1
|
Jaiswal K, Jagtap R, De M. Thiolated molybdenum diselenide quantum dots as a bifunctional catalyst towards the synthesis of benzimidazoles. NANOSCALE 2025. [PMID: 40392142 DOI: 10.1039/d5nr01149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2025]
Abstract
Functionalized transition metal dichalcogenides (TMDs) have garnered significant attention over the past decade in various applications, but they have seldom been explored in catalytic transformations. Driven by the motivation to explore the scope of functionalized TMDs in catalysis, the one-pot synthesis of benzimidazoles was considered as the model reaction. Heterocyclic compounds such as benzimidazoles are categorised as pharmaceutically relevant structures and always demand the development of improvised synthetic strategies. In this regard, we have developed a synthetic method using lower dimension, catalytically active, thiol-functionalized MoSe2 quantum dots (QDs). Mechanistic investigations revealed the utility of surface functionalization in enhancing the stability and photocatalytic properties by inducing lattice distortion. The developed nanomaterial acts as a bifunctional system by serving as a photocatalyst to generate the imine and, as a Lewis acid to facilitate the cyclization. The protocol could be generalised for a diverse range of substrates, and further extended towards the generation of benzoxazole. Moreover, some of the synthesised derivatives were found to exhibit antibacterial properties against Staphylococcus aureus. Our method highlights the development of surface-modified functionalized lower-dimensional nanomaterials as sustainable and dynamic alternatives in photocatalysis to generate a 'library' of lead molecules using economical and benign protocols.
Collapse
Affiliation(s)
- Komal Jaiswal
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Rushikesh Jagtap
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore-560012, Karnataka, India.
| |
Collapse
|
2
|
Chen B, Dai Y, Yang S, Chen C, Wang L. Recent progress on transition metal dichalcogenide-based composites for cancer therapy. NANOSCALE 2025; 17:7552-7573. [PMID: 40029716 DOI: 10.1039/d4nr05510a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
Cancer remains a global health challenge, driving the need for advanced treatments. While transition metal dichalcogenides (TMDs) show promise in cancer therapy, their stability and efficacy require improvement. This study explores TMD-based composites as a solution to enhance their therapeutic potential. This review begins by providing an overview of TMDs and emphasizing their preparation techniques and fundamental properties. The focus is then shifted to categorizing TMD-based composites based on their constituent materials, delving into various types, such as TMD-organic, TMD-carbon, TMD-metal chalcogenide, TMD-metal, and TMD-oxide composites, as well as more complex ternary and multinary systems. We further explore key fabrication strategies, including hydrothermal/solvothermal methods and surface deposition/coating techniques. Subsequently, the focus shifted to their applications in cancer treatment, including chemotherapy, photothermal therapy, phototherapy, and integrated combination therapies. Finally, critical challenges in the field and perspectives on potential directions for future research are presented.
Collapse
Affiliation(s)
- Bo Chen
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Yue Dai
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Suxiang Yang
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Chunhong Chen
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| | - Lianhui Wang
- State Key Laboratory of Flexible Electronics & Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China.
| |
Collapse
|
3
|
Hamed EM, Li SFY. Transition Metal Dichalcogenides in Biomedical Devices and Biosensors: A New Frontier for Precision Healthcare. ACS Biomater Sci Eng 2025. [PMID: 40110810 DOI: 10.1021/acsbiomaterials.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Transition metal dichalcogenides (TMDs) have emerged as groundbreaking materials in the field of biomedical applications, particularly in the development of biosensors and medical devices. Their unique electronic and optical properties, combined with their tunability and biocompatibility, position TMDs as promising candidates for enhancing early disease detection and enabling personalized medicine. This perspective explores the multifaceted potential of TMDs, highlighting their applications in fluorescence and Raman-based biosensing, wearable and implantable devices, and smart therapeutic systems for targeted treatment. Additionally, we address critical challenges such as regulatory hurdles, long-term stability, and ethical considerations surrounding continuous health monitoring and data privacy. Looking to the future, we envision TMDs playing a vital role in the advancement of precision medicine, facilitating real-time health monitoring and individualized treatments. However, the successful integration of TMDs into clinical practice necessitates interdisciplinary collaboration among materials science, bioengineering, and clinical medicine. By fostering such collaboration, we can fully harness the capabilities of TMDs to revolutionize healthcare, making it more accessible, precise, and personalized for patients worldwide.
Collapse
Affiliation(s)
- Eslam M Hamed
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
- Department of Chemistry, Faculty of Science, Ain Shams University, Abbassia, Cairo 11566, Egypt
| | - Sam F Y Li
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| |
Collapse
|
4
|
Zhu L, Song G, Zhang W, Wu Y, Chen Y, Song J, Wang D, Li G, Tang BZ, Li Y. Aggregation induced emission luminogen bacteria hybrid bionic robot for multimodal phototheranostics and immunotherapy. Nat Commun 2025; 16:2578. [PMID: 40089477 PMCID: PMC11910577 DOI: 10.1038/s41467-025-57533-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 02/25/2025] [Indexed: 03/17/2025] Open
Abstract
Multimodal phototheranostics utilizing single molecules offer a "one-and-done" approach, presenting a convenient and effective strategy for cancer therapy. However, therapies based on conventional photosensitizers often suffer from limitations such as a single photosensitizing mechanism, restricted tumor penetration and retention, and the requirement for multiple irradiations, which significantly constrain their application. In this report, we present an aggregation-induced emission luminogen (AIEgen) bacteria hybrid bionic robot to address above issues. This bionic robot is composed of multifunctional AIEgen (INX-2) and Escherichia coli Nissle 1917 (EcN), i.e., EcN@INX-2. The EcN@INX-2 bionic robot exhibits near-infrared II (NIR-II) fluorescence emission and demonstrates efficient photodynamic and photothermal effects, as well as tumor-targeting capabilities. These features are facilitated by the complementary roles of INX-2 and EcN. The robot successfully enables in vivo multimodal imaging and therapy of colon cancer models in female mice through various mechanisms, including the activation of anti-tumor immunity, as well as photodynamic and photothermal therapy. Our study paves an avenue for designing multifunctional diagnostic agents for targeted colon cancer therapy through image-guided combinational immunotherapy.
Collapse
Affiliation(s)
- Liwei Zhu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Guangjie Song
- Center for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Wentian Zhang
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yifan Wu
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuling Chen
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Jiayi Song
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Deliang Wang
- Department of Materials Chemistry, Huzhou University, Huzhou, Zhejiang, 313000, China
| | - Guoxin Li
- Cancer Center of Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, Beijing, 102218, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong, 518172, China.
| | - Ying Li
- Innovation Research Center for AIE Pharmaceutical Biology, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| |
Collapse
|
5
|
Xue X, Guo M, Zhang H, Liu Q, Li X, Sun X, Mu X, Zhang XD. Valence-engineering modulation of MoS 2 clusters for enhancing biocatalytic activity. NANOSCALE 2025; 17:3487-3497. [PMID: 39718011 DOI: 10.1039/d4nr04527k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
Earth-abundant MoS2 with the advantages of a stable structure, tunable bandgap, and easy shear has great potential for applications in the fields of catalysis, biomedicine, and so on. However, the biocatalytic activity of MoS2 remains little investigated and is insufficient for biomedical applications. In this work, we develop ultra-small and water-soluble MoS2 clusters with superior antioxidant activity and enzyme-like activity via valence-engineering modulation with Ce doping. Compared with pure, Re-, Tl-, and Nd-MoS2 clusters, Ce-MoS2 clusters exhibit about 1.7-fold enhanced antioxidant activity. Moreover, superoxide dismutase (SOD)-like activity of Ce-MoS2 clusters is about 30-fold higher than that of MoS2 clusters. In addition, the Ce-MoS2 clusters are evidenced to possess ultra-high clearance performance for reactive oxygen species and reactive nitrogen radicals (RONS), especially ˙OH and O2˙-. The comprehensive analyses of valence evolution and the energy level structure indicate that the enhanced biocatalytic activity is attributed to the synergistic effect of valence engineering of Mo4+/Mo6+ and energy-level engineering in MoS2 clusters via Ce doping. This work provides a universal approach to improve the biocatalytic activity of MoS2 clusters via valence engineering modulation, which exhibits great potential in the field of biomedical application, especially inflammatory diseases.
Collapse
Affiliation(s)
- Xiaoyan Xue
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Meili Guo
- Department of Physics, School of Science, Tianjin Chengjian University, Tianjin 300384, China.
| | - Hao Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xin Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
6
|
Zhang T, Ren X, Cao W, Zou H, Jiang X, Ma F, Chen R, Qiao H, Zhang Y, Liu H, Zhang H, Ni H. Exploring 1T/2H MoS 2 quantum dots modified 2D CoP x nanosheets for efficient electrocatalytic hydrogen evolution reaction. J Colloid Interface Sci 2025; 679:569-577. [PMID: 39471585 DOI: 10.1016/j.jcis.2024.10.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/01/2024]
Abstract
The exploration of multiphases and 0D/2D heterojunction in transition metal phosphides (TMPs) and transition metal sulfides (TMDs) is of major interest for hydrogen evolution reaction (HER). Herein, a novel combination route where 0D mixed-phased 1T/2H molybdenum sulfide quantum dots (MoS2 QDs) are uniformly anchored on the 2D CoPx nanosheets is developed. MoS2 QDs and CoPx were prepared via hydrothermal method and mixed with different ratios (Mo:Co ratios of 2:1, 1:1, and 1:2) and annealed under different temperatures to modulate their application in acidic HER processes. Specifically, 2Mo/1Co exhibited advanced performance for HER in 0.5 M H2SO4 solution and required 14 mV to deliver 10 mA cm-2 and revealed a descended Tafel slope of 75.42 mV dec-1 with 240 h stability except obvious deactivation. The successful design and construction of 0D/2D mixed-dimensional materials would broaden the application of MoS2 and CoPx for electrocatalytic hydrogen evolution.
Collapse
Affiliation(s)
- Tian Zhang
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xiaohui Ren
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Wenzhe Cao
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Haoran Zou
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Xingxin Jiang
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Feng Ma
- School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Rongsheng Chen
- School of Chemical Engineering and Technology, Wuhan University of Science and Technology, Wuhan, Hubei 430081, China
| | - Hui Qiao
- Hunan Key Laboratory for Micro-Nano Energy Materials and Devices, and School of Physics and Optoelectronic, Xiangtan University, Hunan 411105, China
| | - Ye Zhang
- Lab of Optoelectronic Technology for Low Dimensional Nanomaterials, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
| | - Huating Liu
- School of Electrical and Electronic Engineering, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hua Zhang
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Hongwei Ni
- The State Key Laboratory of Refractories and Metallurgy, Key Laboratory for Ferrous Metallurgy and Resources Utilization of Ministry of Education & Hubei Provincial Key Laboratory for New Processes of Ironmaking and Steel Making, Faculty of Materials, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
7
|
Huo J, Dou Y, Wu C, Liu H, Dou S, Yuan D. Defect Engineering of Metal-Based Atomically Thin Materials for Catalyzing Small-Molecule Conversion Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416483. [PMID: 39707647 DOI: 10.1002/adma.202416483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Recently, metal-based atomically thin materials (M-ATMs) have experienced rapid development due to their large specific surface areas, abundant electrochemically accessible sites, attractive surface chemistry, and strong in-plane chemical bonds. These characteristics make them highly desirable for energy-related conversion reactions. However, the insufficient active sites and slow reaction kinetics leading to unsatisfactory electrocatalytic performance limited their commercial application. To address these issues, defect engineering of M-ATMs has emerged to increase the active sites, modify the electronic structure, and enhance the catalytic reactivity and stability. This review provides a comprehensive summary of defect engineering strategies for M-ATM nanostructures, including vacancy creation, heteroatom doping, amorphous phase/grain boundary generation, and heterointerface construction. Introducing recent advancements in the application of M-ATMs in electrochemical small molecule conversion reactions (e.g., hydrogen, oxygen, carbon dioxide, nitrogen, and sulfur), which can contribute to a circular economy by recycling molecules like H2, O2, CO2, N2, and S. Furthermore, a crucial link between the reconstruction of atomic-level structure and catalytic activity via analyzing the dynamic evolution of M-ATMs during the reaction process is established. The review also outlines the challenges and prospects associated with M-ATM-based catalysts to inspire further research efforts in developing high-performance M-ATMs.
Collapse
Affiliation(s)
- Juanjuan Huo
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhai Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Chao Wu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Huakun Liu
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Shixue Dou
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Ding Yuan
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
8
|
Li M, Huang Y, Shen C, Wang Y, Lin Y, Wang Z, Chen N, Luo Y. Application of quantum dots in cancer diagnosis and treatment: Advances and perspectives. NANO RESEARCH 2025; 18:94907163. [DOI: 10.26599/nr.2025.94907163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
|
9
|
Parihar A, Gaur K, Sarbadhikary P. Advanced 2D Nanomaterials for Phototheranostics of Breast Cancer: A Paradigm Shift. Adv Biol (Weinh) 2025; 9:e2400441. [PMID: 39543015 DOI: 10.1002/adbi.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/29/2024] [Indexed: 11/17/2024]
Abstract
Breast cancer is the leading cause of women's deaths and associated comorbidities. The advanced and targeted strategies against breast cancer have gained considerable attention due to their potential enhanced therapeutic efficacy over conventional therapies. In this context, phototherapies like photodynamic therapy (PDT) and photothermal therapy (PTT) have shown promise as an effective and alternative strategy due to reduced side effects, noninvasiveness, and spatiotemporal specificity. With the advent of nanotechnology, several types of nanomaterials that have shown excellent prospects in increasing the efficacy of photo therapies have been exploited in cancer treatment. In recent years, 2D nanomaterials have stood out promising because of their unique ultrathin planar structure, chemical, physical, tunable characteristics, and corresponding remarkable physiochemical/biological properties. In this review, the potential and the current status of several types of 2D nanomaterials such as graphene-based nanomaterials, Mxenes, Black phosphorous, and Transition Metal Dichalcogenides for photo/thermo and combination-based imaging and therapy of breast cancer have been discussed. The current challenges and prospects in terms of translational potential in future clinical oncology are highlighted.
Collapse
Affiliation(s)
- Arpana Parihar
- Department of Translational Medicine, All India Institute of Medical Sciences Bhopal, Saket Nagar, Bhopal, Madhya Pradesh, 462020, India
| | - Kritika Gaur
- Central Sheep and wool research institute, ICAR- Indian Council of Agricultural Research, Avikanagr, Malpura, Rajasthan, 304501, India
| | - Paromita Sarbadhikary
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, Doornfontein, P.O. Box 17011, Johannesburg, 2028, South Africa
| |
Collapse
|
10
|
Wang M, Zhu H, Xue Y, Duan Y, Tian H, Liu Q, Zhang Y, Li Z, Loh XJ, Ye E, Yin G, Wang X, Ding X, Leong DT. Baiting bacteria with amino acidic and peptidic corona coated defect-engineered antimicrobial nanoclusters for optimized wound healing. Bioact Mater 2024; 42:628-643. [PMID: 39386355 PMCID: PMC11462226 DOI: 10.1016/j.bioactmat.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/22/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Keeping steps ahead of the bacteria in the race for more efficacious antibacterial strategies is increasingly difficult with the advent of bacterial resistance genes. Herein, we engineered copper sulfide nanoclusters (CuSx NCs) with variable sulfur defects for enhanced dual-treatment of bacterial infections by manipulating photothermal effects and Fenton-like activity. Next, by encasing CuSx NCs with a complex mixture of amino acids and short peptides derived from Luria-Bertani bacterial culture media as a protein corona, we managed to coax E. Coli to take up these CuSx NCs. As a whole, Amino-Pep-CuSx NCs was perceived as a food source and actively consumed by bacteria, enhancing their effective uptake by at least 1.5-fold greater than full length BSA protein BSA-corona CuSx NCs. Through strategically using defect-engineering, we successfully fine-tune photothermal effect and Fenton-like capacity of CuSx NCs. Increased sulfur defects lead to reduced but sufficient heat generation under solar-light irradiation and increased production of toxic hydroxyl radicals. By fine-tuning sulfur defects during synthesis, we achieve CuSx NCs with an optimal synergistic effect, significantly enhancing their bactericidal properties. These ultra-small and biodegradable CuSx NCs can rapidly break down after treatment for clearance. Thus, Amino-Pep-CuSx NCs demonstrate effective eradication of bacteria both in vitro and in vivo because of their relatively high uptake, optimal balanced photothermal and chemodynamic outcomes. Our study offers a straightforward and efficient method to enhance bacterial uptake of next generation of antibacterial agents.
Collapse
Affiliation(s)
- Maonan Wang
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Yanxia Duan
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Hua Tian
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| | - Qi Liu
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Yuzhu Zhang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore, 138634, Singapore
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, Faculty of Engineering, National University of Singapore, Singapore, 117585, Singapore
| |
Collapse
|
11
|
Duan X, Xu K, Zhang M, Xia Y, Wang L, Chen B, Wang C, Wei S, Zhou L. Crystal Form-Dependent MnS for Diabetic Wound Healing: Performance and Mechanistic Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402496. [PMID: 39402776 DOI: 10.1002/smll.202402496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 09/14/2024] [Indexed: 12/20/2024]
Abstract
In pharmaceuticals, the structural and functional alterations induced by biotransformation are well-documented. Many pharmaceuticals exist in various crystal forms, which govern their transformation and significantly impact their activity. However, in the field of inorganic nanomedicine, there is a paucity of research focusing on the influence of crystal form-dependent "metabolism" (transformation) on their activity and biomechanism. This study delves into the distinct performances of two crystal forms of manganese sulfide (MnS), namely α-MnS and γ-MnS, in bacteria-infected diabetic wound healing. In the initial stage of a wound, where the environment is neutral to slightly alkaline, MnS partially converts to MnxOy (comprising Mn2O3 and Mn3O4) and concurrently produces hydrogen sulfide (H2S); the conversion efficiency of γ-MnS significantly surpasses that of α-MnS. Additionally, γ-MnS is more soluble than α-MnS, which allows it to generate more Mn2+. These components collectively contribute to the superior bacteriostatic properties of MnS. In wound related cells, MnS stimulates the production of collagen I and vascular endothelial growth factor (VEGF), promote the M1 macrophages polarizing to the M2 phenotype, for extracellular matrix (ECM) remodeling. Notably, different transformation products have distinct functions. Consequently, the activity of MnS is dependent on its original crystal form related solubility and transformation efficiency.
Collapse
Affiliation(s)
- Xiaomeng Duan
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Kaikai Xu
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Mingzhu Zhang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Yuanyuan Xia
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Liping Wang
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Bingbing Chen
- Department of Energy Science and Engineering, Nanjing Tech University, Nanjing, Jiangsu, 210009, China
| | - Chongchong Wang
- School of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng, 224051, China
| | - Shaohua Wei
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| | - Lin Zhou
- College of Chemistry and Materials Science, Jiangsu Key Laboratory of Bio-functional Materials, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, China
| |
Collapse
|
12
|
Wang Z, Han X, Sun G, Yu M, Qin J, Zhang Y, Ding D. Advances in cancer diagnosis and therapy by alginate-based multifunctional hydrogels: A review. Int J Biol Macromol 2024; 283:137707. [PMID: 39566758 DOI: 10.1016/j.ijbiomac.2024.137707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
The field of oncology has been changed by the application of hydrogels. These 3D polymeric networks have demonstrated significant promise in the treatment of cancer and can boost the efficacy of conventional therapeutics including chemotherapy and immunotherapy. Noteworthy, the development of biocompatible and effective hydrogels has been of interest. In this case, alginate as a biopolymer and carbohydrate polymer has been used to modify or synthesis multifunctional nanoparticles for the treatment of human diseases, especially cancer. Therefore, highlighting the function of alginate in the development of hydrogels in cancer therapy can provide new insights for improving outcome and survival rate of patients. Alginate hydrogels improve the specific and selective delivery of cargo and therefore, they reduce the systemic toxicity of drugs, while they enhance anti-cancer activity. Alginate hydrogels protect the genes against degradation by enzymes and increase blood circulation time. The alginate hydrogels can respond to the specific stimuli in the tumor microenvironment including pH, redox and light to improve the site-specific release of cargo. The nanoparticles can be incorporated in the structure of alginate hydrogels to augment their anti-cancer activity. In addition, alginate hydrogels can accelerate immunotherapy and phototherapy through delivery of immunomodulators and photosensitizers, respectively.
Collapse
Affiliation(s)
- Ziwen Wang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Guowei Sun
- Interventional Center, Fengcheng Central Hospital, Fengcheng 118199, China
| | - Miao Yu
- Department of Respiratory, General Hospital of Northern Theater Command, Shenyang 110016, China
| | - Juan Qin
- Department of Endocrinology and Metabolism, Shenyang Fourth People Hospital, Shenyang 110001, China
| | - Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ding Ding
- Department of Clinical Nutrition, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
13
|
Liu S, Sun X, Wang Y, Liu K, Liu R, Zhang Y, Ni Z, Tang W, Zhang S, Mu X, Wang H, Zhang XD, Ming D. A nanowell-based MoS 2 neuroelectrode for high-sensitivity neural recording. iScience 2024; 27:110949. [PMID: 39391733 PMCID: PMC11465046 DOI: 10.1016/j.isci.2024.110949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/06/2024] [Accepted: 09/10/2024] [Indexed: 10/12/2024] Open
Abstract
Implantable neural electrodes are crucial in neurological diagnosis and therapy because of their ultra-high spatial resolution, but they are constrained by high impedance and insufficient charge injection capacity, resulting in noise that often obscures valuable signals. Emerging nanotechnologies are powerful tools to improve sensitivity and biocompatibility. Herein, we developed quantized 2D MoS2 electrodes by incorporating bioactive MoS2 nanosheets onto bare electrodes, achieving sensitive, compatible recording. The 2D materials can create tiny nanowells, which behaved as quantized charge storage units and thus improved sensitivity. The key sensitivity indicators, impedance and cathode charge storage capacity, showed a multifold increase. The 17.7-fold improvement in catalytic activity of MoS2 electrodes facilitated effective current transmission and reduced inflammatory response. In vivo recording showed that the sensitivity of local field potentials increased throughout frequency range and peaked at a 4.7-fold in β rhythm. This work provides a general strategy for achieving effective diagnoses of neurological disorders.
Collapse
Affiliation(s)
- Shuangjie Liu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xinyu Sun
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Yang Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Kaijin Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Renpeng Liu
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Yuqin Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Zhaoliang Ni
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Wanyu Tang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Shaofang Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
- Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China
| | - Dong Ming
- Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Xu M, Wei S, Su T, Ma D, Wang Z, Zhu D, Weng L, Ding X. Visualizing Macrophage Polarization through Fluorescent mRNA Profiling. BIOSENSORS 2024; 14:475. [PMID: 39451688 PMCID: PMC11506351 DOI: 10.3390/bios14100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 09/26/2024] [Accepted: 09/29/2024] [Indexed: 10/26/2024]
Abstract
Macrophages, known for their phenotypic plasticity, play a critical role in maintaining homeostasis and inflammation-related pathogenesis. Although identifying diverse macrophage phenotypes holds promise for enhancing diagnoses and treatments of diseases mediated by macrophages, existing methodologies for differentiating macrophages often lack precision. They are limited by the cumbersome procedures that require large-scale equipment, such as flow cytometry and transcriptomic analysis. In this context, we have engineered fluorescent polyadenine (polyA)-mediated sticky flares that enable practical visualization of macrophages. This technology facilitates the highly sensitive detection of macrophage phenotypes through the specific recognition of intracellular mRNAs, permitting in situ imaging. Our approach demonstrates the potential for determining macrophage polarization status at the single-cell level within dynamic immune microenvironments, thereby providing crucial diagnostic and prognostic information that could guide the development of tailored treatments for macrophage-related diseases in personalized medicine.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (M.X.); (S.W.); (T.S.); (D.M.); (Z.W.)
| | - Xianguang Ding
- State Key Laboratory of Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China; (M.X.); (S.W.); (T.S.); (D.M.); (Z.W.)
| |
Collapse
|
15
|
Luo JJ, Qin LY, Zan XY, Zou HL, Luo HQ, Li NB, Li BL. Cysteine-Induced Chirality Evolution of Molybdenum Disulfide Nanodots from a Bottom-Up Strategy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14900-14907. [PMID: 38982885 DOI: 10.1021/acs.langmuir.4c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
The transfer of chirality from molecules to synthesized nanomaterials has recently attracted significant attention. Although most studies have focused on graphene and plasmonic metal nanostructures, layered transition metal dichalcogenides (TMDs), particularly MoS2, have recently garnered considerable attention due to their semiconducting and electrocatalytic characteristics. Herein, we report a new approach for the synthesis of chiral molybdenum sulfide nanomaterials based on a bottom-up synthesis method in the presence of chiral cysteine enantiomers. In the synthesis process, molybdenum trioxide and sodium hydrosulfide serve as molybdenum and sulfur sources, respectively. In addition, ascorbic acid acts as a reducing agent, resulting in the formation of zero-dimensional MoS2 nanodots. Moreover, the addition of cysteine enantiomers to the growth solutions contributes to the chirality evolution of the MoS2 nanostructures. The chirality is attributed to the cysteine enantiomer-induced preferential folding of the MoS2 planes. The growth mechanism and chiral structure of the nanomaterials are confirmed through a series of characterization techniques. This work combines chirality with the bottom-up synthesis of MoS2 nanodots, thereby expanding the synthetic methods for chiral nanomaterials. This simple synthesis approach provides new insights for the construction of other chiral TMD nanomaterials with emerging structures and properties. More significantly, the as-formed MoS2 nanodots exhibited highly defect-rich structures and chiroptical performance, thereby inspiring a high potential for emerging optical and electronic applications.
Collapse
Affiliation(s)
- Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Ling Yun Qin
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xin Yao Zan
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
16
|
Tian H, Zhu H, Xue Y, Wang M, Xing K, Li Z, Loh XJ, Ye E, Ding X, Li BL, Yin X, Leong DT. White light powered antimicrobial nanoagents for triple photothermal, chemodynamic and photodynamic based sterilization. NANOSCALE HORIZONS 2024; 9:1190-1199. [PMID: 38757185 DOI: 10.1039/d4nh00060a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Antibacterial nanoagents have been increasingly developed due to their favorable biocompatibility, cost-effective raw materials, and alternative chemical or optical properties. Nevertheless, there is still a pressing need for antibacterial nanoagents that exhibit outstanding bacteria-binding capabilities and high antibacterial efficiency. In this study, we constructed a multifunctional cascade bioreactor (GCDCO) as a novel antibacterial agent. This involved incorporating carbon dots (CDs), cobalt sulfide quantum dots (CoSx QDs), and glucose oxidase (GOx) to enhance bacterial inhibition under sunlight irradiation. The GCDCO demonstrated highly efficient antibacterial capabilities attributed to its favorable photothermal properties, photodynamic activity, as well as the synergistic effects of hyperthermia, glucose-augmented chemodynamic action, and additional photodynamic activity. Within this cascade bioreactor, CDs played the role of a photosensitizer for photodynamic therapy (PDT), capable of generating ˙O2- even under solar light irradiation. The CoSx QDs not only functioned as a catalytic component to decompose hydrogen peroxide (H2O2) and generate hydroxyl radicals (˙OH), but they also served as heat generators to enhance the Fenton-like catalysis process. Furthermore, GOx was incorporated into this cascade bioreactor to internally supply H2O2 by consuming glucose for a Fenton-like reaction. As a result, GCDCO could generate a substantial amount of reactive oxygen species (ROS), leading to a significant synergistic effect that greatly induced bacterial death. Furthermore, the in vitro antibacterial experiment revealed that GCDCO displayed notably enhanced antibacterial activity against E. coli (99+ %) when combined with glucose under simulated sunlight, surpassing the efficacy of the individual components. This underscores its remarkable efficiency in combating bacterial growth. Taken together, our GCDCO demonstrates significant potential for use in the routine treatment of skin infections among diabetic patients.
Collapse
Affiliation(s)
- Hua Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - Houjuan Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Yuling Xue
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Kuoran Xing
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Enyi Ye
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Singapore.
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Bang Lin Li
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China
| | - Xueqiong Yin
- Hainan Provincial Fine Chemical Engineering Research Centre, Hainan University, Haikou, Hainan, 570228, P. R. China.
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore.
| |
Collapse
|
17
|
Zhang H, Luo JJ, Wang RL, He XY, Zou HL, Luo HQ, Li NB, Li BL. Electrophoretic Microplate Protein Identification Based on Gold Staining of Molybdenum Disulfide Hydrogels. Anal Chem 2024; 96:10074-10083. [PMID: 38848224 DOI: 10.1021/acs.analchem.4c02074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Numerous high-performance nanotechnologies have been developed, but their practical applications are largely restricted by the nanomaterials' low stabilities and high operation complexity in aqueous substrates. Herein, we develop a simple and high-reliability hydrogel-based nanotechnology based on the in situ formation of Au nanoparticles in molybdenum disulfide (MoS2)-doped agarose (MoS2/AG) hydrogels for electrophoresis-integrated microplate protein recognition. After the incubation of MoS2/AG hydrogels in HAuCl4 solutions, MoS2 nanosheets spontaneously reduce Au ions, and the hydrogels are remarkably stained with the color of as-synthetic plasmonic Au hybrid nanomaterials (Au staining). Proteins can precisely mediate the morphologies and optical properties of Au/MoS2 heterostructures in the hydrogels. Consequently, Au staining-based protein recognition is exhibited, and hydrogels ensure the comparable stabilities and sensitivities of protein analysis. In comparison to the fluorescence imaging and dye staining, enhanced sensitivity and recognition performances of proteins are implemented by Au staining. In Au staining, exfoliated MoS2 semiconductors directly guide the oriented growth of plasmonic Au nanostructures in the presence of formaldehyde, showing environment-friendly features. The Au-stained hydrogels merge the synthesis and recognition applications of plasmonic Au nanomaterials. Significantly, the one-step incubation of the electrophoretic hydrogels leads to high simplicity of operation, largely challenging those multiple-step Ag staining routes which were performed with high complexity and formaldehyde toxicity. Due to its toxic-free, simple, and sensitive merits, the Au staining integrated with electrophoresis-based separation and microplate-based high-throughput measurements exhibits highly promising and improved practicality of those developing nanotechnologies and largely facilitates in-depth understanding of biological information.
Collapse
Affiliation(s)
- Hang Zhang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Jun Jiang Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Ruo Lan Wang
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xin Yu He
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hao Lin Zou
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Hong Qun Luo
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Nian Bing Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Bang Lin Li
- Key Laboratory of Modern Analytical Chemistry, Chongqing Education Commission, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| |
Collapse
|
18
|
Wu Y, Zhang J, Lin A, Zhang T, Liu Y, Zhang C, Yin Y, Guo R, Gao J, Li Y, Chu Y. Immunomodulatory poly(L-lactic acid) nanofibrous membranes promote diabetic wound healing by inhibiting inflammation, oxidation and bacterial infection. BURNS & TRAUMA 2024; 12:tkae009. [PMID: 38841099 PMCID: PMC11151119 DOI: 10.1093/burnst/tkae009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 06/07/2024]
Abstract
Background Given the significant impact on human health, it is imperative to develop novel treatment approaches for diabetic wounds, which are prevalent and serious complications of diabetes. The diabetic wound microenvironment has a high level of reactive oxygen species (ROS) and an imbalance between proinflammatory and anti-inflammatory cells/factors, which hamper the healing of chronic wounds. This study aimed to develop poly(L-lactic acid) (PLLA) nanofibrous membranes incorporating curcumin and silver nanoparticles (AgNPs), defined as PLLA/C/Ag, for diabetic wound healing. Methods PLLA/C/Ag were fabricated via an air-jet spinning approach. The membranes underwent preparation and characterization through various techniques including Fourier-transform infrared spectroscopy, measurement of water contact angle, X-ray photoelectron spectroscopy, X-ray diffraction, scanning electron microscopy, assessment of in vitro release of curcumin and Ag+, testing of mechanical strength, flexibility, water absorption and biodegradability. In addition, the antioxidant, antibacterial and anti-inflammatory properties of the membranes were evaluated in vitro, and the ability of the membranes to heal wounds was tested in vivo using diabetic mice. Results Loose hydrophilic nanofibrous membranes with uniform fibre sizes were prepared through air-jet spinning. The membranes enabled the efficient and sustained release of curcumin. More importantly, antibacterial AgNPs were successfully reduced in situ from AgNO3. The incorporation of AgNPs endowed the membrane with superior antibacterial activity, and the bioactivities of curcumin and the AgNPs gave the membrane efficient ROS scavenging and immunomodulatory effects, which protected cells from oxidative damage and reduced inflammation. Further results from animal studies indicated that the PLLA/C/Ag membranes had the most efficient wound healing properties, which were achieved by stimulating angiogenesis and collagen deposition and inhibiting inflammation. Conclusions In this research, we successfully fabricated PLLA/C/Ag membranes that possess properties of antioxidants, antibacterial agents and anti-inflammatory agents, which can aid in the process of wound healing. Modulating wound inflammation, these new PLLA/C/Ag membranes serve as a novel dressing to enhance the healing of diabetic wounds.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jin Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
- Clinical Laboratory, Zhejiang Medical & Health Group Quzhou Hospital, 62 Wenchang Road, Kecheng District, Quzhou 324004, China
| | - Anqi Lin
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Tinglin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yong Liu
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Chunlei Zhang
- Scientific Research Sharing Platform, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Ran Guo
- Department of Physiology, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, 168 Changhai Road, Yangpu District, Shanghai 200433, China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Lingyun Street, Xuhui District, Shanghai 200237, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, 3 Tongxiang Street, Aimin District, Mudanjiang 157011, China
| |
Collapse
|
19
|
Yuan M, Yang L, Yang Z, Ma Z, Ma J, Liu Z, Ma P, Cheng Z, Maleki A, Lin J. Fabrication of Interface Engineered S-Scheme Heterojunction Nanocatalyst for Ultrasound-Triggered Sustainable Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308546. [PMID: 38342609 PMCID: PMC11022741 DOI: 10.1002/advs.202308546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/28/2023] [Indexed: 02/13/2024]
Abstract
In order to establish a set of perfect heterojunction designs and characterization schemes, step-scheme (S-scheme) BiOBr@Bi2S3 nanoheterojunctions that enable the charge separation and expand the scope of catalytic reactions, aiming to promote the development and improvement of heterojunction engineering is developed. In this kind of heterojunction system, the Fermi levels mediate the formation of the internal electric field at the interface and guide the recombination of the weak redox carriers, while the strong redox carriers are retained. Thus, these high-energy electrons and holes are able to catalyze a variety of substrates in the tumor microenvironment, such as the reduction of oxygen and carbon dioxide to superoxide radicals and carbon monoxide (CO), and the oxidation of H2O to hydroxyl radicals, thus achieving sonodynamic therapy and CO combined therapy. Mechanistically, the generated reactive oxygen species and CO damage DNA and inhibit cancer cell energy levels, respectively, to synergistically induce tumor cell apoptosis. This study provides new insights into the realization of high efficiency and low toxicity in catalytic therapy from a unique perspective of materials design. It is anticipated that this catalytic therapeutic method will garner significant interest in the sonocatalytic nanomedicine field.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ling Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhizi Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Jie Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Zhendong Liu
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface TechnologyMinistry of EducationCollege of Materials Science and Chemical EngineeringHarbin Engineering UniversityHarbin150001China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC)and Department of Pharmaceutical Nanotechnology (School of pharmacy)Zanjan University of Medical SciencesZanjan4513956184Iran
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun130022China
- School of Applied Chemistry and EngineeringUniversity of Science and Technology of ChinaHefei230026China
| |
Collapse
|
20
|
Mahendran S, Carrete J, Isacsson A, Madsen GKH, Erhart P. Quantitative Predictions of the Thermal Conductivity in Transition Metal Dichalcogenides: Impact of Point Defects in MoS 2 and WS 2 Monolayers. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1709-1716. [PMID: 38322774 PMCID: PMC10839904 DOI: 10.1021/acs.jpcc.3c06820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 02/08/2024]
Abstract
Transition metal dichalcogenides are investigated for various applications at the nanoscale because of their unique combination of properties and dimensionality. For many of the anticipated applications, heat conduction plays an important role. At the same time, these materials often contain relatively large amounts of point defects. Here, we provide a systematic analysis of the impact of intrinsic and selected extrinsic defects on the lattice thermal conductivity of MoS2 and WS2 monolayers. We combine Boltzmann transport theory and Green's function-based T-matrix approach for the calculation of scattering rates. The force constants for the defect configurations are obtained from density functional theory calculations via a regression approach, which allows us to sample a rather large number of defects at a moderate computational cost and to systematically enforce both the translational and rotational acoustic sum rules. The calculated lattice thermal conductivity is in quantitative agreement with the experimental data for heat transport and defect concentrations for both MoS2 and WS2. Crucially, this demonstrates that the strong deviation from a 1/T temperature dependence of the lattice thermal conductivity observed experimentally can be fully explained by the presence of point defects. We furthermore predict the scattering strengths of the intrinsic defects to decrease in the sequence VMo ≈ V2S= > V2S⊥ > VS > Sad in both materials, while the scattering rates for the extrinsic (adatom) defects decrease with increasing mass such that Liad > Naad > Kad. Compared with earlier work, we find that both intrinsic and extrinsic adatoms are relatively weak scatterers. We attribute this difference to the treatment of the translational and rotational acoustic sum rules, which, if not enforced, can lead to spurious contributions in the zero-frequency limit.
Collapse
Affiliation(s)
- Srinivasan Mahendran
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | - Jesús Carrete
- Instituto
de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, E-50009 Zaragoza, Spain
- Institute
of Materials Chemistry, TU Wien, A-1060 Vienna, Austria
| | - Andreas Isacsson
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | - Paul Erhart
- Department
of Physics, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
21
|
Bharti S, Tripathi SK, Singh K. Recent progress in MoS 2 nanostructures for biomedical applications: Experimental and computational approach. Anal Biochem 2024; 685:115404. [PMID: 37993043 DOI: 10.1016/j.ab.2023.115404] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/24/2023]
Abstract
In the category of 2D materials, MoS2 a transition metal dichalcogenide, is a novel and intriguing class of materials with interesting physicochemical properties, explored in applications ranging from cutting-edge optoelectronic to the frontiers of biomedical and biotechnology. MoS2 nanostructures an alternative to heavy toxic metals exhibit biocompatibility, low toxicity and high stability, and high binding affinity to biomolecules. MoS2 nanostructures provide a lot of opportunities for the advancement of novel biosensing, nanodrug delivery system, electrochemical detection, bioimaging, and photothermal therapy. Much efforts have been made in recent years to improve their physiochemical properties by developing a better synthesis approach, surface functionalization, and biocompatibility for their safe use in the advancement of biomedical applications. The understanding of parameters involved during the development of nanostructures for their safe utilization in biomedical applications has been discussed. Computational studies are included in this article to understand better the properties of MoS2 and the mechanism involved in their interaction with biomolecules. As a result, we anticipate that this combined experimental and computational studies of MoS2 will inspire the development of nanostructures with smart drug delivery systems, and add value to the understanding of two-dimensional smart nano-carriers.
Collapse
Affiliation(s)
- Shivani Bharti
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - S K Tripathi
- Department of Physics, Panjab University, Chandigarh, 160014, India
| | - Kedar Singh
- School of Physical Sciences, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Zhang M, An H, Gu Z, Zhang YC, Wan T, Jiang HR, Zhang FS, Jiang BG, Han N, Wen YQ, Zhang PX. Multifunctional wet-adhesive chitosan/acrylic conduit for sutureless repair of peripheral nerve injuries. Int J Biol Macromol 2023; 253:126793. [PMID: 37709238 DOI: 10.1016/j.ijbiomac.2023.126793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
The incidence of peripheral nerve injury (PNI) is high worldwide, and a poor prognosis is common. Surgical closure and repair of the affected area are crucial to ensure the effective treatment of peripheral nerve injuries. Despite being the standard treatment approach, reliance on sutures to seal the severed nerve ends introduces several limitations and restrictions. This technique is intricate and time-consuming, and the application of threading and punctate sutures may lead to tissue damage and heightened tension concentrations, thus increasing the risk of fixation failure and local inflammation. This study aimed to develop easily implantable chitosan-based peripheral nerve repair conduits that combine acrylic acid and cleavable N-hydroxysuccinimide to reduce nerve damage during repair. In ex vivo tissue adhesion tests, the conduit achieved maximal interfacial toughness of 705 J m-2 ± 30 J m-2, allowing continuous bridging of the severed nerve ends. Adhesive repair significantly reduces local inflammation caused by conventional sutures, and the positive charge of chitosan disrupts the bacterial cell wall and reduces implant-related infections. This promises to open new avenues for sutureless nerve repair and reliable medical implants.
Collapse
Affiliation(s)
- Meng Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Heng An
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Zhen Gu
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Yi-Chong Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Teng Wan
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Hao-Ran Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Feng-Shi Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Bao-Guo Jiang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Na Han
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| | - Yong-Qiang Wen
- Beijing Key Laboratory for Bioengineering and Sensing Technology, Daxing Research Institute, School of Chemistry & Biological Engineering, University of Science & Technology Beijing, Beijing 100083, China.
| | - Pei-Xun Zhang
- Department of Orthopedics and Trauma, Peking University People's Hospital, Key Laboratory of Trauma and Neural Regeneration, Peking University, National Center for Trauma Medicine, Beijing 100044, China.
| |
Collapse
|
23
|
Wang Z, Gu Y, Liu F, Wu W. Facile synthesis of wide bandgap ZrS 2 colloidal quantum dots for solution processed solar-blind UV photodetectors. Chem Commun (Camb) 2023; 59:13771-13774. [PMID: 37920975 DOI: 10.1039/d3cc03594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We present a facile one-pot method for the successful synthesis of heavy metal-free ZrS2 colloidal quantum dots (QDs) with a wide bandgap. To achieve this, we employed 1-dodecanethiol (DT) as a sulfur precursor, enabling the controlled release of H2S in situ during the reaction at temperatures exceeding 195 °C. This approach facilitated the synthesis of small-sized ZrS2 QDs with precise control.
Collapse
Affiliation(s)
- Zan Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yunjiao Gu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fenghua Liu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiping Wu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
24
|
Chen L, Ding C, Chai K, Yang B, Chen W, Zeng J, Xu W, Huang Y. Nanohole-Array Induced Metallic Molybdenum Selenide Nanozyme for Photoenhanced Tumor-Specific Therapy. ACS NANO 2023; 17:18148-18163. [PMID: 37713431 DOI: 10.1021/acsnano.3c05000] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2023]
Abstract
Deficient catalytic sensitivity to the tumor microenvironment is a major obstacle to nanozyme-mediated tumor therapy. Electron transfer is the intrinsic essence for a nanozyme-catalyzed redox reaction. Here, we developed a nanohole-array-induced metallic molybdenum selenide (n-MoSe2) that is enriched with Se vacancies and can serve as an electronic transfer station for cycling electrons between H2O2 decomposition and glutathione (GSH) depletion. In a MoSe2 nanohole array, the metallic phase reaches up to 84.5%, which has been experimentally and theoretically demonstrated to exhibit ultrasensitive H2O2 responses and enhanced peroxidase (POD)-like activities for H2O2 thermodynamic heterolysis. More intriguingly, plenty of delocalized electrons appear due to phase- and vacancy-facilitated band structure reconstruction. Combined with the limited characteristic sizes of nanoholes, the surface plasmon resonance effect can be excited, leading to the broad absorption spectrum spanning of n-MoSe2 from the visible to near-infrared region (NIR) for photothermal conversion. Under NIR laser irradiation, metallic MoSe2 is able to induce out-of-balance redox and metabolism homeostasis in the tumor region, thus significantly improving therapeutic effects. This study that takes advantage of phase and defect engineering offers inspiring insights into the development of high-efficiency photothermal nanozymes.
Collapse
Affiliation(s)
- Liang Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Caiping Ding
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Kejie Chai
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Bing Yang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiwei Chen
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Junyi Zeng
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Weiming Xu
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| | - Youju Huang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, Zhejiang, People's Republic of China
| |
Collapse
|
25
|
Khan ZU, Khan LU, Brito HF, Gidlund M, Malta OL, Di Mascio P. Colloidal Quantum Dots as an Emerging Vast Platform and Versatile Sensitizer for Singlet Molecular Oxygen Generation. ACS OMEGA 2023; 8:34328-34353. [PMID: 37779941 PMCID: PMC10536110 DOI: 10.1021/acsomega.3c03962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 08/15/2023] [Indexed: 10/03/2023]
Abstract
Singlet molecular oxygen (1O2) has been reported in wide arrays of applications ranging from optoelectronic to photooxygenation reactions and therapy in biomedical proposals. It is also considered a major determinant of photodynamic therapy (PDT) efficacy. Since the direct excitation from the triplet ground state (3O2) of oxygen to the singlet excited state 1O2 is spin forbidden; therefore, a rational design and development of heterogeneous sensitizers is remarkably important for the efficient production of 1O2. For this purpose, quantum dots (QDs) have emerged as versatile candidates either by acting individually as sensitizers for 1O2 generation or by working in conjunction with other inorganic materials or organic sensitizers by providing them a vast platform. Thus, conjoining the photophysical properties of QDs with other materials, e.g., coupling/combining with other inorganic materials, doping with the transition metal ions or lanthanide ions, and conjugation with a molecular sensitizer provide the opportunity to achieve high-efficiency quantum yields of 1O2 which is not possible with either component separately. Hence, the current review has been focused on the recent advances made in the semiconductor QDs, perovskite QDs, and transition metal dichalcogenide QD-sensitized 1O2 generation in the context of ongoing and previously published research work (over the past eight years, from 2015 to 2023).
Collapse
Affiliation(s)
- Zahid U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Latif U. Khan
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
- Synchrotron-light
for Experimental Science and Applications in the Middle East (SESAME), P.O. Box 7, Allan 19252, Jordan
| | - Hermi F. Brito
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| | - Magnus Gidlund
- Institute
of Biomedical Sciences-IV, University of
Sao Paulo (USP), 05508-000 São Paulo-SP, Brazil
| | - Oscar L. Malta
- Departamento
de Química Fundamental, Universidade
Federal de Pernambuco, Recife, PE 50740-560, Brazil
| | - Paolo Di Mascio
- Institute
of Chemistry, University of Sao Paulo (USP), 05508-000 São
Paulo-SP, Brazil
| |
Collapse
|
26
|
He Z, Du J, Miao Y, Li Y. Recent Developments of Inorganic Nanosensitizers for Sonodynamic Therapy. Adv Healthc Mater 2023; 12:e2300234. [PMID: 37070721 DOI: 10.1002/adhm.202300234] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 04/07/2023] [Indexed: 04/19/2023]
Abstract
As a noninvasive treatment, sonodynamic therapy (SDT) has been widely used in the treatment of tumors because of its ability to penetrate deep tissue with few side effects. As the key factor of SDT, it is meaningful to design and synthesize efficient sonosensitizers. Compared with organic sonosensitizers, inorganic sonosensitizers can be easily excited by ultrasound. In addition, inorganic sonosensitizers with stable properties, good dispersion, and long blood circulation time, have great development potential in SDT. This review summarizes possible mechanisms of SDT (sonoexcitation and ultrasonic cavitation) in detail. Based on these mechanisms, the design and synthesis of inorganic nanosonosensitizers can be divided into three categories: traditional inorganic semiconductor sonosensitizers, enhanced inorganic semiconductor sonosensitizers, and cavitation-enhanced sonosensitizers. Subsequently, the current efficient construction methods of sonosensitizers are summarized including accelerated semiconductor charge separation and enhanced production of reactive oxygen species through ultrasonic cavitation. Furthermore, the advantages and disadvantages of different inorganic sonosensitizers and detailed strategies are systematically discussed on how to enhance SDT. Hopefully, this review could provide new insights into the design and synthesis of efficient inorganic nano-sonosensitizers for SDT.
Collapse
Affiliation(s)
- Zongyan He
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai, 200093, China
| |
Collapse
|
27
|
Yuan M, Kermanian M, Agarwal T, Yang Z, Yousefiasl S, Cheng Z, Ma P, Lin J, Maleki A. Defect Engineering in Biomedical Sciences. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304176. [PMID: 37270664 DOI: 10.1002/adma.202304176] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/28/2023] [Indexed: 06/05/2023]
Abstract
With the promotion of nanochemistry research, large numbers of nanomaterials have been applied in vivo to produce desirable cytotoxic substances in response to endogenous or exogenous stimuli for achieving disease-specific therapy. However, the performance of nanomaterials is a critical issue that is difficult to improve and optimize under biological conditions. Defect-engineered nanoparticles have become the most researched hot materials in biomedical applications recently due to their excellent physicochemical properties, such as optical properties and redox reaction capabilities. Importantly, the properties of nanomaterials can be easily adjusted by regulating the type and concentration of defects in the nanoparticles without requiring other complex designs. Therefore, this tutorial review focuses on biomedical defect engineering and briefly discusses defect classification, introduction strategies, and characterization techniques. Several representative defective nanomaterials are especially discussed in order to reveal the relationship between defects and properties. A series of disease treatment strategies based on defective engineered nanomaterials are summarized. By summarizing the design and application of defective engineered nanomaterials, a simple but effective methodology is provided for researchers to design and improve the therapeutic effects of nanomaterial-based therapeutic platforms from a materials science perspective.
Collapse
Affiliation(s)
- Meng Yuan
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Mehraneh Kermanian
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| | - Tarun Agarwal
- Department of Bio-Technology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, 522502, India
| | - Zhuang Yang
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Satar Yousefiasl
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Ziyong Cheng
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Ping'an Ma
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Lin
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), and Department of Pharmaceutical Nanotechnology (School of Pharmacy), Zanjan University of Medical Sciences, Zanjan, 45139-56184, Iran
| |
Collapse
|
28
|
Kang X, Zhang Y, Song J, Wang L, Li W, Qi J, Tang BZ. A photo-triggered self-accelerated nanoplatform for multifunctional image-guided combination cancer immunotherapy. Nat Commun 2023; 14:5216. [PMID: 37626073 PMCID: PMC10457322 DOI: 10.1038/s41467-023-40996-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Precise and efficient image-guided immunotherapy holds great promise for cancer treatment. Here, we report a self-accelerated nanoplatform combining an aggregation-induced emission luminogen (AIEgen) and a hypoxia-responsive prodrug for multifunctional image-guided combination immunotherapy. The near-infrared AIEgen with methoxy substitution simultaneously possesses boosted fluorescence and photoacoustic (PA) brightness for the strong light absorption ability, as well as amplified type I and type II photodynamic therapy (PDT) properties via enhanced intersystem crossing process. By formulating the high-performance AIEgen with a hypoxia-responsive paclitaxel (PTX) prodrug into nanoparticles, and further camouflaging with macrophage cell membrane, a tumor-targeting theranostic agent is built. The integration of fluorescence and PA imaging helps to delineate tumor site sensitively, providing accurate guidance for tumor treatment. The light-induced PDT effect could consume the local oxygen and lead to severer hypoxia, accelerating the release of PTX drug. As a result, the combination of PDT and PTX chemotherapy induces immunogenic cancer cell death, which could not only elicit strong antitumor immunity to suppress the primary tumor, but also inhibit the growth of distant tumor in 4T1 tumor-bearing female mice. Here, we report a strategy to develop theranostic agents via rational molecular design for boosting antitumor immunotherapy.
Collapse
Affiliation(s)
- Xiaoying Kang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yuan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jianwen Song
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Lu Wang
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China
| | - Wen Li
- Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
| | - Ji Qi
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Center for Cell Responses, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China.
| |
Collapse
|
29
|
Wang X, Ma M, Zhang L, Wang X, Zhang Y, Zhao Y, Shi H, Zhang X, Zhao F, Pan J. Flexible use of commercial rhenium disulfide for various theranostic applications. Biomater Sci 2023; 11:5540-5548. [PMID: 37395367 DOI: 10.1039/d3bm00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rhenium disulfide (ReS2) with distinct physicochemical properties has shown promising potential in disease theranostics, such as drug delivery, computed tomography (CT), radiotherapy, and photothermal therapy (PTT). However, the synthesis and post-modification of ReS2 agents for different application scenarios are time- and energy-consuming, which seriously hinders the clinical translation of ReS2. Herein, we proposed three facile excipient strategies for different theranostic applications of ReS2 just through the flexible use of commercial ReS2 powder. Three excipients, including sodium alginate (ALG), xanthan gum (XG), and ultraviolet-cured resin (UCR), were used to prepare different dosage forms of commercial ReS2 powder, like hydrogel, suspension, and capsule, respectively. These dosage forms of ReS2 with distinct characteristics showed great potential for second near-infrared window PTT against tumours, gastric spectral CT imaging, and functional evaluation of the digestive tract in vivo. In addition, these ReS2 formulations exhibited good biocompatibility both in vitro and in vivo, showing a promising prospect for clinical transformation. More importantly, the facile excipient strategies for commercial agents pave a bridge to the development and wide bioapplication of many other theranostic biomaterials.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Liang Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaoran Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yimou Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Huilan Shi
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Fangshi Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
30
|
Kim BH, Yang JY, Park KH, Lee D, Song SH. Competitive Effects of Oxidation and Quantum Confinement on Modulation of the Photophysical Properties of Metallic-Phase Tungsten Dichalcogenide Quantum Dots. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2075. [PMID: 37513086 PMCID: PMC10385026 DOI: 10.3390/nano13142075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023]
Abstract
Metallic-phase transition metal dichalcogenide quantum dots (TMDs-mQDs) have been reported in recent years. However, a dominant mechanism for modulating their intrinsic exciton behaviors has not been determined yet as their size is close to the Bohr radius. Herein, we demonstrate that the oxidation effect prevails over quantum confinement on metallic-phase tungsten dichalcogenide QDs (WX2-mQDs; X = S, Se) when the QD size becomes larger than the exciton Bohr radius. WX2-mQDs with a diameter of ~12 nm show an obvious change in their photophysical properties when the pH of the solution changes from 2 to 11 compared to changing the size from ~3 nm. Meanwhile, we found that quantum confinement is the dominant function for the optical spectroscopic results in the WX2-mQDs with a size of ~3 nm. This is because the oxidation of the larger WX2-mQDs induces sub-energy states, thus enabling excitons to migrate into the lower defect energy states, whereas in WX2-mQDs with a size comparable to the exciton Bohr radius, protonation enhances the quantum confinement.
Collapse
Affiliation(s)
- Bo-Hyun Kim
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea
| | - Jun Yong Yang
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea
| | - Kwang Hyun Park
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea
| | - DongJu Lee
- Department of Advanced Materials Engineering, Chungbuk National University, Chungdae-ro 1, Seowon-gu, Cheongju 34057, Republic of Korea
| | - Sung Ho Song
- Division of Advanced Materials Engineering, Center for Advanced Powder Materials and Parts, Kongju National University, Cheonan 32588, Republic of Korea
| |
Collapse
|
31
|
Chin HC, Hamzah A, Alias NE, Tan MLP. Modeling the Impact of Phonon Scattering with Strain Effects on the Electrical Properties of MoS 2 Field-Effect Transistors. MICROMACHINES 2023; 14:1235. [PMID: 37374820 DOI: 10.3390/mi14061235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023]
Abstract
Molybdenum disulfide (MoS2) has distinctive electronic and mechanical properties which make it a highly prospective material for use as a channel in upcoming nanoelectronic devices. An analytical modeling framework was used to investigate the I-V characteristics of field-effect transistors based on MoS2. The study begins by developing a ballistic current equation using a circuit model with two contacts. The transmission probability, which considers both the acoustic and optical mean free path, is then derived. Next, the effect of phonon scattering on the device was examined by including transmission probabilities into the ballistic current equation. According to the findings, the presence of phonon scattering caused a decrease of 43.7% in the ballistic current of the device at room temperature when L = 10 nm. The influence of phonon scattering became more prominent as the temperature increased. In addition, this study also considers the impact of strain on the device. It is reported that applying compressive strain could increase the phonon scattering current by 13.3% at L = 10 nm at room temperature, as evaluated in terms of the electrons' effective masses. However, the phonon scattering current decreased by 13.3% under the same condition due to the existence of tensile strain. Moreover, incorporating a high-k dielectric to mitigate the impact of scattering resulted in an even greater improvement in device performance. Specifically, at L = 6 nm, the ballistic current was surpassed by 58.4%. Furthermore, the study achieved SS = 68.2 mV/dec using Al2O3 and an on-off ratio of 7.75 × 104 using HfO2. Finally, the analytical results were validated with previous works, showing comparable agreement with the existing literature.
Collapse
Affiliation(s)
- Huei Chaeng Chin
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Afiq Hamzah
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Nurul Ezaila Alias
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Michael Loong Peng Tan
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
32
|
Dirersa WB, Getachew G, Wibrianto A, Rasal AS, Gurav VS, Zakki Fahmi M, Chang JY. Molybdenum-oxo-sulfide quantum dot-based nanocarrier: Efficient generation of reactive oxygen species via photo/chemodynamic therapy and stimulus-induced drug release. J Colloid Interface Sci 2023:S0021-9797(23)00890-1. [PMID: 37230831 DOI: 10.1016/j.jcis.2023.05.099] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/15/2023] [Indexed: 05/27/2023]
Abstract
The fabrication of multifunctional nano-therapies has increased gradually to strengthen the therapeutic performance and minimize adverse effects of traditional cancer treatment strategies. Currently, we have designed a facile preparation drug-loaded nanocarrier for multimodal cancer therapy upon external stimuli. First, defect-rich molybdenum oxo-sulfide (MoOxS2-x) quantum dots (QDs) was synthesized via rapid biomineralization techniques with superior optical quantum yield reaching upto 37.28%. The presence of the Fenton ion, Mo+IV/+VI, enables MoOxS2-x QDs to efficiently catalyze peroxide solutions to produce •OH radicals for chemodynamic treatment (CDT) and also deactivate the intracellular glutathione (GSH) enzymes through redox reaction for boosted reactive oxygen species (ROS)-mediated therapies. In addition, upon laser combination, MoOxS2-x QDs generate ROS for photodynamic therapy (PDT). Also, due to a large amount of sulfide content, MoOxS2-x QDs showed excellent H2S gas release in acidic pH for cancer gas therapy. Then, MoOxS2-x QDs was further conjugated with ROS-responsive thioketal linked Camptothecin (CPT-TK-COOH) drug, forming a multitargeted MoOxS2-xCPT anticancer agent with better drug-loading efficiency (38.8%). After triggering the ROS generation through the CDT and PDT mechanisms, the thioketal linkage was disrupted, releasing up to 79% of the CPT drug in 48 h. Besides, in vitro experiments verified that MoOxS2-x QDs possess higher biocompatibility with 4T1 and HeLa cells but also showed considerable toxicity in the presence of laser/H2O2, resulting in 84.45% cell death through PDT/CDT and chemotherapeutic effects. Therefore, the designed MoOxS2-xCPT exhibited outstanding therapeutic benefits for image-guided cancer therapy.
Collapse
Affiliation(s)
- Worku Batu Dirersa
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Girum Getachew
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Aswandi Wibrianto
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Akash S Rasal
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | - Vivek S Gurav
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China
| | | | - Jia-Yaw Chang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106335, Taiwan, Republic of China.
| |
Collapse
|
33
|
Wu FY, Yang JL, Ye YS, Kong YQ, Wu R, Wang HY, Wang X. Polychromatic fluorescent MoS 2 quantum dots: fabrication and off-on sensing for fluorine ions in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:2490-2496. [PMID: 37183653 DOI: 10.1039/d3ay00346a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Recently, MoS2 quantum dots (QDs) have receive widespread attention as a promising luminescent material. However, so far, little effort has been made on the multicolor emission of MoS2 QDs. Herein, an in situ iodine doping strategy is presented and used to synthesize tunable-photoluminescent (PL) MoS2 QDs. By fine iodine doping, the PL of the MoS2 QDs (I-MoS2 QDs) can be tuned in the range from 423 nm to 529 nm, which exceeds the as-reported emission wavelength range. Studies using controlled experiments and density functional theory (DFT) reveal that the change in electronic state of MoS2 QDs is responsible for the changing PL due to iodine doping. As-synthesized I-MoS2 QDs combined with Fe3+ is developed as a "turn-off-on" fluorescence sensor for F- ions in water. The fluorescence probe has a fine linear response to F- ions in the concentration range of 2.5-80 μM, and the limit of detection is 1.4 μM (S/N = 3).
Collapse
Affiliation(s)
- Feng-Yi Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Ji-Liang Yang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - You-Sheng Ye
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Ya-Qiong Kong
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Rong Wu
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Hai-Yan Wang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| | - Xin Wang
- Water Environment Research Center, College of Chemistry and Material Engineering, Chaohu University, Hefei 238000, China.
| |
Collapse
|
34
|
Li L, Fang S, Yu R, Chen R, Wang H, Gao X, Zha W, Yu X, Jiang L, Zhu D, Xiong Y, Liao YH, Zheng D, Yang WX, Miao J. Fast near-infrared photodetectors from p-type SnSe nanoribbons. NANOTECHNOLOGY 2023; 34:245202. [PMID: 36881863 DOI: 10.1088/1361-6528/acc1eb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Low-dimensional tin selenide nanoribbons (SnSe NRs) show a wide range of applications in optoelectronics fields such as optical switches, photodetectors, and photovoltaic devices due to the suitable band gap, strong light-matter interaction, and high carrier mobility. However, it is still challenging to grow high-quality SnSe NRs for high-performance photodetectors so far. In this work, we successfully synthesized high-quality p-type SnSe NRs by chemical vapor deposition and then fabricated near-infrared photodetectors. The SnSe NR photodetectors show a high responsivity of 376.71 A W-1, external quantum efficiency of 5.65 × 104%, and detectivity of 8.66 × 1011Jones. In addition, the devices show a fast response time with rise and fall time of up to 43μs and 57μs, respectively. Furthermore, the spatially resolved scanning photocurrent mapping shows very strong photocurrent at the metal-semiconductor contact regions, as well as fast generation-recombination photocurrent signals. This work demonstrated that p-type SnSe NRs are promising material candidates for broad-spectrum and fast-response optoelectronic devices.
Collapse
Affiliation(s)
- Long Li
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Suhui Fang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ranran Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Ruoling Chen
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Hailu Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- Nantong Academy of Intelligent Sensing, No. 60 Chongzhou Road, Nantong 226009, People's Republic of China
| | - Xiaofeng Gao
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Wenjing Zha
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Xiangxiang Yu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Long Jiang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Desheng Zhu
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan Xiong
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Yan-Hua Liao
- School of Mathematics and Physics, Hubei Polytechnic University, Huangshi 435003, People's Republic of China
| | - Dingshan Zheng
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Wen-Xing Yang
- School of Physics and Optoelectronic Engineering, Yangtze University, Jingzhou 434023, People's Republic of China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- Nantong Academy of Intelligent Sensing, No. 60 Chongzhou Road, Nantong 226009, People's Republic of China
| |
Collapse
|
35
|
Wang L, Zhang X, You Z, Yang Z, Guo M, Guo J, Liu H, Zhang X, Wang Z, Wang A, Lv Y, Zhang J, Yu X, Liu J, Chen C. A Molybdenum Disulfide Nanozyme with Charge-Enhanced Activity for Ultrasound-Mediated Cascade-Catalytic Tumor Ferroptosis. Angew Chem Int Ed Engl 2023; 62:e202217448. [PMID: 36585377 DOI: 10.1002/anie.202217448] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/23/2022] [Accepted: 12/30/2022] [Indexed: 01/01/2023]
Abstract
The deficient catalytic activity of nanozymes and insufficient endogenous H2 O2 in the tumor microenvironment (TME) are major obstacles for nanozyme-mediated catalytic tumor therapy. Since electron transfer is the basic essence of catalysis-mediated redox reactions, we explored the contributing factors of enzymatic activity based on positive and negative charges, which are experimentally and theoretically demonstrated to enhance the peroxidase (POD)-like activity of a MoS2 nanozyme. Hence, an acidic tumor microenvironment-responsive and ultrasound-mediated cascade nanocatalyst (BTO/MoS2 @CA) is presented that is made from few-layer MoS2 nanosheets grown on the surface of piezoelectric tetragonal barium titanate (T-BTO) and modified with pH-responsive cinnamaldehyde (CA). The integration of pH-responsive CA-mediated H2 O2 self-supply, ultrasound-mediated charge-enhanced enzymatic activity, and glutathione (GSH) depletion enables out-of-balance redox homeostasis, leading to effective tumor ferroptosis with minimal side effects.
Collapse
Affiliation(s)
- Longwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine, Northwest University, Xi'an, 710069, China
| | - Xiaodi Zhang
- Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Zhen You
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhongwei Yang
- Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Mengyu Guo
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Jiawei Guo
- Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - He Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Xiaoyu Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine, Northwest University, Xi'an, 710069, China
| | - Zhuo Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| | - Aizhu Wang
- Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Yawei Lv
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jian Zhang
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 41296, Göteborg, Sweden
| | - Xin Yu
- Institute for Advanced Interdisciplinary Research, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, China
| | - Jing Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China.,Key Laboratory of Resource Biology and Biotechnology in Western China Ministry of Education School of Medicine, Northwest University, Xi'an, 710069, China
| | - Chunying Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety & CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, University of Chinese Academy of Science, Beijing, 100190, China
| |
Collapse
|
36
|
Sun J, Shengping Zhang BS, Alomar M, Alqarni AS, Najla Alotaibi MS, Badriah Alshahrani MS, Alghamdi AA, Kou Z, Shen W, Chen Y, Zhang J. Recent Advances in the Synthesis of MXene Quantum Dots. CHEM REC 2023:e202200268. [PMID: 36653938 DOI: 10.1002/tcr.202200268] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/26/2022] [Indexed: 01/20/2023]
Abstract
Quantum dots (QDs) with ultrahigh surface-to-volume ratio, abundant edge active sites, forceful quantum confinement and other remarkable physio-chemical properties, have garnered considerable research interest. MXene QDs, as an emerging member of them, have also attracted wide attention in the last six years, and shown great achievements in many fields. This critical review systematically summarizes the various methods for synthesizing MXene QDs. The characteristics and corresponding applications of various MXene QDs are also presented. The advantages and disadvantages of various synthetic methods, and the limitations of corresponding MXene QDs are compared and highlighted. Finally, the challenges and perspectives of synthesizing MXene QDs are proposed. We hope this review will enlighten researchers to the fabrication of more advancing and promising MXene-based QDs with proprietary properties in diverse applications.
Collapse
Affiliation(s)
- Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - B S Shengping Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Muneerah Alomar
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Areej S Alqarni
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M S Najla Alotaibi
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - M S Badriah Alshahrani
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Abeer A Alghamdi
- Department of Physics, College of Sciences, Princess Nourah bint Abdulrahman University, P. O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Zongkui Kou
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, PR China
| | - Wangqiang Shen
- School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, P. R. China
| | - Yingquan Chen
- State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| | - Jian Zhang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, People's Republic of China
| |
Collapse
|
37
|
Behera P, Karunakaran S, Sahoo J, Bhatt P, Rana S, De M. Ligand Exchange on MoS 2 Nanosheets: Applications in Array-Based Sensing and Drug Delivery. ACS NANO 2022; 17:1000-1011. [PMID: 36482513 DOI: 10.1021/acsnano.2c06994] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Two-dimensional MoS2 nanosheets (2D-MoS2) have been widely used in many biological applications due to their distinctive physicochemical properties. Further, the development of surface modification using thiolated ligands allows us to use them for many specific applications. But the effect of possible ligand exchange on 2D-MoS2 has never been explored, which can play an important role in diverse biological applications. In this study, we have observed the ligand-exchange phenomenon on 2D-MoS2 in the presence of different thiolated ligands. The initial study proceeded with boron-dipyrromethene (BODIPY) functionalized MoS2 with different concentrations of glutathione (GSH), which is the most abundant thiol species in the cytoplasm of various cancer cells. It was found that in the presence of GSH the fluorescence of BODIPY can be regenerated, which is time and concentration dependent. We have also examined this phenomenon with different thiol ligands and transition-metal dichalcogenides (TMDs). We observed a variable rate of ligand exchange in different solvents, surface functionality, and receptor environments that helped us to construct sensor arrays. Interestingly, a ligand-exchange process was not observed in the presence of dithiols. Further, this concept was applied to a cancerous cell line for in vitro delivery. We found that BODIPY-functionalized 2D-MoS2 undergoes thiol exchange by intracellular GSH and subsequently enhanced the fluorescence in the cytoplasm of cancer cells. This strategy can be applied to the development of 2D-TMD-based materials for various biological applications related to ligand exchange.
Collapse
Affiliation(s)
- Pradipta Behera
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Subbaraj Karunakaran
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Jagabandhu Sahoo
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| | - Preeti Bhatt
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Subinoy Rana
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Mrinmoy De
- Department of Organic Chemistry, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
38
|
Flexible polymeric patch based nanotherapeutics against non-cancer therapy. Bioact Mater 2022; 18:471-491. [PMID: 35415299 PMCID: PMC8971585 DOI: 10.1016/j.bioactmat.2022.03.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/16/2022] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Flexible polymeric patches find widespread applications in biomedicine because of their biological and tunable features including excellent patient compliance, superior biocompatibility and biodegradation, as well as high loading capability and permeability of drug. Such polymeric patches are classified into microneedles (MNs), hydrogel, microcapsule, microsphere and fiber depending on the formed morphology. The combination of nanomaterials with polymeric patches allows for improved advantages of increased curative efficacy and lowered systemic toxicity, promoting on-demand and regulated drug administration, thus providing the great potential to their clinic translation. In this review, the category of flexible polymeric patches that are utilized to integrate with nanomaterials is briefly presented and their advantages in bioapplications are further discussed. The applications of nanomaterials embedded polymeric patches in non-cancerous diseases were also systematically reviewed, including diabetes therapy, wound healing, dermatological disease therapy, bone regeneration, cardiac repair, hair repair, obesity therapy and some immune disease therapy. Alternatively, the limitations, latest challenges and future perspectives of such biomedical therapeutic devices are addressed. The most explored polymeric patches, such as microneedle, hydrogel, microsphere, microcapsule, and fiber are summarized. Polymeric patches integrated with a diversity of nanomaterials are systematically overviewed in non-cancer therapy. The future prospective for the development of polymeric patch based nanotherapeutics is discussed.
Collapse
|
39
|
Mao J, Xu Z, Lin W. Nanoscale metal–organic frameworks for photodynamic therapy and radiotherapy. Curr Opin Chem Eng 2022. [DOI: 10.1016/j.coche.2022.100871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
40
|
Ren Y, An H, Zhang W, Wei S, Xing C, Peng Z. Ultrasmall SnS 2 quantum dot-based photodetectors with high responsivity and detectivity. NANOPHOTONICS (BERLIN, GERMANY) 2022; 11:4781-4792. [PMID: 39634737 PMCID: PMC11502062 DOI: 10.1515/nanoph-2022-0277] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/14/2022] [Indexed: 12/07/2024]
Abstract
Quantum dots (QDs) often exhibit unique behaviors because the reduction in lateral size leads to stronger quantum confinement effects and a higher surface-to-volume ratio in comparison with larger two-dimensional nanosheets. However, the preparation of homogeneous QDs remains a longstanding challenge. This work reports the preparation of high-yield and ultrasmall tin disulfide (SnS2) QDs by combining top-down and bottom-up approaches. The as-prepared SnS2 QDs have a uniform lateral size of 3.17 ± 0.62 nm and a thicknesses 2.39 ± 0.88 nm. A series of self-powered photoelectrochemical-type photodetectors (PDs) utilizing the SnS2 QDs as photoelectrodes are also constructed. Taking advantage of the tunable bandgaps and high carrier mobility of the SnS2, our PDs achieve a high photocurrent density of 16.38 μA cm-2 and a photoresponsivity of 0.86 mA W-1, and good long-term cycling stability. More importantly, the device can display obvious photoresponse, even at zero bias voltage (max), and greater weak-light sensitivity than previously reported SnS2-based PDs. Density functional theory calculation and optical absorption were employed to reveal the working mechanism of the SnS2 QDs-based PDs. This study highlights the prospective applications of ultrasmall SnS2 QDs and provides a new route towards future design of QDs-based optoelectronic devices.
Collapse
Affiliation(s)
- Yi Ren
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Hua An
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Weiguan Zhang
- School of Mechatronics and Control Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Songrui Wei
- Interdisciplinary Center of High Magnetic Field Physics of Shenzhen University, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Chenyang Xing
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| | - Zhengchun Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, School of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen518060, P. R. China
| |
Collapse
|
41
|
Das S, Pal S, Kumbhakar P, Tromer RM, Negedu SD, Galvao DS, Das S, Tiwary CS, Ray SK. Vacancy-Mediated Anomalous Emission Characteristics of Size-Confined Semiconducting CoTe 2. ACS APPLIED MATERIALS & INTERFACES 2022; 14:53139-53149. [PMID: 36394999 DOI: 10.1021/acsami.2c14318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Transition-metal tellurides (TMTs) are promising materials for "post-graphene age" nanoelectronics and energy storage applications owing to their industry-standard compatibility, high electron mobility, large spin-orbit coupling (SOC), etc. However, tellurium (Te) having a larger ionic radius (Z = 52) and broader d-bands endows TMTs with semimetallic nature, restricting their application in photonic and optoelectronic domains. In this work, we report the optical properties of the quantum-confined semiconducting phase of cobalt ditelluride (CoTe2) for the first time, exhibiting excellent two-color band photoabsorption attributes covering the UV-visible and near-infrared regions. Furthermore, novel excitonic resonances (X) of size-varying CoTe2 nanocrystals and quantum dots (QDs) are indicated by their temperature-dependent emission characteristics, which are attributed to the splitting of band edge states via confinement. On the other hand, the sudden rupture of the large-area CoTe2 nanosheets via ultrasonication incorporates Co vacancy-mediated localized trap states within the band gap, which is attributed to the superior room-temperature photoluminescence (PL) quantum yield of QDs and further corroborated using Raman analysis and atomistic density functional theory (DFT) simulations. Most interestingly, the excitonic peak of CoTe2 QDs reveals a unique positive-to-negative thermal quenching transition phenomenon, owing to the thermal activation of nonradiative surface trap states. These results introduce an exciting approach for the defect-mediated color-saturated light emission that paves the way for solution-processed telluride-based QD light-emitting diodes.
Collapse
Affiliation(s)
- Shreyasi Das
- School of Nano Science and Technology, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Sourabh Pal
- Advanced Technology Development Centre, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Partha Kumbhakar
- Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Raphael M Tromer
- Applied Physics Department, University of Campinas, Campinas, Sao Paulo13083970, Brazil
| | - Solomon Demiss Negedu
- Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Douglas S Galvao
- Applied Physics Department, University of Campinas, Campinas, Sao Paulo13083970, Brazil
| | - Soumen Das
- School of Medical Science and Technology, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Chandra Sekhar Tiwary
- Department of Metallurgical and Materials Engineering, IIT Kharagpur, Kharagpur, West Bengal721302, India
| | - Samit K Ray
- Department of Physics, IIT Kharagpur, Kharagpur, West Bengal721302, India
| |
Collapse
|
42
|
Liu X, Li Y, Zeng L, Li X, Chen N, Bai S, He H, Wang Q, Zhang C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108327. [PMID: 35015320 DOI: 10.1002/adma.202108327] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Mechanochemistry with solvent-free and environmentally friendly characteristics is one of the most promising alternatives to traditional liquid-phase-based reactions, demonstrating epoch-making significance in the realization of different types of chemistry. Mechanochemistry utilizes mechanical energy to promote physical and chemical transformations to design complex molecules and nanostructured materials, encourage dispersion and recombination of multiphase components, and accelerate reaction rates and efficiencies via highly reactive surfaces. In particular, mechanochemistry deserves special attention because it is capable of endowing energy materials with unique characteristics and properties. Herein, the latest advances and progress in mechanochemistry for the preparation and modification of energy materials are reviewed. An outline of the basic knowledge, methods, and characteristics of different mechanochemical strategies is presented, distinguishing this review from most mechanochemistry reviews that only focus on ball-milling. Next, this outline is followed by a detailed and insightful discussion of mechanochemistry-involved energy conversion and storage applications. The discussion comprehensively covers aspects of energy transformations from mechanical/optical/chemical energy to electrical energy. Finally, next-generation advanced energy materials are proposed. This review is intended to bring mechanochemistry to the frontline and guide this burgeoning field of interdisciplinary research for developing advanced energy materials with greener mechanical force.
Collapse
Affiliation(s)
- Xingang Liu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Yijun Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Li Zeng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Xi Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Ning Chen
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Shibing Bai
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Hanna He
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Qi Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| | - Chuhong Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu, 610065, China
| |
Collapse
|
43
|
Sagar P, Srivastava M, Tiwari RK, Kumar A, Srivastava A, Pandey G, Srivastava S. In-situ One-pot Novel Synthesis of Molybdenum di-Telluride@Carbon Nano-Dots for Sensitive and Selective Detection of Hydrogen Peroxide Molecules via Turn-off Fluorescence Mechanism. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
44
|
Xiong X, Wang L, He S, Guan S, Li D, Zhang M, Qu X. Vacancy defect-promoted nanomaterials for efficient phototherapy and phototherapy-based multimodal Synergistic Therapy. Front Bioeng Biotechnol 2022; 10:972837. [PMID: 36091444 PMCID: PMC9452887 DOI: 10.3389/fbioe.2022.972837] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/19/2022] [Indexed: 11/13/2022] Open
Abstract
Phototherapy and multimodal synergistic phototherapy (including synergistic photothermal and photodynamic therapy as well as combined phototherapy and other therapies) are promising to achieve accurate diagnosis and efficient treatment for tumor, providing a novel opportunity to overcome cancer. Notably, various nanomaterials have made significant contributions to phototherapy through both improving therapeutic efficiency and reducing side effects. The most key factor affecting the performance of phototherapeutic nanomaterials is their microstructure which in principle determines their physicochemical properties and the resulting phototherapeutic efficiency. Vacancy defects ubiquitously existing in phototherapeutic nanomaterials have a great influence on their microstructure, and constructing and regulating vacancy defect in phototherapeutic nanomaterials is an essential and effective strategy for modulating their microstructure and improving their phototherapeutic efficacy. Thus, this inspires growing research interest in vacancy engineering strategies and vacancy-engineered nanomaterials for phototherapy. In this review, we summarize the understanding, construction, and application of vacancy defects in phototherapeutic nanomaterials. Starting from the perspective of defect chemistry and engineering, we also review the types, structural features, and properties of vacancy defects in phototherapeutic nanomaterials. Finally, we focus on the representative vacancy defective nanomaterials recently developed through vacancy engineering for phototherapy, and discuss the significant influence and role of vacancy defects on phototherapy and multimodal synergistic phototherapy. Therefore, we sincerely hope that this review can provide a profound understanding and inspiration for the design of advanced phototherapeutic nanomaterials, and significantly promote the development of the efficient therapies against tumor.
Collapse
Affiliation(s)
- Xinyu Xiong
- School of Light Industry, Beijing Technology and Business University, Beijing, China
| | - Li Wang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shan He
- School of Light Industry, Beijing Technology and Business University, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Dawei Li
- Senior Orthopeadics Department, The Forth Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Mingming Zhang
- PLA Strategic Support Force Characteristic Medical Center, Beijing, China
- *Correspondence: Shan He, ; Shanyue Guan, ; Mingming Zhang,
| | - Xiaozhong Qu
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
45
|
Gao Y, Wang S, Wang B, Jiang Z, Fang T. Recent Progress in Phase Regulation, Functionalization, and Biosensing Applications of Polyphase MoS 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202956. [PMID: 35908166 DOI: 10.1002/smll.202202956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The disulfide compounds of molybdenum (MoS2 ) are layered van der Waals materials that exhibit a rich array of polymorphic structures. MoS2 can be roughly divided into semiconductive phase and metallic phase according to the difference in electron filling state of the 4d orbital of Mo atom. The two phases show completely different properties, leading to their diverse applications in biosensors. But to some extent, they compensate for each other. This review first introduces the relationship between phase state and the chemical/physical structures and properties of MoS2 . Furthermore, the synthetic methods are summarized and the preparation strategies for metastable phases are highlighted. In addition, examples of electronic and chemical property designs of MoS2 by means of doping and surface modification are outlined. Finally, studies on biosensors based on MoS2 in recent years are presented and classified, and the roles of MoS2 with different phases are highlighted. This review offers references for the selection of materials to construct different types of biosensors based on MoS2 , and provides inspiration for sensing performance enhancement.
Collapse
Affiliation(s)
- Yan Gao
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Siyao Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Bin Wang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Zhao Jiang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| | - Tao Fang
- Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
- Engineering Research Center of New Energy System Engineering and Equipment, University of Shaanxi Province, Xi'an, Shaanxi, 710049, China
| |
Collapse
|
46
|
Zhu H, Zan W, Chen W, Jiang W, Ding X, Li BL, Mu Y, Wang L, Garaj S, Leong DT. Defect-Rich Molybdenum Sulfide Quantum Dots for Amplified Photoluminescence and Photonics-Driven Reactive Oxygen Species Generation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2200004. [PMID: 35688799 DOI: 10.1002/adma.202200004] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Transition metal dichalcogenide (TMD) quantum dots (QDs) with defects have attracted interesting chemistry due to the contribution of vacancies to their unique optical, physical, catalytic, and electrical properties. Engineering defined defects into molybdenum sulfide (MoS2 ) QDs is challenging. Herein, by applying a mild biomineralization-assisted bottom-up strategy, blue photoluminescent MoS2 QDs (B-QDs) with a high density of defects are fabricated. The two-stage synthesis begins with a bottom-up synthesis of original MoS2 QDs (O-QDs) through chemical reactions of Mo and sulfide ions, followed by alkaline etching that creates high sulfur-vacancy defects to eventually form B-QDs. Alkaline etching significantly increases the photoluminescence (PL) and photo-oxidation. An increase in defect density is shown to bring about increased active sites and decreased bandgap energy; which is further validated with density functional theory calculations. There is strengthened binding affinity between QDs and O2 due to lower gap energy (∆EST ) between S1 and T1 , accompanied with improved intersystem crossing (ISC) efficiency. Lowered gap energy contributes to assist e- -h+ pair formation and the strengthened binding affinity between QDs and 3 O2 . Defect engineering unravels another dimension of material properties control and can bring fresh new applications to otherwise well characterized TMD nanomaterials.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
- Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
| | - Wenyan Zan
- Institute of Molecular Science, Shanxi University, Taiyuan, 034000, P. R. China
| | - Wanli Chen
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, Singapore, 138634, Singapore
| | - Xianguang Ding
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Nanjing University of Posts and Telecommunications, Nanjing, 210023, P. R. China
| | - Bang Lin Li
- Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, P. R. China
| | - Yuewen Mu
- Institute of Molecular Science, Shanxi University, Taiyuan, 034000, P. R. China
| | - Lei Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| | - Slaven Garaj
- Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore, 117546, Singapore
- Department of Physics, National University of Singapore, Singapore, 117542, Singapore
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore, 117583, Singapore
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore, 117575, Singapore
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore
| |
Collapse
|
47
|
Ko B, Ahn J, Song SH. pH-Dependent Photophysical Properties of Metallic Phase MoSe 2 Quantum Dots. MATERIALS 2022; 15:ma15144945. [PMID: 35888412 PMCID: PMC9318461 DOI: 10.3390/ma15144945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/30/2022] [Accepted: 07/14/2022] [Indexed: 12/10/2022]
Abstract
Fluorescence properties of quantum dots (QDs) are critically affected by their redox states, which is important for practical applications. In this study, we investigated the optical properties of MoSe2-metallic phase quantum-dots (MoSe2-mQDs) depending on the pH variation, in which the MoSe2-mQDs were dispersed in water with two sizes (Φ~3 nm and 12 nm). The larger MoSe2-mQDs exhibited a large red-shift and broadening of photoluminescence (PL) peak with a constant UV absorption spectra as varying the pH, while the smaller ones showed a small red-shift and peak broadening, but discrete absorption bands in the acidic solution. The excitation wavelength-dependent photoluminescence shows that the PL properties of smaller MoSe2-mQDs are more sensitive to the pH change compared to those of larger ones. From the time-resolved PL spectroscopy, the excitons dominantly decaying with an energy of ~3 eV in pH 2 clearly show the shift of PL peak to the lower energy (~2.6 eV) as the pH increases to 7 and 11 in the smaller MoSe2-mQDs. On the other hand, in the larger MoSe2-mQDs, the exciton decay is less sensitive to the redox states compared to those of the smaller ones. This result shows that the pH variation is more critical to the change of photophysical properties than the size effect in MoSe2-mQDs.
Collapse
|
48
|
Qi Y, Yuan Y, Qian Z, Ma X, Yuan W, Song Y. Injectable and Self-Healing Polysaccharide Hydrogel Loading Molybdenum Disulfide Nanoflakes for Synergistic Photothermal-Photodynamic Therapy of Breast Cancer. Macromol Biosci 2022; 22:e2200161. [PMID: 35676757 DOI: 10.1002/mabi.202200161] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/26/2022] [Indexed: 11/08/2022]
Abstract
In order to overcome the limitation of traditional therapies for cancer and improve the accuracy of treatment, more advantageous cancer treatment methods need to be explored and studied. As a result, photothermal photodynamic therapy of breast cancer using bovine serum albumin (BSA) modifies molybdenum disulfide nanoflakes. Then the well-dispersed BSA-MoS2 NFs are loaded in the injectable and self-healing polysaccharide hydrogel which is prepared by the reaction of oxidized sodium alginate (OSA) and hydroxypropyl chitosan (HPCS) through the formation of Schiff base bonds. The injection and self-healing properties of the nanocomposite hydrogel are investigated. In vitro photothermal and photodynamic investigations demonstrate that BSA-MoS2 NFs possess obvious photothermal conversion and production of reactive oxygen species (ROS) under the irradiation of near infrared (NIR) laser (808 nm). In vivo anticancer investigation indicates that the nanocomposite hydrogel can be directly injected and remain in the tumor sites and achieve the synergistic photothermal-photodynamic therapy of cancer.
Collapse
Affiliation(s)
- Yujie Qi
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Yifeng Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Zhiyi Qian
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Xiaodie Ma
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Weizhong Yuan
- Department of Interventional and Vascular Surgery, Shanghai Tenth People's Hospital, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, P. R. China
| | - Ye Song
- Department of Ultrasongraphy, The affiliated Zhoupu Hospital, Shanghai University of Medicine & Health Sciences, Shanghai, 201318, P. R. China
| |
Collapse
|
49
|
Zhu H, Huang S, Ding M, Li Z, Li J, Wang S, Leong DT. Sulfur Defect-Engineered Biodegradable Cobalt Sulfide Quantum Dot-Driven Photothermal and Chemodynamic Anticancer Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25183-25196. [PMID: 35638599 DOI: 10.1021/acsami.2c05170] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemodynamic therapy (CDT), as a powerful tumor therapeutic approach with low side effects and selective therapeutic efficiency, has gained much attention. However, the low intracellular content of H2O2 and the cellular bottleneck of low intracellular oxidative reaction rates at tumor sites have limited the antitumor efficacy of CDT. Herein, a series of sulfur-deficient engineered biodegradable cobalt sulfide quantum dots (CoSx QDs) were constructed for improved synergistic photothermal- and hyperthermal-enhanced CDT of tumors through regulating the photothermal conversion efficiency (PCE) and Fenton-like activity. Through defect engineering, we modulated the PCE and promoted the Fenton catalytic capability of CoSx QDs. With increasing defect sites, the Fenton-like activity improved to generate more toxic •OH, while the photothermal effect declined slightly. In light of above unique superiorities, the best synergistic effects of CoSx QDs were obtained through comparing their PCE and catalytic activity by regulating the sulfur defect fraction degree in these QDs during the synthetic process. In addition, the ultrasmall size and biodegradation endowed QDs with the ability to be rapidly decomposed to ions that were easily excreted after therapy, thus reducing biogenic accumulation in the body with lowered systemic side effects. The in vitro/vivo results demonstrated that the photothermal- and hyperthermal-enhanced chemodynamic effect of CoSx QDs can enable remarkable anticancer properties with favorable biocompatibility. In this study, the defect-driven mechanism for the photothermal-enhanced Fenton-like reaction provides a flexible strategy to deal with different treatment environments, holding great promise in developing a multifunctional platform for cancer treatment in the future.
Collapse
Affiliation(s)
- Houjuan Zhu
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Institute of Materials Research and Engineering, A*Star (Agency for Science, Technology and Research), Singapore 117585, Singapore
- Centre for Advanced 2D Materials, Graphene Research Centre, National University of Singapore, Singapore 117546, Singapore
| | - Shuyi Huang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, P. R. China
| | - Mengbin Ding
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*Star (Agency for Science, Technology and Research), Singapore 117585, Singapore
| | - Jingchao Li
- Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai 201620, P.R. China
| | - Suhua Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Process and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, P. R. China
| | - David Tai Leong
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| |
Collapse
|
50
|
Song K, Du J, Wang X, Zheng L, Ouyang R, Li Y, Miao Y, Zhang D. Biodegradable Bismuth-Based Nano-Heterojunction for Enhanced Sonodynamic Oncotherapy through Charge Separation Engineering. Adv Healthc Mater 2022; 11:e2102503. [PMID: 35114073 DOI: 10.1002/adhm.202102503] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Indexed: 12/13/2022]
Abstract
Sonodynamic therapy is a noninvasive treatment method that generates reactive oxygen species (ROS) triggered by ultrasound, to achieve oxidative damage to tumors. However, methods are required to improve the efficiency of ROS generation and achieve continuous oxidative damage. A ternary heterojunction sonosensitizer composed of Bi@BiO2- x @Bi2 S3 -PEG (BOS) to achieve thermal injury-assisted continuous sonodynamic therapy for tumors is prepared. The oxygen vacancy in BOS can capture hot electrons and promotes the separation of hot carriers on the bismuth surface. The local electric field induced by localized surface plasmon resonance also contributes to the rapid transfer of electrons. Therefore, BOS not only possesses the functions of each component but also exhibits higher catalytic activity to generate ROS. Meanwhile, BOS continuously consumes glutathione, which is conducive to its biodegradation and achieves continuous oxidative stress injury. In addition, the photothermal conversion of BOS under near-infrared irradiation helps to achieve thermal tumor damage and further relieves tumor hypoxia, thus amplifying the sonodynamic therapeutic efficacy. This process not only provides a strategy for thermal damage to amplify the efficacy of sonodynamic therapy, but also expands the application of bismuth-based heterojunction nanomaterials as sonosensitizers in sonodynamic therapy.
Collapse
Affiliation(s)
- Kang Song
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Jun Du
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Xiang Wang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Lulu Zheng
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| | - Ruizhuo Ouyang
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuhao Li
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Yuqing Miao
- Institute of Bismuth Science and School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 China
| | - Dawei Zhang
- Engineering Research Center of Optical Instrument and System Ministry of Education Shanghai Key Laboratory of Modern Optical System University of Shanghai for Science and Technology Shanghai 200093 China
| |
Collapse
|