1
|
Wang C, Shi Y, Zhang D, Sun Y, Xie J, Wu B, Zhang C, Liu X. Generalization of neoantigen-based tumor vaccine by delivering peptide-MHC complex via oncolytic virus. EMBO Mol Med 2025; 17:1118-1152. [PMID: 40195559 DOI: 10.1038/s44321-025-00225-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 03/06/2025] [Accepted: 03/14/2025] [Indexed: 04/09/2025] Open
Abstract
Neoantigen vaccine is a promising breakthrough in tumor immunotherapy. However, the application of this highly personalized strategy in the treatment of solid tumors is hindered by several obstacles, including very costly and time-consuming preparation steps, uncertainty in prediction algorithms and tumor heterogeneity. Universalization of neoantigen vaccine is an ideal yet currently unattainable solution to such limitations. To overcome these limitations, we engineered oncolytic viruses co-expressing neoantigens and neoantigen-binding major histocompatibility complex (MHC) molecules to force ectopic delivery of peptide-MHC ligands to T cell receptors (TCRs), enabling specific targeting by neoantigen vaccine-primed host immunity. When integrated with neoantigen vaccination, the engineered viruses exhibited potent cytolytic activity in a variety of tumor models irrespective of the neoantigen expression profiles, eliciting robust systemic antitumor immunity to reject tumor rechallenge and inhibit abscopal tumor growth with a favorable safety profile. Thus, this study provides a powerful approach to enhance the universality and efficacy of neoantigen vaccines, meeting the urgent need for universal neoantigen vaccines in the clinic to facilitate the further development of tumor immunotherapy.
Collapse
Affiliation(s)
- Chenyi Wang
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yingjun Shi
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Yupeng Sun
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Junjie Xie
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Bingchen Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Cuilin Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China.
| | - Xiaolong Liu
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350108, P. R. China.
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China.
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China.
| |
Collapse
|
2
|
Ke TW, Chen CY, Chen WTL, Tsai YY, Chiang SF, Huang CH, Lin YS, Chen TH, Chen TW, Liang JA, Chao KSC, Huang KCY. Targeting B7-H3 enhances the efficacy of neoantigen-based cancer vaccine in combination with radiotherapy. NPJ Vaccines 2025; 10:80. [PMID: 40258806 PMCID: PMC12012209 DOI: 10.1038/s41541-025-01132-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/07/2025] [Indexed: 04/23/2025] Open
Abstract
The clinical response to immune checkpoint blockade (ICB) is limited in the majority of patients with colorectal cancer. These immune checkpoint proteins may not only inhibit T-cell-mediated antitumor immunity but also attenuate antigen presentation, including mutation-associated neoantigens. Here, we found that tumor B7-H3 levels may limit the therapeutic response to chemoradiotherapy in patients with locally-advanced rectal cancer. Knockdown of tumor B7-H3 significantly increased antigen presentation to increase T cell infiltration and killing ability, including neoantigen-specific T-cell response. Blockade of B7-H3 significantly augmented neoantigen-specific T cells response and remarkably enhanced the therapeutic efficacy of neoantigen-based cancer vaccines combined with radiotherapy, decreasing the risk of distant tumors in vivo. Taken together, these results demonstrated that targeting B7-H3 significantly enhanced the therapeutic efficacy of neoantigen cancer vaccines as well as radiotherapy by increasing the extent of neoantigen-specific T cells, even for PD-1/PD-L1 blockade-resistant colorectal cancers.
Collapse
Affiliation(s)
- Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chia-Yi Chen
- Proton Therapy Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- School of Medicine, China Medical University, Taichung, Taiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, Taiwan
| | - Yuan-Yao Tsai
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan
| | - Chi-Hsien Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Sen Lin
- Department of Chest Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Te-Hong Chen
- Department of Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, Taiwan
| | - K S Clifford Chao
- Proton Therapy Center, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan.
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, Taiwan.
| |
Collapse
|
3
|
Huang L, Li X, Zhang H, Liu F, Dai Z, Xiao F, Wang L, Wang Z. Zinc Ion-Coordinated Sericin Calcium Phosphate Nanovaccines Induce Hyperactive Dendritic Cells and Synergistic Activation of T Cells for Cancer Immunotherapy. ACS NANO 2025; 19:13906-13926. [PMID: 40177975 DOI: 10.1021/acsnano.4c17491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Peptide-based neoantigen vaccines are promising cancer immunotherapy strategies because of their capability to induce durable tumor-specific immune responses. However, insufficient neoantigen-specific T-lymphocyte activation greatly limits their clinical efficacy. Here, we developed sericin-coordinated zinc ion-modified calcium phosphate (CP) nanovaccines that codeliver tumor antigen peptides and a Toll-like receptor 9 agonist (SZCP/APs-CpG) for potentiating antigen-specific T cell immunity. SZCP/APs-CpG nanovaccines could yield efficient codelivery of antigen peptides and adjuvants to dendritic cells (DCs) in draining lymph nodes (dLNs), induce hyperactive DCs depending on the inflammasome-dependent interleukin-1β secretion, and coordinate the released Zn2+-induced T cell activation to elicit robust and durable antigen-specific T cell immune responses. Vaccination with SZCP/APs-CpG exhibited potent anticancer efficacy and superior safety in multiple murine cancer models and significantly protected against B16-OVA tumor rechallenge and eradicated orthotopic colon cancer in mice when combined with immune checkpoint blockade. Thus, our work presents an efficient and versatile nanovaccine platform for boosting antigen-specific T cell activation for cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Huang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Xinbo Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Hongyan Zhang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Feng Liu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Zheng Dai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Fang Xiao
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Hubei Key Laboratory of Regenerative Medicine and Multi-Disciplinary Translational Research, Wuhan 430022, China
- Hubei Provincial Engineering Research Center of Clinical Laboratory and Active Health Smart Equipment, Wuhan 430022, China
| |
Collapse
|
4
|
Martel-Martel A, Sinha KM, Vilar E. Neoantigen Vaccines in Cancer Prevention. Cancer J 2025; 31:e0763. [PMID: 40126885 DOI: 10.1097/ppo.0000000000000763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 03/26/2025]
Abstract
Recent advances in cancer immunotherapy have established neoantigen-based vaccines as a promising approach to cancer prevention. Unlike tumor-associated antigens, neoantigens originate exclusively from somatic mutations, thus enabling tumor-specific targeting without harm to normal tissues. This distinctive feature promotes robust immune responses while reducing the risk of autoimmune side effects. Developing standardized "off-the-shelf" vaccines targeting shared neoantigens offers a scalable strategy for cancer prevention, particularly benefitting genetically predisposed high-risk populations. These vaccines can be administered to high-risk individuals before malignant transformation to potentially intercept cancer development through early immune activation. Advances in next-generation sequencing and computational biology have increased the accuracy of neoantigen prediction, while advances in vaccine delivery platforms have boosted vaccine efficacy. The integration of neoantigen-based vaccines with immune checkpoint inhibitors, immune stimulants, and classic chemopreventive agents has a synergistic potential to improve cellular immunity. This review examines biological mechanisms, clinical development, and future directions of neoantigen-based vaccines in cancer prevention, emphasizing their clinical potential to revolutionize risk-reduction strategies.
Collapse
Affiliation(s)
- Abel Martel-Martel
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX
| | | | | |
Collapse
|
5
|
Huang R, Zhou Q, Liu J, Xia Y, Jiao Y, Zhao B, Feng T, Zhou H, Song X, Qin H, Wang J, Cheng L, Ning Y, Sun Q, Liu Y, Su X, Dong Y, Zhang W. Depletion of regulatory T cells enhances the T cell response induced by the neoantigen vaccine with weak immunogenicity. Neoplasia 2025; 59:101088. [PMID: 39579711 PMCID: PMC11625159 DOI: 10.1016/j.neo.2024.101088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/04/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
BACKGROUND The neoantigen vaccine has remarkable potential in treating advanced cancer due to its tumor specificity and ability to bypass central tolerance mechanisms. However, numerous neoantigens show poor immunogenicity, and the immune inhibitory factors of present in both tumors and tumor-draining lymph nodes impair the efficacy of cancer neoantigen vaccine. Eliminating immunosuppressive cells will improve the priming and expansion of anti-tumor immune cells induced by the vaccine. METHODS In this study, a Treg-depleting regimen (consisting of CD25mAb and low-dose cyclophosphamide (LD-CTX)) was used in conjunction with a neoantigen vaccine for treating mice with solid tumors. We constructed two types of tumor models and investigated differences in therapy efficacy in the four groups (PBS, vaccine, CD25mAb+CTX and combination) at the genetic and protein levels. ELISPOT and TCR sequencing were applied to detect the expansion of neoantigen reactive T cells (NRT) and tumor antigen spreading. RESULTS In the combinational group, the ELISPOT results showed an obvious expansion of NRT cells induced by weak immunogenic peptides. The combinational group exhibited significant improvement in inhibiting the tumor growth extended the survival time of tumor-bearing mice, and promoted T cells infiltration into tumors. Besides, compared to the Vac group, more neoantigen-targeted and TAA-targeted T cells were detected in the combinational group by TCR sequencing. The results of transcriptomic sequencing and flow cytometry showed that the number of Tregs in the combinational group was lower, while the proportions of memory effector T cells and effector T cells were higher than those in the vaccine group. An increase in mature DCs was also observed in vaccinated mice after receiving this Treg-depleting strategy. CONCLUSION Our research first revealed that inhibiting the normal function of Tregs transformed "weaker" neoantigens into "stronger" ones, while also contributing to the proliferation of NRT cells. This Treg-depleting strategy allowed neoantigens with poor immunogenicity to elicit a robust immune response, thereby augmenting the efficacy of the neoantigen vaccine in delaying tumor growth and prolonging the survival of the hosts.
Collapse
Affiliation(s)
- Ruichen Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Qiao Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, PR China
| | - Jiajun Liu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, PR China
| | - Yang Xia
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yang Jiao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Bi Zhao
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Tangtao Feng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Haosu Zhou
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Xiuyan Song
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Hao Qin
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Jun Wang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Lan Cheng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yunye Ning
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Qinying Sun
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Yanfang Liu
- Department of Pathology, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China
| | - Xiaoping Su
- School of Basic Medicine, Wenzhou Medical University, Wenzhou, 325000, China; Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Wenzhou 325035, China.
| | - Yuchao Dong
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China.
| | - Wei Zhang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China; Center of Critical Care Medicine, the First Affiliated Hospital of Second Military Medical University, Shanghai, 200433, PR China.
| |
Collapse
|
6
|
Lu B, Chai L, Zhang Z, Zhao G, Shao Y, Zheng Y, Jin X, Zheng J, Chai D, Ding J. Co-immunization with IFI35 enhances the therapeutic effect of an adenovirus vaccine against renal carcinoma. Int J Biol Macromol 2025; 286:138515. [PMID: 39647736 DOI: 10.1016/j.ijbiomac.2024.138515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/10/2024]
Abstract
Interferon-induced protein 35 (IFI35), an immunomodulator, is highly expressed in tumor cells, yet its role in enhancing tumor vaccine efficacy remains unclear. In this study, an adenovirus (Ad) vaccine encoding dual targets, IFI35 and carbonic anhydrase IX (CAIX), was developed for renal carcinoma treatment. Co-immunization with Ad-IFI35/CAIX effectively inhibited tumor growth in a subcutaneous model and significantly increased the infiltration of CD8+ T cells and dendritic cells (DCs). Furthermore, Ad-IFI35/CAIX administration induced strong cytotoxic T lymphocyte (CTL) responses and expanded multifunctional CD8+ T cell populations. Depletion of CD8+ T cells abolished the vaccine's tumor regression effects, confirming that its therapeutic effect relies on CD8+ T cell-mediated immunity. In addition, Ad-IFI35/CAIX treatment enhanced the induction of memory CTL responses, effectively suppressing the growth of tumors implanted contralaterally. The Ad-IFI35/CAIX vaccine also elicited a strong CD8+ T cell-mediated immunity against tumor metastasis and growth in lung metastasis and orthotopic renal carcinoma models. These results indicate that the Ad vaccine dual targeting IFI35 and CAIX is a potential strategy for renal carcinoma treatment.
Collapse
Affiliation(s)
- Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Leizi Chai
- Department of Traumatic Orthopaedics, People's Hospital of Bozhou City, Bozhou Hospital of Anhui Medical University, Bozhou, Anhui 236000, China
| | - Zichun Zhang
- Department of Urology, The Yancheng Clinical College of Xuzhou Medical University, Yancheng City No. 1 People's Hospital, Yancheng, Jiangsu 224001, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Xin Jin
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Junnian Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China.
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China.
| |
Collapse
|
7
|
Dagotto G, Colarusso A, Patio RC, Li D, Anioke T, Giffin V, Guan R, Anand T, Mbiwan E, Aid M, Barouch D. Adenoviral-vectored neoantigen vaccine augments hyperexpanded CD8 + T cell control of tumor challenge in mice. J Immunother Cancer 2024; 12:e009644. [PMID: 39694702 DOI: 10.1136/jitc-2024-009644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/18/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Neoantigens are promising immunogens for cancer vaccines and are often delivered as adjuvanted peptide vaccines. Adenoviral (Ad) vectors have been shown to induce strong CD8+ T cell responses as vaccines against SARS-CoV-2, Ebola, and Zika, but their utility as neoantigen delivery vectors remains largely unexplored. In this study, we examine how an Ad-vectored neoantigen vaccine would impact tumor immunity compared with a peptide neoantigen vaccine. METHODS We generated Ad serotype 26 (Ad26) vaccine candidates encoding B16-F10-ovalbumin (OVA) and MC38-specific neoantigens. Ad26 vaccines were compared with adjuvanted peptide delivery as prophylactic vaccines in B16-F10-OVA and MC38 challenge models. Immune responses induced by the best Ad26 vaccine (Ad26.VP22.7Epi) were compared with peptide vaccination systemically and within the tumor. Following vaccination with Ad26.VP22.7Epi, peptide, or sham, tumor-infiltrating CD45+ cells were analyzed using single-cell RNA sequencing (scRNA-seq) and T cell receptor sequencing (TCR-seq) to identify vaccine-induced differences in the tumor microenvironment. RESULTS Single-shot Ad26 vaccines induced greater neoantigen-specific interferon-γ CD8+ T cell immune responses than two-shot adjuvanted peptide vaccines in mice, and Ad26.VP22.7Epi also provided superior protective efficacy compared with the peptide vaccine following tumor challenge. Ad26.VP22.7Epi induced a robust immunodominant CD8+ T cell response against the Adpgk neoantigen, while the peptide vaccine-induced lower responses against both Adpgk and Reps1 neoantigens. scRNA-seq analysis of CD45+ tumor-infiltrating cells demonstrated that both Ad26.VP22.7Epi and peptide vaccine-induced similar numbers of infiltrating CD8+ T cells. However, Ad26.VP22.7Epi induced CD8+ T cells showed more upregulation of T cell maturation, activation, and Th1 pathways compared with peptide vaccine induced CD8+ T cells, suggesting improved functional T cell quality. TCR-seq of these tumor-infiltrating lymphocytes also demonstrated that Ad26.VP22.7Epi generated larger T cell hyperexpanded clones compared with the peptide vaccine. CONCLUSIONS These results suggest that the Ad26.VP22.7Epi vaccine led to improved tumor control compared with the peptide vaccine due to increased T cell hyperexpansion and functional activation. Our data suggest that future cancer vaccine development strategies should focus on inducing functional hyperexpanded CD8+ T cell responses and not only maximizing tumor infiltrating CD8+ T cell numbers.
Collapse
Affiliation(s)
- Gabriel Dagotto
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Alessandro Colarusso
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert C Patio
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - David Li
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Tochi Anioke
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Victoria Giffin
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Ruoran Guan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Trisha Anand
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Esther Mbiwan
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Malika Aid
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Dan Barouch
- Harvard Medical School, Boston, Massachusetts, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
8
|
Zheng Y, Lu Z, Zhu F, Zhao G, Shao Y, Lu B, Ding J, Wang G, Fang L, Zheng J, Chai D. Therapeutic vaccine targeting dual immune checkpoints induces potent multifunctional CD8 + T cell anti-tumor immunity. Int Immunopharmacol 2024; 142:113004. [PMID: 39217885 DOI: 10.1016/j.intimp.2024.113004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Vaccines targeting immune checkpoints represent a promising immunotherapeutic approach for solid tumors. However, the therapeutic efficacy of dual targeting immune checkpoints is still unclear in renal carcinoma. METHODS An adenovirus (Ad) vaccine targeting B7H1 and B7H3 was developed and evaluated for its therapeutic efficacy in subcutaneous, lung metastasis or orthotopic renal carcinoma mouse and humanized models using flow cytometry, Enzyme-linked immunosorbent spot (ELISPOT), cytotoxic T lymphocyte (CTL) killing, cell deletion, hematoxylin and eosin (HE) staining, and immunohistochemistry (IHC) assays. RESULTS The Ad-B7H1/B7H3 immunization effectively inhibited tumor growth and increased the induction and percentages of CD8+ T cells in subcutaneous tumor models. The vaccine enhanced the induction and maturation of CD11c+ or CD8+CD11c+ cells, promoting tumor-specific CD8+ T cell immune responses. This was evidenced by increased proliferation of CD8+ T cells and enhanced CTL killing activity. Deletion of CD8+ T cells in vivo abolished the anti-tumor effect of the Ad-B7H1/B7H3 vaccine, highlighting the pivotal role of functional CD8+ T cell immune responses. Moreover, significant therapeutic efficacy of the Ad-B7H1/B7H3 vaccine was observed in lung metastasis, orthotopic, and humanized tumor models through multifunctional CD8+ T cell immune responses. CONCLUSIONS The Ad vaccine targeting dual immune checkpoints B7H1 and B7H3 exerts a potent therapeutic effect for renal carcinoma and holds promise for solid tumor treatment.
Collapse
Affiliation(s)
- Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Guangya Zhao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yingxiang Shao
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Bowen Lu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jiage Ding
- Department of Oncology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, Jiangsu 221009, China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Lin Fang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Junnian Zheng
- Center of Clinical Oncology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
9
|
Keshari S, Shavkunov AS, Miao Q, Saha A, Minowa T, Molgora M, Williams CD, Chaib M, Highsmith AM, Pineda JE, Alekseev S, Alspach E, Hu KH, Colonna M, Pauken KE, Chen K, Gubin MM. Comparing neoantigen cancer vaccines and immune checkpoint therapy unveils an effective vaccine and anti-TREM2 macrophage-targeting dual therapy. Cell Rep 2024; 43:114875. [PMID: 39446585 PMCID: PMC11785356 DOI: 10.1016/j.celrep.2024.114875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The goal of therapeutic cancer vaccines and immune checkpoint therapy (ICT) is to promote T cells with anti-tumor capabilities. Here, we compared mutant neoantigen (neoAg) peptide-based vaccines with ICT in preclinical models. NeoAg vaccines induce the most robust expansion of proliferating and stem-like PD-1+TCF-1+ neoAg-specific CD8 T cells in tumors. Anti-CTLA-4 and/or anti-PD-1 ICT promotes intratumoral TCF-1- neoAg-specific CD8 T cells, although their phenotype depends in part on the specific ICT used. Anti-CTLA-4 also prompts substantial changes to CD4 T cells, including induction of ICOS+Bhlhe40+ T helper 1 (Th1)-like cells. Although neoAg vaccines or ICTs expand iNOS+ macrophages, neoAg vaccines maintain CX3CR1+CD206+ macrophages expressing the TREM2 receptor, unlike ICT, which suppresses them. TREM2 blockade enhances neoAg vaccine efficacy and is associated with fewer CX3CR1+CD206+ macrophages and induction of neoAg-specific CD8 T cells. Our findings highlight different mechanisms underlying neoAg vaccines and different forms of ICT and identify combinatorial therapies to enhance neoAg vaccine efficacy.
Collapse
Affiliation(s)
- Sunita Keshari
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexander S Shavkunov
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Miao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Akata Saha
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Tomoyuki Minowa
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Martina Molgora
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Charmelle D Williams
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mehdi Chaib
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna M Highsmith
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Josué E Pineda
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sayan Alekseev
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Program of Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Elise Alspach
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, St. Louis, MO, USA
| | - Kenneth H Hu
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The Parker Institute for Cancer Immunotherapy, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; The James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Marco Colonna
- Department of Pathology and Immunology, Washington University School of Medicine in Saint Louis, St. Louis, MO, USA
| | - Kristen E Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew M Gubin
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Redenti A, Im J, Redenti B, Li F, Rouanne M, Sheng Z, Sun W, Gurbatri CR, Huang S, Komaranchath M, Jang Y, Hahn J, Ballister ER, Vincent RL, Vardoshivilli A, Danino T, Arpaia N. Probiotic neoantigen delivery vectors for precision cancer immunotherapy. Nature 2024; 635:453-461. [PMID: 39415001 PMCID: PMC11560847 DOI: 10.1038/s41586-024-08033-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 09/06/2024] [Indexed: 10/18/2024]
Abstract
Microbial systems have been synthetically engineered to deploy therapeutic payloads in vivo1,2. With emerging evidence that bacteria naturally home in on tumours3,4 and modulate antitumour immunity5,6, one promising application is the development of bacterial vectors as precision cancer vaccines2,7. Here we engineered probiotic Escherichia coli Nissle 1917 as an antitumour vaccination platform optimized for enhanced production and cytosolic delivery of neoepitope-containing peptide arrays, with increased susceptibility to blood clearance and phagocytosis. These features enhance both safety and immunogenicity, achieving a system that drives potent and specific T cell-mediated anticancer immunity that effectively controls or eliminates tumour growth and extends survival in advanced murine primary and metastatic solid tumours. We demonstrate that the elicited antitumour immune response involves recruitment and activation of dendritic cells, extensive priming and activation of neoantigen-specific CD4+ and CD8+ T cells, broader activation of both T and natural killer cells, and a reduction of tumour-infiltrating immunosuppressive myeloid and regulatory T and B cell populations. Taken together, this work leverages the advantages of living medicines to deliver arrays of tumour-specific neoantigen-derived epitopes within the optimal context to induce specific, effective and durable systemic antitumour immunity.
Collapse
Affiliation(s)
- Andrew Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jongwon Im
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Benjamin Redenti
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Fangda Li
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Mathieu Rouanne
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
| | - Zeren Sheng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - William Sun
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Candice R Gurbatri
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Shunyu Huang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Meghna Komaranchath
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - YoungUk Jang
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Jaeseung Hahn
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Edward R Ballister
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Rosa L Vincent
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Ana Vardoshivilli
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
- Data Science Institute, Columbia University, New York, NY, USA.
| | - Nicholas Arpaia
- Department of Microbiology & Immunology, Vagelos College of Physicians and Surgeons of Columbia University, New York, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA.
| |
Collapse
|
11
|
Zhang J, Cao J, Wang L, Li S, Meng F, Liang X, Jiang H, Luo R, Zhu D, Zhang F, Zhang L, Zhang X, Mei L. Neoantigen sequestrated autophagosomes as therapeutic cancer vaccines. J Control Release 2024; 376:369-381. [PMID: 39413847 DOI: 10.1016/j.jconrel.2024.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 09/29/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
Neoantigens serve as ideal personalized cancer vaccines because of their high immunogenicity, ability to evade central thymic tolerance, and minimal risk of eliciting autoimmune responses. Herein, we describe a genetically engineered autophagosome-based neoantigen vaccine (APNV) in combination with an immune checkpoint inhibitor (anti-PD-1 antibody) for cancer immunotherapy. The APNV was derived from engineered NIH 3T3 cells, which co-express melanoma neoantigens and autophagosome maker microtubule-associated proteins 1 A/1B light chain 3B (LC3), from which the LC3-labeled neoantigen-autophagosomes were isolated. These purified autophagosomes, in conjunction with vaccine adjuvants high-mobility group box 1 (HMGB1) and granulocyte-macrophage colony-stimulating factor (GM-CSF), were integrated into a hydrogel to create an APNV. The APNV effectively activated dendritic cells both in vitro and in vivo. Moreover, APNV, in combination with checkpoint blockade therapy, significantly hampered post-surgical tumor recurrence in a subcutaneous melanoma tumor model and effectively impeded metastatic progression in a melanoma lung metastasis model. This APNV may be conducive to making personalized therapeutic neoantigen vaccines for cancer immunotherapy.
Collapse
Affiliation(s)
- Jinxie Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Jiahui Cao
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Liuchang Wang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Sitong Li
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fanqiang Meng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China
| | - Xin Liang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China
| | - Hanyu Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Key Laboratory of Stem Cell and Regenerative Tissue Engineering, School of Basic Medical Sciences, Guangdong Medical University, Dongguan 523808, China; Guangdong Second Provincial General Hospital, Guangdong Medical University, Guangzhou 510317, PR China
| | - Ran Luo
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Dunwan Zhu
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Fan Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China
| | - Linhua Zhang
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| | - Xudong Zhang
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Sun Yat-Sen University, Shenzhen 518107, Guangdong, China.
| | - Lin Mei
- State Key Laboratory of Advanced Medical Materials and Devices, Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, PR China.
| |
Collapse
|
12
|
Bowen CM, Sinha KM, Vilar E. Immunoprevention Strategies for Colorectal Cancer in Lynch Syndrome Carriers. Cancer J 2024; 30:352-356. [PMID: 39312455 PMCID: PMC11424018 DOI: 10.1097/ppo.0000000000000738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
ABSTRACT The immune revolution that swept the field of oncology in the mid-2010s with the advent of checkpoint inhibitors has led to a paradigm shift in approaches toward adapting new cancer prevention modalities. Cancer vaccines have emerged from this era with astounding potential as a durable intervention to prevent cancers especially for patients with hereditary susceptibilities such as Lynch syndrome carriers. This review covers new insights in the immunoprevention landscape for patients living with Lynch syndrome including highlights ranging from clinical trials exploring the use of chemoprevention agents to boost immune cellularity to investigative studies using novel vaccine approaches to induce long-term antitumor immunity.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
13
|
Nguyen DH, You SH, Ngo HTT, Van Nguyen K, Tran KV, Chu TH, Kim SY, Ha SJ, Hong Y, Min JJ. Reprogramming the tumor immune microenvironment using engineered dual-drug loaded Salmonella. Nat Commun 2024; 15:6680. [PMID: 39107284 PMCID: PMC11303714 DOI: 10.1038/s41467-024-50950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Synergistic combinations of immunotherapeutic agents can improve the performance of anti-cancer therapies but may lead to immune-mediated adverse effects. These side-effects can be overcome by using a tumor-specific delivery system. Here, we report a method of targeted immunotherapy using an attenuated Salmonella typhimurium (SAM-FC) engineered to release dual payloads: cytolysin A (ClyA), a cytolytic anti-cancer agent, and Vibrio vulnificus flagellin B (FlaB), a potent inducer of anti-tumor innate immunity. Localized secretion of ClyA from SAM-FC induces immunogenic cancer cell death and promotes release of tumor-specific antigens and damage-associated molecular patterns, which establish long-term antitumor memory. Localized secretion of FlaB promotes phenotypic and functional remodeling of intratumoral macrophages that markedly inhibits tumor metastasis in mice bearing tumors of mouse and human origin. Both primary and metastatic tumors from bacteria-treated female mice are characterized by massive infiltration of anti-tumorigenic innate immune cells and activated tumor-specific effector/memory T cells; however, the percentage of immunosuppressive cells is low. Here, we show that SAM-FC induces functional reprogramming of the tumor immune microenvironment by activating both the innate and adaptive arms of the immune system and can be used for targeted delivery of multiple immunotherapeutic payloads for the establishment of potent and long-lasting antitumor immunity.
Collapse
Affiliation(s)
- Dinh-Huy Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | | | - Hien Thi-Thu Ngo
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
- Department of Biochemistry, Hanoi Medical University, Dong Da, No 1, Ton That Tung St., Hanoi, 100000, Vietnam
| | - Khuynh Van Nguyen
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Khang Vuong Tran
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea
| | - Tan-Huy Chu
- Research Center for Cancer Immunotherapy, Chonnam National University Hwasun Hospital, Hwasun, Republic of Korea
| | - So-Young Kim
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea
| | - Sang-Jun Ha
- Department of Biochemistry, College of Life Science and Biotechnology, Yonsei University, Seoul, 03722, Republic of Korea.
| | - Yeongjin Hong
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
| | - Jung-Joon Min
- Institute for Molecular Imaging and Theranostics, Chonnam National University Medical School, Gwangju, 61469, Republic of Korea.
- Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Hwasun, 58128, Republic of Korea.
- Department of Biomedical Science (BrainKorea21 Plus) Chonnam National University Graduate School, Gwangju, 61469, Republic of Korea.
- CNCure Co. Ltd, Hwasun, 58128, Republic of Korea.
| |
Collapse
|
14
|
Chen M, Zhou Y, Fu Y, Wang Q, Wu C, Pan X, Quan G. Biomaterials-assisted cancer vaccine delivery: preclinical landscape, challenges, and opportunities. Expert Opin Drug Deliv 2024; 21:1143-1154. [PMID: 39096307 DOI: 10.1080/17425247.2024.2388832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/23/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
INTRODUCTION Cancer vaccines (protein and peptide, DNA, mRNA, and tumor cell) have achieved remarkable success in the treatment of cancer. In particular, advances in the design and manufacture of biomaterials have made it possible to control the presentation and delivery of vaccine components to immune cells. AREAS COVERED This review summarizes findings from major databases, including PubMed, Scopus, and Web of Science, focusing on articles published between 2005 and 2024 that discuss biomaterials in cancer vaccine delivery. EXPERT OPINION The development of cancer vaccines is hindered by several bottlenecks, including low immunogenicity, instability of vaccine components, and challenges in evaluating their clinical efficacy. To transform preclinical successes into viable treatments, it is essential to pursue continued innovation, collaborative research, and address issues related to scalability, regulatory pathways, and clinical validation, ultimately improving outcomes against cancer.
Collapse
Affiliation(s)
- Minglong Chen
- Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, China
| | - Yue Zhou
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Yanping Fu
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangdong, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| |
Collapse
|
15
|
D'Alise AM, Leoni G, Cotugno G, Siani L, Vitale R, Ruzza V, Garzia I, Antonucci L, Micarelli E, Venafra V, Gogov S, Capone A, Runswick S, Martin‐Liberal J, Calvo E, Moreno V, Symeonides SN, Scarselli E, Bechter O. Phase I Trial of Viral Vector-Based Personalized Vaccination Elicits Robust Neoantigen-Specific Antitumor T-Cell Responses. Clin Cancer Res 2024; 30:2412-2423. [PMID: 38506710 PMCID: PMC11145154 DOI: 10.1158/1078-0432.ccr-23-3940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/13/2024] [Accepted: 03/18/2024] [Indexed: 03/21/2024]
Abstract
PURPOSE Personalized vaccines targeting multiple neoantigens (nAgs) are a promising strategy for eliciting a diversified antitumor T-cell response to overcome tumor heterogeneity. NOUS-PEV is a vector-based personalized vaccine, expressing 60 nAgs and consists of priming with a nonhuman Great Ape Adenoviral vector (GAd20) followed by boosts with Modified Vaccinia Ankara. Here, we report data of a phase Ib trial of NOUS-PEV in combination with pembrolizumab in treatment-naïve patients with metastatic melanoma (NCT04990479). PATIENTS AND METHODS The feasibility of this approach was demonstrated by producing, releasing, and administering to 6 patients 11 of 12 vaccines within 8 weeks from biopsy collection to GAd20 administration. RESULTS The regimen was safe, with no treatment-related serious adverse events observed and mild vaccine-related reactions. Vaccine immunogenicity was demonstrated in all evaluable patients receiving the prime/boost regimen, with detection of robust neoantigen-specific immune responses to multiple neoantigens comprising both CD4 and CD8 T cells. Expansion and diversification of vaccine-induced T-cell receptor (TCR) clonotypes was observed in the posttreatment biopsies of patients with clinical response, providing evidence of tumor infiltration by vaccine-induced neoantigen-specific T cells. CONCLUSIONS These findings indicate the ability of NOUS-PEV to amplify and broaden the repertoire of tumor-reactive T cells to empower a diverse, potent, and durable antitumor immune response. Finally, a gene signature indicative of the reduced presence of activated T cells together with very poor expression of the antigen-processing machinery genes has been identified in pretreatment biopsies as a potential biomarker of resistance to the treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Veronica Venafra
- Department of Biology, University of Rome “Tor Vergata,” Rome, Italy
| | | | | | | | | | - Emiliano Calvo
- START Madrid‐CIOCC, Centro Integral Oncológico Clara Campal, Madrid, Spain
| | - Victor Moreno
- START Madrid‐FJD, Hospital Fundacion Jimenez Díaz, Madrid, Spain
| | - Stefan N. Symeonides
- Edinburgh Experimental Cancer Medicine Centre, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Oliver Bechter
- Leuven Cancer Institute, Department of General Medical Oncology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
16
|
Lin C, Teng W, Tian Y, Li S, Xia N, Huang C. Immune landscape and response to oncolytic virus-based immunotherapy. Front Med 2024; 18:411-429. [PMID: 38453818 DOI: 10.1007/s11684-023-1048-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 11/15/2023] [Indexed: 03/09/2024]
Abstract
Oncolytic virus (OV)-based immunotherapy has emerged as a promising strategy for cancer treatment, offering a unique potential to selectively target malignant cells while sparing normal tissues. However, the immunosuppressive nature of tumor microenvironment (TME) poses a substantial hurdle to the development of OVs as effective immunotherapeutic agents, as it restricts the activation and recruitment of immune cells. This review elucidates the potential of OV-based immunotherapy in modulating the immune landscape within the TME to overcome immune resistance and enhance antitumor immune responses. We examine the role of OVs in targeting specific immune cell populations, including dendritic cells, T cells, natural killer cells, and macrophages, and their ability to alter the TME by inhibiting angiogenesis and reducing tumor fibrosis. Additionally, we explore strategies to optimize OV-based drug delivery and improve the efficiency of OV-mediated immunotherapy. In conclusion, this review offers a concise and comprehensive synopsis of the current status and future prospects of OV-based immunotherapy, underscoring its remarkable potential as an effective immunotherapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Chaolong Lin
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Wenzhong Teng
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Yang Tian
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Shaopeng Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| | - Chenghao Huang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China.
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
17
|
Bowen CM, Sinha KM, Vilar E. Current Trends in Vaccine Development for Hereditary Colorectal Cancer Syndromes. Clin Colon Rectal Surg 2024; 37:146-156. [PMID: 38606044 PMCID: PMC11006444 DOI: 10.1055/s-0043-1770383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The coming of age for cancer treatment has experienced exponential growth in the last decade with the addition of immunotherapy as the fourth pillar to the fundamentals of cancer treatment-chemotherapy, surgery, and radiation-taking oncology to an astounding new frontier. In this time, rapid developments in computational biology coupled with immunology have led to the exploration of priming the host immune system through vaccination to prevent and treat certain subsets of cancer such as melanoma and hereditary colorectal cancer. By targeting the immune system through tumor-specific antigens-namely, neoantigens (neoAgs)-the future of cancer prevention may lie within arm's reach by employing neoAg vaccines as an immune-preventive modality for hereditary cancer syndromes like Lynch syndrome. In this review, we discuss the history, current trends, utilization, and future direction of neoAg-based vaccines in the setting of hereditary colorectal cancer.
Collapse
Affiliation(s)
- Charles M. Bowen
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Krishna M. Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
18
|
Garzia I, Nocchi L, Avalle L, Troise F, Leoni G, Seclì L, Antonucci L, Cotugno G, Allocca S, Romano G, Conti L, Caiazza C, Mallardo M, Poli V, Scarselli E, D'Alise AM. Tumor Burden Dictates the Neoantigen Features Required to Generate an Effective Cancer Vaccine. Cancer Immunol Res 2024; 12:440-452. [PMID: 38331413 PMCID: PMC10985473 DOI: 10.1158/2326-6066.cir-23-0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/24/2023] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
Tumor neoantigens (nAg) represent a promising target for cancer immunotherapy. The identification of nAgs that can generate T-cell responses and have therapeutic activity has been challenging. Here, we sought to unravel the features of nAgs required to induce tumor rejection. We selected clinically validated Great Ape-derived adenoviral vectors (GAd) as a nAg delivery system for differing numbers and combinations of nAgs. We assessed their immunogenicity and efficacy in murine models of low to high disease burden, comparing multi-epitope versus mono-epitope vaccines. We demonstrated that the breadth of immune response is critical for vaccine efficacy and having multiple immunogenic nAgs encoded in a single vaccine improves efficacy. The contribution of each single neoantigen was examined, leading to the identification of 2 nAgs able to induce CD8+ T cell-mediated tumor rejection. They were both active as individual nAgs in a setting of prophylactic vaccination, although to different extents. However, the efficacy of these single nAgs was lost in a setting of therapeutic vaccination in tumor-bearing mice. The presence of CD4+ T-cell help restored the efficacy for only the most expressed of the two nAgs, demonstrating a key role for CD4+ T cells in sustaining CD8+ T-cell responses and the necessity of an efficient recognition of the targeted epitopes on cancer cells by CD8+ T cells for an effective antitumor response. This study provides insight into understanding the determinants of nAgs relevant for effective treatment and highlights features that could contribute to more effective antitumor vaccines. See related Spotlight by Slingluff Jr, p. 382.
Collapse
Affiliation(s)
| | | | - Lidia Avalle
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | | | | | | | | | | | - Laura Conti
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Carmen Caiazza
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Massimo Mallardo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | |
Collapse
|
19
|
Slingluff CL. Optimal Neoantigen Cancer Vaccines Target CD8+ and CD4+ T Cells with Multiple Antigens. Cancer Immunol Res 2024; 12:382. [PMID: 38562080 DOI: 10.1158/2326-6066.cir-24-0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/19/2024] [Indexed: 04/04/2024]
Abstract
Cancer vaccines targeting mutated neoantigens offer promise for prevention of cancer recurrence and for treatment of established cancers. Questions remain about whether vaccines need to target multiple neoantigens and whether they need to target both CD8+ and CD4+ T cells. In this issue, Garzia and colleagues demonstrate the importance of including multiple antigens to stimulate both CD4+ T cells and CD8+ T cells for treatment of established cancer. See related article by Garzia et al., p. 440 (4).
Collapse
Affiliation(s)
- Craig L Slingluff
- University of Virginia Comprehensive Cancer Center, Charlottesville, Virginia
| |
Collapse
|
20
|
Troise F, Leoni G, Sasso E, Del Sorbo M, Esposito M, Romano G, Allocca S, Froechlich G, Cotugno G, Capone S, Folgori A, Scarselli E, D’Alise AM, Nicosia A. Prime and pull of T cell responses against cancer-exogenous antigens is effective against CPI-resistant tumors. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200760. [PMID: 38596303 PMCID: PMC10869775 DOI: 10.1016/j.omton.2024.200760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/25/2023] [Accepted: 01/05/2024] [Indexed: 04/11/2024]
Abstract
Neoantigen (neoAg)-based cancer vaccines expand preexisting antitumor immunity and elicit novel cancer-specific T cells. However, at odds with prophylactic vaccines, therapeutic antitumor immunity must be induced when the tumor is present and has already established an immunosuppressive environment capable of rapidly impairing the function of anticancer neoAg T cells, thereby leading to lack of efficacy. To overcome tumor-induced immunosuppression, we first vaccinated mice bearing immune checkpoint inhibitor (CPI)-resistant tumors with an adenovirus vector encoding a set of potent cancer-exogenous CD8 and CD4 T cell epitopes (Ad-CAP1), and then "taught" cancer cells to express the same epitopes by using a tumor-retargeted herpesvirus vector (THV-CAP1). Potent CD8 effector T lymphocytes were elicited by Ad-CAP1, and subsequent THV-CAP1 delivery led to a significant delay in tumor growth and even cure.
Collapse
Affiliation(s)
- Fulvia Troise
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Guido Leoni
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | | | | | | | - Simona Allocca
- Nouscom S.r.l, Via di Castel Romano 100, 00128 Rome, Italy
| | - Guendalina Froechlich
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| | | | | | | | | | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via Pansini 5, 80131 Naples, Italy
- CEINGE-Advanced Biotechnologies S.c. a.r.l, Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
21
|
Li M, Jiang A, Han H, Chen M, Wang B, Cheng Y, Zhang H, Wang X, Dai W, Yang W, Zhang Q, He B. A Trinity Nano-Vaccine System with Spatiotemporal Immune Effect for the Adjuvant Cancer Therapy after Radiofrequency Ablation. ACS NANO 2024; 18:4590-4612. [PMID: 38047809 DOI: 10.1021/acsnano.3c03352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Cancer vaccine gains great attention with the advances in tumor immunology and nanotechnology, but its long-term efficacy is restricted by the unsustainable immune activity after vaccination. Here, we demonstrate the vaccine efficacy is negatively correlated with the tumor burden. To maximum the vaccine-induced immunity and prolong the time-effectiveness, we design a priming-boosting vaccination strategy by combining with radiofrequency ablation (RFA), and construct a bisphosphonate nanovaccine (BNV) system. BNV system consists of nanoparticulated bisphosphonates with dual electric potentials (BNV(+&-)), where bisphosphonates act as the immune adjuvant by blocking mevalonate metabolism. BNV(+&-) exhibits the spatial and temporal heterogeneity in lymphatic delivery and immune activity. As the independent components of BNV(+&-), BNV(-) is drained to the lymph nodes, and BNV(+) is retained at the injection site. The alternately induced immune responses extend the time-effectiveness of antitumor immunity and suppress the recurrence and metastasis of colorectal cancer liver metastases after RFA. As a result, this trinity system integrated with RFA therapy, bisphosphonate adjuvant, and spatiotemporal immune effect provides an orientation for the sustainable regulation and precise delivery of cancer vaccines.
Collapse
Affiliation(s)
- Minghui Li
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Anna Jiang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Huize Han
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Meifang Chen
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Yuxi Cheng
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueqing Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wenbing Dai
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Wei Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Ultrasound, Peking University Cancer Hospital & Institute, Beijing 100191, China
| | - Qiang Zhang
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bing He
- Beijing Key Laboratory of Molecular Pharmaceutics and Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
22
|
Rastin F, Javid H, Oryani MA, Rezagholinejad N, Afshari AR, Karimi-Shahri M. Immunotherapy for colorectal cancer: Rational strategies and novel therapeutic progress. Int Immunopharmacol 2024; 126:111055. [PMID: 37992445 DOI: 10.1016/j.intimp.2023.111055] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 11/24/2023]
Abstract
There are increasing incidences and mortality rates for colorectal cancer in the world. It is common for chemotherapy and radiation given to patients with colorectal cancer to cause toxicities that limit their effectiveness and cause cancer cells to become resistant to these treatments. Additional targeted treatments are needed to improve patient's quality of life and outcomes. Immunotherapy has rapidly emerged as an incredibly exciting and promising avenue for cancer treatment in recent years. This innovative approach provides novel options for tackling solid tumors, effectively establishing itself as a new cornerstone in cancer treatment. Specifically, in the realm of colorectal cancer (CRC), there is great promise in developing new drugs that target immune checkpoints, offering a hopeful and potentially transformative solution. While immunotherapy of CRC has made significant advances, there are still obstacles and limitations. CRC patients have a poor response to treatment because of the immune-suppressing function of their tumor microenvironment (TME). In addition to blocking inhibitory immune checkpoints, checkpoint-blocking antibodies may also boost immune responses against tumors. The review summarizes recent advances in immune checkpoint inhibitors (ICIs) for CRC, including CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3.
Collapse
Affiliation(s)
- Farangis Rastin
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Javid
- Department of Medical Laboratory Sciences, Varastegan Institute for Medical Sciences, Mashhad, Iran; Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Mahsa Akbari Oryani
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Amir-R Afshari
- Department of Physiology and Pharmacology, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Mehdi Karimi-Shahri
- Department of Pathology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Pathology, School of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran.
| |
Collapse
|
23
|
Costa-Garcia M, Rojas JJ, Ramos MD, Barlabé P, Calvo P, Navas J, Alemany R, Moreno R. Oncolytic adenovirus coding for shedding-resistant MICA enhances immune responses against tumors. Cancer Immunol Immunother 2024; 73:5. [PMID: 38180524 PMCID: PMC10770194 DOI: 10.1007/s00262-023-03611-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/13/2023] [Indexed: 01/06/2024]
Abstract
Cancer immunotherapies strive to overcome tumor-induced immune suppression and activate antitumor immune responses. Although cytotoxic T lymphocytes (CTLs) play a pivotal role in this process, natural killer (NK) cells have also demonstrated remarkable tumor-killing abilities, given their ability to discriminate tumor cells from normal cells and mediate specific antitumoral cytotoxicity. NK cells activation depends on a balance between activation and inhibition signals from several ligands/receptors. Among them, MICA/NKG2D axis is a master regulator of NK activation. MHC class I chain-related polypeptide A (MICA) expression is upregulated by many tumor cell lines and primary tumors and serves as a ligand for the activating NK group 2D (NKG2D) receptor on NK cells and subpopulations of T cells. However, cancer cells can cleave MICA, making it soluble and de-targeting tumor cells from NK cells, leading to tumor immune escape.In this study, we present ICOVIR15KK-MICAMut, an oncolytic adenovirus (OAdv) armed with a transgene encoding a non-cleavable MICA to promote NK-mediated cell-killing capacity and activate the immune response against cancer cells. We first demonstrated the correct MICA overexpression from infected cells. Moreover, our MICA-expressing OAdv promotes higher NK activation and killing capacity than the non-armed virus in vitro. In addition, the armed virus also demonstrated significant antitumor activity in immunodeficient mice in the presence of human PBMCs, indicating the activation of human NK cells. Finally, OAdv-MICA overexpression in immunocompetent tumor-bearing mice elicits tumor-specific immune response resulting in a greater tumor growth control.In summary, this study highlights the significance of NK cells in cancer immunotherapy and presents an innovative approach using a modified oncolytic virus to enhance NK cell activation and antitumor immune response. These findings suggest promising potential for future research and clinical applications.
Collapse
Affiliation(s)
- M Costa-Garcia
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - J J Rojas
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - M D Ramos
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - P Barlabé
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
- Program of Regenerative Medicine, Centre for Applied Medical Research (CIMA), University of Navarra, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Pamplona, 31008, Spain
| | - P Calvo
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - J Navas
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
- Immunology Unit, Department of Pathology and Experimental Therapies, School of Medicine, University of Barcelona-UB, Barcelona, Spain
- Immunity, Inflammation, and Cancer Group, Oncobell program, Institut d'Investigació Biomèdica de Bellvitge-IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | - R Alemany
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain
| | - R Moreno
- Cancer Immunotherapy Group, Oncobell and iProCURE programs, IDIBELL-Institut Català d'Oncologia, l'Hospitalet de Llobregat, Barcelona, Spain.
| |
Collapse
|
24
|
Barajas A, Amengual-Rigo P, Pons-Grífols A, Ortiz R, Gracia Carmona O, Urrea V, de la Iglesia N, Blanco-Heredia J, Anjos-Souza C, Varela I, Trinité B, Tarrés-Freixas F, Rovirosa C, Lepore R, Vázquez M, de Mattos-Arruda L, Valencia A, Clotet B, Aguilar-Gurrieri C, Guallar V, Carrillo J, Blanco J. Virus-like particle-mediated delivery of structure-selected neoantigens demonstrates immunogenicity and antitumoral activity in mice. J Transl Med 2024; 22:14. [PMID: 38172991 PMCID: PMC10763263 DOI: 10.1186/s12967-023-04843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Neoantigens are patient- and tumor-specific peptides that arise from somatic mutations. They stand as promising targets for personalized therapeutic cancer vaccines. The identification process for neoantigens has evolved with the use of next-generation sequencing technologies and bioinformatic tools in tumor genomics. However, in-silico strategies for selecting immunogenic neoantigens still have very low accuracy rates, since they mainly focus on predicting peptide binding to Major Histocompatibility Complex (MHC) molecules, which is key but not the sole determinant for immunogenicity. Moreover, the therapeutic potential of neoantigen-based vaccines may be enhanced using an optimal delivery platform that elicits robust de novo immune responses. METHODS We developed a novel neoantigen selection pipeline based on existing software combined with a novel prediction method, the Neoantigen Optimization Algorithm (NOAH), which takes into account structural features of the peptide/MHC-I interaction, as well as the interaction between the peptide/MHC-I complex and the TCR, in its prediction strategy. Moreover, to maximize neoantigens' therapeutic potential, neoantigen-based vaccines should be manufactured in an optimal delivery platform that elicits robust de novo immune responses and bypasses central and peripheral tolerance. RESULTS We generated a highly immunogenic vaccine platform based on engineered HIV-1 Gag-based Virus-Like Particles (VLPs) expressing a high copy number of each in silico selected neoantigen. We tested different neoantigen-loaded VLPs (neoVLPs) in a B16-F10 melanoma mouse model to evaluate their capability to generate new immunogenic specificities. NeoVLPs were used in in vivo immunogenicity and tumor challenge experiments. CONCLUSIONS Our results indicate the relevance of incorporating other immunogenic determinants beyond the binding of neoantigens to MHC-I. Thus, neoVLPs loaded with neoantigens enhancing the interaction with the TCR can promote the generation of de novo antitumor-specific immune responses, resulting in a delay in tumor growth. Vaccination with the neoVLP platform is a robust alternative to current therapeutic vaccine approaches and a promising candidate for future personalized immunotherapy.
Collapse
Affiliation(s)
- Ana Barajas
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
| | | | - Anna Pons-Grífols
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- Univeritat Autónoma de Barcelona (UAB), Cerdanyola, Spain
| | - Raquel Ortiz
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- Univeritat Autónoma de Barcelona (UAB), Cerdanyola, Spain
| | | | - Victor Urrea
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Nuria de la Iglesia
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Juan Blanco-Heredia
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Carla Anjos-Souza
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Ismael Varela
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | - Benjamin Trinité
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | | | - Carla Rovirosa
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
| | | | | | | | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- Infectious Diseases Department, Germans Trias I Pujol Hospital, Badalona, Spain
| | | | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jorge Carrillo
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
| | - Julià Blanco
- IrsiCaixa AIDS Research Institute, Crta del Canyet S/N., 08916, Badalona, Spain
- University of Vic-Central University of Catalonia (UVic-UCC), Vic, Spain
- CIBER de Enfermedades Infecciosas, Madrid, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain
| |
Collapse
|
25
|
Menotti L, Vannini A. Oncolytic Viruses in the Era of Omics, Computational Technologies, and Modeling: Thesis, Antithesis, and Synthesis. Int J Mol Sci 2023; 24:17378. [PMID: 38139207 PMCID: PMC10743452 DOI: 10.3390/ijms242417378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/05/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Oncolytic viruses (OVs) are the frontier therapy for refractory cancers, especially in integration with immunomodulation strategies. In cancer immunovirotherapy, the many available "omics" and systems biology technologies generate at a fast pace a challenging huge amount of data, where apparently clashing information mirrors the complexity of individual clinical situations and OV used. In this review, we present and discuss how currently big data analysis, on one hand and, on the other, simulation, modeling, and computational technologies, provide invaluable support to interpret and integrate "omic" information and drive novel synthetic biology and personalized OV engineering approaches for effective immunovirotherapy. Altogether, these tools, possibly aided in the future by artificial intelligence as well, will allow for the blending of the information into OV recombinants able to achieve tumor clearance in a patient-tailored way. Various endeavors to the envisioned "synthesis" of turning OVs into personalized theranostic agents are presented.
Collapse
Affiliation(s)
- Laura Menotti
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy;
| | | |
Collapse
|
26
|
Seclì L, Leoni G, Ruzza V, Siani L, Cotugno G, Scarselli E, D’Alise AM. Personalized Cancer Vaccines Go Viral: Viral Vectors in the Era of Personalized Immunotherapy of Cancer. Int J Mol Sci 2023; 24:16591. [PMID: 38068911 PMCID: PMC10706435 DOI: 10.3390/ijms242316591] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023] Open
Abstract
The aim of personalized cancer vaccines is to elicit potent and tumor-specific immune responses against neoantigens specific to each patient and to establish durable immunity, while minimizing the adverse events. Over recent years, there has been a renewed interest in personalized cancer vaccines, primarily due to the advancement of innovative technologies for the identification of neoantigens and novel vaccine delivery platforms. Here, we review the emerging field of personalized cancer vaccination, with a focus on the use of viral vectors as a vaccine platform. The recent advancements in viral vector technology have led to the development of efficient production processes, positioning personalized viral vaccines as one of the preferred technologies. Many clinical trials have shown the feasibility, safety, immunogenicity and, more recently, preliminary evidence of the anti-tumor activity of personalized vaccination, fostering active research in the field, including further clinical trials for different tumor types and in different clinical settings.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Anna Morena D’Alise
- Nouscom, Via di Castel Romano 100, 00128 Rome, Italy; (L.S.); (G.L.); (V.R.); (L.S.); (G.C.); (E.S.)
| |
Collapse
|
27
|
Bolivar AM, Duzagac F, Sinha KM, Vilar E. Advances in vaccine development for cancer prevention and treatment in Lynch Syndrome. Mol Aspects Med 2023; 93:101204. [PMID: 37478804 PMCID: PMC10528439 DOI: 10.1016/j.mam.2023.101204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Lynch Syndrome (LS) is one of the most common hereditary cancer syndromes, and is caused by mutations in one of the four DNA mismatch repair (MMR) genes, namely MLH1, MSH2, MSH6 and PMS2. Tumors developed by LS carriers display high levels of microsatellite instability, which leads to the accumulation of large numbers of mutations, among which frameshift insertion/deletions (indels) within microsatellite (MS) loci are the most common. As a result, MMR-deficient (MMRd) cells generate increased rates of tumor-specific neoantigens (neoAgs) that can be recognized by the immune system to activate cancer cell killing. In this context, LS is an ideal disease to leverage immune-interception strategies. Therefore, the identification of these neoAgs is an ongoing effort for the development of LS cancer preventive vaccines. In this review, we summarize the computational methods used for in silico neoAg prediction, including their challenges, and the experimental techniques used for in vitro validation of their immunogenicity. In addition, we outline results from past and on-going vaccine clinical trials and highlight avenues for improvement and future directions.
Collapse
Affiliation(s)
- Ana M Bolivar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fahriye Duzagac
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Krishna M Sinha
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
28
|
Song Y, Kerr TD, Sanders C, Dai L, Baxter SS, Somerville B, Baugher RN, Mellott SD, Young TB, Lawhorn HE, Plona TM, Xu B, Wei L, Hu Q, Liu S, Hutson A, Karim B, Burkett S, Difilippantonio S, Pinto L, Gebert J, Kloor M, Lipkin SM, Sei S, Shoemaker RH. Organoids and metastatic orthotopic mouse model for mismatch repair-deficient colorectal cancer. Front Oncol 2023; 13:1223915. [PMID: 37746286 PMCID: PMC10516605 DOI: 10.3389/fonc.2023.1223915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
Background Genome integrity is essential for the survival of an organism. DNA mismatch repair (MMR) genes (e.g., MLH1, MSH2, MSH6, and PMS2) play a critical role in the DNA damage response pathway for genome integrity maintenance. Germline mutations of MMR genes can lead to Lynch syndrome or constitutional mismatch repair deficiency syndrome, resulting in an increased lifetime risk of developing cancer characterized by high microsatellite instability (MSI-H) and high mutation burden. Although immunotherapy has been approved for MMR-deficient (MMRd) cancer patients, the overall response rate needs to be improved and other management options are needed. Methods To better understand the biology of MMRd cancers, elucidate the resistance mechanisms to immune modulation, and develop vaccines and therapeutic testing platforms for this high-risk population, we generated organoids and an orthotopic mouse model from intestine tumors developed in a Msh2-deficient mouse model, and followed with a detailed characterization. Results The organoids were shown to be of epithelial origin with stem cell features, to have a high frameshift mutation frequency with MSI-H and chromosome instability, and intra- and inter-tumor heterogeneity. An orthotopic model using intra-cecal implantation of tumor fragments derived from organoids showed progressive tumor growth, resulting in the development of adenocarcinomas mixed with mucinous features and distant metastasis in liver and lymph node. Conclusions The established organoids with characteristics of MSI-H cancers can be used to study MMRd cancer biology. The orthotopic model, with its distant metastasis and expressing frameshift peptides, is suitable for evaluating the efficacy of neoantigen-based vaccines or anticancer drugs in combination with other therapies.
Collapse
Affiliation(s)
- Yurong Song
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Travis D. Kerr
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Chelsea Sanders
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Lisheng Dai
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Shaneen S. Baxter
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Brandon Somerville
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Ryan N. Baugher
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Stephanie D. Mellott
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Todd B. Young
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Heidi E. Lawhorn
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Teri M. Plona
- Frederick National Laboratory for Cancer Research, Clinical Laboratory Improvement Amendments (CLIA) Molecular Diagnostics Laboratory, Frederick, MD, United States
| | - Bingfang Xu
- Frederick National Laboratory for Cancer Research, Genomics Laboratory, Frederick, MD, United States
| | - Lei Wei
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Qiang Hu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Alan Hutson
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Baktiar Karim
- Molecular Histopathology Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Sandra Burkett
- Molecular Cytogenetics Core Facility, National Cancer Institute, Frederick, MD, United States
| | - Simone Difilippantonio
- Frederick National Laboratory for Cancer Research, Laboratory Animal Sciences Program, Frederick, MD, United States
| | - Ligia Pinto
- Frederick National Laboratory for Cancer Research, Vaccine, Immunity, and Cancer Directorate, Frederick, MD, United States
| | - Johannes Gebert
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Matthias Kloor
- Department of Applied Tumor Biology, Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | - Steven M. Lipkin
- Department of Medicine, Weill Cornell Medical College, Cornell University, New York, NY, United States
| | - Shizuko Sei
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| | - Robert H. Shoemaker
- Chemopreventive Agent Development Research Group, Division of Cancer Prevention, National Cancer Institute, Bethesda, MD, United States
| |
Collapse
|
29
|
Haldar SD, Vilar E, Maitra A, Zaidi N. Worth a Pound of Cure? Emerging Strategies and Challenges in Cancer Immunoprevention. Cancer Prev Res (Phila) 2023; 16:483-495. [PMID: 37001882 PMCID: PMC10548442 DOI: 10.1158/1940-6207.capr-22-0478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/06/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023]
Abstract
Cancer immunoprevention applies immunologic approaches such as vaccines to prevent, rather than to treat or cure, cancer. Despite limited success in the treatment of advanced disease, the development of cancer vaccines to intercept premalignant states is a promising area of current research. These efforts are supported by the rationale that vaccination in the premalignant setting is less susceptible to mechanisms of immune evasion compared with established cancer. Prophylactic vaccines have already been developed for a minority of cancers mediated by oncogenic viruses (e.g., hepatitis B and human papillomavirus). Extending the use of preventive vaccines to non-virally driven malignancies remains an unmet need to address the rising global burden of cancer. This review provides a broad overview of clinical trials in cancer immunoprevention with an emphasis on emerging vaccine targets and delivery platforms, translational challenges, and future directions.
Collapse
Affiliation(s)
- Saurav D. Haldar
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anirban Maitra
- Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Neeha Zaidi
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
30
|
Jiang N, Zheng Y, Ding J, Wang J, Zhu F, Wang M, Sobhani N, Neeli P, Wang G, Li H, Zheng J, Chai D. The co-delivery of adenovirus-based immune checkpoint vaccine elicits a potent anti-tumor effect in renal carcinoma. NPJ Vaccines 2023; 8:109. [PMID: 37542081 PMCID: PMC10403580 DOI: 10.1038/s41541-023-00706-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 07/11/2023] [Indexed: 08/06/2023] Open
Abstract
Immune-based checkpoint therapy has made significant progress in cancer treatment, but its therapeutic effect is limited. A replication-defective adenovirus (Ad) vaccine encoding tumor antigen carbonic anhydrase IX (CAIX) combined with Ad-encoding immune checkpoint PD-L1 was developed to treat renal carcinoma. Three tumor models, subcutaneous, lung metastasis and orthotopic tumor were established, and Ad vaccines were used to immunize them and evaluate the vaccine's therapeutic effect. Compared to the single Ad vaccine group, the subcutaneous tumor growth was significantly reduced in Ad-CAIX/Ad-PD-L1 combination group. Co-immunization of Ad-CAIX/Ad-PD-L1 enhanced the induction and maturation of CD11c+ or CD8+CD11c+ DCs in the spleen and tumor and promoted the strong tumor-specific CD8+ T cell immune responses. In vivo CD8 T cell deletion assay showed that the anti-tumor effect of the Ad-CAIX/Ad-PD-L1 vaccine was mainly dependent on functional CD8+ T cell immune responses. Furthermore, the Ad-CAIX/Ad-PD-L1 vaccine effectively inhibited tumor growth and lung metastasis in metastatic or orthotopic models. These results indicate that the combination strategy of the immune checkpoint vaccine shows promising potential as an approach for malignant tumor therapy.
Collapse
Affiliation(s)
- Nan Jiang
- Department of Urology, Suqian Hospital of Chinese Medicine Department of Pharmacy, Suqian, Jiangsu, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jiawei Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Fei Zhu
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Meng Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Navid Sobhani
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Praveen Neeli
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Hailong Li
- Department of Urology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu, China.
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
31
|
Yari A, Bamdad T, Hosseini SY. Comparison of Three Different Methods of Transfection for the Production of Recombinant Adenovirus Expressing Human Carcinoembryonic Antigen Gene. ARCHIVES OF RAZI INSTITUTE 2023; 78:1057-1064. [PMID: 38028844 PMCID: PMC10657935 DOI: 10.22092/ari.2021.354824.1651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/28/2021] [Indexed: 12/01/2023]
Abstract
Adenoviral vectors (AdVs) are widely used as a gene delivery vehicle and vaccine design due to their genetic stability, transfer capacity of large genes, production at high titers, and remarkable efficacy of transduction. One of the most important applications of AdVs is in cancer immunotherapy. Tumor-associated antigens are overexpressed in cancer cells; however, they cannot induce immune responses sufficiently. Therefore, the immune system must be stimulated against these antigens to kill the cancer cells. This study described the construction steps of a recombinant AdV expressing human carcinoembryonic antigen (CEA) gene. Furthermore, in order to achieve a high titer of the virus, an efficient transfection was required. Three various transfection reagents were compared to achieve the best method of transfection. Carcinoembryonic antigen was cloned into the pAdV and transfected into the A293 cells using three different reagents, including polyethylenimine (PEI), calcium phosphate, and DMRIE-C. The PEI had the highest transfection efficiency, which was selected for the transfection of the recombinant plasmid. It has low toxicity for cells and is suitable for large-scale transfection. The virus produced in this study can be applied as a vaccine in cancer immunotherapy for stimulating the immune system against CEA-expressing tumors.
Collapse
Affiliation(s)
- A Yari
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - T Bamdad
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - S Y Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Viborg N, Pavlidis MA, Barrio-Calvo M, Friis S, Trolle T, Sørensen AB, Thygesen CB, Kofoed SV, Kleine-Kohlbrecher D, Hadrup SR, Rønø B. DNA based neoepitope vaccination induces tumor control in syngeneic mouse models. NPJ Vaccines 2023; 8:77. [PMID: 37244905 DOI: 10.1038/s41541-023-00671-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 05/10/2023] [Indexed: 05/29/2023] Open
Abstract
Recent findings have positioned tumor mutation-derived neoepitopes as attractive targets for cancer immunotherapy. Cancer vaccines that deliver neoepitopes via various vaccine formulations have demonstrated promising preliminary results in patients and animal models. In the presented work, we assessed the ability of plasmid DNA to confer neoepitope immunogenicity and anti-tumor effect in two murine syngeneic cancer models. We demonstrated that neoepitope DNA vaccination led to anti-tumor immunity in the CT26 and B16F10 tumor models, with the long-lasting presence of neoepitope-specific T-cell responses in blood, spleen, and tumors after immunization. We further observed that engagement of both the CD4+ and CD8+ T cell compartments was essential to hamper tumor growth. Additionally, combination therapy with immune checkpoint inhibition provided an additive effect, superior to either monotherapy. DNA vaccination offers a versatile platform that allows the encoding of multiple neoepitopes in a single formulation and is thus a feasible strategy for personalized immunotherapy via neoepitope vaccination.
Collapse
Affiliation(s)
- Nadia Viborg
- Evaxion Biotech, Hørsholm, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | | | | | | | | | | | | | | | | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | | |
Collapse
|
33
|
D’Alise AM, Nocchi L, Garzia I, Seclì L, Infante L, Troise F, Cotugno G, Allocca S, Romano G, Lahm A, Leoni G, Sasso E, Scarselli E, Nicosia A. Adenovirus Encoded Adjuvant (AdEnA) anti-CTLA-4, a novel strategy to improve Adenovirus based vaccines against infectious diseases and cancer. Front Immunol 2023; 14:1156714. [PMID: 37180141 PMCID: PMC10169702 DOI: 10.3389/fimmu.2023.1156714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
Introduction Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.
Collapse
Affiliation(s)
| | | | | | | | - Luigia Infante
- Department of Biology, University of Rome “Tor Vergata”, Rome, Italy
| | | | | | | | | | | | | | - Emanuele Sasso
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| | | | - Alfredo Nicosia
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
- CEINGE-Advanced Biotechnologies s.c. a.r.l., Naples, Italy
| |
Collapse
|
34
|
Yang SF, Weng MT, Liang JD, Chiou LL, Hsu YC, Lee YT, Liu SY, Wu MC, Chou HC, Wang LF, Yu SH, Lee HS, Sheu JC. Neoantigen vaccination augments antitumor effects of anti-PD-1 on mouse hepatocellular carcinoma. Cancer Lett 2023; 563:216192. [PMID: 37088327 DOI: 10.1016/j.canlet.2023.216192] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/15/2023] [Accepted: 04/18/2023] [Indexed: 04/25/2023]
Abstract
Immune checkpoint inhibitors are groundbreaking resources for cancer therapy. However, only a few patients with hepatocellular carcinoma (HCC) have shown positive responses to anti-PD-1 therapy. Neoantigens are sequence-altered proteins resulting from somatic mutations in cancer. This study identified the neoantigens of Hep-55.1C and Dt81 Hepa1-6 HCCs by comparing their whole exome sequences with those of a normal C57BL/6 mouse liver. Immunogenic long peptides were pooled as peptide vaccines. The vaccination elicited tumor-reactive immune responses in C57BL/6 mice, as demonstrated by IFN-γ ELISPOT and an in vitro killing assay of splenocytes. In the treatment of three mouse HCC models, combined neoantigen vaccination and anti-PD-1 resulted in more significant tumor regression than monotherapies. Flow cytometry of the tumor-infiltrating lymphocytes showed decreased Treg cells and monocytic myeloid-derived suppressor cells, increased CD8+ T cells, enhanced granzyme B expression, and reduced exhaustion-related markers PD-1 and Lag-3 on CD8+ T cells in the combination group. These findings provide a strong rationale for conducting clinical studies of using neoantigen vaccination in combination with anti-PD-1 to treat patients with HCC.
Collapse
Affiliation(s)
- Shih-Feng Yang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Meng-Tzu Weng
- Department of Medical Research, National Taiwan University Hospital, Hsin-Chu Branch, Hsinchu, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ja-Der Liang
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| | - Ling-Ling Chiou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Yu-Chen Hsu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Ying-Te Lee
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shin-Yun Liu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Meng-Chuan Wu
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Huei-Chi Chou
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Li-Fang Wang
- Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Shu-Han Yu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.
| | - Hsuan-Shu Lee
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| | - Jin-Chuan Sheu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan; Liver Disease Prevention & Treatment Research Foundation, Taipei, Taiwan.
| |
Collapse
|
35
|
Wang S, Liang B, Wang W, Li L, Feng N, Zhao Y, Wang T, Yan F, Yang S, Xia X. Viral vectored vaccines: design, development, preventive and therapeutic applications in human diseases. Signal Transduct Target Ther 2023; 8:149. [PMID: 37029123 PMCID: PMC10081433 DOI: 10.1038/s41392-023-01408-5] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 04/09/2023] Open
Abstract
Human diseases, particularly infectious diseases and cancers, pose unprecedented challenges to public health security and the global economy. The development and distribution of novel prophylactic and therapeutic vaccines are the prioritized countermeasures of human disease. Among all vaccine platforms, viral vector vaccines offer distinguished advantages and represent prominent choices for pathogens that have hampered control efforts based on conventional vaccine approaches. Currently, viral vector vaccines remain one of the best strategies for induction of robust humoral and cellular immunity against human diseases. Numerous viruses of different families and origins, including vesicular stomatitis virus, rabies virus, parainfluenza virus, measles virus, Newcastle disease virus, influenza virus, adenovirus and poxvirus, are deemed to be prominent viral vectors that differ in structural characteristics, design strategy, antigen presentation capability, immunogenicity and protective efficacy. This review summarized the overall profile of the design strategies, progress in advance and steps taken to address barriers to the deployment of these viral vector vaccines, simultaneously highlighting their potential for mucosal delivery, therapeutic application in cancer as well as other key aspects concerning the rational application of these viral vector vaccines. Appropriate and accurate technological advances in viral vector vaccines would consolidate their position as a leading approach to accelerate breakthroughs in novel vaccines and facilitate a rapid response to public health emergencies.
Collapse
Affiliation(s)
- Shen Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Bo Liang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Weiqi Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ling Li
- China National Research Center for Exotic Animal Diseases, China Animal Health and Epidemiology Center, Qingdao, China
| | - Na Feng
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Yongkun Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China
| | - Feihu Yan
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Songtao Yang
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| | - Xianzhu Xia
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.
| |
Collapse
|
36
|
Daradoumis J, Ragonnaud E, Skandorff I, Nielsen KN, Bermejo AV, Andersson AM, Schroedel S, Thirion C, Neukirch L, Holst PJ. An Endogenous Retrovirus Vaccine Encoding an Envelope with a Mutated Immunosuppressive Domain in Combination with Anti-PD1 Treatment Eradicates Established Tumours in Mice. Viruses 2023; 15:v15040926. [PMID: 37112906 PMCID: PMC10141008 DOI: 10.3390/v15040926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) account for 8% of our genome, and, although they are usually silent in healthy tissues, they become reactivated and expressed in pathological conditions such as cancer. Several studies support a functional role of ERVs in tumour development and progression, specifically through their envelope (Env) protein, which contains a region described as an immunosuppressive domain (ISD). We have previously shown that targeting of the murine ERV (MelARV) Env using virus-like vaccine (VLV) technology, consisting of an adenoviral vector encoding virus-like particles (VLPs), induces protection against small tumours in mice. Here, we investigate the potency and efficacy of a novel MelARV VLV with a mutated ISD (ISDmut) that can modify the properties of the adenoviral vaccine-encoded Env protein. We show that the modification of the vaccine's ISD significantly enhanced T-cell immunogenicity in both prime and prime-boost vaccination regimens. The modified VLV in combination with an α-PD1 checkpoint inhibitor (CPI) exhibited excellent curative efficacy against large established colorectal CT26 tumours in mice. Furthermore, only ISDmut-vaccinated mice that survived CT26 challenge were additionally protected against rechallenge with a triple-negative breast cancer cell line (4T1), showing that our modified VLV provides cross-protection against different tumour types expressing ERV-derived antigens. We envision that translating these findings and technology into human ERVs (HERVs) could provide new treatment opportunities for cancer patients with unmet medical needs.
Collapse
Affiliation(s)
- Joana Daradoumis
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | - Emeline Ragonnaud
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Isabella Skandorff
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | - Amaia Vergara Bermejo
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Anne-Marie Andersson
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| | | | | | - Lasse Neukirch
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
- Department of Biomedical Sciences, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Peter Johannes Holst
- Department of Immunology and Microbiology, The Panum Institute, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
- InProTher, Bioinnovation Institute, COBIS, Ole Maaløes Vej 3, 2200 Copenhagen, Denmark
| |
Collapse
|
37
|
Feola S, Chiaro J, Cerullo V. Integrating immunopeptidome analysis for the design and development of cancer vaccines. Semin Immunol 2023; 67:101750. [PMID: 37003057 DOI: 10.1016/j.smim.2023.101750] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/17/2023] [Accepted: 03/17/2023] [Indexed: 04/03/2023]
Abstract
The repertoire of naturally presented peptides within the MHC (major histocompatibility complex) or HLA (human leukocyte antigens) system on the cellular surface of every mammalian cell is referred to as ligandome or immunopeptidome. This later gained momentum upon the discovery of CD8 + T cells able to recognize and kill cancer cells in an MHC-I antigen-restricted manner. Indeed, cancer immune surveillance relies on T cell recognition of MHC-I-restricted peptides, making the identification of those peptides the core for designing T cell-based cancer vaccines. Moreover, the breakthrough of antibodies targeting immune checkpoint molecules has led to a new and strong interest in discovering suitable targets for CD8 +T cells. Therapeutic cancer vaccines are designed for the artificial generation and/or stimulation of CD8 +T cells; thus, their combination with ICIs to unleash the breaks of the immune system comes as a natural consequence to enhance anti-tumor efficacy. In this context, the identification and knowledge of peptide candidates take advantage of the fast technology updates in immunopeptidome and mass spectrometric methodologies, paying the way to the rational design of vaccines for immunotherapeutic approaches. In this review, we discuss mainly the role of immunopeptidome analysis and its application for the generation of therapeutic cancer vaccines with main focus on HLA-I peptides. Here, we review cancer vaccine platforms based on two different preparation methods: pathogens (viruses and bacteria) and not (VLPs, nanoparticles, subunits vaccines) that exploit discoveries in the ligandome field to generate and/or enhance anti-tumor specific response. Finally, we discuss possible drawbacks and future challenges in the field that remain still to be addressed.
Collapse
Affiliation(s)
- Sara Feola
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Jacopo Chiaro
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland
| | - Vincenzo Cerullo
- Drug Research Program (DRP) ImmunoViroTherapy Lab (IVT), Faculty of Pharmacy Helsinki University, Viikinkaari 5E, Finland; Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Fabianinkatu 33, Finland; Translational Immunology Program (TRIMM), Faculty of Medicine Helsinki University, Haartmaninkatu 8, Finland; Department of Molecular Medicine and Medical Biotechnology, Naples University "Federico II", S. Pansini 5, Italy.
| |
Collapse
|
38
|
Yang T, Kang L, Li D, Song Y. Immunotherapy for HER-2 positive breast cancer. Front Oncol 2023; 13:1097983. [PMID: 37007133 PMCID: PMC10061112 DOI: 10.3389/fonc.2023.1097983] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 03/03/2023] [Indexed: 03/18/2023] Open
Abstract
Immunotherapy is a developing treatment for advanced breast cancer. Immunotherapy has clinical significance for the treatment of triple-negative breast cancers and human epidermal growth factor receptor-2 positive (HER2+) breast cancers. As a proved effective passive immunotherapy, clinical application of the monoclonal antibodies trastuzumab, pertuzumab and T-DM1 (ado-trastuzumab emtansine) has significantly improved the survival of patients with HER2+ breast cancers. Immune checkpoint inhibitors that block programmed death receptor-1 and its ligand (PD-1/PD-L1) have also shown benefits for breast cancer in various clinical trials. Adoptive T-cell immunotherapies and tumor vaccines are emerging as novel approaches to treating breast cancer, but require further study. This article reviews recent advances in immunotherapy for HER2+ breast cancers.
Collapse
|
39
|
D'Alise AM, Scarselli E. Getting personal in metastatic melanoma: neoantigen-based vaccines as a new therapeutic strategy. Curr Opin Oncol 2023; 35:94-99. [PMID: 36721894 PMCID: PMC9894148 DOI: 10.1097/cco.0000000000000923] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
PURPOSE OF REVIEW Cancer vaccines are facing renewed interest, thanks to the progress recently achieved in the immunotherapy field, including the success of immune checkpoint inhibitors (CPIs). The advances in understanding the CPI mode of action revealed a central role of neoantigens for the outcome of such treatments. Neoantigens became the preferred antigens for cancer vaccines and have been evaluated in several clinical trials. Here, we review the recent results from neoantigen-based vaccines in melanoma patients and discuss avenues for improvement. RECENT FINDINGS The importance of neoantigens for tumor control comes from the positive correlation between tumor mutational burden (TMB) and response to CPI. Preclinical studies have proved the effectiveness of neoantigen vaccines in models, expediting their clinical testing. Tumor mutations are not shared in most tumor types including melanoma, mandating the need of a personalized approach. Several clinical studies have shown the safety, feasibility, immunogenicity and preliminary evidence of antitumor activity of personalized vaccination. Currently, new trials have been started aiming to both confirm clinical activity and combining vaccines with other immunotherapies for improved efficacy. SUMMARY Personalized vaccines hold the promise for highly mutated and immunogenic cancers, including melanoma. Continuous efforts are underway to increase their likelihood of success.
Collapse
|
40
|
Lybaert L, Lefever S, Fant B, Smits E, De Geest B, Breckpot K, Dirix L, Feldman SA, van Criekinge W, Thielemans K, van der Burg SH, Ott PA, Bogaert C. Challenges in neoantigen-directed therapeutics. Cancer Cell 2023; 41:15-40. [PMID: 36368320 DOI: 10.1016/j.ccell.2022.10.013] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 08/19/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
A fundamental prerequisite for the efficacy of cancer immunotherapy is the presence of functional, antigen-specific T cells within the tumor. Neoantigen-directed therapy is a promising strategy that aims at targeting the host's immune response against tumor-specific antigens, thereby eradicating cancer cells. Initial forays have been made in clinical environments utilizing vaccines and adoptive cell therapy; however, many challenges lie ahead. We provide an in-depth overview of the current state of the field with an emphasis on in silico neoantigen discovery and the clinical aspects that need to be addressed to unlock the full potential of this therapy.
Collapse
Affiliation(s)
| | | | | | - Evelien Smits
- Center for Oncological Research, University of Antwerp, 2610 Wilrijk, Belgium
| | - Bruno De Geest
- Department of Pharmaceutics, Ghent University, 9000 Ghent, Belgium
| | - Karine Breckpot
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc Dirix
- Translational Cancer Research Unit, Center for Oncological Research, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Steven A Feldman
- Center for Cancer Cell Therapy, Stanford University School of Medicine, Stanford, CA, USA
| | - Wim van Criekinge
- Department of Data Analysis and Mathematical Modelling, Ghent University, Ghent, Belgium
| | - Kris Thielemans
- Laboratory of Molecular and Cellular Therapy, Department of Biomedical Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sjoerd H van der Burg
- Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick A Ott
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
41
|
Huang KCY, Lai CY, Hung WZ, Chang HY, Lin PC, Chiang SF, Ke TW, Liang JA, Shiau AC, Yang PC, Chen WTL, Chao KSC. A Novel Engineered AAV-Based Neoantigen Vaccine in Combination with Radiotherapy Eradicates Tumors. Cancer Immunol Res 2023; 11:123-136. [PMID: 36315960 DOI: 10.1158/2326-6066.cir-22-0318] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 08/15/2022] [Accepted: 10/26/2022] [Indexed: 01/05/2023]
Abstract
The potency of tumor-specific antigen (TSA) vaccines, such as neoantigen (neoAg)-based cancer vaccines, can be compromised by host immune checkpoint inhibitory mechanisms, such as programmed cell death protein 1 (PD-1)/programmed death ligand 1 (PD-L1), that attenuate neoAg presentation on dendritic cells (DC) and hinder T cell-mediated cytotoxicity. To overcome PD-1/PD-L1 inhibition in DCs, we developed a novel adeno-associated virus (meAAV) neoAg vaccine, modified with TLR9 inhibitory fragments, PD-1 trap, and PD-L1 miRNA, which extend the persistence of meAAV and activate neoAg-specific T-cell responses in immune-competent colorectal and breast cancer murine models. Moreover, we found that in combination with radiotherapy, the meAAV-based neoAg cancer vaccine not only elicited higher antigen presentation ability, but also maintained neoAg-specific cytotoxic T lymphocyte (CTL) responses. These functional PD-1 traps and PD-L1 miRNAs overcome host PD-1/PD-L1 inhibitory mechanisms and boost the therapeutic efficacy of radiotherapy. More importantly, combined radiotherapy and meAAV neoAg cancer vaccines significantly enhanced neoAg-specific CTL responses, increased CTL infiltration in tumor microenvironment, and decreased tumor-associated immunosuppression. This process led to the complete elimination of colorectal cancer and delayed tumor growth of breast cancer in tumor-bearing mice. Taken together, our results demonstrated a novel strategy that combines neoAg cancer vaccine and radiotherapy to increase the therapeutic efficacy against colorectal and breast cancers.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Chia-Ying Lai
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Wei-Ze Hung
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Hsin-Yu Chang
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Chun Lin
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Taichung, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| | - An-Cheng Shiau
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Pei-Chen Yang
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Surgery, School of Medicine, China Medical University, Taichung, Taiwan.,Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, Taiwan
| | - K S Clifford Chao
- Center of Proton Therapy and Science, China Medical University Hospital, China Medical University, Taichung, Taiwan.,Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.,School of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
42
|
Huang CH, Dong T, Phung AT, Shah JR, Larson C, Sanchez AB, Blair SL, Oronsky B, Trogler WC, Reid T, Kummel AC. Full Remission of CAR-Deficient Tumors by DOTAP-Folate Liposome Encapsulation of Adenovirus. ACS Biomater Sci Eng 2022; 8:5199-5209. [PMID: 36395425 DOI: 10.1021/acsbiomaterials.2c00966] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Adenovirus (Ad)-based vectors have shown considerable promise for gene therapy. However, Ad requires the coxsackievirus and adenovirus receptor (CAR) to enter cells efficiently and low CAR expression is found in many human cancers, which hinder adenoviral gene therapies. Here, cationic 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP)-folate liposomes (Df) encapsulating replication-deficient Ad were synthesized, which showed improved transfection efficiency in various CAR-deficient cell lines, including epithelial and hematopoietic cell types. When encapsulating replication-competent oncolytic Ad (TAV255) in DOTAP-folate liposome (TAV255-Df), the adenoviral structural protein, hexon, was readily produced in CAR-deficient cells, and the tumor cell killing ability was 5× higher than that of the non-encapsulated Ad. In CAR-deficient CT26 colon carcinoma murine models, replication-competent TAV255-Df treatment of subcutaneous tumors by intratumoral injection resulted in 67% full tumor remission, prolonged survival, and anti-cancer immunity when mice were rechallenged with cancer cells with no further treatment. The preclinical data shows that DOTAP-folate liposomes could significantly enhance the transfection efficiency of Ad in CAR-deficient cells and, therefore, could be a feasible strategy for applications in cancer treatment.
Collapse
Affiliation(s)
- Ching-Hsin Huang
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Tao Dong
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Abraham T Phung
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Jaimin R Shah
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Christopher Larson
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Ana B Sanchez
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Sarah L Blair
- Moores Cancer Center, University of California San Diego, 3855 Health Sciences Drive, La Jolla, California 92037, United States
| | - Bryan Oronsky
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - William C Trogler
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Tony Reid
- EpicentRx, Inc., 11099 North Torrey Pines Road, Suite 160, La Jolla, California 92037, United States
| | - Andrew C Kummel
- Department of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| |
Collapse
|
43
|
Liu Z, Lv J, Dang Q, Liu L, Weng S, Wang L, Zhou Z, Kong Y, Li H, Han Y, Han X. Engineering neoantigen vaccines to improve cancer personalized immunotherapy. Int J Biol Sci 2022; 18:5607-5623. [PMID: 36263174 PMCID: PMC9576504 DOI: 10.7150/ijbs.76281] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 01/12/2023] Open
Abstract
Immunotherapy treatments harnessing the immune system herald a new era of personalized medicine, offering considerable benefits for cancer patients. Over the past years, tumor neoantigens emerged as a rising star in immunotherapy. Neoantigens are tumor-specific antigens arising from somatic mutations, which are proceeded and presented by the major histocompatibility complex on the cell surface. With the advancement of sequencing technology and bioinformatics engineering, the recognition of neoantigens has accelerated and is expected to be incorporated into the clinical routine. Currently, tumor vaccines against neoantigens mainly encompass peptides, DNA, RNA, and dendritic cells, which are extremely specific to individual patients. Due to the high immunogenicity of neoantigens, tumor vaccines could activate and expand antigen-specific CD4+ and CD8+ T cells to intensify anti-tumor immunity. Herein, we introduce the origin and prediction of neoantigens and compare the advantages and disadvantages of multiple types of neoantigen vaccines. Besides, we review the immunizations and the current clinical research status in neoantigen vaccines, and outline strategies for enhancing the efficacy of neoantigen vaccines. Finally, we present the challenges facing the application of neoantigens.
Collapse
Affiliation(s)
- Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Jinxiang Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Qin Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhaokai Zhou
- Department of Pediatric Urology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 40052, China
| | - Ying Kong
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Huanyun Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yilin Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China.,Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China.,✉ Corresponding author: Xinwei Han.
| |
Collapse
|
44
|
D’Alise AM, Brasu N, De Intinis C, Leoni G, Russo V, Langone F, Baev D, Micarelli E, Petiti L, Picelli S, Fakih M, Le DT, Overman MJ, Shields AF, Pedersen KS, Shah MA, Mukherjee S, Faivre T, Delaite P, Scarselli E, Pace L. Adenoviral-based vaccine promotes neoantigen-specific CD8 + T cell stemness and tumor rejection. Sci Transl Med 2022; 14:eabo7604. [PMID: 35947675 PMCID: PMC9844517 DOI: 10.1126/scitranslmed.abo7604] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Upon chronic antigen exposure, CD8+ T cells become exhausted, acquiring a dysfunctional state correlated with the inability to control infection or tumor progression. In contrast, stem-like CD8+ T progenitors maintain the ability to promote and sustain effective immunity. Adenovirus (Ad)-vectored vaccines encoding tumor neoantigens have been shown to eradicate large tumors when combined with anti-programmed cell death protein 1 (αPD-1) in murine models; however, the mechanisms and translational potential have not yet been elucidated. Here, we show that gorilla Ad vaccine targeting tumor neoepitopes enhances responses to αPD-1 therapy by improving immunogenicity and antitumor efficacy. Single-cell RNA sequencing demonstrated that the combination of Ad vaccine and αPD-1 increased the number of murine polyfunctional neoantigen-specific CD8+ T cells over αPD-1 monotherapy, with an accumulation of Tcf1+ stem-like progenitors in draining lymph nodes and effector CD8+ T cells in tumors. Combined T cell receptor (TCR) sequencing analysis highlighted a broader spectrum of neoantigen-specific CD8+ T cells upon vaccination compared to αPD-1 monotherapy. The translational relevance of these data is supported by results obtained in the first 12 patients with metastatic deficient mismatch repair (dMMR) tumors vaccinated with an Ad vaccine encoding shared neoantigens. Expansion and diversification of TCRs were observed in post-treatment biopsies of patients with clinical response, as well as an increase in tumor-infiltrating T cells with an effector memory signature. These findings indicate a promising mechanism to overcome resistance to PD-1 blockade by promoting immunogenicity and broadening the spectrum and magnitude of neoantigen-specific T cells infiltrating tumors.
Collapse
Affiliation(s)
| | - Nadia Brasu
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,University of Turin, 10060 Turin, Italy
| | - Carlo De Intinis
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | | | - Valentina Russo
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,University of Turin, 10060 Turin, Italy
| | | | - Denis Baev
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | | | - Luca Petiti
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy
| | - Simone Picelli
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Marwan Fakih
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dung T. Le
- Johns Hopkins University, Baltimore, MD 21287, USA
| | | | - Anthony F. Shields
- Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA
| | - Katrina S. Pedersen
- Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | - Elisa Scarselli
- Nouscom SRL, 00128 Rome, Italy,Corresponding author. (L. Pace); (E.S.)
| | - Luigia Pace
- Armenise-Harvard Immune Regulation Unit, Italian Institute for Genomic Medicine, 10060 Candiolo (Turin), Italy,Candiolo Cancer Institute, FPO- IRCCS, 10060 Candiolo (Turin), Italy,Corresponding author. (L. Pace); (E.S.)
| |
Collapse
|
45
|
Ren Y, Miao JM, Wang YY, Fan Z, Kong XB, Yang L, Cheng G. Oncolytic viruses combined with immune checkpoint therapy for colorectal cancer is a promising treatment option. Front Immunol 2022; 13:961796. [PMID: 35911673 PMCID: PMC9334725 DOI: 10.3389/fimmu.2022.961796] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Accepted: 06/27/2022] [Indexed: 11/23/2022] Open
Abstract
Immunotherapy is one of the promising strategies in the treatment of oncology. Immune checkpoint inhibitors, as a type of immunotherapy, have no significant efficacy in the clinical treatment of patients with pMMR/MSS/MSI-L mCRC alone. Therefore, there is an urgent need to find combination therapies that can improve the response rate of immune checkpoint inhibitors. Oncolytic viruses are a new class of cancer drugs that, in addition to directly lysing tumor cells, can facilitate the action of immune checkpoint inhibitors by modulating the tumor microenvironment and transforming “cold” tumors into “hot” ones. The combination of oncolytic viruses and immune checkpoint inhibitors is currently being used in several primary and clinical studies to treat tumors with exciting results. The combination of genetically modified “armed” OV with ICIs is expected to be one of the treatment options for pMMR/MSS/MSI-L mCRC. In this paper, we will analyze the current status of oncolytic viruses and ICIs available for the treatment of CRC. The feasibility of OV in combination with ICI for CRC will be discussed in terms of the mechanism of action of OV in treating tumors.
Collapse
Affiliation(s)
- Yi Ren
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jia-Meng Miao
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan-Yuan Wang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zheng Fan
- Department of Critical Medicine, The First Affiliated Hospital of Suzhou University, Suzhou, China
| | - Xian-Bin Kong
- College of Traditional Chinese medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Long Yang
- Research Center for Infectious Diseases, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| | - Gong Cheng
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, China
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen, China
- *Correspondence: Xian-Bin Kong, ; Long Yang, long ; Gong Cheng,
| |
Collapse
|
46
|
Wang M, Zhao J, Jiang H, Wang X. Tumor-targeted nano-delivery system of therapeutic RNA. MATERIALS HORIZONS 2022; 9:1111-1140. [PMID: 35134106 DOI: 10.1039/d1mh01969d] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The birth of RNAi technology has pioneered actionability at the molecular level. Compared to DNA, RNA is less stable and therefore requires more demanding delivery vehicles. With their flexible size, shape, structure, and accessible surface modification, non-viral vectors show great promise for application in RNA delivery. Different non-viral vectors have different ways of binding to RNA. Low immunotoxicity gives RNA significant advantages in tumor treatment. However, the delivery of RNA still has many limitations in vivo. This manuscript summarizes the size-targeting dependence of different organs, followed by a summary of nanovesicles currently in or undergoing clinical trials. It also reviews all RNA delivery systems involved in the current study, including natural, bionic, organic, and inorganic systems. It summarizes the advantages and disadvantages of different delivery methods, which will be helpful for future RNA vehicle design. It is hoped that this will be helpful for gene therapy of clinical tumors.
Collapse
Affiliation(s)
- Maonan Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Jingzhou Zhao
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Hui Jiang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Xuemei Wang
- State Key Laboratory of Bioelectronics (Chien-Shiung Wu Lab), School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| |
Collapse
|
47
|
Lang F, Schrörs B, Löwer M, Türeci Ö, Sahin U. Identification of neoantigens for individualized therapeutic cancer vaccines. Nat Rev Drug Discov 2022; 21:261-282. [PMID: 35105974 PMCID: PMC7612664 DOI: 10.1038/s41573-021-00387-y] [Citation(s) in RCA: 251] [Impact Index Per Article: 83.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2021] [Indexed: 02/07/2023]
Abstract
Somatic mutations in cancer cells can generate tumour-specific neoepitopes, which are recognized by autologous T cells in the host. As neoepitopes are not subject to central immune tolerance and are not expressed in healthy tissues, they are attractive targets for therapeutic cancer vaccines. Because the vast majority of cancer mutations are unique to the individual patient, harnessing the full potential of this rich source of targets requires individualized treatment approaches. Many computational algorithms and machine-learning tools have been developed to identify mutations in sequence data, to prioritize those that are more likely to be recognized by T cells and to design tailored vaccines for every patient. In this Review, we fill the gaps between the understanding of basic mechanisms of T cell recognition of neoantigens and the computational approaches for discovery of somatic mutations and neoantigen prediction for cancer immunotherapy. We present a new classification of neoantigens, distinguishing between guarding, restrained and ignored neoantigens, based on how they confer proficient antitumour immunity in a given clinical context. Such context-based differentiation will contribute to a framework that connects neoantigen biology to the clinical setting and medical peculiarities of cancer, and will enable future neoantigen-based therapies to provide greater clinical benefit.
Collapse
Affiliation(s)
- Franziska Lang
- TRON Translational Oncology, Mainz, Germany
- Faculty of Biology, Johannes Gutenberg University Mainz, Mainz, Germany
| | | | | | | | - Ugur Sahin
- BioNTech, Mainz, Germany.
- University Medical Center, Johannes Gutenberg University, Mainz, Germany.
| |
Collapse
|
48
|
Abstract
Immune checkpoint inhibitors (ICI) based on anti-CTLA-4 (αCTLA-4) and anti-PD1 (αPD1) are being tested in combination with different therapeutic approaches including other immunotherapies such as neoantigen cancer vaccines (NCV). Here we explored, in two cancer murine models, different therapeutic combinations of ICI with personalized DNA vaccines expressing neoantigens and delivered by electroporation (EP). Anti-cancer efficacy was evaluated using vaccines with or without CD4 epitopes. Therapeutic DNA vaccines showed synergistic effects in different therapeutic protocols including established large tumors. Flow cytometry (FC) was utilized to measure CD8, CD4, Treg, and switched B cells as well as neoantigen-specific immune responses, which were also measured by IFN-γ ELIspot. Immune responses were augmented in combination with αCTLA4 but not with αPD1 in the MC38 tumor-bearing mice, significantly impacting tumor growth. Similarly, neoantigen-specific T cell immune responses were enhanced in combined treatment with αCTLA-4 in the CT26 tumor model where large tumors regressed in all mice, while monotherapy with αCTLA-4 was less efficacious. In line with previous evidence, we observed an increased switched B cells in the spleen of mice treated with αCTLA-4 alone or in combination with NCV. These results support the use of NCV delivered by DNA-EP with αCTLA-4 and suggest a new combined therapy for clinical testing.
Collapse
|
49
|
Wang W, Xu H, Ye Q, Tao F, Wheeldon I, Yuan A, Hu Y, Wu J. Systemic immune responses to irradiated tumours via the transport of antigens to the tumour periphery by injected flagellate bacteria. Nat Biomed Eng 2022; 6:44-53. [PMID: 35058589 DOI: 10.1038/s41551-021-00834-6] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 11/18/2021] [Indexed: 01/09/2023]
Abstract
Because the tumour microenvironment is typically immunosuppressive, the release of tumour antigens mediated by radiotherapy or chemotherapy does not sufficiently activate immune responses. Here we show that, following radiotherapy, the intratumoural injection of a genetically attenuated strain of Salmonella coated with antigen-adsorbing cationic polymer nanoparticles caused the accumulation of tumour antigens at the tumour's periphery. This enhanced the crosstalk between the antigens and dendritic cells, and resulted in large increases in activated ovalbumin-specific dendritic cells in vitro and in systemic antitumour effects, and extended survival in multiple tumour models in mice, including a model of metastasis and recurrence. The antitumour effects were abrogated by the antibody-mediated depletion of CD8+ T cells, indicating that systemic tumour regression was caused by adaptive immune responses. Leveraging flagellate bacteria to transport tumour antigens to the periphery of tumours to potentiate the activation of dendritic cells may open up new strategies for in situ cancer vaccination.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China.,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Haiheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Qingsong Ye
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Feng Tao
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Ian Wheeldon
- Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University and School of Life Sciences, Nanjing University, Nanjing, China. .,Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, China. .,Jiangsu Provincial Key Laboratory for Nano Technology, Nanjing University, Nanjing, China. .,Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, USA.
| |
Collapse
|
50
|
Mørk SK, Kadivar M, Bol KF, Draghi A, Westergaard MCW, Skadborg SK, Overgaard N, Sørensen AB, Rasmussen IS, Andreasen LV, Yde CW, Trolle T, Garde C, Friis-Nielsen J, Nørgaard N, Christensen D, Kringelum JV, Donia M, Hadrup SR, Svane IM. Personalized therapy with peptide-based neoantigen vaccine (EVX-01) including a novel adjuvant, CAF®09b, in patients with metastatic melanoma. Oncoimmunology 2022; 11:2023255. [PMID: 35036074 PMCID: PMC8757480 DOI: 10.1080/2162402x.2021.2023255] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The majority of neoantigens arise from unique mutations that are not shared between individual patients, making neoantigen-directed immunotherapy a fully personalized treatment approach. Novel technical advances in next-generation sequencing of tumor samples and artificial intelligence (AI) allow fast and systematic prediction of tumor neoantigens. This study investigates feasibility, safety, immunity, and anti-tumor potential of the personalized peptide-based neoantigen vaccine, EVX-01, including the novel CD8+ T-cell inducing adjuvant, CAF®09b, in patients with metastatic melanoma (NTC03715985). The AI platform PIONEERTM was used for identification of tumor-derived neoantigens to be included in a peptide-based personalized therapeutic cancer vaccine. EVX-01 immunotherapy consisted of 6 administrations with 5–10 PIONEERTM-predicted neoantigens as synthetic peptides combined with the novel liposome-based Cationic Adjuvant Formulation 09b (CAF®09b) to strengthen T-cell responses. EVX-01 was combined with immune checkpoint inhibitors to augment the activity of EVX-01-induced immune responses. The primary endpoint was safety, exploratory endpoints included feasibility, immunologic and objective responses. This interim analysis reports the results from the first dose-level cohort of five patients. We documented a short vaccine manufacturing time of 48–55 days which enabled the initiation of EVX-01 treatment within 60 days from baseline biopsy. No severe adverse events were observed. EVX-01 elicited long-lasting EVX-01-specific T-cell responses in all patients. Competitive manufacturing time was demonstrated. EVX-01 was shown to be safe and able to elicit immune responses targeting tumor neoantigens with encouraging early indications of a clinical and meaningful antitumor efficacy, warranting further study.
Collapse
Affiliation(s)
- Sofie Kirial Mørk
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Mohammad Kadivar
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Kalijn Fredrike Bol
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Arianna Draghi
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | | | - Nana Overgaard
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | | | | | | | | | | | | | | | - Nis Nørgaard
- Department of Urology, Copenhagen University Hospital, Herlev, Denmark
| | - Dennis Christensen
- Center for Vaccine Research, Statens Serum Institut, Copenhagen, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Sine Reker Hadrup
- Department of Health Technology, Technical University of Denmark- DTU, HEALTH TECH, Lyngby, Denmark
| | - Inge Marie Svane
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| |
Collapse
|