1
|
Guo H, Zhao Y, Zhang Z, Xu Y, Chen Y, Lei T, Zhao Y. The Presence and Pathogenic Roles of M(IL-33 + IL-2) Macrophages in Allergic Airway Inflammation. Allergy 2025; 80:1298-1308. [PMID: 39670958 DOI: 10.1111/all.16430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 10/02/2024] [Accepted: 11/06/2024] [Indexed: 12/14/2024]
Abstract
BACKGROUND Macrophages, one of the most abundant immune cells in the lung, have drawn great attention in allergic asthma. Currently, most studies emphasize alternative activated (M2) polarization bias. However, macrophage function in allergic asthma is still controversial. Interleukin (IL)-9 contributes to the development and pathogenesis of allergic airway inflammation. We sought to investigate the IL-9-producing macrophage and its role in allergic asthma. METHODS The model of ovalbumin (OVA)-induced allergic airway inflammation was employed to evaluate IL-9 production in macrophages of lung tissues. We used 22 cytokines or stimuli to screen for IL-9-producing mouse macrophage subset in vitro. Real-time PCR, flow cytometry, ELISA, and RNA-seq to explore the subset. Conditional IL-33 receptor knockout (Lyz-ST2KO) mice and cellular adoptive transfer experiment were used to characterize the potential roles of M(IL-33 + IL-2) in allergic asthma. RESULTS We identified a unique pathogenic IL-9-producing macrophage in OVA-induced allergic airway inflammation. We found that only IL-33 significantly induced IL-9 production in mouse macrophages, and IL-2 collaborated with IL-33 to promote IL-9 production, referred to as M(IL-33 + IL-2). Importantly, human monocyte-derived macrophages produced IL-9 after IL-33 and IL-2 stimulation. Using Lyz-ST2KO mice and adoptive transfer of M(IL-33 + IL-2), we found that M(IL-33 + IL-2) significantly promoted pathogenesis in OVA-induced allergic airway inflammation. M(IL-33 + IL-2) has a distinctive gene expression profile with high expression of IL-9, IL-5, and IL-13 and its polarization is dependent on JAK2-STAT3-IRF1 pathway. CONCLUSIONS The identification of M(IL-33 + IL-2) subset extends the diversity and heterogeneity of macrophage subsets and may offer novel therapeutic strategies for the treatment of allergic inflammation.
Collapse
Affiliation(s)
- Han Guo
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yang Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Zhaoqi Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
| | - Yanan Xu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Yifang Chen
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tong Lei
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Yong Zhao
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Faculty of Synthetic Biology, Shenzhen University of Advanced Technology, Shenzhen, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
2
|
Xu J, Apetoh L. Go to the scene: T H9 cells superior migration ability to the lungs explains their exceptional anticancer efficacy. J Immunother Cancer 2025; 13:e011522. [PMID: 40295144 PMCID: PMC12039026 DOI: 10.1136/jitc-2025-011522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
Antibodies against immune checkpoints are now routinely administered as a first line of treatment against metastatic lung cancer. Resistance to immune checkpoint inhibitors is, however, frequent, underscoring the need to find alternative treatments. Adoptive T-cell therapy has recently proven effective in treating patient's refractory to immune checkpoint inhibitors. This provides impetus to characterize the T-cell subsets best able to tackle tumors. The anticancer activities of IL-9-producing CD4 T helper cells (TH9 cells) were identified in melanoma in 2012. TH9 cells feature strong antimelanoma effects thanks to their production of interleukin (IL)-9 and the activation of innate and adaptive immune effectors. The ability of TH9 cells to prevent the growth of triple-negative breast cancer (TNBC) and osteosarcoma (OS), which commonly metastasize to the lungs, is elusive. In this commentary, we discuss the findings of Chen et al reported in the JITC demonstrating that TH9 cells are lung-tropic and eliminate TNBC and OS cells developing in the lungs. We also highlight how these investigations are in line with recent studies indicating that the adoptive transfer of IL-9-producing T cells eliminate aggressive cancers, including hematological tumors like leukemia and solid tumors such as glioblastoma. Altogether, these findings over the past 13 years support the clinical evaluation of TH9 cells in the adoptive therapy of cancer.
Collapse
Affiliation(s)
- Jiazhi Xu
- Microbiology and Immunology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| | - Lionel Apetoh
- Microbiology and Immunology, Indiana University Indianapolis, Indianapolis, Indiana, USA
| |
Collapse
|
3
|
Bick F, Blanchetot C, Lambrecht BN, Schuijs MJ. A reappraisal of IL-9 in inflammation and cancer. Mucosal Immunol 2025; 18:1-15. [PMID: 39389468 DOI: 10.1016/j.mucimm.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/27/2024] [Accepted: 10/03/2024] [Indexed: 10/12/2024]
Abstract
While much is known about the functional effects of type 2 cytokines interleukin (IL)-4, IL-5 and IL-13 in homeostasis and disease, we still poorly understand the functions of IL-9. Chronic inflammation seen in allergic diseases, autoimmunity and cancer is however frequently accompanied by overproduction of this elusive type 2 cytokine. Initially identified as a T cell and mast cell growth factor, and later as the hallmark cytokine defining TH9 cells, we now know that IL-9 is produced by multiple innate and adaptive immune cells. Recent evidence suggests that IL-9 controls discrete aspects of the allergic cascade, cellular responses of immune and stromal cells, cancer progression, tolerance and immune escape. Despite functioning as a pleiotropic cytokine in mucosal environments, like the lungs, the direct and indirect cellular targets of IL-9 are still not well characterized. Here, we discuss IL-9's cellular senders and receivers, focusing on asthma and cancer. Moreover, we review current research directions and the outlook of targeted therapy centered around the biology of IL-9.
Collapse
Affiliation(s)
- Fabian Bick
- argenx BV, 9052 Zwijnaarde, Belgium; Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium
| | | | - Bart N Lambrecht
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Department of Pulmonary Medicine, Erasmus University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Martijn J Schuijs
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium; Laboratory of Immunoregulation and Mucosal Immunology, VIB-UGent Center for Inflammation Research, Ghent, Belgium; Cancer Research Institute Ghent, Ghent, Belgium.
| |
Collapse
|
4
|
Friske MM, Torrico EC, Haas MJW, Borruto AM, Giannone F, Hade AC, Yu Y, Gao L, Sutherland GT, Hitzemann R, Philips MA, Fei SS, Sommer WH, Mayfield RD, Spanagel R. A systematic review and meta-analysis on the transcriptomic signatures in alcohol use disorder. Mol Psychiatry 2025; 30:310-326. [PMID: 39242950 PMCID: PMC11649567 DOI: 10.1038/s41380-024-02719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/09/2024]
Abstract
Currently available clinical treatments on alcohol use disorder (AUD) exhibit limited efficacy and new druggable targets are required. One promising approach to discover new molecular treatment targets involves the transcriptomic profiling of brain regions within the addiction neurocircuitry, utilizing animal models and postmortem brain tissue from deceased patients with AUD. Unfortunately, such studies suffer from large heterogeneity and small sample sizes. To address these limitations, we conducted a cross-species meta-analysis on transcriptome-wide data obtained from brain tissue of patients with AUD and animal models. We integrated 36 cross-species transcriptome-wide RNA-expression datasets with an alcohol-dependent phenotype vs. controls, following the PRISMA guidelines. In total, we meta-analyzed 964 samples - 502 samples from the prefrontal cortex (PFC), 282 nucleus accumbens (NAc) samples, and 180 from amygdala (AMY). The PFC had the highest number of differentially expressed genes (DEGs) across rodents, monkeys, and humans. Commonly dysregulated DEGs suggest conserved cross-species mechanisms for chronic alcohol consumption/AUD comprising MAPKs as well as STAT, IRF7, and TNF. Furthermore, we identified numerous unique gene sets that might contribute individually to these conserved mechanisms and also suggest novel molecular aspects of AUD. Validation of the transcriptomic alterations on the protein level revealed interesting targets for further investigation. Finally, we identified a combination of DEGs that are commonly regulated across different brain tissues as potential biomarkers for AUD. In summary, we provide a compendium of genes that are assessable via a shiny app, and describe signaling pathways, and physiological and cellular processes that are altered in AUD that require future studies for functional validation.
Collapse
Affiliation(s)
- Marion M Friske
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA.
| | - Eva C Torrico
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Maximilian J W Haas
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Anna M Borruto
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Francesco Giannone
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany
| | - Andreas-Christian Hade
- Department of Pathological Anatomy and Forensic Medicine, University of Tartu, Tartu, Estonia
- Forensic Medical Examination Department, Estonian Forensic Science Institute, Tallinn, Estonia
| | - Yun Yu
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Lina Gao
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Greg T Sutherland
- New South Wales Tissue Resource Center, University of Sydney, Camperdown, NSW, Australia
| | - Robert Hitzemann
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - Mari-Anne Philips
- Department of Physiology, Institute of Biomedicine and Translational Medicine, University of Tartu, Tartu, Estonia
| | - Suzanne S Fei
- Bioinformatics & Biostatistics Core, Oregon National Primate Research Center, Oregon Health & Science University West Campus, Portland, OR, USA
| | - Wolfgang H Sommer
- Bethania Hospital for Psychiatry, Psychosomatics and Psychotherapy, Greifswald, Germany
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research and the Department of Neuroscience, The University of Texas at Austin, Austin, TX, USA
| | - Rainer Spanagel
- Institute of Psychopharmacology, Central Institute of Mental Health, Mannheim, University of Heidelberg, Heidelberg, Germany.
- German Center for Mental Health (DZPG), Partner Site Mannheim-Heidelberg-Ulm, Mannheim, Germany.
| |
Collapse
|
5
|
Kim JC, Hu W, Lee M, Bae GH, Park JY, Lee SY, Jeong YS, Park B, Park JS, Zabel BA, Bae YS, Bae YS. Sphingosylphosphorylcholine Promotes Th9 Cell Differentiation Through Regulation of Smad3, STAT5, and β-Catenin Pathways. Immune Netw 2024; 24:e45. [PMID: 39801737 PMCID: PMC11711130 DOI: 10.4110/in.2024.24.e45] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/06/2024] [Accepted: 11/11/2024] [Indexed: 01/16/2025] Open
Abstract
Sphingosylphosphorylcholine (SPC) is one of sphingomyelin-derived sphingolipids. SPC levels are increased in ascitic fluids of ovarian cancer patients and stratum corneum of atopic dermatitis (AD) patients. SPC has antitumor activity against several cancer cells by reducing proliferation and migration and increasing apoptosis in vitro. SPC can also cause scratching, potentially exacerbating symptoms of AD. However, the role of SPC in modulating immune responses, particularly in the differentiation of Th9 cells, which carry the most powerful antitumor activity among CD4+ T cells, has yet to be investigated. In this study, we found that SPC is another inducer of Th9 cell differentiation by replicating TGF-β. SPC upregulated Smad3, STAT5, and β-catenin signaling pathways. Increased Smad3 and STAT5 signaling pathways by SPC promoted the differentiation of Th9 cells and increased β-catenin signaling pathway resulted in a less-exhausted, memory-like phenotype of Th9 cells. Increased Smad3, STAT5 and β-catenin signaling pathways by SPC were mediated by increased mitochondrial ROS. These results suggest that SPC is an important endogenous inducer of Th9 cell differentiation and may be one of the targets for treating Th9-related diseases, and that enhancing Th9 differentiation by SPC may be helpful in adoptive T cell therapy for cancer treatment.
Collapse
Affiliation(s)
- Ji Cheol Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Wonseok Hu
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Mingyu Lee
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| | - Geon Ho Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Ji Ye Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Suh Yeon Lee
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yu Sun Jeong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Byunghyun Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Joon Seong Park
- Department of Hematology-Oncology, Ajou University School of Medicine, Suwon 16499, Korea
| | - Brian A. Zabel
- Palo Alto Veterans Institute for Research (PAVIR), VA Palo Alto Health Care Systems (VAPAHCS), Palo Alto, CA 94304, USA
| | - Yong-Soo Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| | - Yoe-Sik Bae
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
- Department of Health Science and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul 06351, Korea
| |
Collapse
|
6
|
Kalim M, Jing R, Guo W, Xing H, Lu Y. Functional diversity and regulation of IL-9-producing T cells in cancer immunotherapy. Cancer Lett 2024; 606:217306. [PMID: 39426662 PMCID: PMC11675864 DOI: 10.1016/j.canlet.2024.217306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/21/2024]
Abstract
IL-9-producing T cells (T9) regulate immunological responses that affect various cellular biological processes, though their precise function remains fully understood. Previous studies have linked T9 cells to conditions such as allergic disorders, parasitic infection clearance, and various types of cancers. While the functional heterogeneity of IL-9 and T9 cells in cancer development has been documented, these cells present promising therapeutic opportunities for treating solid tumors. This review highlights the roles of IL-9 and T9 cells in cancer progression and treatment responses, focusing on potential discrepancies in IL-9/IL-9R signaling between murine tumors and cancer patients. Additionally, we discuss the regulation of tumor-specific Th9/Tc9 cell differentiation, the therapeutic potential of these cells, and current strategies to enhance their anti-tumor activities.
Collapse
Affiliation(s)
- Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Rui Jing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Wei Guo
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Hui Xing
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
7
|
Nakajima T, Kanno T, Ueda Y, Miyako K, Endo T, Yoshida S, Yokoyama S, Asou HK, Yamada K, Ikeda K, Togashi Y, Endo Y. Fatty acid metabolism constrains Th9 cell differentiation and antitumor immunity via the modulation of retinoic acid receptor signaling. Cell Mol Immunol 2024; 21:1266-1281. [PMID: 39187636 PMCID: PMC11528006 DOI: 10.1038/s41423-024-01209-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024] Open
Abstract
T helper 9 (Th9) cells are interleukin 9 (IL-9)-producing cells that have diverse functions ranging from antitumor immune responses to allergic inflammation. Th9 cells differentiate from naïve CD4+ T cells in the presence of IL-4 and transforming growth factor-beta (TGF-β); however, our understanding of the molecular basis of their differentiation remains incomplete. Previously, we reported that the differentiation of another subset of TGF-β-driven T helper cells, Th17 cells, is highly dependent on de novo lipid biosynthesis. On the basis of these findings, we hypothesized that lipid metabolism may also be important for Th9 cell differentiation. We therefore investigated the differentiation and function of mouse and human Th9 cells in vitro under conditions of pharmacologically or genetically induced deficiency of the intracellular fatty acid content and in vivo in mice genetically deficient in acetyl-CoA carboxylase 1 (ACC1), an important enzyme for fatty acid biosynthesis. Both the inhibition of de novo fatty acid biosynthesis and the deprivation of environmental lipids augmented differentiation and IL-9 production in mouse and human Th9 cells. Mechanistic studies revealed that the increase in Th9 cell differentiation was mediated by the retinoic acid receptor and the TGF-β-SMAD signaling pathways. Upon adoptive transfer, ACC1-inhibited Th9 cells suppressed tumor growth in murine models of melanoma and adenocarcinoma. Together, our findings highlight a novel role of fatty acid metabolism in controlling the differentiation and in vivo functions of Th9 cells.
Collapse
Affiliation(s)
- Takahiro Nakajima
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Toshio Kanno
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yuki Ueda
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
| | - Keisuke Miyako
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Takeru Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Souta Yoshida
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Satoru Yokoyama
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hikari K Asou
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazuko Yamada
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Kazutaka Ikeda
- Department of Applied Genomics, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Yosuke Togashi
- Department of Tumor Microenvironment, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1, Shikata-cho, Kita-ku, Okayama, 700-8558, Japan
- Division of Cell Therapy, Chiba Cancer Center Research Institute, 666-2 Nitona-cho, Chuo-ku, Chiba, 260-8717, Japan
| | - Yusuke Endo
- Department of Frontier Research and Development, Laboratory of Medical Omics Research, Kazusa DNA Research Institute, 2-6-7 Kazusa Kamatari, Kisarazu, Chiba, 292-0818, Japan.
- Department of Omics Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8670, Japan.
| |
Collapse
|
8
|
Bao L, Juarez CFG, Li J, Pigors M, Emtenani S, Liu Y, Ahmed A, Ishii N, Hashimoto T, White BEP, Green S, Kunstman K, Nowak NC, Cole C, Macias V, Sverdlov M, McAlexander MA, McCrae C, Nazaroff CD, Schmidt E, Amber KT. IgG autoantibodies in bullous pemphigoid directly induce a pathogenic MyD88-dependent pro-inflammatory response in keratinocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.616103. [PMID: 39569141 PMCID: PMC11577246 DOI: 10.1101/2024.10.07.616103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
While autoantibodies in bullous pemphigoid (BP) are known to activate the innate immune response, their direct effect on keratinocytes, and the contribution of BP-IgG autoantibody-dependent keratinocyte responses to BP pathology is largely unknown. Herein, we performed multiplex immunoassays and bulk RNA-seq on primary keratinocytes treated with IgG from BP patients or controls. We identified a pro-inflammatory and proteolytic response with release of several cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP-9. We further validated this response using spatial transcriptomics and scRNA-seq of diseased and control skin. Blistering itself appeared to be major driver of this inflammatory response, with attached BP skin and spongiotic dermatitis revealing highly similar transcriptomes. Based on elevated levels of MyD88 and MyD88-dependent cytokines, we studied the impact of MyD88 deficiency in keratinocytes and demonstrated that MyD88 regulates BP-IgG-induced expression of IL-8, IL-24, and MMP-9. Induction of experimental BP in mice with Krt14 -specific Myd88 knockout revealed significantly decreased disease severity with decreased serum levels of IL-1β, IL-4, and IL-9 indicating the contributory role of keratinocyte-derived skin inflammation towards systemic response. Our work demonstrates the key contributions of keratinocyte and MyD88 dependent signaling in response to autoantibodies in BP. Key Messages -IgG antibodies from bullous pemphigoid (BP) patients induce significant upregulation of several inflammatory markers in keratinocytes including cytokines (IL-6, IL-24, TGF-β1), chemokines (CXCL16, CTACK, MIP-3β, RANTES), C1s, DPP4, and MMP9. Several of these markers, including IL-8, IL-24, and MMP9 are regulated by MyD88.-Spatial transcriptomics reveals that BP patient blistered skin demonstrated similar transcriptomic profiles to BP-IgG-treated keratinocytes. With attached skin demonstrating a comparable transcriptome to that seen in spongiotic dermatitis.-In a mouse BP model, keratinocyte-specific MyD88 deficiency results in decreased disease severity with a subsequent decrease in serum IL-1β, IL-4, and IL-9 levels. Capsule summary IgG from patients with bullous pemphigoid (BP) induces a pro-inflammatory response in keratinocytes, indicating their direct role in driving the inflammatory response in BP.
Collapse
|
9
|
Montauti E, Oh DY, Fong L. CD4 + T cells in antitumor immunity. Trends Cancer 2024; 10:969-985. [PMID: 39242276 PMCID: PMC11464182 DOI: 10.1016/j.trecan.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/09/2024]
Abstract
Advances in cancer immunotherapy have transformed cancer care and realized unprecedented responses in many patients. The growing arsenal of novel therapeutics - including immune checkpoint inhibition (ICI), adoptive T cell therapies (ACTs), and cancer vaccines - reflects the success of cancer immunotherapy. The therapeutic benefits of these treatment modalities are generally attributed to the enhanced quantity and quality of antitumor CD8+ T cell responses. Nevertheless, CD4+ T cells are now recognized to play key roles in both the priming and effector phases of the antitumor immune response. In addition to providing T cell help through co-stimulation and cytokine production, CD4+ T cells can also possess cytotoxicity either directly on MHC class II-expressing tumor cells or to other cells within the tumor microenvironment (TME). The presence of specific populations of CD4+ T cells, and their intrinsic plasticity, within the TME can represent an important determinant of clinical response to immune checkpoint inhibitors, vaccines, and chimeric antigen receptor (CAR) T cell therapies. Understanding how the antitumor functions of specific CD4+ T cell types are induced while limiting their protumorigenic attributes will enable more successful immunotherapies.
Collapse
Affiliation(s)
- Elena Montauti
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - David Y Oh
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Lawrence Fong
- Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, CA, USA; Immunotherapy Integrated Research Center, Fred Hutchison Cancer Center, Seattle, WA, USA.
| |
Collapse
|
10
|
Ulrich BJ, Zhang W, Kenworthy BT, Kharwadkar R, Olson MR, Kaplan MH. Activin A Promotes Differentiation of a Pathogenic Multicytokine IL-9-secreting CD4+ T Cell Population. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:823-830. [PMID: 39058312 PMCID: PMC11371476 DOI: 10.4049/jimmunol.2300635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024]
Abstract
The development of Th subsets results from cellular and cytokine cues that are present in the inflammatory environment. The developing T cell integrates multiple signals from the environment that sculpt the cytokine-producing capacity of the effector T cell. Importantly, T cells can discriminate similar cytokine signals to generate distinct outcomes, and that discrimination is critical in Th subset development. IL-9-secreting Th9 cells regulate multiple immune responses, including immunity to pathogens and tumors, allergic inflammation, and autoimmunity. In combination with IL-4, TGF-β or activin A promotes IL-9 production; yet, it is not clear if both TGF-β family members generate Th9 cells with identical phenotype and function. We observed that in contrast to TGF-β that efficiently represses Th2 cytokines in murine Th9 cultures, differentiation with activin A produced a multicytokine T cell phenotype with secretion of IL-4, IL-5, IL-13, and IL-10 in addition to IL-9. Moreover, multicytokine secreting cells are more effective at promoting allergic inflammation. These observations suggest that although TGF-β and IL-4 were identified as cytokines that stimulate optimal IL-9 production, they might not be the only cytokines that generate optimal function from IL-9-producing T cells in immunity and disease.
Collapse
Affiliation(s)
- Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Wenwu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Blake T Kenworthy
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
| | - Rakshin Kharwadkar
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN
- Department of Pediatrics and Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
11
|
Lv J, Ibrahim YS, Yumashev A, Hjazi A, Faraz A, Alnajar MJ, Qasim MT, Ghildiyal P, Hussein Zwamel A, Fakri Mustafa Y. A comprehensive immunobiology review of IBD: With a specific glance to Th22 lymphocytes development, biology, function, and role in IBD. Int Immunopharmacol 2024; 137:112486. [PMID: 38901239 DOI: 10.1016/j.intimp.2024.112486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
The two primary forms of inflammatory disorders of the small intestine andcolon that make up inflammatory bowel disease (IBD) are ulcerative colitis (UC) and Crohn's disease (CD). While ulcerative colitis primarily affects the colon and the rectum, CD affects the small and large intestines, as well as the esophagus,mouth, anus, andstomach. Although the etiology of IBD is not completely clear, and there are many unknowns about it, the development, progression, and recurrence of IBD are significantly influenced by the activity of immune system cells, particularly lymphocytes, given that the disease is primarily caused by the immune system stimulation and activation against gastrointestinal (GI) tract components due to the inflammation caused by environmental factors such as viral or bacterial infections, etc. in genetically predisposed individuals. Maintaining homeostasis and the integrity of the mucosal barrier are critical in stopping the development of IBD. Specific immune system cells and the quantity of secretory mucus and microbiome are vital in maintaining this stability. Th22 cells are helper T lymphocyte subtypes that are particularly important for maintaining the integrity and equilibrium of the mucosal barrier. This review discusses the most recent research on these cells' biology, function, and evolution and their involvement in IBD.
Collapse
Affiliation(s)
- Jing Lv
- Department of Rehabilitation, Children's Hospital of Nanjing Medical University, Nanjing, Jiangsu 210008, PR China
| | - Yousif Saleh Ibrahim
- Department of Chemistry and Biochemistry, College of Medicine, University of Fallujah, Fallujah, Iraq
| | - Alexey Yumashev
- Department of Prosthetic Dentistry, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Ali Faraz
- Department of Basic Medical Sciences, College of Medicine, Majmaah University, Majmaah 11952, Saudi Arabia.
| | | | - Maytham T Qasim
- College of Health and Medical Technology, Al-Ayen University, Thi-Qar 64001, Iraq
| | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Ahmed Hussein Zwamel
- Medical Laboratory Technique College, The Islamic University, Najaf, Iraq; Medical Laboratory Technique College, The Islamic University of Aldiwaniyah, Aldiwaniyah, Iraq; Medical Laboratory Technique College, The Islamic University of Babylon, Babylon, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| |
Collapse
|
12
|
Zhang ZS, Ren HC, Gu X, Liang QR, Fei H, Yang YH, Yang S, He LY, Liu LL. Interleukin-1 beta (IL-1β) as adjuvant enhances the immune effects of Aeromonas veronii inactivated vaccine in largemouth bass (Micropterus salmoides). Int J Biol Macromol 2024; 273:133135. [PMID: 38876231 DOI: 10.1016/j.ijbiomac.2024.133135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/11/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Largemouth bass (Micropterus salmoides) has emerged as a significant economic fish species, with a rise in Aeromonas veronii infections in farming. However, research on adjuvants for vaccines against A. veronii in largemouth bass remains scarce. In present study, recombinant largemouth bass IL-1β (LbIL-1β) was expressed to explore its adjuvant effect on the A. veronii inactivated vaccine. Following vaccination with recombinant LbIL-1β (rLbIL-1β) and the inactivated A. veronii, higher serum SOD levels and lysozyme activities were observed in largemouth bass from inactivated A. veronii + rLbIL-1β vaccinated group. Furthermore, it was discovered that rLbIL-1β was able to boost the serum-specific antibody levels induced by the inactivated A. veronii. The qRT-PCR analysis revealed that rLbIL-1β also enhanced the expression of IgM, CD4, and MHC II in largemouth bass triggered by the inactivated A. veronii. After challenged with live A. veronii, the outcomes demonstrated that the relative percentage survival (RPS) for largemouth bass resulting from the inactivated A. veronii in combination with rLbIL-1β was 76.67 %, surpassing the RPS of 60 % in the inactivated A. veronii group. Collectively, these findings indicate that rLbIL-1β enhances the protective effect of the A. veronii inactivated vaccine on largemouth bass, showcasing potential as an adjuvant for further development.
Collapse
Affiliation(s)
- Ze-Sheng Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Heng-Chu Ren
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xie Gu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Qian-Rong Liang
- Zhejiang Fisheries Test and Aquatic Disease Prevention Center, Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Hui Fei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yu-Hong Yang
- Zhejiang Fisheries Test and Aquatic Disease Prevention Center, Zhejiang Fisheries Technical Extension Center, Hangzhou 310023, China
| | - Shun Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Zhejiang Huadi Pharmaceutical Group Co., Ltd, Hangzhou 313300, China.
| | - Liang-Yin He
- College of Marine Sciences, Ningde Normal University, Ningde 352100, China.
| | - Li-Li Liu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
13
|
Papa V, Li Pomi F, Borgia F, Vaccaro M, Pioggia G, Gangemi S. Alarmins in cutaneous malignant melanoma: An updated overview of emerging evidence on their pathogenetic, diagnostic, prognostic, and therapeutic role. J Dermatol 2024; 51:927-938. [PMID: 38775220 PMCID: PMC11483971 DOI: 10.1111/1346-8138.17278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/04/2024] [Accepted: 05/07/2024] [Indexed: 07/04/2024]
Abstract
Malignant cutaneous melanoma is the leading cause of death for skin cancer to date, with globally increasing incidence rates. In this epidemiological scenario, international scientific research is exerting efforts to identify new clinical strategies aimed at the prognostic amelioration of the disease. Very promising and groundbreaking in this context is the scientific interest related to alarmins and their pioneering utility in the setting of the pathogenetic understanding, diagnosis, prognosis, and therapy for malignant cutaneous melanoma. However, the scientific investigations on this matter should not overlook their still well-presented dual and contradictory role. The aim of our critical analysis is to provide an up-to-date overview of the emerging evidence concerning the dichotomous role of alarmins in the aforementioned clinical settings. Our literature revision was based on the extensive body of both preclinical and clinical findings published on the PubMed database over the past 5 years. In addition to this, we offer a special focus on potentially revolutionary new therapeutic frontiers, which, on the strength of their earliest successes in other clinical areas, could inaugurate a new era of personalized and precision medicine in the field of dermato-oncology.
Collapse
Affiliation(s)
- Vincenzo Papa
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| | - Federica Li Pomi
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.)University of PalermoPalermoItaly
| | - Francesco Borgia
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Mario Vaccaro
- Department of Clinical and Experimental Medicine, Section of DermatologyUniversity of MessinaMessinaItaly
| | - Giovanni Pioggia
- Institute for Biomedical Research and Innovation (IRIB), National Research Council of Italy (CNR)MessinaItaly
| | - Sebastiano Gangemi
- Department of Clinical and Experimental Medicine, School and Operative Unit of Allergy and Clinical ImmunologyUniversity of MessinaMessinaItaly
| |
Collapse
|
14
|
Liu Q, Zhang S, Shi L, Shi J, Sun C, Wang J, Zhou W, Zhou H, Shan F, Wang H, Wang J, Ren N, Feng S, Liu H, Wang S. Osteogenic Induction and Anti-Inflammatory Effects of Calcium-Chlorogenic Acid Nanoparticles Remodel the Osteoimmunology Microenvironment for Accelerating Bone Repair. Adv Healthc Mater 2024:e2401114. [PMID: 38885954 DOI: 10.1002/adhm.202401114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Successful bone regeneration requires close cooperation between bone marrow mesenchymal stem cells (BMSCs) and macrophages, but the low osteogenic differentiation efficiency of stem cells and the excessive inflammatory response of immune cells hinder the development of bone repair. It is necessary to develop a strategy that simultaneously regulates the osteogenic differentiation of BMSCs and the anti-inflammatory polarization of macrophages for accelerating the bone regeneration. Herein, calcium-chlorogenic acid nanoparticles (Ca-CGA NPs) are synthesized by combining the small molecules of chlorogenic acid (CGA) with Ca2+. Ca-CGA NPs internalized by cells can be dissolved to release free CGA and Ca2+ under low pH conditions in lysosomes. In vitro results demonstrate that Ca-CGA NPs can not only enhance the osteogenic differentiation of BMSCs but also promote the phenotype transformation of macrophages from M1 to M2. Furthermore, in vivo experiments confirm that Ca-CGA NPs treatment facilitates the recovery of rat skull defect model through both osteoinduction and immunomodulation. This study develops a new Ca-CGA NPs-based strategy to induce the differentiation of BMSCs into osteoblasts and the polarization of macrophages into M2 phenotype, which is promising for accelerating bone repair.
Collapse
Affiliation(s)
- Qi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Shuo Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Lusen Shi
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Jiapei Shi
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Chunhui Sun
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Jingang Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Weijia Zhou
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
| | - Fengjuan Shan
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Hongli Wang
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Jie Wang
- Ji'nan Pantheum Biological Technology Limited Company, Jinan, 250100, P. R. China
| | - Na Ren
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Qilu Hospital of Shandong University, Shandong University Centre for Orthopaedics, Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, P. R. China
- The Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, 250033, P. R. China
- Department of Orthopaedics, Tianjin Medical University General Hospital, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord, Tianjin, 300052, P. R. China
| | - Hong Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, P. R. China
| | - Shuping Wang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, P. R. China
| |
Collapse
|
15
|
Son A, Baral I, Falduto GH, Schwartz DM. Locus of (IL-9) control: IL9 epigenetic regulation in cellular function and human disease. Exp Mol Med 2024; 56:1331-1339. [PMID: 38825637 PMCID: PMC11263352 DOI: 10.1038/s12276-024-01241-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 06/04/2024] Open
Abstract
Interleukin-9 (IL-9) is a multifunctional cytokine with roles in a broad cross-section of human diseases. Like many cytokines, IL-9 is transcriptionally regulated by a group of noncoding regulatory elements (REs) surrounding the IL9 gene. These REs modulate IL-9 transcription by forming 3D loops that recruit transcriptional machinery. IL-9-promoting transcription factors (TFs) can bind REs to increase locus accessibility and permit chromatin looping, or they can be recruited to already accessible chromatin to promote transcription. Ample mechanistic and genome-wide association studies implicate this interplay between IL-9-modulating TFs and IL9 cis-REs in human physiology, homeostasis, and disease.
Collapse
Affiliation(s)
- Aran Son
- Neuroscience Department, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste, 34136, Italy
| | - Ishita Baral
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Daniella M Schwartz
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
16
|
Xue G, Li X, Kalim M, Fang J, Jiang Z, Zheng N, Wang Z, Li X, Abdelrahim M, He Z, Nikiforov M, Jin G, Lu Y. Clinical drug screening reveals clofazimine potentiates the efficacy while reducing the toxicity of anti-PD-1 and CTLA-4 immunotherapy. Cancer Cell 2024; 42:780-796.e6. [PMID: 38518774 PMCID: PMC11756590 DOI: 10.1016/j.ccell.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 01/17/2024] [Accepted: 03/01/2024] [Indexed: 03/24/2024]
Abstract
Emerging as the most potent and durable combinational immunotherapy, dual anti-PD-1 and CTLA-4 immune checkpoint blockade (ICB) therapy notoriously increases grade 3-5 immune-related adverse events (irAEs) in patients. Accordingly, attempts to improve the antitumor potency of anti-PD-1+CTLA-4 ICB by including additional therapeutics have been largely discouraged due to concerns of further increasing fatal toxicity. Here, we screened ∼3,000 Food and Drug Administration (FDA)-approved drugs and identified clofazimine as a potential third agent to optimize anti-PD-1+CTLA-4 ICB. Remarkably, clofazimine outperforms ICB dose reduction or steroid treatment in reversing lethality of irAEs, but unlike the detrimental effect of steroids on antitumor efficacy, clofazimine potentiates curative responses in anti-PD-1+CTLA-4 ICB. Mechanistically, clofazimine promotes E2F1 activation in CD8+ T cells to overcome resistance and counteracts pathogenic Th17 cells to abolish irAEs. Collectively, clofazimine potentiates the antitumor efficacy of anti-PD-1+CTLA-4 ICB, curbs intractable irAEs, and may fill a desperate clinical need to improve patient survival.
Collapse
Affiliation(s)
- Gang Xue
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Xin Li
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Muhammad Kalim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Jing Fang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiwu Jiang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ningbo Zheng
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Ziyu Wang
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Maen Abdelrahim
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA
| | - Zhiheng He
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA 90033, USA.
| | | | - Guangxu Jin
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC 27157, USA.
| | - Yong Lu
- Houston Methodist Cancer Center/Weill Cornell Medicine, Houston, TX 77030, USA.
| |
Collapse
|
17
|
Chan DC, Kim C, Kang RY, Kuhn MK, Beidler LM, Zhang N, Proctor EA. Cytokine expression patterns predict suppression of vulnerable neural circuits in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.17.585383. [PMID: 38559177 PMCID: PMC10979954 DOI: 10.1101/2024.03.17.585383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Alzheimer's disease is a neurodegenerative disorder characterized by progressive amyloid plaque accumulation, tau tangle formation, neuroimmune dysregulation, synapse an neuron loss, and changes in neural circuit activation that lead to cognitive decline and dementia. Early molecular and cellular disease-instigating events occur 20 or more years prior to presentation of symptoms, making them difficult to study, and for many years amyloid-β, the aggregating peptide seeding amyloid plaques, was thought to be the toxic factor responsible for cognitive deficit. However, strategies targeting amyloid-β aggregation and deposition have largely failed to produce safe and effective therapies, and amyloid plaque levels poorly correlate with cognitive outcomes. However, a role still exists for amyloid-β in the variation in an individual's immune response to early, soluble forms of aggregates, and the downstream consequences of this immune response for aberrant cellular behaviors and creation of a detrimental tissue environment that harms neuron health and causes changes in neural circuit activation. Here, we perform functional magnetic resonance imaging of awake, unanesthetized Alzheimer's disease mice to map changes in functional connectivity over the course of disease progression, in comparison to wild-type littermates. In these same individual animals, we spatiotemporally profile the immune milieu by measuring cytokines, chemokines, and growth factors across various brain regions and over the course of disease progression from pre-pathology through established cognitive deficit. We identify specific signatures of immune activation predicting hyperactivity followed by suppression of intra- and then inter-regional functional connectivity in multiple disease-relevant brain regions, following the pattern of spread of amyloid pathology.
Collapse
Affiliation(s)
- Dennis C Chan
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - ChaeMin Kim
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Rachel Y Kang
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Madison K Kuhn
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
| | - Lynne M Beidler
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Nanyin Zhang
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neurotechnology in Mental Health Research, Pennsylvania State University, University Park, PA, USA
| | - Elizabeth A Proctor
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA, USA
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA, USA
- Center for Neural Engineering, Pennsylvania State University, University Park, PA, USA
- Department of Engineering Science & Mechanics, Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
18
|
Wu X, Yang J, Wu J, Yang X. Therapeutic potential of MCC950, a specific inhibitor of NLRP3 inflammasome in systemic lupus erythematosus. Biomed Pharmacother 2024; 172:116261. [PMID: 38340397 DOI: 10.1016/j.biopha.2024.116261] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 02/03/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is a complex autoimmune disorder with a pathogenesis that remains incompletely understood, resulting in limited treatment options. MCC950, a highly specific NLRP3 inflammasome inhibitor, effectively suppresses the activation of NLRP3, thus reducing the production of caspase-1, the pro-inflammatory cytokines IL-1β and IL-18. This review highlights the pivotal role of NLRP3 inflammasome activation pathways in the pathogenesis of SLE and discusses the potential therapeutic application of MCC950 in SLE. Notably, it comprehensively elucidates the mechanism of MCC950 targeting the NLRP3 pathway in SLE treatment, outlining its potential role in regulating autophagy and necroptosis. The insights gained contribute to a deeper understanding of the value of MCC950 in SLE therapy, serving as a robust foundation for further research and potential clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Junhao Yang
- Department of Surgical Oncology and General Surgery, The First Hospital of China Medical University, 155North Nanjing Street, Heping District, Shenyang 110001, China
| | - Juanjie Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China
| | - Xuyan Yang
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, 88 Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
19
|
Bensussen A, Torres-Magallanes JA, Álvarez-Buylla ER, de Álvarez-Buylla ER. Hybrid lineages of CD4 + T cells: a handbook update. Front Immunol 2024; 15:1344078. [PMID: 38312841 PMCID: PMC10834732 DOI: 10.3389/fimmu.2024.1344078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/04/2024] [Indexed: 02/06/2024] Open
Abstract
CD4+ T lymphocytes have been classified into several lineages, according to their gene expression profiles and their effector responses. Interestingly, recent evidence is showing that many lineages could yield hybrid phenotypes with unique properties and functions. It has been reported that such hybrid lineages might underlie pathologies or may function as effector cells with protection capacities against molecular threats. In this work, we reviewed the characteristics of the hybrid lineages reported in the literature, in order to identify the expression profiles that characterize them and the markers that could be used to identify them. We also review the differentiation cues that elicit their hybrid origin and what is known about their physiological roles.
Collapse
Affiliation(s)
- Antonio Bensussen
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - José Antonio Torres-Magallanes
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| | - Elena R. Álvarez-Buylla
- Laboratorio de Genética Molecular, Epigenética, Desarrollo y Evolución de Plantas, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
- Centro de Ciencias de la Complejidad (C3), Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Elena Roces de Álvarez-Buylla
- Laboratorio de Neuroendocrinología, Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, Colima, Mexico
| |
Collapse
|
20
|
Maddalon A, Cari L, Iulini M, Alhosseini MN, Galbiati V, Marinovich M, Nocentini G, Corsini E. Impact of endocrine disruptors on peripheral blood mononuclear cells in vitro: role of gender. Arch Toxicol 2023; 97:3129-3150. [PMID: 37676302 PMCID: PMC10567873 DOI: 10.1007/s00204-023-03592-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/24/2023] [Indexed: 09/08/2023]
Abstract
Humans can be exposed to endocrine disruptors (EDs) in numerous ways. EDs can interfere with endogenous hormones at different levels, resulting in numerous adverse human health outcomes, including immunotoxicity. In this regard, this study aimed to investigate in vitro the possible effects of EDs on immune cells and possible gender differences. Peripheral blood mononuclear cells from healthy humans, both males and females, were exposed to 6 different EDs, namely atrazine (herbicide), cypermethrin (insecticide), diethyl phthalate (plasticizer), 17α-ethynylestradiol (contraceptive drug), perfluorooctanesulfonic acid (persistent organic pollutant), and vinclozolin (fungicide). We evaluated the effect of EDs on RACK1 (receptor for activated C kinase 1) expression, considering it as a bridge between the endocrine and the immune system, and putatively used as screening tool of immunotoxic effects of EDs. The exposure to EDs resulted at different extent in alteration in RACK1 expression, pro-inflammatory activity, natural killer lytic ability, and lymphocyte differentiation, with sex-related differences. In particular, diethyl phthalate and perfluorooctanesulfonic acid resulted the most active EDs tested, with gender differences in terms of effects and magnitude. The results from our study evidenced the ability of EDs to directly affect immune cells.
Collapse
Affiliation(s)
- Ambra Maddalon
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Luigi Cari
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Martina Iulini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Mahdieh Naghavi Alhosseini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy
| | - Valentina Galbiati
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Marina Marinovich
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Giuseppe Nocentini
- Department of Medicine and Surgery, Section of Pharmacology, Università Degli Studi Di Perugia, Building D, Severi Square 1, 06129, Perugia, Italy.
| | - Emanuela Corsini
- Laboratory of Toxicology, Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti', Università Degli Studi Di Milano, Via Balzaretti 9, 20133, Milan, Italy
| |
Collapse
|
21
|
Cannon A, Pajulas A, Kaplan MH, Zhang J. The Dichotomy of Interleukin-9 Function in the Tumor Microenvironment. J Interferon Cytokine Res 2023; 43:229-245. [PMID: 37319357 PMCID: PMC10282829 DOI: 10.1089/jir.2023.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/25/2023] [Indexed: 06/17/2023] Open
Abstract
Interleukin 9 (IL-9) is a cytokine with potent proinflammatory properties that plays a central role in pathologies such as allergic asthma, immunity to parasitic infection, and autoimmunity. More recently, IL-9 has garnered considerable attention in tumor immunity. Historically, IL-9 has been associated with a protumor function in hematological malignancies and an antitumor function in solid malignancies. However, recent discoveries of the dynamic role of IL-9 in cancer progression suggest that IL-9 can act as both a pro- or antitumor factor in various hematological and solid malignancies. This review summarizes IL-9-dependent control of tumor growth, regulation, and therapeutic applicability of IL-9 blockade and IL-9-producing cells in cancer.
Collapse
Affiliation(s)
- Anthony Cannon
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Mark H. Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
- Brown Center for Immunotherapy, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Jilu Zhang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
22
|
Son A, Meylan F, Gomez-Rodriguez J, Kaul Z, Sylvester M, Falduto GH, Vazquez E, Haque T, Kitakule MM, Wang C, Manthiram K, Qi CF, Cheng J, Gurram RK, Zhu J, Schwartzberg P, Milner JD, Frischmeyer-Guerrerio PA, Schwartz DM. Dynamic chromatin accessibility licenses STAT5- and STAT6-dependent innate-like function of T H9 cells to promote allergic inflammation. Nat Immunol 2023; 24:1036-1048. [PMID: 37106040 PMCID: PMC10247433 DOI: 10.1038/s41590-023-01501-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/27/2023] [Indexed: 04/29/2023]
Abstract
Allergic diseases are a major global health issue. Interleukin (IL)-9-producing helper T (TH9) cells promote allergic inflammation, yet TH9 cell effector functions are incompletely understood because their lineage instability makes them challenging to study. Here we found that resting TH9 cells produced IL-9 independently of T cell receptor (TCR) restimulation, due to STAT5- and STAT6-dependent bystander activation. This mechanism was seen in circulating cells from allergic patients and was restricted to recently activated cells. STAT5-dependent Il9/IL9 regulatory elements underwent remodeling over time, inactivating the locus. A broader 'allergic TH9' transcriptomic and epigenomic program was also unstable. In vivo, TH9 cells induced airway inflammation via TCR-independent, STAT-dependent mechanisms. In allergic patients, TH9 cell expansion was associated with responsiveness to JAK inhibitors. These findings suggest that TH9 cell instability is a negative checkpoint on bystander activation that breaks down in allergy and that JAK inhibitors should be considered for allergic patients with TH9 cell expansion.
Collapse
Affiliation(s)
- Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Francoise Meylan
- Office of Science and Technology, National Institute of Arthritis, Musculoskeletal, and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Julio Gomez-Rodriguez
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- TCR Therapeutics, Cambridge, MA, USA
| | - Zenia Kaul
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Guido H Falduto
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Estefania Vazquez
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tamara Haque
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Moses M Kitakule
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
- Division of Pediatric Allergy Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Chujun Wang
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kalpana Manthiram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chen-Feng Qi
- Pathology Core, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jun Cheng
- Embryonic Stem Cell and Transgenic Core, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Rama K Gurram
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinfang Zhu
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pamela Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Joshua D Milner
- Division of Pediatric Allergy Immunology and Rheumatology, Department of Pediatrics, Columbia University Medical Center, New York, NY, USA
| | - Pamela A Frischmeyer-Guerrerio
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
23
|
Feng B, Pan B, Huang J, Du Y, Wang X, Wu J, Ma R, Shen B, Huang G, Feng J. PDE4D/cAMP/IL-23 axis determines the immunotherapy efficacy of lung adenocarcinoma via activating the IL-9 autocrine loop of cytotoxic T lymphocytes. Cancer Lett 2023; 565:216224. [PMID: 37196909 DOI: 10.1016/j.canlet.2023.216224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Although immunotherapy has changed the prognosis of many advanced malignancies including lung adenocarcinoma (LUAD), many patients are insensitive to the drugs, with the mechanisms yet to be elucidated. Herein, we identified PDE4D as an immunotherapy efficacy-related gene through bioinformatics screening. By using a co-culture system of LUAD cells and tumor-cell-specific CD8+ T cells, a functional PDE4D/cAMP/IL-23 axis was further revealed in LUAD cells. Fluorescent multiplex immunohistochemistry analysis of patient-derived samples and the in vivo mouse LUAD xenograft tumors revealed not only the colocalization of IL-23 and CD8+ T cells but also the immune potentiating effect of IL-23 on cytotoxic T lymphocytes (CTLs) in LUAD tissues. Through transcriptome sequencing and functional validations, IL-23 was proven to up-regulate IL-9 expression in CTLs via activating the NF-κB signaling, leading to elevated productions of immune effector molecules and enhanced efficacy of antitumor immunotherapy. Interestingly, an autocrine loop of IL-9 was also uncovered during this process. In conclusion, PDE4D/cAMP/IL-23 axis determines the immunotherapy efficacy of human LUAD. This effect is mediated by the activation of an NF-κB-dependent IL-9 autocrine loop in CTLs.
Collapse
Affiliation(s)
- Bing Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Banzhou Pan
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jiayuan Huang
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Xin Wang
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Jianzhong Wu
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China
| | - Bo Shen
- Department of Medical Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| | - Guichun Huang
- Department of Medical Oncology, Affiliated Jinling Hospital, Medical School of Nanjing University, Nanjing, 210093, China.
| | - Jifeng Feng
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, 42 Baiziting, Nanjing, 210009, China.
| |
Collapse
|
24
|
Vinokurova D, Apetoh L. The Emerging Role of IL-9 in the Anticancer Effects of Anti-PD-1 Therapy. Biomolecules 2023; 13:biom13040670. [PMID: 37189417 DOI: 10.3390/biom13040670] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
PD-1 blockade rescues failing anticancer immune responses, resulting in durable remissions in some cancer patients. Cytokines such as IFNγ and IL-2 contribute to the anti-tumor effect of PD-1 blockade. IL-9 was identified over the last decade as a cytokine demonstrating a potent ability to harness the anticancer functions of innate and adaptive immune cells in mice. Recent translational investigations suggest that the anticancer activity of IL-9 also extends to some human cancers. Increased T cell-derived IL-9 was proposed to predict the response to anti-PD-1 therapy. Preclinical investigations accordingly revealed that IL-9 could synergize with anti-PD-1 therapy in eliciting anticancer responses. Here, we review the findings suggesting an important contribution of IL-9 in the efficacy of anti-PD-1 therapy and discuss their clinical relevance. We will also discuss the role of host factors like the microbiota and TGFβ in the tumor microenvironment (TME) in the regulation of IL-9 secretion and anti-PD-1 treatment efficacy.
Collapse
Affiliation(s)
- Daria Vinokurova
- UMR 1231, Lipides Nutrition Cancer, INSERM, 21000 Dijon, France
- UFR des Sciences de Santé, Université de Bourgogne, 21000 Dijon, France
| | - Lionel Apetoh
- Brown Center for Immunotherapy, Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
25
|
Molecular Markers of Blood Cell Populations Can Help Estimate Aging of the Immune System. Int J Mol Sci 2023; 24:ijms24065708. [PMID: 36982782 PMCID: PMC10055688 DOI: 10.3390/ijms24065708] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/10/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
Aging of the immune system involves functional changes in individual cell populations, in hematopoietic tissues and at the systemic level. They are mediated by factors produced by circulating cells, niche cells, and at the systemic level. Age-related alterations in the microenvironment of the bone marrow and thymus cause a decrease in the production of naive immune cells and functional immunodeficiencies. Another result of aging and reduced tissue immune surveillance is the accumulation of senescent cells. Some viral infections deplete adaptive immune cells, increasing the risk of autoimmune and immunodeficiency conditions, leading to a general degradation in the specificity and effectiveness of the immune system in old age. During the COVID-19 pandemic, the state-of-the-art application of mass spectrometry, multichannel flow cytometry, and single-cell genetic analysis have provided vast data on the mechanisms of aging of the immune system. These data require systematic analysis and functional verification. In addition, the prediction of age-related complications is a priority task of modern medicine in the context of the increase in the aged population and the risk of premature death during epidemics. In this review, based on the latest data, we discuss the mechanisms of immune aging and highlight some cellular markers as indicators of age-related immune disbalance that increase the risk of senile diseases and infectious complications.
Collapse
|
26
|
Andreu-Sanz D, Kobold S. Role and Potential of Different T Helper Cell Subsets in Adoptive Cell Therapy. Cancers (Basel) 2023; 15:cancers15061650. [PMID: 36980536 PMCID: PMC10046829 DOI: 10.3390/cancers15061650] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/27/2023] [Accepted: 03/03/2023] [Indexed: 03/30/2023] Open
Abstract
Historically, CD8+ T cells have been considered the most relevant effector cells involved in the immune response against tumors and have therefore been the focus of most cancer immunotherapy approaches. However, CD4+ T cells and their secreted factors also play a crucial role in the tumor microenvironment and can orchestrate both pro- and antitumoral immune responses. Depending on the cytokine milieu to which they are exposed, CD4+ T cells can differentiate into several phenotypically different subsets with very divergent effects on tumor progression. In this review, we provide an overview of the current knowledge about the role of the different T helper subsets in the immune system, with special emphasis on their implication in antitumoral immune responses. Furthermore, we also summarize therapeutic applications of each subset and its associated cytokines in the adoptive cell therapy of cancer.
Collapse
Affiliation(s)
- David Andreu-Sanz
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Lindwurmstrasse 2a, 80337 Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, 81675 Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), 85764 Neuherberg, Germany
| |
Collapse
|
27
|
Gomez-Bris R, Saez A, Herrero-Fernandez B, Rius C, Sanchez-Martinez H, Gonzalez-Granado JM. CD4 T-Cell Subsets and the Pathophysiology of Inflammatory Bowel Disease. Int J Mol Sci 2023; 24:2696. [PMID: 36769019 PMCID: PMC9916759 DOI: 10.3390/ijms24032696] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/24/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an umbrella term for the chronic immune-mediated idiopathic inflammation of the gastrointestinal tract, manifesting as Crohn's disease (CD) or ulcerative colitis (UC). IBD is characterized by exacerbated innate and adaptive immunity in the gut in association with microbiota dysbiosis and the disruption of the intestinal barrier, resulting in increased bacterial exposure. In response to signals from microorganisms and damaged tissue, innate immune cells produce inflammatory cytokines and factors that stimulate T and B cells of the adaptive immune system, and a prominent characteristic of IBD patients is the accumulation of inflammatory T-cells and their proinflammatory-associated cytokines in intestinal tissue. Upon antigen recognition and activation, CD4 T-cells differentiate towards a range of distinct phenotypes: T helper(h)1, Th2, Th9, Th17, Th22, T follicular helper (Tfh), and several types of T-regulatory cells (Treg). T-cells are generated according to and adapt to microenvironmental conditions and participate in a complex network of interactions among other immune cells that modulate the further progression of IBD. This review examines the role of the CD4 T-cells most relevant to IBD, highlighting how these cells adapt to the environment and interact with other cell populations to promote or inhibit the development of IBD.
Collapse
Affiliation(s)
- Raquel Gomez-Bris
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Angela Saez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Facultad de Ciencias Experimentales, Universidad Francisco de Vitoria (UFV), 28223 Pozuelo de Alarcón, Spain
| | - Beatriz Herrero-Fernandez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- Departamento de Fisiología, Facultad de Medicina, Universidad Autónoma de Madrid (UAM), 28029 Madrid, Spain
| | - Cristina Rius
- Department of History of Science and Information Science, School of Medicine and Dentistry, University of Valencia, 46010 Valencia, Spain
- UISYS Research Unit, University of Valencia, 46010 Valencia, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
| | - Hector Sanchez-Martinez
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
| | - Jose M. Gonzalez-Granado
- LamImSys Lab, Instituto de Investigación Sanitaria Hospital 12 de Octubre (imas12), 28041 Madrid, Spain
- CIBER de Enfermedades Cardiovasculares (CIBERCV), 28029 Madrid, Spain
- Department of Immunology, Ophthalmology and ENT, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| |
Collapse
|
28
|
Jiang J, Huang Y, Zeng Z, Zhao C. Harnessing Engineered Immune Cells and Bacteria as Drug Carriers for Cancer Immunotherapy. ACS NANO 2023; 17:843-884. [PMID: 36598956 DOI: 10.1021/acsnano.2c07607] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Immunotherapy continues to be in the spotlight of oncology therapy research in the past few years and has been proven to be a promising option to modulate one's innate and adaptive immune systems for cancer treatment. However, the poor delivery efficiency of immune agents, potential off-target toxicity, and nonimmunogenic tumors significantly limit its effectiveness and extensive application. Recently, emerging biomaterial-based drug carriers, including but not limited to immune cells and bacteria, are expected to be potential candidates to break the dilemma of immunotherapy, with their excellent natures of intrinsic tumor tropism and immunomodulatory activity. More than that, the tiny vesicles and physiological components derived from them have similar functions with their source cells due to the inheritance of various surface signal molecules and proteins. Herein, we presented representative examples about the latest advances of biomaterial-based delivery systems employed in cancer immunotherapy, including immune cells, bacteria, and their derivatives. Simultaneously, opportunities and challenges of immune cells and bacteria-based carriers are discussed to provide reference for their future application in cancer immunotherapy.
Collapse
Affiliation(s)
- Jingwen Jiang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Yanjuan Huang
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Zishan Zeng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| | - Chunshun Zhao
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, People's Republic of China
| |
Collapse
|
29
|
Silva RCMC, Lopes MF, Travassos LH. Distinct T helper cell-mediated antitumor immunity: T helper 2 cells in focus. CANCER PATHOGENESIS AND THERAPY 2023; 1:76-86. [PMID: 38328613 PMCID: PMC10846313 DOI: 10.1016/j.cpt.2022.11.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 10/07/2022] [Accepted: 11/02/2022] [Indexed: 02/09/2024]
Abstract
The adaptive arm of the immune system is crucial for appropriate antitumor immune responses. It is generally accepted that clusters of differentiation 4+ (CD4+) T cells, which mediate T helper (Th) 1 immunity (type 1 immunity), are the primary Th cell subtype associated with tumor elimination. In this review, we discuss evidence showing that antitumor immunity and better prognosis can be associated with distinct Th cell subtypes in experimental mouse models and humans, with a focus on Th2 cells. The aim of this review is to provide an overview and understanding of the mechanisms associated with different tumor outcomes in the face of immune responses by focusing on the (1) site of tumor development, (2) tumor properties (i. e., tumor metabolism and cytokine receptor expression), and (3) type of immune response that the tumor initially escaped. Therefore, we discuss how low-tolerance organs, such as lungs and brains, might benefit from a less tissue-destructive immune response mediated by Th2 cells. In addition, Th2 cells antitumor effects can be independent of CD8+ T cells, which would circumvent some of the immune escape mechanisms that tumor cells possess, like low expression of major histocompatibility-I (MHC-I). Finally, this review aims to stimulate further studies on the role of Th2 cells in antitumor immunity and briefly discusses emerging treatment options.
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Marcela Freitas Lopes
- Laboratory of Immunity Biology George DosReis,Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| | - Leonardo Holanda Travassos
- Laboratory of Immunoreceptors and Signaling, Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro 21941-902, Brazil
| |
Collapse
|
30
|
Pan J, Xiong D, Zhang Q, Palen K, Shoemaker RH, Johnson B, Sei S, Wang Y, You M. Precision immunointerception of EGFR-driven tumorigenesis for lung cancer prevention. Front Immunol 2023; 14:1036563. [PMID: 36875137 PMCID: PMC9982083 DOI: 10.3389/fimmu.2023.1036563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/16/2023] [Indexed: 02/19/2023] Open
Abstract
Epidermal growth factor receptor (EGFR) mutations occur in about 50% of lung adenocarcinomas in Asia and about 15% in the US. EGFR mutation-specific inhibitors have been developed and made significant contributions to controlling EGFR mutated non-small cell lung cancer. However, resistance frequently develops within 1 to 2 years due to acquired mutations. No effective approaches that target mutant EGFR have been developed to treat relapse following tyrosine kinase inhibitor (TKI) treatment. Vaccination against mutant EGFR is one area of active exploration. In this study, we identified immunogenic epitopes for the common EGFR mutations in humans and formulated a multi-peptide vaccine (Emut Vax) targeting the EGFR L858R, T790M, and Del19 mutations. The efficacy of the Emut Vax was evaluated in both syngeneic and genetic engineered EGFR mutation-driven murine lung tumor models with prophylactic settings, where the vaccinations were given before the onset of the tumor induction. The multi-peptide Emut Vax effectively prevented the onset of EGFR mutation-driven lung tumorigenesis in both syngeneic and genetically engineered mouse models (GEMMs). Flow cytometry and single-cell RNA sequencing were conducted to investigate the impact of Emut Vax on immune modulation. Emut Vax significantly enhanced Th1 responses in the tumor microenvironment and decreased suppressive Tregs to enhance anti-tumor efficacy. Our results show that multi-peptide Emut Vax is effective in preventing common EGFR mutation-driven lung tumorigenesis, and the vaccine elicits broad immune responses that are not limited to anti-tumor Th1 response.
Collapse
Affiliation(s)
- Jing Pan
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Donghai Xiong
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Qi Zhang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Katie Palen
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Robert H Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Bryon Johnson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Yian Wang
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Ming You
- Center for Cancer Prevention, Houston Methodist Cancer Center, Houston Methodist Research Institute, Houston, TX, United States.,Cancer Center and Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
31
|
CD4+IL9+ (Th9) cells as the major source of IL-9, potentially modulate Th17/Treg mediated host immune response during experimental cerebral malaria. Mol Immunol 2022; 152:240-254. [DOI: 10.1016/j.molimm.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/18/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022]
|
32
|
Chang X, Wu Q, Wu Y, Xi X, Cao J, Chu H, Liu Q, Li Y, Wu W, Fang X, Chen F. Multifunctional Au Modified Ti 3C 2-MXene for Photothermal/Enzyme Dynamic/Immune Synergistic Therapy. NANO LETTERS 2022; 22:8321-8330. [PMID: 36222477 DOI: 10.1021/acs.nanolett.2c03260] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Ti3C2-MXene-based composites provide multifunctional interfaces in diagnosis and treatment of tumors. Herein, we proposed a multifunctional nanoplatform based on Ti3C2-MXene-Au nanocomposites, which combines photothermal properties and peroxidase-like activity, accomplishing synergistic photothermal therapy (PTT) and enzyme dynamic therapy (EDT) accompanied by photoacoustic (PA) and thermal dual-mode imaging in vivo. Furthermore, PTT induces immunogenic cell death, and EDT promotes cell apoptosis, facilitating dendritic cell (DC) maturation and T cell infiltration into the tumor. On this basis, the antibody OX40 (αOX40) was utilized to further contribute immune therapy for reversing the immunosuppressive tumor microenvironment by activating CD4+ and CD8+ T cells. In summary, a triune of PTT/EDT/antitumor immune therapy is achieved by combining Ti3C2-MXene-Au nanocomposites and αOX40, which possesses several strong features of good biocompatibility, NIR-controlled targeting, significant cancer cell killing, and satisfactory biosafety in vitro and in vivo. Our work might highlight the promising application of MXene-based nanoplatforms for cancer therapy.
Collapse
Affiliation(s)
- Xin Chang
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Qiong Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Yuanyu Wu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Xi Xi
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Jingrui Cao
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Hongyu Chu
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Qihui Liu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Yuanyuan Li
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Wen Wu
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Xuedong Fang
- Department of Gastrointestinal, Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| | - Fangfang Chen
- Key Laboratory of Pathobiology, Ministry of Education, Nanomedicine and Translational Research Center, China-Japan Union Hospital of Jilin University, 126 Sendai Street, Changchun, 130033 Jilin, China
| |
Collapse
|
33
|
Chemopreventive Effect on Human Colon Adenocarcinoma Cells of Styrylquinolines: Synthesis, Cytotoxicity, Proapoptotic Effect and Molecular Docking Analysis. Molecules 2022; 27:molecules27207108. [PMID: 36296703 PMCID: PMC9607578 DOI: 10.3390/molecules27207108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/16/2022] Open
Abstract
Seven styrylquinolines were synthesized in this study. Two of these styrylquinolines are new and were elucidated by spectroscopic analysis. The chemopreventive potential of these compounds was evaluated against SW480 human colon adenocarcinoma cells, its metastatic derivative SW620, and normal cells (HaCaT). According to the results, compounds 3a and 3d showed antiproliferative activity in SW480 and SW620 cells, but their effect seemed to be caused by different mechanisms of action. Compound 3a induced apoptosis independent of ROS production, as evidenced by increased levels of caspase 3, and had an immunomodulatory effect, positively regulating the production of different immunological markers in malignant cell lines. In contrast, compound 3d generated a pro-oxidant response and inhibited the growth of cancer cells, probably by another type of cell death other than apoptosis. Molecular docking studies indicated that the most active compound, 3a, could efficiently bind to the proapoptotic human caspases-3 protein, a result that could provide valuable information on the biochemical mechanism for the in vitro cytotoxic response of this compound in SW620 colon carcinoma cell lines. The obtained results suggest that these compounds have chemopreventive potential against CRC, but more studies should be carried out to elucidate the molecular mechanisms of action of each of them in depth.
Collapse
|
34
|
Mangueira VM, de Sousa TKG, Batista TM, de Abrantes RA, Moura APG, Ferreira RC, de Almeida RN, Braga RM, Leite FC, Medeiros KCDP, Cavalcanti MAT, Moura RO, Silvestre GFG, Batista LM, Sobral MV. A 9-aminoacridine derivative induces growth inhibition of Ehrlich ascites carcinoma cells and antinociceptive effect in mice. Front Pharmacol 2022; 13:963736. [PMID: 36324671 PMCID: PMC9618857 DOI: 10.3389/fphar.2022.963736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/29/2022] [Indexed: 11/16/2022] Open
Abstract
Acridine derivatives have been found with anticancer and antinociceptive activities. Herein, we aimed to evaluate the toxicological, antitumor, and antinociceptive actions of N’-(6-chloro-2-methoxyacridin-9-yl)-2-cyanoacetohydrazide (ACS-AZ), a 9-aminoacridine derivative with antimalarial activity. The toxicity was assessed by acute toxicity and micronucleus tests in mice. The in vivo antitumor effect of ACS-AZ (12.5, 25, or 50 mg/kg, intraperitoneally, i.p.) was determined using the Ehrlich tumor model, and toxicity. The antinociceptive efficacy of the compound (50 mg/kg, i.p.) was investigated using formalin and hot plate assays in mice. The role of the opioid system was also investigated. In the acute toxicity test, the LD50 (lethal dose 50%) value was 500 mg/kg (i.p.), and no detectable genotoxic effect was observed. After a 7-day treatment, ACS-AZ significantly (p < 0.05) reduced tumor cell viability and peritumoral microvessels density, suggesting antiangiogenic action. In addition, ACS-AZ reduced (p < 0.05) IL-1β and CCL-2 levels, which may be related to the antiangiogenic effect, while increasing (p < 0.05) TNF-α and IL-4 levels, which are related to its direct cytotoxicity. ACS-AZ also decreased (p < 0.05) oxidative stress and nitric oxide (NO) levels, both of which are crucial mediators in cancer known for their angiogenic action. Moreover, weak toxicological effects were recorded after a 7-day treatment (biochemical, hematological, and histological parameters). Concerning antinociceptive activity, ACS-AZ was effective on hotplate and formalin (early and late phases) tests (p < 0.05), characteristic of analgesic agents with central action. Through pretreatment with the non-selective (naloxone) and μ1-selective (naloxonazine) opioid antagonists, we observed that the antinociceptive effect of ACS-AZ is mediated mainly by μ1-opioid receptors (p < 0.05). In conclusion, ACS-AZ has low toxicity and antitumoral activity related to cytotoxic and antiangiogenic actions that involve the modulation of reactive oxygen species, NO, and cytokine levels, in addition to antinociceptive properties involving the opioid system.
Collapse
Affiliation(s)
- Vivianne M. Mangueira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatyanna K. G. de Sousa
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Tatianne M. Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Renata A. de Abrantes
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Ana Paula G. Moura
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Rafael C. Ferreira
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Reinaldo N. de Almeida
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Renan M. Braga
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Fagner Carvalho Leite
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | | | - Misael Azevedo T. Cavalcanti
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Brazil
| | - Ricardo O. Moura
- Drug Development and Synthesis Laboratory, Department of Pharmacy, State University of Paraíba, João Pessoa, Brazil
| | - Geovana F. G. Silvestre
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
| | - Leônia M. Batista
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
| | - Marianna V. Sobral
- Post Graduation Program in Bioactive Natural and Synthetic Products, Federal University of Paraíba, João Pessoa, Brazil
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Brazil
- *Correspondence: Marianna V. Sobral,
| |
Collapse
|
35
|
Park SA, Lim YJ, Ku WL, Zhang D, Cui K, Tang LY, Chia C, Zanvit P, Chen Z, Jin W, Wang D, Xu J, Liu O, Wang F, Cain A, Guo N, Nakatsukasa H, Wu C, Zhang YE, Zhao K, Chen W. Opposing functions of circadian protein DBP and atypical E2F family E2F8 in anti-tumor Th9 cell differentiation. Nat Commun 2022; 13:6069. [PMID: 36241625 PMCID: PMC9568563 DOI: 10.1038/s41467-022-33733-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022] Open
Abstract
Interleukin-9 (IL-9)-producing CD4+ T helper cells (Th9) have been implicated in allergy/asthma and anti-tumor immunity, yet molecular insights on their differentiation from activated T cells, driven by IL-4 and transforming growth factor-beta (TGF-β), is still lacking. Here we show opposing functions of two transcription factors, D-binding protein (DBP) and E2F8, in controlling Th9 differentiation. Specifically, TGF-β and IL-4 signaling induces phosphorylation of the serine 213 site in the linker region of the Smad3 (pSmad3L-Ser213) via phosphorylated p38, which is necessary and sufficient for Il9 gene transcription. We identify DBP and E2F8 as an activator and repressor, respectively, for Il9 transcription by pSmad3L-Ser213. Notably, Th9 cells with siRNA-mediated knockdown for Dbp or E2f8 promote and suppress tumor growth, respectively, in mouse tumor models. Importantly, DBP and E2F8 also exhibit opposing functions in regulating human TH9 differentiation in vitro. Thus, our data uncover a molecular mechanism of Smad3 linker region-mediated, opposing functions of DBP and E2F8 in Th9 differentiation.
Collapse
Affiliation(s)
- Sang-A Park
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Yun-Ji Lim
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Wai Lim Ku
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Dunfang Zhang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Kairong Cui
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - Liu-Ya Tang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Cheryl Chia
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Peter Zanvit
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Zuojia Chen
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Wenwen Jin
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Dandan Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Junji Xu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Ousheng Liu
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Fu Wang
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Alexander Cain
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Nancy Guo
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Hiroko Nakatsukasa
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| | - Chuan Wu
- grid.94365.3d0000 0001 2297 5165Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Ying E. Zhang
- grid.94365.3d0000 0001 2297 5165Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, 37 Convent Drive, Bethesda, 20892 MD USA
| | - Keji Zhao
- grid.94365.3d0000 0001 2297 5165Systemic Biology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 31 Center Drive, Bethesda, 20892 MD USA
| | - WanJun Chen
- grid.94365.3d0000 0001 2297 5165Mucosal Immunology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, 20892 MD USA
| |
Collapse
|
36
|
Abstract
Inflammation is a biological process that dynamically alters the surrounding microenvironment, including participating immune cells. As a well-protected organ surrounded by specialized barriers and with immune privilege properties, the central nervous system (CNS) tightly regulates immune responses. Yet in neuroinflammatory conditions, pathogenic immunity can disrupt CNS structure and function. T cells in particular play a key role in promoting and restricting neuroinflammatory responses, while the inflamed CNS microenvironment can influence and reshape T cell function and identity. Still, the contraction of aberrant T cell responses within the CNS is not well understood. Using autoimmunity as a model, here we address the contribution of CD4 T helper (Th) cell subsets in promoting neuropathology and disease. To address the mechanisms antagonizing neuroinflammation, we focus on the control of the immune response by regulatory T cells (Tregs) and describe the counteracting processes that preserve their identity under inflammatory challenges. Finally, given the influence of the local microenvironment on immune regulation, we address how CNS-intrinsic signals reshape T cell function to mitigate abnormal immune T cell responses.
Collapse
Affiliation(s)
- Nail Benallegue
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jorge I. Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
37
|
Huang T, Huang J, Liao Z, Lan H, Jian X, Gu R, Ouyang J, Hu J, Liao H. Regenerating myofiber directs Tregs and Th17 responses in inflamed muscle through the intrinsic TGF-β signaling-mediated IL-6 production. Am J Physiol Endocrinol Metab 2022; 323:E92-E106. [PMID: 35532076 DOI: 10.1152/ajpendo.00247.2021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Transforming growth factor-β (TGF-β) is considered to be an important immune regulatory cytokine. However, it remains unknown whether and how the muscle fiber specific-TGF-β signaling is directly involved in intramuscular inflammatory regulation by affecting T cells. Here, we addressed these in a mouse tibialis anterior muscle Cardiotoxin injection-induced injury repair model in muscle creatine kinase (MCK)-Cre control or transgenic mice with TGF-β receptor II (TGF-βr2) being specifically deleted in muscle cells (SM TGF-βr2-/-). In control mice, TGF-β2 and TGF-βr2 were found significantly upregulated in muscle after the acute injury. In mutant mice, deficiency of TGF-β signaling in muscle cells caused more serious muscle inflammation, with the increased infiltration of macrophages and CD4+ T cells at the degeneration stage (D4) and the early stage of regeneration (D7) after myoinjury. Notably, the loss of TGF-β signaling in myofibers dramatically affected CD4+ T cell function and delayed T cells withdrawal at the later stage of muscle regeneration (D10 and D15), marked by the elevated Th17, but the impaired Tregs response. Furthermore, in vivo and in vitro, the intrinsic TGF-β signaling affected immune behaviors of muscle cells and directed CD4+ T cells differentiation by impairing IL-6 production and release. It suggests that local muscle inflammation can be inhibited potentially by directly activating the TGF-β signaling pathway in muscle cells to suppress Th17, but induce Tregs responses. Thus, according to the results of this study, we found a new idea for the control of local acute inflammation in skeletal muscle.NEW & NOTEWORTHY Myofiber mediates muscle inflammatory response through activating the intrinsic TGF-β signaling. The specific TGF-β signaling activation contributes to myofiber IL-6 production and directs muscle-specific Th17 and Treg cell responses.
Collapse
Affiliation(s)
- Tao Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
- Department of Anatomy, School of Basic Medical Science, Guizhou Medical University, Guizhou, China
| | - JingWen Huang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - ZhaoHong Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - HaiQiang Lan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - XiaoTing Jian
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - RuiCai Gu
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| | - Jijie Hu
- Department of Orthopaedics and Traumatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering; Department of Anatomy, School of Basic Medical Science, Southern Medical University, Guangzhou, China
| |
Collapse
|
38
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
39
|
Sylvester M, Son A, Schwartz DM. The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Front Immunol 2022; 13:818039. [PMID: 35281022 PMCID: PMC8907424 DOI: 10.3389/fimmu.2022.818039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive overactivation of innate immune pathways. This results in increased production of or responses to monocyte- and neutrophil-derived cytokines such as interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Type 1 interferon (IFN). By contrast, clinical allergy is caused by dysregulated type 2 immunity, which is characterized by expansion of T helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory effectors were thought to counter-regulate each other. However, an expanding body of evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can regulate autoinflammatory responses in complex and context-dependent manners. Here, we introduce the concepts of autoinflammation and type 2 immunity. We proceed to review the mechanisms by which autoinflammatory and type 2 immune responses can modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical allergy in several monogenic and complex autoinflammatory diseases. In the future, these interactions between type 2 immunity and autoinflammation may help to expand the spectrum of autoinflammation and to guide the management of patients with various autoinflammatory and allergic diseases.
Collapse
Affiliation(s)
- McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
40
|
Anton-Pampols P, Diaz-Requena C, Martinez-Valenzuela L, Gomez-Preciado F, Fulladosa X, Vidal-Alabro A, Torras J, Lloberas N, Draibe J. The Role of Inflammasomes in Glomerulonephritis. Int J Mol Sci 2022; 23:ijms23084208. [PMID: 35457026 PMCID: PMC9029880 DOI: 10.3390/ijms23084208] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 02/07/2023] Open
Abstract
The inflammasome is an immune multiprotein complex that activates pro-caspase 1 in response to inflammation-inducing stimuli and it leads to IL-1β and IL-18 proinflammatory cytokine production. NLRP1 and NLRP3 inflammasomes are the best characterized and they have been related to several autoimmune diseases. It is well known that the kidney expresses inflammasome genes, which can influence the development of some glomerulonephritis, such as lupus nephritis, ANCA glomerulonephritis, IgA nephropathy and anti-GBM nephropathy. Polymorphisms of these genes have also been described to play a role in autoimmune and kidney diseases. In this review, we describe the main characteristics, activation mechanisms, regulation and functions of the different inflammasomes. Moreover, we discuss the latest findings about the role of the inflammasome in several glomerulonephritis from three different points of view: in vitro, animal and human studies.
Collapse
Affiliation(s)
- Paula Anton-Pampols
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Clara Diaz-Requena
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Laura Martinez-Valenzuela
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Francisco Gomez-Preciado
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
| | - Xavier Fulladosa
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Anna Vidal-Alabro
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| | - Joan Torras
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Clinical Sciences Department, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
- Correspondence:
| | - Núria Lloberas
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
- Department of Physiological Sciences, Campus de Bellvitge, Barcelona University, Hospitalet de Llobregat, 08907 Barcelona, Spain
| | - Juliana Draibe
- Nephrology Department, Bellvitge University Hospital, Hospitalet de Llobregat, 08907 Barcelona, Spain; (P.A.-P.); (L.M.-V.); (F.G.-P.); (X.F.); (J.D.)
- IDIBELL Biomedical Research Institute, Hospitalet de Llobregat, 08907 Barcelona, Spain; (C.D.-R.); (A.V.-A.); (N.L.)
| |
Collapse
|
41
|
Oh S, Li K, Prince A, Wheeler ML, Hamade H, Nguyen C, Michelsen KS, Underhill DM. Pathogen size alters C-type lectin receptor signaling in dendritic cells to influence CD4 Th9 cell differentiation. Cell Rep 2022; 38:110567. [PMID: 35354044 PMCID: PMC9052946 DOI: 10.1016/j.celrep.2022.110567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 01/18/2022] [Accepted: 03/03/2022] [Indexed: 11/26/2022] Open
Abstract
Dectin-1 recognizes β-glucan in fungal cell walls, and activation of Dectin-1 in dendritic cells (DCs) influences immune responses against fungi. Although many studies have shown that DCs activated via Dectin-1 induce different subsets of T helper cells according to different cytokine milieus, the mechanisms underlying such differences remain unknown. By harnessing polymorphic Candida albicans and polystyrene beads of different sizes, we find that target size influences production of cytokines that control differentiation of T helper cell subsets. Hyphal C. albicans and large beads activate DCs but cannot be phagocytosed due to their sizes, which prolongs the duration of Dectin-1 signaling. Transcriptomic analysis reveals that expression of Il33 is significantly increased by larger targets, and increased IL-33 expression promotes TH9 responses. Expression of IL-33 is regulated by the Dectin-1-SYK-PLCγ-CARD9-ERK pathway. Altogether, our study demonstrates that size of fungi can be a determining factor in how DCs induce context-appropriate adaptive immune responses. Oh et al. show that dendritic cells exposed to C. albicans hyphae more strongly induce IL-9-producing T cells compared with cells exposed to yeast. They find that this TH9 response is driven in large part by Dectin-1 sensing microbe size, leading to elevated production of IL-33.
Collapse
Affiliation(s)
- Seeun Oh
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Graduate Program in Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kai Li
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Alexander Prince
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Matthew L Wheeler
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Hussein Hamade
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Christopher Nguyen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Kathrin S Michelsen
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David M Underhill
- F. Widjaja Foundation Inflammatory Bowel & Immunobiology Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd., Los Angeles, CA 90048, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; The Karsh Division of Gastroenterology and Hepatology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
| |
Collapse
|
42
|
Cai M, Chen N. The Roles of IRF-8 in Regulating IL-9-Mediated Immunologic Mechanisms in the Development of DLBCL: A State-of-the-Art Literature Review. Front Oncol 2022; 12:817069. [PMID: 35211408 PMCID: PMC8860898 DOI: 10.3389/fonc.2022.817069] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/18/2022] [Indexed: 01/05/2023] Open
Abstract
Interferon regulatory factor 8 (IRF-8) is a transcription suppressor that functions through associations with other transcription factors, contributing to the growth and differentiation of bone marrow cells and the activation of macrophages. IRF-8 expression profoundly affects pathogenic processes ranging from infections to blood diseases. Interleukin-9 (IL-9) is a multipotent cytokine that acts on a variety of immune cells by binding to the IL-9 receptor (IL-9R) and is involved in a variety of diseases such as cancer, autoimmune diseases, and other pathogen-mediated immune regulatory diseases. Studies have shown that IL-9 levels are significantly increased in the serum of patients with diffuse large B-cell lymphoma (DLBCL), and IL-9 levels are correlated with the DLBCL prognostic index. The activator protein-1 (AP-1) complex is a dimeric transcription factor that plays a critical role in cellular proliferation, apoptosis, angiogenesis, oncogene-induced transformation, and invasion by controlling basic and induced transcription of several genes containing the AP-1 locus. The AP-1 complex is involved in many cancers, including hematological tumors. In this report, we systematically review the precise roles of IL-9, IRF-8, and AP-1 in tumor development, particularly with regard to DLBCL. Finally, the recent progress in IRF-8 and IL-9 research is presented; the possible relationship among IRF-8, IL-9, and AP-1 family members is analyzed; and future research prospects are discussed.
Collapse
Affiliation(s)
- Mingyue Cai
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China
| | - Na Chen
- Provincial Hospital Affiliated to Shandong First Medical University, Department of Hematology, Jinan, China.,School of Medicine, Shandong University, Jinan, China
| |
Collapse
|
43
|
Benoit-Lizon I, Jacquin E, Rivera Vargas T, Richard C, Roussey A, Dal Zuffo L, Martin T, Melis A, Vinokurova D, Shahoei SH, Baeza Garcia A, Pignol C, Giorgiutti S, Carapito R, Boidot R, Végran F, Flavell RA, Ryffel B, Nelson ER, Soulas-Sprauel P, Lawrence T, Apetoh L. CD4 T cell-intrinsic STING signaling controls the differentiation and effector functions of TH1 and TH9 cells. J Immunother Cancer 2022; 10:jitc-2021-003459. [PMID: 35091453 PMCID: PMC8804688 DOI: 10.1136/jitc-2021-003459] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/20/2022] Open
Abstract
Background While stimulator of interferon genes (STING) activation in innate immune cells of the tumor microenvironment can result in CD8 T cell-dependent antitumor immunity, whether STING signaling affects CD4 T-cell responses remains elusive. Methods Here, we tested whether STING activation modulated the effector functions of CD4 T cells in vivo by analyzing tumor-infiltrating CD4 T cells and evaluating the contribution of the CD4 T cell-derived cytokines in the antitumor activity of the STING ligand 2′3′-cyclic guanosine monophosphate-adenosine monophosphate (cGAMP) in two mouse tumor models. We performed ex vivo experiments to assess the impact of STING activation on CD4 T-cell differentiation and investigate the underlying molecular mechanisms. Finally, we tested whether STING activation enhances TH9 cell antitumor activity against mouse melanoma upon adoptive transfer. Results We found that activation of STING signaling cell-intrinsically enhances the differentiation and antitumor functions of TH1 and TH9 cells by increasing their respective production of interferon gamma (IFN-γ) and interleukin-9. IRF3 and type I interferon receptors (IFNARs) are required for the STING-driven enhancement of TH1 cell differentiation. However, STING activation favors TH9 cell differentiation independently of the IFNARs/IRF3 pathway but through mammalian target of rapamycin (mTOR) signaling, underscoring that STING activation differentially affects the fate of distinct CD4 T-cell subsets. The therapeutic effect of STING activation relies on TH1 and TH9-derived cytokines, and STING activation enhances the antitumor activity of TH9 cells upon adoptive transfer. Conclusion Our results reveal the STING signaling pathway as a therapeutic target to boost CD4 T-cell effector functions and antitumor immunity.
Collapse
Affiliation(s)
- Isis Benoit-Lizon
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Elise Jacquin
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- INSERM, UMR-S 1193, Université Paris-Saclay, Châtenay-Malabry, France
| | - Thaiz Rivera Vargas
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Corentin Richard
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Aurélie Roussey
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Ludivine Dal Zuffo
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Tiffany Martin
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Andréa Melis
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Daria Vinokurova
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Sayyed Hamed Shahoei
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
| | - Alvaro Baeza Garcia
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Cassandre Pignol
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
| | - Stéphane Giorgiutti
- INSERM UMR - S1109, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, Strasbourg, France
| | - Raphaël Carapito
- Laboratoire d'ImmunoRhumatologie Moléculaire, GENOMAX platform, INSERM UMR_S 1109, Faculté de Médecine, Fédération Hospitalo-Universitaire OMICARE, Fédération de Médecine Translationnelle de Strasbourg (FMTS), LabEx TRANSPLANTEX, Strasbourg, France
| | - Romain Boidot
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Department of Biology and Pathology of Tumors, Centre Georges François Leclerc, Dijon, France
| | - Frédérique Végran
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- Department of Biology and Pathology of Tumors, Centre Georges François Leclerc, Dijon, France
| | - Richard A Flavell
- Department of Immunobiology, Yale University School of Medicine, New Heaven, CT, USA
| | - Bernhard Ryffel
- UMR 7355, Experimental and Molecular Immunology and Neurogenetics, CNRS, Orléans, France
- Department of Immunology, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Eric R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana Champaign, Urbana, IL, USA
- Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Cancer Center at Illinois, Urbana Champaign, Illinois, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Pauline Soulas-Sprauel
- INSERM UMR-S1109, Department of Clinical Immunology and Internal Medicine, National Reference Center for Systemic Autoimmune Diseases (CNR RESO), Tertiary Center for Primary Immunodeficiency, Faculty of Pharmacy, Université de Strasbourg, Strasbourg, France
| | - Toby Lawrence
- Centre d'Immunologie de Marseille-Luminy, Université Aix-Marseille, INSERM, CNRS, Marseille, France
| | - Lionel Apetoh
- INSERM, U1231, Dijon, France
- UFR Sciences de Santé, Université Bourgogne Franche-Comté, Dijon, France
- INSERM, U1100, Tours, France
- Faculté de Médecine, Université de Tours, Tours, France
| |
Collapse
|
44
|
Musiol S, Alessandrini F, Jakwerth CA, Chaker AM, Schneider E, Guerth F, Schnautz B, Grosch J, Ghiordanescu I, Ullmann JT, Kau J, Plaschke M, Haak S, Buch T, Schmidt-Weber CB, Zissler UM. TGF-β1 Drives Inflammatory Th Cell But Not Treg Cell Compartment Upon Allergen Exposure. Front Immunol 2022; 12:763243. [PMID: 35069535 PMCID: PMC8777012 DOI: 10.3389/fimmu.2021.763243] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022] Open
Abstract
TGF-β1 is known to have a pro-inflammatory impact by inducing Th9 and Th17 cells, while it also induces anti-inflammatory Treg cells (Tregs). In the context of allergic airway inflammation (AAI) its dual role can be of critical importance in influencing the outcome of the disease. Here we demonstrate that TGF-β is a major player in AAI by driving effector T cells, while Tregs differentiate independently. Induction of experimental AAI and airway hyperreactivity in a mouse model with inducible genetic ablation of the gene encoding for TGFβ-receptor 2 (Tgfbr2) on CD4+T cells significantly reduced the disease phenotype. Further, it blocked the induction of pro-inflammatory T cell frequencies (Th2, Th9, Th17), but increased Treg cells. To translate these findings into a human clinically relevant context, Th2, Th9 and Treg cells were quantified both locally in induced sputum and systemically in blood of allergic rhinitis and asthma patients with or without allergen-specific immunotherapy (AIT). Natural allergen exposure induced local and systemic Th2, Th9, and reduced Tregs cells, while therapeutic allergen exposure by AIT suppressed Th2 and Th9 cell frequencies along with TGF-β and IL-9 secretion. Altogether, these findings support that neutralization of TGF-β represents a viable therapeutic option in allergy and asthma, not posing the risk of immune dysregulation by impacting Tregs cells.
Collapse
Affiliation(s)
- Stephanie Musiol
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Francesca Alessandrini
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Constanze A Jakwerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Adam M Chaker
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany.,Department of Otorhinolaryngology, Klinikum rechts der Isar, TUM School of Medicine, Technical University Munich, Munich, Germany
| | - Evelyn Schneider
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ferdinand Guerth
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Benjamin Schnautz
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Johanna Grosch
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ileana Ghiordanescu
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Julia T Ullmann
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Josephine Kau
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Mirjam Plaschke
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Stefan Haak
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Thorsten Buch
- Institute of Laboratory Animal Science, University of Zurich, Zurich, Switzerland
| | - Carsten B Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| | - Ulrich M Zissler
- Center of Allergy & Environment (ZAUM), Technical University of Munich (TUM) and Helmholtz Center Munich, German Research Center for Environmental Health, Members of the German Center of Lung Research (DZL), Munich, Germany
| |
Collapse
|
45
|
Canaria DA, Clare MG, Yan B, Campbell CB, Ismaio ZA, Anderson NL, Park S, Dent AL, Kazemian M, Olson MR. IL-1β promotes IL-9-producing Th cell differentiation in IL-2-limiting conditions through the inhibition of BCL6. Front Immunol 2022; 13:1032618. [PMID: 36389679 PMCID: PMC9663844 DOI: 10.3389/fimmu.2022.1032618] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 10/19/2022] [Indexed: 11/05/2022] Open
Abstract
IL-9-producing CD4+ T helper cells, termed Th9 cells, differentiate from naïve precursor cells in response to a combination of cytokine and cell surface receptor signals that are elevated in inflamed tissues. After differentiation, Th9 cells accumulate in these tissues where they exacerbate allergic and intestinal disease or enhance anti-parasite and anti-tumor immunity. Previous work indicates that the differentiation of Th9 cells requires the inflammatory cytokines IL-4 and TGF-β and is also dependent of the T cell growth factor IL-2. While the roles of IL-4 and TGF-β-mediated signaling are relatively well understood, how IL-2 signaling contributes to Th9 cell differentiation outside of directly inducing the Il9 locus remains less clear. We show here that murine Th9 cells that differentiate in IL-2-limiting conditions exhibit reduced IL-9 production, diminished NF-kB activation and a reduced NF-kB-associated transcriptional signature, suggesting that IL-2 signaling is required for optimal NF-kB activation in Th9 cells. Interestingly, both IL-9 production and the NF-kB transcriptional signature could be rescued by addition of the NF-kB-activating cytokine IL-1β to IL-2-limiting cultures. IL-1β was unique among NF-kB-activating factors in its ability to rescue Th9 differentiation as IL-2 deprived Th9 cells selectively induced IL-1R expression and IL-1β/IL-1R1 signaling enhanced the sensitivity of Th9 cells to limiting amounts of IL-2 by suppressing expression of the Th9 inhibitory factor BCL6. These data shed new light on the intertwined nature of IL-2 and NF-kB signaling pathways in differentiating Th cells and elucidate the potential mechanisms that promote Th9 inflammatory function in IL-2-limiting conditions.
Collapse
Affiliation(s)
- D Alejandro Canaria
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Maia G Clare
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Bingyu Yan
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Charlotte B Campbell
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Zachariah A Ismaio
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Nicole L Anderson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Sungtae Park
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Alexander L Dent
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Majid Kazemian
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States.,Department of Computer Science, Purdue University, West Lafayette, IN, United States
| | - Matthew R Olson
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
46
|
Xue G, Zheng N, Fang J, Jin G, Li X, Dotti G, Yi Q, Lu Y. Adoptive cell therapy with tumor-specific Th9 cells induces viral mimicry to eliminate antigen-loss-variant tumor cells. Cancer Cell 2021; 39:1610-1622.e9. [PMID: 34678150 PMCID: PMC8678313 DOI: 10.1016/j.ccell.2021.09.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/06/2021] [Accepted: 09/21/2021] [Indexed: 02/04/2023]
Abstract
Resistance can occur in patients receiving adoptive cell therapy (ACT) due to antigen-loss-variant (ALV) cancer cell outgrowth. Here we demonstrate that murine and human T helper (Th) 9 cells, but not Th1/Tc1 or Th17 cells, expressing tumor-specific T cell receptors (TCRs) or chimeric antigen receptors (CARs), eradicate advanced tumors that contain ALVs. This unprecedented antitumor capacity of Th9 cells is attributed to both enhanced direct tumor cell killing and bystander antitumor effects promoted by intratumor release of interferon (IFN) α/β. Mechanistically, tumor-specific Th9 cells increase the intratumor accumulation of extracellular ATP (eATP; released from dying tumor cells), because of a unique feature of Th9 cells that lack the expression of ATP degrading ectoenzyme cluster of differentiation (CD) 39. Intratumor enrichment of eATP promotes the monocyte infiltration and stimulates their production of IFNα/β by inducing eATP-endogenous retrovirus-Toll-like receptor 3 (TLR3)/mitochondrial antiviral signaling (MAVS) pathway activation. These results identify tumor-specific Th9 cells as a unique T cell subset endowed with the unprecedented capacity to eliminate ALVs for curative responses.
Collapse
Affiliation(s)
- Gang Xue
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Ningbo Zheng
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Jing Fang
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA
| | - Guangxu Jin
- Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN 56301, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Qing Yi
- Center for Translational Research in Hematologic Malignancies, Houston Methodist Cancer Center, Houston, TX 77030, USA.
| | - Yong Lu
- Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC 27101, USA.
| |
Collapse
|
47
|
Xue G, Wang Z, Zheng N, Fang J, Mao C, Li X, Jin G, Ming X, Lu Y. Elimination of acquired resistance to PD-1 blockade via the concurrent depletion of tumour cells and immunosuppressive cells. Nat Biomed Eng 2021; 5:1306-1319. [PMID: 34725506 PMCID: PMC8595849 DOI: 10.1038/s41551-021-00799-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/26/2021] [Indexed: 12/12/2022]
Abstract
Antigen release resulting from the death of tumour cells induced by chemotherapies and targeted therapies can augment the antitumour responses induced by immune checkpoint blockade (ICB). However, tumours responding to ICB therapies often become resistant to them. Here we show that the specific targeting of tumour cells promotes the growth of tumour-cell variants that are resistant to ICB, and that the acquired resistance can be overcome via the concurrent depletion of tumour cells and of major types of immunosuppressive cell via a monoclonal antibody binding the enzyme CD73, which we identified as highly expressed on tumour cells and on regulatory T cells, myeloid-derived suppressor cells and tumour-associated macrophages, but not on cytolytic T lymphocytes, natural killer cells and dendritic cells. In mice with murine tumours, the systemic administration of anti-PD1 antibodies and anti-CD73 antibodies conjugated to a near-infrared dye prevented near-infrared-irradiated tumours from acquiring resistance to ICB and resulted in the eradication of advanced tumours. The elimination of immunosuppressive cells may overcome acquired resistance to ICB across a range of tumour types and combination therapies.
Collapse
Affiliation(s)
- Gang Xue
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27101
| | - Ziyu Wang
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27101
| | - Ningbo Zheng
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27101
| | - Jing Fang
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27101
| | - Chengqiong Mao
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27157
| | - Xiaoyin Li
- Department of Mathematics and Statistics, St. Cloud State University, St Cloud, MN, USA, 56301
| | - Guangxu Jin
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27157
| | - Xin Ming
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Cancer Biology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27157
| | - Yong Lu
- Comprehensive Cancer Center, Wake Forest Baptist Health, Winston-Salem, NC, USA, 27157; Department of Microbiology & Immunology, Wake Forest School of Medicine, Winston-Salem, NC, USA, 27101,Corresponding authors, , Correspondence and requests for materials should be addressed to Y.L
| |
Collapse
|
48
|
Zhang Y, Yang W, Li W, Zhao Y. NLRP3 Inflammasome: Checkpoint Connecting Innate and Adaptive Immunity in Autoimmune Diseases. Front Immunol 2021; 12:732933. [PMID: 34707607 PMCID: PMC8542789 DOI: 10.3389/fimmu.2021.732933] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/20/2021] [Indexed: 12/12/2022] Open
Abstract
Autoimmune diseases are a broad spectrum of human diseases that are characterized by the breakdown of immune tolerance and the production of autoantibodies. Recently, dysfunction of innate and adaptive immunity is considered to be a key step in the initiation and maintenance of autoimmune diseases. NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is a multimeric protein complex, which can detect exogenous pathogen irritants and endogenous danger signals. The main function of NLRP3 inflammasome is to promote secretion of interleukin (IL)-1β and IL-18, and pyroptosis mediated by caspase-1. Served as a checkpoint in innate and adaptive immunity, aberrant activation and regulation of NLRP3 inflammasome plays an important role in the pathogenesis of autoimmune diseases. This paper reviewed the roles of NLRP3 inflammasome in autoimmune diseases, which shows NLRP3 inflammasome may be a potential target for autoimmune diseases deserved further study.
Collapse
Affiliation(s)
- Yiwen Zhang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wenlin Yang
- Department of Dermatology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Wangen Li
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yunjuan Zhao
- Department of Endocrinology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
49
|
Abstract
Interleukin-4 (IL-4) is a four-α-helical bundle type I cytokine with broad pleiotropic actions on multiple lineages. Major actions of IL-4 were initially discovered for B and T cells, but this cytokine acts on more than a dozen different target cells spanning the innate and adaptive immune systems and is produced by multiple different cellular sources. While IL-4 was discovered just under 40 years ago in 1982, the interest in and discoveries related to this cytokine continue to markedly expand. There are important new advances related to its biological actions and to its mechanisms of signaling, including critical genes and downstream targets in a range of cell types. IL-4 is critical not only for careful control of immunoglobulin production but also related to inflammation, fibrosis, allergic reactions, and antitumor activity, with actions of IL-4 occurring through two different types of receptors, one of which is also used by IL-13, a closely related cytokine with partially overlapping actions. In this review, we cover critical older information but also highlight newer advances. An area of evolving interest relates to the therapeutic blockade of IL-4 signaling pathway to treat atopic dermatitis and asthma. Thus, this cytokine is historically important, and research in this area has both elucidated major biological pathways and led to therapeutic advances for diseases that affect millions of individuals.
Collapse
Affiliation(s)
- Achsah D Keegan
- Center for Vascular and Inflammatory Diseases, Department of Microbiology and Immunology, University of Maryland School of Medicine, and Veterans Affairs Maryland Health Care System, Baltimore Veterans Affairs Medical Center, Baltimore, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology, Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, USA
| | - Jinfang Zhu
- Molecular and Cellular Immunoregulation Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| |
Collapse
|
50
|
Shan Q, Takabatake K, Omori H, Kawai H, Oo MW, Nakano K, Ibaragi S, Sasaki A, Nagatsuka H. Stromal cells in the tumor microenvironment promote the progression of oral squamous cell carcinoma. Int J Oncol 2021; 59:72. [PMID: 34368860 PMCID: PMC8360621 DOI: 10.3892/ijo.2021.5252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/22/2021] [Indexed: 12/15/2022] Open
Abstract
The stromal cells in the tumor microenvironment (TME) can influence the progression of multiple types of cancer; however, data on oral squamous cell carcinoma (OSCC) are limited. In the present study, the effects of verrucous squamous cell carcinoma-associated stromal cells (VSCC-SCs), squamous cell carcinoma-associated stromal cells (SCC-SCs) and human dermal fibroblasts (HDFs) on the tumor nest formation, proliferation, invasion and migration of HSC-3 cells were examined in vitro using Giemsa staining, MTS, and Transwell (invasion and migration) assays, respectively. The results revealed that both the VSCC-SCs and SCC-SCs inhibited the tumor nest formation, and promoted the proliferation, invasion and migration of OSCC cells in vitro. Furthermore, the effects of VSCC-SCs, SCC-SCs and HDFs on the differentiation, proliferation, invasion and migration of OSCC cells in vivo were evaluated by hematoxylin and eosin staining, tartrate-resistant acid phosphatase staining, immunohistochemistry and double-fluorescent immunohistochemical staining, respectively. The results demonstrated that the VSCC-SCs promoted the differentiation, proliferation, invasion and migration of OSCC cells, while the SCC-SCs inhibited the differentiation, and promoted the proliferation, invasion and migration of OSCC cells in vivo. Finally, microarray data were used to predict genes in VSCC-SCs and SCC-SCs that may influence the progression of OSCC, and those with potential to influence the differential effects of VSCC-SCs and SCC-SCs on the differentiation of OSCC. It was found that C-X-C motif chemokine ligand (CXCL)8, mitogen-activated protein kinase 3 (MAPK3), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), C-X-C motif chemokine ligand 1 (CXCL1) and C-C motif chemokine ligand 2 (CCL2) may be involved in the crosstalk between VSCC-SCs, SCC-SCs and OSCC cells, which regulates the progression of OSCC. Intercellular adhesion molecule 1 (ICAM1), interleukin (IL)1B, Fos proto-oncogene, AP-1 transcription factor subunit (FOS), bone morphogenetic protein 4 (BMP4), insulin (INS) and nerve growth factor (NGF) may be responsible for the differential effects of VSCC-SCs and SCC-SCs on the differentiation of OSCC. On the whole, the present study demonstrates that both VSCC-SCs and SCC-SCs may promote the progression of OSCC, and SCC-SCs were found to exert a more prominent promoting effect; this may represent a potential regulatory mechanism for the progression of OSCC.
Collapse
Affiliation(s)
- Qiusheng Shan
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Kiyofumi Takabatake
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Haruka Omori
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Hotaka Kawai
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - May Wathone Oo
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Keisuke Nakano
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Soichiro Ibaragi
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Akira Sasaki
- Department of Oral and Maxillofacial Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| | - Hitoshi Nagatsuka
- Department of Oral Pathology and Medicine, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Kita‑ku, Okayama 700‑8525, Japan
| |
Collapse
|