1
|
Cheong KL, Chen L, Lu SY, Sabir A, Chen J, Wang Z, Veeraperumal S, Aweya JJ, Chen XQ, Zhong S, Tan K, Abd El-Aty AM. Structure-function relationship of the brown seaweed Undaria pinnatifida laminaran: Protein kinase C-mediated mucus secretion and gut barrier restoration. Carbohydr Polym 2025; 358:123525. [PMID: 40383584 DOI: 10.1016/j.carbpol.2025.123525] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 05/20/2025]
Abstract
Ulcerative colitis is a chronic inflammatory condition of the intestine characterized by mucosal damage and a compromised epithelial barrier. This study explored the protective and therapeutic potential of laminaran derived from the brown seaweed Undaria pinnatifida in promoting mucin secretion and restoring mucosal barrier integrity. Physicochemical analysis revealed laminaran as having a β-(1 → 3)-linked glucose backbone with β-(1 → 6)-linked branches and a molecular weight of 14.41 kDa. In vitro experiments revealed that laminaran enhanced the expression of mucin-related proteins in a lipopolysaccharide-induced LS174T model. Laminaran also upregulated the expression of sulfotransferases, which are essential for mucin sulfation, and promoted vesicular transport by increasing the expression of vesicle-associated membrane protein 8 and synaptosome-associated protein-23, facilitating mucin secretion. These effects are mediated through the protein kinase C (PKC) pathway, which involves PKCα and PKCβII. In an in vivo model, laminaran alleviated dextran sulfate sodium-induced colitis, increasing mucus thickness and overall intestinal barrier function. These results suggest that laminaran is a promising therapeutic agent for treating ulcerative colitis, suggesting a novel approach to restoring the mucosal barrier and reducing intestinal inflammation. This study lays the groundwork for developing laminaran-based treatments for ulcerative colitis and other intestinal diseases associated with epithelial barrier dysfunction.
Collapse
Affiliation(s)
- Kit-Leong Cheong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China; Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Si-Yuan Lu
- Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Amanullah Sabir
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Zhuo Wang
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China
| | - Suresh Veeraperumal
- Department of Biology, College of Science, Shantou University, Guangdong, China
| | - Jude Juventus Aweya
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Xian-Qiang Chen
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, Guangxi, China.
| | - Saiyi Zhong
- Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, College of Food Science and Technology, Guangdong Ocean University, Zhanjiang. China.
| | - Karsoon Tan
- Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf University, Qinzhou, Guangxi, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| |
Collapse
|
2
|
Rosenfeld L, Neumann N, Bao X, Adam A, Schaefer AS. Entamoeba gingivalis induces gingival cell death, collagen breakdown, and host immune response via VAMP8/-3-driven exocytosis pathways. Infect Immun 2025; 93:e0000525. [PMID: 40116481 PMCID: PMC11977317 DOI: 10.1128/iai.00005-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 02/25/2025] [Indexed: 03/23/2025] Open
Abstract
The protozoan Entamoeba gingivalis commonly colonizes anaerobic periodontal pockets, induces a severe innate immune response, invades gingival mucosa, and kills epithelial cells. E. gingivalis infection is associated with the common oral inflammatory disease periodontitis. DNA variants in vesicle-associated membrane proteins (VAMP) -3 and -8 genes are linked to increased periodontitis risk. These genes mediate host-pathogen interactions, including mucin exocytosis to form protective barriers and matrix metalloproteinase (MMP) secretion in intestinal amoebiasis caused by Entamoeba histolytica. This study aimed to investigate the roles of VAMP3/8 in gingival defense and E. gingivalis infection mechanisms. Clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 gene editing was used to create VAMP3/8-deficient gingival epithelial cells and fibroblasts. Functional analyses included immunofluorescence, enzyme-linked immunosorbent assay (ELISA), cytotoxicity, and collagenase assays. VAMP8 co-localized with mucins in gingival epithelial cells (gECs), and VAMP3 with MMPs in gingival fibroblasts. In gECs, E. gingivalis infection increased mucin (MUC1: 3.6×, MUC21: 14.4×) and interleukin secretion (IL-8, IL-1B: >6×, P = 0.019). VAMP8 deficiency in gECs caused higher cell death (35% vs 4% in controls) with reduced exocytosis of mucins and interleukins. Likewise, E. gingivalis-induced VAMP8 translocation into lipid rafts was lost in VAMP8 knockout cells, validating the participation of VAMP8 in exocytosis. In wild-type but not VAMP3-deficient gingival fibroblasts, E. gingivalis strongly activated collagenases. E. gingivalis effects were more pathogenic than those of the oral anaerobic bacterium Porphyromonas gingivalis. E. gingivalis exploits VAMP8/3-driven exocytosis pathways, driving inflammation and tissue destruction, underscoring its role as a significant periodontal pathogen.
Collapse
Affiliation(s)
- Lea Rosenfeld
- Department of Periodontology, Oral Surgery and Oral Medicine, Universitätsmedizin Berlin, Berlin, Germany
| | - Nico Neumann
- Department of Periodontology, Oral Surgery and Oral Medicine, Universitätsmedizin Berlin, Berlin, Germany
| | - Xin Bao
- Department of Periodontology, Oral Surgery and Oral Medicine, Universitätsmedizin Berlin, Berlin, Germany
| | - Aysegül Adam
- Department of Periodontology, Oral Surgery and Oral Medicine, Universitätsmedizin Berlin, Berlin, Germany
| | - Arne S. Schaefer
- Department of Periodontology, Oral Surgery and Oral Medicine, Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
3
|
Winsor NJ, Bayer G, Singh O, Chan JK, Li LY, Lieng BY, Foerster E, Popovic A, Tsankov BK, Maughan H, Lemire P, Tam E, Streutker C, Chen L, Heaver SL, Ley RE, Parkinson J, Montenegro-Burke JR, Birchenough GMH, Philpott DJ, Girardin SE. Cross-kingdom-mediated detection of intestinal protozoa through NLRP6. Cell Host Microbe 2025; 33:388-407.e9. [PMID: 40043701 DOI: 10.1016/j.chom.2025.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/13/2024] [Accepted: 02/10/2025] [Indexed: 03/15/2025]
Abstract
Intestinal protists are detected by the host innate immune system through mechanisms that remain poorly understood. Here, we demonstrate that Tritrichomonas protozoa induce thickening of the colonic mucus in an NLRP6-, ASC-, and caspase-11-dependent manner, consistent with the activation of sentinel goblet cells. Mucus growth is recapitulated with cecal extracts from Tritrichomonas-infected mice but not purified protozoa, suggesting that NLRP6 may detect infection-induced microbial dysbiosis. In agreement, Tritrichomonas infection causes a shift in the microbiota with the expansion of Bacteroides and Prevotella, and untargeted metabolomics reveals a dramatic increase in several classes of metabolites, including sphingolipids. Finally, using a combination of gnotobiotic mice and ex vivo mucus analysis, we demonstrate that wild-type, but not sphingolipid-deficient, B. thetaiotaomicron is sufficient to induce NLRP6-dependent sentinel goblet cell function, with the greatest effect observed in female mice. Thus, we propose that NLRP6 is a sensor of intestinal protozoa infection through monitoring microbial sphingolipids.
Collapse
Affiliation(s)
- Nathaniel J Winsor
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Giuliano Bayer
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Ojas Singh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Jeremy K Chan
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Lu Yi Li
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Brandon Y Lieng
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | | | - Ana Popovic
- Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - Boyan K Tsankov
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Paul Lemire
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elaine Tam
- Department of Immunology, University of Toronto, Toronto, ON, Canada
| | | | - Lina Chen
- Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Stacey L Heaver
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany
| | - John Parkinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Molecular Medicine, Hospital for Sick Children, Toronto, ON, Canada
| | - J Rafael Montenegro-Burke
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada; Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada
| | - George M H Birchenough
- Department of Medical Biochemistry, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Stephen E Girardin
- Department of Immunology, University of Toronto, Toronto, ON, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Li X, Qin Y, Yue F, Lü X. Comprehensive Analysis of Fecal Microbiome and Metabolomics Uncovered dl-Norvaline-Ameliorated Obesity-Associated Disorders in High-Fat Diet-Fed Obese Mice by Targeting the Gut Microbiota. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:2381-2392. [PMID: 39808000 DOI: 10.1021/acs.jafc.4c06638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Norvaline is a nonproteinogenic amino acid and an important food ingredient supplement for healthy food. In this study, dl-norvaline administration reduced body weight by more than 40% and improved glucose metabolism and energy metabolism in obese mice induced by a high-fat diet (HFD). Combination analysis of microbiome and metabolomics showed that dl-norvaline supplementation regulated gut bacteria structure, such as increasing beneficial bacteria (Mollicutes_RF39, Ruminococcaceae, Bacteroidaceae, Rikenellaceae, Lactobacillaceae, Clostridiaceae_1, uncultured_bacterium_f_Muribaculaceae, and Rikenellaceae_RC9_gut_group) and decreasing harmful bacteria (Fusobacteriia, Desulfovibrionales, Enterobacteriaceae, Burkholderiaceae, Helicobacteraceae, and Veillonellaceae) and modulated the metabolites involved in arachidonic acid metabolism, thus further promoting short-chain fatty acid production and improving gut barrier, thereby inflammatory responses and oxidative stress were ameliorated. In addition, the pseudogerm-free mouse model verified that dl-norvaline ameliorated obesity-associated disorders in HFD-fed obese mice by targeting gut microbiota. These results clarified that dl-norvaline may be promising for developing and innovating potential functional food products.
Collapse
Affiliation(s)
- Xin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
- College of Life Sciences, Northwestern Polytechnical University, Xi'an, 710129 Shaanxi, China
| | - Yanting Qin
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Fangfang Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, 712100 Shaanxi, China
- Shaanxi Engineering Research Centre of Dairy Products Quality, Safety and Health, Yangling, 712100 Shaanxi, China
| |
Collapse
|
5
|
Zhang L, Wang K, Huang L, Deng B, Chen C, Zhao K, Wang W. Ganoderic Acid A Alleviates Severe Acute Pancreatitis by Modulating Gut Homeostasis and Inhibiting TLR4-NLRP3 Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1563-1579. [PMID: 39811933 PMCID: PMC11740897 DOI: 10.1021/acs.jafc.4c07635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/19/2024] [Accepted: 12/20/2024] [Indexed: 01/30/2025]
Abstract
Background Severe acute pancreatitis (SAP) manifests as a critical state marked by acute abdominal symptoms, often associated with intestinal barrier dysfunction, exacerbating SAP retroactively. Ganoderic acid A (GAA) demonstrates anti-inflammatory properties in various inflammatory disorders. Nonetheless, its potential therapeutic impact on SAP and the underlying mechanisms remain unexplored. Methods In both wild-type and TLR4-/- mice, experimental SAP was induced using caerulein plus lipopolysaccharide. Caerulein injections were administered intraperitoneally following 7 days of intragastric GAA administration. Additionally, the potential mechanisms by which GAA ameliorates SAP were further investigated using fecal microbiota transplantation and TLR4-overexpressing IEC-6 cells. Results We observed that GAA treatment significantly ameliorated serum levels of amylase, lipase, and pro-inflammatory cytokines (IL-1β, IL-6, and TNF-α) in SAP mice. Pretreatment with GAA mitigated pathological injuries and reduced M1 macrophage and neutrophil infiltration in pancreatic or ileal tissues. Additionally, GAA treatment down-regulated TLR4-MAPK/NF-κB signaling and NLRP3 inflammasome activation in the pancreatic and ileal tissues of SAP mice. The results further revealed that the gavage of GAA decreased bacterial translocation (Escherichia coli and EUB338), repaired intestinal barrier dysfunction (ZO-1, occludin, DAO, and FITC), increased lysozyme and MUC2 expression, and raised the levels of short-chain fatty acids. Analysis of the gut microbiome showed that the beneficial effects of GAA treatment were associated with improvements in pancreatitis-associated gut microbiota dysbiosis, characterized by notable increases in α-diversity and the abundance of probiotics such as Akkermansia, GCA-900066575, and Parvibacter. Fecal transplantation experiments further confirmed that GAA exerts protective effects by modulating intestinal flora. The protective role of GAA in intestinal and pancreatic injuries is mediated by the inhibition of TLR4 signaling, as further evidenced in TLR4-deficient mice and TLR4-overexpressed IEC-6 cells. The results of docking indicated that GAA interacts with TLR4 via a hydrophobic interaction. Conclusions The study demonstrates that GAA significantly alleviates SAP through its anti-inflammatory and antioxidant capacities, as well as by restoring intestinal homeostasis, thereby providing insights into novel treatments for SAP.
Collapse
Affiliation(s)
- Lilong Zhang
- Department
of General Surgery, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- General
Surgery Laboratory, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kunpeng Wang
- Department
of General Surgery, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- General
Surgery Laboratory, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Li Huang
- Department
of Gastroenterology, Renmin Hospital of
Wuhan University, Wuhan, Hubei 430060, China
| | - Beiying Deng
- Department
of Gastroenterology, Renmin Hospital of
Wuhan University, Wuhan, Hubei 430060, China
| | - Chen Chen
- Department
of General Surgery, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- General
Surgery Laboratory, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Kailiang Zhao
- Department
of General Surgery, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- General
Surgery Laboratory, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Weixing Wang
- Department
of General Surgery, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Hubei
Key Laboratory of Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
- General
Surgery Laboratory, Renmin Hospital of Wuhan
University, Wuhan, Hubei 430060, China
- Central
Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
6
|
Jing W, Dong S, Xu Y, Liu J, Ren J, Liu X, Zhu M, Zhang M, Shi H, Li N, Xia P, Lu H, Wang S. Gut microbiota-derived tryptophan metabolites regulated by Wuji Wan to attenuate colitis through AhR signaling activation. Acta Pharm Sin B 2025; 15:205-223. [PMID: 40041900 PMCID: PMC11873645 DOI: 10.1016/j.apsb.2024.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/14/2024] [Accepted: 11/18/2024] [Indexed: 04/29/2025] Open
Abstract
Disruption of the intestinal mucosal barrier caused by gut dysbiosis and metabolic imbalance is the underlying pathology of inflammatory bowel disease (IBD). Traditional Chinese medicine Wuji Wan (WJW) is commonly used to treat digestive system disorders and showed therapeutic potential for IBD. In this interdisciplinary study, we aim to investigate the pharmacological effects of WJW against experimental colitis by combining functional metabolomics and gut-microbiota sequencing techniques. Treatment with WJW altered the profile of the intestinal microbiota and notably increased the abundance of Lactobacillus, thereby facilitating the conversion of tryptophan into indole-3-acetic acid (IAA) and indoleacrylic acid (IA). These indole derivatives activated the aryl hydrocarbon receptor (AhR) pathway, which reduced colonic inflammation and restored the expression of intestinal barrier proteins. Interestingly, the beneficial effects of WJW on gut barrier function improvement and tryptophan metabolism were disappeared in the absence of gut microbiota. Finally, pre-treatment with the AhR antagonist CH-223191 confirmed the essential role of IAA-mediated AhR activation in the therapeutic effects of WJW. Overall, WJW enhanced intestinal barrier function and reduced colonic inflammation in a murine colitis model by modulating Lactobacillus-IAA-AhR signaling pathway. This study provides novel insights into colitis pathogenesis and presents an effective therapeutic and preventive approach against IBD.
Collapse
Affiliation(s)
- Wanghui Jing
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Sijing Dong
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Yinyue Xu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Jingjing Liu
- School of Chinese Medicine, Hong Kong Traditional Chinese Medicine Phenome Center, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
| | - Jiawei Ren
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Department of Medicament, College of Medicine, Tibet University, Lhasa 850012, China
| | - Xue Liu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Min Zhu
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Menggai Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Hehe Shi
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Na Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
| | - Peng Xia
- Department of Surgical Oncology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Haitao Lu
- School of Chinese Medicine, Hong Kong Traditional Chinese Medicine Phenome Center, State Key Laboratory of Environmental and Biological Analysis, Hong Kong Baptist University, Hong Kong 999077, China
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sicen Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an 710061, China
- Shaanxi Engineering Research Center of Cardiovascular Drugs Screening & Analysis, Xi'an 710061, China
- Department of Medicament, College of Medicine, Tibet University, Lhasa 850012, China
| |
Collapse
|
7
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin SI, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. JCI Insight 2024; 10:e181481. [PMID: 39699961 PMCID: PMC11948581 DOI: 10.1172/jci.insight.181481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 12/16/2024] [Indexed: 12/21/2024] Open
Abstract
Crohn's disease (CD) is the chronic inflammation of the terminal ileum and colon triggered by a dysregulated immune response to bacteria, but insights into specific molecular perturbations at the critical bacteria-epithelium interface are limited. Here, we report that the membrane mucin MUC17 protected small intestinal enterocytes against commensal and pathogenic bacteria. In noninflamed CD ileum, reduced MUC17 levels and a compromised glycocalyx barrier allowed recurrent bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine particularly prone to atypical bacterial infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and in the extraintestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in patients with CD. Our findings highlight MUC17 as an essential region-specific line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Sara I.M. Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
8
|
Shen JW, Pan PK, Chen YY, Nan FH, Wu YS. Characteristics of Gracilariopsis lemaneiformis hydrocolloids and their effects on intestine PPAR signaling and liver lipid metabolism in Oreochromis niloticus: A multiomics analysis. Heliyon 2024; 10:e40416. [PMID: 39669144 PMCID: PMC11635660 DOI: 10.1016/j.heliyon.2024.e40416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 12/14/2024] Open
Abstract
This study evaluated the effects of Gracilariopsis lemaneiformis hydrocolloids on Nile tilapia (Oreochromis niloticus) using an advanced multiomics approach (transcriptome and proteome) linked with genomic isoform structure to elucidate the biofunctions of G. lemaneiformis hydrocolloids. The results showed that G. lemaneiformis hydrocolloids did not affect growth, as indicated by the nonsignificant differences in growth and blood biochemical indicators. Regarding the response, both intestine and liver tissues were assessed. These findings indicate that 20 % G. lemaneiformis hydrocolloids enhanced cytokine expression, which may contribute to a biological function in the intestine and liver of O. niloticus. Genome and proteome profiles indicated that G. lemaneiformis hydrocolloids upregulated the intestine and liver peroxisome proliferator-activated receptor (PPAR) signaling pathway, nucleocytoplasmic transport, steroid biosynthesis, and histidine metabolism. In contrast, co-factor biosynthesis, nucleocytoplasmic transport, tryptophan metabolism, arginine and proline metabolism, arginine biosynthesis, and ribosome activity were downregulated. These findings indicate that G. lemaneiformis hydrocolloids significantly affect liver lipid and carbohydrate metabolism. Proteomics analysis revealed that G. lemaneiformis hydrocolloids upregulated the PPAR signaling pathway, playing a crucial role in lipid metabolism. In summary, 20 % G. lemaneiformis hydrocolloids are primarily involved in modulating the intestine and liver PPAR signaling pathway to regulate lipid metabolism.
Collapse
Affiliation(s)
- Jia-Wei Shen
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Po-Kai Pan
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| | - Yin-Yu Chen
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Fan-Hua Nan
- Department of Aquaculture, National Taiwan Ocean University, Keelung, 202301, Taiwan
| | - Yu-Sheng Wu
- Department of Aquaculture, National Pingtung University of Science and Technology, Pingtung, 912301, Taiwan
| |
Collapse
|
9
|
Liu S, Yin J, Wan D, Yin Y. The Role of Iron in Intestinal Mucus: Perspectives from Both the Host and Gut Microbiota. Adv Nutr 2024; 15:100307. [PMID: 39341502 PMCID: PMC11533511 DOI: 10.1016/j.advnut.2024.100307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024] Open
Abstract
Although research on the role of iron in host immunity has a history spanning decades, it is only relatively recently that attention has been directed toward the biological effects of iron on the intestinal mucus layer, prompted by an evolving understanding of the role of this material in immune defense. The mucus layer, secreted by intestinal goblet cells, covers the intestinal epithelium, and given its unique location, interactions between the host and gut microbiota, as well as among constituent microbiota, occur frequently within the mucus layer. Iron, as an essential nutrient for the vast majority of life forms, regulates immune responses from both the host and microbial perspectives. In this review, we summarize the iron metabolism of both the host and gut microbiota and describe how iron contributes to intestinal mucosal homeostasis via the intestinal mucus layer with respect to both host and constituent gut microbiota. The findings described herein offer a new perspective on iron-mediated intestinal mucosal barrier function.
Collapse
Affiliation(s)
- Shuan Liu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jie Yin
- College of Animal Science and Technology, Hunan Agriculture University, Changsha, China
| | - Dan Wan
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China; University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
10
|
Zhang G, Song D, Ma R, Li M, Liu B, He Z, Fu Q. Artificial mucus layer formed in response to ROS for the oral treatment of inflammatory bowel disease. SCIENCE ADVANCES 2024; 10:eado8222. [PMID: 39058786 PMCID: PMC11277472 DOI: 10.1126/sciadv.ado8222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024]
Abstract
The artificial mucus layer, such as hydrogels, used to repair the damaged intestinal barrier, is a promising treatment for inflammatory bowel disease (IBD). However, the currently reported hydrogel-based artificial barriers are administered via rectal injection, causing unnecessary discomfort to patients. Herein, we report an oral hydrogel precursor solution based on thiol-modified hyaluronic acid (HASH). Owing to the reactive oxygen species (ROS)-responsive gelling behavior, our precursor solution formed an artificial mucus coating over the inflamed regions of the intestines, blocking microbial invasion and reducing abnormally activated immune responses. Notably, HASH also modulated the gut microbiota, including increasing the diversity and enhancing the abundance of short-chain fatty acid-associated bacteria, which play a key role in gut homeostasis. We believe that the ROS-responsive artificial mucus layer is a promising strategy for the oral treatment of IBD.
Collapse
Affiliation(s)
- Guangshuai Zhang
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Dandan Song
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Ruilong Ma
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Mo Li
- Liaoning Institute for Drug Control, No. 7 Chongshan West Road, Shenyang 110016, China
| | - Bingyang Liu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
| | - Zhonggui He
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Qiang Fu
- Wuya College of Innovation, Shenyang Pharmaceutical University, No. 103, Wenhua Road, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| |
Collapse
|
11
|
Wang Y, Han J, Yang G, Zheng S, Zhou G, Liu X, Cao X, Li G, Zhang B, Xie Z, Li L, Zhang M, Li X, Chen M, Zhang S. Therapeutic potential of the secreted Kazal-type serine protease inhibitor SPINK4 in colitis. Nat Commun 2024; 15:5874. [PMID: 38997284 PMCID: PMC11245600 DOI: 10.1038/s41467-024-50048-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
Mucus injury associated with goblet cell (GC) depletion constitutes an early event in inflammatory bowel disease (IBD). Using single-cell sequencing to detect critical events in mucus dysfunction, we discover that the Kazal-type serine protease inhibitor SPINK4 is dynamically regulated in colitic intestine in parallel with disease activities. Under chemically induced colitic conditions, the grim status in Spink4-conditional knockout mice is successfully rescued by recombinant murine SPINK4. Notably, its therapeutic potential is synergistic with existing TNF-α inhibitor infliximab in colitis treatment. Mechanistically, SPINK4 promotes GC differentiation using a Kazal-like motif to modulate EGFR-Wnt/β-catenin and -Hippo pathways. Microbiota-derived diacylated lipoprotein Pam2CSK4 triggers SPINK4 production. We also show that monitoring SPINK4 in circulation is a reliable noninvasive technique to distinguish IBD patients from healthy controls and assess disease activity. Thus, SPINK4 serves as a serologic biomarker of IBD and has therapeutic potential for colitis via intrinsic EGFR activation in intestinal homeostasis.
Collapse
Affiliation(s)
- Ying Wang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Jing Han
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China
| | - Guang Yang
- Department of Minimally Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China
| | - Shuhui Zheng
- Research Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Gaoshi Zhou
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xinjuan Liu
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Xiaocang Cao
- Department of Hepato-Gastroenterology, Tianjin Medical University General Hospital, Tianjin Medical University, Tianjin, P. R. China
| | - Guang Li
- Department of Gastroenterology, Beijing Chaoyang Hospital, Capital Medical University, Chaoyang District, Beijing, P. R. China
| | - Bowen Zhang
- College of Life Sciences, Beijing Normal University, Beijing, P. R. China
| | - Zhuo Xie
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Li Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Mudan Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Xiaoling Li
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Minhu Chen
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China
| | - Shenghong Zhang
- Division of Gastroenterology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P. R. China.
- Division of Gastroenterology, Guangxi Hospital Division of The First Affiliated Hospital, Sun Yat-sen University, Nanning, P. R. China.
| |
Collapse
|
12
|
Dai L, Cao X, Miao X, Yang X, Zhang J, Shang X. The chemical composition, protective effect of Rheum officinale leaf juice and its mechanism against dextran sulfate sodium-induced ulcerative colitis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155653. [PMID: 38688143 DOI: 10.1016/j.phymed.2024.155653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/18/2024] [Accepted: 04/17/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Rhubarb is widely distributed and cultivated worldwide, and its leaves presented antioxidant activity and could be used as food additive. However, the chemical ingredients, and protective effect of Rheum officinale leaf juice (JROL) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) are still unclear. PURPOSE This paper sought to the characterization and functional properties of JROL, and explore the underlying mechanism on UC mice. METHODS UPLC-ESI-Q-TOF/MS and other analytical instruments were employed to determine the chemical ingredients of JROL. After inducing UC model using 3% DSS, multiple biological methods were used to evaluate its protective effect and the potential mechanism. RESULTS JROL is rich in proximate compositions and minerals and has high nutritional value, and contains reducing sugars, polysaccharides and pectin. Fifteen compounds were identified using UPLC-ESI-Q-TOF/MS. Among them, rutin has the highest content (2.22 %) in UPLC analysis. JROL presented protective effect on DSS-induced UC, and alleviated morphological alterations and ultra-structural feature of tissue, and the polysaccharides and flavonoids may contribute to its protective effect. JROL inhibited NF-κB/NLRP3 signaling pathway to alleviate inflammatory response, oxidative stress and intestinal injury by decreasing the expression of p-p65, p-IκBα, NLRP3, ASC, etc.. Moreover, it up-regulated the expression of tight junction proteins, and re-balanced the disturbance of gut microbiota to regulate the inflammatory response. Finally, a correlation among the inflammatory response, NF-κB/NLRP3 pathway and gut microbiota was established. Moreover, JROL presented the safety in the acute toxicity test. CONCLUSION JROL could be used as a potential new source for treating UC.
Collapse
Affiliation(s)
- Lixia Dai
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China
| | - Xinyuan Cao
- People's Hospital of Ningxia Hui Autonomous Region, Ningxia Medical University, Yingchuan 750011, PR China
| | - Xiaolou Miao
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Xiaorong Yang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| | - Xiaofei Shang
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China; College of Veterinary Medicine, Gansu Agricultural Univerisity, Lanzhou 730070, PR China.
| |
Collapse
|
13
|
Huang Z, Yao W, He W, Pan J, Chai W, Wang B, Jia Z, Fan X, Wang W, Zhang W. Moniezia benedeni drives the SNAP-25 expression of the enteric nerves in sheep's small intestine. BMC Vet Res 2024; 20:283. [PMID: 38956647 PMCID: PMC11218246 DOI: 10.1186/s12917-024-04140-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/17/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND The neuroimmune network plays a crucial role in regulating mucosal immune homeostasis within the digestive tract. Synaptosome-associated protein 25 (SNAP-25) is a presynaptic membrane-binding protein that activates ILC2s, initiating the host's anti-parasitic immune response. METHODS To investigate the effect of Moniezia benedeni (M. benedeni) infection on the distribution of SNAP-25 in the sheep's small intestine, the recombinant plasmid pET-28a-SNAP-25 was constructed and expressed in BL21, yielding the recombinant protein. Then, the rabbit anti-sheep SNAP-25 polyclonal antibody was prepared and immunofluorescence staining was performed with it. The expression levels of SNAP-25 in the intestines of normal and M. benedeni-infected sheep were detected by ELISA. RESULTS The results showed that the SNAP-25 recombinant protein was 29.3 KDa, the titer of the prepared immune serum reached 1:128,000. It was demonstrated that the rabbit anti-sheep SNAP-25 polyclonal antibody could bind to the natural protein of sheep SNAP-25 specifically. The expression levels of SNAP-25 in the sheep's small intestine revealed its primary presence in the muscular layer and lamina propria, particularly around nerve fibers surrounding the intestinal glands. Average expression levels in the duodenum, jejunum, and ileum were 130.32 pg/mg, 185.71 pg/mg, and 172.68 pg/mg, respectively. Under conditions of M. benedeni infection, the spatial distribution of SNAP-25-expressing nerve fibers remained consistent, but its expression level in each intestine segment was increased significantly (P < 0.05), up to 262.02 pg/mg, 276.84 pg/mg, and 326.65 pg/mg in the duodenum, jejunum, and ileum, and it was increased by 101.06%, 49.07%, and 89.16% respectively. CONCLUSIONS These findings suggest that M. benedeni could induce the SNAP-25 expression levels in sheep's intestinal nerves significantly. The results lay a foundation for further exploration of the molecular mechanism by which the gastrointestinal nerve-mucosal immune network perceives parasites in sheep.
Collapse
Affiliation(s)
- Zhen Huang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanling Yao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wanhong He
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Jing Pan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenzhu Chai
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Baoshan Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Zhitao Jia
- People's Government of Heisongyi Township, Wuwei, 733000, China
| | - Xiping Fan
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wenhui Wang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China
| | - Wangdong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, 730070, China.
| |
Collapse
|
14
|
Zhang H, Zhang T, Huang X, Liu C, Ma S, Li S, Li Y, Liu J, Du Z, Yang M. Oral Synergism of Egg-White-Derived Peptides (EWDP) and Curcumin for Colitis Mitigation via Polysaccharide/Cyclodextrin Metal-Organic Framework-Based Assemblies. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11140-11152. [PMID: 38703140 DOI: 10.1021/acs.jafc.4c01346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2024]
Abstract
Recently, oral deliverable strategies of multiple nutraceuticals for ulcerative colitis (UC) mitigation have attracted increasing attention. This study aimed to fabricate facile oral assemblies loaded with egg-white-derived peptides (EWDP) and curcumin based on carboxymethyl chitosan (CMCS) and an γ-cyclodextrin metal-organic framework (MOF). Herein, outer CMCS could coassemble with EWDP (both nutraceuticals and building blocks) into cobweb-like fibrils to promote bridging with inner MOF via coordinative noncovalent interactions (hydrogen bonding, hydrophobic interaction, and electrostatic interaction). Compared with conventional γ-cyclodextrin/MOF-based composites, the above coassembly could also endow the biocompatible assemblies with superior nanoscale colloidal properties, processing applicability (curcumin storage stability, bioaccessibility, and aqueous solubility), and bioactivity. Moreover, the oral synergism of EWDP and curcumin (initially nonsynergistic) for UC mitigation was achieved by alleviating inflammatory damage and gut microbiota imbalance. Overall, the novel assemblies could be a promising amplifier and platform to facilitate oral formulations of various nutraceuticals for food processing and UC relief.
Collapse
Affiliation(s)
- Hui Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Ting Zhang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Xinyi Huang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Chunmei Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Sitong Ma
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Shanglin Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Yajuan Li
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jingbo Liu
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Zhiyang Du
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Meng Yang
- Jilin Provincial Key Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
15
|
Yin N, Xu B, Huang Z, Fu Y, Huang H, Fan J, Huang C, Mei Q, Zeng Y. Inhibition of Pck1 in intestinal epithelial cells alleviates acute pancreatitis via modulating intestinal homeostasis. FASEB J 2024; 38:e23618. [PMID: 38651689 DOI: 10.1096/fj.202400039r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/22/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
Intestinal barrier dysfunction usually occurred in acute pancreatitis (AP) but the mechanism remains unclear. In this study, RNA sequencing of ileum in L-arginine-induced AP mice demonstrated that phosphoenolpyruvate kinase 1 (Pck1) was significantly up-regulated. Increased Pck1 expression in intestinal epithelial cells (IECs) was further validated in ileum of AP mice and duodenum of AP patients. In AP mice, level of Pck1 was positively correlated with pancreatic and ileal histopathological scores, serum amylase activity, and intestinal permeability (serum diamine oxidase (DAO), D-lactate, and endotoxin). In AP patients, level of Pck1 had a positive correlation with Ranson scores, white blood cell count and C-reactive protein. Inhibition of Pck1 by 3-Mercaptopicolinic acid hydrochloride (3-MPA) alleviated pancreatic and ileal injuries in AP mice. AP + 3-MPA mice showed improved intestinal permeability, including less epithelial apoptosis, increased tight junction proteins (TJPs) expression, decreased serum DAO, D-lactate, endotoxin, and FITC-Dextran levels, and reduced bacteria translocation. Lysozyme secreted by Paneth cells and mucin2 (MUC2) secretion in goblet cells were also partly restored in AP + 3-MPA mice. Meanwhile, inhibition of Pck1 improved intestinal immune response during AP, including elevation of M2/M1 macrophages ratio and secretory immunoglobulin A (sIgA) and reduction in neutrophils infiltration. In vitro, administration of 3-MPA dramatically ameliorated inflammation and injuries of epithelial cells in enteroids treated by LPS. In conclusion, inhibition of Pck1 in IECs might alleviate AP via modulating intestinal homeostasis.
Collapse
Affiliation(s)
- Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Zehua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huizheng Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Shanghai General Hospital of Nanjing Medical University, Shanghai, China
| | - Junjie Fan
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunlan Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Layunta E, Jäverfelt S, van de Koolwijk FC, Sivertsson M, Dolan B, Arike L, Thulin S, Vallance BA, Pelaseyed T. MUC17 is an essential small intestinal glycocalyx component that is disrupted in Crohn's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.578867. [PMID: 38405862 PMCID: PMC10888976 DOI: 10.1101/2024.02.08.578867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Crohn's disease (CD) is the chronic inflammation of the ileum and colon triggered by bacteria, but insights into molecular perturbations at the bacteria-epithelium interface are limited. We report that membrane mucin MUC17 protects small intestinal enterocytes against commensal and pathogenic bacteria. In non-inflamed CD ileum, reduced MUC17 levels correlated with a compromised glycocalyx, allowing bacterial contact with enterocytes. Muc17 deletion in mice rendered the small intestine prone to atypical infection while maintaining resistance to colitis. The loss of Muc17 resulted in spontaneous deterioration of epithelial homeostasis and extra-intestinal translocation of bacteria. Finally, Muc17-deficient mice harbored specific small intestinal bacterial taxa observed in CD. Our findings highlight MUC17 as an essential line of defense in the small intestine with relevance for early epithelial defects in CD.
Collapse
Affiliation(s)
- Elena Layunta
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sofia Jäverfelt
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Fleur C. van de Koolwijk
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Molly Sivertsson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Brendan Dolan
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Liisa Arike
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Sara Thulin
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V5Z 4H4, Canada
| | - Thaher Pelaseyed
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Box 440, 405 30 Gothenburg, Sweden
| |
Collapse
|
17
|
Gao C, Koko MY, Hong W, Gankhuyag J, Hui M, Gantumur MA, Dong N. Protective Properties of Intestinal Alkaline Phosphatase Supplementation on the Intestinal Barrier: Interactions and Effects. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27-45. [PMID: 37964463 DOI: 10.1021/acs.jafc.3c05119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
The intestinal barrier is critical for maintaining intestinal homeostasis, and its dysfunction is associated with various diseases. Recent findings have revealed the multifunctional role of intestinal alkaline phosphatase (IAP) in diverse biological processes, including gut health maintenance and function. This review summarizes the protective effects of IAP on intestinal barrier integrity, encompassing the physical, chemical, microbial, and immune barriers. We discuss the results and insights from in vitro, animal model, and clinical studies as well as the available evidence regarding the impact of diet on IAP activity and expression. IAP can also be used as an indicator to assess intestinal-barrier-related diseases. Further research into the mechanisms of action and long-term health effects of IAP in maintaining overall intestinal health is essential for its future use as a dietary supplement or functional component in medical foods.
Collapse
Affiliation(s)
- Chenzhe Gao
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Marwa Yagoub Koko
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Weichen Hong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Javzan Gankhuyag
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Mizhou Hui
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Munkh-Amgalan Gantumur
- College of Food, Northeast Agricultural University, Harbin, People's Republic of China 150030
| | - Na Dong
- Laboratory of Molecular Nutrition and Immunity, College of Animal Science and Technology, Northeast Agricultural University, Harbin, People's Republic of China 150030
| |
Collapse
|
18
|
Bourragat A, Escoula Q, Bellenger S, Zemb O, Beaumont M, Chaumonnot K, Farine JP, Jacotot E, Bonnotte A, Avoscan L, Lherminier J, Luo K, Narce M, Bellenger J. The transplantation of the gut microbiome of fat-1 mice protects against colonic mucus layer disruption and endoplasmic reticulum stress induced by high fat diet. Gut Microbes 2024; 16:2356270. [PMID: 38797998 PMCID: PMC11135845 DOI: 10.1080/19490976.2024.2356270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
High-fat diets alter gut barrier integrity, leading to endotoxemia by impacting epithelial functions and inducing endoplasmic reticulum (ER) stress in intestinal secretory goblet cells. Indeed, ER stress, which is an important contributor to many chronic diseases such as obesity and obesity-related disorders, leads to altered synthesis and secretion of mucins that form the protective mucus barrier. In the present study, we investigated the relative contribution of omega-3 polyunsaturated fatty acid (PUFAs)-modified microbiota to alleviating alterations in intestinal mucus layer thickness and preserving gut barrier integrity. Male fat-1 transgenic mice (exhibiting endogenous omega-3 PUFAs tissue enrichment) and wild-type (WT) littermates were fed either an obesogenic high-fat diet (HFD) or a control diet. Unlike WT mice, HFD-fed fat-1 mice were protected against mucus layer alterations as well as an ER stress-mediated decrease in mucin expression. Moreover, cecal microbiota transferred from fat-1 to WT mice prevented changes in the colonic mucus layer mainly through colonic ER stress downregulation. These findings highlight a novel feature of the preventive effects of omega-3 fatty acids against intestinal permeability in obesity-related conditions.
Collapse
Affiliation(s)
- Amina Bourragat
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Quentin Escoula
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
- Valorex, La Messayais, Combourtillé, France
| | - Sandrine Bellenger
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Olivier Zemb
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Martin Beaumont
- GenPhySE, Université de Toulouse, INRAE, ENVT, Castanet-Tolosan, France
| | - Killian Chaumonnot
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
| | - Jean-Pierre Farine
- Centre des Sciences du Goût et de l’Alimentation, UMR6265 CNRS, UMR1324 INRA, Université de Bourgogne, Dijon, France
| | - Emmanuel Jacotot
- L’Institut Agro Dijon, PAM UMR A 02.102, Université de Bourgogne, Dijon, France
| | - Aline Bonnotte
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Laure Avoscan
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Jeanine Lherminier
- Agroécologie, L’Institut Agro Dijon, CNRS, INRAE, Plateforme DimaCell, Dijon, France
| | - Kangjia Luo
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Michel Narce
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| | - Jérôme Bellenger
- CTM UMR1231, Université de Bourgogne, Dijon, France
- CTM UMR1231, INSERM, Dijon, France
- LipSTIC LabEx, FCS Bourgogne-Franche Comté, Dijon, France
| |
Collapse
|
19
|
Zhang S, Wang Q, Ye J, Fan Q, Lin X, Gou Z, Azzam MM, Wang Y, Jiang S. Transcriptome and proteome profile of jejunum in chickens challenged with Salmonella Typhimurium revealed the effects of dietary bilberry anthocyanin on immune function. Front Microbiol 2023; 14:1266977. [PMID: 38053560 PMCID: PMC10694457 DOI: 10.3389/fmicb.2023.1266977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/13/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The present study investigated the effects of bilberry anthocyanin (BA) on immune function when alleviating Salmonella Typhimurium (S. Typhimurium) infection in chickens. Methods A total of 180 newly hatched yellow-feathered male chicks were assigned to three groups (CON, SI, and SI + BA). Birds in CON and SI were fed a basal diet, and those in SI + BA were supplemented with 100 mg/kg BA for 18 days. Birds in SI and SI + BA received 0.5 ml suspension of S. Typhimurium (2 × 109 CFU/ml) by oral gavage at 14 and 16 days of age, and those in CON received equal volumes of sterile PBS. Results At day 18, (1) dietary BA alleviated weight loss of chickens caused by S. Typhimurium infection (P < 0.01). (2) Supplementation with BA reduced the relative weight of the bursa of Fabricius (P < 0.01) and jejunal villus height (P < 0.05) and increased the number of goblet cells (P < 0.01) and the expression of MUC2 (P < 0.05) in jejunal mucosa, compared with birds in SI. (3) Supplementation with BA decreased (P < 0.05) the concentration of immunoglobulins and cytokines in plasma (IgA, IL-1β, IL-8, and IFN-β) and jejunal mucosa (IgG, IgM, sIgA, IL-1β, IL-6, IL-8, TNF-α, IFN-β, and IFN-γ) of S. Typhimurium-infected chickens. (4) BA regulated a variety of biological processes, especially the defense response to bacteria and humoral immune response, and suppressed cytokine-cytokine receptor interaction and intestinal immune network for IgA production pathways by downregulating 6 immune-related proteins. Conclusion In summary, the impaired growth performance and disruption of jejunal morphology caused by S. Typhimurium were alleviated by dietary BA by affecting the expression of immune-related genes and proteins, and signaling pathways are related to immune response associated with immune cytokine receptors and production in jejunum.
Collapse
Affiliation(s)
- Sheng Zhang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qin Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Jinling Ye
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Qiuli Fan
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Xiajing Lin
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Zhongyong Gou
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Mahmoud M. Azzam
- Department of Animal Production College of Food and Agriculture Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Yibing Wang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| | - Shouqun Jiang
- State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
20
|
Zheng T, Hao H, Liu Q, Li J, Yao Y, Liu Y, Zhang T, Zhang Z, Yi H. Effect of Extracelluar Vesicles Derived from Akkermansia muciniphila on Intestinal Barrier in Colitis Mice. Nutrients 2023; 15:4722. [PMID: 38004116 PMCID: PMC10674789 DOI: 10.3390/nu15224722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic and recurrent disease. It has been observed that the incidence and prevalence of IBD are increasing, which consequently raises the risk of developing colon cancer. Recently, the regulation of the intestinal barrier by probiotics has become an effective treatment for colitis. Akkermansia muciniphila-derived extracellular vesicles (Akk EVs) are nano-vesicles that contain multiple bioactive macromolecules with the potential to modulate the intestinal barrier. In this study, we used ultrafiltration in conjunction with high-speed centrifugation to extract Akk EVs. A lipopolysaccharide (LPS)-induced RAW264.7 cell model was established to assess the anti-inflammatory effects of Akk EVs. It was found that Akk EVs were able to be absorbed by RAW264.7 cells and significantly reduce the expression of nitric oxide (NO), TNF-α, and IL-1β (p < 0.05). We explored the preventative effects on colitis and the regulating effects on the intestinal barrier using a mouse colitis model caused by dextran sulfate sodium (DSS). The findings demonstrated that Akk EVs effectively prevented colitis symptoms and reduced colonic tissue injury. Additionally, Akk EVs significantly enhanced the effectiveness of the intestinal barrier by elevating the expression of MUC2 (0.53 ± 0.07), improving mucus integrity, and reducing intestinal permeability (p < 0.05). Moreover, Akk EVs increased the proportion of the beneficial bacteria Firmicutes (33.01 ± 0.09%) and downregulated the proportion of the harmful bacteria Proteobacteria (0.32 ± 0.27%). These findings suggest that Akk EVs possess the ability to regulate immune responses, protect intestinal barriers, and modulate the gut microbiota. The research presents a potential intervention approach for Akk EVs to prevent colitis.
Collapse
Affiliation(s)
- Ting Zheng
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Haining Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Qiqi Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Jiankun Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yukun Yao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yisuo Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Tai Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Zhe Zhang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
| | - Huaxi Yi
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266000, China; (T.Z.); (H.H.); (Q.L.); (J.L.); (Y.Y.); (Y.L.); (T.Z.)
- Food Laboratory of Zhongyuan, Luohe 462300, China
| |
Collapse
|
21
|
Abaidullah M, La S, Liu M, Liu B, Cui Y, Wang Z, Sun H, Ma S, Shi Y. Polysaccharide from Smilax glabra Roxb Mitigates Intestinal Mucosal Damage by Therapeutically Restoring the Interactions between Gut Microbiota and Innate Immune Functions. Nutrients 2023; 15:4102. [PMID: 37836386 PMCID: PMC10574425 DOI: 10.3390/nu15194102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/15/2023] Open
Abstract
Smilax glabra Roxb (S. glabra) is a conventional Chinese medicine that is mainly used for the reliability of inflammation. However, bioactive polysaccharides from S. glabra (SGPs) have not been thoroughly investigated. Here, we demonstrate for the first time that SGPs preserve the integrity of the gut epithelial layer and protect against intestinal mucosal injury induced by dextran sulfate sodium. Mechanistically, SGPs mitigated colonic mucosal injury by restoring the association between the gut flora and innate immune functions. In particular, SGPs increased the number of goblet cells, reduced the proportion of apoptotic cells, improved the differentiation of gut tight junction proteins, and enhanced mucin production in the gut epithelial layer. Moreover, SGPs endorsed the propagation of probiotic bacteria, including Lachnospiraceae bacterium, which strongly correlated with decreased pro-inflammatory cytokines via the blocking of the TLR-4 NF-κB and MyD88 pathways. Overall, our study establishes a novel use of SGPs for the treatment of inflammatory bowel disease (IBD)-associated mucosal injury and provides a basis for understanding the therapeutic effects of natural polysaccharides from the perspective of symbiotic associations between host innate immune mechanisms and the gut microbiome.
Collapse
Affiliation(s)
- Muhammad Abaidullah
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Shaokai La
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Hao Sun
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Sen Ma
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450002, China; (M.A.); (S.L.); (M.L.); (B.L.); (Y.C.); (Z.W.); (H.S.); (S.M.)
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou 450002, China
- Henan Forage Engineering Technology Research Center, Zhengzhou 450002, China
| |
Collapse
|
22
|
Li Y, Xu J, Chen W, Wang X, Zhao Z, Li Y, Zhang L, Jiao J, Yang Q, Ding Q, Yang P, Wei L, Chen Y, Chen Y, Ruan XZ, Zhao L. Hepatocyte CD36 modulates UBQLN1-mediated proteasomal degradation of autophagic SNARE proteins contributing to septic liver injury. Autophagy 2023; 19:2504-2519. [PMID: 37014234 PMCID: PMC10392739 DOI: 10.1080/15548627.2023.2196876] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 02/27/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023] Open
Abstract
Macroautophagy/autophagy plays a protective role in sepsis-induced liver injury. As a member of class B scavenger receptors, CD36 plays important roles in various disorders, such as atherosclerosis and fatty liver disease. Here we found that the expression of CD36 in hepatocytes was increased in patients and a mouse model with sepsis, accompanied by impaired autophagy flux. Furthermore, hepatocyte cd36 knockout (cd36-HKO) markedly improved liver injury and the impairment of autophagosome-lysosome fusion in lipopolysaccharide (LPS)-induced septic mice. Ubqln1 (ubiquilin 1) overexpression (OE) in hepatocyte blocked the protective effect of cd36-HKO on LPS-induced liver injury in mice. Mechanistically, with LPS stimulation, CD36 on the plasma membrane was depalmitoylated and distributed to the lysosome, where CD36 acted as a bridge molecule linking UBQLN1 to soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and hence promoting the proteasomal degradation of SNARE proteins, resulting in fusion impairment. Overall, our data reveal that CD36 is essential for modulating the proteasomal degradation of autophagic SNARE proteins in a UBQLN1-dependent manner. Targeting CD36 in hepatocytes is effective for improving autophagic flux in sepsis and therefore represents a promising therapeutic strategy for clinical treatment of septic liver injury.Abbreviations: AAV8: adeno-associated virus 8; AOSC: acute obstructive suppurative cholangitis; ATP1A1: ATPase, Na+/K+ transporting, alpha 1 polypeptide; CASP3: caspase 3; CASP8: caspase 8; CCL2: chemokine (C-C motif) ligand 2; cd36-HKO: hepatocyte-specific cd36 knockout; Co-IP: co-immunoprecipitation; CQ: chloroquine; Cys: cysteine; GOT1: glutamic-oxaloacetic transaminase 1, soluble; GPT: glutamic-pyruvic transaminase, soluble; IL1B: interleukin 1 beta; IL6: interleukin 6; KO: knockout; LAMP1: lysosomal associated membrane protein 1; LDH, lactate dehydrogenase; LPS: lipopolysaccharide; LYPLA1: lysophospholipase 1; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; OE: overexpression; qPCR: quantitative polymerase chain reaction; SNAP29: synaptosome associated protein 29; SNARE: soluble N-ethylmaleimide-sensitive factor attachment protein receptor; SQSTM1/p62: sequestosome 1; STX17: syntaxin 17; TNF: tumor necrosis factor; TRIM: tripartite motif-containing; UBA: ubiquitin-associated; UBL: ubiquitin-like; UBQLN: ubiquilin; VAMP8: vesicle associated membrane protein 8; WT: wild-type.
Collapse
Affiliation(s)
- Yanping Li
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jingyuan Xu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weiting Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xingxing Wang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhibo Zhao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yuqi Li
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Linkun Zhang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Junkui Jiao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qin Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Qiuying Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ping Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Wei
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yao Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Yaxi Chen
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiong Z. Ruan
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, London, England, UK
| | - Lei Zhao
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
23
|
Yang W, Ma Y, Xu H, Zhu Z, Wu J, Xu C, Sun W, Zhao E, Wang M, Reis RL, Kundu SC, Shi X, Xiao B. Mulberry Biomass-Derived Nanomedicines Mitigate Colitis through Improved Inflamed Mucosa Accumulation and Intestinal Microenvironment Modulation. RESEARCH (WASHINGTON, D.C.) 2023; 6:0188. [PMID: 37426473 PMCID: PMC10328391 DOI: 10.34133/research.0188] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/13/2023] [Indexed: 07/11/2023]
Abstract
The therapeutic outcomes of conventional oral medications against ulcerative colitis (UC) are restricted by inefficient drug delivery to the colitis mucosa and weak capacity to modulate the inflammatory microenvironment. Herein, a fluorinated pluronic (FP127) was synthesized and employed to functionalize the surface of mulberry leaf-derived nanoparticles (MLNs) loading with resveratrol nanocrystals (RNs). The obtained FP127@RN-MLNs possessed exosome-like morphologies, desirable particle sizes (around 171.4 nm), and negatively charged surfaces (-14.8 mV). The introduction of FP127 to RN-MLNs greatly improved their stability in the colon and promoted their mucus infiltration and mucosal penetration capacities due to the unique fluorine effect. These MLNs could efficiently be internalized by colon epithelial cells and macrophages, reconstruct disrupted epithelial barriers, alleviate oxidative stress, provoke macrophage polarization to M2 phenotype, and down-regulate inflammatory responses. Importantly, in vivo studies based on chronic and acute UC mouse models demonstrated that oral administration of chitosan/alginate hydrogel-embedding FP127@RN-MLNs achieved substantially improved therapeutic efficacies compared with nonfluorinated MLNs and a first-line UC drug (dexamethasone), as evidenced by decreased colonic and systemic inflammation, integrated colonic tight junctions, and intestinal microbiota balance. This study brings new insights into the facile construction of a natural, versatile nanoplatform for oral treatment of UC without adverse effects.
Collapse
Affiliation(s)
- Wenjing Yang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Ya Ma
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Haiting Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Zhenhua Zhu
- Department of Gastroenterology,
The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Jiaxue Wu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Cheng Xu
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Wei Sun
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Min Wang
- Chongqing Key Laboratory of Soft-Matter Material Chemistry and Function Manufacturing, Faculty of Materials and Energy,
Southwest University, Chongqing 400715, China
| | - Rui L. Reis
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Subhas C. Kundu
- 3Bs Research Group, I3Bs — Research Institute on Biomaterials, Biodegradables and Biomimetics,
University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco 4805-017, Guimaraes, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - Xiaoxiao Shi
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| | - Bo Xiao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile, and Biomass Sciences,
Southwest University, Chongqing 400715, China
| |
Collapse
|
24
|
Huang Z, Wu H, Fan J, Mei Q, Fu Y, Yin N, Xu B, Luo S, Li B, Ni J, Huang C, Hu J, Zeng Y. Colonic mucin-2 attenuates acute necrotizing pancreatitis in rats by modulating intestinal homeostasis. FASEB J 2023; 37:e22994. [PMID: 37249555 DOI: 10.1096/fj.202201998r] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/31/2023]
Abstract
Mucin-2 (MUC2) secreted by goblet cells participates in the intestinal barrier, but its mechanism in acute necrotizing pancreatitis (ANP) remains unclear. In acute pancreatitis (AP) patients, the functions of goblet cells (MUC2, FCGBP, CLCA1, and TFF3) decreased, and MUC2 was negatively correlated with AP severity. ANP rats treated with pilocarpine (PILO) (PILO+ANP rats) to deplete MUC2 showed more serious pancreatic and colonic injuries, goblet cell dysfunction, gut dysbiosis, and bacterial translocation than those of ANP rats. GC-MS analysis of feces showed that PILO+ANP rats had lower levels of butyric acid, isobutyric acid, isovaleric acid, and hexanoic acid than those of ANP rats. The expression of MUC2 was associated with colonic injury and gut dysbiosis. All these phenomena could be relieved, and goblet cell functions were also partially reversed by MUC2 supplementation in ANP rats. TNF-α-treated colonoids had exacerbated goblet cell dysfunction. MUC2 expression was negatively correlated with the levels of pro-inflammatory cytokines (IL-1β and IL-6) (p < .05) and positively related to the expression of tight junction proteins (Claudin 1, Occludin, and ZO1) (p < .05). Downregulating MUC2 by siRNA increased the levels of the pro-inflammatory cytokines in colonoids. MUC2 might maintain intestinal homeostasis to alleviate ANP.
Collapse
Affiliation(s)
- Zehua Huang
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Huimin Wu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junjie Fan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Qixiang Mei
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Fu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Nuoming Yin
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Binqiang Xu
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shengzheng Luo
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Baiwen Li
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chunlan Huang
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Junjie Hu
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yue Zeng
- Shanghai Key Laboratory of Pancreatic Disease, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Gastroenterology, Shanghai General Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
25
|
Wojnacki J, Lujan AL, Brouwers N, Aranda-Vallejo C, Bigliani G, Rodriguez MP, Foresti O, Malhotra V. Tetraspanin-8 sequesters syntaxin-2 to control biphasic release propensity of mucin granules. Nat Commun 2023; 14:3710. [PMID: 37349283 PMCID: PMC10287693 DOI: 10.1038/s41467-023-39277-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 06/06/2023] [Indexed: 06/24/2023] Open
Abstract
Agonist-mediated stimulated pathway of mucin and insulin release are biphasic in which rapid fusion of pre-docked granules is followed by slow docking and fusion of granules from the reserve pool. Here, based on a cell-culture system, we show that plasma membrane-located tetraspanin-8 sequesters syntaxin-2 to control mucin release. Tetraspanin-8 affects fusion of granules during the second phase of stimulated mucin release. The tetraspanin-8/syntaxin-2 complex does not contain VAMP-8, which functions with syntaxin-2 to mediate granule fusion. We suggest that by sequestering syntaxin-2, tetraspanin-8 prevents docking of granules from the reserve pool. In the absence of tetraspanin-8, more syntaxin-2 is available for docking and fusion of granules and thus doubles the quantities of mucins secreted. This principle also applies to insulin release and we suggest a cell type specific Tetraspanin/Syntaxin combination is a general mechanism regulating the fusion of dense core granules.
Collapse
Affiliation(s)
- José Wojnacki
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Agustin Leonardo Lujan
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Nathalie Brouwers
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Carla Aranda-Vallejo
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Gonzalo Bigliani
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Maria Pena Rodriguez
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Ombretta Foresti
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain
| | - Vivek Malhotra
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- ICREA, Barcelona, Spain.
| |
Collapse
|
26
|
Gorman H, Moreau F, Dufour A, Chadee K. IgGFc-binding protein and MUC2 mucin produced by colonic goblet-like cells spatially interact non-covalently and regulate wound healing. Front Immunol 2023; 14:1211336. [PMID: 37359538 PMCID: PMC10285406 DOI: 10.3389/fimmu.2023.1211336] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
The colonic mucus bilayer is the first line of innate host defense that at the same time houses and nourishes the commensal microbiota. The major components of mucus secreted by goblet cells are MUC2 mucin and the mucus-associated protein, FCGBP (IgGFc-binding protein). In this study, we determine if FCGBP and MUC2 mucin were biosynthesized and interacted together to spatially enhance the structural integrity of secreted mucus and its role in epithelial barrier function. MUC2 and FCGBP were coordinately regulated temporally in goblet-like cells and in response to a mucus secretagogue but not in CRISPR-Cas9 gene-edited MUC2 KO cells. Whereas ~85% of MUC2 was colocalized with FCGBP in mucin granules, ~50% of FCGBP was diffusely distributed in the cytoplasm of goblet-like cells. STRING-db v11 analysis of the mucin granule proteome revealed no protein-protein interaction between MUC2 and FCGBP. However, FCGBP interacted with other mucus-associated proteins. FCGBP and MUC2 interacted via N-linked glycans and were non-covalently bound in secreted mucus with cleaved low molecular weight FCGBP fragments. In MUC2 KO, cytoplasmic FCGBP was significantly increased and diffusely distributed in wounded cells that healed by enhanced proliferation and migration within 2 days, whereas, in WT cells, MUC2 and FCGBP were highly polarized at the wound margin which impeded wound closure by 6 days. In DSS colitis, restitution and healed lesions in Muc2+/+ but not Muc2-/- littermates, were accompanied by a rapid increase in Fcgbp mRNA and delayed protein expression at 12- and 15-days post DSS, implicating a potential novel endogenous protective role for FCGBP in wound healing to maintain epithelial barrier function.
Collapse
Affiliation(s)
- Hayley Gorman
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - France Moreau
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| | - Antoine Dufour
- Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
- Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada
| | - Kris Chadee
- Department of Microbiology, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- Department of Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
27
|
Mironov AA, Beznoussenko GV. The Regulated Secretion and Models of Intracellular Transport: The Goblet Cell as an Example. Int J Mol Sci 2023; 24:ijms24119560. [PMID: 37298509 DOI: 10.3390/ijms24119560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
Transport models are extremely important to map thousands of proteins and their interactions inside a cell. The transport pathways of luminal and at least initially soluble secretory proteins synthesized in the endoplasmic reticulum can be divided into two groups: the so-called constitutive secretory pathway and regulated secretion (RS) pathway, in which the RS proteins pass through the Golgi complex and are accumulated into storage/secretion granules (SGs). Their contents are released when stimuli trigger the fusion of SGs with the plasma membrane (PM). In specialized exocrine, endocrine, and nerve cells, the RS proteins pass through the baso-lateral plasmalemma. In polarized cells, the RS proteins secrete through the apical PM. This exocytosis of the RS proteins increases in response to external stimuli. Here, we analyze RS in goblet cells to try to understand the transport model that can be used for the explanation of the literature data related to the intracellular transport of their mucins.
Collapse
Affiliation(s)
- Alexander A Mironov
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| | - Galina V Beznoussenko
- Department of Cell Biology, IFOM ETS-The AIRC Institute of Molecular Oncology, Via Adamello, 16, 20139 Milan, Italy
| |
Collapse
|
28
|
Kumar V, Kumar V, Kondepudi KK, Chopra K, Bishnoi M. Capsazepine-Induced Altered Colonic Mucosal Health Limits Isomalto-oligosaccharide Action in High-Fat Diet-Fed C57BL/6J Mice. ACS Pharmacol Transl Sci 2023; 6:600-613. [PMID: 37082749 PMCID: PMC10111622 DOI: 10.1021/acsptsci.2c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Indexed: 04/05/2023]
Abstract
The present study sought to understand the effects of a combination of altered colonic mucosal health (intrarectal capsazepine administration) and high-fat diet (HFD) administration in mice. Furthermore, we also studied whether this combination prevents protective actions of dietary prebiotic, isomaltooligosaccharides. We studied the alterations in intestinal permeability, histological and transcriptional changes, short-chain fatty acid (SCFA) concentrations, and gut microbial abundance. Capsazepine (CPZ) was administered rectally twice a day along with HFD feeding. Following confirmation of CPZ action (loss of TRPA1 and TRPV1-associated nocifensive behavior), the intrarectal dose of CPZ was reduced to once in 2 days up to 8 weeks. Simultaneous intrarectal administration of CPZ exacerbated the HFD (8 weeks feeding)-induced damage to mucosal lining, intestinal permeability, tight junction protein expression, SCFA levels, and gut bacterial abundances. This higher degree of mucosal damage and pathological alteration in colonic mucosa prevented the previously reported protective actions of isomaltooligosaccharides as a prebiotic in HFD-fed mice. Overall, we present evidence that colonic precondition (gut permeability and mucosal lining) is an important factor in determination of HFD-induced changes in the colon, and success of diet-associated interventions (dietary fibers, pre/probiotics, etc.) is dependent on it.
Collapse
Affiliation(s)
- Vibhu Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Vijay Kumar
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
- Department
of Biotechnology, Panjab University, Sector-25, Chandigarh 160014, India
| | - Kanthi Kiran Kondepudi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| | - Kanwaljit Chopra
- University
Institute of Pharmaceutical Sciences, Panjab
University, Chandigarh 160014, India
| | - Mahendra Bishnoi
- TR(i)P
for Health Laboratory, Centre for Excellence in Functional Foods,
Department of Food and Nutritional Biotechnology, National Agri-Food Biotechnology Institute (NABI), Knowledge City-Sector 81, SAS Nagar, Punjab 140306, India
| |
Collapse
|
29
|
Liu Y, Yu Z, Zhu L, Ma S, Luo Y, Liang H, Liu Q, Chen J, Guli S, Chen X. Orchestration of MUC2 - The key regulatory target of gut barrier and homeostasis: A review. Int J Biol Macromol 2023; 236:123862. [PMID: 36870625 DOI: 10.1016/j.ijbiomac.2023.123862] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 02/22/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023]
Abstract
The gut mucosa of human is covered by mucus, functioning as a crucial defense line for the intestine against external stimuli and pathogens. Mucin2 (MUC2) is a subtype of secretory mucins generated by goblet cells and is the major macromolecular component of mucus. Currently, there is an increasing interest on the investigations of MUC2, noting that its function is far beyond a maintainer of the mucus barrier. Moreover, numerous gut diseases are associated with dysregulated MUC2 production. Appropriate production level of MUC2 and mucus contributes to gut barrier function and homeostasis. The production of MUC2 is regulated by a series of physiological processes, which are orchestrated by various bioactive molecules, signaling pathways and gut microbiota, etc., forming a complex regulatory network. Incorporating the latest findings, this review provided a comprehensive summary of MUC2, including its structure, significance and secretory process. Furthermore, we also summarized the molecular mechanisms of the regulation of MUC2 production aiming to provide developmental directions for future researches on MUC2, which can act as a potential prognostic indicator and targeted therapeutic manipulation for diseases. Collectively, we elucidated the micro-level mechanisms underlying MUC2-related phenotypes, hoping to offer some constructive guidance for intestinal and overall health of mankind.
Collapse
Affiliation(s)
- Yaxin Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Zihan Yu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Lanping Zhu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Shuang Ma
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Yang Luo
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Huixi Liang
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Qinlingfei Liu
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Jihua Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Sitan Guli
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China
| | - Xin Chen
- Department of Gastroenterology and Hepatology, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China; Tianjin Institute of Digestive Disease, Tianjin Medical University General Hospital, Anshan Road 154, Heping District, Tianjin 300052, China.
| |
Collapse
|
30
|
Herba Origani alleviated DSS-induced ulcerative colitis in mice through remolding gut microbiota to regulate bile acid and short-chain fatty acid metabolisms. Biomed Pharmacother 2023; 161:114409. [PMID: 36822021 DOI: 10.1016/j.biopha.2023.114409] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
This study aimed to investigate the protective effect of Herba Origani, the dried whole herb of Origanum vulgare L., on dextran sodium sulfate (DSS)-induced ulcerative colitis in mice and explore its mechanisms of action through analyzing the intestinal microbiota in cecum contents and metabolites in colonic tissues. HOEP alleviated colitis symptoms, colonic inflammation and pathological injury as well as repaired intestinal barrier function in DSS-induced UC mice. The intestinal microbiota analysis showed that HOEP restored the gut microbiota dysbiosis in DSS-treated mice by increasing the alpha diversity of the intestinal microbiota, increasing the abundance of the Bacteroidota community and adjusting short-chain fatty acids (SCFAs), which maintain mucosal immunity and intestinal barrier. Metabolomic analysis revealed that HOEP promoted bile acids absorption and regulated bile acids metabolism in the intestine, thereby maintaining intestinal mucosal immune homeostasis. In addition, HOEP might also regulate the intestinal immune system through the phosphatidylinositol signaling system. These findings suggested that HOEP exerted promising protection against DSS-induced ulcerative mice through remolding gut microbiota to regulate bile acid and SCFA metabolism, and that HOEP have a potential to be utilized for the treatment of inflammatory intestinal diseases.
Collapse
|
31
|
Effects of probiotics on hypertension. Appl Microbiol Biotechnol 2023; 107:1107-1117. [PMID: 36646911 DOI: 10.1007/s00253-023-12369-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/23/2022] [Accepted: 12/31/2022] [Indexed: 01/18/2023]
Abstract
Emerging data have suggested that probiotics had good potential in regulating intestinal flora and preventing hypertension. Some studies in human and animal models have demonstrated probiotic intervention could attenuate hypertension, regulate intestinal flora to increase the abundance of beneficial bacteria, and regulate intestinal microbial metabolites such as trimethylamine oxide, short-chain fatty acids, and polyphenols. However, there is still some debate as to whether probiotics exert effective benefits. These recently published reviews did not systematically expound on the heterogeneity between the effect and mechanism of probiotics with different types, doses, and carriers to exert antihypertensive effects, as well as the possible application of probiotics in the prevention and treatment of hypertension in food and clinic. Here we try to systematically review the association between hypertension and intestinal microflora, the effect of probiotics and their metabolites on hypertension, and the recent research progress on the specific mechanism of probiotics on hypertension. In addition, we also summarized the potential application of probiotics in antihypertension. Future challenges include elucidating the functions of metabolites produced by microorganisms and their downstream pathway or molecules, identifying specific strains, not just microbial communities, and developing therapeutic interventions that target hypertension by modulation of gut microbes and metabolites.
Collapse
|
32
|
Senchukova MA. Microbiota of the gastrointestinal tract: Friend or foe? World J Gastroenterol 2023; 29:19-42. [PMID: 36683718 PMCID: PMC9850957 DOI: 10.3748/wjg.v29.i1.19] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
The gut microbiota is currently considered an external organ of the human body that provides important mechanisms of metabolic regulation and protection. The gut microbiota encodes over 3 million genes, which is approximately 150 times more than the total number of genes present in the human genome. Changes in the qualitative and quantitative composition of the microbiome lead to disruption in the synthesis of key bacterial metabolites, changes in intestinal barrier function, and inflammation and can cause the development of a wide variety of diseases, such as diabetes, obesity, gastrointestinal disorders, cardiovascular issues, neurological disorders and oncological concerns. In this review, I consider issues related to the role of the microbiome in the regulation of intestinal barrier function, its influence on physiological and pathological processes occurring in the body, and potential new therapeutic strategies aimed at restoring the gut microbiome. Herewith, it is important to understand that the gut microbiota and human body should be considered as a single biological system, where change of one element will inevitably affect its other components. Thus, the study of the impact of the intestinal microbiota on health should be considered only taking into account numerous factors, the role of which has not yet been fully elucidated.
Collapse
Affiliation(s)
- Marina A Senchukova
- Department of Oncology, Orenburg State Medical University, Orenburg 460000, Russia
| |
Collapse
|
33
|
Gustafsson JK, Johansson MEV. The role of goblet cells and mucus in intestinal homeostasis. Nat Rev Gastroenterol Hepatol 2022; 19:785-803. [PMID: 36097076 DOI: 10.1038/s41575-022-00675-x] [Citation(s) in RCA: 266] [Impact Index Per Article: 88.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 12/08/2022]
Abstract
The intestinal tract faces numerous challenges that require several layers of defence. The tight epithelium forms a physical barrier that is further protected by a mucus layer, which provides various site-specific protective functions. Mucus is produced by goblet cells, and as a result of single-cell RNA sequencing identifying novel goblet cell subpopulations, our understanding of their various contributions to intestinal homeostasis has improved. Goblet cells not only produce mucus but also are intimately linked to the immune system. Mucus and goblet cell development is tightly regulated during early life and synchronized with microbial colonization. Dysregulation of the developing mucus systems and goblet cells has been associated with infectious and inflammatory conditions and predisposition to chronic disease later in life. Dysfunctional mucus and altered goblet cell profiles are associated with inflammatory conditions in which some mucus system impairments precede inflammation, indicating a role in pathogenesis. In this Review, we present an overview of the current understanding of the role of goblet cells and the mucus layer in maintaining intestinal health during steady-state and how alterations to these systems contribute to inflammatory and infectious disease.
Collapse
Affiliation(s)
- Jenny K Gustafsson
- Department of Physiology, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemisty and Cell biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
34
|
Yu Z, Xia Y, Cheng S, Mao L, Luo S, Tang S, Sun W, Jiang X, Zou Z, Chen C, Qiu J, Zhou L. Polystyrene nanoparticles aggravate the adverse effects of di-(2-ethylhexyl) phthalate on different segments of intestine in mice. CHEMOSPHERE 2022; 305:135324. [PMID: 35697104 DOI: 10.1016/j.chemosphere.2022.135324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/26/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Emerging evidence indicates that nanoplastics (NPs) can transport organic pollutants such as di-(2-ethylhexyl) phthalate (DEHP) into organisms and induce adverse health effects. Nevertheless, the toxic effects of NPs combined with DEHP on mammalian intestine are still unclear. In this study, the C57BL6J mice were exposed to polystyrene nanoparticles (PSNPs), DEHP or them both for 30 days to determine their effects on different segments of intestine and the gut microbiota. As a result, DEHP alone or co-exposure to DEHP and PSNPs induced histological damages in all intestinal parts, mainly manifested as the decreased villus lengths, increased crypt depths in the duodenum, jejunum and ileum and decreased villus counts accompanied with decreased epithelial area in the colon. Moreover, decreased mucus coverage, down-regulated Muc2 expression levels as well as the broken tight junctions were observed in intestinal epithelium of mice, particularly obvious in the co-treatment groups. In general, as manifested by greater alterations in most of the parameters mentioned above, simultaneously exposed to PSNPs and DEHP seemed to induce enhanced toxic effects on intestine of mouse when compared with DEHP alone. Furthermore, the altered community composition of gut microbiota might at least partially contribute to these abnormalities. Overall, our results highlight the aggravated toxicity on different segments of intestine in mammalians due to co-exposure of PSNPs and DEHP, and these findings will provide valuable insights into the health risk of NPs and plastic additives.
Collapse
Affiliation(s)
- Ziying Yu
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Yinyin Xia
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shuqun Cheng
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Lejiao Mao
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shiyue Luo
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Shixin Tang
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Wei Sun
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xuejun Jiang
- Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Center of Experimental Teaching for Public Health, Experimental Teaching and Management Center, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Zhen Zou
- Molecular Biology Laboratory of Respiratory Diseases, Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Chengzhi Chen
- Department of Occupational and Environmental Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Research Center for Environment and Human Health, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jingfu Qiu
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Lixiao Zhou
- Department of Health Laboratory Technology, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
35
|
Wang H, Zhang H, Su Y. New Insights into the Diurnal Rhythmicity of Gut Microbiota and Its Crosstalk with Host Circadian Rhythm. Animals (Basel) 2022; 12:1677. [PMID: 35804575 PMCID: PMC9264800 DOI: 10.3390/ani12131677] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 12/14/2022] Open
Abstract
Unlike the strictly hierarchical organization in the circadian clock system, the gut microbiota rhythmicity has a more complex multilayer network of all taxonomic levels of microbial taxa and their metabolites. However, it is worth noting that the functionality of the gut microbiota rhythmicity is highly dependent on the host circadian clock and host physiological status. Here, we discussed the diurnal rhythmicity of the gut microbiota; its crucial role in host physiology, health, and metabolism; and the crosstalk between the gut microbial rhythmicity and host circadian rhythm. This knowledge lays the foundation for the development of chronotherapies targeting the gut microbiota. However, the formation mechanism, its beneficial effects on the host of gut microbial rhythmicity, and the dynamic microbial-host crosstalk are not yet clear and warrant further research.
Collapse
Affiliation(s)
- Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - He Zhang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (H.W.); (H.Z.)
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
36
|
Tian X, Wang G, Jin K, Ding Y, Cheng D. Rice hull insoluble dietary fiber alleviated experimental colitis induced by low dose of dextran sulfate sodium in cadmium-exposed mice. Food Funct 2022; 13:7215-7225. [PMID: 35713263 DOI: 10.1039/d2fo00891b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cadmium (Cd), an important toxic environmental pollutant, can invade the gastrointestinal tract and induce the occurrence of gastrointestinal diseases. This study aimed to investigate the protective effect of rice hull insoluble dietary fiber (RHF) on Cd-promoted colitis induced by low dose of dextran sulfate sodium. Administration of RHF attenuated inflammation by limiting Cd accumulation and regulating intestinal immune homeostasis in colitis mice with Cd exposure. RHF could maintain the structure of the gut barrier by increasing mucin secretion and intestinal tight connectivity in mice. Subsequently, RHF repressed the colonic inflammation mediated by the TLR4/MyD88/NF-κB pathway, and inhibited the transcription regulation of inflammatory cytokines. Furthermore, RHF showed an enhancement of a variety of probiotics, such as Eubacterium and Faecalibaculum. RHF also inhibited the growth of pathogenic bacteria, including Erysipelatoclostridium, Helicobacter and Bacteroides. The growth of beneficial bacteria was also accompanied by reversing the decline in short-chain fatty acids, supporting the initial potentiality of RHF as a prebiotic in cases of damage by Cd exposure in colitis mice. Importantly, RHF also remained resistant to Cd toxicity in colitis mice when the gut microbiota was depleted by antibiotics. We suggest that RHF could be used as a novel dietary supplement strategy against Cd-exacerbated colitis.
Collapse
Affiliation(s)
- Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Kenan Jin
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| | - Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, PR China.
| |
Collapse
|
37
|
Yun L, Li W, Wu T, Zhang M. Effect of sea cucumber peptides on the immune response and gut microbiota composition in ovalbumin-induced allergic mice. Food Funct 2022; 13:6338-6349. [PMID: 35612003 DOI: 10.1039/d2fo00536k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The prevalence of food allergies has increased in Asian countries. The aim of this study was to determine the potential value of sea cucumber peptide (SCP) for anti-allergic therapeutics in terms of their effect on immune response and gut microbiota composition. Results exhibited that SCP could significantly improve the allergy symptoms caused by ovalbumin and could reduce the risk of IgE mediated allergic disorders, as well as repair the morphological damage in the colon. Flow cytometry analysis indicated that SCP could improve the ratio of CD4+/CD8+ T lymphocytes. 16S rRNA results indicated that SCP could differently impact the composition of microbiota. The relative abundances of Bacteroidetes and Firmicutes and the Bacteroidetes/Firmicutes ratio were altered in normal mice. When compared with the OVA treated group, the SCP treated groups showed an increase in the relative abundance of Lachnospiraceae, Muribaculaceae and Ruminococcaceae, and a decrease in Bacteroidaceae, Prevotellaceae, and Lactobacillaceae. These results demonstrate that SCP exhibits potential antiallergic activities in a mouse model of ovalbumin allergy by regulating intestinal microbiota diversity and upregulating the immune response of T lymphocyte subpopulations, which might provide important evidence that SCP can be developed into a novel functional food for inhibiting ovalbumin allergy.
Collapse
Affiliation(s)
- Liyuan Yun
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China.
| | - Wen Li
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Tao Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Min Zhang
- China-Russia Agricultural Processing Joint Laboratory, Tianjin Agricultural University, Tianjin 300392, P. R. China. .,State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
38
|
Larocque G, Royle SJ. Integrating intracellular nanovesicles into integrin trafficking pathways and beyond. Cell Mol Life Sci 2022; 79:335. [PMID: 35657500 PMCID: PMC9166830 DOI: 10.1007/s00018-022-04371-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/28/2022] [Accepted: 05/11/2022] [Indexed: 12/24/2022]
Abstract
Membrane traffic controls the movement of proteins and lipids from one cellular compartment to another using a system of transport vesicles. Intracellular nanovesicles (INVs) are a newly described class of transport vesicles. These vesicles are small, carry diverse cargo, and are involved in multiple trafficking steps including anterograde traffic and endosomal recycling. An example of a biological process that they control is cell migration and invasion, due to their role in integrin recycling. In this review, we describe what is known so far about these vesicles. We discuss how INVs may integrate into established membrane trafficking pathways using integrin recycling as an example. We speculate where in the cell INVs have the potential to operate and we identify key questions for future investigation.
Collapse
Affiliation(s)
| | - Stephen J Royle
- Centre for Mechanochemical Cell Biology, Warwick Medical School, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| |
Collapse
|
39
|
Wu D, Chen S, Ye X, Ahmadi S, Hu W, Yu C, Zhu K, Cheng H, Linhardt RJ, He Q. Protective effects of six different pectic polysaccharides on DSS-induced IBD in mice. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Li X, Ma H, Sun Y, Li T, Wang C, Zheng H, Chen G, Du G, Ji G, Yang H, Xiao W, Qiu Y. Effects of fecal stream deprivation on human intestinal barrier after loop ileostomy. J Gastroenterol Hepatol 2022; 37:1119-1130. [PMID: 35437816 PMCID: PMC9323512 DOI: 10.1111/jgh.15867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Intestinal homeostasis is closely associated with the normal intestinal luminal physiological environment. Temporary loop ileostomy changes the intestinal structure and diverts the fecal stream, thereby disturbing the intestinal environment. This study aimed to clarify the changing situation of the human intestinal mucosa barrier in the absence of a fecal stream after loop ileostomy. METHODS We obtained paired samples from the fed (fecal stream maintained) and unfed (no fecal stream) portions of the loop ileostomy and subjected these samples to RNA sequencing. We also determined transepithelial electrical resistance. The mucus layer thickness and content of MUC2, tight junction proteins, and common antimicrobial peptides in ileum mucosa were studied. RESULTS Transcriptome data revealed that genes associated with enhancing the intestinal barrier function of the unfed ileum were significantly decreased and genes associated with immune defense response were significantly increased. The transepithelial electrical resistance was lower and the mucus layer thickness was thinner in the unfed ileal mucosa than in the fed ileum. The MUC2, Occludin, and zonula occludens 1 content was lower in the unfed ileum than in the fed ileum. α-Defensin 5, α-defensin 6, and lysozyme content was higher in the unfed ileum than in the enterally fed ileum. CONCLUSION Intestinal barrier function is weakened after long-term fecal diversion, but antimicrobiota defense function is strengthened. Thus, the intestinal mucosa barrier adopts an alternative stable state during fecal diversion, which may explain the clinical paucity of cases of enterogenic infection caused by loop ileostomy.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Haitao Ma
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Yiming Sun
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Teming Li
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Cheng Wang
- College of Preventive MedicineArmy Military Medical UniversityChongqingChina
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Guoqing Chen
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Guangsheng Du
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Guangyan Ji
- Department of Gastrointestinal SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
| | - Hua Yang
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Weidong Xiao
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| | - Yuan Qiu
- Department of General Surgery, Xinqiao HospitalArmy Military Medical UniversityChongqingChina
| |
Collapse
|
41
|
Zhou B, Qi D, Liu S, Qi H, Wang Y, Zhao K, Tian F. Physiological, morphological and transcriptomic responses of Tibetan naked carps (Gymnocypris przewalskii) to salinity variations. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100982. [PMID: 35279439 DOI: 10.1016/j.cbd.2022.100982] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Accepted: 03/03/2022] [Indexed: 11/30/2022]
Abstract
Gymnocypris przewalskii is a native cyprinid fish that dwells in the Lake Qinghai with salinity of 12-13‰. It migrates annually to the freshwater rivers for spawning, experiencing the significant changes in salinity. In the present study, we performed the physiological, morphological and transcriptomic analyses to understand the osmoregulation in G. przewalskii. The physiological assay showed that the osmotic pressure of G. przewalskii was almost isosmotic to the brackish lake water. The low salinity reduced its ionic concentrations and osmotic pressure. The plasticity of gill microstructure was linked to the salinity variations, including the presence of mucus and intact tight junctions in brackish water and the development of the mitochondria-rich cells and the loosened tight junctions in freshwater. RNA-seq analysis identified 1926 differentially expressed genes, including 710 and 1216 down- and up-regulated genes in freshwater, which were enriched in ion transport, cell-cell adhesion, and mucus secretion. Genes in ion uptake were activated in low salinity, and mucus pathways and tight junction showed the higher transcription in brackish water. The isosmoticity between the body fluid and the environment suggested G. przewalskii was in the metabolic-saving condition in the brackish water. The decreased salinity disrupted this balance, which activated the ion uptake in freshwater to maintain osmotic homeostasis. The gill remodeling was involved in this process through the development of the mitochondria-rich cells to enhance ion uptake. The current finding provided insights into the potential mechanisms of G. przewalskii to cope with salinity alteration.
Collapse
Affiliation(s)
- Bingzheng Zhou
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Delin Qi
- State Key Laboratory of Plateau Ecology and Agriculture, College of Eco-Environmental Engineering, Qinghai University, Xining 810008, China
| | - Sijia Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Hongfang Qi
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Yang Wang
- Qinghai Provincial Key Laboratory of Gymnocypris przewalskii breeding and reproduction, Xining 810008, China
| | - Kai Zhao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China
| | - Fei Tian
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China.
| |
Collapse
|
42
|
Liang X, Xie J, Liu H, Zhao R, Zhang W, Wang H, Pan H, Zhou Y, Han W. STIM1 Deficiency In Intestinal Epithelium Attenuates Colonic Inflammation and Tumorigenesis by Reducing ER Stress of Goblet Cells. Cell Mol Gastroenterol Hepatol 2022; 14:193-217. [PMID: 35367664 PMCID: PMC9130113 DOI: 10.1016/j.jcmgh.2022.03.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND & AIMS As an indispensable component of store-operated Ca2+ entry, stromal interaction molecule 1 (STIM1) is known to promote colorectal cancer and T-cell-mediated inflammatory diseases. However, whether the intestinal mucosal STIM1 is involved in inflammatory bowel diseases (IBDs) is unclear. This study aimed to investigate the role of intestinal epithelial STIM1 in IBD. METHODS Inflammatory and matched normal intestinal tissues were collected from IBD patients to investigate the expression of STIM1. Intestinal epithelium-specific STIM1 conditional knockout mice (STIM1ΔIEC) were generated and induced to develop colitis and colitis-associated colorectal cancer. The mucosal barrier, including the epithelial barrier and mucus barrier, was analyzed. The mechanisms by which STIM1 regulate goblet cell endoplasmic reticulum stress and apoptosis were assessed. RESULTS STIM1 could regulate intestinal epithelial homeostasis. STIM1 was augmented in the inflammatory intestinal tissues of IBD patients. In dextran sodium sulfate-induced colitis, STIM1 deficiency in intestinal epithelium reduced the loss of goblet cells through alleviating endoplasmic reticulum stress induced by disturbed Ca2+ homeostasis, resulting in the maintenance of the integrated mucus layer. These effects prevented commensal bacteria from contacting and stimulating the intestinal epithelium of STIM1ΔIEC mice and thereby rendered STIM1ΔIEC mice less susceptible to colitis and colitis-associated colorectal cancer. In addition, microbial diversity in dextran sodium sulfate-treated STIM1ΔIEC mice slightly shifted to an advantageous bacteria, which further protected the intestinal epithelium. CONCLUSIONS Our results establish STIM1 as a crucial regulator for the maintenance of the intestinal barrier during colitis and provide a potential target for IBD treatment.
Collapse
Affiliation(s)
- Xiaojing Liang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Jiansheng Xie
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hao Liu
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Rongjie Zhao
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Wei Zhang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Haidong Wang
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Hongming Pan
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Yubin Zhou
- Center for Translational Cancer Research, Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas
| | - Weidong Han
- Department of Medical Oncology, Sir Run Run Shaw Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China,Correspondence Address correspondence to: Weidong Han, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3# East Qingchun Road, Hangzhou, Zhejiang 310016, China; fax: 86-571-86436673.
| |
Collapse
|
43
|
Tang M, Fang R, Xue J, Yang K, Lu Y. Effects of Catalase on Growth Performance, Antioxidant Capacity, Intestinal Morphology, and Microbial Composition in Yellow Broilers. Front Vet Sci 2022; 9:802051. [PMID: 35400106 PMCID: PMC8988485 DOI: 10.3389/fvets.2022.802051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/04/2022] [Indexed: 11/13/2022] Open
Abstract
The objective of this experiment was to study the effects of catalase (CAT) on growth performance, antioxidant capacity, intestinal morphology, and microbial composition of yellow broilers. Male Lingnan yellow broilers (360), aged 1 day, were randomly divided into control group (CON) (fed with a basic diet), R1 group (fed with basic diet + 150 U/kg catalase), and R2 group (fed with basic diet + 200 U/kg catalase). Each group had 8 replicates and 15 chickens in each replicate. The test is divided into the early stage (1–30 days) and the later stage (31–60 days). The results showed that compared with the control group, groups R1 and R2 significantly (p < 0.05) increased the weight gain and reduced (p < 0.05) the ratio of feed to gain in the early and the whole stages; prominently increased (p < 0.05) the concentration of total antioxidant capacity (T-AOC), the activities of CAT, superoxide dismutase (SOD), glutathione peroxidase (GSH-Px) in livers, the activities of CAT and GSH-Px in serum, and CAT in the jejunum in the early and the later stages; markedly increased (p < 0.05) the villus height and the ratio of villus height to crypt depth of the duodenum in the early and the later stages, the villus height and the villus height:crypt depth ratio of the jejunum and ileum in the early stage, and significantly lowered (p < 0.05) the crypt depth of the duodenum (in the early and the later stages), jejunum, and ileum (in early stage); memorably (p < 0.05) increased the number of total bacteria and Bacteroidetes in ceca, as well as the number of Lactobacillus in the jejunum (p < 0.05) on the 30th; significantly (p < 0.05) increased the mRNA expression of junction adhesion molecule 2 (JAM2), mucin 2 (MCU2), and occlusal protein (occludin) in the duodenum in the early stage, and increased (p < 0.05) the mRNA expression of JAM2 in the jejunum in the later stage. Collectively, adding catalase (CAT) to the diet of yellow broilers can improve the growth performance and the antioxidant capacity, promoting the integrity of intestinal morphology, optimizing the composition of intestinal microorganisms, and upregulating the mRNA expression of tight junction protein.
Collapse
Affiliation(s)
- Minghong Tang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Rejun Fang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
- *Correspondence: Rejun Fang
| | - Junjing Xue
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Kaili Yang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
- Hunan Co-Innovation Center of Animal Production Safe (CICAPS), Changsha, China
| | - Yi Lu
- Research and Development Center, Shanghai Menon Biotechnology Co., LTD, Shanghai, China
| |
Collapse
|
44
|
Lauzier A, Bossanyi MF, Larcher R, Nassari S, Ugrankar R, Henne WM, Jean S. Snazarus and its human ortholog SNX25 modulate autophagic flux. J Cell Sci 2022; 135:273525. [PMID: 34821359 DOI: 10.1242/jcs.258733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 11/12/2021] [Indexed: 12/26/2022] Open
Abstract
Macroautophagy, the degradation and recycling of cytosolic components in the lysosome, is an important cellular mechanism. It is a membrane-mediated process that is linked to vesicular trafficking events. The sorting nexin (SNX) protein family controls the sorting of a large array of cargoes, and various SNXs impact autophagy. To improve our understanding of their functions in vivo, we screened all Drosophila SNXs using inducible RNA interference in the fat body. Significantly, depletion of Snazarus (Snz) led to decreased autophagic flux. Interestingly, we observed altered distribution of Vamp7-positive vesicles with Snz depletion, and the roles of Snz were conserved in human cells. SNX25, the closest human ortholog to Snz, regulates both VAMP8 endocytosis and lipid metabolism. Through knockout-rescue experiments, we demonstrate that these activities are dependent on specific SNX25 domains and that the autophagic defects seen upon SNX25 loss can be rescued by ethanolamine addition. We also demonstrate the presence of differentially spliced forms of SNX14 and SNX25 in cancer cells. This work identifies a conserved role for Snz/SNX25 as a regulator of autophagic flux and reveals differential isoform expression between paralogs.
Collapse
Affiliation(s)
- Annie Lauzier
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Marie-France Bossanyi
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Raphaëlle Larcher
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Sonya Nassari
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| | - Rupali Ugrankar
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - W Mike Henne
- Department of Cell Biology, UT Southwestern Medical Center, 6000 Hary Lines Boulevard, Dallas, TX 75390, USA
| | - Steve Jean
- Faculté de Médecine et des Sciences de la Santé, Département d'immunologie et de biologie cellulaire, Université de Sherbrooke, 3201, Rue Jean Mignault, Sherbrooke, Québec, CanadaJ1E 4K8
| |
Collapse
|
45
|
Liang L, Liu L, Zhou W, Yang C, Mai G, Li H, Chen Y. Gut microbiota-derived butyrate regulates gut mucus barrier repair by activating the macrophage/WNT/ERK signaling pathway. Clin Sci (Lond) 2022; 136:291-307. [PMID: 35194640 DOI: 10.1042/cs20210778] [Citation(s) in RCA: 123] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 01/10/2022] [Accepted: 01/21/2022] [Indexed: 12/19/2022]
Abstract
Ulcerative colitis (UC) is majorly associated with dysregulation of the dynamic cross-talk among microbial metabolites, intestinal epithelial cells, and macrophages. Several studies have reported the significant role of butyrate in host-microbiota communication. However, whether butyrate provides anti-inflammatory profiles in macrophages, thus contributing to UC intestinal mucus barrier protection, has currently remained elusive. In the current study, we found that butyrate increased mucin production and the proportion of mucin-secreting goblet cells in the colon crypt in a macrophage-dependent manner by using clodronate liposomes. Furthermore, in vivo and in vitro studies were conducted, validating that butyrate facilitates M2 macrophage polarization with the elevated expressions of CD206 and arginase-1 (Arg1). In macrophages/goblet-like LS174T cells co-culture systems, butyrate-primed M2 macrophages significantly enhanced the expression of mucin-2 (MUC2) and SPDEF (goblet cell marker genes) than butyrate alone, while blockade of WNTs secretion or ERK1/2 activation significantly decreased the beneficial effect of butyrate-primed macrophages on goblet cell function. Additionally, the adoptive transfer of butyrate-induced M2 macrophages facilitated the generation of goblet cells and mucus restoration following dextran sulfate sodium (DSS) insult. Taken together, our results revealed a novel mediator of macrophage-goblet cell cross-talk associated with the regulation of epithelial barrier integrity, implying that the microbial metabolite butyrate may serve as a candidate therapeutic target for UC.
Collapse
Affiliation(s)
- Liping Liang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Le Liu
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Wanyan Zhou
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Chenghai Yang
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Genghui Mai
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Haolin Li
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ye Chen
- Department of Gastroenterology, State Key Laboratory of Organ Failure Research, Guangdong Provincial Key Laboratory of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Gastroenterology, Integrative Clinical Microecology Center, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| |
Collapse
|
46
|
Interleukin-10 regulates goblet cell numbers through Notch signaling in the developing zebrafish intestine. Mucosal Immunol 2022; 15:940-951. [PMID: 35840681 PMCID: PMC9385495 DOI: 10.1038/s41385-022-00546-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/20/2022] [Accepted: 06/27/2022] [Indexed: 02/04/2023]
Abstract
Cytokines are immunomodulatory proteins that orchestrate cellular networks in health and disease. Among these, interleukin (IL)-10 is critical for the establishment of intestinal homeostasis, as mutations in components of the IL-10 signaling pathway result in spontaneous colitis. Whether IL-10 plays other than immunomodulatory roles in the intestines is poorly understood. Here, we report that il10, il10ra, and il10rb are expressed in the zebrafish developing intestine as early as 3 days post fertilization. CRISPR/Cas9-generated il10-deficient zebrafish larvae showed an increased expression of pro-inflammatory genes and an increased number of intestinal goblet cells compared to WT larvae. Mechanistically, Il10 promotes Notch signaling in zebrafish intestinal epithelial cells, which in turn restricts goblet cell expansion. Using murine organoids, we showed that IL-10 modulates goblet cell frequencies in mammals, suggesting conservation across species. This study demonstrates a previously unappreciated IL-10-Notch axis regulating goblet cell homeostasis in the developing zebrafish intestine and may help explain the disease severity of IL-10 deficiency in the intestines of mammals.
Collapse
|
47
|
Wu Y, Li J, Ding W, Ruan Z, Zhang L. Enhanced Intestinal Barriers by Puerarin in Combination with Tryptophan. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:15575-15584. [PMID: 34928145 DOI: 10.1021/acs.jafc.1c05830] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The intestinal barrier is essential for maintaining human intestinal health. The growing number of studies has shown that both puerarin and tryptophan and its metabolites have a beneficial effect on the intestinal barrier. This study aims at the combination of puerarin and tryptophan or its metabolites for improving the intestinal barrier. In our study, 40 female Sprague-Dawley rats were randomly divided into five groups (n = 8) for a 4-week experiment and dextran sodium sulfate was used to induce an intestinal barrier injury in rats. Our results showed that puerarin combined with tryptophan or its metabolites (indole-3-propionic acid, IPA) improved the intestinal barrier by enhancing the mucus layer barrier, which was mainly achieved by increasing the number of goblet cells and promoting the secretion of MUC2. Both TRPM5 and VAMP8 promoted MUC2 secretion in goblet cells through exocytosis, but their mechanisms of action are different. In our study, we found that puerarin and tryptophan showed different effects on TRPM5 and VAMP8, respectively. Puerarin enhances the expression of TRPM5, and tryptophan inhibits the expression of TRPM5; however, puerarin and tryptophan have no significant effect on the expression of VAMP8.
Collapse
Affiliation(s)
- You Wu
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiaojiao Li
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Wenjiao Ding
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Zheng Ruan
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Li Zhang
- State Key Laboratory of Food Science and Technology, Institute of Nutrition and School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| |
Collapse
|
48
|
MUC2 and related bacterial factors: Therapeutic targets for ulcerative colitis. EBioMedicine 2021; 74:103751. [PMID: 34902790 PMCID: PMC8671112 DOI: 10.1016/j.ebiom.2021.103751] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 11/21/2021] [Accepted: 11/30/2021] [Indexed: 12/26/2022] Open
Abstract
The mucin2 (MUC2) mucus barrier acts as the first barrier that prevents direct contact between intestinal bacteria and colonic epithelial cells. Bacterial factors related to the MUC2 mucus barrier play important roles in the response to changes in dietary patterns, MUC2 mucus barrier dysfunction, contact stimulation with colonic epithelial cells, and mucosal and submucosal inflammation during the occurrence and development of ulcerative colitis (UC). In this review, these underlying mechanisms are summarized and updated, and related interventions for treating UC, such as dietary adjustment, exogenous repair of the mucus barrier, microbiota transplantation and targeted elimination of pathogenic bacteria, are suggested. Such interventions are likely to induce and maintain a long and stable remission period and reduce or even avoid the recurrence of UC. A better mechanistic understanding of the MUC2 mucus barrier and its related bacterial factors may help researchers and clinicians to develop novel approaches for treating UC.
Collapse
|
49
|
The Impact of MicroRNAs during Inflammatory Bowel Disease: Effects on the Mucus Layer and Intercellular Junctions for Gut Permeability. Cells 2021; 10:cells10123358. [PMID: 34943865 PMCID: PMC8699384 DOI: 10.3390/cells10123358] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 12/15/2022] Open
Abstract
Research on inflammatory bowel disease (IBD) has produced mounting evidence for the modulation of microRNAs (miRNAs) during pathogenesis. MiRNAs are small, non-coding RNAs that interfere with the translation of mRNAs. Their high stability in free circulation at various regions of the body allows researchers to utilise miRNAs as biomarkers and as a focus for potential treatments of IBD. Yet, their distinct regulatory roles at the gut epithelial barrier remain elusive due to the fact that there are several external and cellular factors contributing to gut permeability. This review focuses on how miRNAs may compromise two components of the gut epithelium that together form the initial physical barrier: the mucus layer and the intercellular epithelial junctions. Here, we summarise the impact of miRNAs on goblet cell secretion and mucin structure, along with the proper function of various junctional proteins involved in paracellular transport, cell adhesion and communication. Knowledge of how this elaborate network of cells at the gut epithelial barrier becomes compromised as a result of dysregulated miRNA expression, thereby contributing to the development of IBD, will support the generation of miRNA-associated biomarker panels and therapeutic strategies that detect and ameliorate gut permeability.
Collapse
|
50
|
Tiwari S, Begum S, Moreau F, Gorman H, Chadee K. Autophagy is required during high MUC2 mucin biosynthesis in colonic goblet cells to contend metabolic stress. Am J Physiol Gastrointest Liver Physiol 2021; 321:G489-G499. [PMID: 34494458 DOI: 10.1152/ajpgi.00221.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 09/02/2021] [Indexed: 01/31/2023]
Abstract
Goblet cells are specialized for the production and secretion of MUC2 glycoproteins that forms a thick layer covering the mucosal epithelium as a protective barrier against noxious substances and invading microbes. High MUC2 mucin biosynthesis induces endoplasmic reticulum (ER) stress and apoptosis in goblet cells during inflammatory and infectious diseases. Autophagy is an intracellular degradation process required for maintenance of intestinal homeostasis. In this study, we hypothesized that autophagy was triggered during high MUC2 mucin biosynthesis from colonic goblet cells to cope with metabolic stress. To interrogate this, we analyzed the autophagy process in high MUC2-producing human HT29-H and a clone HT29-L silenced for MUC2 expression by lentivirus-mediated shRNA, and WT and CRISPR/Cas9 MUC2 KO LS174T cells. Autophagy was constitutively increased in high MUC2-producing cells characterized by elevated pULK1S555 expression and increased numbers of autophagosomes as compared with MUC2 silenced or gene edited cells. Similarly, colonoids from Muc2+/+ but not Muc2-/- littermates differentiated into goblet cells showed increased autophagy. IL-22 treatment corrected misfolded MUC2 protein and alleviated the autophagy process in LS174T cells. This study highlights that autophagy plays an essential role in goblet cells to survive during high mucin biosynthesis by regulating cellular homeostasis.NEW & NOTEWORTHY It is unclear how colonic goblet cells survive by producing high output MUC2 mucin that triggers endoplasmic stress by misfolded MUC2 proteins. To cope with metabolic stress, we interrogated if autophagy played an essential role in regulating cellular homeostasis. Indeed, high MUC2 mucin biosynthesis dysregulated autophagy processes that was regulated by IL-22 to maintain gut barrier innate host defenses.
Collapse
Affiliation(s)
- Sameer Tiwari
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Sharmin Begum
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - France Moreau
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Hayley Gorman
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| | - Kris Chadee
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary Health Sciences Centre, Calgary, Alberta, Canada
| |
Collapse
|