1
|
Cong R, Lu C, Li X, Xu Z, Wang Y, Sun S. Tumor organoids in cancer medicine: from model systems to natural compound screening. PHARMACEUTICAL BIOLOGY 2025; 63:89-109. [PMID: 39893515 PMCID: PMC11789228 DOI: 10.1080/13880209.2025.2458149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/04/2024] [Accepted: 01/17/2025] [Indexed: 02/04/2025]
Abstract
CONTEXT The advent of tissue engineering and biomedical techniques has significantly advanced the development of three-dimensional (3D) cell culture systems, particularly tumor organoids. These self-assembled 3D cell clusters closely replicate the histopathological, genetic, and phenotypic characteristics of primary tissues, making them invaluable tools in cancer research and drug screening. OBJECTIVE This review addresses the challenges in developing in vitro models that accurately reflect tumor heterogeneity and explores the application of tumor organoids in cancer research, with a specific focus on the screening of natural products for antitumor therapies. METHODS This review synthesizes information from major databases, including Chemical Abstracts, Medicinal and Aromatic Plants Abstracts, ScienceDirect, Google Scholar, Scopus, PubMed and Springer Link. Publications were selected without date restrictions, using terms such as 'organoid', 'natural product', 'pharmacological', 'extract', 'nanomaterial' and 'traditional uses'. Articles related to agriculture, ecology, synthetic work or published in languages other than English were excluded. RESULTS AND CONCLUSIONS The review identifies key challenges related to the efficiency and variability of organoid generation and discusses ongoing efforts to enhance their predictive capabilities in drug screening and personalized medicine. Recent studies utilizing patient-derived organoid models for natural compound screening are highlighted, demonstrating the potential of these models in developing new classes of anticancer agents. The integration of natural products with patient-derived organoid models presents a promising approach for discovering novel anticancer compounds and elucidating their mechanisms of action.
Collapse
Affiliation(s)
- Rong Cong
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Can Lu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xinying Li
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhijie Xu
- Department of Pathology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yaqin Wang
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha, China
| | - Shusen Sun
- College of Pharmacy and Health Sciences, Western New England University, Springfield, MA, USA
| |
Collapse
|
2
|
Ekanger CT, Ramnefjell MP, Guttormsen MSF, Hekland J, Dahl-Michelsen K, Lotsberg ML, Lu N, Stuhr LEB, Hoareau L, Salminen PR, Gärtner F, Aanerud M, Akslen LA, Lorens JB, Engelsen AST. An Organoid Model for Translational Cancer Research Recapitulates Histoarchitecture and Molecular Hallmarks of Non-Small-Cell Lung Cancer. Cancers (Basel) 2025; 17:1873. [PMID: 40507353 PMCID: PMC12153547 DOI: 10.3390/cancers17111873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2025] [Revised: 05/22/2025] [Accepted: 05/30/2025] [Indexed: 06/16/2025] Open
Abstract
Background: Organoid cultures have received much attention in recent years due to the promise of patient-derived organoid cultures for exploration of personalized cancer treatment strategies. Organoid cultures have been established from a variety of malignancies; however, lack of a thorough histopathological analysis has limited the acceptance of organoid models as translational tools. Methods: Here, we aimed to establish patient-derived tumor-organoid (PDTO) models from human non-small-cell lung cancer (NSCLC) resection specimens and provide a thorough histopathological evaluation of the cultures. Results: We show that we were able to establish organoid cultures of lung adenocarcinomas (LUADs) and lung squamous cell carcinomas (LUSCs) successfully, and that the organoid cultures of different subtypes of NSCLC preserved the histoarchitecture and growth pattern of the tumors they derive from. Immunohistochemistry and AB-PAS staining confirmed the subtype-specific protein expression pattern and preserved mucin production in LUAD organoids. The genetic abnormalities of the tumors assessed by immunohistochemistry (IHC-P) were preserved in the organoid cultures. Conclusions: Our thorough study reveals conserved PDTO histopathology, supports further exploration, and encourages using PDTO models in translational research projects. PDTO models hold remarkable promise as patient-specific models and may be applied to predict therapy response in cases where molecular-pathological analyses pose significant management dilemmas, and they also may provide a platform for exploring the molecular mechanisms of therapy resistance in a biologically relevant model system.
Collapse
Affiliation(s)
- Camilla T. Ekanger
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (C.T.E.); (M.P.R.); (L.A.A.)
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Maria P. Ramnefjell
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (C.T.E.); (M.P.R.); (L.A.A.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - Maren S. F. Guttormsen
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Joakim Hekland
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | | | - Maria L. Lotsberg
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Ning Lu
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Linda E. B. Stuhr
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Laurence Hoareau
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
| | - Pirjo-Riitta Salminen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Section of Cardiothoracic Surgery, Department of Heart Disease, Haukeland University Hospital, 5021 Bergen, Norway
| | - Fabian Gärtner
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Marianne Aanerud
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- Department of Thoracic Medicine, Haukeland University Hospital, 5021 Bergen, Norway
| | - Lars A. Akslen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (C.T.E.); (M.P.R.); (L.A.A.)
- Department of Pathology, Haukeland University Hospital, 5021 Bergen, Norway
| | - James B. Lorens
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| | - Agnete S. T. Engelsen
- Centre for Cancer Biomarkers CCBIO, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (C.T.E.); (M.P.R.); (L.A.A.)
- Centre for Cancer Biomarkers CCBIO, Department of Biomedicine, University of Bergen, 5009 Bergen, Norway
| |
Collapse
|
3
|
Wu Y, Zhang F, Du F, Huang J, Wei S. Combination of tumor organoids with advanced technologies: A powerful platform for tumor evolution and treatment response (Review). Mol Med Rep 2025; 31:140. [PMID: 40183402 PMCID: PMC11976518 DOI: 10.3892/mmr.2025.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 02/26/2025] [Indexed: 04/05/2025] Open
Abstract
Malignant tumors notably decrease life expectancy. Despite advances in cancer diagnosis and treatment, the mechanisms underlying tumorigenesis, progression and drug resistance have not been fully elucidated. An emerging method to study tumors is tumor organoids, which are a three‑dimensional miniature structure. These retain the patient‑specific tumor heterogeneity while demonstrating the histological, genetic and molecular features of original tumors. Compared with conventional cancer cell lines and animal models, patient‑derived tumor organoids are more advanced at physiological and clinical levels. Their synergistic combination with other technologies, such as organ‑on‑a‑chip, 3D‑bioprinting, tissue‑engineered cell scaffolds and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‑associated protein 9, may overcome limitations of the conventional 3D organoid culture and result in the development of more appropriate model systems that preserve the complex tumor stroma, inter‑organ and intra‑organ communications. The present review summarizes the evolution of tumor organoids and their combination with advanced technologies, as well as the application of tumor organoids in basic and clinical research.
Collapse
Affiliation(s)
- Ying Wu
- Department of Obstetrics and Gynecology, The 920th Hospital of Joint Logistics Support Force, Kunming, Yunnan 650032, P.R. China
| | - Fan Zhang
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| | - Furong Du
- Department of Medicine, Kingbio Medical Co., Ltd., Chongqing 401123, P.R. China
| | - Juan Huang
- Department of Breast Surgery and Multidisciplinary Breast Cancer Center, Clinical Research Center of Breast Cancer in Hunan Province, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China
| | - Shuqing Wei
- Department of Comprehensive Medicine, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, Shanxi 030013, P.R. China
| |
Collapse
|
4
|
Chen Z, Yang Z, Liu Y, Zhou Z, Men B, Yun L, Jiang J, Ge H, Dian M, He Y, Zhang R, Cai K, Rao X, Rao S. Jaceosidin overcomes osimertinib resistance in lung cancer by inducing G2/M cycle arrest through targeting DDB1. Toxicol Appl Pharmacol 2025; 499:117327. [PMID: 40187661 DOI: 10.1016/j.taap.2025.117327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUND Osimertinib is a third-generation Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor (TKI) widely used to treat advanced non-small cell lung cancer with EGFR mutations. However, resistance to osimertinib frequently develops, limiting its long-term effectiveness. PURPOSE This study aimed to establish a lung cancer TKI-resistant model and identify Traditional Chinese Medicine (TCM) components that could reverse TKI resistance, enhancing lung cancer sensitivity to targeted therapies, while exploring the underlying molecular mechanisms. MATERIALS AND METHODS Osimertinib-resistant cell lines and organoids were developed using a dose-escalation approach. A screen of 302 traditional Chinese medicine monomers revealed compounds that increased sensitivity to osimertinib. RNA sequencing and limited proteolysis coupled with small molecule mapping were employed to investigate the molecular mechanisms by which jaceosidin reverses resistance. The efficacy of the jaceosidin and osimertinib combination was confirmed in cell lines, organoids, and a mouse model. RESULTS The osimertinib-resistant lung cancer model was successfully established, and 12 compounds were identified that enhanced the sensitivity of resistant cells to osimertinib. Among these, Jaceosidin, a flavonoid compound derived from Eupatorium lindleyanum DC., was confirmed to notably increase osimertinib sensitivity. Mechanistic studies, including limited proteolysis and RNA interference analysis, demonstrated that Jaceosidin directly interacts with Damage Specific DNA Binding Protein 1 (DDB1), promoting its protein expression and downregulating CDK1/Cyclin B1 levels. This interaction induced G2/M cell cycle arrest, thereby sensitizing lung cancer cells to osimertinib. Furthermore, both in vitro and in vivo experiments confirmed that the combination of Jaceosidin and osimertinib significantly inhibited tumor growth in osimertinib-resistant models. CONCLUSION These findings offer new insights into the role of DDB1 in overcoming osimertinib resistance and suggest that combining jaceosidin with osimertinib may serve as a promising therapeutic strategy to enhance the efficacy of EGFR-TKIs treatment in resistant Non-small Cell Lung Cancer (NSCLC).
Collapse
Affiliation(s)
- Zhijie Chen
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhuoying Yang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingying Liu
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zehao Zhou
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Biying Men
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Liang Yun
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jianjun Jiang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Haotian Ge
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Meijuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yujing He
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ruihao Zhang
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kaican Cai
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Xuguang Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Shuan Rao
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
5
|
Schneider RS, Nieves EB, Aggarwal B, Bowles-Welch AC, Stevens HY, Kippner LE, Boden SD, Mautner K, Drissi H, Roy K, Lam WA, Sinha S, García AJ. On-chip 3D potency assay for prediction of clinical outcomes for cell therapy candidates for osteoarthritis. Nat Commun 2025; 16:4915. [PMID: 40425577 PMCID: PMC12116846 DOI: 10.1038/s41467-025-60158-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
The lack of clinically predictive potency assays for cell products significantly impedes translation of these therapies. Here, we describe a microfluidic on-chip 3D system for rapid evaluation of a subset of patient-derived bone marrow aspirate concentrate (BMAC) samples used in a phase 3 multicenter trial (NCT03818737) evaluating autologous cells for relieving knee osteoarthritis pain. BMAC clinical samples cultured in the on-chip 3D system exhibit elevated levels of immunomodulatory and trophic proteins compared to 2D culture. Using analyte information from in vitro assays and patient-matched clinical data, we build linear regression prediction models for clinical outcomes. We demonstrate improved clinical prediction by cross-validation accuracy for the on-chip 3D platform compared to 2D culture. Additionally, on-chip 3D assay metrics display higher correlative power with patient pain scores compared to the 2D assay. This study establishes a potency assay with improved prediction power to accelerate translation of cell therapies.
Collapse
Affiliation(s)
- Rebecca S Schneider
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Elisa B Nieves
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Bhavay Aggarwal
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Annie C Bowles-Welch
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Hazel Y Stevens
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Linda E Kippner
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Marcus Center for Therapeutic Cell Characterization and Manufacturing, Georgia Institute of Technology, Atlanta, GA, USA
| | - Scott D Boden
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Kenneth Mautner
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Hicham Drissi
- Department of Orthopaedics, Emory University, Atlanta, GA, USA
| | - Krishnendu Roy
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Wilbur A Lam
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Saurabh Sinha
- Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrés J García
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
- Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
6
|
Ren S, Zhu J, Shan G, Liang J, Bian Y, Lin H, Shi H, Pan B, Zhao G, Yang H, Huang X, Zhan C, Ge D, Bi G. Transcription factor ZNF266 suppresses cancer progression by modulating CA9-mediated intracellular pH alteration in lung adenocarcinoma. Respir Res 2025; 26:191. [PMID: 40389968 PMCID: PMC12090625 DOI: 10.1186/s12931-025-03278-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025] Open
Abstract
BACKGROUND Lung cancer remains the leading cause of cancer-related mortality globally, with lung adenocarcinoma (LUAD) being the most prevalent subtype. Despite extensive research efforts, the role of transcription factors in LUAD progression remains largely uncharacterized. In this study, we focused on ZNF266, a transcription factor whose impacts on LUAD have not been investigated. METHODS Using high-throughput sequencing data, we observed a significant downregulation of ZNF266 expression in LUAD tissues. To validate this finding, we conducted a retrospective analysis of nearly three thousand LUAD patients' data from public databases and our institution. Functional studies were performed using cell lines, organoids, and xenograft models to assess the role of ZNF266 in LUAD progression. RNA sequencing, chromatin immunoprecipitation, DNA pull-down assays, and dual-luciferase reporter assays were employed to elucidate the underlying mechanism. Additionally, adeno-associated virus (AAV)-mediated overexpression of ZNF266 was used to evaluate its therapeutic potential. RESULTS Patients with low ZNF266 expression had poorer prognosis compared to those with high expression. ZNF266 inhibits the malignant phenotypes of LUAD, including proliferation, migration, and invasion. Mechanistically, ZNF266 binds to the promoter region of CA9, suppressing its transcription. This leads to a reduction in intracellular pH and subsequent inhibition of the mTOR signaling pathway, which is crucial for cancer cell growth and survival. Furthermore, AAV-mediated overexpression of ZNF266 significantly inhibited tumor growth in patient-derived xenograft models. CONCLUSIONS Our study demonstrated that ZNF266 inhibits LUAD progression in a pH-dependent manner via modulating CA9 expression, uncovering its therapeutic significance for LUAD treatment.
Collapse
Affiliation(s)
- Shencheng Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Junkan Zhu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiaqi Liang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Han Lin
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Haochun Shi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Guangyin Zhao
- Department of Thoracic Surgery, Shanghai Geriatric Medical Center, Fudan University, Shanghai, 201104, China
| | - Huiqin Yang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xiaolong Huang
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Di Ge
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
7
|
Diodati NG, Qu G, Mehrad B, Schaller MA. Cryopreservation of human lung tissue for 3D ex vivo analysis. Respir Res 2025; 26:187. [PMID: 40375251 DOI: 10.1186/s12931-025-03265-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 04/29/2025] [Indexed: 05/18/2025] Open
Abstract
Ex vivo culture techniques have assisted researchers in narrowing the translational gap between the lab and the clinic by allowing the study of biology in human tissues. In pulmonary biology, however, the availability of such tissues is a limiting factor in experimental design and constrains the reproducibility and replicability of these models as scientifically rigorous complements to in vitro or in vivo methods. Cryopreservation of human lung tissue is a strategy to address these limitations by generating cryopreserved biobanks of donors in the ex vivo study of pulmonary biology. Modern cryopreservation solutions, incorporating blends of cryoprotective extracellular macromolecules and cell-permeant non-toxic small molecules, have enabled the long-term storage of human lung tissue, allowing repeated experiments in the same donors and the simultaneous study of the same hypothesis across multiple donors, therefore granting the qualities of reproducibility and replicability to ex vivo systems. Specific considerations are required to properly maintain fundamental aspects of tissue structure, properties, and function throughout the cryopreservation process. The examples of existing cryopreservation systems successfully employed to amass cryobanks, and ex vivo culture techniques compatible with cryopreservation, are discussed herein, with the goal of indicating the potential of cryopreservation in ex vivo human lung tissue culture and highlighting opportunities for cryopreservation to expand the utility of ex vivo human lung culture systems in the pursuit of clinically relevant discoveries.
Collapse
Affiliation(s)
- Nickolas G Diodati
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA.
| | - Ganlin Qu
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| | - Borna Mehrad
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| | - Matthew A Schaller
- Division of Pulmonary, Critical Care, and Sleep Medicine, University of Florida College of Medicine, 1200 Newell Drive, Room MSB-M440, Gainesville, FL, 32610, USA
| |
Collapse
|
8
|
Shinozaki T, Togasaki K, Hamamoto J, Mitsuishi A, Fukushima T, Sugihara K, Ebisudani T, Okada M, Saito A, Shigematsu L, Takaoka H, Ito F, Ohgino K, Ishioka K, Watanabe K, Hishima T, Kurebayashi Y, Emoto K, Terai H, Ikemura S, Kawada I, Asakura K, Hishida T, Asamura H, Ohta Y, Takahashi S, Oda M, Saito M, Matano M, Soejima K, Fujii M, Fukunaga K, Yasuda H, Sato T. Basal-shift transformation leads to EGFR therapy-resistance in human lung adenocarcinoma. Nat Commun 2025; 16:4369. [PMID: 40350470 PMCID: PMC12066730 DOI: 10.1038/s41467-025-59623-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 04/30/2025] [Indexed: 05/14/2025] Open
Abstract
Although EGFR tyrosine kinase inhibitors (EGFR-TKIs) are effective for EGFR-mutant lung adenocarcinoma (LUAD), resistance inevitably develops through diverse mechanisms, including secondary genetic mutations, amplifications and as-yet undefined processes. To comprehensively unravel the mechanisms of EGFR-TKI resistance, we establish a biobank of patient-derived EGFR-mutant lung cancer organoids, encompassing cases previously treated with EGFR-TKIs. Through comprehensive molecular profiling including single-cell analysis, here we identify a subgroup of EGFR-TKI-resistant LUAD organoids that lacks known resistance-related genetic lesions and instead exhibits a basal-shift phenotype characterized by the hybrid expression of LUAD- and squamous cell carcinoma-related genes. Prospective gene engineering demonstrates that NKX2-1 knockout induces the basal-shift transformation along with EGFR-target therapy resistance. Basal-shift LUADs frequently harbor CDKN2A/B loss and are sensitive to CDK4/6 inhibitors. Our EGFR-mutant lung cancer organoid library not only offers a valuable resource for lung cancer research but also provides insights into molecular underpinnings of EGFR-TKI resistance, facilitating the development of therapeutic strategies.
Collapse
Affiliation(s)
- Taro Shinozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Gastroenterology, Keio University, School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Akifumi Mitsuishi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kai Sugihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Toshiki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Masahiko Okada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ayaka Saito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Lisa Shigematsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hatsuyo Takaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Fumimaro Ito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kota Ishioka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kageaki Watanabe
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Tsunekazu Hishima
- Department of Pathology, Tokyo Metropolitan Cancer and Infectious Diseases Center, Komagome Hospital, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Keisuke Asakura
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Mayumi Oda
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Megumu Saito
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Otsuka Pharmaceutical Company Limited, Department of Drug Modality Development, Osaka Research Center for Drug Discovery, Osaka, Japan
| | - Mami Matano
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
9
|
Fukushima T, Togasaki K, Hamamoto J, Emoto K, Ebisudani T, Mitsuishi A, Sugihara K, Shinozaki T, Okada M, Saito A, Takaoka H, Ito F, Shigematsu L, Ohta Y, Takahashi S, Matano M, Kurebayashi Y, Ohgino K, Sato T, Kawada I, Asakura K, Hishida T, Asamura H, Ikemura S, Terai H, Soejima K, Oda M, Fujii M, Fukunaga K, Yasuda H, Sato T. An organoid library unveils subtype-specific IGF-1 dependency via a YAP-AP1 axis in human small cell lung cancer. NATURE CANCER 2025:10.1038/s43018-025-00945-y. [PMID: 40307487 DOI: 10.1038/s43018-025-00945-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/07/2025] [Indexed: 05/02/2025]
Abstract
Small cell lung cancer (SCLC) is a devastating disease with limited therapeutic advancements. Although SCLC has recently been classified into four molecular subtypes, subtype-specific therapies are still lacking. Here, we established 40 patient-derived SCLC organoid lines with predominant TP53 and RB1 alterations and rare targetable genetic lesions. Transcriptome profiling divided the SCLC organoids into neuroendocrine (NE)-type SCLC and non-NE-type SCLC, with the latter characterized by YAP1 or POU2F3 expression. NE-type SCLC organoids grew independent of alveolar niche factors, whereas non-NE-type SCLC organoids relied on insulin-like growth factor (IGF)-1-driven YAP1 and AP1 activation. Therapeutic targeting of IGF-1, YAP1 and AP1 effectively suppressed the growth of non-NE-type organoids. Co-knockout of TP53 and RB1 in human alveolar cells altered their lineage toward the airway epithelium-like fate and conferred IGF-1 dependency, validating the subtype-phenotype connection. Our SCLC organoid library represents a valuable resource for developing biology-based therapies and has the potential to reshape the drug discovery landscape.
Collapse
Affiliation(s)
- Takahiro Fukushima
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kazuhiro Togasaki
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
- Division of Gastroenterology Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Junko Hamamoto
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Katsura Emoto
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Toshiki Ebisudani
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Akifumi Mitsuishi
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kai Sugihara
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Taro Shinozaki
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Masahiko Okada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Ayaka Saito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hatsuyo Takaoka
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Fumimaro Ito
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Lisa Shigematsu
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Yuki Ohta
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Sirirat Takahashi
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Mami Matano
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Yutaka Kurebayashi
- Department of Pathology, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Ohgino
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Takashi Sato
- Department of Respiratory Medicine, Kitasato University School of Medicine, Kanagawa, Japan
| | - Ichiro Kawada
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Keisuke Asakura
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Tomoyuki Hishida
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Hisao Asamura
- Division of Thoracic Surgery, Department of Surgery, Keio University School of Medicine, Tokyo, Japan
| | - Shinnosuke Ikemura
- Department of Pulmonary Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Hideki Terai
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Kenzo Soejima
- Department of Pulmonary Medicine, Faculty of Medicine University of Yamanashi, Yamanashi, Japan
| | - Mayumi Oda
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Masayuki Fujii
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Koichi Fukunaga
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan
| | - Hiroyuki Yasuda
- Division of Pulmonary Medicine, Department of Medicine, Keio University, School of Medicine, Tokyo, Japan.
| | - Toshiro Sato
- Department of Organoid Medicine, Keio University School of Medicine, Tokyo, Japan.
- Department of Integrative Medicine and Biochemistry, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
10
|
Hui W, Lei KM, Liu Y, Huang X, Zhong Y, Chen X, Wei M, Yan J, Shen R, Mak PI, Martins RP, Yi S, Wang P, Jia Y. Identification and Drug Screening of Single Cells from Human Tumors on Semiconductor Chip for Cancer Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2503131. [PMID: 40271835 DOI: 10.1002/advs.202503131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/02/2025] [Indexed: 04/25/2025]
Abstract
Drug screening of primary tumor cells directly assesses the drug efficacy on specific tumors, promoting personalized cancer treatment. The application of a microfluidic platform has realized drug screening using a limited amount of biopsy samples for cancer precision medicine. However, all the techniques face an inevitable issue of not all the primary tumor cells being cancer cells. Here, a system is introduced that integrates single-cell identification and drug screening on one semiconductor chip so that both drug efficacy on cancer cells and drug toxicity on noncancerous cells can be obtained simultaneously. An integrated circuit is built on the semiconductor chip for single-cell electric impedance sensing (IC-ECIS) of ultra-weak signals for distinguishing cancer cells from noncancerous cells without affecting cell vitality. Single-cell identification is validated using breast, lung, and liver cell lines as well as liver cancer specimens from clinical patients. The accuracy on commercial cell lines is ≈80%, and the diagnostic results of tumor tissues are consistent with clinical pathology results. Drug screening is run on the same chip after single cell identification for dual evaluation of drug efficacy and toxicity in both breast cancer models and clinical liver cancer patients. The on-chip drug screening is confirmed with off-chip counterpart experiments in breast cell lines. The effectiveness or ineffectiveness of a drug screened on the IC-ECIS chip demonstrated consistency in the presence or absence of specific mutations in the drug-related genes determined via exome sequencing of individual liver tumors, validating the method for precision medicine.
Collapse
Affiliation(s)
- Wenhao Hui
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Ka-Meng Lei
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Yingying Liu
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Xinru Huang
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Yunlong Zhong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Xiaojun Chen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Lingnan Normal University, Zhanjiang, 524000, China
| | - Mingji Wei
- Electrical and Information Engineering, Jiangsu University, Zhenjiang, 212000, China
| | - Jie Yan
- Department of Physics, National University of Singapore, Singapore, 546080, Singapore
- Mechanobiology Institute, National University of Singapore, Singapore, 546080, Singapore
| | - Ren Shen
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Pui-In Mak
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
| | - Rui P Martins
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
- On leave from Instituto Superior Tecnico, Universidade de Lisboa, Lisboa, 1649-004, Portugal
| | - Shuhong Yi
- Liver Transplantation Center, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510000, China
| | - Ping Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510000, China
| | - Yanwei Jia
- State Key Laboratory of Analog and Mixed-Signal VLSI, Institute of Microelectronics, University of Macau, Taipa, 999078, Macau
- Faculty of Science and Technology, University of Macau, Taipa, 999078, Macau
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Taipa, 999078, Macau
| |
Collapse
|
11
|
Shan G, Bian Y, Ren S, Hu Z, Pan B, Zeng D, Zheng Z, Fan H, Bi G, Yao G, Zhan C. Sarcosine sensitizes lung adenocarcinoma to chemotherapy by dual activation of ferroptosis via PDK4/PDHA1 signaling and NMDAR-mediated iron export. Exp Hematol Oncol 2025; 14:60. [PMID: 40275333 PMCID: PMC12023509 DOI: 10.1186/s40164-025-00657-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 04/16/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Ferroptosis, a regulated cell death driven by iron-dependent lipid peroxidation, is associated with chemoresistance in lung adenocarcinoma (LUAD). This study aims to investigate the role of sarcosine in ferroptosis and its underlying mechanisms. METHODS An RSL3-induced ferroptosis model was used to screen a library of 889 human endogenous metabolites and metabolomic profiling was harnessed to identify metabolites associated with ferroptosis. Cell viability, lipid-reactive oxygen species (ROS), ferrous iron, malondialdehyde (MDA), and mitochondrial integrity were assessed to evaluate sarcosine's effects on ferroptosis. Metabolic fate was studied using 15N-labeled sarcosine. Next, we used untargeted metabolomic profiling and next-generation sequencing to dissect metabolic and transcriptomic changes upon sarcosine supplementation. The effects of sarcosine on ferroptosis and chemotherapy were further validated in patient-derived organoids (PDOs), xenograft models, and LUAD tissues. RESULTS Sarcosine emerged as a potent ferroptosis inducer in the metabolic library screening, which was further confirmed via cell viability, lipid-ROS, ferrous iron, and MDA measurements. Metabolic flux analysis showed limited conversion of sarcosine to other metabolites in LUAD cells, while untargeted metabolomic profiling and seahorse assays indicated a metabolic shift from glycolysis to oxidative phosphorylation. Sarcosine enhanced pyruvate dehydrogenase activity to generate more ROS by interacting with PDK4, reducing PDHA1 phosphorylation. As a co-activator of N-methyl-D-aspartate receptor (NMDAR), sarcosine also exerted its pro-ferroptosis effect via regulating ferrous export through the NMDAR/MXD3/SLC40A1 axis. Given the significance of ferroptosis in chemotherapy, we validated that sarcosine enhanced the sensitization of cisplatin by promoting ferroptosis in LUAD cells, PDOs, and xenograft models. CONCLUSION Sarcosine promotes ferroptosis and enhances chemosensitivity, suggesting its potential as a therapeutic agent in treating LUAD.
Collapse
Affiliation(s)
- Guangyao Shan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Yunyi Bian
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Shencheng Ren
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Zhengyang Hu
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Binyang Pan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Dejun Zeng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Zhaolin Zheng
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
| | - Hong Fan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University (Xiamen Branch), No. 668 Jinhu Road, Huli District, Xiamen, China
| | - Guoshu Bi
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| | - Guangyu Yao
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| | - Cheng Zhan
- Department of Thoracic Surgery, Zhongshan Hospital, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, China.
| |
Collapse
|
12
|
Taş İ, Jacobs R, Albrecht J, Barrientos SA, Åberg J, Sime W, Brunnström H, Persson H, Kazi JU, Massoumi R. Advanced organoid models for targeting Kras-driven lung adenocarcinoma in drug discovery and combination therapy. J Exp Clin Cancer Res 2025; 44:128. [PMID: 40275403 PMCID: PMC12020293 DOI: 10.1186/s13046-025-03385-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/03/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Lung cancer remains one of the most challenging diseases to treat due to its heterogeneity. Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) mutations are genetic drivers in numerous cancer types including lung adenocarcinoma (LUAD). Despite recent advances in KRAS-targeted therapies, treatment resistance and limited therapeutic options necessitate advanced preclinical models, such as organoids, to identify personalized cancer therapies by screening novel therapeutic strategies and synergistic drug combinations. RESULTS We established LUAD in genetically engineered mouse (GEM) models of KrasG12V & Trp53 Δex2-10 (KP) and KP with Ctnnb1Δex3 mutation (KPC). Tumor-derived organoids from these models recapitulated the genomic landscape and histopathological characteristics of their parental tumors. The organoids displayed tumorigenic potential when implanted in immunocompromised mice, forming tumors in contrast to unlike healthy lung-derived organoids. Drug screening identified effective kinase inhibitors and DNA methyltransferase (DNMT) inhibitors against the organoids. Notably, the combination of these drugs exhibited the highest synergy in KPC organoids. CONCLUSION We successfully developed LUAD organoids harboring Kras mutations and identified multiple potential therapeutic agents targeting these cells. Furthermore, we demonstrated the effectiveness of a DNMT inhibitor-based combination therapy, presenting a promising strategy for this challenging lung cancer subtype.
Collapse
Affiliation(s)
- İsa Taş
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Ruben Jacobs
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Juliane Albrecht
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Sebastian A Barrientos
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
- IVRS AB, Medicon Village, Scheeletorget 1, 223-81, Lund, SE, Sweden
| | - Josephine Åberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Wondossen Sime
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Hans Brunnström
- Department of Clinical Sciences Lund, Division of Pathology, Lund University, Lund, Sweden
| | - Helena Persson
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
| | - Julhash U Kazi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Ramin Massoumi
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Liu L, Liu X, Gao C, Liu M, Peng M, Wang L. Hsa-miR-21 promoted the progression of lung adenocarcinoma by regulating LRIG1 expression. BMC Pulm Med 2025; 25:189. [PMID: 40269842 PMCID: PMC12016109 DOI: 10.1186/s12890-025-03620-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
Lung cancer is the foremost cause of cancer-related fatalities globally, and lung adenocarcinoma (LUAD) is one of the common types of lung cancer with significant molecular heterogeneity. Leucine rich repeats and immunoglobulin like domains 1 (LRIG1) has been demonstrated to be down-regulated in lung cancer and related to prognosis of patients. The purpose of this work is to explore the targeting miRNAs of LRIG1, and the related regulatory mechanisms in LUAD. The data of LUAD patients were collected from The Cancer Genome Atlas and Gene Expression Omnibus databases. The differential expression analysis and gene set enrichment analysis (GSEA) were performed using "limma" and "clusterProfiler" function package, respectively. The levels of hsa-miR-21 mRNA and LRIG1 mRNA and LRIG1 protein expressions were analyzed using RT-qPCR and western blot analysis. The infiltration of immune cells was determined using CIBERSORT software. In LUAD patients, hsa-miR-21 expression was observably related to LRIG1 expression. Hsa-miR-21 might negatively modulate the LRIG1 expression in LUAD. LUAD patients with hsa-miR-21 up-regulation exhibited inferior prognosis. In addition, those with LUAD who had high hsa-miR-21 expression but low LRIG1 expression had a worse prognosis, whereas those with low hsa-miR-21 expression but high LRIG1 expression had a better prognosis. Functional enrichment analysis indicated that metabolic related signaling pathways (EGFR tyrosine kinase inhibitor resistance) were significantly activated in LUAD patients with LRIG1 up-regulation. Finally, we found that relative content of naive B cells, plasma cells and resting CD4 + T cells were significantly increased and regulatory T cells and Macrophages M0 were decreased in LRIG1 high expression group and hsa-miR-21 low expression group. We firstly reported that hsa-miR-21 might regulate the LRIG1 expression in LUAD, thereby effecting the onset and progression of LUAD. Clinical trial number: Not applicable.
Collapse
Affiliation(s)
- Li Liu
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Xinhua Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Yuhang District, Hangzhou, 311121, Zhejiang Province, P. R. China
| | - Chengpeng Gao
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Meijuan Liu
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China.
| | - Mengmeng Peng
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| | - Leqiang Wang
- Department of Respiratory, Weifang People's Hospital, No. 151 Guangwen Street, Kuiwen District, Weifang, 261041, Shandong Province, P. R. China
| |
Collapse
|
14
|
Liu C, Shi C, Wang S, Qi R, Gu W, Yu F, Zhang G, Qiu F. Bridging the gap: how patient-derived lung cancer organoids are transforming personalized medicine. Front Cell Dev Biol 2025; 13:1554268. [PMID: 40302940 PMCID: PMC12037501 DOI: 10.3389/fcell.2025.1554268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2025] [Accepted: 03/25/2025] [Indexed: 05/02/2025] Open
Abstract
Lung cancer is a major malignancy that poses a significant threat to human health, with its complex pathogenesis and molecular characteristics presenting substantial challenges for treatment. Traditional two-dimensional cell cultures and animal models are limited in their ability to accurately replicate the characteristics of different lung cancer patients, thereby hindering research on disease mechanisms and treatment strategies. The development of organoid technology has enabled the growth of patient-derived tumor cells in three-dimensional cultures, which can stably preserve the tumor's tissue morphology, genomic features, and drug response. There have been significant advancements in the field of patient-derived lung cancer organoids (PDLCOs), challenges remain in the reproducibility and standardization of PDLCOs models due to variations in specimen sources, subsequent processing techniques, culture medium formulations, and Matrigel batches. This review summarizes the cultivation and validation processes of PDLCOs and explores their clinical applications in personalized treatment, drug screening after resistance, PDLCOs biobanks construction, and drug development. Additionally, the integration of PDLCOs with cutting-edge technologies in various fields, such as tumor assembloid techniques, artificial intelligence, organoid-on-a-chip, 3D bioprinting, gene editing, and single-cell RNA sequencing, has greatly expanded their clinical potential. This review, incorporating the latest research developments in PDLCOs, provides an overview of their cultivation, clinical applications, and interdisciplinary integration, while also addressing the prospects and challenges of PDLCOs in precision medicine for lung cancer.
Collapse
Affiliation(s)
- Chaoxing Liu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Chao Shi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Siya Wang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Rong Qi
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Weiguo Gu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Yu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Guohua Zhang
- Nanchang Key Laboratory of Tumor Gene Diagnosis and Innovative Treatment Research, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Feng Qiu
- Department of Oncology, Gaoxin Branch of the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
15
|
Preet R, Islam MA, Shim J, Rajendran G, Mitra A, Vishwakarma V, Kutz C, Choudhury S, Pathak H, Dai Q, Sun W, Madan R, Zhong C, Markiewicz MA, Zhang J. Gut commensal Bifidobacterium-derived extracellular vesicles modulate the therapeutic effects of anti-PD-1 in lung cancer. Nat Commun 2025; 16:3500. [PMID: 40221398 PMCID: PMC11993705 DOI: 10.1038/s41467-025-58553-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Although immunotherapy such as anti-programmed death-1 and its ligand 1 (PD-1/L1) is a standard treatment for advanced non-small cell lung cancer (NSCLC), many patients do not derive benefit directly. Several studies have elucidated new strategies to improve the antitumor immune response through gut microbiota modulation. However, it remains largely debatable regarding how gut microbiota remotely affect lung cancer microenvironment and subsequently modulate immunotherapy response. Here we show that commensal Bifidobacterium-derived extracellular vesicles (Bif.BEVs) can modulate the therapeutic effect of anti-PD-1 therapy in NSCLC. These Bif.BEVs are up-taken by lung cancer cells predominantly via dynamin-dependent endocytosis and upregulate PD-L1 expression through TLR4-NF-κB pathway. They also efficiently penetrate murine intestinal and patient-derived lung cancer organoids. Oral gavage of these Bif.BEVs result in their accumulation in tumors in mice. Using a syngeneic mouse model, Bif.BEVs are found to synergize the anti-tumor effect of anti-PD-1 via modulation of key cytokines, immune response and oncogenic pathways, and increase in tumor-infiltrating CD8+ T cells. Our study therefore identifies a link between Bif.BEVs and the tumor microenvironment, providing an alternative mechanism to explain how gut microbiota can influence immunotherapy response, particularly in tumors located anatomically distant from the gut.
Collapse
Affiliation(s)
- Ranjan Preet
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Md Atiqul Islam
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jiyoung Shim
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Ganeshkumar Rajendran
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Amrita Mitra
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Vikalp Vishwakarma
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Caleb Kutz
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Sonali Choudhury
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, Kansas City, KS, 66160, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Qun Dai
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Weijing Sun
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Rashna Madan
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Cuncong Zhong
- Department of Electrical Engineering and Computer Science, University of Kansas, Lawrence, KS, 66045, USA
| | - Mary A Markiewicz
- Department of Microbiology, Molecular Genetics & Immunology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Jun Zhang
- Division of Medical Oncology, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
- Department of Cancer Biology, University of Kansas Comprehensive Cancer Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
16
|
Xu S, Yin SY, Bie ZX, Li YM, Qi J, Ma YD, Wang Z, Xi JJ, Li XG. Personalized drug screening of patient-derived tumor-like cell clusters based on specimens obtained from percutaneous transthoracic needle biopsy in patients with lung malignancy: a real-world study. BMC Cancer 2025; 25:649. [PMID: 40205326 PMCID: PMC11983848 DOI: 10.1186/s12885-025-14069-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Patient-derived xenografts and organoids were the most common patient-derived tumor models in vitro that were utilized in personalized drug screening, and the establishment rate and duration required to be improved. Patient-derived tumor-like cell clusters (PTCs) could be established within ten days for drug screening, with high establishment rate and accuracy in predicting clinical outcomes. This study aims to explore the accuracy of PTCs based on specimens obtained from percutaneous transthoracic needle biopsy (PTNB) in lung malignancy (LM) patients, and to investigate the predictors for the success of PTC culture. MATERIALS AND METHODS This retrospective cohort study included LM patients who underwent image-guided PTNB, and the specimens were used for PTC culture, which was followed by personalized drug screening of chemotherapy and molecular targeted therapy, and the accuracy was validated by previous or further treatments. The predictors of the success of PTC culture were identified by univariable and multivariable analyses. RESULTS A total of 68 LM patients were enrolled, consisting of 57, 7, and 4 patients with non-small cell lung cancer, small cell lung cancer, and lung metastases, respectively. Pneumothorax was the predominant adverse event for PTNB, with an incidence rate of 20.6% (14/68). PTC models based on PTNB specimens were established successfully for 56 patients in 3.8 ± 2.3 days, with an 82.4% success rate. Five patients had not received treatments before or after PTC culture. PTC drug screening reveals 88.2% (45/51) overall consistency in predicting clinical outcomes. Necrotic area over half of the tumor (hazard ratio, 0.121; 95% confidence interval, 0.025-0.598; P = 0.010) was identified as the negative predictor for the success of PTC culture. CONCLUSIONS PTC culture based on PTNB specimens could be established in 82.4% of LM patients, with a high accuracy in predicting clinical outcomes. Excessive necrosis in the tumor may predict the failure of PTC culture. Image-guided PTNB targeting enhanced or fluorodeoxyglucose avid regions on images might contribute to improving the success rate of PTC culture.
Collapse
Affiliation(s)
- Sheng Xu
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Shen-Yi Yin
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, Beijing, 100871, China
| | - Zhi-Xin Bie
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Yuan-Ming Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jing Qi
- Department of Neurology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Yi-Dan Ma
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Zheng Wang
- Department of Pathology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Jianzhong Jeff Xi
- State Key Laboratory of Natural and Biomimetic Drugs, Department of Biomedical Engineering, College of Future Technology, Peking University, No.5 Yiheyuan Road, Haidian District, Beijing, 100871, China.
| | - Xiao-Guang Li
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, 100730, China.
- Department of Minimally Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, No.1 Da Hua Road, Dong Dan, Beijing, 100730, China.
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, 9 Dongdansantiao Street, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
17
|
Ogden J, Sellers R, Sahoo S, Oojageer A, Chaturvedi A, Dive C, Lopez-Garcia C. A human model to deconvolve genotype-phenotype causations in lung squamous cell carcinoma. Nat Commun 2025; 16:3215. [PMID: 40185723 PMCID: PMC11971459 DOI: 10.1038/s41467-025-58343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 03/18/2025] [Indexed: 04/07/2025] Open
Abstract
Tractable, patient-relevant models are needed to investigate cancer progression and heterogeneity. Here, we report an alternative in vitro model of lung squamous cell carcinoma (LUSC) using primary human bronchial epithelial cells (hBECs) from three healthy donors. The co-operation of ubiquitous alterations (TP53 and CDKN2A loss) and components of commonly deregulated pathways including squamous differentiation (SOX2), PI3K signalling (PTEN) and the oxidative stress response (KEAP1) is investigated by generating hBECs harbouring cumulative alterations. Our analyses confirms that SOX2-overexpression initiates early preinvasive LUSC stages, and co-operation with the oxidative stress response and PI3K pathways to drive more aggressive phenotypes, with expansion of cells expressing LUSC biomarkers and invasive properties. This cooperation is consistent with the classical LUSC subtype. Importantly, we connect pathway dysregulation with gene expression changes associated with cell-intrinsic processes and immunomodulation. Our approach constitutes a powerful system to model LUSC and unravel genotype-phenotype causations of clinical relevance.
Collapse
Affiliation(s)
- Julia Ogden
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Robert Sellers
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Sudhakar Sahoo
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Anthony Oojageer
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Anshuman Chaturvedi
- Department of Histopathology, The Christie Hospital, Wilmslow Road, Manchester, M20 4BX, United Kingdom
| | - Caroline Dive
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom
- Cancer Research UK, National Biomarker Centre, Wilmslow Road, M20 4BX, Manchester, United Kingdom
- Cancer Research UK Lung Cancer Centre of Excellence, Wilmslow Road, M20 4BX, Manchester, United Kingdom
| | - Carlos Lopez-Garcia
- Cancer Research UK Manchester Institute, Wilmslow Road, M20 4BX, Manchester, United Kingdom.
- Cancer Research UK Lung Cancer Centre of Excellence, Wilmslow Road, M20 4BX, Manchester, United Kingdom.
| |
Collapse
|
18
|
Chen P, Zhou JB, Chu XP, Feng YY, Zeng QB, Lei JH, Wong KP, Chan TI, Lam CW, Zhu WL, Chu WK, Hu F, Luo GH, Chan KI, Deng CX. Establishing a cryopreserved biobank of living tumor tissues for drug sensitivity testing. Bioact Mater 2025; 46:582-596. [PMID: 40061435 PMCID: PMC11889390 DOI: 10.1016/j.bioactmat.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 07/05/2024] [Accepted: 09/04/2024] [Indexed: 03/17/2025] Open
Abstract
The cryopreservation of cancer tissues to generate frozen libraries is a common practice used worldwide for storing patient samples for later applications. However, frozen samples stored by existing methods cannot be used for initiating living cell cultures, such as patient-derived tumor organoids (PDOs), which offer great potential for personalized treatment. To overcome this challenge, we developed a novel procedure for culturing PDOs using frozen live tumor tissues. We show that tumor specimens stored using this technique maintain their viability and can be successfully used to generate organoids even after long-term freezing, with an impressive success rate of 95.2 %. Importantly, we found that the structural features, tumor marker expression, and drug responses of organoids derived from frozen tissues are similar to those derived from fresh tissues. Moreover, organoids derived from frozen tissues can be routinely passaged and frozen, making them ideal for high-throughput drug screening at any time. Notably, cryopreserved tumor tissues can also be utilized in air-liquid interface (ALI) culture. This method allows for preserving the original tumor microenvironment, making it an invaluable resource for conducting tests on antitumor drug responses, including immune checkpoint inhibitors (ICIs). This innovation has the potential to enable the identification of potentially effective drugs for patients and facilitate the development of novel therapeutic drugs. Thus, we have established protocols for the long-term cryopreservation of cancer tissues to maintain their viability and microenvironment, which are useful for personalized therapy.
Collapse
Affiliation(s)
- Ping Chen
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jing-Bo Zhou
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Xiang-Peng Chu
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Yang-Yang Feng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Qi-Bing Zeng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Josh-Haipeng Lei
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | - Ka-Pou Wong
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| | | | | | - Wen-Li Zhu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | - Feng Hu
- Kiang Wu Hospital, Macau SAR 999078, China
| | | | | | - Chu-Xia Deng
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China
- MOE Frontier Science Centre for Precision Oncology, University of Macau, Macau SAR, China
| |
Collapse
|
19
|
Peng Z, Lv X, Sun H, Zhao L, Huang S. 3D tumor cultures for drug resistance and screening development in clinical applications. Mol Cancer 2025; 24:93. [PMID: 40119343 PMCID: PMC11927140 DOI: 10.1186/s12943-025-02281-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Accepted: 02/24/2025] [Indexed: 03/24/2025] Open
Abstract
Tumor drug resistance presents a growing challenge in medical practice, particularly during anti-cancer therapies, where the emergence of drug-resistant cancer cells significantly complicates clinical treatment. In recent years, three-dimensional (3D) tumor culture technology, which more effectively simulates the in vivo physiological environment, has gained increasing attention in tumor drug resistance research and clinical applications. By mimicking the in vivo cellular microenvironment, 3D tumor culture technology not only recapitulates cell-cell interactions but also more faithfully reproduces the biological effects of therapeutic agents. Consequently, 3D tumor culture technology is emerging as a crucial tool in biomedical and clinical research. We summarize the benefits of 3D culture models and organoid technology, explore their application in the realm of drug resistance, drug screening, and personalized therapy, and discuss their potential application prospects and challenges in clinical transformation, with the aim of providing insights for optimizing cancer treatment strategies and advancing precision therapy.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Clinical Laboratory, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, Guangxi, China
| | - Xiaolan Lv
- Department of Clinical Laboratory, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, Guangxi, China
| | - Hao Sun
- Faculty of Science, Autonomous University of Madrid, Spainish National Research Council -Consejo Superior de Investigaciones Científicas,(UAM-CSIC), Madrid, 28049, Spain
| | - Lina Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| | - Shigao Huang
- Department of Radiation Oncology, Xijing Hospital, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
20
|
Yang J, Qu J, Zhang M, Li X, Jiang Q, Kang J, Nie P, Jing N, Wang X. Dynamic culture system advances the applications of breast cancer organoids for precision medicine. Sci Rep 2025; 15:8852. [PMID: 40087289 PMCID: PMC11909168 DOI: 10.1038/s41598-025-86730-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 01/13/2025] [Indexed: 03/17/2025] Open
Abstract
Tumor organoid-based drug sensitivity prediction is a new approach for precision medicine, which has wide applications in cancer treatment and attracts increasing attention. In the field of breast cancer, conventional organoid culture methods often require more than three weeks of culture period. The culture time greatly limits the further extension of the application scenarios of breast cancer organoids. We developed a fluid system that builds on the conventional organoid "dome" culture method, which continuously and stably supplies the nutrients for the growth of breast cancer organoids. We demonstrated that this is an effective optimization method, which can shorten the culture period of breast cancer organoids without significant changes in histological characteristics and drug sensitivity features.
Collapse
Affiliation(s)
- Jun Yang
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Junyuan Qu
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Mei Zhang
- Zigong Fourth People's Hospital, Zigong, China
| | - Xiang Li
- Department of Breast Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qian Jiang
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Jinxiu Kang
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Pan Nie
- Chongqing Kingmed Pharma Co., Ltd., Chongqing, China
| | - Na Jing
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China
| | - Xianling Wang
- Department of Radiotherapy, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China.
- Shanxi Hospital Affiliated to Cancer Hospital, Cancer Hospital, Province Cancer Hospital, Chinese Academy of Medical Sciences, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
21
|
Izzo LT, Reyes T, Meesala S, Ireland AS, Yang S, Sunil HS, Cheng XC, Tserentsoodol N, Hawgood SB, Patz EF, Witt BL, Tyson DR, O’Donnell KA, Oliver TG. KLF4 promotes a KRT13+ hillock-like state in squamous lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.641898. [PMID: 40161723 PMCID: PMC11952405 DOI: 10.1101/2025.03.10.641898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Lung squamous cell carcinoma (LUSC) is basal-like subtype of lung cancer with limited treatment options. While prior studies have identified tumor-propagating cell states in squamous tumors, the broader landscape of intra-tumoral heterogeneity within LUSC remains poorly understood. Here, we employ Sox2-driven mouse models, organoid cultures, and single-cell transcriptomic analyses to uncover previously unrecognized levels of cell fate diversity within LUSC. Specifically, we identify a KRT13+ hillock-like population of slower-dividing tumor cells characterized by immunomodulatory gene expression signatures. The tumor hillock-like state is conserved across multiple animal models and is present in the majority of human LUSCs as well as head and neck and esophageal squamous tumors. Our findings shed light on the cellular origins of lung hillock-like states: normal club cells give rise to tumors with luminal hillock-like populations, while basal-like tumor-propagating cells transition into basal hillock-like states, resembling homeostatic cellular responses to lung injury. Mechanistically, we identify KLF4 as a key transcriptional regulator of the hillock-like state, both necessary and sufficient to induce KRT13 expression. Together, these results provide new molecular insights into cell fate plasticity that underlies intra-tumoral heterogeneity in LUSC, offering potential avenues for new therapeutic strategies.
Collapse
Affiliation(s)
- Luke T. Izzo
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Tony Reyes
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - Srijan Meesala
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Abbie S. Ireland
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Steven Yang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Hari Shankar Sunil
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Xiao Chun Cheng
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Nomi Tserentsoodol
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Sarah B. Hawgood
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Edward F. Patz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Radiology, Duke University, Durham, NC, 27710, USA
| | - Benjamin L. Witt
- Department of Pathology, University of Utah, Salt Lake City, UT, 84112, USA
| | - Darren R. Tyson
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
| | - Kathryn A. O’Donnell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Trudy G. Oliver
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, 27710, USA
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
- Lead contact: Trudy G. Oliver
| |
Collapse
|
22
|
Fnu T, Shi P, Zhang W, Chung SS, Damoci CB, Fang Y, Chen QY, Saqi A, Huang Y, Wu X, Lu C, Yang D, Wang TC, Que J. Sympathetic Neurons Promote Small Cell Lung Cancer through the β2-Adrenergic Receptor. Cancer Discov 2025; 15:616-632. [PMID: 39513738 PMCID: PMC11875942 DOI: 10.1158/2159-8290.cd-24-0718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 10/04/2024] [Accepted: 11/06/2024] [Indexed: 11/15/2024]
Abstract
SIGNIFICANCE SCLC is highly aggressive, with limited effective treatment options. We show that ablating sympathetic nerves or inhibiting the ADRB2 receptor slows SCLC progression and prolongs survival in mice. Additionally, ADRB2 inhibition reduces the growth of human SCLC organoids and xenografts by disrupting PKA signaling, identifying a new therapeutic target.
Collapse
Affiliation(s)
- Tala Fnu
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Peiguo Shi
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of System Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Wanwei Zhang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sanny S.W. Chung
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Christopher B Damoci
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Qi-Yue Chen
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Gastric Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian 350001, P.R. China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, Fujian 350001, P.R. China
| | - Anjali Saqi
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Yuefeng Huang
- Department of Microbiology and Immunology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Xuebing Wu
- Cardiometabolic Genomics Program, Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of System Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Chao Lu
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Dian Yang
- Department of System Biology, Columbia University Irving Medical Center, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Timothy C. Wang
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Digestive and Liver Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
- Division of Digestive and Liver Disease, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
23
|
Lee J, Kim Y, Lee C, Jeon SS, Seo H, Lee J, Choi J, Kang M, Kim E, Shin K. Generation of prostate cancer assembloids modeling the patient-specific tumor microenvironment. PLoS Genet 2025; 21:e1011652. [PMID: 40163511 PMCID: PMC12002641 DOI: 10.1371/journal.pgen.1011652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/16/2025] [Accepted: 03/09/2025] [Indexed: 04/02/2025] Open
Abstract
Prostate cancer (PC) is the most frequently diagnosed malignancy among men and contributes significantly to cancer-related mortality. While recent advances in in vitro PC modeling systems have been made, there remains a lack of robust preclinical models that faithfully recapitulate the genetic and phenotypic characteristics across various PC subtypes-from localized PC (LPC) to castration-resistant PC (CRPC)-along with associated stromal cells. Here, we established human PC assembloids from LPC and CRPC tissues by reconstituting tumor organoids with corresponding cancer-associated fibroblasts (CAFs), thereby incorporating aspects of the tumor microenvironment (TME). Established PC organoids exhibited high concordance in genomic landscape with parental tumors, and the tumor assembloids showed a higher degree of phenotypic similarity to parental tumors compared to tumor organoids without CAFs. PC assembloids displayed increased proliferation and reduced sensitivity to anti-cancer treatments, indicating that PC assembloids are potent tools for understanding PC biology, investigating the interaction between tumor and CAFs, and identifying personalized therapeutic targets.
Collapse
Affiliation(s)
- Juhee Lee
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Yunhee Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Cheol Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Seong Soo Jeon
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Hae Seo
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jongwon Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Sciences and Technology, The Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, Republic of Korea
| | - Eunjee Kim
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kunyoo Shin
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- School of Biological Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
24
|
Zhang X, Liu J, Cao Y, Wang W, Lin H, Yu Y. Multi-omic and machine learning analysis of mitochondrial RNA modification genes in lung adenocarcinoma for prognostic and therapeutic implications. Transl Oncol 2025; 53:102306. [PMID: 39908965 PMCID: PMC11847145 DOI: 10.1016/j.tranon.2025.102306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 11/25/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Lung cancer remains the leading cause of cancer-related deaths, driven by complex pathogenesis and poor prognosis. Recognizing the pivotal role of mitochondrial RNA modifications (MRM) in cancer progression, this study aims to provide a comprehensive analysis of MRM-related genes and their clinical relevance in lung adenocarcinoma (LUAD). Integrating multi-omic datasets, we systematically explored the molecular features of MRM-related genes across various cancers and identified distinct expression patterns and prognostic associations. Single-cell analysis further reveals MRM-driven cell-cell interactions and pathway activation, particularly in cycling and epithelial cells. Using advanced machine learning techniques, we developed a novel prognostic signature-the Mitochondrial RNA Modification-related Signature (MRMS)-comprising nine genes: TXN, LDHA, HMGA1, SFTPB, KRT8, ALG3, S100A16, HSPD1, and ALDOA. The MRMS demonstrates superior predictive performance for LUAD survival compared to previously reported models. Our findings uniquely link MRMS to increased tumor mutational burden, genetic instability, and an immunosuppressive tumor microenvironment characterized by reduced immune cell infiltration and elevated tumor purity. Additionally, MRMS is associated with immunotherapy-related features, suggesting its potential in predicting treatment response. Experimental validation identified ALG3 as an oncogenic driver in LUAD, influencing tumor cell proliferation, migration, and invasion. In conclusion, this study establishes MRMS as a robust prognostic biomarker and highlights its dual role in shaping the tumor immune microenvironment and guiding therapeutic strategies. These findings provide novel insights into mitochondrial RNA modifications and their potential applications in personalized treatment for LUAD.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Jiatao Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Yaolin Cao
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China
| | - Wei Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Haoran Lin
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| | - Yue Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, PR China.
| |
Collapse
|
25
|
Bian X, Chen S, Liu W. Ins-ATP: Deep estimation of ATP for organoid based on high throughput microscope images. Methods 2025; 235:34-44. [PMID: 39892182 DOI: 10.1016/j.ymeth.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 01/15/2025] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Adenosine triphosphate (ATP) is a high-energy phosphate compound, the most direct energy source in organisms. ATP is an important biomarker for evaluating cell viability in biology. Researchers often use ATP bioluminescence to measure the ATP of organoid after drug to evaluate the drug efficacy. However, ATP bioluminescence has limitations, leading to unreliable drug screening results. ATP bioluminescence measurement requires the lysis of organoid cells, making it impossible to continuously monitor the long-term viability changes of organoids after drug administration. To overcome the disadvantages of ATP bioluminescence, we propose Ins-ATP, a non-invasive strategy, the first organoid ATP estimation model based on the high-throughput microscope image. Ins-ATP directly estimates the ATP of organoids from high-throughput microscope images so that it does not influence the drug reactions of organoids. Therefore, the ATP change of organoids can be observed for a long time to obtain more stable results. Experimental results show that the ATP estimation by Ins-ATP is in good agreement with those determined by ATP bioluminescence. Specifically, the predictions of Ins-ATP are consistent with the results measured by ATP bioluminescence in the efficacy evaluation experiments of different drugs.
Collapse
Affiliation(s)
- Xuesheng Bian
- Yancheng Institute of Technology, Jiangsu province Yancheng City Hope Avenue Road 1, Yancheng, 224051, Jiangsu, China.
| | - Shuting Chen
- Chengyi University College, Jimei University, Fujian province Xiamen City Jimei District Jimei Boulevard 199, Xiamen, 361021, Fujian, China.
| | - Weiquan Liu
- College of Computer Engineering, Jimei University, Fujian province Xiamen City Yinjiang Road No. 183, Xiamen, 361005, Fujian, China.
| |
Collapse
|
26
|
Zhao KY, Du YX, Cao HM, Su LY, Su XL, Li X. The biological macromolecules constructed Matrigel for cultured organoids in biomedical and tissue engineering. Colloids Surf B Biointerfaces 2025; 247:114435. [PMID: 39647422 DOI: 10.1016/j.colsurfb.2024.114435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/01/2024] [Accepted: 12/04/2024] [Indexed: 12/10/2024]
Abstract
Matrigel is the most commonly used matrix for 3D organoid cultures. Research on the biomaterial basis of Matrigel for organoid cultures is a highly challenging field. Currently, many studies focus on Matrigel-based biological macromolecules or combinations to construct natural Matrigel and synthetic hydrogel scaffolds based on collagen, peptides, polysaccharides, microbial transglutaminase, DNA supramolecules, and polymers for organoid culture. In this review, we discuss the limitations of both natural and synthetic Matrigel, and describe alternative scaffolds that have been employed for organoid cultures. The patient-derived organoids were constructed in different cancer types and limitations of animal-derived organoids based on the hydrogel or Matrigel. The constructed techniques utilizing 3D bioprinting platforms, air-liquid interface (ALI) culture, microfluidic culture, and organ-on-a-chip platform are summarized. Given the potential of organoids for a wide range of therapeutic, tissue engineering and pharmaceutical applications, it is indeed imperative to develop defined and customized hydrogels in addition to Matrigel.
Collapse
Affiliation(s)
- Ke-Yu Zhao
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Yi-Xiang Du
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Hui-Min Cao
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Li-Ya Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Xiu-Lan Su
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China
| | - Xian Li
- Key Laboratory of Medical Cell Biology in Inner Mongolia, Clinical Medical Research Center, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China; Key Laboratory of Medical Cell Biology in Inner Mongolia, Inner Mongolia Bioactive Peptide Engineering Laboratory, 1 North Tongdao Street, Hohhot, Inner Mongolia 010050, China.
| |
Collapse
|
27
|
Govindasamy C, Khan MI, Bose C, Bharathi M, Senthilkumar S, Surya P. Optimizing in vitro lung cancer therapy with folate-conjugated polydopamine-coated liposomes loaded with gemcitabine. Adv Med Sci 2025; 70:141-151. [PMID: 39923845 DOI: 10.1016/j.advms.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/25/2024] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
PURPOSE Surface-altered, targeted nanocarriers play crucial roles in chemotherapy. Incorporating ligands into polymers may alter their chemical composition, potentially compromising their drug storage and encapsulation capacity. Polydopamine (PDA) is a novel, biocompatible, and versatile agent for producing targeted nanoparticles that serve as a base for conjugating specific ligands to non-reactive polymeric nanocarriers. This investigation aimed to evaluate whether gemcitabine (GEM)-loaded liposomes conjugated with PDA could enhance cancer treatment. MATERIALS AND METHODS A series of liposomes, named plain GEM, GEM@FA, and GEM@FA/PDA, was designed. Transmission Electron Microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), and X-ray Photoelectron Spectroscopy (XPS) were used to confirm the presence of PDA coating and folic acid (FA) and PDA conjugations. Cellular uptake, cytotoxicity, and cell death were evaluated using biochemical and flow cytometric assays. RESULTS Compared to typical liposomes, GEM@FA/PDA liposomes were smaller, more stable, and exhibited a spherical shape with excellent cellular uptake. GEM@FA and GEM@FA/PDA liposomes showed significantly higher cytotoxicity against lung cancer (H1299) cells compared to GEM liposomes and pure GEM solution at all concentrations, while causing much less cytotoxicity to normal cells (NIH3T3). CONCLUSIONS GEM@FA/PDA liposomes demonstrated enhanced cancer-fighting effectiveness while minimizing harm to healthy tissues, making them a promising approach for chemotherapy.
Collapse
Affiliation(s)
- Chandramohan Govindasamy
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Muhammad Ibrar Khan
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, P.O. Box 10219, Riyadh, 11433, Saudi Arabia
| | - Chitrakani Bose
- Department of Microbiology, Velmanoharan Arts and Science College for Women, Marapalam, Devipattinam (ECR Road), Ramanathapuram, Tamilnadu, India
| | - Muruganantham Bharathi
- Centre for Bioinformatics, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, India
| | - Shamini Senthilkumar
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, India
| | - Parthasarathy Surya
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India.
| |
Collapse
|
28
|
Huo Y, He S, Chen Y. Lung organoids in COPD: recent advances and future prospects. Respir Res 2025; 26:76. [PMID: 40022099 PMCID: PMC11871743 DOI: 10.1186/s12931-025-03138-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/06/2025] [Indexed: 03/03/2025] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic inflammatory airway disease that is characterized by progressive airflow limitation, a high prevalence, and a high mortality rate. However, the specific mechanisms remain unclear, partly due to the lack of robust data from in vitro experimental models and animal models that do not adequately represent the structure and pathophysiology of the human lung. The recent advancement of lung organoid culture systems has facilitated new avenues for the investigation of COPD. Lung organoids are in vitro models derived from adult stem cells, human pluripotent stem cells, or embryonic stem cells, established through three-dimensional culture. They exhibit a high degree of homology and genetic consistency with human tissues and can better mimic human lungs in terms of function and structure compared to other traditional models. This review will summarise the generation process of lung organoids from different cell sources and their application in COPD research, and provide suggestions for future research directions.
Collapse
Affiliation(s)
- Yajie Huo
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Shengyang He
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| | - Yan Chen
- Department of Pulmonary and Critical Care Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China.
- Research Unit of Respiratory Disease, Central South University, Changsha, Hunan, China.
- Clinical Medical Research Center for Pulmonary and Critical Care Medicine in Hunan Province, Changsha, Hunan, China.
- Diagnosis and Treatment Center of Respiratory Disease in Hunan Province, Changsha, Hunan, China.
| |
Collapse
|
29
|
Meng Y, Shu X, Yang J, Liang Y, Zhu M, Wang X, Li Y, Kong F. Lung cancer organoids: a new strategy for precision medicine research. Transl Lung Cancer Res 2025; 14:575-590. [PMID: 40114941 PMCID: PMC11921219 DOI: 10.21037/tlcr-24-921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025]
Abstract
This article discusses new strategies for lung cancer organoids (LCOs) in precision medicine research. Precision medicine aims to identify and develop highly selective drugs targeted at specific disease markers for precise treatment. Given the genetic diversity among lung cancer cells, it is evident that different tumor cells may respond differently to various treatment regimens. LCOs can not only faithfully reproduce the pathological and genomic characteristics of samples, maintaining most variations, including driver gene mutations, but also preserve the cytological features of malignant tumor cells, showing a highly correlated in vitro drug screening response with the mutation spectrum in primary tumors. At this stage, several large-scale LCO biobanks have been established, providing ample sample resources for researchers. Based on this, the development of emerging technologies is expected to overcome limitations in the success rate, accuracy, and stability of the organoid culture process, significantly enhancing the level of precision medicine for lung cancer. This article mainly introduces the applications of LCO models in basic research, including the identification of drug targets, prediction of treatment efficacy, and overcoming drug resistance, assisting in the formulation of personalized treatment plans to improve treatment outcomes. Additionally, the article emphasizes the potential of cancer organoid co-culture models in the field of immunotherapy and their key role in advancing the evolution of precision medicine treatment strategies.
Collapse
Affiliation(s)
- Yuan Meng
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Shu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Jie Yang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Yangyueying Liang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Meiying Zhu
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Xuerui Wang
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| | - Yue Li
- Tianjin Heping District Hospital of Traditional Chinese Medicine, Tianjin, China
| | - Fanming Kong
- Department of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
- Tianjin Cancer Institute of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
30
|
Henick BS, Taylor AM, Nakagawa H, Wong KK, Diehl JA, Rustgi AK. Squamous cell cancers of the aero-upper digestive tract: A unified perspective on biology, genetics, and therapy. Cancer Cell 2025; 43:178-194. [PMID: 39933897 PMCID: PMC11875029 DOI: 10.1016/j.ccell.2025.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/23/2024] [Accepted: 01/10/2025] [Indexed: 02/13/2025]
Abstract
Squamous cell cancers (SCCs) of the head and neck, esophagus, and lung, referred to as aero-upper digestive SCCs, are prevalent in the United States and worldwide. Their incidence and mortality are projected to increase at alarming rates, posing diagnostic, prognostic, and therapeutic challenges. These SCCs share certain epigenetic, genomic, and genetic alterations, immunologic properties, environmental exposures, as well as lifestyle and nutritional risk factors, which may underscore common complex gene-environmental interactions across them. This review focuses upon the frequent shared epigenetic, genomic, and genetic alterations, emerging preclinical model systems, and how this collective knowledge can be leveraged into perspectives on standard of care therapies and mechanisms of resistance, nominating new potential directions in translational therapeutics.
Collapse
Affiliation(s)
- Brian S Henick
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Hematology-Oncology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Alison M Taylor
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Hiroshi Nakagawa
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Kwok-Kin Wong
- Division of Hematology-Oncology, Department of Medicine, NYU Perlmutter Cancer Center, New York, NY, USA
| | - J Alan Diehl
- Department of Biochemistry, Case Western Reserve Comprehensive Cancer Center, Cleveland, OH, USA
| | - Anil K Rustgi
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA; Division of Digestive and Liver Diseases, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
31
|
Kaifi J, Joshi K, Suvilesh K, Natesh N, Manjunath Y, Coberly J, Schlink S, Kunin J, Prather R, Whitworth K, Nelson B, Bryan J, Hoffman T, Golzy M, Raju M, Teixeiro E, Telugu B, Rachagani S. Characterization of A Bronchoscopically Induced Transgenic Lung Cancer Pig Model for Human Translatability. RESEARCH SQUARE 2025:rs.3.rs-5054204. [PMID: 39975891 PMCID: PMC11838710 DOI: 10.21203/rs.3.rs-5054204/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background There remains a need for animal models with human translatability in lung cancer (LC) research. Findings in pigs have high impact on humans due to similar anatomy and physiology. We present the characterization of a bronchoscopically-induced LC model in Oncopigs carrying inducible KRASG12D and TP53R167H mutations. Methods Twelve Oncopigs underwent 29 injections via flexible bronchoscopy. Eighteen Adenovirus-Cre recombinase gene (AdCre) inductions were performed endobronchially (n = 6) and transbronchially with a needle (n = 12). Eleven control injections were performed without AdCre. Oncopigs underwent serial contrast-enhanced chest CT with clinical follow-up for 29 weeks. Following autopsy, lung and organ tissues underwent histopathology, immunohistochemistry, and RNA-sequencing with comparative analysis with The Cancer Genome Atlas (TCGA) human LC data. Results All 18 sites of AdCre injections had lung consolidations on CT imaging. Transbronchial injections led to histopathologic invasive cancer and/or carcinoma in situ (CIS) in 11/12 (91.7%), and invasive cancer (excluding CIS) in 8/12 (66.6%). Endobronchial inductions led to invasive cancer in 3/6 (50%). A soft tissue metastasis was observed in one Oncopig. Immunohistochemistry confirmed expression of Pan-CK+/epithelial cancer cells, with macrophages and T cells infiltration in the tumor microenvironment. Transcriptome comparison showed 54.3% overlap with human LC (TCGA), in contrast to 29.88% overlap of KRAS-mutant mouse LC with human LC. Conclusions The transgenic and immunocompetent Oncopig model has a high rate of LC following bronchoscopic transbronchial induction. Overlap of the Oncopig LC transcriptome with human LC transcriptome was noted. This pig model is expected to have high clinical translatability to the human LC patient.
Collapse
|
32
|
Kalla J, Pfneissl J, Mair T, Tran L, Egger G. A systematic review on the culture methods and applications of 3D tumoroids for cancer research and personalized medicine. Cell Oncol (Dordr) 2025; 48:1-26. [PMID: 38806997 PMCID: PMC11850459 DOI: 10.1007/s13402-024-00960-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2024] [Indexed: 05/30/2024] Open
Abstract
Cancer is a highly heterogeneous disease, and thus treatment responses vary greatly between patients. To improve therapy efficacy and outcome for cancer patients, more representative and patient-specific preclinical models are needed. Organoids and tumoroids are 3D cell culture models that typically retain the genetic and epigenetic characteristics, as well as the morphology, of their tissue of origin. Thus, they can be used to understand the underlying mechanisms of cancer initiation, progression, and metastasis in a more physiological setting. Additionally, co-culture methods of tumoroids and cancer-associated cells can help to understand the interplay between a tumor and its tumor microenvironment. In recent years, tumoroids have already helped to refine treatments and to identify new targets for cancer therapy. Advanced culturing systems such as chip-based fluidic devices and bioprinting methods in combination with tumoroids have been used for high-throughput applications for personalized medicine. Even though organoid and tumoroid models are complex in vitro systems, validation of results in vivo is still the common practice. Here, we describe how both animal- and human-derived tumoroids have helped to identify novel vulnerabilities for cancer treatment in recent years, and how they are currently used for precision medicine.
Collapse
Affiliation(s)
- Jessica Kalla
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Janette Pfneissl
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Theresia Mair
- Department of Pathology, Medical University of Vienna, Vienna, Austria
| | - Loan Tran
- Department of Pathology, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Gerda Egger
- Department of Pathology, Medical University of Vienna, Vienna, Austria.
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria.
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
33
|
Sone N, Gotoh S. Micro-physiological system of human lung: The current status and application to drug discovery. Drug Metab Pharmacokinet 2025; 60:101050. [PMID: 39847976 DOI: 10.1016/j.dmpk.2024.101050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025]
Abstract
Various attempts have been made to elucidate the mechanisms of human lung development, its physiological functions, and diseases, in the hope of new drug discovery. Recent technological advancements in experimental animals, cell culture, gene editing, and analytical methods have provided new insights and therapeutic strategies. However, the results obtained from animal experiments are often inconsistent with those obtained from human data because of reproducibility issues caused by structural and physiological differences between mice and humans. In addition, it is not possible to accurately reproduce the internal environment of the human lung structure using conventional two-dimensional (2D) or three-dimensional (3D) cell culture methods. As a result, the micro-physiological system (MPS) technology, such as "lung-on-a-chip" that can culture human cells in a state close to human body environment have been developed, and its applications to disease models, toxicological studies, and drug discovery are accelerated worldwide. Here, we focus on the mimetics of the lung, including "lung-on-a-chip" technology, and review their recent progress, achievements and challenges. Finally, we discuss the role of these chips in drug discovery for refractory lung diseases.
Collapse
Affiliation(s)
- Naoyuki Sone
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan
| | - Shimpei Gotoh
- Department of Clinical Application, Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, 606-8507, Japan.
| |
Collapse
|
34
|
Abdal Dayem A, Bin Jang S, Lim N, Yeo HC, Kwak Y, Lee SH, Shin HJ, Cho SG. Advances in lacrimal gland organoid development: Techniques and therapeutic applications. Biomed Pharmacother 2025; 183:117870. [PMID: 39870025 DOI: 10.1016/j.biopha.2025.117870] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/11/2025] [Accepted: 01/23/2025] [Indexed: 01/29/2025] Open
Abstract
The human lacrimal gland (LG), located above the outer orbital region within the frontal bone socket, is essential in maintaining eye surface health and lubrication. It is firmly anchored to the orbital periosteum by the connective tissue, and it is vital for protecting and lubricating the eye by secreting lacrimal fluid. Disruption in the production, composition, or secretion of lacrimal fluid can lead to dry eye syndrome, a condition characterized by ocular discomfort and potential eye surface damage. This review explores the recent advancements in LG organoid generation using tissues and stem cells, highlighting cutting-edge techniques in biomaterial-based and scaffold-free technologies. Additionally, we shed light on the complex pathophysiology of LG dysfunction, providing insights into the LG physiological roles while identifying strategies for generating LG organoids and exploring their potential clinical applications. Alterations in LG morphology or secretory function can affect the tear film stability and quality, leading to various ocular pathological conditions. This comprehensive review underlines the critical crosslink of LG organoid development with disease modeling and drug screening, underscoring their potential for advancing therapeutic applications.
Collapse
Affiliation(s)
- Ahmed Abdal Dayem
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Nahee Lim
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Han Cheol Yeo
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeonjoo Kwak
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Shin-Hyo Lee
- Department of Anatomy, Wonkwang University School of Medicine, Iksan, Republic of Korea; Jesaeng-Euise Clinical Anatomy Center, Wonkwang University School of Medicine, Iksan, Republic of Korea
| | - Hyun Jin Shin
- Konkuk University School of Medicine, Chungju city, Republic of Korea; Department of Ophthalmology, Konkuk University Medical Center, Seoul, Republic of Korea; Research Institute of Medical Science, Konkuk University School of Medicine, Seoul, Republic of Korea; Institute of Biomedical Science & Technology, Konkuk University, Seoul, Republic of Korea.
| | - Sang-Goo Cho
- Department of Stem Cell and Regenerative Biotechnology, School of Advanced Biotechnology, Molecular & Cellular Reprogramming Center, Institute of Advanced Regenerative Science, and Institute of Health, Aging & Society, Konkuk University, 120 Neungdong-ro Gwangjin-gu, Seoul 05029, Republic of Korea; R&D Team, StemExOne Co., Ltd., Seoul, Republic of Korea.
| |
Collapse
|
35
|
Durymanov M. Tumor Spheroids, Tumor Organoids, Tumor Explants, and Tumoroids: What Are the Differences between Them? BIOCHEMISTRY. BIOKHIMIIA 2025; 90:200-213. [PMID: 40254399 DOI: 10.1134/s0006297924604234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 04/22/2025]
Abstract
Three-dimensional (3D) cell cultures that mimic tumor microenvironment have become an essential tool in cancer research and drug response analysis, significantly enhancing our understanding of tumor biology and advancing personalized medicine. Currently, the most widely mentioned 3D multicellular culture models include spheroids, organoids, tumor explants, and tumoroids. These 3D structures, exploited for various applications, are generated from cancer and non-cancer cells of different origin using multiple techniques. However, despite extensive research and numerous studies, consistent definitions of these 3D culture models are not clearly established. The manuscript provides a comprehensive overview of these models, detailing brief history of their research, unique biological characteristics, advantages, limitations, and specific applications.
Collapse
Affiliation(s)
- Mikhail Durymanov
- Medical Informatics Laboratory, Yaroslav-the-Wise Novgorod State University, Veliky Novgorod, 173003, Russia.
- Department of Radiochemistry, Faculty of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia
| |
Collapse
|
36
|
Kai J, Liu X, Wu M, Liu P, Lin M, Yang H, Zhao Q. Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism. Per Med 2025; 22:45-58. [PMID: 39764674 DOI: 10.1080/17410541.2024.2447224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 12/23/2024] [Indexed: 02/13/2025]
Abstract
Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet. Here, we briefly summarize the conventional and state-of-the-art technologies contributing to individualized medication in clinical settings, aiming to explore therapy options enhancing clinical outcomes.
Collapse
Affiliation(s)
- Jiejing Kai
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Liu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Meijia Wu
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Pan Liu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Meihua Lin
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongyu Yang
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qingwei Zhao
- Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
37
|
Paul CD, Yankaskas C, Shahi Thakuri P, Balhouse B, Salen S, Bullock A, Beam S, Chatman A, Djikeng S, Yang XJ, Wong G, Dey I, Holmes S, Dockey A, Bailey-Steinitz L, Zheng L, Li W, Chandra V, Nguyen J, Sharp J, Willems E, Kennedy M, Dallas MR, Kuninger D. Long-term maintenance of patient-specific characteristics in tumoroids from six cancer indications. Sci Rep 2025; 15:3933. [PMID: 39890889 PMCID: PMC11785764 DOI: 10.1038/s41598-025-86979-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025] Open
Abstract
Tumoroids, sometimes referred to as cancer organoids, are patient-derived cancer cells grown as 3D, self-organized multicellular structures that maintain key characteristics (e.g., genotype, gene expression levels) of the tumor from which they originated. These models have emerged as valuable tools for studying tumor biology, cytotoxicity, and response of patient-derived cells to cancer therapies. However, the establishment and maintenance of tumoroids has historically been challenging, labor intensive, and highly variable from lab to lab, hindering their widespread use. Here, we characterize the establishment and/or expansion of colorectal, lung, head and neck, breast, pancreas, and endometrial tumoroids using the standardized, serum-free Gibco OncoPro Tumoroid Culture Medium. Newly derived tumoroid lines (n = 20) were analyzed by targeted genomic profiling and RNA sequencing and were representative of tumor tissue samples. Tumoroid lines were stable for over 250 days in culture and freeze-thaw competent. Previously established tumoroid lines were also transitioned to OncoPro medium and exhibited, on average, similar growth rates and conserved donor-specific characteristics when compared to original media systems. Additionally, OncoPro medium was compatible with both embedded culture in extracellular matrix and growth in a suspension format for facile culture and scale up. An example application of these models for assessing the cytotoxicity of a natural killer cell line and primary natural killer cells over time and at various doses demonstrated the compatibility of these models with assays used in compound and cell therapy development. We anticipate that the standardization and versatility of this approach will have important benefits for basic cancer research, drug discovery, and personalized medicine and help make tumoroid models more accessible to the cancer research community.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Sylvia Beam
- Thermo Fisher Scientific, Frederick, MD, USA
| | | | | | | | | | - Isha Dey
- Thermo Fisher Scientific, Bengaluru, Karnataka, India
| | | | | | | | - Lina Zheng
- Thermo Fisher Scientific, Carlsbad, CA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Chen X, Wu D, Tan Y, Song X, Chen J, Li Q. Absence of a Causal Link between Elemental Carbon Exposure and Short-Term Respiratory Toxicity in Human-Derived Organoids and Cellular Models. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:668-678. [PMID: 39730302 DOI: 10.1021/acs.est.4c11256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Black carbon or elemental carbon (EC) in the atmosphere plays an ambiguous role in acute respiratory toxic effects. Here, we evaluate the contribution of EC to the short-term toxicity (including cytotoxicity and oxidative stress potency) of fine particulate matter (PM2.5) on the human respiratory tract using in vitro airway organoids and cell lines. The toxic potency of EC per unit mass, including char and soot, is more than 2 orders of magnitude lower than that of polycyclic aromatic hydrocarbons (PAHs), which are coemitted from incomplete combustion. EC contributes approximately 1 order of magnitude less to PM2.5 toxicity than PAHs, despite its positive associations with PM2.5-induced toxic potency (p < 0.0001). Furthermore, PAHs contribute 71.9 ± 12.2% and 61.9 ± 32.8% of the overall toxic potency of PM2.5 emitted from typical incomplete burning of solid and liquid fuels, respectively, while the PM2.5 toxicity significantly correlates with PAHs content (r = 0.94, p = 0.002). Hence, EC is not a cause of inducing acute toxicity, likely attributed to coemitted PAHs. These findings provide causal evidence for understanding the respiratory health risks associated with exposure to PM2.5 and further benefit to establishing efficient air pollution control policies.
Collapse
Affiliation(s)
- Xiu Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Di Wu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Air Quality Research Division, Environment and Climate Change Canada, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Yifei Tan
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xiwen Song
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
39
|
Sui Z, Wu X, Wang J, Tan S, Zhao C, Yu Z, Wu C, Wang X, Guo L. Mesenchymal stromal cells promote the formation of lung cancer organoids via Kindlin-2. Stem Cell Res Ther 2025; 16:7. [PMID: 39789648 PMCID: PMC11715222 DOI: 10.1186/s13287-024-04128-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Patient-derived lung cancer organoids (PD-LCOs) demonstrate exceptional potential in preclinical testing and serve as a promising model for the multimodal management of lung cancer. However, certain lung cancer cells derived from patients exhibit limited capacity to generate organoids due to inter-tumor or intra-tumor variability. To overcome this limitation, we have created an in vitro system that employs mesenchymal stromal cells (MSCs) or fibroblasts to serve as a supportive scaffold for lung cancer cells that do not form organoids. METHODS We successfully established an MSCs/fibroblast co-culture system to form LCOs. We analyzed the morphological and histological similarities between LCOs co-cultured with fibroblast and primary lung cancer lesions through HE and IF staining. We evaluated whether LCOs co-cultured with fibroblast retained the original genetic mutations of their source tumors based on WES. RNA sequencing was used to analyze the differences in gene expression profiles between LCOs co-cultured with fibroblast and paracancerous organoids (POs). Importantly, we have successfully validated the impact of Kindlin-2 on the regulation of MSCs in organoid formation through lentiviral vector-mediated interference or overexpression of kindlin-2. RESULTS Our findings demonstrate that the addition of MSCs/fibroblasts to three tumor samples, initially incapable of forming organoids by traditional methods, successfully facilitated the cultivation of tumor organoids. Importantly, these organoids co-cultured with fibroblast faithfully recapitulate the tissue morphology of original lung tumors and replicate the genetic profile observed in the parental tumors even after prolonged in vitro culture. Moreover, drug responses exhibited by these organoids co-cultured with MSCs/fibroblasts are consistent with those observed in the original tumors. Mechanistically, we have also identified kindlin-2 as a crucial regulator linking extracellular matrix (ECM) and mitochondria that influence MSC/fibroblast-mediated support for tumor organoid formation. CONCLUSION The results obtained from our research enhance the understanding of the mechanisms implicated in the formation of tumor organoids and aid in creating stronger patient-specific tumor organoid models. This advancement supports the refinement of personalized drug response assessments for use in clinical settings.
Collapse
Affiliation(s)
- Zhilin Sui
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Xianxian Wu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Jiaxin Wang
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - ShihJye Tan
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chao Zhao
- Institute of Scientific Instrumentation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Zhentao Yu
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China
| | - Chuanyue Wu
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15261, USA.
| | - Xiaoxiao Wang
- College of Pharmacy, Shenzhen Technology University, Shenzhen, 518118, China.
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Ling Guo
- Shenzhen Key Laboratory of Epigenetics and Precision Medicine for Cancers, Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, 518116, China.
- Department of Biology, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
40
|
Fan X, Hou K, Liu G, Shi R, Wang W, Liang G. Strategies to overcome the limitations of current organoid technology - engineered organoids. J Tissue Eng 2025; 16:20417314251319475. [PMID: 40290859 PMCID: PMC12033597 DOI: 10.1177/20417314251319475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/26/2025] [Indexed: 04/30/2025] Open
Abstract
Organoids, as 3D in vitro models derived from stem cells, have unparalleled advantages over traditional cell and animal models for studying organogenesis, disease mechanisms, drug screening, and personalized diagnosis and treatment. Despite the tremendous progress made in organoid technology, the translational application of organoids still presents enormous challenges due to the complex structure and function of human organs. In this review, the limitations of the translational application of traditional organoid technologies are first described. Next, we explore ways to address many of the limitations of traditional organoid cultures by engineering various dimensions of organoid systems. Finally, we discuss future directions in the field, including potential roles in drug screening, simulated microphysiology system and personalized diagnosis and treatment. We hope that this review inspires future research into organoids and microphysiology system.
Collapse
Affiliation(s)
- Xulong Fan
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, China
| | - Kun Hou
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, China
| | - Gaojian Liu
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, China
| | - Ruolin Shi
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, China
| | - Wenjie Wang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, China
| | - Gaofeng Liang
- School of Basic Medicine and Forensic Medicine, Henan University of Science & Technology, Luoyang, China
- Institute of Organoids on Chips Translational Research, Henan Academy of Sciences, Zhengzhou, China
| |
Collapse
|
41
|
Abbasian MH, Sobhani N, Sisakht MM, D'Angelo A, Sirico M, Roudi R. Patient-Derived Organoids: A Game-Changer in Personalized Cancer Medicine. Stem Cell Rev Rep 2025; 21:211-225. [PMID: 39432173 DOI: 10.1007/s12015-024-10805-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2024] [Indexed: 10/22/2024]
Abstract
Research on cancer therapies has benefited from predictive tools capable of simulating treatment response and other disease characteristics in a personalized manner, in particular three-dimensional cell culture models. Such models include tumor-derived spheroids, multicellular spheroids including organotypic multicellular spheroids, and tumor-derived organoids. Additionally, organoids can be grown from various cancer cell types, such as pluripotent stem cells and induced pluripotent stem cells, progenitor cells, and adult stem cells. Although patient-derived xenografts and genetically engineered mouse models replicate human disease in vivo, organoids are less expensive, less labor intensive, and less time-consuming, all-important aspects in high-throughput settings. Like in vivo models, organoids mimic the three-dimensional structure, cellular heterogeneity, and functions of primary tissues, with the advantage of representing the normal oxygen conditions of patient organs. In this review, we summarize the use of organoids in disease modeling, drug discovery, toxicity testing, and precision oncology. We also summarize the current clinical trials using organoids.
Collapse
Affiliation(s)
- Mohammad Hadi Abbasian
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77054, USA
| | - Mahsa Mollapour Sisakht
- Faculty of Pharmacy, Biotechnology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Alberto D'Angelo
- Department of Biology and Biochemistry, University of Bath, Bath, BA2 7AX, UK
| | - Marianna Sirico
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", Meldola, Italy
| | - Raheleh Roudi
- Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
42
|
Lee E, Lee SY, Seong YJ, Ku B, Cho HJ, Kim K, Hwang Y, Park CK, Choi JY, Kim SW, Kim SJ, Lim JU, Yeo CD, Lee DW. Lung cancer organoid-based drug evaluation models and new drug development application trends. Transl Lung Cancer Res 2024; 13:3741-3763. [PMID: 39830742 PMCID: PMC11736608 DOI: 10.21037/tlcr-24-603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/26/2024] [Indexed: 01/22/2025]
Abstract
Lung cancer is a malignant tumor with high incidence and mortality rates in both men and women worldwide. Although anticancer drugs are prescribed to treat lung cancer patients, individual responses to these drugs vary, making it crucial to identify the most suitable treatment for each patient. Therefore, it is necessary to develop an anticancer drug efficacy prediction model that can analyze drug efficacy before patient treatment and establish personalized treatment strategies. Unlike two-dimensional (2D) cultured lung cancer cells, lung cancer organoid (LCO) models have a three-dimensional (3D) structure that effectively mimics the characteristics and heterogeneity of lung cancer cells. Lung cancer patient-derived organoids (PDOs) also have the advantage of recapitulating histological and genetic characteristics similar to those of patient tissues under in vitro conditions. Due to these advantages, LCO models are utilized in various fields, including cancer research, and precision medicine, and are especially employed in various new drug development processes, such as targeted therapies and immunotherapy. LCO models demonstrate potential applications in precision medicine and new drug development research. This review discusses the various methods for implementing LCO models, LCO-based anticancer drug efficacy analysis models, and new trends in lung cancer-targeted drug development.
Collapse
Affiliation(s)
- Eunyoung Lee
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang-Yun Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Yu-Jeong Seong
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| | - Bosung Ku
- Central Research and Development Center, Medical & Bio Decision (MBD) Co., Ltd., Suwon, Republic of Korea
| | - Hyeong Jun Cho
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyuhwan Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yongki Hwang
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Park
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Joon Young Choi
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Incheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sung Won Kim
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Joon Kim
- Division of Pulmonology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
- Postech-Catholic Biomedical Engineering Institute, Songeui Multiplex Hall, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong Uk Lim
- Division of Pulmonary, Critical Care and Allergy, Department of Internal Medicine, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chang Dong Yeo
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Eunpyeong St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Dong Woo Lee
- Department of Biomedical Engineering, Gachon University, Seongnam, Republic of Korea
| |
Collapse
|
43
|
Strocchi S, Santandrea G, Zanetti E, Verna G, Cusenza VY, Nicoli D, Fantini V, Grieco A, Paci M, Ciarrocchi A, Sancisi V. A Two-Step Protocol for Isolation and Maintenance of Lung Cancer Primary 3D Cultures. Cancers (Basel) 2024; 17:27. [PMID: 39796658 PMCID: PMC11718983 DOI: 10.3390/cancers17010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Despite the introduction of innovative therapeutics, lung cancer is still the leading cause of cancer-related death. For this reason, lung cancer still requires deep characterization to identify cellular and molecular targets that can be used to develop novel therapeutic strategies. Three-dimensional cellular models, including patient-derived organoids (PDOs), represent useful tools to study lung cancer biology and may be employed in the future as predictive tools in therapeutic decisions. However, the successful establishment of lung cancer organoids cultures that faithfully represent the respective patient tissues is still challenging due to low success rate and/or overgrowth of normal airway epithelial cells. METHODS We set up a two-step protocol that allows for establishing both short-term and long-term 3D cultures, with different characteristics and success rates. RESULTS Cancer tissue-originated spheroids (CTOSs) show a 100% success rate and allow for the concomitant isolation of autologous tumor infiltrating leukocytes (TILs). On the contrary, PDOs can be expanded for a medium-long term and bio-banked but retain a lower success rate and the possibility of contamination with normal airway epithelial cells. To overcome these problems, we set up an optimal medium formulation and we implemented rigorous quality controls, leading to a substantial improvement in the success rate of tumoral PDO establishment. CONCLUSIONS Overall, this protocol guarantees flexibility and reliability, also providing useful guidelines for quality control checks to support different experimental settings. The setting up of a robust protocol for lung cancer PDO culture establishment and expansion is a key requirement for their employment both in cancer research and as predictive tools in clinical practice.
Collapse
Affiliation(s)
- Silvia Strocchi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
| | - Giacomo Santandrea
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.S.); (E.Z.); (V.Y.C.); (D.N.)
| | - Eleonora Zanetti
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.S.); (E.Z.); (V.Y.C.); (D.N.)
- Biobank, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy
| | - Giulio Verna
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
| | - Vincenza Ylenia Cusenza
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.S.); (E.Z.); (V.Y.C.); (D.N.)
| | - Davide Nicoli
- Pathology Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (G.S.); (E.Z.); (V.Y.C.); (D.N.)
| | - Valentina Fantini
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
| | - Alessandra Grieco
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41100 Modena, Italy
| | - Massimiliano Paci
- Thoracic Surgery Unit, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Alessia Ciarrocchi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
| | - Valentina Sancisi
- Translational Research Laboratory, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy; (S.S.); (G.V.); (V.F.); (A.G.); (A.C.)
| |
Collapse
|
44
|
Franco C, Rezzani R. Methods and Models for Studying Mycobacterium tuberculosis in Respiratory Infections. Int J Mol Sci 2024; 26:18. [PMID: 39795880 PMCID: PMC11719571 DOI: 10.3390/ijms26010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Respiratory infections, including tuberculosis, constitute a major global health challenge. Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the leading causes of mortality worldwide. The disease's complexity is attributed to Mtb's capacity to persist in latent states, evade host immune defenses, and develop resistance to antimicrobial treatments, posing significant challenges for diagnosis and therapy. Traditional models, such as animal studies and two-dimensional (2D) in vitro systems, often fail to accurately recapitulate human-specific immune processes, particularly the formation of granulomas-a defining feature of tubercular infection. These limitations underscore the need for more physiologically relevant models to study TB pathogenesis. Emerging three-dimensional (3D) in vitro systems, including organoids and lung-on-chip platforms, offer innovative approaches to mimic the structural and functional complexity of the human lung. These models enable the recreation of key aspects of the tubercular granulomas, such as cellular interactions, oxygen gradients, and nutrient limitations, thereby providing deeper insights into Mtb pathogenesis. This review aims to elucidate the advantages of 3D in vitro systems in bridging the translational gap between traditional experimental approaches and clinical applications. Particular emphasis is placed on their potential to address challenges related to genetic variability in both the host and pathogen, thereby advancing tubercular research and therapeutic development.
Collapse
Affiliation(s)
- Caterina Franco
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Division of Immunology, Transplantation, and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Rita Rezzani
- Anatomy and Physiopathology Division, Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Italian Society for the Study of Orofacial Pain (Società Italiana Studio Dolore Orofacciale–SISDO), 25123 Brescia, Italy
- Interdepartmental University Center of Research “Adaption and Regeneration of Tissues and Organs (ARTO)”, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
45
|
Meng S, Cao Y, Lu L, Li X, Sun S, Jiang F, Lu J, Fan D, Han X, Yao T. Quercetin Promote the Chemosensitivity in Organoids Derived from Patients with Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:993-1004. [PMID: 39720358 PMCID: PMC11668317 DOI: 10.2147/bctt.s494901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/27/2024] [Indexed: 12/26/2024]
Abstract
Aim The study aimed to culture organoids from tissues of patients with breast cancer (BC) and use the organoids to measure the sensitivity to quercetin and its combination with chemotherapeutic agents. Methods Four patient-derived organoids (PDOs) of BC were cultured. The proliferative activity and morphology of PDOs were evaluated on different generations and after resuscitation. H&E and immunohistochemical (IHC) staining were used to identify the pathological changes and the expression of biomarkers. The sensitivity to quercetin and chemotherapeutic agents and their combinations were evaluated using adenosine triphosphate (ATP) viability assays. Results We successfully obtained all PDOs from BC tissues. PDOs preserved their activity and morphology during generation passage. In addition, the pathological changes and expression patterns of estrogen receptor (ER), human epidermal growth factor receptor (HER2), and Ki67 of each PDO were consistent with their original tissues. All four PDOs were highly sensitive to quercetin, and their IC50 values were less than 22 μM. PDOs showed better sensitivity to docetaxel and epirubicin hydrochloride, but less sensitivity to cis-platinum. Combination with quercetin promoted the sensitivity to three chemotherapeutic agents. In particular, the IC50 value of cis-platinum greatly decreased. Conclusion We successfully established PDOs from patients with BC and demonstrated that quercetin can promote the sensitivity of chemotherapeutic agents in these PDOs.
Collapse
Affiliation(s)
- Shengwen Meng
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Yifan Cao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Lei Lu
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Xuanhe Li
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Siyu Sun
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Fangqian Jiang
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Jianfei Lu
- Department of Breast and Thyroid Surgery, Bengbu First People’s Hospital, Bengbu, Anhui Province, People’s Republic of China
| | - Dongwei Fan
- Department of General Surgery, Affiliated Hospital of West Anhui Health Vocational College, Luan, Anhui Province, People’s Republic of China
| | - Xinxin Han
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| | - Tingjing Yao
- Department of Surgical Oncology, The Fourth Ward of Breast and Thyroid, the First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui Province, People’s Republic of China
| |
Collapse
|
46
|
Budeus B, Kroepel C, Stasch LM, Klein D. Matrix-free human lung organoids derived from induced pluripotent stem cells to model lung injury. Stem Cell Res Ther 2024; 15:468. [PMID: 39696649 DOI: 10.1186/s13287-024-04106-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Organoids, as near-physiological 3D culture systems, offer new opportunities to study the pathogenesis of various organs in mimicking the cellular complexity and functionality of human organs. METHOD Here we used a quite simple and very practicable method to successfully generate induced pluripotent stem cell (iPSC)-derived human lung organoids (LuOrg) in a matrix-free manner as an alternative to the widely used preclinical mouse models in order to investigate normal lung damage in detail and as close as possible to the patient. We performed detailed morphological and molecular analyses, including bulk and single cell RNA sequencing, of generated lung organoids and evaluated the quality and robustness of our model as a potential in vitro platform for lung diseases, namely radiation-induced lung injury. RESULTS A matrix-free method for differentiation of iPSCs can be used to obtain lung organoids that morphologically reflect the target tissue of the human lung very well, especially with regard to the cellular composition. The different cellular fates were investigated following the genotoxic stress induced by radiation and revealed further insights in the radiation-sensitivity of the different lung cells. Finally, we provide cellular gene sets found to be induced in the different lung organoid cellular subsets after irradiation, which could be used as additional RT response and particularly senescence gene sets in future studies. CONCLUSION By establishing these free-floating LuOrgs for the investigation of cancer therapeutic approaches as a new and patient-oriented in vitro platform particularly in experimental radiooncology, not only a reduction in the number of experimental animals, but also an adequately and meaningfully replacement of corresponding animal experiments can be achieved.
Collapse
Affiliation(s)
- Bettina Budeus
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Chiara Kroepel
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Lisa Marie Stasch
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Diana Klein
- Institute for Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
47
|
Kumar A, Vaiphei KK, Gulbake A. A nanotechnology driven effectual localized lung cancer targeting approaches using tyrosine kinases inhibitors: Recent progress, preclinical assessment, challenges, and future perspectives. Int J Pharm 2024; 666:124745. [PMID: 39321904 DOI: 10.1016/j.ijpharm.2024.124745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/09/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The higher incidence and mortality rate among all populations worldwide explains the unmet solutions in the treatment of lung cancer. The evolution of targeted therapies using tyrosine kinase inhibitors (TKI) has encouraged anticancer therapies. However, on-target and off-target effects and the development of drug resistance limited the anticancer potential of such targeted biologics. The advances in nanotechnology-driven-TKI embedded carriers that offered a new path toward lung cancer treatment. It is the inhalation route of administration known for its specific, precise, and efficient drug delivery to the lungs. The development of numerous TKI-nanocarriers through inhalation is proof of TKI growth. The future scopes involve using potential lung cancer biomarkers to achieve localized active cancer-targeting strategies. The adequate knowledge of in vitro absorption models usually helps establish better in vitro - in vivo correlation/extrapolation (IVIVC/E) to successfully evaluate inhalable drugs and drug products. The advanced in vitro and ex vivo lung tissue/ organ models offered better tumor heterogeneity, etiology, and microenvironment heterogeneity. The involvement of lung cancer organoids (LCOs), human organ chip models, and genetically modified mouse models (GEMMs) has resolved the challenges associated with conventional in vitro and in vivo models. To access potential inhalation-based drugtherapies, biological barriers, drug delivery, device-based challenges, and regulatory challenges must be encountered associated with their development. A proper understanding of material toxicity, size-based particle deposition at active disease sites, mucociliary clearance, phagocytosis, and the presence of enzymes and surfactants are required to achieve successful inhalational drug delivery (IDD). This article summarizes the future of lung cancer therapy using targeted drug-mediated inhalation using TKI.
Collapse
Affiliation(s)
- Ankaj Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Klaudi K Vaiphei
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India
| | - Arvind Gulbake
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Guwahati, Assam 781101, India.
| |
Collapse
|
48
|
Xiao D, Liu S, Xiang M. Unveiling the potential: implications of successful somatic cell-to-ganglion organoid reprogramming. Curr Opin Genet Dev 2024; 89:102227. [PMID: 39586653 DOI: 10.1016/j.gde.2024.102227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/30/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024]
Abstract
Organoids have a wide range of potential applications in areas such as organ development, precision medicine, regenerative medicine, drug screening, disease modeling, and gene editing. Currently, most organoids are generated through three-dimensional (3D) in vitro culture of adult stem cells or pluripotent stem cells. However, this method of generating organoids still has several limitations and challenges, including complex manipulations, costly culturing materials, extended time requirements, and certain heterogeneity. Recently, we have found that fibroblasts, when overexpressing several key regulatory transcription factors, are able to directly and rapidly generate two types of ganglion organoids: sensory ganglion (SG) and autonomic ganglion (AG) organoids. They have structures and electrophysiological properties similar to those of endogenous organs in the body. Here, we provide a brief overview of organoid development, focusing on direct reprogramming of SG and AG organoids and their transplantation and regeneration. Finally, the advantages and prospects of direct reprogramming of organoids are discussed.
Collapse
Affiliation(s)
- Dongchang Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Shuting Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China
| | - Mengqing Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, China; Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sxen University, Guangzhou 510080, China.
| |
Collapse
|
49
|
Zhang Y, Qi F, Chen P, Liu BF, Li Y. Spatially defined microenvironment for engineering organoids. BIOPHYSICS REVIEWS 2024; 5:041302. [PMID: 39679203 PMCID: PMC11646138 DOI: 10.1063/5.0198848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 10/01/2024] [Indexed: 12/17/2024]
Abstract
In the intricately defined spatial microenvironment, a single fertilized egg remarkably develops into a conserved and well-organized multicellular organism. This observation leads us to hypothesize that stem cells or other seed cell types have the potential to construct fully structured and functional tissues or organs, provided the spatial cues are appropriately configured. Current organoid technology, however, largely depends on spontaneous growth and self-organization, lacking systematic guided intervention. As a result, the structures replicated in vitro often emerge in a disordered and sparse manner during growth phases. Although existing organoids have made significant contributions in many aspects, such as advancing our understanding of development and pathogenesis, aiding personalized drug selection, as well as expediting drug development, their potential in creating large-scale implantable tissue or organ constructs, and constructing multicomponent microphysiological systems, together with functioning at metabolic levels remains underutilized. Recent discoveries have demonstrated that the spatial definition of growth factors not only induces directional growth and migration of organoids but also leads to the formation of assembloids with multiple regional identities. This opens new avenues for the innovative engineering of higher-order organoids. Concurrently, the spatial organization of other microenvironmental cues, such as physical stresses, mechanical loads, and material composition, has been minimally explored. This review delves into the burgeoning field of organoid engineering with a focus on potential spatial microenvironmental control. It offers insight into the molecular principles, expected outcomes, and potential applications, envisioning a future perspective in this domain.
Collapse
Affiliation(s)
- Yilan Zhang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics and Molecular Imaging Key Laboratory, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
50
|
Fisch AS, Pestana A, Sachse V, Doll C, Hofmann E, Heiland M, Obermueller T, Heidemann J, Dommerich S, Schoppe D, Schallenberg S, Piwonski I, Blanc E, Tinhofer I. Feasibility analysis of using patient-derived tumour organoids for treatment decision guidance in locally advanced head and neck squamous cell carcinoma. Eur J Cancer 2024; 213:115100. [PMID: 39476443 DOI: 10.1016/j.ejca.2024.115100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 10/20/2024] [Indexed: 11/27/2024]
Abstract
BACKGROUND Current treatment for head and neck squamous cell carcinoma (HNSCC) involves surgery, radiotherapy, and chemotherapy. Despite aggressive multimodal approaches, tumour recurrence occurs in 40-60 % of cases, leading to poor survival outcomes. HNSCC lacks common genetic drivers for tailored therapies, and reliable biomarkers for treatment selection are scarce. We investigated the procedural requirements for incorporating drug- and radiosensitivity screens in patient-derived organoids (PDOs) within a clinical trial framework. PATIENTS AND METHODS Fresh tumour samples (N = 198) from 186 HNSCC patients were included. Success rates of organoid establishment were correlated with clinical and procedural parameters. Timelines for establishment of PDO cultures were determined, and their long-term growth potential assessed by serial passaging. Additionally, we conducted whole exome sequencing on matched tumour-organoid pairs. Three PDO models were employed to establish radiosensitivity assays. RESULTS In total, PDO models displaying histomorphological features and genomic alterations of parental tumours were successfully established for 35 % of patient tumours. Success rates rose to 77 % for samples with a tumour cell content of 30 % or higher. Advanced patient age, prior radiotherapy, and delays in tissue processing were identified as negative predictors for engraftment. The estimated time interval needed for screens was compatible with PDO-guided selection of curative-intent radiotherapy regimens. CONCLUSIONS Our findings suggest that with high-quality samples and efficient tissue processing, PDO screens can be successfully performed in 77 % of HNSCC patients. Given the procedural challenges involved, future clinical trials aiming to the utility of PDOs for guiding treatment decisions should consider implementing centralised PDO screening.
Collapse
Affiliation(s)
- Anne-Sophie Fisch
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ana Pestana
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; Comprehensive Cancer Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Vanessa Sachse
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK), partner site Berlin, Germany
| | - Christian Doll
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Elena Hofmann
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Max Heiland
- Department of Oral and Maxillofacial Surgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Theresa Obermueller
- Department of Otorhinolaryngology, Campus Benjamin-Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Jan Heidemann
- Department of Otorhinolaryngology, Campus Benjamin-Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
| | - Steffen Dommerich
- Department of Otorhinolaryngology, Campus Mitte, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Diana Schoppe
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Simon Schallenberg
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Iris Piwonski
- Institut für Pathologie, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Eric Blanc
- Core Unit Bioinformatics, Berlin Institute of Health at Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ingeborg Tinhofer
- Department of Radiooncology and Radiotherapy, Translational Radiation Oncology Research Laboratory, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; German Cancer Research Center (DKFZ), Heidelberg, and German Cancer Consortium (DKTK), partner site Berlin, Germany.
| |
Collapse
|