1
|
Liu Y, Pu S, Sun C, Kai G, Yu Y, Li H. Transition-metal free chemoselective C-H hydroxylation of bisarylmethanes enabled by a phosphite as a sacrificial reductant. Org Biomol Chem 2025; 23:4628-4635. [PMID: 40241641 DOI: 10.1039/d5ob00249d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A transition-metal free (hetero)benzylic C-H hydroxylation approach for the synthesis of di(hetero)arylmethanols has been developed. The reaction is promoted by a KOtBu/DMSO/P(OEt)3 system, with atmospheric air as the sole oxidant at room temperature. This methodology has been employed to synthesize useful active pharmaceutical ingredients (APIs), modafinil and adrafinil. By using DMSO-d6 as the deuterium reagent, the hydroxylation-deuteration of 3-benzylpyridines and diphenylmethanes proceeded well, with excellent deuterium ratios. Preliminary kinetic experiments and 1H NMR studies provided significant insight into the reaction mechanism.
Collapse
Affiliation(s)
- Yonghai Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Siqi Pu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Chengtao Sun
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Guoyin Kai
- Laboratory of Medicinal Plant Biotechnology, College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, 310053, China
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
2
|
Liu CX, Zhou ZW, Cai CX, Wei YJ, Yu ZP, Wang XY, Wang N. Photoenzyme Coupling System: Covalent Organic Frameworks In Situ Production of Hydrogen Peroxide Cascaded with Unspecific Peroxygenase to Achieve C-H Bonds Selective Activation. ACS APPLIED MATERIALS & INTERFACES 2025; 17:6347-6356. [PMID: 39815614 DOI: 10.1021/acsami.4c19081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
As an efficient, sustainable, and environmentally friendly semiconductor material, covalent organic frameworks (COFs) can generate hydrogen peroxide (H2O2) by photocatalysis, attracting wide attention in recent years. Herein, the effects of hydroxyl, methoxyl, and vinyl groups of imide-linked two-dimensional (2D) COFs on the photocatalytic production of H2O2 were studied theoretically and experimentally. The introduction of vinyl groups greatly promotes the photogenerated charge separation and migration of COFs, providing more oxygen adsorption sites, stronger proton affinity, and lower intermediate binding energy, which effectively facilitates the rapid conversion of oxygen to H2O2. Further, we have integrated the properties of the photocatalytic in situ generation of H2O2 by COFs and the continuous consumption of H2O2 by unspecific peroxygenases (UPOs) to construct a mild and simple photoenzyme coupling system that can achieve selective activation of C-H bonds without the need of any external oxidants or sacrificial agents. This simple, stable, and compatible photoenzyme system avoids irreversible enzyme damage caused by excessive exogenous H2O2 and the utilization of sacrificial agents, thus providing an efficient and green pathway for fine chemical synthesis. This system not only breaks the restriction of continuous exogenous H2O2 supplementation on the UPO catalytic system but also provides a new practical application direction for semiconductor photocatalytic H2O2 production.
Collapse
Affiliation(s)
- Chun-Xiu Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zi-Wen Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Chun-Xian Cai
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yun-Jie Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Zhi-Peng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Xiao-Yan Wang
- Analytical and Testing Center, Sichuan University, Chengdu 610064, P. R. China
| | - Na Wang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
3
|
Zhang S, Zeng D, Wang H, Tang X, Jiang Y, Yu C. Recent Progress in Situ Application of H 2O 2 Produced via Catalytic Synthesis. Chemistry 2024; 30:e202402767. [PMID: 39498747 DOI: 10.1002/chem.202402767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Indexed: 11/07/2024]
Abstract
Industrial production of H2O2 requires lots of energy and causes environmental pollution. Moreover, in subsequent applications, much economic loss could be produced during the transportation process of H2O2 and its dilution process. Therefore, it is highly desirable for in situ application of H2O2. In recent years, catalytic synthesis of H2O2, e. g., direct catalytic synthesis, electrocatalytic synthesis, and photocatalytic synthesis, has attracted more and more attention because the continuous and low-concentration H2O2 produced by catalytic synthesis can be directly used for the oxidation of organic compounds, effectively avoiding the shortcomings of the current industrial route. Here, we briefly reviewed the latest processes for the catalytic production of H2O2 via various routes. On this basis, we summarized and discussed the in situ application of H2O2 in typical organic conversion reactions, including the ammoximation of ketones, the oxidation of alcohols, the oxidation of C-H bonds, and the oxidation of olefins. Some in situ coupling reactions have shown excellent performance with high conversion and selectivity, and the economic cost has been significantly reduced. Finally, the shortcomings of the in situ utilization of H2O2 in coupling reactions were analyzed, and some strategies for promoting the efficiency of the H2O2 application in organic synthesis were proposed.
Collapse
Affiliation(s)
- Shuxin Zhang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Debin Zeng
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Hui Wang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- Guangdong Provincial Key Laboratory of Advanced Green Lubricating Materials, Maoming, Guangdong, 525000, China
| | - Xiaolong Tang
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510000, China
| | - Changlin Yu
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| |
Collapse
|
4
|
Li Y, Luan D, Lou XWD. Engineering of Single-Atomic Sites for Electro- and Photo-Catalytic H 2O 2 Production. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2412386. [PMID: 39460391 DOI: 10.1002/adma.202412386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/25/2024] [Indexed: 10/28/2024]
Abstract
Direct electro- and photo-synthesis of H2O2 through the 2e- O2 reduction reaction (ORR) and H2O oxidation reaction (WOR) offer promising alternatives for on-demand and on-site production of this chemical. Exploring robust and selective active sites is crucial for enhancing H2O2 production through these pathways. Single-atom catalysts (SACs), featuring isolated active sites on supports, possess attractive properties for promoting catalysis and unraveling catalytic mechanisms. This review first systematically summarizes significant advancements in atomic engineering of both metal and nonmetal single-atom sites for electro- and photo-catalytic 2e- ORR to H2O2, as well as the dynamic behaviors of active sites during catalytic processes. Next, the progress of single-atom sites in H2O2 production through 2e- WOR is overviewed. The effects of the local physicochemical environments on the electronic structures and catalytic behaviors of isolated sites, along with the atomic catalytic mechanism involved in these H2O2 production pathways, are discussed in detail. This work also discusses the recent applications of H2O2 in advanced chemical transformations. Finally, a perspective on the development of single-atom catalysis is highlighted, aiming to provide insights into future research on SACs for electro- and photo-synthesis of H2O2 and other advanced catalytic applications.
Collapse
Affiliation(s)
- Yunxiang Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Deyan Luan
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Xiong Wen David Lou
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
5
|
Pogrányi B, Mielke T, Díaz Rodríguez A, Cartwright J, Unsworth WP, Grogan G. Preparative scale Achmatowicz and aza-Achmatowicz rearrangements catalyzed by Agrocybe aegerita unspecific peroxygenase. Org Biomol Chem 2024; 22:6149-6155. [PMID: 39012342 DOI: 10.1039/d4ob00939h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The unspecific peroxygenase (UPO) from Agrocybe aegerita (rAaeUPO-PaDa-I-H) is an effective and practical biocatalyst for the oxidative expansion of furfuryl alcohols/amines on a preparative scale, using the Achmatowicz and aza-Achmatowicz reaction. The high activity and stability of the enzyme, which can be produced on a large scale as an air-stable lyophilised powder, renders it a versatile and scalable biocatalyst for the preparation of synthetically valuable 6-hydroxypyranones and dihydropiperidinones. In several cases, the biotransformation out-performed the analogous chemo-catalysed process, and operates under milder and greener reaction conditions.
Collapse
Affiliation(s)
- Balázs Pogrányi
- Department of Chemistry, University of York, York YO10 5DD, UK.
| | - Tamara Mielke
- Department of Chemistry, University of York, York YO10 5DD, UK.
| | - Alba Díaz Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | | | | | - Gideon Grogan
- Department of Chemistry, University of York, York YO10 5DD, UK.
| |
Collapse
|
6
|
Carceller JM, Arias KS, Climent MJ, Iborra S, Corma A. One-pot chemo- and photo-enzymatic linear cascade processes. Chem Soc Rev 2024; 53:7875-7938. [PMID: 38965865 DOI: 10.1039/d3cs00595j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
The combination of chemo- and photocatalyses with biocatalysis, which couples the flexible reactivity of the photo- and chemocatalysts with the highly selective and environmentally friendly nature of enzymes in one-pot linear cascades, represents a powerful tool in organic synthesis. However, the combination of photo-, chemo- and biocatalysts in one-pot is challenging because the optimal operating conditions of the involved catalyst types may be rather different, and the different stabilities of catalysts and their mutual deactivation are additional problems often encountered in one-pot cascade processes. This review explores a large number of transformations and approaches adopted for combining enzymes and chemo- and photocatalytic processes in a successful way to achieve valuable chemicals and valorisation of biomass. Moreover, the strategies for solving incompatibility issues in chemo-enzymatic reactions are analysed, introducing recent examples of the application of non-conventional solvents, enzyme-metal hybrid catalysts, and spatial compartmentalization strategies to implement chemo-enzymatic cascade processes.
Collapse
Affiliation(s)
- J M Carceller
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - K S Arias
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - M J Climent
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - S Iborra
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| | - A Corma
- Instituto de Tecnología Química (Universitat Politècnica de València-Agencia Estatal Consejo Superior de Investigaciones Científicas), Avda dels Tarongers s/n, 46022, Valencia, Spain.
| |
Collapse
|
7
|
Barber V, Mielke T, Cartwright J, Díaz-Rodríguez A, Unsworth WP, Grogan G. Unspecific Peroxygenase (UPO) can be Tuned for Oxygenation or Halogenation Activity by Controlling the Reaction pH. Chemistry 2024; 30:e202401706. [PMID: 38700372 DOI: 10.1002/chem.202401706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/05/2024]
Abstract
Unspecific Peroxygenases (UPOs) are increasingly significant enzymes for selective oxygenations as they are stable, highly active and catalyze their reactions at the expense of only hydrogen peroxide as the oxidant. Their structural similarity to chloroperoxidase (CPO) means that UPOs can also catalyze halogenation reactions based upon the generation of hypohalous acids from halide and H2O2. Here we show that the halogenation and oxygenation modes of a UPO can be stimulated at different pH values. Using simple aromatic compounds such as thymol, we show that, at a pH of 3.0 and 6.0, either brominated or oxygenated products respectively are produced. Preparative 100 mg scale transformations of substrates were performed with 60-72 % isolated yields of brominated products obtained. A one-pot bromination-oxygenation cascade reaction on 4-ethylanisole, in which the pH was adjusted from 3.0 to 6.0 at the halfway stage, yielded sequentially brominated and oxygenated products 1-(3-bromo-4-methoxyphenyl)ethyl alcohol and 3-bromo-4-methoxy acetophenone with 82 % combined conversion. These results identify UPOs as an unusual example of a biocatalyst that is tunable for entirely different chemical reactions, dependent upon the reaction conditions.
Collapse
Affiliation(s)
- Verity Barber
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Tamara Mielke
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Jared Cartwright
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK
| | - Alba Díaz-Rodríguez
- GSK Medicines Research Centre, Gunnels Wood Road, Stevenage, Hertfordshire, SG1 2NY, UK
| | - William P Unsworth
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| | - Gideon Grogan
- Department of Chemistry, University of York, Heslington, York, YO10 5DD, UK
| |
Collapse
|
8
|
Zhou H, Chen F, Liu D, Qin X, Jing Y, Zhong C, Shi R, Liu Y, Zhang J, Zhu Y, Wang J. Boosting Reactive Oxygen Species Formation Over Pd and VO δ Co-Modified TiO 2 for Methane Oxidation into Valuable Oxygenates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311355. [PMID: 38363051 DOI: 10.1002/smll.202311355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Indexed: 02/17/2024]
Abstract
Direct photocatalytic methane oxidation into value-added products provides a promising strategy for methane utilization. However, the inefficient generation of reactive oxygen species (ROS) partly limits the activation of CH4. Herein, it is reported that Pd and VOδ co-modified TiO2 enables direct and selective methane oxidation into liquid oxygenates in the presence of O2 and H2. Due to the extra ROS production from the in situ formed H2O2, a highly improved yield rate of 5014 µmol g-1 h-1 for liquid oxygenates with a selectivity of 89.3% is achieved over the optimized Pd0.5V0.2-TiO2 catalyst at ambient temperature, which is much better than those (2682 µmol g-1 h-1, 77.8%) without H2. Detailed investigations also demonstrate the synergistic effect between Pd and VOδ species for enhancing the charge carrier separation and transfer, as well as improving the catalytic activity for O2 reduction and H2O2 production.
Collapse
Affiliation(s)
- Huanyu Zhou
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Fan Chen
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Dandan Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Xin Qin
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yangchi Jing
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Chenyu Zhong
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Rui Shi
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yana Liu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jiguang Zhang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Yunfeng Zhu
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| | - Jun Wang
- College of Materials Science and Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, China
- Jiangsu Collaborative Innovation Centre for Advanced Inorganic Function Composites, Nanjing Tech University, Nanjing, 211816, China
| |
Collapse
|
9
|
Lewis RJ, Hutchings GJ. Selective Oxidation Using In Situ-Generated Hydrogen Peroxide. Acc Chem Res 2024; 57:106-119. [PMID: 38116936 PMCID: PMC10765371 DOI: 10.1021/acs.accounts.3c00581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/04/2023] [Accepted: 12/04/2023] [Indexed: 12/21/2023]
Abstract
ConspectusHydrogen peroxide (H2O2) for industrial applications is manufactured through an indirect process that relies on the sequential reduction and reoxidation of quinone carriers. While highly effective, production is typically centralized and entails numerous energy-intensive concentration steps. Furthermore, the overhydrogenation of the quinone necessitates periodic replacement, leading to incomplete atom efficiency. These factors, in addition to the presence of propriety stabilizing agents and concerns associated with their separation from product streams, have driven interest in alternative technologies for chemical upgrading. The decoupling of oxidative transformations from commercially synthesized H2O2 may offer significant economic savings and a reduction in greenhouse gas emissions for several industrially relevant processes. Indeed, the production and utilization of the oxidant in situ, from the elements, would represent a positive step toward a more sustainable chemical synthesis sector, offering the potential for total atom efficiency, while avoiding the drawbacks associated with current industrial routes, which are inherently linked to commercial H2O2 production. Such interest is perhaps now more pertinent than ever given the rapidly improving viability of green hydrogen production.The application of in situ-generated H2O2 has been a long-standing goal in feedstock valorization, with perhaps the most significant interest placed on propylene epoxidation. Until very recently a viable in situ alternative to current industrial oxidative processes has been lacking, with prior approaches typically hindered by low rates of conversion or poor selectivity toward desired products, often resulting from competitive hydrogenation reactions. Based on over 20 years of research, which has led to the development of catalysts for the direct synthesis of H2O2 that offer high synthesis rates and >99% H2 utilization, we have recently turned our attention to a range of oxidative transformations where H2O2 is generated and utilized in situ. Indeed, we have recently demonstrated that it is possible to rival state-of-the-art industrial processes through in situ H2O2 synthesis, establishing the potential for significant process intensification and considerable decarbonization of the chemical synthesis sector.We have further established the potential of an in situ route to both bulk and fine chemical synthesis through a chemo-catalytic/enzymatic one-pot approach, where H2O2 is synthesized over heterogeneous surfaces and subsequently utilized by a class of unspecific peroxygenase enzymes for C-H bond functionalization. Strikingly, through careful control of the chemo-catalyst, it is possible to ensure that competitive, nonenzymatic pathways are inhibited while also avoiding the regiospecific and selectivity concerns associated with current energy-intensive industrial processes, with further cost savings associated with the operation of the chemo-enzymatic approach at near-ambient temperatures and pressures. Beyond traditional applications of chemo-catalysis, the efficacy of in situ-generated H2O2 (and associated oxygen-based radical species) for the remediation of environmental pollutants has also been a major interest of our laboratory, with such technology offering considerable improvements over conventional disinfection processes.We hope that this Account, which highlights the key contributions of our laboratory to the field over recent years, demonstrates the chemistries that may be unlocked and improved upon via in situ H2O2 synthesis and it inspires broader interest from the scientific community.
Collapse
Affiliation(s)
- Richard J. Lewis
- Max Planck−Cardiff Centre on
the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Cardiff, CF24 4HQ, United Kingdom
| | - Graham J. Hutchings
- Max Planck−Cardiff Centre on
the Fundamentals of Heterogeneous Catalysis FUNCAT, Cardiff Catalysis
Institute, School of Chemistry, Cardiff
University, Cardiff, CF24 4HQ, United Kingdom
| |
Collapse
|
10
|
Khan MF, Hof C, Niemcová P, Murphy CD. Recent advances in fungal xenobiotic metabolism: enzymes and applications. World J Microbiol Biotechnol 2023; 39:296. [PMID: 37658215 PMCID: PMC10474215 DOI: 10.1007/s11274-023-03737-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Fungi have been extensively studied for their capacity to biotransform a wide range of natural and xenobiotic compounds. This versatility is a reflection of the broad substrate specificity of fungal enzymes such as laccases, peroxidases and cytochromes P450, which are involved in these reactions. This review gives an account of recent advances in the understanding of fungal metabolism of drugs and pollutants such as dyes, agrochemicals and per- and poly-fluorinated alkyl substances (PFAS), and describes the key enzymes involved in xenobiotic biotransformation. The potential of fungi and their enzymes in the bioremediation of polluted environments and in the biocatalytic production of important compounds is also discussed.
Collapse
Affiliation(s)
- Mohd Faheem Khan
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Carina Hof
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Patricie Niemcová
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland
| | - Cormac D Murphy
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|
11
|
Liu L, Corma A. Bimetallic Sites for Catalysis: From Binuclear Metal Sites to Bimetallic Nanoclusters and Nanoparticles. Chem Rev 2023; 123:4855-4933. [PMID: 36971499 PMCID: PMC10141355 DOI: 10.1021/acs.chemrev.2c00733] [Citation(s) in RCA: 122] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 03/29/2023]
Abstract
Heterogeneous bimetallic catalysts have broad applications in industrial processes, but achieving a fundamental understanding on the nature of the active sites in bimetallic catalysts at the atomic and molecular level is very challenging due to the structural complexity of the bimetallic catalysts. Comparing the structural features and the catalytic performances of different bimetallic entities will favor the formation of a unified understanding of the structure-reactivity relationships in heterogeneous bimetallic catalysts and thereby facilitate the upgrading of the current bimetallic catalysts. In this review, we will discuss the geometric and electronic structures of three representative types of bimetallic catalysts (bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles) and then summarize the synthesis methodologies and characterization techniques for different bimetallic entities, with emphasis on the recent progress made in the past decade. The catalytic applications of supported bimetallic binuclear sites, bimetallic nanoclusters, and nanoparticles for a series of important reactions are discussed. Finally, we will discuss the future research directions of catalysis based on supported bimetallic catalysts and, more generally, the prospective developments of heterogeneous catalysis in both fundamental research and practical applications.
Collapse
Affiliation(s)
- Lichen Liu
- Department
of Chemistry, Tsinghua University, Beijing 100084, China
| | - Avelino Corma
- Instituto
de Tecnología Química, Universitat
Politècnica de València−Consejo Superior de Investigaciones
Científicas (UPV-CSIC), Avenida de los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
12
|
Boro B, Paul R, Tan HL, Trinh QT, Rabeah J, Chang CC, Pao CW, Liu W, Nguyen NT, Mai BK, Mondal J. Experimental Validation and Computational Predictions Join Forces to Map Catalytic C-H Activation in Ferrocene Metalated Porous Organic Polymers. ACS APPLIED MATERIALS & INTERFACES 2023; 15:21027-21039. [PMID: 37083336 DOI: 10.1021/acsami.3c01393] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In recent times, a self-complementary balanced characteristic feature with the combination of both covalent bonds (structural stability) and open metal sites (single-site catalysis) introduced an advanced emerging functional nanoarchitecture termed metalated porous organic polymers (M-POPs). However, the development of M-POPs in view of the current interest in catalysis has been realized still in its infancy and remains a challenge for the years to come. In this work, we built benzothiazole-linked Fe-metalated porous organic polymer (Fc-Bz-POP) using ferrocene dicarboxaldehyde (FDC), 1,3,5-tris(4-aminophenyl) benzene (APB), and elemental sulfur (S8) via a template-free, multicomponent, cost-effective one-pot synthetic approach. This Fc-Bz-POP is endowed with unique features including an extended network unit, isolated active sites, and catalytic pocket with a possible local structure, in which convergent binding sites are positioned in such a way that substrate molecules can be held in close proximity. Prospective catalytic application of this Fc-Bz-POP has been explored in executing catalytic allylic "C-H" bond functionalization of cyclohexene (CHX) in water at room temperature. Catalytic screening results identified that a superior performance with a CHX conversion of 95% and a 2-cyclohexene-1-ol selectivity (COL) of 80.8% at 4 h and 25 °C temperature has been achieved over Fc-Bz-POP, thereby addressing previous shortcomings of the other conventional catalytic systems. Comprehensive characterization understanding with the aid of synchrotron-based extended X-ray absorption fine structure (EXAFS) analysis manifested that the Fe atom with an oxidation state of +2 in our Fc-Bz-POP catalytic system encompasses a sandwich structural environment with the two symmetrical eclipsed cyclopentadienyl (Cp) rings, featuring nearest-neighbor (NN) Fe-C (≈2.05 Å) intramolecular bonds, as validated by the Fe L3-edge EXAFS fitting result. Furthermore, in situ attenuated total reflection-infrared spectroscopy (ATR-IR) analysis data for liquid-phase oxidation of cyclohexene allow for the formulation of a molecular-level reaction mechanistic pathway with the involvement of specific reaction intermediates, which is initiated by the radical functionalization of the allyl hydrogen. A deep insight investigation from density functional theory (DFT) calculations unambiguously revealed that the dominant pathway from cyclohexene to 2-cyclohexene-1-ol is initiated by an allyl-H functionalization step accompanied by the formation of 2-cyclohexene-1-hydroperoxide species as the key reaction intermediate. Electronic properties obtained from DFT simulations via the charge density difference plot, Bader charge, and density of state (DOS) demonstrate the importance of the organic polymer frame structure in altering the electronic properties of the Fe site in Fc-Bz-POP, resulting in its high activity. Our contribution has great implications for the precise design of metalated porous organic polymer-based robust catalysts, which will open a new avenue to get a clear image of surface catalysis.
Collapse
Affiliation(s)
- Bishal Boro
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ratul Paul
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hui Ling Tan
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Quang Thang Trinh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Jabor Rabeah
- Leibniz Institute for Catalysis (LIKAT Rostock), Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Chia-Che Chang
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu 30076, Taiwan
| | - Wen Liu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Avenue, Singapore 637459, Singapore
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Brisbane, Queensland 4111, Australia
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - John Mondal
- Department of Catalysis & Fine Chemicals, CSIR-Indian Institute of Chemical Technology, Uppal Road, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
13
|
Hecko S, Schiefer A, Badenhorst CPS, Fink MJ, Mihovilovic MD, Bornscheuer UT, Rudroff F. Enlightening the Path to Protein Engineering: Chemoselective Turn-On Probes for High-Throughput Screening of Enzymatic Activity. Chem Rev 2023; 123:2832-2901. [PMID: 36853077 PMCID: PMC10037340 DOI: 10.1021/acs.chemrev.2c00304] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Many successful stories in enzyme engineering are based on the creation of randomized diversity in large mutant libraries, containing millions to billions of enzyme variants. Methods that enabled their evaluation with high throughput are dominated by spectroscopic techniques due to their high speed and sensitivity. A large proportion of studies relies on fluorogenic substrates that mimic the chemical properties of the target or coupled enzymatic assays with an optical read-out that assesses the desired catalytic efficiency indirectly. The most reliable hits, however, are achieved by screening for conversions of the starting material to the desired product. For this purpose, functional group assays offer a general approach to achieve a fast, optical read-out. They use the chemoselectivity, differences in electronic and steric properties of various functional groups, to reduce the number of false-positive results and the analytical noise stemming from enzymatic background activities. This review summarizes the developments and use of functional group probes for chemoselective derivatizations, with a clear focus on screening for enzymatic activity in protein engineering.
Collapse
Affiliation(s)
- Sebastian Hecko
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Astrid Schiefer
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Christoffel P S Badenhorst
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Michael J Fink
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford St, Cambridge, Massachusetts 02138, United States
| | - Marko D Mihovilovic
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Uwe T Bornscheuer
- Institute of Biochemistry, Dept. of Biotechnology & Enzyme Catalysis, University of Greifswald, Felix-Hausdorff-Str. 4, 17489 Greifswald, Germany
| | - Florian Rudroff
- Institute of Applied Synthetic Chemistry, OC-163, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| |
Collapse
|
14
|
Jia F, Liu Y, Deng X, Cao X, Zheng X, Zhou L, Gao J, Jiang Y. Immobilization of Enzymes on Cyclodextrin-Anchored Dehiscent Mesoporous TiO 2 for Efficient Photoenzymatic Hydroxylation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:7928-7938. [PMID: 36731117 DOI: 10.1021/acsami.2c17971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
A three-in-one heterogeneous catalyst (UPO@dTiO2-CD) was fabricated by grafting cyclodextrins (CDs) on the dehiscent TiO2 (dTiO2) surface and subsequently immobilizing unspecific peroxygenase (rAaeUPO), which exhibited double enhanced electron/mass transfer in photo-enzymatic enantioselective hydroxylation of the C-H bond. The tunable anatase/rutile phase ratio and dehiscent mesoporous architectures of dTiO2 and the electron donor feature and hydrophobic inner cavity of the CDs are independently responsible for accelerating both electron and mass transfer. The coordination of the photocatalytic and enzymatic steps was achieved by structural and compositional regulation. The optimized UPO@dTiO2-CD not only displayed high catalytic efficiency (turnover number and turnover frequency of rAaeUPO up to >65,000 and 91 min-1, respectively) but also exhibited high stability and reusability.
Collapse
Affiliation(s)
- Feifei Jia
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Yunting Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
- Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin300130, China
| | - Xuewu Deng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Xue Cao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Xiaobing Zheng
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Liya Zhou
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Jing Gao
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
| | - Yanjun Jiang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin300130, China
- Tianjin Key Laboratory of Chemical Process Safety, Hebei University of Technology, Tianjin300130, China
| |
Collapse
|
15
|
Abufalgha AA, Curson ARJ, Lea-Smith DJ, Pott RWM. The effect of Alcanivorax borkumensis SK2, a hydrocarbon-metabolising organism, on gas holdup in a 4-phase bubble column bioprocess. Bioprocess Biosyst Eng 2023; 46:635-644. [PMID: 36757455 DOI: 10.1007/s00449-023-02849-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 01/21/2023] [Indexed: 02/10/2023]
Abstract
To design bioprocesses utilising hydrocarbon-metabolising organisms (HMO) as biocatalysts, the effect of the organism on the hydrodynamics of bubble column reactor (BCR), such as gas holdup, needs to be investigated. Therefore, this study investigates the first use of an HMO, Alcanivorax borkumensis SK2, as a solid phase in the operation and hydrodynamics of a BCR. The study investigated the gas holdup in 3-phase and 4-phase systems in a BCR under ranges of superficial gas velocities (UG) from 1 to 3 cm/s, hydrocarbon (chain length C13-21) concentrations (HC) of 0, 5, and 10% v/v and microbial concentrations (MC) of 0, 0.35, 0.6 g/l. The results indicated that UG was the most significant parameter, as gas holdup increases linearly with increasing UG from 1 to 3 cm/s. Furthermore, the addition of hydrocarbons into the air-deionized water -SK2 system showed the highest increase in the gas holdup, particularly at high UG (above 2 cm/s). The solids (yeast, cornflour, and SK2) phases had differing effects on gas holdup, potentially due to the difference in surface activity. In this work, SK2 addition caused a reduction in the fluid surface tension in the bioprocess which therefore resulted in an increase in the gas holdup in BCR. This work builds upon previous investigations in optimising the hydrodynamics for bubble column hydrocarbon bioprocesses for the application of alkane bioactivation.
Collapse
Affiliation(s)
- Ayman A Abufalgha
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Andrew R J Curson
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - David J Lea-Smith
- School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK.,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa
| | - Robert W M Pott
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch, 7600, South Africa. .,DST-NRF Centre of Excellence in Catalysis (C* Change), Rondebosch, South Africa.
| |
Collapse
|
16
|
Discovery and Heterologous Expression of Unspecific Peroxygenases. Catalysts 2023. [DOI: 10.3390/catal13010206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Since 2004, unspecific peroxygenases, in short UPOs (EC. 1.11.2.1), have been explored. UPOs are closing a gap between P450 monooxygenases and chloroperoxidases. These enzymes are highly active biocatalysts for the selective oxyfunctionalisation of C–H, C=C and C-C bonds. UPOs are secreted fungal proteins and Komagataella phaffii (Pichia pastoris) is an ideal host for high throughput screening approaches and UPO production. Heterologous overexpression of 26 new UPOs by K. phaffii was performed in deep well plate cultivation and shake flask cultivation up to 50 mL volume. Enzymes were screened using colorimetric assays with 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,6-dimethoxyphenol (DMP), naphthalene and 5-nitro-1,3-benzodioxole (NBD) as reporter substrates. The PaDa-I (AaeUPO mutant) and HspUPO were used as benchmarks to find interesting new enzymes with complementary activity profiles as well as good producing strains. Herein we show that six UPOs from Psathyrella aberdarensis, Coprinopsis marcescibilis, Aspergillus novoparasiticus, Dendrothele bispora and Aspergillus brasiliensis are particularly active.
Collapse
|
17
|
Weliwatte NS, Chen H, Tang T, Minteer SD. Three-Stage Conversion of Chemically Inert n-Heptane to α-Hydrazino Aldehyde Based on Bioelectrocatalytic C-H Bond Oxyfunctionalization. ACS Catal 2023; 13:563-572. [PMID: 36644649 PMCID: PMC9830989 DOI: 10.1021/acscatal.2c04003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/12/2022] [Indexed: 12/24/2022]
Abstract
Simple petrochemical feedstocks are often the starting material for the synthesis of complex commodity and fine and specialty chemicals. Designing synthetic pathways for these complex and specific molecular structures with sufficient chemo-, regio-, enantio-, and diastereo-selectivity can expand the existing petrochemicals landscape. The two overarching challenges in designing such pathways are selective activation of chemically inert C-H bonds in hydrocarbons and systematic functionalization to synthesize complex structures. Multienzyme cascades are becoming a growing means of overcoming the first challenge. However, extending multienzyme cascade designs is restricted by the arsenal of enzymes currently at our disposal and the compatibility between specific enzymes. Here, we couple a bioelectrocatalytic multienzyme cascade to organocatalysis, which are two distinctly different classes of catalysis, in a single system to address both challenges. Based on the development and utilization of an anthraquinone (AQ)-based redox polymer, the bioelectrocatalytic step achieves regioselective terminal C-H bond oxyfunctionalization of chemically inert n-heptane. A second biocatalytic step selectively oxidizes the resulting 1-heptanol to heptanal. The succeeding inherently simple and durable l-proline-based organocatalysis step is a complementary partner to the multienzyme steps to further functionalize heptanal to the corresponding α-hydrazino aldehyde. The "three-stage" streamlined design exerts much control over the chemical conversion, which renders the collective system a versatile and adaptable model for a broader substrate scope and more complex C-H functionalization.
Collapse
|
18
|
Cribari MA, Unger MJ, Martell JD. A Horseradish Peroxidase-Mediator System for Benzylic C-H Activation. ACS Catal 2022; 12:12246-12252. [PMID: 37153120 PMCID: PMC10162642 DOI: 10.1021/acscatal.2c03424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Enzyme-mediator systems generate radical intermediates that abstract hydrogen atoms under mild conditions. These systems have been employed extensively for alcohol oxidation, primarily in biomass degradation, but they are underexplored for direct activation of C(sp3)-H bonds in alkyl groups. Here, we combine horseradish peroxidase (HRP), H2O2, and redox mediator N-hydroxyphthalimide (NHPI) for C(sp3)-H functionalization of alkylbenzene-type substrates. The HRP-NHPI system is >10-fold more active than existing enzyme-mediator systems in converting alkylbenzenes to ketones and aldehydes under air, and it operates from 0-50 °C and in numerous aqueous-organic solvent mixtures. The benzylic substrate radical can be trapped through a reaction with NHPI, demonstrating the formation of benzylic products beyond ketones. Furthermore, we demonstrate a one-pot, two-step enzymatic cascade for converting alkylbenzenes to benzylic amines. Overall, the HRP-NHPI system enables the selective benzylic C-H functionalization of diverse substrates under mild conditions using a straightforward procedure.
Collapse
Affiliation(s)
- Mario A. Cribari
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Maxwell J. Unger
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, 53706, USA
| | - Jeffrey D. Martell
- Department of Chemistry, University of Wisconsin–Madison, Madison, WI, 53706, USA
- Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53703, USA
| |
Collapse
|
19
|
Brehm J, Lewis RJ, Richards T, Qin T, Morgan DJ, Davies TE, Chen L, Liu X, Hutchings GJ. Enhancing the Chemo-Enzymatic One-Pot Oxidation of Cyclohexane via In Situ H 2O 2 Production over Supported Pd-Based Catalysts. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Joseph Brehm
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Richard J. Lewis
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Thomas Richards
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Tian Qin
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - David J. Morgan
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
- HarwellXPS, Research Complex at Harwell (RCaH), Didcot OX11 OFA, United Kingdom
| | - Thomas E. Davies
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Liwei Chen
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
- School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - Xi Liu
- In-situ Centre for Physical Sciences, School of Chemistry and Chemical, Frontiers Science Centre for Transformative Molecules, Shanghai 200240, P. R. China
| | - Graham J. Hutchings
- Max Planck−Cardiff Centre on the Fundamentals of Heterogeneous Catalysis (FUNCAT), Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| |
Collapse
|
20
|
Wu B, Lin T, Huang M, Li S, Li J, Yu X, Yang R, Sun F, Jiang Z, Sun Y, Zhong L. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Angew Chem Int Ed Engl 2022; 61:e202204116. [DOI: 10.1002/anie.202204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Bo Wu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Tiejun Lin
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
| | - Min Huang
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Shenggang Li
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Ji Li
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Xing Yu
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Ruoou Yang
- State Key Laboratory of Materials Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 P. R. China
| | - Fanfei Sun
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility Zhangjiang National Lab, Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201204 P. R. China
| | - Yuhan Sun
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| | - Liangshu Zhong
- CAS Key Laboratory of Low-Carbon Conversion Science and Engineering Shanghai Advanced Research Institute Chinese Academy of Sciences Shanghai 201210 P. R. China
- School of Physical Science and Technology ShanghaiTech University Shanghai 201210 P. R. China
| |
Collapse
|
21
|
Li Y, Zhang P, Sun Z, Li H, Ge R, Sheng X, Zhang W. Peroxygenase-Catalyzed Selective Synthesis of Calcitriol Starting from Alfacalcidol. Antioxidants (Basel) 2022; 11:antiox11061044. [PMID: 35739941 PMCID: PMC9220053 DOI: 10.3390/antiox11061044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 12/10/2022] Open
Abstract
Calcitriol is an active analog of vitamin D3 and has excellent physiological activities in regulating healthy immune function. To synthesize the calcitriol compound, the concept of total synthesis is often adopted, which typically involves multiple steps and results in an overall low yield. Herein, we envisioned an enzymatic approach for the synthesis of calcitriol. Peroxygenase from Agrocybe aegerita (AaeUPO) was used as a catalyst to hydroxylate the C-H bond at the C-25 position of alfacalcidol and yielded the calcitriol in a single step. The enzymatic reaction yielded 80.3% product formation in excellent selectivity, with a turnover number up to 4000. In a semi-preparative scale synthesis, 72% isolated yield was obtained. It was also found that AaeUPO is capable of hydroxylating the C-H bond at the C-1 position of vitamin D3, thereby enabling the calcitriol synthesis directly from vitamin D3.
Collapse
Affiliation(s)
- Yuanying Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Pengpeng Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Zhoutong Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Huanhuan Li
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710000, China
| | - Ran Ge
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; (Y.L.); (P.Z.); (Z.S.); (H.L.); (R.G.); (X.S.)
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Correspondence: ; Tel.: +86-22-8486-6462
| |
Collapse
|
22
|
Mahor D, Cong Z, Weissenborn MJ, Hollmann F, Zhang W. Valorization of Small Alkanes by Biocatalytic Oxyfunctionalization. CHEMSUSCHEM 2022; 15:e202101116. [PMID: 34288540 DOI: 10.1002/cssc.202101116] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/18/2021] [Indexed: 06/13/2023]
Abstract
The oxidation of alkanes into valuable chemical products is a vital reaction in organic synthesis. This reaction, however, is challenging, owing to the inertness of C-H bonds. Transition metal catalysts for C-H functionalization are frequently explored. Despite chemical alternatives, nature has also evolved powerful oxidative enzymes (e. g., methane monooxygenases, cytochrome P450 oxygenases, peroxygenases) that are capable of transforming C-H bonds under very mild conditions, with only the use of molecular oxygen or hydrogen peroxide as electron acceptors. Although progress in alkane oxidation has been reviewed extensively, little attention has been paid to small alkane oxidation. The latter holds great potential for the manufacture of chemicals. This Minireview provides a concise overview of the most relevant enzyme classes capable of small alkanes (C<6 ) oxyfunctionalization, describes the essentials of the catalytic mechanisms, and critically outlines the current state-of-the-art in preparative applications.
Collapse
Affiliation(s)
- Durga Mahor
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
- Indian Institute of Science Education and Research Berhampur, Odisha, 760010, India
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, Shandong, 266101, P. R. China
| | - Martin J Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Saale), Germany
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ, Delft, The Netherlands
| | - Wuyuan Zhang
- National Innovation Center for Synthetic Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin, 300308, P. R. China
| |
Collapse
|
23
|
Wang Z, Fu Z, Jian Y, Han Y, Xia M, Zhang S, Yan B, Jiang G, Lu D, Wu J, Liu Z. Glucose Induces Heme Leakage and Suppresses H2O2 Uptake of Chloroperoxidase in the Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2022. [DOI: 10.1002/cctc.202200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zheyu Wang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Zhongwang Fu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yupei Jian
- Tsinghua University Department of Chemical Engineering CHINA
| | - Yilei Han
- Tsinghua University Department of Chemical Engineering CHINA
| | - Meng Xia
- Tsinghua University Department of Chemical Engineering CHINA
| | - Shuiwei Zhang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Binhang Yan
- Tsinghua University Department of Chemical Engineering CHINA
| | - Guoqiang Jiang
- Tsinghua University Department of Chemical Engineering CHINA
| | - Diannan Lu
- Tsinghua University Department of Chemical Engineering CHINA
| | - Jianzhong Wu
- University of California Riverside Department of Chemical and Environmental and Engineering CHINA
| | - Zheng Liu
- Tsinghua University Chemical Engineering Qinghua Yuan 1 100084 Beijing CHINA
| |
Collapse
|
24
|
Wu B, Lin T, Huang M, Li S, Li J, Yu X, Yang R, Sun F, Jiang Z, Sun Y, Zhong L. Tandem Catalysis for Selective Oxidation of Methane to Oxygenates Using Oxygen over PdCu/Zeolite. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bo Wu
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering No. 100 KaiKe Road, Pudong District 201210 Shanghai CHINA
| | - Tiejun Lin
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering CHINA
| | - Min Huang
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering CHINA
| | - Shenggang Li
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering CHINA
| | - Ji Li
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute Shanghai Synchrotron Radiation Facility CHINA
| | - Xing Yu
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering CHINA
| | - Ruoou Yang
- Huazhong University of Science and Technology State Key Laboratory of Materials Processing and Die & Mould Technology CHINA
| | - Fanfei Sun
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute Shanghai Synchrotron Radiation Facility CHINA
| | - Zheng Jiang
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute Shanghai Synchrotron Radiation Facility CHINA
| | - Yuhan Sun
- Shanghai Advanced Research Institute Chinese Academy of Sciences: Chinese Academy of Sciences Shanghai Advanced Research Institute CAS Key Laboratory of Low-Carbon Conversion Science and Engineering CHINA
| | - Liangshu Zhong
- Shanghai Advanced Research Institute, Chinese Academy of Sciences CAS Key Laboratory of Low-Carbon Conversion Science and Engineering No.99 Haike Road, Zhangjiang Hi-Tech Park, Pudong Shanghai 201203 Shanghai CHINA
| |
Collapse
|
25
|
Podgorski MN, Harbort JS, Lee JHZ, Nguyen GT, Bruning JB, Donald WA, Bernhardt PV, Harmer JR, Bell SG. An Altered Heme Environment in an Engineered Cytochrome P450 Enzyme Enables the Switch from Monooxygenase to Peroxygenase Activity. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05877] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Matthew N. Podgorski
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Joshua S. Harbort
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Joel H. Z. Lee
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Giang T.H. Nguyen
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - John B. Bruning
- School of Biological Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia
| | - William A. Donald
- School of Chemistry, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jeffrey R. Harmer
- Center for Advanced Imaging, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen G. Bell
- Department of Chemistry, University of Adelaide, Adelaide, South Australia 5005, Australia
| |
Collapse
|
26
|
Li K, Yang Q, Zhang P, Zhang W. Research Progress of Peroxygenase-Catalyzed Reactions Driven by in-situ Generation of H 2 O 2. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202108052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
27
|
A Core‐Shell Cascade of Chloroperoxidase and Gold Nanoclusters for Asymmetric Hydroxylation of Ethylbenzene. ChemCatChem 2021. [DOI: 10.1002/cctc.202101732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Enhanced Catalytic Hydrogen Peroxide Production from Hydroxylamine Oxidation on Modified Activated Carbon Fibers: The Role of Surface Chemistry. Catalysts 2021. [DOI: 10.3390/catal11121515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Herein, direct production of hydrogen peroxide (H2O2) through hydroxylamine (NH2OH) oxidation by molecular oxygen was greatly enhanced over modified activated carbon fiber (ACF) catalysts. We revealed that the higher content of pyrrolic/pyridone nitrogen (N5) and carboxyl-anhydride oxygen could effectively promote the higher selectivity and yield of H2O2. By changing the volume ratio of the concentrated H2SO4 and HNO3, the content of N5 and surface oxygen containing groups on ACF were selectively tuned. The ACF catalyst with the highest N5 content and abundant carboxyl-anhydride oxygen containing groups was demonstrated to have the highest activity toward catalytic H2O2 production, enabling the selectivity of H2O2 over 99.3% and the concentration of H2O2 reaching 123 mmol/L. The crucial effects of nitrogen species were expounded by the correlation of the selectivity of H2O2 with the content of N5 from X-ray photoelectron spectroscopy (XPS). The possible reaction pathway over ACF catalysts promoted by N5 was also shown.
Collapse
|
29
|
Hobisch M, Holtmann D, Gomez de Santos P, Alcalde M, Hollmann F, Kara S. Recent developments in the use of peroxygenases - Exploring their high potential in selective oxyfunctionalisations. Biotechnol Adv 2021; 51:107615. [PMID: 32827669 PMCID: PMC8444091 DOI: 10.1016/j.biotechadv.2020.107615] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 08/10/2020] [Accepted: 08/14/2020] [Indexed: 12/11/2022]
Abstract
Peroxygenases are an emerging new class of enzymes allowing selective oxyfunctionalisation reactions in a cofactor-independent way different from well-known P450 monooxygenases. Herein, we focused on recent developments from organic synthesis, molecular biotechnology and reaction engineering viewpoints that are devoted to bring these enzymes in industrial applications. This covers natural diversity from different sources, protein engineering strategies for expression, substrate scope, activity and selectivity, stabilisation of enzymes via immobilisation, and the use of peroxygenases in low water media. We believe that peroxygenases have much to offer for selective oxyfunctionalisations and we have much to study to explore the full potential of these versatile biocatalysts in organic synthesis.
Collapse
Affiliation(s)
- Markus Hobisch
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark
| | - Dirk Holtmann
- Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstr. 14, Gießen 35390, Germany
| | | | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, C/Marie Curie 2, Madrid 28049, Spain; EvoEnzyme S.L, C/ Marie Curie 2, Madrid 28049, Spain
| | - Frank Hollmann
- Department of Biotechnology, Biocatalysis Group, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Selin Kara
- Department of Engineering, Biocatalysis and Bioprocessing Group, Aarhus University, Gustav Wieds Vej 10, Aarhus C 8000, Denmark.
| |
Collapse
|
30
|
Grogan G. Hemoprotein Catalyzed Oxygenations: P450s, UPOs, and Progress toward Scalable Reactions. JACS AU 2021; 1:1312-1329. [PMID: 34604841 PMCID: PMC8479775 DOI: 10.1021/jacsau.1c00251] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Indexed: 05/15/2023]
Abstract
The selective oxygenation of nonactivated carbon atoms is an ongoing synthetic challenge, and biocatalysts, particularly hemoprotein oxygenases, continue to be investigated for their potential, given both their sustainable chemistry credentials and also their superior selectivity. However, issues of stability, activity, and complex reaction requirements often render these biocatalytic oxygenations problematic with respect to scalable industrial processes. A continuing focus on Cytochromes P450 (P450s), which require a reduced nicotinamide cofactor and redox protein partners for electron transport, has now led to better catalysts and processes with a greater understanding of process requirements and limitations for both in vitro and whole-cell systems. However, the discovery and development of unspecific peroxygenases (UPOs) has also recently provided valuable complementary technology to P450-catalyzed reactions. UPOs need only hydrogen peroxide to effect oxygenations but are hampered by their sensitivity to peroxide and also by limited selectivity. In this Perspective, we survey recent developments in the engineering of proteins, cells, and processes for oxygenations by these two groups of hemoproteins and evaluate their potential and relative merits for scalable reactions.
Collapse
|
31
|
Affiliation(s)
- Judith Münch
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Pascal Püllmann
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West seventh Avenue, Tianjin 300308, China
- National Technology Innovation Center of Synthetic Biology, 32 West seventh Avenue, Tianjin 300308, China
| | - Martin J. Weissenborn
- Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120, Halle, Saale, Germany
- Institute of Chemistry, MartinLuther-University Halle-Wittenberg, Kurt-Mothes-Strasse 2, 06120, Halle, Saale, Germany
| |
Collapse
|
32
|
Brehm J, Lewis RJ, Morgan DJ, Davies TE, Hutchings GJ. The Direct Synthesis of Hydrogen Peroxide over AuPd Nanoparticles: An Investigation into Metal Loading. Catal Letters 2021. [DOI: 10.1007/s10562-021-03632-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AbstractThe direct synthesis of H2O2 from molecular H2 and O2 over AuPd catalysts, supported on TiO2 and prepared via an excess chloride co-impregnation procedure is investigated. The role of Au:Pd ratio on the catalytic activity towards H2O2 formation and its subsequent degradation is evaluated under conditions that have previously been found to be optimal for the formation of H2O2. The combination of relatively small nanoparticles, of mixed Pd-oxidation state is shown to correlate with enhanced catalytic performance. Subsequently, a detailed study of catalytic activity towards H2O2 synthesis as a function of AuPd loading was conducted, with a direct correlation between catalytic activity and metal loading observed.
Graphic Abstract
Collapse
|
33
|
Van der Verren M, Smeets V, Vander Straeten A, Dupont-Gillain C, Debecker DP. Hybrid chemoenzymatic heterogeneous catalyst prepared in one step from zeolite nanocrystals and enzyme-polyelectrolyte complexes. NANOSCALE ADVANCES 2021; 3:1646-1655. [PMID: 36132563 PMCID: PMC9417918 DOI: 10.1039/d0na00834f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 03/25/2021] [Accepted: 01/30/2021] [Indexed: 05/04/2023]
Abstract
The combination of inorganic heterogeneous catalysts and enzymes, in so-called hybrid chemoenzymatic heterogeneous catalysts (HCEHCs), is an attractive strategy to effectively run chemoenzymatic reactions. Yet, the preparation of such bifunctional materials remains challenging because both the inorganic and the biological moieties must be integrated in the same solid, while preserving their intrinsic activity. Combining an enzyme and a zeolite, for example, is complicated because the pores of the zeolite are too small to accommodate the enzyme and a covalent anchorage on the surface is often ineffective. Herein, we developed a new pathway to prepare a nanostructured hybrid catalyst built from glucose oxidase and TS-1 zeolite. Such hybrid material can catalyse the in situ biocatalytic formation of H2O2, which is subsequently used by the zeolite to trigger the epoxidation of allylic alcohol. Starting from an enzymatic solution and a suspension of zeolite nanocrystals, the hybrid catalyst is obtained in one step, using a continuous spray drying method. While enzymes are expectedly unable to resist the conditions used in spray drying (temperature, shear stress, etc.), we leverage on the preparation of "enzyme-polyelectrolyte complexes" (EPCs) to increase the enzyme stability. Interestingly, the use of EPCs also prevents enzyme leaching and appears to stabilize the enzyme against pH changes. We show that the one-pot preparation by spray drying gives access to hybrid chemoenzymatic heterogeneous catalysts with unprecedented performance in the targeted chemoenzymatic reaction. The bifunctional catalyst performs much better than the two catalysts operating as separate entities. We anticipate that this strategy could be used as an adaptable method to prepare other types of multifunctional materials starting from a library of functional nanobuilding blocks and biomolecules.
Collapse
Affiliation(s)
- Margot Van der Verren
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Valentin Smeets
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Aurélien Vander Straeten
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Christine Dupont-Gillain
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| | - Damien P Debecker
- Institute of Condensed Matter and Nanosciences, UCLouvain Place Louis Pasteur 1 1348 Louvain-la-Neuve Belgium
| |
Collapse
|
34
|
Rowbotham JS, Reeve HA, Vincent KA. Hybrid Chemo-, Bio-, and Electrocatalysis for Atom-Efficient Deuteration of Cofactors in Heavy Water. ACS Catal 2021; 11:2596-2604. [PMID: 33842020 PMCID: PMC8025731 DOI: 10.1021/acscatal.0c03437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 01/31/2021] [Indexed: 11/29/2022]
Abstract
Deuterium-labeled nicotinamide cofactors such as [4-2H]-NADH can be used as mechanistic probes in biological redox processes and offer a route to the synthesis of selectively [2H] labeled chemicals via biocatalytic reductive deuteration. Atom-efficient routes to the formation and recycling of [4-2H]-NADH are therefore highly desirable but require careful design in order to alleviate the requirement for [2H]-labeled reducing agents. In this work, we explore a suite of electrode or hydrogen gas driven catalyst systems for the generation of [4-2H]-NADH and consider their use for driving reductive deuteration reactions. Catalysts are evaluated for their chemoselectivity, stereoselectivity, and isotopic selectivity, and it is shown that inclusion of an electronically coupled NAD+-reducing enzyme delivers considerable advantages over purely metal based systems, yielding exclusively [4S-2H]-NADH. We further demonstrate the applicability of these types of [4S-2H]-NADH recycling systems for driving reductive deuteration reactions, regardless of the facioselectivity of the coupled enzyme.
Collapse
Affiliation(s)
- Jack S. Rowbotham
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Holly A. Reeve
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| | - Kylie A. Vincent
- Department of Chemistry,
Inorganic Chemistry Laboratory, University
of Oxford, South Parks Road, Oxford OX1 3QR, United Kingdom
| |
Collapse
|
35
|
Naina VR, Wang S, Sharapa DI, Zimmermann M, Hähsler M, Niebl-Eibenstein L, Wang J, Wöll C, Wang Y, Singh SK, Studt F, Behrens S. Shape-Selective Synthesis of Intermetallic Pd 3Pb Nanocrystals and Enhanced Catalytic Properties in the Direct Synthesis of Hydrogen Peroxide. ACS Catal 2021. [DOI: 10.1021/acscatal.0c03561] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Vanitha Reddy Naina
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Sheng Wang
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Dmitry I. Sharapa
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Michael Zimmermann
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Martin Hähsler
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| | - Lukas Niebl-Eibenstein
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Junjun Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Christof Wöll
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Yuemin Wang
- Institute of Functional Interfaces, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
| | - Sanjay Kumar Singh
- Catalysis Group, Department of Chemistry, Indian Institute of Technology Indore, Simrol, Indore, 453552 Madhya Pradesh, India
| | - Felix Studt
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute for Chemical Technology and Polymer Science, Karlsruher Institut für Technologie, Engesserstr. 20, D-76131 Karlsruhe, Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruher Institut für Technologie, Hermann-von-Helmholtz-Platz 1, D-76344 Eggenstein-Leopoldshafen, Germany
- Institute of Inorganic Chemistry, Ruprecht-Karls University Heidelberg, Im Neuenheimer Feld 270, D-69120 Heidelberg, Germany
| |
Collapse
|
36
|
Advances in enzymatic oxyfunctionalization of aliphatic compounds. Biotechnol Adv 2021; 51:107703. [PMID: 33545329 DOI: 10.1016/j.biotechadv.2021.107703] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 01/25/2021] [Indexed: 12/27/2022]
Abstract
Selective oxyfunctionalizations of aliphatic compounds are difficult chemical reactions, where enzymes can play an important role due to their stereo- and regio-selectivity and operation under mild reaction conditions. P450 monooxygenases are well-known biocatalysts that mediate oxyfunctionalization reactions in different living organisms (from bacteria to humans). Unspecific peroxygenases (UPOs), discovered in fungi, have arisen as "dream biocatalysts" of great biotechnological interest because they catalyze the oxyfunctionalization of aliphatic and aromatic compounds, avoiding the necessity of expensive cofactors and regeneration systems, and only depending on H2O2 for their catalysis. Here, we summarize recent advances in aliphatic oxyfunctionalization reactions by UPOs, as well as the molecular determinants of the enzyme structures responsible for their activities, emphasizing the differences found between well-known P450s and the novel fungal peroxygenases.
Collapse
|
37
|
Production of a Human Metabolite of Atorvastatin by Bacterial CYP102A1 Peroxygenase. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11020603] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Atorvastatin is a widely used statin drug that prevents cardiovascular disease and treats hyperlipidemia. The major metabolites in humans are 2-OH and 4-OH atorvastatin, which are active metabolites known to show highly inhibiting effects on 3-hydroxy-3-methylglutaryl-CoA reductase activity. Producing the hydroxylated metabolites by biocatalysts using enzymes and whole-cell biotransformation is more desirable than chemical synthesis. It is more eco-friendly and can increase the yield of desired products. In this study, we have found an enzymatic strategy of P450 enzymes for highly efficient synthesis of the 4-OH atorvastatin, which is an expensive commercial product, by using bacterial CYP102A1 peroxygenase activity with hydrogen peroxide without NADPH. We obtained a set of CYP102A1 mutants with high catalytic activity toward atorvastatin using enzyme library generation, high-throughput screening of highly active mutants, and enzymatic characterization of the mutants. In the hydrogen peroxide supported reactions, a mutant, with nine changed amino acid residues compared to a wild-type among tested mutants, showed the highest catalytic activity of atorvastatin 4-hydroxylation (1.8 min−1). This result shows that CYP102A1 can catalyze atorvastatin 4-hydroxylation by peroxide-dependent oxidation with high catalytic activity. The advantages of CYP102A1 peroxygenase activity over NADPH-supported monooxygenase activity are discussed. Taken together, we suggest that the P450 peroxygenase activity can be used to produce drugs’ metabolites for further studies of their efficacy and safety.
Collapse
|
38
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biocatalysis: Enzymatic Synthesis for Industrial Applications. Angew Chem Int Ed Engl 2021; 60:88-119. [PMID: 32558088 PMCID: PMC7818486 DOI: 10.1002/anie.202006648] [Citation(s) in RCA: 649] [Impact Index Per Article: 162.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Indexed: 12/12/2022]
Abstract
Biocatalysis has found numerous applications in various fields as an alternative to chemical catalysis. The use of enzymes in organic synthesis, especially to make chiral compounds for pharmaceuticals as well for the flavors and fragrance industry, are the most prominent examples. In addition, biocatalysts are used on a large scale to make specialty and even bulk chemicals. This review intends to give illustrative examples in this field with a special focus on scalable chemical production using enzymes. It also discusses the opportunities and limitations of enzymatic syntheses using distinct examples and provides an outlook on emerging enzyme classes.
Collapse
Affiliation(s)
- Shuke Wu
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| | - Radka Snajdrova
- Novartis Institutes for BioMedical ResearchGlobal Discovery Chemistry4056BaselSwitzerland
| | - Jeffrey C. Moore
- Process Research and DevelopmentMerck & Co., Inc.126 E. Lincoln AveRahwayNJ07065USA
| | - Kai Baldenius
- Baldenius Biotech ConsultingHafenstr. 3168159MannheimGermany
| | - Uwe T. Bornscheuer
- Institute of BiochemistryDept. of Biotechnology & Enzyme CatalysisGreifswald UniversityFelix-Hausdorff-Strasse 417487GreifswaldGermany
| |
Collapse
|
39
|
Gomez de Santos P, Lazaro S, Viña-Gonzalez J, Hoang MD, Sánchez-Moreno I, Glieder A, Hollmann F, Alcalde M. Evolved Peroxygenase–Aryl Alcohol Oxidase Fusions for Self-Sufficient Oxyfunctionalization Reactions. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03029] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
| | - Sofia Lazaro
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| | - Manh Dat Hoang
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- Institute of Biochemical Engineering, Technical University of Munich, Boltzmannstr. 15, 85748 Garching, Germany
| | | | - Anton Glieder
- Institute of Molecular Biotechnology, Graz University of Technology, Petersgasse 14, 8010 Graz, Austria
- Bisy e.U., Wuenschendorf 292, 8200 Hofstaetten a. d. Raab, Austria
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2629HZ Delft, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
- EvoEnzyme S.L., Marie Curie 2, 28049 Madrid, Spain
| |
Collapse
|
40
|
Abstract
Cascade reactions have been described as efficient and universal tools, and are of substantial interest in synthetic organic chemistry. This review article provides an overview of the novel and recent achievements in enzyme cascade processes catalyzed by multi-enzymatic or chemoenzymatic systems. The examples here selected collect the advances related to the application of the sequential use of enzymes in natural or genetically modified combination; second, the important combination of enzymes and metal complex systems, and finally we described the application of biocatalytic biohybrid systems on in situ catalytic solid-phase as a novel strategy. Examples of efficient and interesting enzymatic catalytic cascade processes in organic chemistry, in the production of important industrial products, such as the designing of novel biosensors or bio-chemocatalytic systems for medicinal chemistry application, are discussed
Collapse
|
41
|
Liu Y, Yu Y, Sun C, Fu Y, Mang Z, Shi L, Li H. Transition-Metal Free Chemoselective Hydroxylation and Hydroxylation–Deuteration of Heterobenzylic Methylenes. Org Lett 2020; 22:8127-8131. [DOI: 10.1021/acs.orglett.0c03108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yonghai Liu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yang Yu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chengyu Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yiwei Fu
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhiguo Mang
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lei Shi
- Corporate R&D Division, Firmenich Aromatics (China) Company, Ltd., Shanghai 201108, China
| | - Hao Li
- State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, and School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
42
|
Wang Z, Jian Y, Han Y, Fu Z, Lu D, Wu J, Liu Z. Recent progress in enzymatic functionalization of carbon-hydrogen bonds for the green synthesis of chemicals. Chin J Chem Eng 2020. [DOI: 10.1016/j.cjche.2020.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Roda S, Santiago G, Guallar V. Mapping enzyme-substrate interactions: its potential to study the mechanism of enzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:1-31. [PMID: 32951809 DOI: 10.1016/bs.apcsb.2020.06.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
With the increase of the need to use more sustainable processes for the industry in our society, the modeling of enzymes has become crucial to fully comprehend their mechanism of action and use this knowledge to enhance and design their properties. A lot of methods to study enzymes computationally exist and they have been classified on sequence-based, structure-based, and the more new artificial intelligence-based ones. Albeit the abundance of methods to help predict the function of an enzyme, molecular modeling is crucial when trying to understand the enzyme mechanism, as they aim to correlate atomistic information with experimental data. Among them, methods that simulate the system dynamics at a molecular mechanics level of theory (classical force fields) have shown to offer a comprehensive study. In this book chapter, we will analyze these techniques, emphasizing the importance of precise modeling of enzyme-substrate interactions. In the end, a brief explanation of the transference of the information from research studies to the industry is given accompanied with two examples of family enzymes where their modeling has helped their exploitation.
Collapse
Affiliation(s)
- Sergi Roda
- Barcelona Supercomputing Center (BSC), Barcelona, Spain
| | | | - Victor Guallar
- Barcelona Supercomputing Center (BSC), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
44
|
Wu S, Snajdrova R, Moore JC, Baldenius K, Bornscheuer UT. Biokatalyse: Enzymatische Synthese für industrielle Anwendungen. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006648] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Shuke Wu
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| | - Radka Snajdrova
- Novartis Institutes for BioMedical Research Global Discovery Chemistry 4056 Basel Schweiz
| | - Jeffrey C. Moore
- Process Research and Development Merck & Co., Inc. 126 E. Lincoln Ave Rahway NJ 07065 USA
| | - Kai Baldenius
- Baldenius Biotech Consulting Hafenstraße 31 68159 Mannheim Deutschland
| | - Uwe T. Bornscheuer
- Institut für Biochemie Abt. Biotechnologie & Enzymkatalyse Universität Greifswald Felix-Hausdorff-Straße 4 17487 Greifswald Deutschland
| |
Collapse
|
45
|
Yuan B, Mahor D, Fei Q, Wever R, Alcalde M, Zhang W, Hollmann F. Water-Soluble Anthraquinone Photocatalysts Enable Methanol-Driven Enzymatic Halogenation and Hydroxylation Reactions. ACS Catal 2020; 10:8277-8284. [PMID: 32802571 PMCID: PMC7418218 DOI: 10.1021/acscatal.0c01958] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 06/30/2020] [Indexed: 02/06/2023]
Abstract
![]()
Peroxyzymes
simply use H2O2 as a cosubstrate
to oxidize a broad range of inert C–H bonds. The lability of
many peroxyzymes against H2O2 can be addressed
by a controlled supply of H2O2, ideally in situ.
Here, we report a simple, robust, and water-soluble anthraquinone
sulfonate (SAS) as a promising organophotocatalyst to drive both haloperoxidase-catalyzed
halogenation and peroxygenase-catalyzed oxyfunctionalization reactions.
Simple alcohols, methanol in particular, can be used both as a cosolvent
and an electron donor for H2O2 generation. Very
promising turnover numbers for the biocatalysts of up to 318 000
have been achieved.
Collapse
Affiliation(s)
- Bo Yuan
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Durga Mahor
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Qiang Fei
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Ron Wever
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Wuyuan Zhang
- School of Chemical Engineering and Technology, Xi’an Jiaotong University, Xi’an 710049, China
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629HZ Delft, The Netherlands
| |
Collapse
|
46
|
Crole DA, Underhill R, Edwards JK, Shaw G, Freakley SJ, Hutchings GJ, Lewis RJ. The direct synthesis of hydrogen peroxide from H 2 and O 2 using Pd-Ni/TiO 2 catalysts. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20200062. [PMID: 32623987 PMCID: PMC7422896 DOI: 10.1098/rsta.2020.0062] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The direct synthesis of hydrogen peroxide (H2O2) from molecular H2 and O2 offers an attractive, decentralized alternative to production compared to the current means of production, the anthraquinone process. Herein we evaluate the performance of a 0.5%Pd-4.5%Ni/TiO2 catalyst in batch and flow reactor systems using water as a solvent at ambient temperature. These reaction conditions are considered challenging for the synthesis of high H2O2 concentrations, with the use of sub-ambient temperatures and alcohol co-solvents typical. Catalytic activity was observed to be stable to prolonged use in multiple batch experiments or in a flow system, with selectivities towards H2O2 of 97% and 85%, respectively. This study was carried out in the absence of halide or acid additives that are typically used to inhibit sequential H2O2 degradation reactions showing that this Pd-Ni catalyst has the potential to produce H2O2 selectively. This article is part of a discussion meeting issue 'Science to enable the circular economy'.
Collapse
Affiliation(s)
- David A. Crole
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Ricci Underhill
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Jennifer K. Edwards
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Greg Shaw
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Simon J. Freakley
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Graham J. Hutchings
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| | - Richard J. Lewis
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, UK
| |
Collapse
|
47
|
Biocatalyzed Redox Processes Employing Green Reaction Media. Molecules 2020; 25:molecules25133016. [PMID: 32630322 PMCID: PMC7411633 DOI: 10.3390/molecules25133016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 01/25/2023] Open
Abstract
The application of biocatalysts to perform reductive/oxidative chemical processes has attracted great interest in recent years, due to their environmentally friendly conditions combined with high selectivities. In some circumstances, the aqueous buffer medium normally employed in biocatalytic procedures is not the best option to develop these processes, due to solubility and/or inhibition issues, requiring biocatalyzed redox procedures to circumvent these drawbacks, by developing novel green non-conventional media, including the use of biobased solvents, reactions conducted in neat conditions and the application of neoteric solvents such as deep eutectic solvents.
Collapse
|
48
|
Wang S, Doronkin DE, Hähsler M, Huang X, Wang D, Grunwaldt J, Behrens S. Palladium-Based Bimetallic Nanocrystal Catalysts for the Direct Synthesis of Hydrogen Peroxide. CHEMSUSCHEM 2020; 13:3243-3251. [PMID: 32233108 PMCID: PMC7318153 DOI: 10.1002/cssc.202000407] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/27/2020] [Indexed: 05/20/2023]
Abstract
The direct synthesis of H2 O2 from H2 and O2 is a strongly desired reaction for green processes and a promising alternative to the commercialized anthraquinone process. The design of efficient catalysts with high activity and H2 O2 selectivity is highly desirable and yet challenging. Metal dopants enhance the performance of the active phase by increasing reaction rates, stability, and/or selectivity. The identification of efficient dopants relies mostly on catalysts prepared with a random and non-uniform deposition of active and promoter phases. To study the promotional effects of metal doping on Pd catalysts, we employ colloidal, bimetallic nanocrystals (NCs) to produce catalysts in which the active and doping metals are colocalized to a fine extent. In the absence of any acid and halide promotors, PdSn and PdGa NCs supported on acid-pretreated TiO2 (PdSn/s-TiO2 , PdGa/s-TiO2 ) were highly efficient and outperformed the monometallic Pd catalyst (Pd/s-TiO2 ), whereas in the presence of an acid promotor, the overall H2 O2 productivity was also further enhanced for the Ni-, Ga-, In-, and Sn-doped catalysts with respect to Pd/s-TiO2 .
Collapse
Affiliation(s)
- Sheng Wang
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Dmitry E. Doronkin
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstr. 2076131KarlsruheGermany
| | - Martin Hähsler
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| | - Xiaohui Huang
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Di Wang
- Institute of NanotechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Karlsruhe Nano Micro FacilityKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
| | - Jan‐Dierk Grunwaldt
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute for Chemical Technology and Polymer ChemistryKarlsruhe Institute of TechnologyEngesserstr. 2076131KarlsruheGermany
| | - Silke Behrens
- Institute of Catalysis Research and TechnologyKarlsruhe Institute of TechnologyHermann-von-Helmholtz-Platz 176344Eggenstein-LeopoldshafenGermany
- Institute of Inorganic ChemistryRuprecht-Karls University HeidelbergIm Neuenheimer Feld 27069120HeidelbergGermany
| |
Collapse
|
49
|
Willot SJ, Hoang MD, Paul CE, Alcalde M, Arends IWCE, Bommarius AS, Bommarius B, Hollmann F. FOx News: Towards Methanol‐driven Biocatalytic Oxyfunctionalisation Reactions. ChemCatChem 2020. [DOI: 10.1002/cctc.202000197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sébastien J.‐P. Willot
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Manh Dat Hoang
- Institute of Biochemical Engineering Technical University of Munich Boltzmannstr. 15 85748 Garching Germany
| | - Caroline E. Paul
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis Institute of Catalysis, CSIC Madrid Spain
| | | | - Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Bettina Bommarius
- School of Chemical and Biomolecular Engineering Georgia Institute of Technology 950 Atlantic Drive, N.W. Atlanta GA 30332 USA
| | - Frank Hollmann
- Department of Biotechnology Delft University of Technology van der Maasweg 9 2629 HZ Delft (The Netherlands
| |
Collapse
|
50
|
Yoon J, Kim J, Tieves F, Zhang W, Alcalde M, Hollmann F, Park CB. Piezobiocatalysis: Ultrasound-Driven Enzymatic Oxyfunctionalization of C–H Bonds. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00188] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jaeho Yoon
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Jinhyun Kim
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| | - Florian Tieves
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Wuyuan Zhang
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, 28049 Madrid, Spain
| | - Frank Hollmann
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, Delft 2629 HZ, The Netherlands
| | - Chan Beum Park
- Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon 305-701, Republic of Korea
| |
Collapse
|