1
|
Heneka MT, van der Flier WM, Jessen F, Hoozemanns J, Thal DR, Boche D, Brosseron F, Teunissen C, Zetterberg H, Jacobs AH, Edison P, Ramirez A, Cruchaga C, Lambert JC, Laza AR, Sanchez-Mut JV, Fischer A, Castro-Gomez S, Stein TD, Kleineidam L, Wagner M, Neher JJ, Cunningham C, Singhrao SK, Prinz M, Glass CK, Schlachetzki JCM, Butovsky O, Kleemann K, De Jaeger PL, Scheiblich H, Brown GC, Landreth G, Moutinho M, Grutzendler J, Gomez-Nicola D, McManus RM, Andreasson K, Ising C, Karabag D, Baker DJ, Liddelow SA, Verkhratsky A, Tansey M, Monsonego A, Aigner L, Dorothée G, Nave KA, Simons M, Constantin G, Rosenzweig N, Pascual A, Petzold GC, Kipnis J, Venegas C, Colonna M, Walter J, Tenner AJ, O'Banion MK, Steinert JR, Feinstein DL, Sastre M, Bhaskar K, Hong S, Schafer DP, Golde T, Ransohoff RM, Morgan D, Breitner J, Mancuso R, Riechers SP. Neuroinflammation in Alzheimer disease. Nat Rev Immunol 2025; 25:321-352. [PMID: 39653749 DOI: 10.1038/s41577-024-01104-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 02/20/2025]
Abstract
Increasing evidence points to a pivotal role of immune processes in the pathogenesis of Alzheimer disease, which is the most prevalent neurodegenerative and dementia-causing disease of our time. Multiple lines of information provided by experimental, epidemiological, neuropathological and genetic studies suggest a pathological role for innate and adaptive immune activation in this disease. Here, we review the cell types and pathological mechanisms involved in disease development as well as the influence of genetics and lifestyle factors. Given the decade-long preclinical stage of Alzheimer disease, these mechanisms and their interactions are driving forces behind the spread and progression of the disease. The identification of treatment opportunities will require a precise understanding of the cells and mechanisms involved as well as a clear definition of their temporal and topographical nature. We will also discuss new therapeutic strategies for targeting neuroinflammation, which are now entering the clinic and showing promise for patients.
Collapse
Affiliation(s)
- Michael T Heneka
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg.
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, The Netherlands
| | - Frank Jessen
- Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
| | - Jeroen Hoozemanns
- Department of Pathology, Amsterdam Neuroscience, Amsterdam University Medical Centre, Amsterdam, The Netherlands
| | - Dietmar Rudolf Thal
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Laboratory for Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), Leuven, Belgium
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| | | | - Charlotte Teunissen
- Department of Laboratory Medicine, VUMC Amsterdam, Amsterdam, The Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Andreas H Jacobs
- European Institute for Molecular Imaging, University of Münster, Münster, Germany
| | - Paul Edison
- Division of Neurology, Department of Brain Sciences, Imperial College London, London, UK
| | - Alfredo Ramirez
- Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne, Germany
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Carlos Cruchaga
- Department of Psychiatry, Washington School of Medicine in St. Louis, St. Louis, MO, USA
| | - Jean-Charles Lambert
- Université de Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Agustin Ruiz Laza
- ACE Alzheimer Center Barcelona, Universitat Internacional de Catalunya (UIC), Barcelona, Spain
| | - Jose Vicente Sanchez-Mut
- Instituto de Neurociencias, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas (UMH-CSIC), Alicante, Spain
| | - Andre Fischer
- Clinic for Psychiatry and Psychotherapy, University Medical Center, Georg-August-University Göttingen, Göttingen, Germany
- Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Centre for Neurodegenerative Disease (DZNE), Göttingen, Germany
| | - Sergio Castro-Gomez
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Physiology II, University Hospital Bonn, University of Bonn, Bonn, Germany
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Thor D Stein
- Boston University Alzheimer's Disease Research Center and CTE Center, Department of Pathology & Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Luca Kleineidam
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Michael Wagner
- Department of Neurodegenerative Disease and Geriatric Psychiatry, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Jonas J Neher
- Biomedical Center Munich, Biochemistry, Medical Faculty, LMU Munich, Munich, Germany
- Neuroimmunology and Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute (TBSI), Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience (TCIN), Trinity College Dublin, Dublin, Ireland
| | - Sim K Singhrao
- Brain and Behaviour Centre, Faculty of Clinical and Biomedical Sciences, School of Dentistry, University of Central Lancashire, Preston, UK
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Christopher K Glass
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Johannes C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Oleg Butovsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kilian Kleemann
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Philip L De Jaeger
- Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, USA
| | - Hannah Scheiblich
- Center for Neurology, Clinic of Parkinson, Sleep and Movement Disorders, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Guy C Brown
- Deparment of Biochemistry, University of Cambridge, Cambridge, UK
| | - Gary Landreth
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Miguel Moutinho
- School of Medicine, Indiana University, Indianapolis, IN, USA
| | - Jaime Grutzendler
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA
| | - Diego Gomez-Nicola
- School of Biological Sciences, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Róisín M McManus
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Katrin Andreasson
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Ising
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Deniz Karabag
- Cluster of Excellence Cellular Stress Response in Aging-associated Diseases (CECAD), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Darren J Baker
- Department of Paediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Shane A Liddelow
- Neuroscience Institute, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Neuroscience and Physiology, NYU Grossman School of Medicine, New York City, NY, USA
- Department of Ophthalmology, NYU Grossman School of Medicine, New York City, NY, USA
| | - Alexei Verkhratsky
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Malu Tansey
- College of Medicine, University of Florida, Gainsville, FL, USA
| | - Alon Monsonego
- Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Paracelsus Medical University, Salzburg, Austria
| | - Guillaume Dorothée
- Sorbonne Université, Inserm, Centre de Recherche Saint-Antoine (CRSA), Hôpital Saint-Antoine, Paris, France
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Mikael Simons
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Gabriela Constantin
- Section of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Neta Rosenzweig
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alberto Pascual
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain
| | - Gabor C Petzold
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Vascular Neurology, University of Bonn, Bonn, Germany
| | - Jonathan Kipnis
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Brain Immunology and Glia (BIG), Washington University School of Medicine, St. Louis, MO, USA
| | - Carmen Venegas
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
- Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
- Instituto Biosanitario de Granada (ibs.Granada), Granada, Spain
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jochen Walter
- Center of Neurology, University Hospital Bonn, University of Bonn, Bonn, Germany
| | - Andrea J Tenner
- Department of Molecular Biology & Biochemistry, University of California Irvine, Irvine, CA, USA
- Department of Neurobiology and Behaviour, University of California Irvine, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, University of California Irvine, Irvine, CA, USA
| | - M Kerry O'Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joern R Steinert
- Faculty of Medicine and Health Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, UK
| | - Douglas L Feinstein
- Department of NeuroAnesthesia, University of Illinois at Chicago, Chicago, IL, USA
| | - Magdalena Sastre
- Department of Brain Sciences, Imperial College London, Hammersmith Hospital, London, UK
| | - Kiran Bhaskar
- Department of Molecular Genetics & Microbiology and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Soyon Hong
- UK Dementia Research Institute, Institute of Neurology, University College London, London, UK
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Todd Golde
- Department of Pharmacology and Chemical Biology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
- Department of Neurology, Emory Center for Neurodegenerative Disease, Emory University, Atlanta, GA, USA
| | | | - David Morgan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
| | - John Breitner
- Department of Psychiatry, McGill University Faculty of Medicine, Montreal, Québec, Canada
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Sean-Patrick Riechers
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette/Belvaux, Luxembourg
| |
Collapse
|
2
|
Morito T, Qi M, Kamano N, Sasaguri H, Bez S, Foiani M, Duff K, Benner S, Endo T, Hama H, Kurokawa H, Miyawaki A, Mizuma H, Sahara N, Shimojo M, Higuchi M, Saido TC, Watamura N. Human MAPT knockin mouse models of frontotemporal dementia for the neurodegenerative research community. CELL REPORTS METHODS 2025; 5:101024. [PMID: 40220760 DOI: 10.1016/j.crmeth.2025.101024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 02/26/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
Existing models of frontotemporal dementia (FTD) may not fully recapitulate the pathophysiology of the disease. To generate more pathophysiologically relevant FTD models, we engineered MAPT knockin mouse lines carrying triple mutations, among which the MAPTP301S;Int10+3;S320F line exhibited robust tau pathology starting before 6 months of age. Severe tau accumulation was predominantly observed in the thalamus, hypothalamus, and amygdala with milder involvement of the cortex and hippocampus, leading to synaptic loss, brain atrophy, and FTD-like behavioral abnormalities. Crossbreeding MAPTP301S;Int10+3;S320F mice with App knockin, AppNL-G-F, mice markedly enhanced tau pathology in the cortex and hippocampus, highlighting the interplay between β-amyloid and tau. These findings establish the mutant mice as valuable models for investigating the mechanisms underlying FTD and other tauopathies, providing a relevant platform for in vivo drug screening.
Collapse
Affiliation(s)
- Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Mohan Qi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Sumi Bez
- UK Dementia Research Institute, University College London, London WC1E6BT, UK
| | - Martha Foiani
- UK Dementia Research Institute, University College London, London WC1E6BT, UK
| | - Karen Duff
- UK Dementia Research Institute, University College London, London WC1E6BT, UK
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Ibaraki 305-8506, Japan
| | | | - Hiroshi Hama
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroshi Kurokawa
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Atushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan
| | - Hiroshi Mizuma
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Inage, Chiba 263-8555, Japan
| | - Naruhiko Sahara
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Inage, Chiba 263-8555, Japan
| | - Masafumi Shimojo
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Inage, Chiba 263-8555, Japan
| | - Makoto Higuchi
- Advanced Neuroimaging Center, National Institutes for Quantum Science and Technology, Inage, Chiba 263-8555, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan.
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama 351-0198, Japan; UK Dementia Research Institute, University College London, London WC1E6BT, UK.
| |
Collapse
|
3
|
Xie W, Qu J, Xing N, Gao L, Deng H, Liu D, Pang Q. DjCapon Affects the Neural Regeneration and Light Sensitivity via NO and Wnt5a Signaling in Planarian Dugesia japonica. Mol Neurobiol 2025:10.1007/s12035-025-04915-4. [PMID: 40220247 DOI: 10.1007/s12035-025-04915-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
The carboxy-terminal postsynaptic density protein 95/discs large protein/zonula occludens 1 (PDZ) ligand of neuronal nitric oxide synthase (nNOS), known as CAPON, can interact with nNOS to influence neuropathological processes. However, the precise mechanism by which CAPON regulates neuronal regeneration remains poorly understood. In this study, we utilized the planarian Dugesia japonica, a model organism renowned for its remarkable regenerative abilities, to investigate this mechanism. First, we cloned the DjCapon gene and performed RNA interference (RNAi) to knock down DjCapon expression in planarians. Our results revealed that DjCapon knockdown impaired neural regeneration, particularly affecting the regeneration of GABAergic neurons. This impairment led to a reduced sensitivity to light in planarians. Furthermore, DjCapon knockdown decreased the activity of nitric oxide synthase (NOS) and reduced the levels of nitric oxide (NO) in planarians. During neural regeneration, the expression of genes associated with the Wnt/Ca2⁺ signaling pathway, including DjWnt5a, calcineurin (DjCaln), and calcium/calmodulin-dependent protein kinase II (DjCamKII), was upregulated following DjCapon knockdown. In summary, our findings demonstrate that DjCapon plays a critical role in regulating neural regeneration. DjCapon may modulate the Wnt/Ca2⁺ signaling pathway by influencing NOS activity and NO levels. Additionally, the Wnt/Ca2⁺ pathway appears to regulate the regeneration of GABAergic neurons and light sensitivity in planarians. These results provide new insights into the mechanism by which CAPON influences neural regeneration and its potential implications for related diseases.
Collapse
Affiliation(s)
- Wenshuo Xie
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Jicheng Qu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Nianhong Xing
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Lili Gao
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Hongkuan Deng
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China
| | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, 255049, China.
| |
Collapse
|
4
|
Ma J, Tian Y, Du C, Zhu Y, Huang W, Ding C, Wei P, Yi X, Lin Z, Fang W. Cerium-doped Prussian blue biomimetic nanozyme as an amplified pyroptosis inhibitor mitigate Aβ oligomer-induced neurotoxicity in Alzheimer's disease. J Nanobiotechnology 2025; 23:181. [PMID: 40050873 PMCID: PMC11887122 DOI: 10.1186/s12951-025-03263-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
Antioxidant enzyme therapy shows promise for treating Alzheimer's disease (AD), but significant challenges remain in achieving effective blood-brain barrier (BBB) penetration and sustained therapeutic effects. We developed a novel neutrophil membrane (NM)-coated cerium-doped Prussian blue biomimetic nanozyme (NM@PB-Ce) that demonstrates outstanding enzymatic properties and targeted therapeutic efficacy. Extensive physicochemical characterization using transmission electron microscopy, X-ray photoelectron spectroscopy, and dynamic light scattering confirmed the successful synthesis of uniform nanoparticles (~ 142 nm) with preserved membrane protein functionality. In vitro studies utilizing SH-SY5Y neuroblastoma cells revealed that NM@PB-Ce effectively scavenged reactive oxygen species through multiple enzyme-mimetic activities (catalase, superoxide dismutase, and peroxidase). The nanozyme significantly suppressed NLRP3 inflammasome activation and subsequent pyroptosis, reducing inflammatory markers (IL-1β, IL-18) while attenuating Aβ aggregation. Using a sophisticated co-culture BBB model and real-time in vivo fluorescence imaging, we demonstrated NM@PB-Ce's ability to traverse the BBB and accumulate specifically in AD-affected regions. In an Aβ1-42 oligomer-induced AD mouse model, systematic administration of NM@PB-Ce (320 μg/mL, 0.01 mL/g/day for 14 days) significantly improved cognitive performance across multiple behavioral paradigms, including the Morris water maze, Y-maze, and open field tests. Molecular and histological analyses revealed decreased neuroinflammation markers (GFAP, Iba-1) in the hippocampus, reduced levels of NLRP3, caspase-1, and phosphorylated tau (demonstrated by Western blot and ELISA), and enhanced dendritic spine density (visualized through Golgi staining). This comprehensive study establishes NM@PB-Ce as a promising therapeutic platform for AD treatment, providing both mechanistic insights into its mode of action and robust evidence of its therapeutic efficacy in targeting neuroinflammation and cognitive decline.
Collapse
Affiliation(s)
- Jing Ma
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yu Tian
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Chengzhong Du
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Wen Huang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Chenyu Ding
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Xuehan Yi
- Department of Otolaryngology Head and Neck Surgery, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| | - Zhangya Lin
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
| | - Wenhua Fang
- Department of Neurosurgery, Neurosurgery Research Institute, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
- Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, Fujian, China.
- Fujian Provincial Institutes of Brain Disorders and Brain Sciences, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
5
|
Szegvari E, Holec SAM, Woerman AL. Limitations and Applications of Rodent Models in Tauopathy and Synucleinopathy Research. J Neurochem 2025; 169:e70021. [PMID: 40026260 PMCID: PMC11874209 DOI: 10.1111/jnc.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 03/05/2025]
Abstract
Rodent models that accurately recapitulate key aspects of human disease have long been fundamental to the successful development of clinical interventions. This is greatly underscored in the neurodegenerative disease field, where preclinical testing of anti-prion therapeutics against rodent-adapted prions resulted in the development of small molecules effective against rodent-adapted prions but not against human prions. These findings provided critical lessons for ongoing efforts to develop treatments for patients with neurodegenerative diseases caused by misfolding and accumulation of the proteins tau and α-synuclein, or tauopathies and synucleinopathies, respectively. To avoid the potential pitfalls previously identified in the prion field, this review focuses on rodent models currently available to study tau and α-synuclein disease pathogenesis, emphasizing the strengths and limitations of each with the particular goal of better supporting preclinical research.
Collapse
Affiliation(s)
- Emma Szegvari
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Sara A. M. Holec
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| | - Amanda L. Woerman
- Department of Microbiology, Immunology, & Pathology and Prion Research CenterColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
6
|
Uytterhoeven V, Verstreken P, Nachman E. Synaptic sabotage: How Tau and α-Synuclein undermine synaptic health. J Cell Biol 2025; 224:e202409104. [PMID: 39718548 DOI: 10.1083/jcb.202409104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
Synaptic dysfunction is one of the earliest cellular defects observed in Alzheimer's disease (AD) and Parkinson's disease (PD), occurring before widespread protein aggregation, neuronal loss, and cognitive decline. While the field has focused on the aggregation of Tau and α-Synuclein (α-Syn), emerging evidence suggests that these proteins may drive presynaptic pathology even before their aggregation. Therefore, understanding the mechanisms by which Tau and α-Syn affect presynaptic terminals offers an opportunity for developing innovative therapeutics aimed at preserving synapses and potentially halting neurodegeneration. This review focuses on the molecular defects that converge on presynaptic dysfunction caused by Tau and α-Syn. Both proteins have physiological roles in synapses. However, during disease, they acquire abnormal functions due to aberrant interactions and mislocalization. We provide an overview of current research on different essential presynaptic pathways influenced by Tau and α-Syn. Finally, we highlight promising therapeutic targets aimed at maintaining synaptic function in both tauopathies and synucleinopathies.
Collapse
Affiliation(s)
- Valerie Uytterhoeven
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Patrik Verstreken
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Eliana Nachman
- Vlaams Instituut voor Biotechnologie Center for Brain and Disease Research , Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
7
|
Watamura N, Foiani MS, Bez S, Bourdenx M, Santambrogio A, Frodsham C, Camporesi E, Brinkmalm G, Zetterberg H, Patel S, Kamano N, Takahashi M, Rueda-Carrasco J, Katsouri L, Fowler S, Turkes E, Hashimoto S, Sasaguri H, Saito T, Islam AS, Benner S, Endo T, Kobayashi K, Ishida C, Vendruscolo M, Yamada M, Duff KE, Saido TC. In vivo hyperphosphorylation of tau is associated with synaptic loss and behavioral abnormalities in the absence of tau seeds. Nat Neurosci 2025; 28:293-307. [PMID: 39719507 PMCID: PMC11802456 DOI: 10.1038/s41593-024-01829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 10/23/2024] [Indexed: 12/26/2024]
Abstract
Tau pathology is a hallmark of several neurodegenerative diseases, including frontotemporal dementia and Alzheimer's disease. However, the sequence of events and the form of tau that confers toxicity are still unclear, due in large part to the lack of physiological models of tauopathy initiation and progression in which to test hypotheses. We have developed a series of targeted mice expressing frontotemporal-dementia-causing mutations in the humanized MAPT gene to investigate the earliest stages of tauopathy. MAPTInt10+3G>A and MAPTS305N;Int10+3G>A lines show abundant hyperphosphorylated tau in the hippocampus and entorhinal cortex, but they do not develop seed-competent fibrillar structures. Accumulation of hyperphosphorylated tau was accompanied by neurite degeneration, loss of viable synapses and indicators of behavioral abnormalities. Our results demonstrate that neuronal toxicity can occur in the absence of fibrillar, higher-order structures and that tau hyperphosphorylation is probably involved in the earliest etiological events in tauopathies showing isoform ratio imbalance.
Collapse
Affiliation(s)
- Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
- UK Dementia Research Institute at University College London, London, UK.
| | - Martha S Foiani
- UK Dementia Research Institute at University College London, London, UK.
| | - Sumi Bez
- UK Dementia Research Institute at University College London, London, UK
| | - Mathieu Bourdenx
- UK Dementia Research Institute at University College London, London, UK
| | - Alessia Santambrogio
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Claire Frodsham
- UK Dementia Research Institute at University College London, London, UK
| | - Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Gunnar Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, London, UK
- Queen Square Institute of Neurology, University College London, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology,The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Saisha Patel
- UK Dementia Research Institute at University College London, London, UK
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | | | - Loukia Katsouri
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, UK
| | - Stephanie Fowler
- UK Dementia Research Institute at University College London, London, UK
- Nuffield Department of Medicine, Oxford-GSK Institute of Molecular and Computational Medicine, Centre for Human Genetics, Oxford, UK
| | - Emir Turkes
- UK Dementia Research Institute at University College London, London, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Wako, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Afm Saiful Islam
- Queen Square Institute of Neurology, University College London, London, UK
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Tsukuba, Japan
| | | | - Katsuji Kobayashi
- Department of Psychiatry, Awazu Neuropsychiatric Hospital, Ishikawa, Japan
| | - Chiho Ishida
- Department of Neurology, NHO Iou National Hospital, Iwade-machi, Japan
| | - Michele Vendruscolo
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, UK
| | - Masahito Yamada
- Department of Internal Medicine, Division of Neurology, Kudanzaka Hospital, Tokyo, Japan
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University, Tokyo, Japan
- Kanazawa University, Kanazawa, Japan
| | - Karen E Duff
- UK Dementia Research Institute at University College London, London, UK.
- Queen Square Institute of Neurology, University College London, London, UK.
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
8
|
Akyuz E, Arulsamy A, Aslan FS, Sarisözen B, Guney B, Hekimoglu A, Yilmaz BN, Retinasamy T, Shaikh MF. An Expanded Narrative Review of Neurotransmitters on Alzheimer's Disease: The Role of Therapeutic Interventions on Neurotransmission. Mol Neurobiol 2025; 62:1631-1674. [PMID: 39012443 PMCID: PMC11772559 DOI: 10.1007/s12035-024-04333-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/24/2024] [Indexed: 07/17/2024]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease. The accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles are the key players responsible for the pathogenesis of the disease. The accumulation of Aβ plaques and tau affect the balance in chemical neurotransmitters in the brain. Thus, the current review examined the role of neurotransmitters in the pathogenesis of Alzheimer's disease and discusses the alterations in the neurochemical activity and cross talk with their receptors and transporters. In the presence of Aβ plaques and neurofibrillary tangles, changes may occur in the expression of neuronal receptors which in turn triggers excessive release of glutamate into the synaptic cleft contributing to cell death and neuronal damage. The GABAergic system may also be affected by AD pathology in a similar way. In addition, decreased receptors in the cholinergic system and dysfunction in the dopamine neurotransmission of AD pathology may also contribute to the damage to cognitive function. Moreover, the presence of deficiencies in noradrenergic neurons within the locus coeruleus in AD suggests that noradrenergic stimulation could be useful in addressing its pathophysiology. The regulation of melatonin, known for its effectiveness in enhancing cognitive function and preventing Aβ accumulation, along with the involvement of the serotonergic system and histaminergic system in cognition and memory, becomes remarkable for promoting neurotransmission in AD. Additionally, nitric oxide and adenosine-based therapeutic approaches play a protective role in AD by preventing neuroinflammation. Overall, neurotransmitter-based therapeutic strategies emerge as pivotal for addressing neurotransmitter homeostasis and neurotransmission in the context of AD. This review discussed the potential for neurotransmitter-based drugs to be effective in slowing and correcting the neurodegenerative processes in AD by targeting the neurochemical imbalance in the brain. Therefore, neurotransmitter-based drugs could serve as a future therapeutic strategy to tackle AD.
Collapse
Affiliation(s)
- Enes Akyuz
- Department of Biophysics, International School of Medicine, University of Health Sciences, Istanbul, Turkey
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Alina Arulsamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
| | | | - Bugra Sarisözen
- School of Medicine, Tekirdağ Namık Kemal University, Tekirdağ, Turkey
| | - Beyzanur Guney
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | | | - Beyza Nur Yilmaz
- International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, 47500, Bandar Sunway, Selangor, Malaysia.
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange, New South Wales, 2800, Australia.
| |
Collapse
|
9
|
Lim D, Matute C, Cavaliere F, Verkhratsky A. Neuroglia in neurodegeneration: Alzheimer, Parkinson, and Huntington disease. HANDBOOK OF CLINICAL NEUROLOGY 2025; 210:9-44. [PMID: 40148060 DOI: 10.1016/b978-0-443-19102-2.00012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Abstract
The conspicuous rise of chronic neurodegenerative diseases, including Alzheimer (AD), Parkinson (PD), and Huntington (HD) diseases, is currently without disease-modifying therapies and accompanied by an excessive rate of unsuccessful clinical trials. This reflects a profound lack of understanding of the pathogenesis of these diseases, indicating that the current paradigms guiding disease modeling and drug development are in need of reconsideration. The role of neuroglia, namely astrocytes, microglial cells, and oligodendrocytes, in the pathogenesis of neurodegenerative diseases emerged during the last decades. This chapter provides the state-of-the-art update on the changes of astrocytes, microglial cells, and oligodendrocytes in AD, PD, and HD. A growing body of evidence suggests that homeostatic and defensive functions of glial cells are compromised at different disease stages, leading to increased susceptibility of neurons to noxious stimuli, eventually resulting in their malfunction and degeneration. Investments are needed in the generation of novel preclinical models suitable for studying glial pathology, in "humanizing" research, and in-depth investigation of glial cell alterations to slow down and, possibly, halt and prevent the rise of neurodegenerative disease. Targeting glial cells opens new therapeutic avenues to treat AD, PD, and HD.
Collapse
Affiliation(s)
- Dmitry Lim
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "Amedeo Avogadro", Novara, Italy.
| | - Carlos Matute
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain
| | - Fabio Cavaliere
- The Basque Biomodels Platform for Human Research (BBioH), Achucarro Basque Center for Neuroscience & Fundación Biofisica Bizkaia, Leioa, Spain
| | - Alexei Verkhratsky
- Department of Neurosciences, University of the Basque Country UPV/EHU and CIBERNED, Leioa, Bizkaia, Spain; Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom; IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
10
|
Kim J, Tadros B, Liang YH, Kim Y, Lasagna-Reeves C, Sonn JY, Chung DEC, Hyman B, Holtzman DM, Zoghbi HY. TYK2 regulates tau levels, phosphorylation and aggregation in a tauopathy mouse model. Nat Neurosci 2024; 27:2417-2429. [PMID: 39528671 PMCID: PMC11614740 DOI: 10.1038/s41593-024-01777-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 08/28/2024] [Indexed: 11/16/2024]
Abstract
Alzheimer's disease is one of at least 26 diseases characterized by tau-positive accumulation in neurons, glia or both. However, it is still unclear what modifications cause soluble tau to transform into insoluble aggregates. We previously performed genetic screens that identified tyrosine kinase 2 (TYK2) as a candidate regulator of tau levels. Here we verified this finding and found that TYK2 phosphorylates tau at tyrosine 29 (Tyr29) leading to its stabilization and promoting its aggregation in human cells. We discovered that TYK2-mediated Tyr29 phosphorylation interferes with autophagic clearance of tau. We also show that TYK2-mediated phosphorylation of Tyr29 facilitates pathological tau accumulation in P301S tau-transgenic mice. Furthermore, knockdown of Tyk2 reduced total tau and pathogenic tau levels and rescued gliosis in a tauopathy mouse model. Collectively, these data suggest that partial inhibition of TYK2 could thus be a strategy to reduce tau levels and toxicity.
Collapse
Affiliation(s)
- Jiyoen Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Bakhos Tadros
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Yan Hong Liang
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Youngdoo Kim
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Cristian Lasagna-Reeves
- Stark Neurosciences Research Institute and Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jun Young Sonn
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Dah-Eun Chloe Chung
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | - Bradley Hyman
- Neurology at Harvard Medical School and Massachusetts General Hospital, Boston, MA, USA
| | - David M Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimers' Disease Research Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Huda Yahya Zoghbi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA.
- Departments of Neuroscience, Pediatrics, and Neurology, Baylor College of Medicine, Houston, TX, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
11
|
Nagata K, Hashimoto S, Joho D, Fujioka R, Matsuba Y, Sekiguchi M, Mihira N, Motooka D, Liu YC, Okuzaki D, Kikuchi M, Murayama S, Saido TC, Kiyama H, Sasaguri H. Tau Accumulation Induces Microglial State Alterations in Alzheimer's Disease Model Mice. eNeuro 2024; 11:ENEURO.0260-24.2024. [PMID: 39592224 PMCID: PMC11628182 DOI: 10.1523/eneuro.0260-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/25/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024] Open
Abstract
Unique microglial states have been identified in Alzheimer's disease (AD) model mice and postmortem AD brains. Although it has been well documented that amyloid-β accumulation induces the alteration of microglial states, the relationship between tau pathology and microglial states remains incompletely understood because of a lack of suitable AD models. In the present study, we generated a novel AD model mouse by the intracerebral administration of tau purified from human brains with primary age-related tauopathy into App knock-in mice with humanized tau. Immunohistochemical analyses revealed that Dectin-1-positive disease-associated microglia were increased in the AD model mice after tau accumulation in the brain. We then performed single-nucleus RNA sequencing on the AD model mice to evaluate the differences in microglial states with and without tau propagation and accumulation. By taking advantage of spatial transcriptomics and existing single-cell RNA sequencing datasets, we showed for the first time that tau propagation and accumulation induce a disease-associated microglial phenotype at the expense of an age-related nonhomeostatic counterpart (namely, white matter-associated microglia) in an AD model mouse brain. Future work using spatial transcriptomics at single-cell resolution will pave the way for a more appropriate interpretation of microglial alterations in response to tau pathology in the AD brain.
Collapse
Affiliation(s)
- Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Daisuke Joho
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Shiga 520-2192, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| | - Yu-Chen Liu
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Daisuke Okuzaki
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Osaka 565-0871, Japan
- Single Cell Genomics, Human Immunology, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Masataka Kikuchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Chiba 277-0882, Japan
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shigeo Murayama
- Department of Neuropathology, Tokyo Metropolitan Institute of Gerontology, Tokyo 173-0015, Japan
- Brain Bank for Neurodevelopmental, Neurological and Psychiatric Disorders, Molecular Research Center for Children's Mental Development, United Graduate School of Child Development, Osaka University, Osaka 565-0871, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Hiroshi Kiyama
- Department of Functional Anatomy and Neuroscience, Nagoya University, Graduate School of Medicine, Aichi 466-8550, Japan
- Shijonawate Gakuen University, Osaka 574-0001, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
- Dementia Pathophysiology Collaboration Unit, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Iwata N, Tsubuki S, Sekiguchi M, Watanabe-Iwata K, Matsuba Y, Kamano N, Fujioka R, Takamura R, Watamura N, Kakiya N, Mihira N, Morito T, Shirotani K, Mann DM, Robinson AC, Hashimoto S, Sasaguri H, Saito T, Higuchi M, Saido TC. Metabolic resistance of Aβ3pE-42, a target epitope of the anti-Alzheimer therapeutic antibody, donanemab. Life Sci Alliance 2024; 7:e202402650. [PMID: 39348937 PMCID: PMC11443169 DOI: 10.26508/lsa.202402650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/02/2024] Open
Abstract
The amyloid β peptide (Aβ), starting with pyroglutamate (pE) at position 3 and ending at position 42 (Aβ3pE-42), predominantly accumulates in the brains of Alzheimer's disease. Consistently, donanemab, a therapeutic antibody raised against Aβ3pE-42, has been shown to be effective in recent clinical trials. Although the primary Aβ produced physiologically is Aβ1-40/42, an explanation for how and why this physiological Aβ is converted to the pathological form remains elusive. Here, we present experimental evidence that accounts for the aging-associated Aβ3pE-42 deposition: Aβ3pE-42 was metabolically more stable than other Aβx-42 variants; deficiency of neprilysin, the major Aβ-degrading enzyme, induced a relatively selective deposition of Aβ3pE-42 in both APP transgenic and App knock-in mouse brains; Aβ3pE-42 deposition always colocalized with Pittsburgh compound B-positive cored plaques in APP transgenic mouse brains; and under aberrant conditions, such as a significant reduction in neprilysin activity, aminopeptidases, dipeptidyl peptidases, and glutaminyl-peptide cyclotransferase-like were up-regulated in the progression of aging, and a proportion of Aβ1-42 may be processed to Aβ3pE-42. Our findings suggest that anti-Aβ therapies are more effective if given before Aβ3pE-42 deposition.
Collapse
Affiliation(s)
- Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Kaori Watanabe-Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomasa Kakiya
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takahiro Morito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Keiro Shirotani
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - David Ma Mann
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Andrew C Robinson
- Division of Neuroscience, Faculty of Biology, Medicine and Health, School of Biological Sciences, Faculty of Biology, Medicine and Health, School of Biological Sciences, The University of Manchester, Salford Royal Hospital, Salford, UK
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Makoto Higuchi
- Department of Functional Brain Imaging, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
13
|
Yang J, Kong L, Zou L, Liu Y. The role of synaptic protein NSF in the development and progression of neurological diseases. Front Neurosci 2024; 18:1395294. [PMID: 39498393 PMCID: PMC11532144 DOI: 10.3389/fnins.2024.1395294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
This document provides a comprehensive examination of the pivotal function of the N-ethylmaleimide-sensitive factor (NSF) protein in synaptic function. The NSF protein directly participates in critical biological processes, including the cyclic movement of synaptic vesicles (SVs) between exocytosis and endocytosis, the release and transmission of neurotransmitters, and the development of synaptic plasticity through interactions with various proteins, such as SNARE proteins and neurotransmitter receptors. This review also described the multiple functions of NSF in intracellular membrane fusion events and its close associations with several neurological disorders, such as Parkinson's disease, Alzheimer's disease, and epilepsy. Subsequent studies should concentrate on determining high-resolution structures of NSF in different domains, identifying its specific alterations in various diseases, and screening small molecule regulators of NSF from multiple perspectives. These research endeavors aim to reveal new therapeutic targets associated with the biological functions of NSF and disease mechanisms.
Collapse
Affiliation(s)
- Jingyue Yang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lingyue Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Li Zou
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yumin Liu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Sweeney N, Kim TY, Morrison CT, Li L, Acosta D, Liang J, Datla NV, Fitzgerald JA, Huang H, Liu X, Tan GH, Wu M, Karelina K, Bray CE, Weil ZM, Scharre DW, Serrano GE, Saito T, Saido TC, Beach TG, Kokiko-Cochran ON, Godbout JP, Johnson GVW, Fu H. Neuronal BAG3 attenuates tau hyperphosphorylation, synaptic dysfunction, and cognitive deficits induced by traumatic brain injury via the regulation of autophagy-lysosome pathway. Acta Neuropathol 2024; 148:52. [PMID: 39394356 PMCID: PMC11469979 DOI: 10.1007/s00401-024-02810-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/13/2024]
Abstract
Growing evidence supports that early- or middle-life traumatic brain injury (TBI) is a risk factor for developing Alzheimer's disease (AD) and AD-related dementia (ADRD). Nevertheless, the molecular mechanisms underlying TBI-induced AD-like pathology and cognitive deficits remain unclear. In this study, we found that a single TBI (induced by controlled cortical impact) reduced the expression of BCL2-associated athanogene 3 (BAG3) in neurons and oligodendrocytes, which is associated with decreased proteins related to the autophagy-lysosome pathway (ALP) and increased hyperphosphorylated tau (ptau) accumulation in excitatory neurons and oligodendrocytes, gliosis, synaptic dysfunction, and cognitive deficits in wild-type (WT) and human tau knock-in (hTKI) mice. These pathological changes were also found in human cases with a TBI history and exaggerated in human AD cases with TBI. The knockdown of BAG3 significantly inhibited autophagic flux, while overexpression of BAG3 significantly increased it in vitro. Specific overexpression of neuronal BAG3 in the hippocampus attenuated AD-like pathology and cognitive deficits induced by TBI in hTKI mice, which is associated with increased ALP-related proteins. Our data suggest that targeting neuronal BAG3 may be a therapeutic strategy for preventing or reducing AD-like pathology and cognitive deficits induced by TBI.
Collapse
Affiliation(s)
- Nicholas Sweeney
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Tae Yeon Kim
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Cody T Morrison
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Liangping Li
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Diana Acosta
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Jiawen Liang
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Nithin V Datla
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Julie A Fitzgerald
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Haoran Huang
- Medical Scientist Training Program, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Xianglan Liu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Gregory Huang Tan
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Min Wu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Kate Karelina
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Chelsea E Bray
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
| | - Zachary M Weil
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, USA
| | - Douglas W Scharre
- Department of Neurology, College of Medicine, Ohio State University, Columbus, OH, USA
| | | | - Takashi Saito
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, 467-8601, Japan
| | - Takaomi C Saido
- RIKEN Center for Brain Science, Laboratory for Proteolytic Neuroscience, Saitama, 351-0198, Japan
| | | | - Olga N Kokiko-Cochran
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Jonathan P Godbout
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA
| | - Gail V W Johnson
- Department of Anesthesiology, University of Rochester, Rochester, NY, USA
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, Ohio State University, Columbus, OH, USA.
- Chronic Brain Injury Program, The Ohio State University, 175 Pomerene Hall, 1760 Neil Ave, Columbus, OH, USA.
| |
Collapse
|
15
|
Park JC, Han JW, Lee W, Kim J, Lee SE, Lee D, Choi H, Han J, Kang YJ, Diep YN, Cho H, Kang R, Yu WJ, Lee J, Choi M, Im SW, Kim JI, Mook-Jung I. Microglia Gravitate toward Amyloid Plaques Surrounded by Externalized Phosphatidylserine via TREM2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400064. [PMID: 38981007 PMCID: PMC11425970 DOI: 10.1002/advs.202400064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/08/2024] [Indexed: 07/11/2024]
Abstract
Microglia play a crucial role in synaptic elimination by engulfing dystrophic neurons via triggering receptors expressed on myeloid cells 2 (TREM2). They are also involved in the clearance of beta-amyloid (Aβ) plaques in Alzheimer's disease (AD); nonetheless, the driving force behind TREM2-mediated phagocytosis of beta-amyloid (Aβ) plaques remains unknown. Here, using advanced 2D/3D/4D co-culture systems with loss-of-function mutations in TREM2 (a frameshift mutation engineered in exon 2) brain organoids/microglia/assembloids, it is identified that the clearance of Aβ via TREM2 is accelerated by externalized phosphatidylserine (ePtdSer) generated from dystrophic neurons surrounding the Aβ plaques. Moreover, it is investigated whether microglia from both sporadic (CRISPR-Cas9-based APOE4 lines) and familial (APPNL-G-F/MAPT double knock-in mice) AD models show reduced levels of TREM2 and lack of phagocytic activity toward ePtdSer-positive Aβ plaques. Herein new insight is provided into TREM2-dependent microglial phagocytosis of Aβ plaques in the context of the presence of ePtdSer during AD progression.
Collapse
Affiliation(s)
- Jong-Chan Park
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jong Won Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Woochan Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Genome Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jieun Kim
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sang-Eun Lee
- Department of Physiology and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- BK21 FOUR Biomedical Science Program, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- UK Dementia Research Institute, Institute of Neurology, University College London, Gower Street, London, WC1E 6BT, UK
- Neuroscience Research Institute, Seoul National University Medical Research Center, Seoul, 03080, Republic of Korea
| | - Dongjoon Lee
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Hayoung Choi
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Jihui Han
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - You Jung Kang
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yen N Diep
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hansang Cho
- Department of Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Rian Kang
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Won Jong Yu
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Metabiohealth, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jean Lee
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| | - Sun-Wha Im
- Department of Biochemistry and Molecular Biology, Kangwon National University School of Medicine, Gangwon, Seoul, 24341, Republic of Korea
| | - Jong-Il Kim
- Genome Medicine Institute, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Cancer Research Institute, Seoul National University, Seoul, 03080, Republic of Korea
- Department of Biochemistry and Molecular Biology, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Inhee Mook-Jung
- Department of Biochemistry and Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
- Convergence Dementia Research Center, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea
| |
Collapse
|
16
|
Hashim KNB, Matsuba Y, Takahashi M, Kamano N, Tooyama I, Saido TC, Hashimoto S. Neuronal glutathione depletion elevates the Aβ42/Aβ40 ratio and tau aggregation in Alzheimer's disease mice. FEBS Lett 2024; 598:1576-1590. [PMID: 38789405 DOI: 10.1002/1873-3468.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/26/2024]
Abstract
Alzheimer's disease (AD) involves reduced glutathione levels, causing oxidative stress and contributing to neuronal cell death. Our prior research identified diminished glutamate-cysteine ligase catalytic subunit (GCLC) as linked to cell death. However, the effect of GCLC on AD features such as amyloid and tau pathology remained unclear. To address this, we investigated amyloid pathology and tau pathology in mice by combining neuron-specific conditional GCLC knockout mice with amyloid precursor protein (App) knockin (KI) or microtubule-associated protein tau (MAPT) KI mice. Intriguingly, GCLC knockout resulted in an increased Aβ42/40 ratio. Additionally, GCLC deficiency in MAPT KI mice accelerated the oligomerization of tau through intermolecular disulfide bonds. These findings suggest that the decline in glutathione levels, due to aging or AD pathology, may contribute to the progression of AD.
Collapse
Affiliation(s)
- Khairun Nisa Binti Hashim
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Yukio Matsuba
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Mika Takahashi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Ikuo Tooyama
- Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Shoko Hashimoto
- Pioneering Research Division, Medical Innovation Research Center, Shiga University of Medical Science, Otsu, Japan
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
17
|
Collins HM, Greenfield S. Rodent Models of Alzheimer's Disease: Past Misconceptions and Future Prospects. Int J Mol Sci 2024; 25:6222. [PMID: 38892408 PMCID: PMC11172947 DOI: 10.3390/ijms25116222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease with no effective treatments, not least due to the lack of authentic animal models. Typically, rodent models recapitulate the effects but not causes of AD, such as cholinergic neuron loss: lesioning of cholinergic neurons mimics the cognitive decline reminiscent of AD but not its neuropathology. Alternative models rely on the overexpression of genes associated with familial AD, such as amyloid precursor protein, or have genetically amplified expression of mutant tau. Yet transgenic rodent models poorly replicate the neuropathogenesis and protein overexpression patterns of sporadic AD. Seeding rodents with amyloid or tau facilitates the formation of these pathologies but cannot account for their initial accumulation. Intracerebral infusion of proinflammatory agents offer an alternative model, but these fail to replicate the cause of AD. A novel model is therefore needed, perhaps similar to those used for Parkinson's disease, namely adult wildtype rodents with neuron-specific (dopaminergic) lesions within the same vulnerable brainstem nuclei, 'the isodendritic core', which are the first to degenerate in AD. Site-selective targeting of these nuclei in adult rodents may recapitulate the initial neurodegenerative processes in AD to faithfully mimic its pathogenesis and progression, ultimately leading to presymptomatic biomarkers and preventative therapies.
Collapse
Affiliation(s)
- Helen M. Collins
- Neuro-Bio Ltd., Building F5 The Culham Campus, Abingdon OX14 3DB, UK;
| | | |
Collapse
|
18
|
Huang Z, Cheng S, Jash S, Fierce J, Agudelo A, Higashiyama T, Hanna N, Nakashima A, Saito S, Padbury J, Schuster J, Sharma S. Exploiting sweet relief for preeclampsia by targeting autophagy-lysosomal machinery and proteinopathy. Exp Mol Med 2024; 56:1206-1220. [PMID: 38760513 PMCID: PMC11148015 DOI: 10.1038/s12276-024-01234-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/02/2024] [Accepted: 02/27/2024] [Indexed: 05/19/2024] Open
Abstract
The etiology of preeclampsia (PE), a severe complication of pregnancy with several clinical manifestations and a high incidence of maternal and fetal morbidity and mortality, remains unclear. This issue is a major hurdle for effective treatment strategies. We recently demonstrated that PE exhibits an Alzheimer-like etiology of impaired autophagy and proteinopathy in the placenta. Targeting of these pathological pathways may be a novel therapeutic strategy for PE. Stimulation of autophagy with the natural disaccharide trehalose and its lacto analog lactotrehalose in hypoxia-exposed primary human trophoblasts restored autophagy, inhibited the accumulation of toxic protein aggregates, and restored the ultrastructural features of autophagosomes and autolysosomes. Importantly, trehalose and lactotrehalose inhibited the onset of PE-like features in a humanized mouse model by normalizing autophagy and inhibiting protein aggregation in the placenta. These disaccharides restored the autophagy-lysosomal biogenesis machinery by increasing nuclear translocation of the master transcriptional regulator TFEB. RNA-seq analysis of the placentas of mice with PE indicated the normalization of the PE-associated transcriptome profile in response to trehalose and lactotrehalose. In summary, our results provide a novel molecular rationale for impaired autophagy and proteinopathy in patients with PE and identify treatment with trehalose and its lacto analog as promising therapeutic options for this severe pregnancy complication.
Collapse
Affiliation(s)
- Zheping Huang
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - Shibin Cheng
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - Sukanta Jash
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - Jamie Fierce
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - Anthony Agudelo
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | | | - Nazeeh Hanna
- Division of Neonatology, Department of Pediatrics, New York University Long Island School of Medicine, Mineola, New York, NY, USA
| | - Akitoshi Nakashima
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, Faculty of Medicine, University of Toyama, Toyama, Japan
| | - James Padbury
- Department of Pediatrics, University of California, San Francisco, CA, USA
| | - Jessica Schuster
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA
| | - Surendra Sharma
- Department of Pediatrics, Women and Infants Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, 02905, USA.
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
19
|
Pádua MS, Guil-Guerrero JL, Prates JAM, Lopes PA. Insights on the Use of Transgenic Mice Models in Alzheimer's Disease Research. Int J Mol Sci 2024; 25:2805. [PMID: 38474051 DOI: 10.3390/ijms25052805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Alzheimer's disease (AD), the leading cause of dementia, presents a significant global health challenge with no known cure to date. Central to our understanding of AD pathogenesis is the β-amyloid cascade hypothesis, which underlies drug research and discovery efforts. Despite extensive studies, no animal models of AD have completely validated this hypothesis. Effective AD models are essential for accurately replicating key pathological features of the disease, notably the formation of β-amyloid plaques and neurofibrillary tangles. These pathological markers are primarily driven by mutations in the amyloid precursor protein (APP) and presenilin 1 (PS1) genes in familial AD (FAD) and by tau protein mutations for the tangle pathology. Transgenic mice models have been instrumental in AD research, heavily relying on the overexpression of mutated APP genes to simulate disease conditions. However, these models do not entirely replicate the human condition of AD. This review aims to provide a comprehensive evaluation of the historical and ongoing research efforts in AD, particularly through the use of transgenic mice models. It is focused on the benefits gathered from these transgenic mice models in understanding β-amyloid toxicity and the broader biological underpinnings of AD. Additionally, the review critically assesses the application of these models in the preclinical testing of new therapeutic interventions, highlighting the gap between animal models and human clinical realities. This analysis underscores the need for refinement in AD research methodologies to bridge this gap and enhance the translational value of preclinical studies.
Collapse
Affiliation(s)
- Mafalda Soares Pádua
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - José L Guil-Guerrero
- Departamento de Tecnología de Alimentos, Universidad de Almería, 04120 Almería, Spain
| | - José A M Prates
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| | - Paula Alexandra Lopes
- CIISA-Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
- Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal
| |
Collapse
|
20
|
Ifediora N, Canoll P, Hargus G. Human stem cell transplantation models of Alzheimer's disease. Front Aging Neurosci 2024; 16:1354164. [PMID: 38450383 PMCID: PMC10915253 DOI: 10.3389/fnagi.2024.1354164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/06/2024] [Indexed: 03/08/2024] Open
Abstract
Alzheimer's disease (AD) is the most frequent form of dementia. It is characterized by pronounced neuronal degeneration with formation of neurofibrillary tangles and deposition of amyloid β throughout the central nervous system. Animal models have provided important insights into the pathogenesis of AD and they have shown that different brain cell types including neurons, astrocytes and microglia have important functions in the pathogenesis of AD. However, there are difficulties in translating promising therapeutic observations in mice into clinical application in patients. Alternative models using human cells such as human induced pluripotent stem cells (iPSCs) may provide significant advantages, since they have successfully been used to model disease mechanisms in neurons and in glial cells in neurodegenerative diseases in vitro and in vivo. In this review, we summarize recent studies that describe the transplantation of human iPSC-derived neurons, astrocytes and microglial cells into the forebrain of mice to generate chimeric transplantation models of AD. We also discuss opportunities, challenges and limitations in using differentiated human iPSCs for in vivo disease modeling and their application for biomedical research.
Collapse
Affiliation(s)
- Nkechime Ifediora
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Peter Canoll
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
| | - Gunnar Hargus
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, United States
| |
Collapse
|
21
|
Maruyama H, Gomi M, Lwin TT, Yoneyama A, Sasaki T. [ 18F]-FDG uptake in brain slices prepared from an aged mouse model of Alzheimer's disease using a dynamic autoradiography technique. Ann Nucl Med 2024; 38:120-130. [PMID: 37921921 DOI: 10.1007/s12149-023-01879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/29/2023] [Indexed: 11/05/2023]
Abstract
OBJECTIVE 2-[18F]fluoro-2-deoxy-D-glucose positron emission tomography ([18F]-FDG-PET) is a imaging modality that has been used to measure of glucose metabolism in the brain in Alzheimer's disease (AD). Clinically, decreased glucose uptake has been reported in the brain of AD, although the precise underlying mechanisms have not yet been elucidated. To elucidate the mechanisms of decreased [18F]-FDG uptake in the AD by PET, [18F]-FDG uptake in the brain of aged model mouse of AD was investigated using a dynamic autoradiography technique "bioradiography". A X-ray phase-contrast imaging (X-PCI) and a histopathological evaluation were also investigated to elucidate the mechanisms underlying the relationships between decreased [18F]-FDG uptake and the pathological changes in the brain of AD mouse. METHODS In this study, AD model mouse (5XFAD, APP+/PS1+) were used. [18F]-FDG-bioradiography was conducted in fresh slices of brain tissue under the condition of resting (slices immersed in 5 mM K+ solution) and metabolically active (in 50 mM K+ solution). Amyloid β42 (Aβ42) deposition in the brain of AD mouse was confirmed by X-PCI. In addition, the positive cells of phosphated tau protein (P-tau) and deposition of Aβ42 were also examined by immunohistochemical staining. RESULTS No significant differences were observed between the two groups in the resting condition. In the activate condition of the brain, [18F]-FDG uptake was significantly decreased in AD mice compared to WT mice. In X-PCI showed Aβ deposition in the AD mouse, but not in the WT. The AD mouse also showed increased P-tau, accumulation of Aβ42, increase in neuronal apoptosis, and decrease in the number of neurons than that of the WT mouse. CONCLUSION Neuronal damage, and induction of neuronal apoptosis, decreased [18F]-FDG uptake, increased Aβ accumulation and P-tau induced neurofibrillary degeneration are observed in AD mouse. In clinical diagnosis, reduction of [18F]-FDG uptake by PET is one of the means of diagnosing the onset of AD. Our results suggest that decreased uptake of [18F]-FDG in the brains of AD may be associated with neuronal dysfunction and cell death in the brain.
Collapse
Affiliation(s)
- Hiroko Maruyama
- Cytopathology, Graduate School of Medical Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan.
| | - Misaki Gomi
- Cytopathology, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Thet-Thet Lwin
- Molecular Imaging, Graduate School of Medical Sciences, School of Allied Health Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| | - Akio Yoneyama
- SAGA Light Source, Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga, 841-0005, Japan
| | - Toru Sasaki
- Radiation Safety Management, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Minami-ku, Sagamihara, 252-0373, Japan
| |
Collapse
|
22
|
Li X, Quan M, Wei Y, Wang W, Xu L, Wang Q, Jia J. Critical thinking of Alzheimer's transgenic mouse model: current research and future perspective. SCIENCE CHINA. LIFE SCIENCES 2023; 66:2711-2754. [PMID: 37480469 DOI: 10.1007/s11427-022-2357-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/23/2023] [Indexed: 07/24/2023]
Abstract
Transgenic models are useful tools for studying the pathogenesis of and drug development for Alzheimer's Disease (AD). AD models are constructed usually using overexpression or knock-in of multiple pathogenic gene mutations from familial AD. Each transgenic model has its unique behavioral and pathological features. This review summarizes the research progress of transgenic mouse models, and their progress in the unique mechanism of amyloid-β oligomers, including the first transgenic mouse model built in China based on a single gene mutation (PSEN1 V97L) found in Chinese familial AD. We further summarized the preclinical findings of drugs using the models, and their future application in exploring the upstream mechanisms and multitarget drug development in AD.
Collapse
Affiliation(s)
- Xinyue Li
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Meina Quan
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Yiping Wei
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wei Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Lingzhi Xu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Qi Wang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China
| | - Jianping Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- National Medical Center for Neurological Diseases and National Clinical Research Center for Geriatric Diseases, Beijing, 100053, China.
- Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, 100053, China.
- Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, 100053, China.
- Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, 100053, China.
| |
Collapse
|
23
|
Xie W, Xing N, Qu J, Liu D, Pang Q. The Physiological Function of nNOS-Associated CAPON Proteins and the Roles of CAPON in Diseases. Int J Mol Sci 2023; 24:15808. [PMID: 37958792 PMCID: PMC10647562 DOI: 10.3390/ijms242115808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
In this review, the structure, isoform, and physiological role of the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) are summarized. There are three isoforms of CAPON in humans, including long CAPON protein (CAPON-L), short CAPON protein (CAPON-S), and CAPON-S' protein. CAPON-L includes three functional regions: a C-terminal PDZ-binding motif, carboxypeptidase (CPE)-binding region, and N-terminal phosphotyrosine (PTB) structural domain. Both CAPON-S and CAPON-S' only contain the C-terminal PDZ-binding motif. The C-terminal PDZ-binding motif of CAPON can bind with neuronal nitric oxide synthase (nNOS) and participates in regulating NO production and neuronal development. An overview is given on the relationship between CAPON and heart diseases, diabetes, psychiatric disorders, and tumors. This review will clarify future research directions on the signal pathways related to CAPON, which will be helpful for studying the regulatory mechanism of CAPON. CAPON may be used as a drug target, which will provide new ideas and solutions for treating human diseases.
Collapse
Affiliation(s)
| | | | | | - Dongwu Liu
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| | - Qiuxiang Pang
- Anti-Aging & Regenerative Medicine Research Institution, School of Life Sciences and Medicine, Shandong University of Technology, Zibo 255049, China; (W.X.); (N.X.)
| |
Collapse
|
24
|
Benskey MJ, Panoushek S, Saito T, Saido TC, Grabinski T, Kanaan NM. Behavioral and neuropathological characterization over the adult lifespan of the human tau knock-in mouse. Front Aging Neurosci 2023; 15:1265151. [PMID: 37842124 PMCID: PMC10576558 DOI: 10.3389/fnagi.2023.1265151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/11/2023] [Indexed: 10/17/2023] Open
Abstract
Tau is a microtubule-associated protein with a diverse functional repertoire linked to neurodegenerative disease. Recently, a human tau knock-in (MAPT KI) mouse was developed that may overcome many limitations associated with current animal models used to study tau. In MAPT KI mice, the entire murine Mapt gene was replaced with the human MAPT gene under control of the endogenous Mapt promoter. This model represents an ideal in vivo platform to study the function and dysfunction of human tau protein. Accordingly, a detailed understanding of the effects MAPT KI has on structure and function of the CNS is warranted. Here, we provide a detailed behavioral and neuropathological assessment of MAPT KI mice. We compared MAPT KI to wild-type (WT) C57BL/6j mice in behavioral assessments of anxiety, attention, working memory, spatial memory, and motor performance from 6 to 24 months (m) of age. Using immunohistological and biochemical assays, we quantified markers of glia (microglia, astrocytes and oligodendrocytes), synaptic integrity, neuronal integrity and the cytoskeleton. Finally, we quantified levels of total tau, tau isoforms, tau phosphorylation, and tau conformations. MAPT KI mice show normal cognitive and locomotor behavior at all ages, and resilience to mild age-associated locomotor deficits observed in WT mice. Markers of neuronal and synaptic integrity are unchanged in MAPT KI mice with advancing age. Glial markers are largely unchanged in MAPT KI mice, but glial fibrillary acidic protein is increased in the hippocampus of WT and MAPT KI mice at 24 m. MAPT KI mice express all 6 human tau isoforms and levels of tau remain stable throughout adulthood. Hippocampal tau in MAPT KI and WT mice is phosphorylated at serine 396/404 (PHF1) and murine tau in WT animals displays more PHF1 phosphorylation at 6 and 12 m. Lastly, we extended previous reports showing that MAPT KI mice do not display overt pathology. No evidence of other tau phosphorylation residues (AT8, pS422) or abnormal conformations (TNT2 or TOC1) associated with pathogenic tau were detected. The lack of overt pathological changes in MAPT KI mice make this an ideal platform for future investigations into the function and dysfunction of tau protein in vivo.
Collapse
Affiliation(s)
- Matthew J. Benskey
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Spencer Panoushek
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, Riken Center for Brain Science, Wako, Japan
| | - Tessa Grabinski
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
| | - Nicholas M. Kanaan
- Department of Translational Neuroscience, College of Human Medicine, Michigan State University, Grand Rapids, MI, United States
- Neuroscience Program, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
25
|
Angelopoulou E, Pyrgelis ES, Ahire C, Suman P, Mishra A, Piperi C. Functional Implications of Protein Arginine Methyltransferases (PRMTs) in Neurodegenerative Diseases. BIOLOGY 2023; 12:1257. [PMID: 37759656 PMCID: PMC10525691 DOI: 10.3390/biology12091257] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.
Collapse
Affiliation(s)
- Efthalia Angelopoulou
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Efstratios-Stylianos Pyrgelis
- 1st Department of Neurology, Medical School, National and Kapodistrian University of Athens, Eginition Hospital, 11528 Athens, Greece; (E.A.); (E.-S.P.)
| | - Chetana Ahire
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Prachi Suman
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Awanish Mishra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Guwahati, Changsari, Kamrup 781101, Assam, India; (C.A.); (P.S.)
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
26
|
Zhu LJ, Li F, Zhu DY. nNOS and Neurological, Neuropsychiatric Disorders: A 20-Year Story. Neurosci Bull 2023; 39:1439-1453. [PMID: 37074530 PMCID: PMC10113738 DOI: 10.1007/s12264-023-01060-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 03/05/2023] [Indexed: 04/20/2023] Open
Abstract
In the central nervous system, nitric oxide (NO), a free gas with multitudinous bioactivities, is mainly produced from the oxidation of L-arginine by neuronal nitric oxide synthase (nNOS). In the past 20 years, the studies in our group and other laboratories have suggested a significant involvement of nNOS in a variety of neurological and neuropsychiatric disorders. In particular, the interactions between the PDZ domain of nNOS and its adaptor proteins, including post-synaptic density 95, the carboxy-terminal PDZ ligand of nNOS, and the serotonin transporter, significantly influence the subcellular localization and functions of nNOS in the brain. The nNOS-mediated protein-protein interactions provide new attractive targets and guide the discovery of therapeutic drugs for neurological and neuropsychiatric disorders. Here, we summarize the work on the roles of nNOS and its association with multiple adaptor proteins on neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Li-Juan Zhu
- Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Histology and Embryology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Fei Li
- Department of Medicinal Chemistry, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China
| | - Dong-Ya Zhu
- Department of Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
27
|
Zhang Y, Chen H, Li R, Sterling K, Song W. Amyloid β-based therapy for Alzheimer's disease: challenges, successes and future. Signal Transduct Target Ther 2023; 8:248. [PMID: 37386015 PMCID: PMC10310781 DOI: 10.1038/s41392-023-01484-7] [Citation(s) in RCA: 313] [Impact Index Per Article: 156.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 07/01/2023] Open
Abstract
Amyloid β protein (Aβ) is the main component of neuritic plaques in Alzheimer's disease (AD), and its accumulation has been considered as the molecular driver of Alzheimer's pathogenesis and progression. Aβ has been the prime target for the development of AD therapy. However, the repeated failures of Aβ-targeted clinical trials have cast considerable doubt on the amyloid cascade hypothesis and whether the development of Alzheimer's drug has followed the correct course. However, the recent successes of Aβ targeted trials have assuaged those doubts. In this review, we discussed the evolution of the amyloid cascade hypothesis over the last 30 years and summarized its application in Alzheimer's diagnosis and modification. In particular, we extensively discussed the pitfalls, promises and important unanswered questions regarding the current anti-Aβ therapy, as well as strategies for further study and development of more feasible Aβ-targeted approaches in the optimization of AD prevention and treatment.
Collapse
Affiliation(s)
- Yun Zhang
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Huaqiu Chen
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Ran Li
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Keenan Sterling
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Weihong Song
- National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- The Second Affiliated Hospital and Yuying Children's Hospital, Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou, Zhejiang, China.
- Townsend Family Laboratories, Department of Psychiatry, The University of British Columbia, Vancouver, BC, V6T 1Z3, Canada.
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang, China.
| |
Collapse
|
28
|
Lin WJ, Shi WP, Ge WY, Chen LL, Guo WH, Shang P, Yin DC. Magnetic Fields Reduce Apoptosis by Suppressing Phase Separation of Tau-441. RESEARCH (WASHINGTON, D.C.) 2023; 6:0146. [PMID: 37228640 PMCID: PMC10204748 DOI: 10.34133/research.0146] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023]
Abstract
The biological effects of magnetic fields (MFs) have been a controversial issue. Fortunately, in recent years, there has been increasing evidence that MFs do affect biological systems. However, the physical mechanism remains unclear. Here, we show that MFs (16 T) reduce apoptosis in cell lines by inhibiting liquid-liquid phase separation (LLPS) of Tau-441, suggesting that the MF effect on LLPS may be one of the mechanisms for understanding the "mysterious" magnetobiological effects. The LLPS of Tau-441 occurred in the cytoplasm after induction with arsenite. The phase-separated droplets of Tau-441 recruited hexokinase (HK), resulting in a decrease in the amount of free HK in the cytoplasm. In cells, HK and Bax compete to bind to the voltage-dependent anion channel (VDAC I) on the mitochondrial membrane. A decrease in the number of free HK molecules increased the chance of Bax binding to VDAC I, leading to increased Bax-mediated apoptosis. In the presence of a static MF, LLPS was marked inhibited and HK recruitment was reduced, resulting in an increased probability of HK binding to VDAC I and a decreased probability of Bax binding to VDAC I, thus reducing Bax-mediated apoptosis. Our findings revealed a new physical mechanism for understanding magnetobiological effects from the perspective of LLPS. In addition, these results show the potential applications of physical environments, such as MFs in this study, in the treatment of LLPS-related diseases.
Collapse
Affiliation(s)
| | | | - Wan-Yi Ge
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Liang-Liang Chen
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Wei-Hong Guo
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Peng Shang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| | - Da-Chuan Yin
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences,
Northwestern Polytechnical University, 127 Youyixi Road, Xi'an 710072, Shaanxi, PR China
| |
Collapse
|
29
|
Xi Y, Zhang Y, Zhou Y, Liu Q, Chen X, Liu X, Grune T, Shi L, Hou M, Liu Z. Effects of methionine intake on cognitive function in mild cognitive impairment patients and APP/PS1 Alzheimer's Disease model mice: Role of the cystathionine-β-synthase/H 2S pathway. Redox Biol 2023; 59:102595. [PMID: 36608589 PMCID: PMC9813720 DOI: 10.1016/j.redox.2022.102595] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 12/27/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022] Open
Abstract
As a dietary intervention, methionine restriction (MR) has been reported to increase longevity and improve metabolism disorders. However, the effects of MR on alleviating neurodegenerative diseases such as Alzheimer's disease (AD) are largely unexplored. Here we sought to investigate the neuroprotective effects of low methionine intake in mild cognitive impairment (MCI) patients and APP/PS1 AD model mice, and to uncover the underlying mechanisms. In a cohort composed of 45 individuals diagnosed with MCI and 61 healthy controls without cognitive impairment, methionine intake was found to be positively associated with the increased risk of MCI, where no sex differences were observed. We further conducted a 16-week MR intervention (0.17% methionine, w/w) on APP/PS1 AD model mice. Although MR reduced Aβ accumulation in the brain of both male and female APP/PS1 mice, MR improved cognitive function only in male mice, as assessed by the Morris water maze test. Consistently, MR restored synapse ultrastructure and alleviated mitochondrial dysfunction by enhancing mitochondrial biogenesis in the brain of male APP/PS1 mice. Importantly, MR effectively balanced the redox status and activated cystathionine-β-synthase (CBS)/H2S pathway in the brain of male APP/PS1 mice. Together, our study indicated that lower dietary methionine intake is associated with improved cognitive function, in which CBS/H2S pathway plays an essential role. MR could be a promising nutritional intervention for preventing AD development.
Collapse
Affiliation(s)
- Yujia Xi
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuyu Zhang
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yiwen Zhou
- School of Public Health, College of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China
| | - Qing Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuhui Chen
- Department of Neurology, Peking University Shenzhen Hospital, Shenzhen, 518000, China
| | - Xuebo Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tilman Grune
- German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Shaanxi, 710119, China.
| | - Min Hou
- School of Public Health, College of Medicine, Shanghai Jiaotong University, Shanghai, 200025, China.
| | - Zhigang Liu
- Laboratory of Functional Chemistry and Nutrition of Food, College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China; German Institute of Human Nutrition (DIfE) Potsdam-Rehbruecke, Department of Molecular Toxicology, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany; Northwest A&F University, Shenzhen Research Institute, Shenzen, Guangdong, 518000, China.
| |
Collapse
|
30
|
Barendrecht S, Schreurs A, Geissler S, Sabanov V, Ilse V, Rieckmann V, Eichentopf R, Künemund A, Hietel B, Wussow S, Hoffmann K, Körber-Ferl K, Pandey R, Carter GW, Demuth HU, Holzer M, Roßner S, Schilling S, Preuss C, Balschun D, Cynis H. A novel human tau knock-in mouse model reveals interaction of Abeta and human tau under progressing cerebral amyloidosis in 5xFAD mice. Alzheimers Res Ther 2023; 15:16. [PMID: 36641439 PMCID: PMC9840277 DOI: 10.1186/s13195-022-01144-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 12/14/2022] [Indexed: 01/16/2023]
Abstract
BACKGROUND Hyperphosphorylation and intraneuronal aggregation of the microtubule-associated protein tau is a major pathological hallmark of Alzheimer's disease (AD) brain. Of special interest is the effect of cerebral amyloid beta deposition, the second main hallmark of AD, on human tau pathology. Therefore, studying the influence of cerebral amyloidosis on human tau in a novel human tau knock-in (htau-KI) mouse model could help to reveal new details on their interplay. METHODS We studied the effects of a novel human htau-KI under fast-progressing amyloidosis in 5xFAD mice in terms of correlation of gene expression data with human brain regions, development of Alzheimer's-like pathology, synaptic transmission, and behavior. RESULTS The main findings are an interaction of human beta-amyloid and human tau in crossbred 5xFADxhtau-KI observed at transcriptional level and corroborated by electrophysiology and histopathology. The comparison of gene expression data of the 5xFADxhtau-KI mouse model to 5xFAD, control mice and to human AD patients revealed conspicuous changes in pathways related to mitochondria biology, extracellular matrix, and immune function. These changes were accompanied by plaque-associated MC1-positive pathological tau that required the htau-KI background. LTP deficits were noted in 5xFAD and htau-KI mice in contrast to signs of rescue in 5xFADxhtau-KI mice. Increased frequencies of miniature EPSCs and miniature IPSCs indicated an upregulated presynaptic function in 5xFADxhtau-KI. CONCLUSION In summary, the multiple interactions observed between knocked-in human tau and the 5xFAD-driven progressing amyloidosis have important implications for future model development in AD.
Collapse
Affiliation(s)
- Susan Barendrecht
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - An Schreurs
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Stefanie Geissler
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Victor Sabanov
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Victoria Ilse
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Vera Rieckmann
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Rico Eichentopf
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Anja Künemund
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Benjamin Hietel
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Sebastian Wussow
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Katrin Hoffmann
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Kerstin Körber-Ferl
- grid.9018.00000 0001 0679 2801Martin Luther University Halle-Wittenberg, Institute for Human Genetics, Magdeburger Strasse 2, 06112 Halle, Germany
| | - Ravi Pandey
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Gregory W. Carter
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Hans-Ulrich Demuth
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| | - Max Holzer
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Steffen Roßner
- Paul Flechsig Institute for Brain Research, Leipzig University, Liebigstraße 19, 04103 Leipzig, Germany
| | - Stephan Schilling
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany ,grid.427932.90000 0001 0692 3664Anhalt University of Applied Sciences, Bernburger Straße 55, 06366 Köthen, Germany
| | - Christoph Preuss
- grid.249880.f0000 0004 0374 0039The Jackson Laboratory, 600 Main St, Bar Harbor, ME 04609 USA
| | - Detlef Balschun
- grid.5596.f0000 0001 0668 7884KU Leuven, Faculty of Psychology and Educational Sciences, Brain & Cognition, Tiensestraat 102, box 3714, 3000 Leuven, Belgium
| | - Holger Cynis
- grid.418008.50000 0004 0494 3022Department of Drug Design and Target Validation, Fraunhofer Institute for Cell Therapy and Immunology, Weinbergweg 22, 06120 Halle, Germany
| |
Collapse
|
31
|
Sahara N, Yanai R. Limitations of human tau-expressing mouse models and novel approaches of mouse modeling for tauopathy. Front Neurosci 2023; 17:1149761. [PMID: 37152607 PMCID: PMC10157230 DOI: 10.3389/fnins.2023.1149761] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/24/2023] [Indexed: 05/09/2023] Open
Abstract
Neurofibrillary tangles (NFTs) composed of hyperphosphorylated tau protein are primarily neuropathological features of a number of neurodegenerative diseases, collectively termed tauopathy. There is no disease-modifying drug available for tauopathy except anti-amyloid antibody therapies for Alzheimer's disease. For tau-targeting therapy, experimental models recapitulating human tau pathologies are indispensable. However, there are limited numbers of animal models that display intracellular filamentous tau aggregations. At present, several lines of P301L/S mutant tau-expressing transgenic mice successfully developed neurofibrillary pathology in the central nervous system, while most non-mutant tau-expressing transgenic mice rarely developed tau pathology. Importantly, recent studies have revealed that transgenes disrupt the coding sequence of endogenous genes, resulting in deletions and/or structural variations at the insertion site. Although any impact on the pathogenesis of tauopathy is unknown, gene disruptions may affect age-related neurodegeneration including tangle formation and brain atrophy. Moreover, some mouse lines show strain-dependent pathological features. These limitations (FTDP-17 mutations, insertion/deletion mutations, and genetic background) are a major hindrance to the establishment of a precise disease model of tauopathy. In this review, we noticed both the utility and the pitfalls of current P301L/S mutant tau-expressing transgenic mice, and we propose future strategies of mouse modeling to replicate human tauopathies.
Collapse
Affiliation(s)
- Naruhiko Sahara
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Rin Yanai
- Department of Functional Brain Imaging, Institute for Quantum Medical Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| |
Collapse
|
32
|
Wang X, Shi N, Wu B, Yuan L, Chen J, Ye C, Hao M. Bioinformatics analysis of gene expression profile and functional analysis in periodontitis and Parkinson's disease. Front Aging Neurosci 2022; 14:1029637. [PMID: 36437997 PMCID: PMC9685299 DOI: 10.3389/fnagi.2022.1029637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2024] Open
Abstract
Periodontitis is a chronic inflammatory disease inextricably linked to both the innate and acquired immune systems of the body. Parkinson's disease (PD) is a neurodegenerative disease caused by immune system dysfunction. Although recent studies suggest that a clinical relationship exists between PD and periodontitis, the pathogenesis of this relationship is unclear. Therefore, in the present study, we obtained datasets of periodontitis and PD from the Gene Expression Omnibus (GEO) database and extracted 785 differentially expressed genes (DEGs), including 15 common upregulated genes and four common downregulated genes. We performed enrichment analyses of these DEGs using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes analyses. We found that the genes were mainly enriched in keratinocyte differentiation, neuronal cell bodies, and structural constituents of epidermis terms, and pathways such as immune response and synaptic pathways. In addition, we screened matching hub genes by constructing a protein-protein interaction (PPI) network map and a Molecular Complex Detection (MCODE) map using the Cytoscape software. The hub genes were then subjected to GO enrichment analysis, which revealed that the dopamine biosynthetic process, dopaminergic synapse and dopamine-binding terms, and dopaminergic synapse and serotonergic synapse pathways were primarily where they were expressed. Finally, we selected four of these genes for validation in the periodontitis and PD datasets, and we confirmed that these hub genes were highly sensitive and specific for diagnosing and monitoring PD and periodontitis. In conclusion, the above experimental results indicate that periodontitis is a high-risk factor for PD, and the association between these two conditions is mainly manifested in immune and dopamine-related pathways. Hub genes, such as the CDSN, TH, DDC, and SLC6A3 genes, may serve as potential biomarkers for diagnosing or detecting PD.
Collapse
Affiliation(s)
- Xiaofeng Wang
- Department of Stomatology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Naixu Shi
- Department of Stomatology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Baiao Wu
- Key Laboratory of Lymphatic Surgery Jilin Province, Jilin Engineering Laboratory for Lymphatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Lin Yuan
- Department of Stomatology, China–Japan Union Hospital of Jilin University, Changchun, China
| | - Jiapeng Chen
- Oral and Maxillofacial Surgery, Changchun Stomatological Hospital, Changchun, China
| | - Cong Ye
- Department of Gynecology and Obstetrics, China-Japan Union Hospital of Jilin University, Changchun, China
- Department of Pathophysiology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Miao Hao
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Ding Y, Xing D, Fei Y, Lu B. Emerging degrader technologies engaging lysosomal pathways. Chem Soc Rev 2022; 51:8832-8876. [PMID: 36218065 PMCID: PMC9620493 DOI: 10.1039/d2cs00624c] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Indexed: 08/24/2023]
Abstract
Targeted protein degradation (TPD) provides unprecedented opportunities for drug discovery. While the proteolysis-targeting chimera (PROTAC) technology has already entered clinical trials and changed the landscape of small-molecule drugs, new degrader technologies harnessing alternative degradation machineries, especially lysosomal pathways, have emerged and broadened the spectrum of degradable targets. We have recently proposed the concept of autophagy-tethering compounds (ATTECs) that hijack the autophagy protein microtubule-associated protein 1A/1B light chain 3 (LC3) for targeted degradation. Other groups also reported degrader technologies engaging lysosomal pathways through different mechanisms including AUTACs, AUTOTACs, LYTACs and MoDE-As. In this review, we analyse and discuss ATTECs along with other lysosomal-relevant degrader technologies. Finally, we will briefly summarize the current status of these degrader technologies and envision possible future studies.
Collapse
Affiliation(s)
- Yu Ding
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| | - Dong Xing
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, China.
| | - Yiyan Fei
- Department of Optical Science and Engineering, Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, Key Laboratory of Micro and Nano Photonic Structures (Ministry of Education), Fudan University, Shanghai, China.
| | - Boxun Lu
- Neurology Department at Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
34
|
Cappelli S, Spalloni A, Feiguin F, Visani G, Šušnjar U, Brown AL, De Bardi M, Borsellino G, Secrier M, Phatnani H, Romano M, Fratta P, Longone P, Buratti E. NOS1AP is a novel molecular target and critical factor in TDP-43 pathology. Brain Commun 2022; 4:fcac242. [PMID: 36267332 PMCID: PMC9576154 DOI: 10.1093/braincomms/fcac242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
Many lines of evidence have highlighted the role played by heterogeneous nuclear ribonucleoproteins in amyotrophic lateral sclerosis. In this study, we have aimed to identify transcripts co-regulated by TAR DNA-binding protein 43 kDa and highly conserved heterogeneous nuclear ribonucleoproteins which have been previously shown to regulate TAR DNA-binding protein 43 kDa toxicity (deleted in azoospermia-associated protein 1, heterogeneous nuclear ribonucleoprotein -Q, -D, -K and -U). Using the transcriptome analyses, we have uncovered that Nitric Oxide Synthase 1 Adaptor Protein mRNA is a direct TAR DNA-binding protein 43 kDa target, and in flies, its modulation alone can rescue TAR DNA-binding protein 43 kDa pathology. In primary mouse cortical neurons, we show that TAR DNA-binding protein 43 kDa mediated downregulation of Nitric Oxide Synthase 1 Adaptor Protein expression strongly affects the NMDA-receptor signalling pathway. In human patients, the downregulation of Nitric Oxide Synthase 1 Adaptor Protein mRNA strongly correlates with TAR DNA-binding protein 43 kDa proteinopathy as measured by cryptic Stathmin-2 and Unc-13 homolog A cryptic exon inclusion. Overall, our results demonstrate that Nitric Oxide Synthase 1 Adaptor Protein may represent a novel disease-relevant gene, potentially suitable for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Sara Cappelli
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Alida Spalloni
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Fabian Feiguin
- Department of Life and Environmental Sciences, University of Cagliari, 09042 Monserrato, Cagliari, Italy
| | - Giulia Visani
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Urša Šušnjar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| | - Anna-Leigh Brown
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
| | - Marco De Bardi
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Giovanna Borsellino
- Neuroimmunology Unit, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via Ardeatina 306-354, 00179 Rome, Italy
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Hemali Phatnani
- Center for Genomics of Neurodegenerative Disease, New York Genome Center, New York, NY 10013, USA
| | - Maurizio Romano
- Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pietro Fratta
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Patrizia Longone
- Molecular Neurobiology, Experimental Neuroscience, IRCCS Fondazione Santa Lucia, Via del Fosso di Fiorano 64, 00143 Rome, Italy
| | - Emanuele Buratti
- International Centre for Genetic Engineering and Biotechnology (ICGEB), AREA Science Park, Padriciano 99, 34149 Trieste, Italy
| |
Collapse
|
35
|
Prikas E, Paric E, Asih PR, Stefanoska K, Stefen H, Fath T, Poljak A, Ittner A. Tau target identification reveals NSF-dependent effects on AMPA receptor trafficking and memory formation. EMBO J 2022; 41:e10242. [PMID: 35993331 PMCID: PMC9475529 DOI: 10.15252/embj.2021110242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 07/03/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Microtubule-associated protein tau is a central factor in Alzheimer's disease and other tauopathies. However, the physiological functions of tau are unclear. Here, we used proximity-labelling proteomics to chart tau interactomes in primary neurons and mouse brains in vivo. Tau interactors map onto pathways of cytoskeletal, synaptic vesicle and postsynaptic receptor regulation and show significant enrichment for Parkinson's, Alzheimer's and prion disease. We find that tau interacts with and dose-dependently reduces the activity of N-ethylmaleimide sensitive fusion protein (NSF), a vesicular ATPase essential for AMPA-type glutamate receptor (AMPAR) trafficking. Tau-deficient (tau-/- ) neurons showed mislocalised expression of NSF and enhanced synaptic AMPAR surface levels, reversible through the expression of human tau or inhibition of NSF. Consequently, enhanced AMPAR-mediated associative and object recognition memory in tau-/- mice is suppressed by both hippocampal tau and infusion with an NSF-inhibiting peptide. Pathologic mutant tau from mouse models or Alzheimer's disease significantly enhances NSF inhibition. Our results map neuronal tau interactomes and delineate a functional link of tau with NSF in plasticity-associated AMPAR-trafficking and memory.
Collapse
Affiliation(s)
- Emmanuel Prikas
- Flinders Health & Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSAAustralia
| | - Esmeralda Paric
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Prita R Asih
- Flinders Health & Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSAAustralia
| | - Kristie Stefanoska
- Flinders Health & Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSAAustralia
| | - Holly Stefen
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Thomas Fath
- Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human SciencesMacquarie UniversitySydneyNSWAustralia
| | - Anne Poljak
- Mark Wainwright Analytical CentreUniversity of New South WalesSydneyNSWAustralia
| | - Arne Ittner
- Flinders Health & Medical Research Institute, College of Medicine and Public HealthFlinders UniversityAdelaideSAAustralia
| |
Collapse
|
36
|
Seillier C, Lesept F, Toutirais O, Potzeha F, Blanc M, Vivien D. Targeting NMDA Receptors at the Neurovascular Unit: Past and Future Treatments for Central Nervous System Diseases. Int J Mol Sci 2022; 23:ijms231810336. [PMID: 36142247 PMCID: PMC9499580 DOI: 10.3390/ijms231810336] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The excitatory neurotransmission of the central nervous system (CNS) mainly involves glutamate and its receptors, especially N-methyl-D-Aspartate receptors (NMDARs). These receptors have been extensively described on neurons and, more recently, also on other cell types. Nowadays, the study of their differential expression and function is taking a growing place in preclinical and clinical research. The diversity of NMDAR subtypes and their signaling pathways give rise to pleiotropic functions such as brain development, neuronal plasticity, maturation along with excitotoxicity, blood-brain barrier integrity, and inflammation. NMDARs have thus emerged as key targets for the treatment of neurological disorders. By their large extracellular regions and complex intracellular structures, NMDARs are modulated by a variety of endogenous and pharmacological compounds. Here, we will present an overview of NMDAR functions on neurons and other important cell types involved in the pathophysiology of neurodegenerative, neurovascular, mental, autoimmune, and neurodevelopmental diseases. We will then discuss past and future development of NMDAR targeting drugs, including innovative and promising new approaches.
Collapse
Affiliation(s)
- Célia Seillier
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
| | - Flavie Lesept
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Olivier Toutirais
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Immunology and Histocompatibility (HLA), Caen University Hospital, CHU, 14000 Caen, France
| | - Fanny Potzeha
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Manuel Blanc
- Lys Therapeutics, Cyceron, Boulevard Henri Becquerel, 14000 Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, GIP Cyceron, Institute Blood and Brain @Caen-Normandie (BB@C), UMR-S U1237, Physiopathology and Imaging of Neurological Disorders (PhIND), 14000 Caen, France
- Department of Clinical Research, Caen University Hospital, CHU, 14000 Caen, France
- Correspondence:
| |
Collapse
|
37
|
NOS1AP Interacts with α-Synuclein and Aggregates in Yeast and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169102. [PMID: 36012368 PMCID: PMC9409085 DOI: 10.3390/ijms23169102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/11/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
The NOS1AP gene encodes a cytosolic protein that binds to the signaling cascade component neuronal nitric oxide synthase (nNOS). It is associated with many different disorders, such as schizophrenia, post-traumatic stress disorder, autism, cardiovascular disorders, and breast cancer. The NOS1AP (also known as CAPON) protein mediates signaling within a complex which includes the NMDA receptor, PSD-95, and nNOS. This adapter protein is involved in neuronal nitric oxide (NO) synthesis regulation via its association with nNOS (NOS1). Our bioinformatics analysis revealed NOS1AP as an aggregation-prone protein, interacting with α-synuclein. Further investigation showed that NOS1AP forms detergent-resistant non-amyloid aggregates when overproduced. Overexpression of NOS1AP was found in rat models for nervous system injury as well as in schizophrenia patients. Thus, we can assume for the first time that the molecular mechanisms underlying these disorders include misfolding and aggregation of NOS1AP. We show that NOS1AP interacts with α-synuclein, allowing us to suggest that this protein may be implicated in the development of synucleinopathies and that its aggregation may explain the relationship between Parkinson’s disease and schizophrenia.
Collapse
|
38
|
Ishii A, Matsuba Y, Mihira N, Kamano N, Saito T, Muramatsu SI, Yokosuka M, Saido TC, Hashimoto S. Tau-binding protein PRMT8 facilitates vacuole degeneration in the brain. J Biochem 2022; 172:233-243. [PMID: 35818334 DOI: 10.1093/jb/mvac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 07/05/2022] [Indexed: 11/12/2022] Open
Abstract
Amyloid-β (Aβ) and tau pathologies are important factors leading to neurodegeneration in Alzheimer's disease (AD); however the molecular mechanisms that link these pathologies remain unclear. Assuming that important though as yet unidentified factors inhibit/accelerate tau pathology and neuronal cell death under amyloid pathology, we sought to isolate and identify tau-interacting proteins from mouse brains with or without amyloid pathology. Among the proteins that were identified, we focused on protein arginine methyltransferase 8 (PRMT8), which interacts with tau specifically in the absence of amyloid pathology. To investigate the role of PRMT8 in the pathogenesis of AD, we conducted Prmt8 gene deletion and overexpression experiments in AppNL-G-F/MAPT double-knock-in (dKI) mice and analyzed the resulting pathological alterations. PRMT8-knockout did not alter the AD pathology in dKI mice, whereas PRMT8-overexpression promoted tau phosphorylation, neuroinflammation, and vacuole degeneration. To evaluate if such a PRMT8-induced vacuole degeneration depends on tau pathology, PRMT8 was overexpressed in tau-KO mice, which were consequently found to exhibit vacuole degeneration. In addition, proteomic analyses showed that PRMT8 overexpression facilitated the arginine methylation of vimentin. Abnormal protein methylation could be involved in PRMT8-induced brain pathologies. Taken together, PRMT8 may play an important role in the formation of tau pathology and vacuole degeneration.
Collapse
Affiliation(s)
- Ayano Ishii
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Yukio Matsuba
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Naoko Kamano
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan.,Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi 467-8601, Japan.,Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Jichi Medical University 3311-1 Yakushiji, Shimotsuke-City, Tochigi 329-0498, Japan.,Center for Gene & Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Makoto Yokosuka
- Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1-7-1 Kyonancho, Musashino-City, Tokyo 180-8602, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science 2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
| |
Collapse
|
39
|
Farrell C, Mumford P, Wiseman FK. Rodent Modeling of Alzheimer's Disease in Down Syndrome: In vivo and ex vivo Approaches. Front Neurosci 2022; 16:909669. [PMID: 35747206 PMCID: PMC9209729 DOI: 10.3389/fnins.2022.909669] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/16/2022] [Indexed: 12/30/2022] Open
Abstract
There are an estimated 6 million people with Down syndrome (DS) worldwide. In developed countries, the vast majority of these individuals will develop Alzheimer's disease neuropathology characterized by the accumulation of amyloid-β (Aβ) plaques and tau neurofibrillary tangles within the brain, which leads to the early onset of dementia (AD-DS) and reduced life-expectancy. The mean age of onset of clinical dementia is ~55 years and by the age of 80, approaching 100% of individuals with DS will have a dementia diagnosis. DS is caused by trisomy of chromosome 21 (Hsa21) thus an additional copy of a gene(s) on the chromosome must cause the development of AD neuropathology and dementia. Indeed, triplication of the gene APP which encodes the amyloid precursor protein is sufficient and necessary for early onset AD (EOAD), both in people who have and do not have DS. However, triplication of other genes on Hsa21 leads to profound differences in neurodevelopment resulting in intellectual disability, elevated incidence of epilepsy and perturbations to the immune system. This different biology may impact on how AD neuropathology and dementia develops in people who have DS. Indeed, genes on Hsa21 other than APP when in three-copies can modulate AD-pathogenesis in mouse preclinical models. Understanding this biology better is critical to inform drug selection for AD prevention and therapy trials for people who have DS. Here we will review rodent preclinical models of AD-DS and how these can be used for both in vivo and ex vivo (cultured cells and organotypic slice cultures) studies to understand the mechanisms that contribute to the early development of AD in people who have DS and test the utility of treatments to prevent or delay the development of disease.
Collapse
|
40
|
Calabrese G, Molzahn C, Mayor T. Protein interaction networks in neurodegenerative diseases: from physiological function to aggregation. J Biol Chem 2022; 298:102062. [PMID: 35623389 PMCID: PMC9234719 DOI: 10.1016/j.jbc.2022.102062] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/26/2022] [Accepted: 05/18/2022] [Indexed: 11/25/2022] Open
Abstract
The accumulation of protein inclusions is linked to many neurodegenerative diseases that typically develop in older individuals, due to a combination of genetic and environmental factors. In rare familial neurodegenerative disorders, genes encoding for aggregation-prone proteins are often mutated. While the underlying mechanism leading to these diseases still remains to be fully elucidated, efforts in the past 20 years revealed a vast network of protein–protein interactions that play a major role in regulating the aggregation of key proteins associated with neurodegeneration. Misfolded proteins that can oligomerize and form insoluble aggregates associate with molecular chaperones and other elements of the proteolytic machineries that are the frontline workers attempting to protect the cells by promoting clearance and preventing aggregation. Proteins that are normally bound to aggregation-prone proteins can become sequestered and mislocalized in protein inclusions, leading to their loss of function. In contrast, mutations, posttranslational modifications, or misfolding of aggregation-prone proteins can lead to gain of function by inducing novel or altered protein interactions, which in turn can impact numerous essential cellular processes and organelles, such as vesicle trafficking and the mitochondria. This review examines our current knowledge of protein–protein interactions involving several key aggregation-prone proteins that are associated with Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, or amyotrophic lateral sclerosis. We aim to provide an overview of the protein interaction networks that play a central role in driving or mitigating inclusion formation, while highlighting some of the key proteomic studies that helped to uncover the extent of these networks.
Collapse
Affiliation(s)
- Gaetano Calabrese
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| | - Cristen Molzahn
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada
| | - Thibault Mayor
- Michael Smith Laboratories, University of British Columbia, V6T 1Z4 Vancouver BC, Canada.
| |
Collapse
|
41
|
Mouse models of Alzheimer's disease for preclinical research. Neurochem Int 2022; 158:105361. [PMID: 35618239 DOI: 10.1016/j.neuint.2022.105361] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/23/2022]
Abstract
Most mouse models for preclinical research into Alzheimer's disease (AD) rely on the overexpression paradigm, in which familial AD (FAD)-related genes linked to amyloid precursor protein (APP) and presenilin-1 (PSEN1) are overexpressed. Such mice have been used for over two decades as the first-generation transgenic lines for AD, with animals exhibiting AD pathologies along with additional phenotypes, leading to the serious artifacts. To overcome the intrinsic drawbacks of the overexpression paradigm, we previously developed second-generation mouse models that incorporate humanized amyloid β (Aβ) sequences and several FAD-related mutations on the mouse endogenous App gene. Such models show AD pathologies in an age-dependent manner. In addition, our group recently generated additional lines of mice harboring multiple mutations without gene overexpression; these third-generation models exhibit an accelerated AD pathology compared to earlier generations. In this review, we describe the development and future prospects of AD mouse models in terms of their scientific properties and therapeutic perspectives in the context of the preclinical study of AD.
Collapse
|
42
|
Sasaguri H, Hashimoto S, Watamura N, Sato K, Takamura R, Nagata K, Tsubuki S, Ohshima T, Yoshiki A, Sato K, Kumita W, Sasaki E, Kitazume S, Nilsson P, Winblad B, Saito T, Iwata N, Saido TC. Recent Advances in the Modeling of Alzheimer's Disease. Front Neurosci 2022; 16:807473. [PMID: 35431779 PMCID: PMC9009508 DOI: 10.3389/fnins.2022.807473] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 02/22/2022] [Indexed: 12/13/2022] Open
Abstract
Since 1995, more than 100 transgenic (Tg) mouse models of Alzheimer's disease (AD) have been generated in which mutant amyloid precursor protein (APP) or APP/presenilin 1 (PS1) cDNA is overexpressed ( 1st generation models ). Although many of these models successfully recapitulate major pathological hallmarks of the disease such as amyloid β peptide (Aβ) deposition and neuroinflammation, they have suffered from artificial phenotypes in the form of overproduced or mislocalized APP/PS1 and their functional fragments, as well as calpastatin deficiency-induced early lethality, calpain activation, neuronal cell death without tau pathology, endoplasmic reticulum stresses, and inflammasome involvement. Such artifacts bring two important uncertainties into play, these being (1) why the artifacts arise, and (2) how they affect the interpretation of experimental results. In addition, destruction of endogenous gene loci in some Tg lines by transgenes has been reported. To overcome these concerns, single App knock-in mouse models harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice) were developed ( 2nd generation models ). While these models are interesting given that they exhibit Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner, the model with the Artic mutation, which exhibits an extensive pathology as early as 6 months of age, is not suitable for investigating Aβ metabolism and clearance because the Aβ in this model is resistant to proteolytic degradation and is therefore prone to aggregation. Moreover, it cannot be used for preclinical immunotherapy studies owing to the discrete affinity it shows for anti-Aβ antibodies. The weakness of the latter model (without the Arctic mutation) is that the pathology may require up to 18 months before it becomes sufficiently apparent for experimental investigation. Nevertheless, this model was successfully applied to modulating Aβ pathology by genome editing, to revealing the differential roles of neprilysin and insulin-degrading enzyme in Aβ metabolism, and to identifying somatostatin receptor subtypes involved in Aβ degradation by neprilysin. In addition to discussing these issues, we also provide here a technical guide for the application of App knock-in mice to AD research. Subsequently, a new double knock-in line carrying the AppNL-F and Psen1 P117L/WT mutations was generated, the pathogenic effect of which was found to be synergistic. A characteristic of this 3rd generation model is that it exhibits more cored plaque pathology and neuroinflammation than the AppNL-G-F line, and thus is more suitable for preclinical studies of disease-modifying medications targeting Aβ. Furthermore, a derivative AppG-F line devoid of Swedish mutations which can be utilized for preclinical studies of β-secretase modifier(s) was recently created. In addition, we introduce a new model of cerebral amyloid angiopathy that may be useful for analyzing amyloid-related imaging abnormalities that can be caused by anti-Aβ immunotherapy. Use of the App knock-in mice also led to identification of the α-endosulfine-K ATP channel pathway as components of the somatostatin-evoked physiological mechanisms that reduce Aβ deposition via the activation of neprilysin. Such advances have provided new insights for the prevention and treatment of preclinical AD. Because tau pathology plays an essential role in AD pathogenesis, knock-in mice with human tau wherein the entire murine Mapt gene has been humanized were generated. Using these mice, the carboxy-terminal PDZ ligand of neuronal nitric oxide synthase (CAPON) was discovered as a mediator linking tau pathology to neurodegeneration and showed that tau humanization promoted pathological tau propagation. Finally, we describe and discuss the current status of mutant human tau knock-in mice and a non-human primate model of AD that we have successfully created.
Collapse
Affiliation(s)
- Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Shoko Hashimoto
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Risa Takamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Satoshi Tsubuki
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku City, Japan
| | - Atsushi Yoshiki
- Experimental Animal Division, RIKEN BioResource Research Center, Tsukuba, Japan
| | - Kenya Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Wakako Kumita
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
| | - Erika Sasaki
- Department of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, Japan
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako, Japan
| | - Shinobu Kitazume
- Department of Clinical Laboratory Sciences, School of Health Sciences, Fukushima Medical University, Fukushima, Japan
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Bioclinicum, Karolinska Institutet, Stockholm, Sweden
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
- Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
| | - Nobuhisa Iwata
- Department of Genome-Based Drug Discovery and Leading Medical Research Core Unit, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
43
|
Benderradji H, Kraiem S, Courty E, Eddarkaoui S, Bourouh C, Faivre E, Rolland L, Caron E, Besegher M, Oger F, Boschetti T, Carvalho K, Thiroux B, Gauvrit T, Nicolas E, Gomez-Murcia V, Bogdanova A, Bongiovanni A, Muhr-Tailleux A, Lancel S, Bantubungi K, Sergeant N, Annicotte JS, Buée L, Vieau D, Blum D, Buée-Scherrer V. Impaired Glucose Homeostasis in a Tau Knock-In Mouse Model. Front Mol Neurosci 2022; 15:841892. [PMID: 35250480 PMCID: PMC8889017 DOI: 10.3389/fnmol.2022.841892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia. While impaired glucose homeostasis has been shown to increase AD risk and pathological loss of tau function, the latter has been suggested to contribute to the emergence of the glucose homeostasis alterations observed in AD patients. However, the links between tau impairments and glucose homeostasis, remain unclear. In this context, the present study aimed at investigating the metabolic phenotype of a new tau knock-in (KI) mouse model, expressing, at a physiological level, a human tau protein bearing the P301L mutation under the control of the endogenous mouse Mapt promoter. Metabolic investigations revealed that, while under chow diet tau KI mice do not exhibit significant metabolic impairments, male but not female tau KI animals under High-Fat Diet (HFD) exhibited higher insulinemia as well as glucose intolerance as compared to control littermates. Using immunofluorescence, tau protein was found colocalized with insulin in the β cells of pancreatic islets in both mouse (WT, KI) and human pancreas. Isolated islets from tau KI and tau knock-out mice exhibited impaired glucose-stimulated insulin secretion (GSIS), an effect recapitulated in the mouse pancreatic β-cell line (MIN6) following tau knock-down. Altogether, our data indicate that loss of tau function in tau KI mice and, particularly, dysfunction of pancreatic β cells might promote glucose homeostasis impairments and contribute to metabolic changes observed in AD.
Collapse
Affiliation(s)
- Hamza Benderradji
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Sarra Kraiem
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Courty
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Sabiha Eddarkaoui
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Cyril Bourouh
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Emilie Faivre
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Laure Rolland
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Emilie Caron
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Development and Plasticity of the Neuroendocrine Brain, Lille, France
| | - Mélanie Besegher
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, Animal Facility, Lille, France
| | - Frederik Oger
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Theo Boschetti
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Kévin Carvalho
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Bryan Thiroux
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Thibaut Gauvrit
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Emilie Nicolas
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Victoria Gomez-Murcia
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Anna Bogdanova
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Antonino Bongiovanni
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, US 41—UMS 2014—PLBS, BioImaging Center Lille, Lille, France
| | - Anne Muhr-Tailleux
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Steve Lancel
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1167—RID-AGE—Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, Lille, France
| | - Kadiombo Bantubungi
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | - Nicolas Sergeant
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Jean-Sebastien Annicotte
- Univ. Lille, INSERM, CNRS, CHU Lille, Institut Pasteur de Lille, Inserm U1283-UMR8199—EGID, Lille, France
| | - Luc Buée
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - Didier Vieau
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| | - David Blum
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
- *Correspondence: David Blum
| | - Valérie Buée-Scherrer
- Univ. Lille, Inserm, CHU Lille, U1172 LilNCog—Lille Neuroscience & Cognition, Lille, France
- Alzheimer & Tauopathies, LabEx DISTALZ, Lille, France
| |
Collapse
|
44
|
Ji CH, Kim HY, Lee MJ, Heo AJ, Park DY, Lim S, Shin S, Ganipisetti S, Yang WS, Jung CA, Kim KY, Jeong EH, Park SH, Bin Kim S, Lee SJ, Na JE, Kang JI, Chi HM, Kim HT, Kim YK, Kim BY, Kwon YT. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nat Commun 2022; 13:904. [PMID: 35173167 PMCID: PMC8850458 DOI: 10.1038/s41467-022-28520-4] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Targeted protein degradation allows targeting undruggable proteins for therapeutic applications as well as eliminating proteins of interest for research purposes. While several degraders that harness the proteasome or the lysosome have been developed, a technology that simultaneously degrades targets and accelerates cellular autophagic flux is still missing. In this study, we develop a general chemical tool and platform technology termed AUTOphagy-TArgeting Chimera (AUTOTAC), which employs bifunctional molecules composed of target-binding ligands linked to autophagy-targeting ligands. AUTOTACs bind the ZZ domain of the otherwise dormant autophagy receptor p62/Sequestosome-1/SQSTM1, which is activated into oligomeric bodies in complex with targets for their sequestration and degradation. We use AUTOTACs to degrade various oncoproteins and degradation-resistant aggregates in neurodegeneration at nanomolar DC50 values in vitro and in vivo. AUTOTAC provides a platform for selective proteolysis in basic research and drug development. Targeted protein degradation is a promising approach for basic research and therapeutic applications. Here, the authors develop a targeted protein degradation platform called AUTOTAC to degrade oncoproteins and neurodegeneration-associated proteins via the p62-dependent autophagy-lysosome system.
Collapse
Affiliation(s)
- Chang Hoon Ji
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Hee Yeon Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Min Ju Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Ah Jung Heo
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea.,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Daniel Youngjae Park
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Sungsu Lim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Seulgi Shin
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea.,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea
| | - Srinivasrao Ganipisetti
- Brown Cancer Center, University of Louisville, 529 S Jackson Street, Louisville, KY, 40202, USA
| | - Woo Seung Yang
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea
| | - Chang An Jung
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Kun Young Kim
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Eun Hye Jeong
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Sun Ho Park
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Su Bin Kim
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Su Jin Lee
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea
| | - Jeong Eun Na
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Ji In Kang
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju, 28116, Korea
| | - Hyung Min Chi
- Department of Chemisty, Pohang University of Science and Technology, Pohang, 37673, Korea
| | - Hyun Tae Kim
- AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea
| | - Yun Kyung Kim
- Convergence Research Center for Brain Science, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Korea. .,Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology (UST), Seoul, 02792, Korea.
| | - Bo Yeon Kim
- Anticancer Agents Research Center, Korea Research Institute of Bioscience and Biotechnology, Ochang, Cheongju, 28116, Korea. .,Department of Biomolecular Science, KRIBB School, University of Science and Technology (UST), Daejeon, 34113, Korea.
| | - Yong Tae Kwon
- Cellular Degradation Biology Center and Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Korea. .,AUTOTAC Bio Inc., Changkkyunggung-ro 254, Jongno-gu, Seoul, 03080, Korea. .,SNU Dementia Research Center, College of Medicine, Seoul National University, Seoul, 110-799, Republic of Korea.
| |
Collapse
|
45
|
Koller EJ, Ibanez KR, Vo Q, McFarland KN, De La Cruz EG, Zobel L, Williams T, Xu G, Ryu D, Patel P, Giasson BI, Prokop S, Chakrabarty P. Combinatorial model of amyloid β and tau reveals synergy between amyloid deposits and tangle formation. Neuropathol Appl Neurobiol 2022; 48:e12779. [PMID: 34825397 PMCID: PMC8810717 DOI: 10.1111/nan.12779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/13/2021] [Indexed: 02/03/2023]
Abstract
AIMS To illuminate the pathological synergy between Aβ and tau leading to emergence of neurofibrillary tangles (NFT) in Alzheimer's disease (AD), here, we have performed a comparative neuropathological study utilising three distinctive variants of human tau (WT tau, P301L mutant tau and S320F mutant tau). Previously, in non-transgenic mice, we showed that WT tau or P301L tau does not form NFT while S320F tau can spontaneously aggregate into NFT, allowing us to test the selective vulnerability of these different tau conformations to the presence of Aβ plaques. METHODS We injected recombinant AAV-tau constructs into neonatal APP transgenic TgCRND8 mice or into 3-month-old TgCRND8 mice; both cohorts were aged 3 months post injection. This allowed us to test how different tau variants synergise with soluble forms of Aβ (pre-deposit cohort) or with frank Aβ deposits (post-deposit cohort). RESULTS Expression of WT tau did not produce NFT or altered Aβ in either cohort. In the pre-deposit cohort, S320F tau induced Aβ plaque deposition, neuroinflammation and synaptic abnormalities, suggesting that early tau tangles affect the amyloid cascade. In the post-deposit cohort, contemporaneous expression of S320F tau did not exacerbate amyloid pathology, showing a dichotomy in Aβ-tau synergy based on the nature of Aβ. P301L tau produced NFT-type inclusions in the post-deposit cohort, but not in the pre-deposit cohort, indicating pathological synergy with pre-existing Aβ deposits. CONCLUSIONS Our data show that different tau mutations representing specific folding variants of tau synergise with Aβ to different extents, depending on the presence of cerebral deposits.
Collapse
Affiliation(s)
- Emily J Koller
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Kristen R Ibanez
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Quan Vo
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Karen N McFarland
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- Department of Neurology, University of Florida, Gainesville, FL 32610, USA
| | - Elsa Gonzalez De La Cruz
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Lillian Zobel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Tristan Williams
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Guilian Xu
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Daniel Ryu
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Preya Patel
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
| | - Benoit I Giasson
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| | - Stefan Prokop
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Paramita Chakrabarty
- Department of Neuroscience, University of Florida, Gainesville, FL 32610, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32610, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
46
|
Pang K, Jiang R, Zhang W, Yang Z, Li LL, Shimozawa M, Tambaro S, Mayer J, Zhang B, Li M, Wang J, Liu H, Yang A, Chen X, Liu J, Winblad B, Han H, Jiang T, Wang W, Nilsson P, Guo W, Lu B. An App knock-in rat model for Alzheimer's disease exhibiting Aβ and tau pathologies, neuronal death and cognitive impairments. Cell Res 2022; 32:157-175. [PMID: 34789895 PMCID: PMC8807612 DOI: 10.1038/s41422-021-00582-x] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Accepted: 10/04/2021] [Indexed: 12/21/2022] Open
Abstract
A major obstacle in Alzheimer's disease (AD) research is the lack of predictive and translatable animal models that reflect disease progression and drug efficacy. Transgenic mice overexpressing amyloid precursor protein (App) gene manifest non-physiological and ectopic expression of APP and its fragments in the brain, which is not observed in AD patients. The App knock-in mice circumvented some of these problems, but they do not exhibit tau pathology and neuronal death. We have generated a rat model, with three familiar App mutations and humanized Aβ sequence knocked into the rat App gene. Without altering the levels of full-length APP and other APP fragments, this model exhibits pathologies and disease progression resembling those in human patients: deposit of Aβ plaques in relevant brain regions, microglia activation and gliosis, progressive synaptic degeneration and AD-relevant cognitive deficits. Interestingly, we have observed tau pathology, neuronal apoptosis and necroptosis and brain atrophy, phenotypes rarely seen in other APP models. This App knock-in rat model may serve as a useful tool for AD research, identifying new drug targets and biomarkers, and testing therapeutics.
Collapse
Affiliation(s)
- Keliang Pang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Richeng Jiang
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Jilin University, Changchun, China
| | - Wei Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhengyi Yang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Lin-Lin Li
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Makoto Shimozawa
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Simone Tambaro
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Johanna Mayer
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Baogui Zhang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Man Li
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiesi Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Liu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Ailing Yang
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xi Chen
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Jiazheng Liu
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
- Theme Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Hua Han
- Research Center for Brain-inspired Intelligence, National Laboratory of Pattern Recognition, Institute of Automation, School of Future Technology, University of CAS, and CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Tianzi Jiang
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Weiwen Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, and Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Wei Guo
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| | - Bai Lu
- School of Pharmaceutical Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University-Peking University Joint Center for Life Sciences, Tsinghua University, Beijing, China.
- R&D Center for the Diagnosis and Treatment of Major Brain Diseases, Research Institute of Tsinghua University in Shenzhen, Shenzhen, Guangdong, China.
- Beijing Tiantan Hospital, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China.
| |
Collapse
|
47
|
Cao L, Kong Y, Ji B, Ren Y, Guan Y, Ni R. Positron Emission Tomography in Animal Models of Tauopathies. Front Aging Neurosci 2022; 13:761913. [PMID: 35082657 PMCID: PMC8784812 DOI: 10.3389/fnagi.2021.761913] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/30/2021] [Indexed: 12/18/2022] Open
Abstract
The microtubule-associated protein tau (MAPT) plays an important role in Alzheimer's disease and primary tauopathy diseases. The abnormal accumulation of tau contributes to the development of neurotoxicity, inflammation, neurodegeneration, and cognitive deficits in tauopathy diseases. Tau synergically interacts with amyloid-beta in Alzheimer's disease leading to detrimental consequence. Thus, tau has been an important target for therapeutics development for Alzheimer's disease and primary tauopathy diseases. Tauopathy animal models recapitulating the tauopathy such as transgenic, knock-in mouse and rat models have been developed and greatly facilitated the understanding of disease mechanisms. The advance in PET and imaging tracers have enabled non-invasive detection of the accumulation and spread of tau, the associated microglia activation, metabolic, and neurotransmitter receptor alterations in disease animal models. In vivo microPET studies on mouse or rat models of tauopathy have provided significant insights into the phenotypes and time course of pathophysiology of these models and allowed the monitoring of treatment targeting at tau. In this study, we discuss the utilities of PET and recently developed tracers for evaluating the pathophysiology in tauopathy animal models. We point out the outstanding challenges and propose future outlook in visualizing tau-related pathophysiological changes in brain of tauopathy disease animal models.
Collapse
Affiliation(s)
- Lei Cao
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Changes Technology Corporation Ltd., Shanghai, China
| | - Yanyan Kong
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Bin Ji
- Department of Radiopharmacy and Molecular Imaging, School of Pharmacy, Fudan University, Shanghai, China
| | - Yutong Ren
- Guangdong Robotics Association, Guangzhou, China
| | - Yihui Guan
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Sandebring-Matton A, Axenhus M, Bogdanovic N, Winblad B, Schedin-Weiss S, Nilsson P, Tjernberg LO. Microdissected Pyramidal Cell Proteomics of Alzheimer Brain Reveals Alterations in Creatine Kinase B-Type, 14-3-3-γ, and Heat Shock Cognate 71. Front Aging Neurosci 2021; 13:735334. [PMID: 34867272 PMCID: PMC8641652 DOI: 10.3389/fnagi.2021.735334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 10/18/2021] [Indexed: 11/30/2022] Open
Abstract
Novel insights on proteins involved in Alzheimer’s disease (AD) are needed. Since multiple cell types and matrix components are altered in AD, bulk analysis of brain tissue maybe difficult to interpret. In the current study, we isolated pyramidal cells from the cornu ammonis 1 (CA1) region of the hippocampus from five AD and five neurologically healthy donors using laser capture microdissection (LCM). The samples were analyzed by proteomics using 18O-labeled internal standard and nano-high-performance liquid chromatography coupled to tandem mass spectrometry (HPLC-MS/MS) for relative quantification. Fold change between AD and control was calculated for the proteins that were identified in at least two individual proteomes from each group. From the 10 cases analyzed, 62 proteins were identified in at least two AD cases and two control cases. Creatine kinase B-type (CKB), 14-3-3-γ, and heat shock cognate 71 (Hsc71), which have not been extensively studied in the context of the human AD brain previously, were selected for further studies by immunohistochemistry (IHC). In hippocampus, semi-quantitative measures of IHC staining of the three proteins confirmed the findings from our proteomic analysis. Studies of the same proteins in the frontal cortex revealed that the alterations remained for CKB and 14-3-3-γ but not for Hsc71. Protein upregulation in CA1 neurons of final stage AD is either a result of detrimental, pathological effects, or from cell-specific protective response mechanisms in surviving neurons. Based on previous findings from experimental studies, CKB and Hsc71 likely exhibit protective effects, whereas 14-3-3-γ may represent a detrimental pathway. These new players could reflect pathways of importance for the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Anna Sandebring-Matton
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Michael Axenhus
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Nenad Bogdanovic
- Division of Clinical Geriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Theme Inflammation and Aging, Karolinska University Hospital, Huddinge, Sweden
| | - Bengt Winblad
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Sophia Schedin-Weiss
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Per Nilsson
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden
| | - Lars O Tjernberg
- Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Karolinska Institutet, Stockholm, Sweden.,Clinical Chemistry, Karolinska University Hospital, Solna, Sweden
| |
Collapse
|
49
|
Huo Y, Feng X, Niu M, Wang L, Xie Y, Wang L, Ha J, Cheng X, Gao Z, Sun Y. Therapeutic time windows of compounds against NMDA receptors signaling pathways for ischemic stroke. J Neurosci Res 2021; 99:3204-3221. [PMID: 34676594 DOI: 10.1002/jnr.24937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 06/29/2021] [Accepted: 07/14/2021] [Indexed: 12/24/2022]
Abstract
Much evidence has proved that excitotoxicity induced by excessive release of glutamate contributes largely to damage caused by ischemia. In view of the key role played by NMDA receptors in mediating excitotoxicity, compounds against NMDA receptors signaling pathways have become the most promising type of anti-stroke candidate compounds. However, the limited therapeutic time window for neuroprotection is a key factor preventing NMDA receptor-related compounds from showing efficacy in all clinical trials for ischemic stroke. In this perspective, the determination of therapeutic time windows of these kinds of compounds is useful in ensuring a therapeutic effect and accelerating clinical application. This mini-review discussed the therapeutic time windows of compounds against NMDA receptors signaling pathways, described related influence factors and the status of clinical studies. The purpose of this review is to look for compounds with wide therapeutic time windows and better clinical application prospect.
Collapse
Affiliation(s)
- Yuexiang Huo
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xue Feng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Menghan Niu
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Le Wang
- Department of Pharmaceutical Engineering, Hebei Chemical & Pharmaceutical College, Shijiazhuang, China.,Hebei Technological Innovation Center of Chiral Medicine, Shijiazhuang, China
| | - Yinghua Xie
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Long Wang
- Department of Family and Consumer Sciences, California State University, Long Beach, CA, USA
| | - Jing Ha
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China
| | - Xiaokun Cheng
- Hebei University of Science and Technology, Shijiazhuang, China
| | - Zibin Gao
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| | - Yongjun Sun
- Department of Pharmacy, Hebei University of Science and Technology, Shijiazhuang, China.,Hebei Research Center of Pharmaceutical and Chemical Engineering, Hebei University of Science and Technology, Shijiazhuang, China.,State Key Laboratory Breeding Base-Hebei Province Key Laboratory of Molecular Chemistry for Drug, Shijiazhuang, China
| |
Collapse
|
50
|
Sato K, Watamura N, Fujioka R, Mihira N, Sekiguchi M, Nagata K, Ohshima T, Saito T, Saido TC, Sasaguri H. A third-generation mouse model of Alzheimer's disease shows early and increased cored plaque pathology composed of wild-type human amyloid β peptide. J Biol Chem 2021; 297:101004. [PMID: 34329683 PMCID: PMC8397900 DOI: 10.1016/j.jbc.2021.101004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/15/2021] [Accepted: 07/22/2021] [Indexed: 01/22/2023] Open
Abstract
We previously developed single App knock-in mouse models of Alzheimer's disease (AD) harboring the Swedish and Beyreuther/Iberian mutations with or without the Arctic mutation (AppNL-G-F and AppNL-F mice, respectively). These models showed Aβ pathology, neuroinflammation, and cognitive impairment in an age-dependent manner. The former model exhibits extensive pathology as early as 6 months, but is unsuitable for investigating Aβ metabolism and clearance because the Arctic mutation renders Aβ resistant to proteolytic degradation and prone to aggregation. In particular, it is inapplicable to preclinical immunotherapy studies due to its discrete affinity for anti-Aβ antibodies. The latter model may take as long as 18 months for the pathology to become prominent, which leaves an unfulfilled need for an Alzheimer's disease animal model that is both swift to show pathology and useful for antibody therapy. We thus utilized mutant Psen1 knock-in mice into which a pathogenic mutation (P117L) had been introduced to generate a new model that exhibits early deposition of wild-type human Aβ by crossbreeding the AppNL-F line with the Psen1P117L/WT line. We show that the effects of the pathogenic mutations in the App and Psen1 genes are additive or synergistic. This new third-generation mouse model showed more cored plaque pathology and neuroinflammation than AppNL-G-F mice and will help accelerate the development of disease-modifying therapies to treat preclinical AD.
Collapse
Affiliation(s)
- Kaori Sato
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan; Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Naoto Watamura
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Ryo Fujioka
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Naomi Mihira
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Misaki Sekiguchi
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kenichi Nagata
- Department of Functional Anatomy and Neuroscience, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshio Ohshima
- Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takaomi C Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako, Saitama, Japan.
| |
Collapse
|