1
|
Bouatta AM, Anzenberger F, Riederauer L, Lepper A, Denninger P. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol 2025; 23:e3003139. [PMID: 40258071 DOI: 10.1371/journal.pbio.3003139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.
Collapse
Affiliation(s)
- Alida Melissa Bouatta
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Franziska Anzenberger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Lisa Riederauer
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Andrea Lepper
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| |
Collapse
|
2
|
Kijima ST, Sasaki T, Kikushima Y, Inoue D, Sakamoto S, Kondo Y, Inagaki S, Yamaguchi M, Mitsuda N, Oda Y. Control of plasma membrane-associated actin polymerization specifies the pattern of the cell wall in xylem vessels. Nat Commun 2025; 16:1921. [PMID: 40011437 PMCID: PMC11865516 DOI: 10.1038/s41467-025-56866-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 01/25/2025] [Indexed: 02/28/2025] Open
Abstract
Cell wall patterning is central to determining the shape and function of plant cells. Protoxylem and metaxylem vessel cells deposit banded and pitted cell walls, respectively, which enable their distinctive water transport capabilities. Here, we show that the pitted cell wall pattern in metaxylem vessels is specified by transcriptional control of actin polymerization. A newly isolated allele of KNOTTED-LIKE HOMEOBOX TRANSCRIPTION FACTOR 7 (KNAT7) was associated with the formation of banded cell walls in metaxylem vessels. Loss of KNAT7 caused misexpression of FORMIN HOMOLOGY DOMAIN CONTAINING PROTEIN11 (FH11) in the metaxylem, which in turn caused rearrangements of ROP GTPases and microtubules in banded patterns. FH11 function required its plasma membrane anchoring and actin polymerization activity. These results suggest that excessive actin polymerization at the plasma membrane abolishes the pitted cell wall formation and promotes banded cell wall formation in metaxylem vessels. This study unveils the importance of proper control of actin polymerization for cell wall pattern determination.
Collapse
Affiliation(s)
- Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Yuichiro Kikushima
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan
| | - Daisuke Inoue
- Faculty of Design, Kyusyu University, 4-9-1 Shiobaru, Minami-ku, Fukuoka, 815-8540, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan
| | - Soichi Inagaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Masatoshi Yamaguchi
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama, 338-8570, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero-Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602, Japan.
| |
Collapse
|
3
|
Liu J, Wang Y, Zhang L, Xia Y, Bai K, Gao H. Plant Rho GTPase ROP6 Is Essential for Manganese Homeostasis in Arabidopsis. PLANT, CELL & ENVIRONMENT 2025; 48:1259-1272. [PMID: 39440658 DOI: 10.1111/pce.15237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/06/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
Manganese (Mn) is an indispensable mineral for plant growth and development. However, plants cultivated in acidic and poorly drained soils are vulnerable to Mn2+ toxicity due to its heightened increased bioavailability. Despite the crucial roles of the Rho of plant (ROP) GTPases in various cellular processes, their precise function in regulating Mn homeostasis remains elusive. In this study, we unveil a novel ROP6 GTPase signalling pathway that profoundly influences Mn phytotoxicity tolerance in Arabidopsis. Remarkably, the rop6 and dominant-negative ROP6 (rop6DN) mutant plants displayed a dramatically sensitive phenotype to Mn toxicity, whereas ROP6-overexpression and constitutively activated ROP6 (rop6CA) lines exhibited enhanced Mn stress tolerance. Immunoblot analysis corroborated that the ROP6 protein, especially the active form of ROP6, increased in abundance in the presence of high Mn levels. Further, we identified that ROP6 physically interacted and colocalized with Metal Tolerance Protein 8 (MTP8) in vivo. Mn transport complementation assays in yeast, combined with biochemical analyses, emphasized the essentiality of ROP6 for MTP8's transport activity. In addition, genetic analyses indicated that ROP6 acted upstream of MTP8 in the regulatory cascade. Collectively, our findings elucidate that ROP6 GTPase signalling positively modulates and enhances Mn stress tolerance in plants.
Collapse
Affiliation(s)
- Jiaming Liu
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yingge Wang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Linyue Zhang
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Yilin Xia
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Kaibo Bai
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| | - Huiling Gao
- National Key Laboratory of Crop Improvement for Stress Tolerance and Production, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Deinum EE. The systems and interactions underpinning complex cell wall patterning. Biochem Soc Trans 2024; 52:2385-2398. [PMID: 39666440 DOI: 10.1042/bst20230642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/14/2024]
Abstract
Cell walls can confer amazing properties to plant cells, particularly if they have complex patterns. Complex cell wall patterns in the primary cell wall often lead to complex cell shapes, whereas in the secondary cell wall they lead to advanced material properties that prepare cells for mechanically demanding tasks. Not surprisingly, many of these structures are found in water transporting tissues. In this review, I compare the mechanisms controlling primary and secondary cell wall patterns, with emphasis on water transporting tissues and insights derived from modeling studies. Much of what we know about this is based on complex cell shapes and primary xylem patterns, leading to an emphasis on the Rho-of-plants - cortical microtubule - cellulose microfibril system for secondary cell wall patterning. There is a striking diversity of secondary cell wall patterns with important functional benefits, however, about which we know much less and that may develop in substantially different ways.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
5
|
Huang S, Guo S, Dai L, Mi L, Li W, Xing J, Hu Z, Wu W, Duan Z, Li B, Sun T, Wang B, Zhang Y, Xiao T, Xue Y, Tang N, Li H, Zhang C, Song CP. Tubulin participates in establishing protoxylem vessel reinforcement patterns and hydraulic conductivity in maize. PLANT PHYSIOLOGY 2024; 196:931-947. [PMID: 38850036 DOI: 10.1093/plphys/kiae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
Water transportation to developing tissues relies on the structure and function of plant xylem cells. Plant microtubules govern the direction of cellulose microfibrils and guide secondary cell wall formation and morphogenesis. However, the relevance of microtubule-determined xylem wall thickening patterns in plant hydraulic conductivity remains unclear. In the present study, we identified a maize (Zea mays) semi-dominant mutant, designated drought-overly-sensitive1 (ZmDos1), the upper leaves of which wilted even when exposed to well-watered conditions during growth; the wilting phenotype was aggravated by increased temperatures and decreased humidity. Protoxylem vessels in the stem and leaves of the mutant showed altered thickening patterns of the secondary cell wall (from annular to spiral), decreased inner diameters, and limited water transport efficiency. The causal mutation for this phenotype was found to be a G-to-A mutation in the maize gene α-tubulin4, resulting in a single amino acid substitution at position 196 (E196K). Ectopic expression of the mutant α-tubulin4 in Arabidopsis (Arabidopsis thaliana) changed the orientation of microtubule arrays, suggesting a determinant role of this gene in microtubule assembly and secondary cell wall thickening. Our findings suggest that the spiral wall thickenings triggered by the α-tubulin mutation are stretched during organ elongation, causing a smaller inner diameter of the protoxylem vessels and affecting water transport in maize. This study underscores the importance of tubulin-mediated protoxylem wall thickening in regulating plant hydraulics, improves our understanding of the relationships between protoxylem structural features and functions, and offers candidate genes for the genetic enhancement of maize.
Collapse
Affiliation(s)
- Shiquan Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Siyi Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Liufeng Dai
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lingyu Mi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenrao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhubing Hu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| | - Wenqiang Wu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Zhikun Duan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Baozhu Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ting Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Baojie Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yi Zhang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Tiqiao Xiao
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Yanling Xue
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Ning Tang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Han Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Changqing Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
- Academy for Advanced Interdisciplinary Studies, Henan University, Kaifeng 475004, China
- Sanya Institute of Henan University, Sanya 572025, China
| |
Collapse
|
6
|
Saß A, Schneider R. Novel molecular insights into the machinery driving secondary cell wall synthesis and patterning. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102614. [PMID: 39142254 DOI: 10.1016/j.pbi.2024.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/15/2024] [Accepted: 07/19/2024] [Indexed: 08/16/2024]
Abstract
The essential role of water-conducting xylem tissue in plant growth and crop yield is well-established. However, the molecular mechanisms underlying xylem formation and its unique functionality, which is acquired post-mortem, remain poorly understood. Recent advancements in genetic tools and model systems have significantly enhanced the ability to microscopically study xylem development, particularly its distinctive cell wall patterning. Early molecular mechanisms enabling pattern formation have been elucidated and validated through computational models. Despite these advancements, numerous questions remain unresolved but are approachable with current methodologies. This mini-review takes in the latest research findings in xylem cell wall synthesis and patterning and highlights prospective directions for future investigations.
Collapse
Affiliation(s)
- Annika Saß
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam-Golm, Germany; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
7
|
Saltini M, Deinum EE. Microtubule simulations in plant biology: A field coming to maturity. CURRENT OPINION IN PLANT BIOLOGY 2024; 81:102596. [PMID: 38981324 DOI: 10.1016/j.pbi.2024.102596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/24/2024] [Accepted: 06/10/2024] [Indexed: 07/11/2024]
Abstract
The plant cortical microtubule array is an important determinant of cell wall structure and, therefore, plant morphology and physiology. The array consists of dynamic microtubules interacting through frequent collisions. Since the discovery by Dixit and Cyr (2004) that the outcome of such collisions depends on the collision angle, computer simulations have been indispensable in studying array behaviour. Over the last decade, the available simulation tools have drastically improved: multiple high-quality simulation platforms exist with specific strengths and applications. Here, we review how these platforms differ on the critical aspects of microtubule nucleation, flexibility, and local orienting cues; and how such differences affect array behaviour. Building upon concepts and control parameters from theoretical models of collective microtubule behaviour, we conclude that all these factors matter in the debate about what is most important for orienting the array: local cues like mechanical stresses or global cues deriving from the cell geometry.
Collapse
Affiliation(s)
- Marco Saltini
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands
| | - Eva E Deinum
- Mathematical & Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
8
|
Gushino S, Tsai AYL, Otani M, Demura T, Sawa S. VND Genes Redundantly Regulate Cell Wall Thickening during Parasitic Nematode Infection. PLANT & CELL PHYSIOLOGY 2024; 65:1224-1230. [PMID: 38662403 DOI: 10.1093/pcp/pcae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 04/26/2024]
Abstract
Plant parasitic root-knot nematodes are major agricultural pests worldwide, as they infect plant roots and cause substantial damages to crop plants. Root-knot nematodes induce specialized feeding cells known as giant cells (GCs) in the root vasculature, which serve as nutrient reservoirs for the infecting nematodes. Here, we show that the cell walls of GCs thicken to form pitted patterns that superficially resemble metaxylem cells. Interestingly, VASCULAR-RELATED NAC-DOMAIN1 (VND1) was found to be upregulated, while the xylem-type programmed cell death marker XYLEM CYSTEINE PEPTIDASE 1 was downregulated upon nematode infection. The vnd2 and vnd3 mutants showed reduced secondary cell wall pore size, while the vnd1 vnd2 vnd3 triple mutant produced significantly fewer nematode egg masses when compared with the wild type. These results suggest that the GC development pathway likely shares common signaling modules with the metaxylem differentiation pathway and VND1, VND2, and VND3 redundantly regulate plant-nematode interaction through secondary cell wall formation.
Collapse
Affiliation(s)
- Saki Gushino
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 Japan
| | - Allen Yi-Lun Tsai
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| | - Misato Otani
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, 5-1-5, Kashiwa, 277-8562 Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Taku Demura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, 8916-5 Takayama-cho, Ikoma, Nara, 630-0192 Japan
| | - Shinichiro Sawa
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto, 860-8555 Japan
- International Research Center for Agricultural and Environmental Biology (IRCAEB), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
- International Research Organization for Advanced Science and Technology (IROAST), Kumamoto University, 2-39-1 Kurokami, Chuo-ku,Kumamoto, 860-8555 Japan
- Institute of Industrial Nanomaterials, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto, 860-8555 Japan
| |
Collapse
|
9
|
Wannitikul P, Dachphun I, Sakulkoo J, Suttangkakul A, Wonnapinij P, Simister R, Gomez LD, Vuttipongchaikij S. In Vivo Proximity Cross-Linking and Immunoprecipitation of Cell Wall Epitopes Identify Proteins Associated with the Biosynthesis of Matrix Polysaccharides. ACS OMEGA 2024; 9:31438-31454. [PMID: 39072051 PMCID: PMC11270709 DOI: 10.1021/acsomega.4c00534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/21/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024]
Abstract
Identification of proteins involved in cell wall matrix polysaccharide biosynthesis is crucial to understand plant cell wall biology. We utilized in vivo cross-linking and immunoprecipitation with cell wall antibodies that recognized xyloglucan, xylan, mannan, and homogalacturonan to capture proteins associated with matrix polysaccharides in Arabidopsis protoplasts. The use of cross-linkers allowed us to capture proteins actively associated with cell wall polymers, including those directly interacting with glycans via glycan-protein (GP) cross-linkers and those associated with proteins linked to glycans via a protein-protein (PP) cross-linker. Immunoprecipitations led to the identification of 65 Arabidopsis protein IDs localized in the Golgi, ER, plasma membrane, and others without subcellular localization data. Among these, we found several glycosyltransferases directly involved in polysaccharide synthesis, along with proteins related to cell wall modification and vesicle trafficking. Protein interaction networks from DeepAraPPI and AtMAD databases showed interactions between various IDs, including those related to cell-wall-associated proteins and membrane/vesicle trafficking proteins. Gene expression and coexpression analyses supported the presence and relevance of the proteins to the cell wall processes. Reverse genetic studies using T-DNA insertion mutants of selected proteins revealed changes in cell wall composition and saccharification, further supporting their potential roles in cell wall biosynthesis. Overall, our approach represents a novel approach for studying cell wall polysaccharide biosynthesis and associated proteins, providing advantages over traditional immunoprecipitation techniques. This study provides a list of putative proteins associated with different matrix polysaccharides for further investigation and highlights the complexity of cell wall biosynthesis and trafficking within plant cells.
Collapse
Affiliation(s)
- Pitchaporn Wannitikul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Issariya Dachphun
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Jenjira Sakulkoo
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
| | - Anongpat Suttangkakul
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Passorn Wonnapinij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Rachael Simister
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Leonardo D. Gomez
- CNAP,
Department of Biology, University of York, Heslington, York YO10 5DD, United
Kingdom
| | - Supachai Vuttipongchaikij
- Department
of Genetics, Faculty of Science, Kasetsart
University, 50 Ngarm Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Center
of Advanced Studies for Tropical Natural Resources, Kasetsart University, Ngam Wong Wan Road, Chattuchak, Bangkok 10900, Thailand
- Omics
Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
10
|
Denninger P. RHO OF PLANTS signalling and the activating ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS: specificity in cellular signal transduction in plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3685-3699. [PMID: 38683617 PMCID: PMC11194304 DOI: 10.1093/jxb/erae196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/28/2024] [Indexed: 05/01/2024]
Abstract
Every cell constantly receives signals from its neighbours or the environment. In plants, most signals are perceived by RECEPTOR-LIKE KINASEs (RLKs) and then transmitted into the cell. The molecular switches RHO OF PLANTS (ROP) are critical proteins for polar signal transduction and regulate multiple cell polarity processes downstream of RLKs. Many ROP-regulating proteins and scaffold proteins of the ROP complex are known. However, the spatiotemporal ROP signalling complex composition is not yet understood. Moreover, how specificity is achieved in different ROP signalling pathways within one cell still needs to be determined. This review gives an overview of recent advances in ROP signalling and how specificity by downstream scaffold proteins can be achieved. The composition of the ROP signalling complexes is discussed, focusing on the possibility of the simultaneous presence of ROP activators and inactivators within the same complex to balance ROP activity. Furthermore, this review highlights the function of plant-specific ROP GUANINE NUCLEOTIDE EXCHANGE FACTORS polarizing ROP signalling and defining the specificity of the initiated ROP signalling pathway.
Collapse
Affiliation(s)
- Philipp Denninger
- Plant Systems Biology, School of Life Sciences, Technical University of Munich, Emil-Ramann-Strasse 8, 85354 Freising, Germany
| |
Collapse
|
11
|
Uddin N, Li X, Ullah MW, Sethupathy S, Ma K, Zahoor, Elboughdiri N, Khan KA, Zhu D. Lignin developmental patterns and Casparian strip as apoplastic barriers: A review. Int J Biol Macromol 2024; 260:129595. [PMID: 38253138 DOI: 10.1016/j.ijbiomac.2024.129595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/30/2023] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Lignin and Casparian strips are two essential components of plant cells that play critical roles in plant development regulate nutrients and water across the plants cell. Recent studies have extensively investigated lignin diversity and Casparian strip formation, providing valuable insights into plant physiology. This review presents the established lignin biosynthesis pathway, as well as the developmental patterns of lignin and Casparian strip and transcriptional network associated with Casparian strip formation. It describes the biochemical and genetic mechanisms that regulate lignin biosynthesis and deposition in different plants cell types and tissues. Additionally, the review highlights recent studies that have uncovered novel lignin biosynthesis genes and enzymatic pathways, expanding our understanding of lignin diversity. This review also discusses the developmental patterns of Casparian strip in roots and their role in regulating nutrient and water transport, focusing on recent genetic and molecular studies that have identified regulators of Casparian strip formation. Previous research has shown that lignin biosynthesis genes also play a role in Casparian strip formation, suggesting that these processes are interconnected. In conclusion, this comprehensive overview provides insights into the developmental patterns of lignin diversity and Casparian strip as apoplastic barriers. It also identifies future research directions, including the functional characterization of novel lignin biosynthesis genes and the identification of additional regulators of Casparian strip formation. Overall, this review enhances our understanding of the complex and interconnected processes that drive plant growth, pathogen defense, regulation and development.
Collapse
Affiliation(s)
- Nisar Uddin
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xia Li
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Muhammad Wajid Ullah
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Sivasamy Sethupathy
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Keyu Ma
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Zahoor
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il 81441, Saudi Arabia; Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, Gabes 6029, Tunisia
| | - Khalid Ali Khan
- Applied College, Mahala Campus and the Unit of Bee Research and Honey Production/Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
| | - Daochen Zhu
- Biofuels Institute, School of Emergency Management, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, China.
| |
Collapse
|
12
|
Higa T, Kijima ST, Sasaki T, Takatani S, Asano R, Kondo Y, Wakazaki M, Sato M, Toyooka K, Demura T, Fukuda H, Oda Y. Microtubule-associated phase separation of MIDD1 tunes cell wall spacing in xylem vessels in Arabidopsis thaliana. NATURE PLANTS 2024; 10:100-117. [PMID: 38172572 DOI: 10.1038/s41477-023-01593-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 11/14/2023] [Indexed: 01/05/2024]
Abstract
Properly patterned cell walls specify cellular functions in plants. Differentiating protoxylem and metaxylem vessel cells exhibit thick secondary cell walls in striped and pitted patterns, respectively. Cortical microtubules are arranged in distinct patterns to direct cell wall deposition. The scaffold protein MIDD1 promotes microtubule depletion by interacting with ROP GTPases and KINESIN-13A in metaxylem vessels. Here we show that the phase separation of MIDD1 fine-tunes cell wall spacing in protoxylem vessels in Arabidopsis thaliana. Compared with wild-type, midd1 mutants exhibited narrower gaps and smaller pits in the secondary cell walls of protoxylem and metaxylem vessel cells, respectively. Live imaging of ectopically induced protoxylem vessels revealed that MIDD1 forms condensations along the depolymerizing microtubules, which in turn caused massive catastrophe of microtubules. The MIDD1 condensates exhibited rapid turnover and were susceptible to 1,6-hexanediol. Loss of ROP abolished the condensation of MIDD1 and resulted in narrow cell wall gaps in protoxylem vessels. These results suggest that the microtubule-associated phase separation of MIDD1 facilitates microtubule arrangement to regulate the size of gaps in secondary cell walls. This study reveals a new biological role of phase separation in the fine-tuning of cell wall patterning.
Collapse
Affiliation(s)
- Takeshi Higa
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Japan
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Meguro, Japan
| | - Saku T Kijima
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
- Plant Gene Regulation Research Group, Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ibaraki, Japan
| | - Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Ryosuke Asano
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Okazaki, Japan
| | - Mayumi Wakazaki
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Mayuko Sato
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Taku Demura
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Ikoma, Japan
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Hiroo Fukuda
- Department of Bioscience and Biotechnology, Faculty of Bioenvironmental Sciences, Kyoto University of Advanced Science, Kameoka, Japan
- Akita Prefectural University, Akita, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
13
|
Quinn O, Kumar M, Turner S. The role of lipid-modified proteins in cell wall synthesis and signaling. PLANT PHYSIOLOGY 2023; 194:51-66. [PMID: 37682865 PMCID: PMC10756762 DOI: 10.1093/plphys/kiad491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 09/10/2023]
Abstract
The plant cell wall is a complex and dynamic extracellular matrix. Plant primary cell walls are the first line of defense against pathogens and regulate cell expansion. Specialized cells deposit a secondary cell wall that provides support and permits water transport. The composition and organization of the cell wall varies between cell types and species, contributing to the extensibility, stiffness, and hydrophobicity required for its proper function. Recently, many of the proteins involved in the biosynthesis, maintenance, and remodeling of the cell wall have been identified as being post-translationally modified with lipids. These modifications exhibit diverse structures and attach to proteins at different sites, which defines the specific role played by each lipid modification. The introduction of relatively hydrophobic lipid moieties promotes the interaction of proteins with membranes and can act as sorting signals, allowing targeted delivery to the plasma membrane regions and secretion into the apoplast. Disruption of lipid modification results in aberrant deposition of cell wall components and defective cell wall remodeling in response to stresses, demonstrating the essential nature of these modifications. Although much is known about which proteins bear lipid modifications, many questions remain regarding the contribution of lipid-driven membrane domain localization and lipid heterogeneity to protein function in cell wall metabolism. In this update, we highlight the contribution of lipid modifications to proteins involved in the formation and maintenance of plant cell walls, with a focus on the addition of glycosylphosphatidylinositol anchors, N-myristoylation, prenylation, and S-acylation.
Collapse
Affiliation(s)
- Oliver Quinn
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Manoj Kumar
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| | - Simon Turner
- Faculty of Biology, Medicine and Health, University of Manchester, Michael Smith Building, Dover Street, Manchester M13 9PT, UK
| |
Collapse
|
14
|
Sasaki T, Saito K, Inoue D, Serk H, Sugiyama Y, Pesquet E, Shimamoto Y, Oda Y. Confined-microtubule assembly shapes three-dimensional cell wall structures in xylem vessels. Nat Commun 2023; 14:6987. [PMID: 37957173 PMCID: PMC10643555 DOI: 10.1038/s41467-023-42487-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/12/2023] [Indexed: 11/15/2023] Open
Abstract
Properly patterned deposition of cell wall polymers is prerequisite for the morphogenesis of plant cells. A cortical microtubule array guides the two-dimensional pattern of cell wall deposition. Yet, the mechanism underlying the three-dimensional patterning of cell wall deposition is poorly understood. In metaxylem vessels, cell wall arches are formed over numerous pit membranes, forming highly organized three-dimensional cell wall structures. Here, we show that the microtubule-associated proteins, MAP70-5 and MAP70-1, regulate arch development. The map70-1 map70-5 plants formed oblique arches in an abnormal orientation in pits. Microtubules fit the aperture of developing arches in wild-type cells, whereas microtubules in map70-1 map70-5 cells extended over the boundaries of pit arches. MAP70 caused the bending and bundling of microtubules. These results suggest that MAP70 confines microtubules within the pit apertures by altering the physical properties of microtubules, thereby directing the growth of pit arches in the proper orientation. This study provides clues to understanding how plants develop three-dimensional structure of cell walls.
Collapse
Affiliation(s)
- Takema Sasaki
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Kei Saito
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Daisuke Inoue
- Factuly of Design, Kyusyu University, Fukuoka, Japan
| | - Henrik Serk
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Yuki Sugiyama
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan
| | - Edouard Pesquet
- Umeå Plant Science Centre (UPSC), Department of Plant Physiology, Umeå University, Umeå, Sweden
- Arrhenius laboratories, Department of Ecology, Environment and Plant Sciences (DEEP), Stockholm University, Stockholm, Sweden
| | - Yuta Shimamoto
- Department of Chromosome Science, National Institute of Genetics, Mishima, Shizuoka, Japan
- Department of Genetics, SOKENDAI University, Mishima, Shizuoka, Japan
| | - Yoshihisa Oda
- Department of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, Japan.
| |
Collapse
|
15
|
Xiang X, Zhang S, Li E, Shi XL, Zhi JY, Liang X, Yin GM, Qin Z, Li S, Zhang Y. RHO OF PLANT proteins are essential for pollen germination in Arabidopsis. PLANT PHYSIOLOGY 2023; 193:140-155. [PMID: 36974907 DOI: 10.1093/plphys/kiad196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/21/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Pollen germination is a process of polarity establishment, through which a single and unique growth axis is established. Although most of the intracellular activities associated with pollen germination are controlled by RHO OF PLANTs (ROPs) and increased ROP activation accompanies pollen germination, a critical role of ROPs in this process has not yet been demonstrated. Here, by genomic editing of all 4 Arabidopsis (Arabidopsis thaliana) ROPs that are preferentially expressed in pollen, we showed that ROPs are essential for polarity establishment during pollen germination. We further identified and characterized 2 ROP effectors in pollen germination (REGs) through genome-wide interactor screening, boundary of ROP domain (BDR) members BDR8 and BDR9, whose functional loss also resulted in no pollen germination. BDR8 and BDR9 were distributed in the cytosol and the vegetative nucleus of mature pollen grains but redistributed to the plasma membrane (PM) of the germination site and to the apical PM of growing pollen tubes. We demonstrated that the PM redistribution of BDR8 and BDR9 during pollen germination relies on ROPs but not vice versa. Furthermore, enhanced expression of BDR8 partially restored germination of rop1 pollen but had no effects on that of the quadruple rop pollen, supporting their genetic epistasis. Results presented here demonstrate an ROP signaling route essential for pollen germination, which supports evolutionarily conserved roles of Rho GTPases in polarity establishment.
Collapse
Affiliation(s)
- Xiaojiao Xiang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Shuzhan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xue-Lian Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Jing-Yu Zhi
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Xin Liang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Gui-Min Yin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Zheng Qin
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian'jin 300071, China
| |
Collapse
|
16
|
Mi Q, Pang H, Luan F, Gao P, Liu S. Integrated analysis of biparental and natural populations reveals CRIB domain-containing protein underlying seed coat crack trait in watermelon. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:95. [PMID: 37014431 DOI: 10.1007/s00122-023-04320-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/07/2023] [Indexed: 06/19/2023]
Abstract
The scc locus of the watermelon seed coat crack trait was fine mapped on chromosome 3. Cla97C03G056110 (annotated as CRIB domain-containing protein) was regarded as the most likely candidate gene Seed coat crack (scc) is a special characteristic of watermelon compared with other cucurbit crops. However, information regarding the genetic basis of this trait is limited. We conducted a genetic analysis of six generations derived from PI 192938 (scc) and Cream of Saskatchewan (COS) (non-scc) parental lines and found that the scc trait was regulated by a single recessive gene through two years. Bulk segregant analysis sequencing (BSA-seq) and initial mapping placed the scc locus into an 808.8 kb region on chromosome 3. Evaluation of another 1152 F2 plants narrowed the scc locus to a 277.11 kb region containing 37 candidate genes. Due to the lack of molecular markers in the fine-mapping interval, we extracted the genome sequence variations in this 277.11 kb region with in silico BSA among seventeen re-sequenced lines (6 scc and 11 non-scc) and finally delimited the scc locus to an 8.34 kb region with only one candidate gene Cla97C03G056110 (CRIB domain-containing protein). Three single nucleotide polymorphism loci in the promoter region of Cla97C03G056110 altered cis-acting elements that were highly correlated with the nature watermelon panel. The expression of Cla97C03G056110 in seed coat tissue was higher in non-scc than in scc lines and was specifically expressed in seed coat compared with fruit flesh.
Collapse
Affiliation(s)
- Qi Mi
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Hongqian Pang
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China
| | - Feishi Luan
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Peng Gao
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| | - Shi Liu
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, Heilongjiang Province, China.
| |
Collapse
|
17
|
Kim MH, Cho JS, Tran TNA, Nguyen TTT, Park EJ, Im JH, Han KH, Lee H, Ko JH. Comparative functional analysis of PdeNAC2 and AtVND6 in the tracheary element formation. TREE PHYSIOLOGY 2023:tpad042. [PMID: 37014763 DOI: 10.1093/treephys/tpad042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/17/2023] [Indexed: 06/19/2023]
Abstract
Tracheary elements (i.e., vessel elements and tracheids) are highly specialized, non-living cells present in the water-conducting xylem tissue. In angiosperms, proteins in the VASCULAR-RELATED NAC-DOMAIN (VND) subgroup of the NAC transcription factor family (e.g., AtVND6) are required for the differentiation of vessel elements through transcriptional regulation of genes responsible for secondary cell wall (SCW) formation and programmed cell death (PCD). Gymnosperms, however, produce only tracheids, the mechanism of which remains elusive. Here, we report functional characteristics of PdeNAC2, a VND homolog in Pinus densiflora, as a key regulator of tracheid formation. Interestingly, our molecular genetic analyses show that PdeNAC2 can induce the formation of vessel element-like cells in angiosperm plants, demonstrated by transgenic overexpression of either native or NAC domain-swapped synthetic genes of PdeNAC2 and AtVND6 in both Arabidopsis and hybrid poplar. Subsequently, genome-wide identification of direct target genes of PdeNAC2 and AtVND6 revealed 138 and 174 genes as putative direct targets, respectively, but only 17 genes were identified as common direct targets. Further analyses have found that PdeNAC2 does not control some AtVND6-dependent vessel differentiation genes in angiosperm plants, such as AtVRLK1, LBD15/30, and pit-forming ROP signaling genes. Collectively, our results suggest that different target gene repertoires of PdeNAC2 and AtVND6 may contribute to the evolution of tracheary elements.
Collapse
Affiliation(s)
- Min-Ha Kim
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Jin-Seong Cho
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Ngoc Anh Tran
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Thi Thu Tram Nguyen
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| | - Eung-Jun Park
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jong-Hee Im
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
| | - Kyung-Hwan Han
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- DOE Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, 48824, USA
- Department of Forestry, Michigan State University, East Lansing, MI 48824, USA
| | - Hyoshin Lee
- Forest Bioresources Department, National Institute of Forest Science, Suwon 16631, Republic of Korea
| | - Jae-Heung Ko
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin 17104, Republic of Korea
| |
Collapse
|
18
|
Engelhardt S, Trutzenberg A, Kopischke M, Probst K, McCollum C, Hofer J, Hückelhoven R. Barley RIC157, a potential RACB scaffold protein, is involved in susceptibility to powdery mildew. PLANT MOLECULAR BIOLOGY 2023; 111:329-344. [PMID: 36562946 PMCID: PMC10090020 DOI: 10.1007/s11103-022-01329-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/03/2022] [Indexed: 06/15/2023]
Abstract
CRIB motif-containing barley RIC157 is a novel ROP scaffold protein that interacts directly with barley RACB, promotes susceptibility to fungal penetration, and colocalizes with RACB at the haustorial neck. Successful obligate pathogens benefit from host cellular processes. For the biotrophic ascomycete fungus Blumeria hordei (Bh) it has been shown that barley RACB, a small monomeric G-protein (ROP, Rho of plants), is required for full susceptibility to fungal penetration. The susceptibility function of RACB probably lies in its role in cell polarity, which may be co-opted by the pathogen for invasive ingrowth of its haustorium. However, how RACB supports fungal penetration success and which other host proteins coordinate this process is incompletely understood. RIC (ROP-Interactive and CRIB-(Cdc42/Rac Interactive Binding) motif-containing) proteins are considered scaffold proteins which can interact directly with ROPs via a conserved CRIB motif. Here we describe a previously uncharacterized barley RIC protein, RIC157, which can interact directly with RACB in planta. We show that, in the presence of constitutively activated RACB, RIC157 shows a localization at the cell periphery/plasma membrane, whereas it otherwise localizes to the cytoplasm. RIC157 appears to mutually stabilize the plasma membrane localization of the activated ROP. During fungal infection, RIC157 and RACB colocalize at the penetration site, particularly at the haustorial neck. Additionally, transiently overexpressed RIC157 renders barley epidermal cells more susceptible to fungal penetration. We discuss that RIC157 may promote fungal penetration into barley epidermal cells by operating probably downstream of activated RACB.
Collapse
Affiliation(s)
- Stefan Engelhardt
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Adriana Trutzenberg
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Michaela Kopischke
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Katja Probst
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Christopher McCollum
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Johanna Hofer
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany
| | - Ralph Hückelhoven
- Phytopathology, TUM School of Life Sciences, Technical University of Munich, Emil- Ramann-Str.2, 85354, Freising-Weihenstephan, Germany.
| |
Collapse
|
19
|
Ntefidou M, Eklund DM, Le Bail A, Schulmeister S, Scherbel F, Brandl L, Dörfler W, Eichstädt C, Bannmüller A, Ljung K, Kost B. Physcomitrium patens PpRIC, an ancestral CRIB-domain ROP effector, inhibits auxin-induced differentiation of apical initial cells. Cell Rep 2023; 42:112130. [PMID: 36790931 DOI: 10.1016/j.celrep.2023.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/03/2022] [Accepted: 02/01/2023] [Indexed: 02/16/2023] Open
Abstract
RHO guanosine triphosphatases are important eukaryotic regulators of cell differentiation and behavior. Plant ROP (RHO of plant) family members activate specific, incompletely characterized downstream signaling. The structurally simple land plant Physcomitrium patens is missing homologs of key animal and flowering plant RHO effectors but contains a single CRIB (CDC42/RAC interactive binding)-domain-containing RIC (ROP-interacting CRIB-containing) protein (PpRIC). Protonemal P. patens filaments elongate based on regular division and PpROP-dependent tip growth of apical initial cells, which upon stimulation by the hormone auxin differentiate caulonemal characteristics. PpRIC interacts with active PpROP1, co-localizes with this protein at the plasma membrane at the tip of apical initial cells, and accumulates in the nucleus. Remarkably, PpRIC is not required for tip growth but is targeted to the nucleus to block caulonema differentiation downstream of auxin-controlled gene expression. These observations establish functions of PpRIC in mediating crosstalk between ROP and auxin signaling, which contributes to the maintenance of apical initial cell identity.
Collapse
Affiliation(s)
- Maria Ntefidou
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - D Magnus Eklund
- Physiology and Environmental Toxicology, Department of Organismal Biology, Uppsala University, 75236 Uppsala, Sweden
| | - Aude Le Bail
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Sylwia Schulmeister
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Franziska Scherbel
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Lisa Brandl
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Wolfgang Dörfler
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Chantal Eichstädt
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Anna Bannmüller
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden
| | - Benedikt Kost
- Cell Biology, Department of Biology, University Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
20
|
Nan Q, Char SN, Yang B, Bennett EJ, Yang B, Facette MR. Polarly localized WPR proteins interact with PAN receptors and the actin cytoskeleton during maize stomatal development. THE PLANT CELL 2023; 35:469-487. [PMID: 36227066 PMCID: PMC9806561 DOI: 10.1093/plcell/koac301] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 10/05/2022] [Indexed: 05/19/2023]
Abstract
Polarization of cells prior to asymmetric cell division is crucial for correct cell divisions, cell fate, and tissue patterning. In maize (Zea mays) stomatal development, the polarization of subsidiary mother cells (SMCs) prior to asymmetric division is controlled by the BRICK (BRK)-PANGLOSS (PAN)-RHO FAMILY GTPASE (ROP) pathway. Two catalytically inactive receptor-like kinases, PAN2 and PAN1, are required for correct division plane positioning. Proteins in the BRK-PAN-ROP pathway are polarized in SMCs, with the polarization of each protein dependent on the previous one. As most of the known proteins in this pathway do not physically interact, possible interactors that might participate in the pathway are yet to be described. We identified WEAK CHLOROPLAST MOVEMENT UNDER BLUE LIGHT 1 (WEB1)/PLASTID MOVEMENT IMPAIRED 2 (PMI2)-RELATED (WPR) proteins as players during SMC polarization in maize. WPRs physically interact with PAN receptors and polarly accumulate in SMCs. The polarized localization of WPR proteins depends on PAN2 but not PAN1. CRISPR-Cas9-induced mutations result in division plane defects in SMCs, and ectopic expression of WPR-RFP results in stomatal defects and alterations to the actin cytoskeleton. We show that certain WPR proteins directly interact with F-actin through their N-terminus. Our data implicate WPR proteins as potentially regulating actin filaments, providing insight into their molecular function. These results demonstrate that WPR proteins are important for cell polarization.
Collapse
Affiliation(s)
- Qiong Nan
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Si Nian Char
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
| | - Bing Yang
- University of CaliforniaUniversity of California, San Diego, Department of Cell and Developmental Biology, La Jolla, California 92093, USA
| | - Eric J Bennett
- University of CaliforniaUniversity of California, San Diego, Department of Cell and Developmental Biology, La Jolla, California 92093, USA
| | - Bing Yang
- Division of Plant Sciences, Bond Life Sciences Center, University of Missouri, Columbia, Missouri 65211, USA
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Michelle R Facette
- Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003, USA
| |
Collapse
|
21
|
Emonet A, Hay A. Development and diversity of lignin patterns. PLANT PHYSIOLOGY 2022; 190:31-43. [PMID: 35642915 PMCID: PMC9434266 DOI: 10.1093/plphys/kiac261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 05/09/2022] [Indexed: 05/27/2023]
Abstract
Different patterns of lignified cell walls are associated with diverse functions in a variety of plant tissues. These functions rely on the stiffness and hydrophobicity that lignin polymers impart to the cell wall. The precise pattern of subcellular lignin deposition is critical for the structure-function relationship in each lignified cell type. Here, we describe the role of xylem vessels as water pipes, Casparian strips as apoplastic barriers, and the role of asymmetrically lignified endocarp b cells in exploding seed pods. We highlight similarities and differences in the genetic mechanisms underpinning local lignin deposition in these diverse cell types. By bringing together examples from different developmental contexts and different plant species, we propose that comparative approaches can benefit our understanding of lignin patterning mechanisms.
Collapse
Affiliation(s)
- Aurélia Emonet
- Max Planck Institute for Plant Breeding Research, Cologne, North Rhine-Westphalia, 50829, Germany
| | | |
Collapse
|
22
|
Current Understanding of the Genetics and Molecular Mechanisms Regulating Wood Formation in Plants. Genes (Basel) 2022; 13:genes13071181. [PMID: 35885964 PMCID: PMC9319765 DOI: 10.3390/genes13071181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 11/17/2022] Open
Abstract
Unlike herbaceous plants, woody plants undergo volumetric growth (a.k.a. secondary growth) through wood formation, during which the secondary xylem (i.e., wood) differentiates from the vascular cambium. Wood is the most abundant biomass on Earth and, by absorbing atmospheric carbon dioxide, functions as one of the largest carbon sinks. As a sustainable and eco-friendly energy source, lignocellulosic biomass can help address environmental pollution and the global climate crisis. Studies of Arabidopsis and poplar as model plants using various emerging research tools show that the formation and proliferation of the vascular cambium and the differentiation of xylem cells require the modulation of multiple signals, including plant hormones, transcription factors, and signaling peptides. In this review, we summarize the latest knowledge on the molecular mechanism of wood formation, one of the most important biological processes on Earth.
Collapse
|
23
|
Li X, Xu Y, Shen S, Guo T, Dai H, Lu X. Effects of dissolved organic matter on phosphorus recovery via hydroxyapatite crystallization: New insights based on induction time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153618. [PMID: 35124042 DOI: 10.1016/j.scitotenv.2022.153618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Recovery of phosphorus from sewage can help establish a new phosphorus cycle and hydroxyapatite (HAP) crystallization is a promising way. HAP crystallization is an amorphous calcium phosphate (ACP) mediated process, and its induction time reflects the rate of HAP nucleation, and seriously affects the efficiency of phosphorus recovery. In this study, the effects of different types of dissolved organic matter (DOM) on the induction time and phosphorus recovery performance of ACP-mediated HAP phosphorus recovery were studied, and the mechanism was analyzed by X-Ray Diffraction, Fourier transform infrared spectroscopy, and scanning electron micrograph with energy dispersive spectrometry. The results show that DOM greatly prolongs the induction time of ACP-mediated HAP crystallization and leads to an increase in the yield of microcrystals, thus leading to a decrease in phosphorus recovery efficiency. DOM inhibits ACP-mediated HAP crystallization by complexing lattice ions and occupying active growth sites on the crystal surface. Pre-removal of DOM can not only improve the speed and efficiency of phosphorus recovery by the HAP crystallization process but also improve product quality.
Collapse
Affiliation(s)
- Xiang Li
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| | - Yuye Xu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Shuting Shen
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Ting Guo
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China
| | - Hongliang Dai
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, No. 2 Mengxi Road, Zhenjiang 212018, PR China.
| | - Xiwu Lu
- Southeast Univ, Sch Energy & Environment, 2 Sipailou Rd, Nanjing 210096, Jiangsu, PR China; ERC Taihu Lake Water Environment Wuxi, 99 Linghu Rd, Wuxi 214135, PR China.
| |
Collapse
|
24
|
Xu H, Giannetti A, Sugiyama Y, Zheng W, Schneider R, Watanabe Y, Oda Y, Persson S. Secondary cell wall patterning-connecting the dots, pits and helices. Open Biol 2022; 12:210208. [PMID: 35506204 PMCID: PMC9065968 DOI: 10.1098/rsob.210208] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 04/07/2022] [Indexed: 01/04/2023] Open
Abstract
All plant cells are encased in primary cell walls that determine plant morphology, but also protect the cells against the environment. Certain cells also produce a secondary wall that supports mechanically demanding processes, such as maintaining plant body stature and water transport inside plants. Both these walls are primarily composed of polysaccharides that are arranged in certain patterns to support cell functions. A key requisite for patterned cell walls is the arrangement of cortical microtubules that may direct the delivery of wall polymers and/or cell wall producing enzymes to certain plasma membrane locations. Microtubules also steer the synthesis of cellulose-the load-bearing structure in cell walls-at the plasma membrane. The organization and behaviour of the microtubule array are thus of fundamental importance to cell wall patterns. These aspects are controlled by the coordinated effort of small GTPases that probably coordinate a Turing's reaction-diffusion mechanism to drive microtubule patterns. Here, we give an overview on how wall patterns form in the water-transporting xylem vessels of plants. We discuss systems that have been used to dissect mechanisms that underpin the xylem wall patterns, emphasizing the VND6 and VND7 inducible systems, and outline challenges that lay ahead in this field.
Collapse
Affiliation(s)
- Huizhen Xu
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Alessandro Giannetti
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Yuki Sugiyama
- The Sainsbury Laboratory, University of Cambridge, Bateman Street, Cambridge CB2 1LR, UK
| | - Wenna Zheng
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - René Schneider
- Institute of Biochemistry and Biology, Plant Physiology Department, University of Potsdam, 14476 Potsdam, Germany
| | - Yoichiro Watanabe
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yoshihisa Oda
- Department of Gene Function and Phenomics, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, 1111 Yata, Mishima, Shizuoka 411-8540, Japan
| | - Staffan Persson
- School of Biosciences, The University of Melbourne, Parkville, Victoria 3010, Australia
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| |
Collapse
|
25
|
Wang H, Yang H, Wen Z, Gao C, Gao Y, Tian Y, Xu Z, Liu X, Persson S, Zhang B, Zhou Y. Xylan-based nanocompartments orchestrate plant vessel wall patterning. NATURE PLANTS 2022; 8:295-306. [PMID: 35318447 DOI: 10.1038/s41477-022-01113-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
Nanoclustering of biomacromolecules allows cells to efficiently orchestrate biological processes. The plant cell wall is a highly organized polysaccharide network but is heterogeneous in chemistry and structure. However, polysaccharide-based nanocompartments remain ill-defined. Here, we identify a xylan-rich nanodomain at pit borders of xylem vessels. We show that these nanocompartments maintain distinct wall patterns by anchoring cellulosic nanofibrils at the pit borders, critically supporting vessel robustness, water transport and leaf transpiration. The nanocompartments are produced by the activity of IRREGULAR XYLEM (IRX)10 and its homologues, which we show are de novo xylan synthases. Our study hence outlines a mechanism of how xylans are synthesized, how they assemble into nanocompartments and how the nanocompartments sustain cell wall pit patterning to support efficient water transport throughout the plant body.
Collapse
Affiliation(s)
- Hang Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Hanlei Yang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhao Wen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chengxu Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanbao Tian
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Zuopeng Xu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of the Ministry of Education for Plant Functional Genomics, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Xiangling Liu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Staffan Persson
- Department for Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
- Copenhagen Plant Science Center, University of Copenhagen, Frederiksberg, Denmark
- Joint International Research Laboratory of Metabolic & Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
26
|
Arabidopsis pavement cell shape formation involves spatially confined ROPGAP regulators. Curr Biol 2022; 32:532-544.e7. [PMID: 35085497 DOI: 10.1016/j.cub.2021.12.042] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/16/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022]
Abstract
In many plant species, pavement cell development relies on the coordinated formation of interdigitating lobes and indentations. Polarity signaling via the activity of antagonistic Rho-related GTPases from plants (ROPs) was implicated in pavement cell development, but the spatiotemporal regulation remained unclear. Here, we report on the role of the PLECKSTRIN HOMOLOGY GTPase ACTIVATING PROTEINS (PHGAPS) during multipolar growth in pavement cell shape establishment. Loss of function in phgap1phgap2 double mutants severely affected the shape of Arabidopsis leaf epidermal pavement cells. Predominantly, PHGAPs interacted with ROP2 and displayed a distinct and microtubule-dependent enrichment along the anticlinal cell face and transfacial boundary of pavement cell indentation regions. This localization was established upon undulation initiation and was maintained throughout the expansion of the cell. Our data suggest that PHGAP1/REN2 and PHGAP2/REN3 are key players in the establishment of ROP2 activity gradients and underscore the importance of locally controlled ROP activity for the orchestrated establishment of multipolarity in epidermal cells.
Collapse
|
27
|
Zhu Y, Li L. Multi-layered Regulation of Plant Cell Wall Thickening. PLANT & CELL PHYSIOLOGY 2021; 62:1867-1873. [PMID: 34698856 DOI: 10.1093/pcp/pcab152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 10/18/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Plants need to develop thickened cell walls with appropriate localization through precise regulation during the process of growth and development in order to support their body weight and to build long distance transportation systems. Wall thickening is achieved through a multitude of regulatory networks in various tissues under changeable environments. In this mini-review, we summarize current understanding of the regulatory pathways and mechanisms involved in cell wall thickening. Regulation of cell wall thickening is not only mechanistically essential to understand the plant structure accretion but also has applicable significance to plant cell wall biomass utilization.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Grassland Agro-ecosystem, Institute of Innovation Ecology and School of Life Science, Lanzhou University, Lanzhou 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
28
|
Sternberg H, Buriakovsky E, Bloch D, Gutman O, Henis YI, Yalovsky S. Formation of self-organizing functionally distinct Rho of plants domains involves a reduced mobile population. PLANT PHYSIOLOGY 2021; 187:2485-2508. [PMID: 34618086 PMCID: PMC8644358 DOI: 10.1093/plphys/kiab385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Rho family proteins are central to the regulation of cell polarity in eukaryotes. Rho of Plants-Guanyl nucleotide Exchange Factor (ROPGEF) can form self-organizing polar domains following co-expression with an Rho of Plants (ROP) and an ROP GTPase-Activating Protein (ROPGAP). Localization of ROPs in these domains has not been demonstrated, and the mechanisms underlying domain formation and function are not well understood. Here we show that six different ROPs form self-organizing domains when co-expressed with ROPGEF3 and GAP1 in Nicotiana benthamiana or Arabidopsis (Arabidopsis thaliana). Domain formation was associated with ROP-ROPGEF3 association, reduced ROP mobility, as revealed by time-lapse imaging and Fluorescence Recovery After Photobleaching beam size analysis, and was independent of Rho GTP Dissociation Inhibitor mediated recycling. The domain formation depended on the ROPs' activation/inactivation cycles and interaction with anionic lipids via a C-terminal polybasic domain. Coexpression with the microtubule-associated protein ROP effector INTERACTOR OF CONSTITUTIVELY ACTIVE ROP 1 (ICR1) revealed differential function of the ROP domains in the ability to recruit ICR1. Taken together, the results reveal mechanisms underlying self-organizing ROP domain formation and function.
Collapse
Affiliation(s)
- Hasana Sternberg
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ella Buriakovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Daria Bloch
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orit Gutman
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Yoav I Henis
- School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Shaul Yalovsky
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv 6997801, Israel
| |
Collapse
|
29
|
Kamon E, Ohtani M. Xylem vessel cell differentiation: A best model for new integrative cell biology? CURRENT OPINION IN PLANT BIOLOGY 2021; 64:102135. [PMID: 34768235 DOI: 10.1016/j.pbi.2021.102135] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 09/24/2021] [Accepted: 09/29/2021] [Indexed: 05/22/2023]
Abstract
Xylem vessels transport water and essential low-molecular-weight compounds throughout vascular plants. To achieve maximum performance as conductive tissues, xylem vessel cells undergo secondary cell wall deposition and programmed cell death to produce a hollow tube-like structure with a rigid outer shell. This unique process has been explored in detail from a cell biology and molecular biology perspective, culminating in the identification of the master transcriptional switches of xylem vessel cell differentiation, the VASCULAR-RELATED NAC-DOMAIN (VND) proteins. High-resolution analyses of xylem vessel cell differentiation have since accelerated and are now moving toward single cell-level dissection from a variety of directions. In this review, we introduce the current model of xylem vessel cell differentiation and discuss possible future directions in this field.
Collapse
Affiliation(s)
- Eri Kamon
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | - Misato Ohtani
- Department of Integrated Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan.
| |
Collapse
|
30
|
Gao H, Wang T, Zhang Y, Li L, Wang C, Guo S, Zhang T, Wang C. GTPase ROP6 negatively modulates phosphate deficiency through inhibition of PHT1;1 and PHT1;4 in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1775-1786. [PMID: 34288396 DOI: 10.1111/jipb.13153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus, an essential macroelement for plant growth and development, is a major limiting factor for sustainable crop yield. The Rho of plant (ROP) GTPase is involved in regulating multiple signal transduction processes in plants, but potentially including the phosphate deficiency signaling pathway remains unknown. Here, we identified that the rop6 mutant exhibited a dramatic tolerant phenotype under Pi-deficient conditions, with higher phosphate accumulation and lower anthocyanin content. In contrast, the rop6 mutant was more sensitive to arsenate (As(V)) toxicity, the analog of Pi. Immunoblot analysis displayed that the ROP6 protein was rapidly degraded through ubiquitin/26S proteasome pathway under Pi-deficient conditions. In addition, pull-down assay using GST-RIC1 demonstrated that the ROP6 activity was decreased obviously under Pi-deficient conditions. Strikingly, protein-protein interaction and two-voltage clamping assays demonstrated that ROP6 physically interacted with and inhibited the key phosphate uptake transporters PHT1;1 and PHT1;4 in vitro and in vivo. Moreover, genetic analysis showed that ROP6 functioned upstream of PHT1;1 and PHT1;4. Thus, we conclude that GTPase ROP6 modulates the uptake of phosphate by inhibiting the activities of PHT1;1 and PHT1;4 in Arabidopsis.
Collapse
Affiliation(s)
- Huiling Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yanting Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Lili Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Chuanqing Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Shiyuan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Tianqi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Cun Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
31
|
Chukhchin DG, Vashukova K, Novozhilov E. Bordered Pit Formation in Cell Walls of Spruce Tracheids. PLANTS 2021; 10:plants10091968. [PMID: 34579500 PMCID: PMC8469699 DOI: 10.3390/plants10091968] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/02/2022]
Abstract
The process of pit formation in plants still has various questions unaddressed and unknown, which opens up many interesting and new research opportunities. The aim of this work was elucidation of the mechanism for the formation of bordered pits of the spruce (Picea abies (L.) Karst.) tracheid with exosomes participation and mechanical deformation of the cell wall. Sample sections were prepared from spruce stem samples after cryomechanical destruction with liquid nitrogen. The study methods included scanning electron microscopy and enzymatic treatment. Enzymatic treatment of the elements of the bordered pit made it possible to clarify the localization of cellulose and pectin. SEM images of intermediate stages of bordered pit formation in the radial and tangential directions were obtained. An asynchronous mechanism of formation of bordered-pit pairs in tracheids is proposed. The formation of the pit pair begins from the side of the initiator cell and is associated with enzymatic hydrolysis of the secondary cell wall and subsequent mechanical deformation of the primary cell walls. Enzymatic hydrolysis of the S1 layer of the secondary cell wall is carried out by exosome-delivered endoglucanases.
Collapse
|
32
|
Liu YL, Wang LJ, Li Y, Guo YH, Cao Y, Zhao ST. A Small Guanosine Triphosphate Binding Protein PagRabE1b Promotes Xylem Development in Poplar. FRONTIERS IN PLANT SCIENCE 2021; 12:686024. [PMID: 34149786 PMCID: PMC8213388 DOI: 10.3389/fpls.2021.686024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Rab GTPases are the subfamily of the small guanosine triphosphate (GTP)-binding proteins which participated in the regulation of various biological processes. Recent studies have found that plant Rabs play some specific functions. However, the functions of Rabs in xylem development in trees remain unclear. In this study, functional identification of PagRabE1b in Populus was performed. Quantitative reverse transcription PCR (qRT-PCR) results showed that PagRabE1b was highly accumulated in stems, especially in phloem and xylem tissues. Overexpression of PagRabE1b in poplar enhanced programmed cell death (PCD) and increased the growth rate and the secondary cell wall (SCW) thickness. Quantitative analysis of monosaccharide content showed that various monosaccharides were significantly increased in secondary xylem tissues of the overexpressed lines. Flow cytometry analysis revealed that the number of apoptotic cells in PagRabE1b-OE lines is more than a wild type (WT), which indicated that PagRabE1b may play an important role in PCD. Further studies showed that overexpression of PagRabE1b increased the expression level of genes involved in SCW biosynthesis, PCD, and autophagy. Collectively, the results suggest that PagRabE1b plays a positive role in promoting the xylem development of poplar.
Collapse
Affiliation(s)
- Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Li-Juan Wang
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yu Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Ying-Hua Guo
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yuan Cao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
33
|
Kaack L, Weber M, Isasa E, Karimi Z, Li S, Pereira L, Trabi CL, Zhang Y, Schenk HJ, Schuldt B, Schmidt V, Jansen S. Pore constrictions in intervessel pit membranes provide a mechanistic explanation for xylem embolism resistance in angiosperms. THE NEW PHYTOLOGIST 2021; 230:1829-1843. [PMID: 33595117 DOI: 10.1111/nph.17282] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 02/09/2021] [Indexed: 05/27/2023]
Abstract
Embolism spreading in angiosperm xylem occurs via mesoporous pit membranes between vessels. Here, we investigate how the size of pore constrictions in pit membranes is related to pit membrane thickness and embolism resistance. Pit membranes were modelled as multiple layers to investigate how pit membrane thickness and the number of intervessel pits per vessel determine pore constriction sizes, the probability of encountering large pores, and embolism resistance. These estimations were complemented by measurements of pit membrane thickness, embolism resistance, and number of intervessel pits per vessel in stem xylem (n = 31, 31 and 20 species, respectively). The modelled constriction sizes in pit membranes decreased with increasing membrane thickness, explaining the measured relationship between pit membrane thickness and embolism resistance. The number of pits per vessel affected constriction size and embolism resistance much less than pit membrane thickness. Moreover, a strong relationship between modelled and measured embolism resistance was observed. Pore constrictions provide a mechanistic explanation for why pit membrane thickness determines embolism resistance, which suggests that hydraulic safety can be uncoupled from hydraulic efficiency. Although embolism spreading remains puzzling and encompasses more than pore constriction sizes, angiosperms are unlikely to have leaky pit membranes, which enables tensile transport of water.
Collapse
Affiliation(s)
- Lucian Kaack
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Matthias Weber
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Emilie Isasa
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Zohreh Karimi
- Department of Biology, Faculty of Sciences, Golestan University, Shahid Beheshti St., Gorgan, 15759-49138, Iran
| | - Shan Li
- Department of Wood Anatomy and Utilization, Research Institute of Wood Industry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Luciano Pereira
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Christophe L Trabi
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Ya Zhang
- College of Life Sciences, Anhui Normal University, Beijingdong Road 1, Wuhu, 241000, China
| | - H Jochen Schenk
- Department of Biological Science, California State University Fullerton, Fullerton, CA, 92834-6850, USA
| | - Bernhard Schuldt
- Ecophysiology and Vegetation Ecology, Julius-von-Sachs-Institute for Biological Sciences, University of Würzburg, Julius-von-Sachs-Platz 3, Würzburg, D-97082, Germany
| | - Volker Schmidt
- Institute of Stochastics, Ulm University, Helmholtzstraße 18, Ulm, D-89069, Germany
| | - Steven Jansen
- Institute of Systematic Botany and Ecology, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|
34
|
Smokvarska M, Jaillais Y, Martinière A. Function of membrane domains in rho-of-plant signaling. PLANT PHYSIOLOGY 2021; 185:663-681. [PMID: 33793925 PMCID: PMC8133555 DOI: 10.1093/plphys/kiaa082] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/25/2020] [Indexed: 05/18/2023]
Abstract
In a crowded environment, establishing interactions between different molecular partners can take a long time. Biological membranes have solved this issue, as they simultaneously are fluid and possess compartmentalized domains. This nanoscale organization of the membrane is often based on weak, local, and multivalent interactions between lipids and proteins. However, from local interactions at the nanoscale, different functional properties emerge at the higher scale, and these are critical to regulate and integrate cellular signaling. Rho of Plant (ROP) proteins are small guanosine triphosphate hydrolase enzymes (GTPases) involved in hormonal, biotic, and abiotic signaling, as well as fundamental cell biological properties such as polarity, vesicular trafficking, and cytoskeleton dynamics. Association with the membrane is essential for ROP function, as well as their precise targeting within micrometer-sized polar domains (i.e. microdomains) and nanometer-sized clusters (i.e. nanodomains). Here, we review our current knowledge about the formation and the maintenance of the ROP domains in membranes. Furthermore, we propose a model for ROP membrane targeting and discuss how the nanoscale organization of ROPs in membranes could determine signaling parameters like signal specificity, amplification, and integration.
Collapse
Affiliation(s)
- Marija Smokvarska
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, CNRS, INRAE, Université de Lyon, ENS de Lyon, UCB Lyon 1, F-69342 Lyon, France
| | - Alexandre Martinière
- BPMP, CNRS, INRAE, Univ Montpellier, Montpellier SupAgro, 34060 Montpellier, France
- Author for communication:
| |
Collapse
|
35
|
Li E, Zhang YL, Shi X, Li H, Yuan X, Li S, Zhang Y. A positive feedback circuit for ROP-mediated polar growth. MOLECULAR PLANT 2021; 14:395-410. [PMID: 33271334 DOI: 10.1016/j.molp.2020.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 09/12/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Tip growth is a special type of polarized growth in which a single and unique polarization site is established and maintained. Rho of Plants (ROP) proteins, which represent the only class of Rho GTPases in plants, regulate tip growth. The dynamic and asymmetric distribution of ROPs is critical for the establishment and maintenance of tip growth, and requires at least one positive feedback loop, which is still elusive. Here, we report a positive feedback circuit essential for tip growth of root hairs, in which ROPs, ROP activators and effectors, and AGC1.5 subfamily kinases are interconnected by sequential oligomerization and phosphorylation. AGC1.5 subfamily kinases interact with and phosphorylate two guanine nucleotide exchange factors (GEFs) of ROPs, RopGEF4 and RopGEF10. They also interact with two ROP effectors, ICR2/RIP3 and MIDD1/RIP4, which bridge active ROPs with AGC1.5. Functional loss of the AGC1.5 subfamily kinases or ICR2 and MIDD1 compromised root hair growth due to reduced ROP signaling. We found that asymmetric targeting of RopGEF4 and RopGEF10 is controlled by AGC1.5-dependent phosphorylation. Interestingly, we discovered that the ROP effectors recruit AGC1.5 to active ROP domains at the plasma membrane during root hair growth and are critical for AGC1.5-dependent phosphorylation of RopGEFs. Given the large number of AGC kinases in plants, this positive feedback circuit may be a universal theme for plant cell polar growth.
Collapse
Affiliation(s)
- En Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Yu-Ling Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xuelian Shi
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Han Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China
| | - Xuefeng Yuan
- Shandong Province Key Laboratory of Agricultural Microbiology, College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
| | - Sha Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| | - Yan Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
36
|
Schneider R, Klooster KV, Picard KL, van der Gucht J, Demura T, Janson M, Sampathkumar A, Deinum EE, Ketelaar T, Persson S. Long-term single-cell imaging and simulations of microtubules reveal principles behind wall patterning during proto-xylem development. Nat Commun 2021; 12:669. [PMID: 33510146 PMCID: PMC7843992 DOI: 10.1038/s41467-021-20894-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023] Open
Abstract
Plants are the tallest organisms on Earth; a feature sustained by solute-transporting xylem vessels in the plant vasculature. The xylem vessels are supported by strong cell walls that are assembled in intricate patterns. Cortical microtubules direct wall deposition and need to rapidly re-organize during xylem cell development. Here, we establish long-term live-cell imaging of single Arabidopsis cells undergoing proto-xylem trans-differentiation, resulting in spiral wall patterns, to understand microtubule re-organization. We find that the re-organization requires local microtubule de-stabilization in band-interspersing gaps. Using microtubule simulations, we recapitulate the process in silico and predict that spatio-temporal control of microtubule nucleation is critical for pattern formation, which we confirm in vivo. By combining simulations and live-cell imaging we further explain how the xylem wall-deficient and microtubule-severing KATANIN contributes to microtubule and wall patterning. Hence, by combining quantitative microscopy and modelling we devise a framework to understand how microtubule re-organization supports wall patterning. Plant cell wall formation is directed by cortical microtubules, which produce complex patterns needed to support xylem vessels. Here, the authors perform live-cell imaging and simulations of Arabidopsis cells during proto-xylem differentiation to show how local microtubule dynamics control pattern formation.
Collapse
Affiliation(s)
- René Schneider
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Kris Van't Klooster
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.,Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Kelsey L Picard
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia.,School of Natural Sciences, University of Tasmania, Hobart, 7001, TAS, Australia
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University, Wageningen, The Netherlands
| | - Taku Demura
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Marcel Janson
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Wageningen University, Wageningen, The Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University, Wageningen, The Netherlands.
| | - Staffan Persson
- School of Biosciences, University of Melbourne, Parkville, VIC, 3010, Australia. .,Department for Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Copenhagen Plant Science Center, University of Copenhagen, 1871, Frederiksberg C, Denmark. .,Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
37
|
Lian N, Wang X, Jing Y, Lin J. Regulation of cytoskeleton-associated protein activities: Linking cellular signals to plant cytoskeletal function. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:241-250. [PMID: 33274838 DOI: 10.1111/jipb.13046] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/01/2020] [Indexed: 05/24/2023]
Abstract
The plant cytoskeleton undergoes dynamic remodeling in response to diverse developmental and environmental cues. Remodeling of the cytoskeleton coordinates growth in plant cells, including trafficking and exocytosis of membrane and wall components during cell expansion, and regulation of hypocotyl elongation in response to light. Cytoskeletal remodeling also has key functions in disease resistance and abiotic stress responses. Many stimuli result in altered activity of cytoskeleton-associated proteins, microtubule-associated proteins (MAPs) and actin-binding proteins (ABPs). MAPs and ABPs are the main players determining the spatiotemporally dynamic nature of the cytoskeleton, functioning in a sensory hub that decodes signals to modulate plant cytoskeletal behavior. Moreover, MAP and ABP activities and levels are precisely regulated during development and environmental responses, but our understanding of this process remains limited. In this review, we summarize the evidence linking multiple signaling pathways, MAP and ABP activities and levels, and cytoskeletal rearrangements in plant cells. We highlight advances in elucidating the multiple mechanisms that regulate MAP and ABP activities and levels, including calcium and calmodulin signaling, ROP GTPase activity, phospholipid signaling, and post-translational modifications.
Collapse
Affiliation(s)
- Na Lian
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Yanping Jing
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| | - Jinxing Lin
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
38
|
Zhang B, Gao Y, Zhang L, Zhou Y. The plant cell wall: Biosynthesis, construction, and functions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:251-272. [PMID: 33325153 DOI: 10.1111/jipb.13055] [Citation(s) in RCA: 227] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 12/15/2020] [Indexed: 05/19/2023]
Abstract
The plant cell wall is composed of multiple biopolymers, representing one of the most complex structural networks in nature. Hundreds of genes are involved in building such a natural masterpiece. However, the plant cell wall is the least understood cellular structure in plants. Due to great progress in plant functional genomics, many achievements have been made in uncovering cell wall biosynthesis, assembly, and architecture, as well as cell wall regulation and signaling. Such information has significantly advanced our understanding of the roles of the cell wall in many biological and physiological processes and has enhanced our utilization of cell wall materials. The use of cutting-edge technologies such as single-molecule imaging, nuclear magnetic resonance spectroscopy, and atomic force microscopy has provided much insight into the plant cell wall as an intricate nanoscale network, opening up unprecedented possibilities for cell wall research. In this review, we summarize the major advances made in understanding the cell wall in this era of functional genomics, including the latest findings on the biosynthesis, construction, and functions of the cell wall.
Collapse
Affiliation(s)
- Baocai Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihong Gao
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lanjun Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yihua Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
39
|
Cheng X, Mwaura BW, Chang Stauffer SR, Bezanilla M. A Fully Functional ROP Fluorescent Fusion Protein Reveals Roles for This GTPase in Subcellular and Tissue-Level Patterning. THE PLANT CELL 2020; 32:3436-3451. [PMID: 32917738 PMCID: PMC7610296 DOI: 10.1105/tpc.20.00440] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/25/2020] [Accepted: 09/07/2020] [Indexed: 05/18/2023]
Abstract
Rho of Plants (ROPs) are GTPases that regulate polarity and patterned wall deposition in plants. As these small, globular proteins have many interactors, it has been difficult to ensure that methods to visualize ROP in live cells do not affect ROP function. Here, motivated by work in fission yeast (Schizosaccharomyces pombe), we generated a fluorescent moss (Physcomitrium [Physcomitrella] patens) ROP4 fusion protein by inserting mNeonGreen after Gly-134. Plants harboring tagged ROP4 and no other ROP genes were phenotypically normal. Plants lacking all four ROP genes comprised an unpatterned clump of spherical cells that were unable to form gametophores, demonstrating that ROP is essentially for spatial patterning at the cellular and tissue levels. The functional ROP fusion protein formed a steep gradient at the apical plasma membranes of growing tip cells. ROP also predicted the site of branch formation in the apical cell at the onset of mitosis, which occurs one to two cell cycles before a branch cell emerges. While fluorescence recovery after photobleaching studies demonstrated that ROP dynamics do not depend on the cytoskeleton, acute depolymerization of the cytoskeleton removed ROP from the membrane only in recently divided cells, pointing to a feedback mechanism between the cell cycle, cytoskeleton, and ROP.
Collapse
Affiliation(s)
- Xiaohang Cheng
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Bethany W Mwaura
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | | | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
40
|
Scholz P, Anstatt J, Krawczyk HE, Ischebeck T. Signalling Pinpointed to the Tip: The Complex Regulatory Network That Allows Pollen Tube Growth. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1098. [PMID: 32859043 PMCID: PMC7569787 DOI: 10.3390/plants9091098] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/18/2020] [Accepted: 08/23/2020] [Indexed: 12/13/2022]
Abstract
Plants display a complex life cycle, alternating between haploid and diploid generations. During fertilisation, the haploid sperm cells are delivered to the female gametophyte by pollen tubes, specialised structures elongating by tip growth, which is based on an equilibrium between cell wall-reinforcing processes and turgor-driven expansion. One important factor of this equilibrium is the rate of pectin secretion mediated and regulated by factors including the exocyst complex and small G proteins. Critically important are also non-proteinaceous molecules comprising protons, calcium ions, reactive oxygen species (ROS), and signalling lipids. Among the latter, phosphatidylinositol 4,5-bisphosphate and the kinases involved in its formation have been assigned important functions. The negatively charged headgroup of this lipid serves as an interaction point at the apical plasma membrane for partners such as the exocyst complex, thereby polarising the cell and its secretion processes. Another important signalling lipid is phosphatidic acid (PA), that can either be formed by the combination of phospholipases C and diacylglycerol kinases or by phospholipases D. It further fine-tunes pollen tube growth, for example by regulating ROS formation. How the individual signalling cues are intertwined or how external guidance cues are integrated to facilitate directional growth remain open questions.
Collapse
Affiliation(s)
- Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| | | | | | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Justus-von-Liebig Weg 11, D-37077 Goettingen, Germany; (J.A.); (H.E.K.)
| |
Collapse
|
41
|
García-González J, Kebrlová Š, Semerák M, Lacek J, Kotannal Baby I, Petrášek J, Schwarzerová K. Arp2/3 Complex Is Required for Auxin-Driven Cell Expansion Through Regulation of Auxin Transporter Homeostasis. FRONTIERS IN PLANT SCIENCE 2020; 11:486. [PMID: 32425966 PMCID: PMC7212389 DOI: 10.3389/fpls.2020.00486] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/31/2020] [Indexed: 05/29/2023]
Abstract
The Arp2/3 complex is an actin nucleator shown to be required throughout plant morphogenesis, contributing to processes such as cell expansion, tissue differentiation or cell wall assembly. A recent publication demonstrated that plants lacking functional Arp2/3 complex also present defects in auxin distribution and transport. This work shows that Arp2/3 complex subunits are predominantly expressed in the provasculature, although other plant tissues also show promoter activity (e.g., cotyledons, apical meristems, or root tip). Moreover, auxin can trigger subunit expression, indicating a role of this phytohormone in mediating the complex activity. Further investigation of the functional interaction between Arp2/3 complex and auxin signaling also reveals their cooperation in determining pavement cell shape, presumably through the role of Arp2/3 complex in the correct auxin carrier trafficking. Young seedlings of arpc5 mutants show increased auxin-triggered proteasomal degradation of DII-VENUS and altered PIN3 distribution, with higher levels of the protein in the vacuole. Closer observation of vacuolar morphology revealed the presence of a more fragmented vacuolar compartment when Arp2/3 function is abolished, hinting a generalized role of Arp2/3 complex in endomembrane function and protein trafficking.
Collapse
Affiliation(s)
- Judith García-González
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Štépánka Kebrlová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Matěj Semerák
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jozef Lacek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czechia
| | - Innu Kotannal Baby
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Jan Petrášek
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Kateřina Schwarzerová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
42
|
Tamaki T, Oya S, Naito M, Ozawa Y, Furuya T, Saito M, Sato M, Wakazaki M, Toyooka K, Fukuda H, Helariutta Y, Kondo Y. VISUAL-CC system uncovers the role of GSK3 as an orchestrator of vascular cell type ratio in plants. Commun Biol 2020; 3:184. [PMID: 32322004 PMCID: PMC7176705 DOI: 10.1038/s42003-020-0907-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 03/18/2020] [Indexed: 11/09/2022] Open
Abstract
The phloem transports photosynthetic assimilates and signalling molecules. It mainly consists of sieve elements (SEs), which act as "highways" for transport, and companion cells (CCs), which serve as "gates" to load/unload cargos. Though SEs and CCs function together, it remains unknown what determines the ratio of SE/CC in the phloem. Here we develop a new culture system for CC differentiation in Arabidopsis named VISUAL-CC, which almost mimics the process of the SE-CC complex formation. Comparative expression analysis in VISUAL-CC reveals that SE and CC differentiation tends to show negative correlation, while total phloem differentiation is unchanged. This varying SE/CC ratio is largely dependent on GSK3 kinase activity. Indeed, gsk3 hextuple mutants possess many more SEs and fewer CCs, whereas gsk3 gain-of-function mutants partially increase the CC number. Taken together, GSK3 activity appears to function as a cell-fate switch in the phloem, thereby balancing the SE/CC ratio.
Collapse
Affiliation(s)
- Takayuki Tamaki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Satoyo Oya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Makiko Naito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yasuko Ozawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Tomoyuki Furuya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan.,Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan
| | - Masato Saito
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Mayuko Sato
- RIKEN Centre for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Mayumi Wakazaki
- RIKEN Centre for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Kiminori Toyooka
- RIKEN Centre for Sustainable Resource Science, Yokohama, 230-0045, Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Ykä Helariutta
- Institute of Biotechnology/Department of Biological and Environmental Sciences, University of Helsinki, FIN-00014, Helsinki, Finland.,The Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan. .,Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501, Japan.
| |
Collapse
|
43
|
Hoefle C, McCollum C, Hückelhoven R. Barley ROP-Interactive Partner-a organizes into RAC1- and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1-dependent membrane domains. BMC PLANT BIOLOGY 2020; 20:94. [PMID: 32122296 PMCID: PMC7053138 DOI: 10.1186/s12870-020-2299-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 02/21/2020] [Indexed: 06/07/2023]
Abstract
BACKGROUND Small ROP (also called RAC) GTPases are key factors in polar cell development and in interaction with the environment. ROP-Interactive Partner (RIP) proteins are predicted scaffold or ROP-effector proteins, which function downstream of activated GTP-loaded ROP proteins in establishing membrane heterogeneity and cellular organization. Grass ROP proteins function in cell polarity, resistance and susceptibility to fungal pathogens but grass RIP proteins are little understood. RESULTS We found that the barley (Hordeum vulgare L.) RIPa protein can interact with barley ROPs in yeast. Fluorescent-tagged RIPa, when co-expressed with the constitutively activated ROP protein CA RAC1, accumulates at the cell periphery or plasma membrane. Additionally, RIPa, locates into membrane domains, which are laterally restricted by microtubules when co-expressed with RAC1 and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1. Both structural integrity of MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1 and microtubule stability are key to maintenance of RIPa-labeled membrane domains. In this context, RIPa also accumulates at the interface of barley and invading hyphae of the powdery mildew fungus Blumeria graminis f.sp. hordei. CONCLUSIONS Data suggest that barley RIPa interacts with barley ROPs and specifies RAC1 activity-associated membrane domains with potential signaling capacity. Lateral diffusion of this RAC1 signaling capacity is spatially restricted and the resulting membrane heterogeneity requires intact microtubules and MICROTUBULE-ASSOCIATED ROP-GTPASE ACTIVATING PROTEIN 1. Focal accumulation of RIPa at sites of fungal attack may indicate locally restricted ROP activity at sites of fungal invasion.
Collapse
Affiliation(s)
- Caroline Hoefle
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany
| | - Christopher McCollum
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany
| | - Ralph Hückelhoven
- Chair of Phytopathology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Emil Ramann Str. 2, 85354, Freising, Germany.
| |
Collapse
|
44
|
Nurani AM, Ozawa Y, Furuya T, Sakamoto Y, Ebine K, Matsunaga S, Ueda T, Fukuda H, Kondo Y. Deep Imaging Analysis in VISUAL Reveals the Role of YABBY Genes in Vascular Stem Cell Fate Determination. PLANT & CELL PHYSIOLOGY 2020; 61:255-264. [PMID: 31922574 DOI: 10.1093/pcp/pcaa002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
Stem cells undergo cell division and differentiation to ensure organized tissue development. Because plant cells are immobile, plant stem cells ought to decide their cell fate prior to differentiation, to locate specialized cells in the correct position. In this study, based on a chemical screen, we isolated a novel secondary cell wall indicator BF-170, which binds to lignin and can be used to image in vitro and in situ xylem development. Use of BF-170 to observe the vascular differentiation pattern in the in vitro vascular cell induction system, VISUAL, revealed that adaxial mesophyll cells of cotyledons predominantly generate ectopic xylem cells. Moreover, phloem cells are abundantly produced on the abaxial layer, suggesting the involvement of leaf adaxial-abaxial polarity in determining vascular cell fate. Analysis of abaxial polarity mutants highlighted the role of YAB3, an abaxial cell fate regulator, in suppressing xylem and promoting phloem differentiation on the abaxial domains in VISUAL. Furthermore, YABBY family genes affected in vivo vascular development during the secondary growth. Our results denoted the possibility that such mediators of spatial information contribute to correctly determine the cell fate of vascular stem cells, to conserve the vascular pattern of land plants.
Collapse
Affiliation(s)
- Alif Meem Nurani
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yasuko Ozawa
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Tomoyuki Furuya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Sakamoto
- Department of Biological Sciences, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka, 560-0043 Japan
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Kazuo Ebine
- Division of Cellular Dynamics, National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Sachihiro Matsunaga
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510 Japan
| | - Takashi Ueda
- Division of Cellular Dynamics, National Institute for Basic Biology, 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
- Department of Basic Biology, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigounaka, Myodaiji, Okazaki, Aichi, 444-8585 Japan
| | - Hiroo Fukuda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| | - Yuki Kondo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033 Japan
| |
Collapse
|
45
|
Tobias LM, Spokevicius AV, McFarlane HE, Bossinger G. The Cytoskeleton and Its Role in Determining Cellulose Microfibril Angle in Secondary Cell Walls of Woody Tree Species. PLANTS (BASEL, SWITZERLAND) 2020; 9:E90. [PMID: 31936868 PMCID: PMC7020502 DOI: 10.3390/plants9010090] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 12/28/2022]
Abstract
Recent advances in our understanding of the molecular control of secondary cell wall (SCW) formation have shed light on molecular mechanisms that underpin domestication traits related to wood formation. One such trait is the cellulose microfibril angle (MFA), an important wood quality determinant that varies along tree developmental phases and in response to gravitational stimulus. The cytoskeleton, mainly composed of microtubules and actin filaments, collectively contribute to plant growth and development by participating in several cellular processes, including cellulose deposition. Studies in Arabidopsis have significantly aided our understanding of the roles of microtubules in xylem cell development during which correct SCW deposition and patterning are essential to provide structural support and allow for water transport. In contrast, studies relating to SCW formation in xylary elements performed in woody trees remain elusive. In combination, the data reviewed here suggest that the cytoskeleton plays important roles in determining the exact sites of cellulose deposition, overall SCW patterning and more specifically, the alignment and orientation of cellulose microfibrils. By relating the reviewed evidence to the process of wood formation, we present a model of microtubule participation in determining MFA in woody trees forming reaction wood (RW).
Collapse
Affiliation(s)
- Larissa Machado Tobias
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Antanas V. Spokevicius
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| | - Heather E. McFarlane
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
| | - Gerd Bossinger
- School of Ecosystem and Forest Sciences, The University of Melbourne, Creswick, Victoria 3363, Australia; (A.V.S.); (G.B.)
| |
Collapse
|
46
|
Zhou Y, Dobritsa AA. Formation of aperture sites on the pollen surface as a model for development of distinct cellular domains. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 288:110222. [PMID: 31521218 DOI: 10.1016/j.plantsci.2019.110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/14/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
Pollen grains are covered by the complex extracellular structure, called exine, which in most species is deposited on the pollen surface non-uniformly. Certain surface areas receive fewer exine deposits and develop into regions whose structure and morphology differ significantly from the rest of pollen wall. These regions are known as pollen apertures. Across species, pollen apertures can vary in their numbers, positions, and morphology, generating highly diverse patterns. The process of aperture formation involves establishment of cell polarity, formation of distinct plasma membrane domains, and deposition of extracellular materials at precise positions. Thus, pollen apertures present an excellent model for studying the development of cellular domains and formation of patterns at the single-cell level. Until very recently, the molecular mechanisms underlying the specification and formation of aperture sites were completely unknown. Here, we review recent advances in understanding of the molecular processes involved in pollen aperture formation, focusing on the molecular players identified through genetic approaches in the model plant Arabidopsis. We discuss a potential working model that describes the process of aperture formation, including specification of domains, creation of their defining features, and protection of these regions from exine deposition.
Collapse
Affiliation(s)
- Yuan Zhou
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States
| | - Anna A Dobritsa
- Department of Molecular Genetics and Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, United States.
| |
Collapse
|
47
|
Yang Y, Huang W, Wu E, Lin C, Chen B, Lin D. Cortical Microtubule Organization during Petal Morphogenesis in Arabidopsis. Int J Mol Sci 2019; 20:E4913. [PMID: 31623377 PMCID: PMC6801907 DOI: 10.3390/ijms20194913] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/27/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022] Open
Abstract
Cortical microtubules guide the direction and deposition of cellulose microfibrils to build the cell wall, which in turn influences cell expansion and plant morphogenesis. In the model plant Arabidopsis thaliana (Arabidopsis), petal is a relatively simple organ that contains distinct epidermal cells, such as specialized conical cells in the adaxial epidermis and relatively flat cells with several lobes in the abaxial epidermis. In the past two decades, the Arabidopsis petal has become a model experimental system for studying cell expansion and organ morphogenesis, because petals are dispensable for plant growth and reproduction. Recent advances have expanded the role of microtubule organization in modulating petal anisotropic shape formation and conical cell shaping during petal morphogenesis. Here, we summarize recent studies showing that in Arabidopsis, several genes, such as SPIKE1, Rho of plant (ROP) GTPases, and IPGA1, play critical roles in microtubule organization and cell expansion in the abaxial epidermis during petal morphogenesis. Moreover, we summarize the live-confocal imaging studies of Arabidopsis conical cells in the adaxial epidermis, which have emerged as a new cellular model. We discuss the microtubule organization pattern during conical cell shaping. Finally, we propose future directions regarding the study of petal morphogenesis and conical cell shaping.
Collapse
Affiliation(s)
- Yanqiu Yang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Weihong Huang
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Endian Wu
- College of Life Science, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Chentao Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Binqing Chen
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Deshu Lin
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|