano Viera
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Caroline Graf
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Duc-Dung Le
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
| | - Katrin G. Heinze
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
- Rudolf Virchow Center, Julius-Maximilians-University Würzburg, Würzburg, Germany
| | - Maike Büttner-Herold
- Department of Nephropathology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Rosenwald
- Institute of Pathology, Julius-Maximilians-University Würzburg, Würzburg, Germany
- Comprehensive Cancer Centre Mainfranken, Würzburg University Hospital, Würzburg, Germany
| | - Joern Pezoldt
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Jochen Huehn
- Department of Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Andreas Beilhack
- Interdisciplinary Center for Clinical Research (IZKF) Experimental Stem Cell Transplantation Laboratory, Würzburg University Hospital, Würzburg, Germany
- Department of Internal Medicine II, Würzburg University Hospital, Würzburg, Germany
- Graduate School of Life Sciences, Würzburg University, Würzburg, Germany
| |
Collapse
|
38
|
Poholek AC. Tissue-Specific Contributions to Control of T Cell Immunity. Immunohorizons 2021; 5:410-423. [PMID: 34103371 PMCID: PMC10876086 DOI: 10.4049/immunohorizons.2000103] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 05/17/2021] [Indexed: 11/19/2022] Open
Abstract
T cells are critical for orchestrating appropriate adaptive immune responses and maintaining homeostasis in the face of persistent nonpathogenic Ags. T cell function is controlled in part by environmental signals received upon activation and derived from the tissue environment in which Ag is encountered. Indeed, tissue-specific environments play important roles in controlling the T cell response to Ag, and recent evidence suggests that tissue draining lymph nodes can mirror those local differences. Thus, tissue-specific immunity may begin at priming in secondary lymph nodes, where local signals have an important role in T cell fate. In this study, we discuss the tissue-specific signals that may impact T cell differentiation and function, including the microbiome, metabolism, and tissue-specific innate cell imprinting. We argue that these individual contributions create tissue-specific niches that likely play important roles in T cell differentiation and function controlling the outcome of the response to Ags.
Collapse
Affiliation(s)
- Amanda C Poholek
- Division of Pediatric Rheumatology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA; and Department of Immunology, University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
39
|
Haller D. Intestinal microbiota in health and disease - Seeding multidisciplinary research in Germany. Int J Med Microbiol 2021; 311:151514. [PMID: 34111652 DOI: 10.1016/j.ijmm.2021.151514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/02/2021] [Indexed: 11/30/2022] Open
Affiliation(s)
- Dirk Haller
- Chair of Nutrition and Immunology, Technical University of Munich, Germany
| |
Collapse
|
40
|
Sibler E, He Y, Ducoli L, Keller N, Fujimoto N, Dieterich LC, Detmar M. Single-Cell Transcriptional Heterogeneity of Lymphatic Endothelial Cells in Normal and Inflamed Murine Lymph Nodes. Cells 2021; 10:cells10061371. [PMID: 34199492 PMCID: PMC8229892 DOI: 10.3390/cells10061371] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/22/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022] Open
Abstract
The lymphatic system plays a crucial role in immunity and lymph nodes (LNs) undergo drastic remodeling during inflammation. Here, we used single-cell RNA sequencing to investigate transcriptional changes in lymphatic endothelial cells (LECs) in LNs draining naïve and inflamed skin. We found that subsets of LECs lining the different LN sinuses responded individually to skin inflammation, suggesting that they exert distinct functions under pathological conditions. Among the genes dysregulated during inflammation, we confirmed an up-regulation of CD200 in the LECs lining the subcapsular sinus floor with a possible function in immune regulation. Furthermore, by in silico analysis, we predicted numerous possible interactions of LECs with diverse immune cells in the LNs and found similarities in the transcriptional changes of LN LECs in different skin inflammation settings. In summary, we provide an in-depth analysis of the transcriptional landscape of LN LECs in the naïve state and in skin inflammation.
Collapse
Affiliation(s)
- Eliane Sibler
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Yuliang He
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Luca Ducoli
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Nadja Keller
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Noriki Fujimoto
- Department of Dermatology, Shiga University of Medical Science, Otsu 520-2192, Japan;
| | - Lothar C. Dieterich
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
| | - Michael Detmar
- Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Vladimir-Prelog-Weg 3, 8093 Zürich, Switzerland; (E.S.); (Y.H.); (L.D.); (N.K.); (L.C.D.)
- Correspondence:
| |
Collapse
|
41
|
Lütge M, Pikor NB, Ludewig B. Differentiation and activation of fibroblastic reticular cells. Immunol Rev 2021; 302:32-46. [PMID: 34046914 PMCID: PMC8361914 DOI: 10.1111/imr.12981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/17/2021] [Accepted: 04/30/2021] [Indexed: 12/29/2022]
Abstract
Secondary lymphoid organs (SLO) are underpinned by fibroblastic reticular cells (FRC) that form dedicated microenvironmental niches to secure induction and regulation of innate and adaptive immunity. Distinct FRC subsets are strategically positioned in SLOs to provide niche factors and govern efficient immune cell interaction. In recent years, the use of specialized mouse models in combination with single-cell transcriptomics has facilitated the elaboration of the molecular FRC landscape at an unprecedented resolution. While single-cell RNA-sequencing has advanced the resolution of FRC subset characterization and function, the high dimensionality of the generated data necessitates careful analysis and validation. Here, we reviewed novel findings from high-resolution transcriptomic analyses that refine our understanding of FRC differentiation and activation processes in the context of infection and inflammation. We further discuss concepts, strategies, and limitations for the analysis of single-cell transcriptome data from FRCs and the wide-ranging implications for our understanding of stromal cell biology.
Collapse
Affiliation(s)
- Mechthild Lütge
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Natalia B Pikor
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Burkhard Ludewig
- Institute of Immunobiology, Medical Research Center, Kantonsspital St. Gallen, St. Gallen, Switzerland.,Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
42
|
Gago da Graça C, van Baarsen LGM, Mebius RE. Tertiary Lymphoid Structures: Diversity in Their Development, Composition, and Role. THE JOURNAL OF IMMUNOLOGY 2021; 206:273-281. [PMID: 33397741 DOI: 10.4049/jimmunol.2000873] [Citation(s) in RCA: 106] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Lymph node stromal cells coordinate the adaptive immune response in secondary lymphoid organs, providing both a structural matrix and soluble factors that regulate survival and migration of immune cells, ultimately promoting Ag encounter. In several inflamed tissues, resident fibroblasts can acquire lymphoid-stroma properties and drive the formation of ectopic aggregates of immune cells, named tertiary lymphoid structures (TLSs). Mature TLSs are functional sites for the development of adaptive responses and, consequently, when present, can have an impact in both autoimmunity and cancer conditions. In this review, we go over recent findings concerning both lymph node stromal cells and TLSs function and formation and further describe what is currently known about their role in disease, particularly their potential in tolerance.
Collapse
Affiliation(s)
- Catarina Gago da Graça
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands
| | - Lisa G M van Baarsen
- Department of Rheumatology and Clinical Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands.,Department of Experimental Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, University of Amsterdam, the Netherlands; and.,Amsterdam Rheumatology and Immunology Center, Academic Medical Center, 1105 AZ Amsterdam, the Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Center, Vrije Universiteit, 1081HZ Amsterdam, the Netherlands;
| |
Collapse
|
43
|
Affiliation(s)
- Antonio P Baptista
- Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGhent Center for Inflammation Research, Ghent, Belgium. .,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium.
| | - Michael Y Gerner
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
44
|
Wiechers C, Zou M, Galvez E, Beckstette M, Ebel M, Strowig T, Huehn J, Pezoldt J. The microbiota is dispensable for the early stages of peripheral regulatory T cell induction within mesenteric lymph nodes. Cell Mol Immunol 2021; 18:1211-1221. [PMID: 33762684 PMCID: PMC8093251 DOI: 10.1038/s41423-021-00647-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal Foxp3+ regulatory T cell (Treg) subsets are crucial players in tolerance to microbiota-derived and food-borne antigens, and compelling evidence suggests that the intestinal microbiota modulates their generation, functional specialization, and maintenance. Selected bacterial species and microbiota-derived metabolites, such as short-chain fatty acids (SCFAs), have been reported to promote Treg homeostasis in the intestinal lamina propria. Furthermore, gut-draining mesenteric lymph nodes (mLNs) are particularly efficient sites for the generation of peripherally induced Tregs (pTregs). Despite this knowledge, the direct role of the microbiota and their metabolites in the early stages of pTreg induction within mLNs is not fully elucidated. Here, using an adoptive transfer-based pTreg induction system, we demonstrate that neither transfer of a dysbiotic microbiota nor dietary SCFA supplementation modulated the pTreg induction capacity of mLNs. Even mice housed under germ-free (GF) conditions displayed equivalent pTreg induction within mLNs. Further molecular characterization of these de novo induced pTregs from mLNs by dissection of their transcriptomes and accessible chromatin regions revealed that the microbiota indeed has a limited impact and does not contribute to the initialization of the Treg-specific epigenetic landscape. Overall, our data suggest that the microbiota is dispensable for the early stages of pTreg induction within mLNs.
Collapse
Affiliation(s)
- Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Eric Galvez
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Michael Beckstette
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Department of Computational Biology for Individualised Medicine, Centre for Individualised Infection Medicine, Helmholtz Centre for Infection Research and Hannover Medical School, Hannover, Germany
| | - Maria Ebel
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Till Strowig
- Department Microbial Immune Regulation, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany.
| | - Joern Pezoldt
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Braunschweig, Germany.
- Laboratory of Systems Biology and Genetics, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
45
|
Gremlin 1 + fibroblastic niche maintains dendritic cell homeostasis in lymphoid tissues. Nat Immunol 2021; 22:571-585. [PMID: 33903764 DOI: 10.1038/s41590-021-00920-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/19/2021] [Indexed: 01/31/2023]
Abstract
Fibroblastic reticular cells (FRCs) are specialized stromal cells that define tissue architecture and regulate lymphocyte compartmentalization, homeostasis, and innate and adaptive immunity in secondary lymphoid organs (SLOs). In the present study, we used single-cell RNA sequencing (scRNA-seq) of human and mouse lymph nodes (LNs) to identify a subset of T cell-zone FRCs defined by the expression of Gremlin1 (Grem1) in both species. Grem1-CreERT2 knock-in mice enabled localization, multi-omics characterization and genetic depletion of Grem1+ FRCs. Grem1+ FRCs primarily localize at T-B cell junctions of SLOs, neighboring pre-dendritic cells and conventional dendritic cells (cDCs). As such, their depletion resulted in preferential loss and decreased homeostatic proliferation and survival of resident cDCs and compromised T cell immunity. Trajectory analysis of human LN scRNA-seq data revealed expression similarities to murine FRCs, with GREM1+ cells marking the endpoint of both trajectories. These findings illuminate a new Grem1+ fibroblastic niche in LNs that functions to maintain the homeostasis of lymphoid tissue-resident cDCs.
Collapse
|
46
|
Escudero-Hernández C, van Beelen Granlund A, Bruland T, Sandvik AK, Koch S, Østvik AE, Münch A. Transcriptomic Profiling of Collagenous Colitis Identifies Hallmarks of Nondestructive Inflammatory Bowel Disease. Cell Mol Gastroenterol Hepatol 2021; 12:665-687. [PMID: 33930606 PMCID: PMC8267496 DOI: 10.1016/j.jcmgh.2021.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS The pathophysiology of the inflammatory bowel disease collagenous colitis (CC) is poorly described. Our aim was to use RNA sequencing of mucosal samples from patients with active CC, CC in remission, refractory CC, ulcerative colitis (UC), and control subjects to gain insight into CC pathophysiology, identify genetic signatures linked to CC, and uncover potentially druggable disease pathways. METHODS We performed whole transcriptome sequencing of CC samples from patients before and during treatment with the corticosteroid drug budesonide, CC steroid-refractory patients, UC patients, and healthy control subjects (n = 9-13). Bulk mucosa and laser-captured microdissected intestinal epithelial cell (IEC) gene expression were analyzed by gene set enrichment and gene set variation analyses to identify significant pathways and cells, respectively, altered in CC. Leading genes and cells were validated using reverse-transcription quantitative polymerase chain reaction or immunohistochemistry. RESULTS We identified an activation of the adaptive immune response to bacteria and viruses in active CC that could be mediated by dendritic cells. Moreover, IECs display hyperproliferation and increased antigen presentation in active CC. Further analysis revealed that genes related to the immune response (DUOX2, PLA2G2A, CXCL9), DNA transcription (CTR9), protein processing (JOSD1, URI1), and ion transport (SLC9A3) remained dysregulated even after budesonide-induced remission. Budesonide-refractory CC patients fail to restore normal gene expression, and displayed a transcriptomic profile close to UC. CONCLUSIONS Our study confirmed the implication of innate and adaptive immune responses in CC, governed by IECs and dendritic cells, respectively, and identified ongoing epithelial damage. Refractory CC could share pathomechanisms with UC.
Collapse
Affiliation(s)
| | - Atle van Beelen Granlund
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Torunn Bruland
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway
| | - Arne Kristian Sandvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway; Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Stefan Koch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Wallenberg Centre for Molecular Medicine, Linköping University, Linköping, Sweden
| | - Ann Elisabet Østvik
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway; Clinic of Medicine, St Olav's University Hospital, Trondheim, Norway; Department of Gastroenterology and Hepatology, St Olav's University Hospital, Trondheim, Norway
| | - Andreas Münch
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden; Department of Gastroenterology and Hepatology, Linköping University, Linköping, Sweden; Department of Health, Medicine, and Caring Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
47
|
Yokanovich LT, Newberry RD, Knoop KA. Regulation of oral antigen delivery early in life: Implications for oral tolerance and food allergy. Clin Exp Allergy 2021; 51:518-526. [PMID: 33403739 PMCID: PMC8743004 DOI: 10.1111/cea.13823] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 10/19/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022]
Abstract
The increasing incidence of food allergy remains a significant public health concern. Food allergy is partially due to a lack, or loss of tolerance to food allergens. Clinical outcomes surrounding early life practices, such as breastfeeding, antibiotic use and food allergen exposure, indicate the first year of life in children represents a unique time for shaping the immune system to reduce allergic outcomes. Animal models have identified distinctive aspects of when and where dietary antigens are delivered within the intestinal tract to promote oral tolerance prior to weaning. Additionally, animal models have identified contributions from maternal proteins from breast milk and bacterial products from the gut microbiota in regulating dietary antigen exposure and promoting oral tolerance, thus connecting decades of clinical observations on the benefits of breastfeeding, early food allergen introduction and antibiotic avoidance in the first year of life in reducing allergic outcomes. Here, we discuss how exposure to gut luminal antigens, including food allergens, is regulated in early life to generate protective tolerance and the implications of this process for preventing and treating food allergies.
Collapse
Affiliation(s)
| | - Rodney D. Newberry
- Division of Gastroenterology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kathryn A. Knoop
- Department of Immunology, Mayo Clinic, Rochester MN, USA
- Department of Pediatrics, Mayo Clinic, Rochester MN, USA
| |
Collapse
|
48
|
van de Pavert SA. Lymphoid Tissue inducer (LTi) cell ontogeny and functioning in embryo and adult. Biomed J 2021; 44:123-132. [PMID: 33849806 PMCID: PMC8178546 DOI: 10.1016/j.bj.2020.12.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/19/2022] Open
Abstract
Innate Lymphoid Cells (ILC) are involved in homeostasis and immunity. Their dynamic differentiation and characterization depend on their tissue of residency and is adapted to their role within these tissues. Lymphoid Tissue inducer (LTi) cells are an ILC member and essential for embryonic lymph node (LN) formation. LNs are formed at pre-defined and strategic positions throughout the body and how LTi cells are initially attracted towards these areas is under debate. Besides their role in LN formation, LTi-like and the closely related ILC type 3 (ILC3) cells have been observed within the embryonic gut. New studies have now shown more information on their origin and differentiation within the embryo. This review will evaluate the embryonic LTi cell origin from a specific embryonic hemogenic wave, which has recently been described in mouse. Moreover, I will discuss their differentiation and similarities with the closely related ILC3 cells in embryo and adult.
Collapse
Affiliation(s)
- Serge A van de Pavert
- Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), National Institute for Health and Medical Research (INSERM), Centre d'Immunologie de Marseille-Luminy (CIML), Marseille, France.
| |
Collapse
|
49
|
Zou M, Wiechers C, Huehn J. Lymph node stromal cell subsets-Emerging specialists for tailored tissue-specific immune responses. Int J Med Microbiol 2021; 311:151492. [PMID: 33676241 DOI: 10.1016/j.ijmm.2021.151492] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 02/04/2021] [Accepted: 02/23/2021] [Indexed: 12/17/2022] Open
Abstract
The effective priming of adaptive immune responses depends on the precise dispatching of lymphocytes and antigens into and within lymph nodes (LNs), which are strategically dispersed throughout the body. Over the past decade, a growing body of evidence has advanced our understanding of lymph node stromal cells (LNSCs) from viewing them as mere accessory cells to seeing them as critical cellular players for the modulation of adaptive immune responses. In this review, we summarize current advances on the pivotal roles that LNSCs play in orchestrating adaptive immune responses during homeostasis and infection, and highlight the imprinting of location-specific information by micro-environmental cues into LNSCs, thereby tailoring tissue-specific immune responses.
Collapse
Affiliation(s)
- Mangge Zou
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Carolin Wiechers
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany
| | - Jochen Huehn
- Department Experimental Immunology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany.
| |
Collapse
|
50
|
Yang ZJ, Wang BY, Wang TT, Wang FF, Guo YX, Hua RX, Shang HW, Lu X, Xu JD. Functions of Dendritic Cells and Its Association with Intestinal Diseases. Cells 2021; 10:cells10030583. [PMID: 33800865 PMCID: PMC7999753 DOI: 10.3390/cells10030583] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/25/2021] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs), including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), serve as the sentinel cells of the immune system and are responsible for presenting antigen information. Moreover, the role of DCs derived from monocytes (moDCs) in the development of inflammation has been emphasized. Several studies have shown that the function of DCs can be influenced by gut microbes including gut bacteria and viruses. Abnormal changes/reactions in intestinal DCs are potentially associated with diseases such as inflammatory bowel disease (IBD) and intestinal tumors, allowing DCs to be a new target for the treatment of these diseases. In this review, we summarized the physiological functions of DCs in the intestinal micro-environment, their regulatory relationship with intestinal microorganisms and their regulatory mechanism in intestinal diseases.
Collapse
Affiliation(s)
- Ze-Jun Yang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Bo-Ya Wang
- Undergraduate Student of 2018 Eight Years Program of Clinical Medicine, Peking University Health Science Center, Beijing 100081, China;
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
| | - Fei-Fei Wang
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Yue-Xin Guo
- Oral Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China;
| | - Rong-Xuan Hua
- Clinical Medicine of “5 + 3” Program, Capital Medical University, Beijing 100069, China; (Z.-J.Y.); (F.-F.W.); (R.-X.H.)
| | - Hong-Wei Shang
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Xin Lu
- Morphological Experiment Center, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China; (H.-W.S.); (X.L.)
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China;
- Correspondence:
| |
Collapse
|