1
|
Su X, Wang HR, Zhang Y, Hong HL, Sun XH, Wang L, Song JL, Yang MP, Yang XY, Han YP, Qiu LJ. Loss of phytochromobilin synthase activity leads to larger seeds with higher protein content in soybean. BMC PLANT BIOLOGY 2025; 25:714. [PMID: 40437357 PMCID: PMC12117861 DOI: 10.1186/s12870-025-06298-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 06/01/2025]
Abstract
Seed weight is an important agronomic trait that is related to seed size and determines yield in soybean (Glycine max). We previously identified a spontaneous soybean mutant with light green leaves called ygl2. Here, we cloned YGL2, which encodes a phytochromobilin (PΦB) synthase involved in synthesizing the chromophore of the photoreceptor phytochrome. The lesion in ygl2 is a 10-bp deletion, causing a frameshift mutation and a premature stop codon that truncates the encoded protein. In contrast to the wild type, ygl2 lacks PΦB synthase activity and function. This appears to promote cell expansion, thus increasing seed weight. Surprisingly, the ygl2 mutant also exhibits excellent traits including early maturity and high protein content. Moreover, under the condition of dense planting (3 cm), the yield of YGL2 mutant was significantly increased. Mutants harboring ygl2 mutations that we generated via gene editing had enlarged seeds with high protein content. Moreover, the expression levels of the photoperiod sensitive genes (E1, FT2a, FT5a) were lower in the ygl2 mutant than in the wild type. Mutating the YGL2 gene resulted in increased biliverdin content and decreased heme content. We determined that Lhcb4, a chlorophyll a/b binding protein in photosystem II, interacts with YGL2 but not with the mutant version of the protein. We thus identified a mutation in a PΦB synthase gene that enhances seed weight in soybean, providing a promising breeding target for this important crop.
Collapse
Affiliation(s)
- Xin Su
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, 150030, China
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Hao-Rang Wang
- Jiangsu Xuhuai Regional Institute of Agricultural Sciences, Xuzhou, 221131, China
| | - Yong Zhang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Hui-Long Hong
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Xu-Hong Sun
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Lei Wang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Ji-Ling Song
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Meng-Ping Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Xing-Yong Yang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, 161606, China
| | - Ying-Peng Han
- Key Laboratory of Soybean Biology in Chinese Ministry of Education (Northeastern Key Laboratory of Soybean Biology and Genetics and Breeding in Chinese Ministry of Agriculture), Northeast Agricultural University, Harbin, 150030, China.
| | - Li-Juan Qiu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| |
Collapse
|
2
|
Jia H, Guan Z, Ding J, Wang X, Tian D, Zhu Y, Zhang D, Liu Z, Ma L, Yin P. Structural insight into PIF6-mediated red light signal transduction of plant phytochrome B. Cell Discov 2025; 11:51. [PMID: 40404641 PMCID: PMC12098889 DOI: 10.1038/s41421-025-00802-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 04/27/2025] [Indexed: 05/24/2025] Open
Abstract
The red/far-red light receptor phytochrome B (phyB) plays essential roles in regulating various plant development processes. PhyB exists in two distinct photoreversible forms: the inactive Pr form and the active Pfr form. phyB-Pfr binds phytochrome-interacting factors (PIFs) to transduce red light signals. Here, we determined the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB-Pfr‒PIF6 complex, the constitutively active mutant phyBY276H‒PIF6 complex, and the truncated phyBNY276H‒PIF6 complex. In these structures, two parallel phyB-Pfr molecules interact with one PIF6 molecule. Red light-triggered rotation of the PΦB D-ring leads to the conversion of hairpin loops into α helices and the "head-to-head" reassembly of phyB-Pfr N-terminal photosensory modules. The interaction between phyB-Pfr and PIF6 influences the dimerization and transcriptional activation activity of PIF6, and PIF6 stabilizes the N-terminal extension of phyB-Pfr and increases the Pr→Pfr photoconversion efficiency of phyB. Our findings reveal the molecular mechanisms underlying Pr→Pfr photoconversion and PIF6-mediated red light signal transduction of phyB.
Collapse
Affiliation(s)
- Hanli Jia
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Junya Ding
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Xiaoyu Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Dingfang Tian
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Yan Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Zhu Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China
| | - Ling Ma
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| | - Ping Yin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, Hubei, China.
| |
Collapse
|
3
|
Modak A, Singh S, Singhal C, Upadhyaya G, Chakrabarty J, Gangappa SN. The E3 ubiquitin ligases RING DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 control seedling photomorphogenesis in Arabidopsis. THE NEW PHYTOLOGIST 2025. [PMID: 40396444 DOI: 10.1111/nph.70169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/01/2025] [Indexed: 05/22/2025]
Abstract
The CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1)-ELONGATED HYPOCOTYL5 (HY5) circuit controls plant seedling photomorphogenesis. Regulation of HY5 protein levels is key for optimal photomorphogenic growth. This study identified the E3 ubiquitin ligases Really Interesting New Gene (RING) DOMAIN OF UNKNOWN FUNCTION 1117 1 (RDUF1) and RDUF2 as novel components of the COP1-HY5 pathway in Arabidopsis. The RDUF1 and RDUF2 knockout mutants exhibited longer hypocotyls with reduced photopigment accumulation than the wild-type. In comparison, the overexpression transgenic lines showed shorter hypocotyls with enhanced photomorphogenic responses in a wavelength-independent manner. HY5 directly binds to the RDUF1 and RDUF2 promoters through the G-box, activating their expression in response to light. Epistatic analysis and biochemical data showed that RDUF1 and RDUF2 genetically interact with and stabilize the HY5 protein, plausibly engaging the N77 part of HY5 and preventing COP1-mediated ubiquitination and degradation. In the dark, COP1 physically interacted with and ubiquitinated RDUF1 and RDUF2, subjecting them to degradation to keep HY5 levels low and promote skotomorphogenesis. However, light-mediated inhibition of COP1 activity mediated by photoreceptors increased RDUF1 and RDUF2 accumulation, enhancing HY5 protein stability and photomorphogenesis. This study establishes COP1-RDUF1/RDUF2-HY5 as a regulatory module of seedling photomorphogenesis under dynamic light cues.
Collapse
Affiliation(s)
- Annayasa Modak
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Shivani Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Chirag Singhal
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Jinia Chakrabarty
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| |
Collapse
|
4
|
Tao R, Trivedi I, Trimborn L, Ponnu J, Tóth BV, Hoecker U. TCP3 is a substrate of the COP1/SPA ubiquitin ligase to regulate anthocyanin accumulation and flowering time in Arabidopsis. Proc Natl Acad Sci U S A 2025; 122:e2426423122. [PMID: 40359052 DOI: 10.1073/pnas.2426423122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 03/20/2025] [Indexed: 05/15/2025] Open
Abstract
COP1 is a conserved ubiquitin ligase found in plants and animals. In plants, COP1 acts together with SPA proteins to suppress light signaling in darkness by promoting the degradation of transcription factors involved in photomorphogenesis. Substrates of this ubiquitin ligase share a Valine-Proline (VP) motif that interacts with the WD-repeat domain of COP1 in plants and humans. Here, we have identified the transcription factor TCP3 as a noncanonical substrate of COP1/SPA that lacks a VP motif. The TCP domain of TCP3 directly interacts with the WD-repeat domains of COP1 and SPA1. TCP3 requires the VP-binding cleft of COP1 for protein-protein interaction. We further show that the TCP3 protein is degraded in darkness and preferentially in short day through a COP1-dependent manner, while TCP3 is stabilized by red, far-red, blue light, and long day conditions. COP1/SPA-mediated degradation of TCP3 inhibits anthocyanin accumulation by reducing the expression of anthocyanin biosynthesis genes. COP1/SPA-mediated degradation of TCP3 is also important in regulating flowering time. Taken together, our results have identified a noncanonical substrate of the COP1/SPA ubiquitin ligase, thereby also uncovering TCPs as a transcription factor family that is targeted by COP1/SPA. Since the COP1/SPA-interacting TCP domain is conserved among TCPs, it is possible that other members of the TCP family-having divergent functions including cell fate determination and hormone signaling-are targets of COP1/SPA as well.
Collapse
Affiliation(s)
- Ruiyan Tao
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| | - Ira Trivedi
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| | - Laura Trimborn
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| | - Jathish Ponnu
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| | - Blanka Violetta Tóth
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| | - Ute Hoecker
- Institute for Plant Sciences and Cluster of Excellence on Plant Sciences (CEPLAS), Department of Biology, Biocenter, University of Cologne, Cologne 50674, Germany
| |
Collapse
|
5
|
Kong Y, Zheng Y. Complex Signaling Networks Underlying Blue-Light-Mediated Floral Transition in Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1533. [PMID: 40431098 PMCID: PMC12115001 DOI: 10.3390/plants14101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2025] [Revised: 05/13/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025]
Abstract
Blue light (BL) is important in regulating floral transition. In a controlled environment production system, BL can be manipulated easily and precisely in aspects like peak wavelength, intensity, duration, and co-action with other wavelengths. However, the results of previous studies about BL-mediated floral transition are inconsistent, which implies that an in-depth critical examination of the relevant physiological mechanisms is necessary. This review consolidates the recent findings on the role of BL in mediating floral transition not only in model plants, such as Arabidopsis thaliana, but also in crops, especially horticultural crops. The photoreceptors, floral integrator proteins, signal pathways, and key network components involved in BL-mediated floral transition are critically reviewed. This review provides possible explanations for the contrasting results of previous studies on BL-mediated flowering; it provides valuable information to explain and develop BL manipulation strategies for mediating flowering, especially in horticultural plants. The review also identifies the knowledge gaps and outlines future directions for research in related fields.
Collapse
Affiliation(s)
| | - Youbin Zheng
- School of Environmental Science, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
6
|
Kunta S, Dahan Y, Torgeman S, Chory J, Burko Y. Species-specific PHYTOCHROME-INTERACTING FACTOR utilization in the plant morphogenetic response to environmental stimuli. THE PLANT CELL 2025; 37:koaf048. [PMID: 40085779 PMCID: PMC12070396 DOI: 10.1093/plcell/koaf048] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 03/12/2025] [Indexed: 03/16/2025]
Abstract
PHYTOCHROME-INTERACTING FACTORs (PIFs) regulate growth-related gene expression in response to environmental conditions. Among their diverse functions in regulating signal responses, PIFs play an important role in thermomorphogenesis (the response to increased ambient temperature) and in the shade avoidance response. While numerous studies have examined the varied roles of PIFs in Arabidopsis (Arabidopsis thaliana), their roles in crop plants remain poorly investigated. This study delves into the conservation of PIFs activity among species by examining their functions in tomato (Solanum lycopersicum) and comparing them to known PIF functions in Arabidopsis using single and higher-order mutants of tomato PIF genes (SlPIFs). We demonstrate that, in contrast to Arabidopsis, PIFs are not required for thermomorphogenesis-induced stem elongation in tomato. In addition, whereas Arabidopsis PIF8 has a minor effect on plant growth, tomato SlPIF8a plays a key role in the low red/far-red (R/FR) response. In contrast, SlPIF4 and SlPIF7s play minor roles in this process. We also investigated the tissue-specific low R/FR response in tomato seedlings and demonstrate that the aboveground organs exhibit a conserved response to low R/FR, which is regulated by SlPIFs. Our findings provide insights into PIF-mediated responses in crop plants, which may guide future breeding strategies to enhance yield under high planting densities.
Collapse
Affiliation(s)
- Srinivas Kunta
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Yardena Dahan
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Shai Torgeman
- Institute of Plant Science and Genetics in Agriculture, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot 76100, Israel
| | - Joanne Chory
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Plant Biology Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Yogev Burko
- The Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| |
Collapse
|
7
|
Chiso K, Yamashino T, Suzuki R, Gans T, Trogu S, Hughes J, Aoki S. Light responses during early day phases of CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) and PSEUDO-RESPONSE REGULATOR (PRR) homologous genes in the moss Physcomitrium patens. Photochem Photobiol 2025; 101:762-770. [PMID: 39727145 DOI: 10.1111/php.14047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 12/28/2024]
Abstract
Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light. Here we studied light responses of CCA1a/CCA1b and PRR2, homologous genes to CCA1/LHY and PRR9, respectively, in the moss Physcomitrium patens. We found that light of different wavelengths induced PRR2 while they repressed CCA1a/CCA1b. A disruption strain lacking all phytochrome genes lost PRR2 induction, but still maintained CCA1a/CCA1b repression. The remaining light repression of CCA1a/CCA1b was impaired by the photosynthesis inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea. Probably therefore, a phytochrome signaling induces PRR2, whereas a photosynthesis-mediated signaling represses CCA1a/CCA1b. Conservation and divergence in the clock gene responses between P. patens and A. thaliana are discussed.
Collapse
Affiliation(s)
- Katsuhiro Chiso
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | | | - Ryo Suzuki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| | - Tanja Gans
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Silvia Trogu
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Jon Hughes
- Institute for Plant Physiology, Justus Liebig University, Giessen, Germany
| | - Setsuyuki Aoki
- Graduate School of Informatics, Nagoya University, Nagoya, Japan
| |
Collapse
|
8
|
Cho S, Choi G. Phytochrome B regulates cortical microtubule arrangement to control cotyledon polar expansion by repressing LONGIFOLIAs. PLANT PHYSIOLOGY 2025; 198:kiaf162. [PMID: 40272438 DOI: 10.1093/plphys/kiaf162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/25/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Light promotes the expansion and controls the directionality of expansion in cotyledons, transforming small oval cotyledons into larger orbicular shapes. However, the cellular basis underlying this polar expansion remains unclear. We report that cotyledon polar expansion in Arabidopsis (Arabidopsis thaliana) is primarily associated with the polar expansion of pavement cells, rather than with polar cell proliferation. Phytochrome B (phyB) promotes this polar expansion by inhibiting PHYTOCHROME INTERACTING FACTORs (PIFs), which normally suppress expansion and inversely regulate its directionality. PIFs exert their control over directionality partly through the activation of their target genes, LONGIFOLIAs (LNGs). At the cellular level, phyB decreases the number of transversely arranged cortical microtubules, while increasing the number of longitudinally arranged microtubules. This phyB-induced change in microtubule arrangement would strengthen transverse expansion while weakening longitudinal expansion. In contrast, PIFs regulate microtubule arrangements in the opposite manner. Downstream of the phyB-PIF pathway, LNGs preferentially increase transversely arranged cortical microtubules. Overall, our data support that the regulation of cortical microtubule orientation by the phyB-PIF-LNG pathway underlies how phyB weakens longitudinal expansion relative to transverse expansion while promoting pavement cell expansion to make orbicular cotyledons in the light.
Collapse
Affiliation(s)
- Sangwon Cho
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| |
Collapse
|
9
|
Jeong J, Lee Y, Choi G. Both phytochrome A and phyB interact with PHYTOCHROME-INTERACTING FACTORs through an evolutionary conserved phy OPM-APA interaction. Nat Commun 2025; 16:3946. [PMID: 40287465 PMCID: PMC12033333 DOI: 10.1038/s41467-025-59327-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Phytochrome A (phyA) and phyB are red and far-red photoreceptors that interact with PHYTOCHROME-INTERACTING FACTORs (PIFs) via active phyA-binding (APA) or active phyB-binding (APB) motifs. While APB interacts with the N-terminal photosensory module of phyB (phyBPSM), it remains unclear whether APA interacts with phyAPSM. We report that both phyA and phyB interact with APA through C-terminal output module of phy (phyOPM), while phyB interacts additionally with APB through phyBPSM. Marchantia Mp-phy also interacts with PIFs via the phyOPM-APA interaction. The phyBOPM-APA interaction promotes PIF3 degradation but not mutual phyB destruction. The full-length phy-APA interaction is light-dependent, whereas the underlying phyOPM-APA interaction is not. We show that the Pr form, not the Pfr, of phyPSM competes with APA for phyOPM binding, explaining how the light-dependent phy-APA interaction arises from the light-independent phyOPM-APA interaction. Together, our results suggest that the phyOPM-APA interaction is an ancient feature conserved in both Arabidopsis phyA, phyB and Marchantia Mp-phy.
Collapse
Affiliation(s)
- Jaehoon Jeong
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Yongju Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
10
|
Pougy KC, Brito BA, Melo GS, Pinheiro AS. Phase separation as a key mechanism in plant development, environmental adaptation, and abiotic stress response. J Biol Chem 2025:108548. [PMID: 40286852 DOI: 10.1016/j.jbc.2025.108548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/14/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025] Open
Abstract
Liquid-liquid phase separation is a fundamental biophysical process in which biopolymers, such as proteins, nucleic acids, and their complexes, spontaneously demix into distinct coexisting phases. This phenomenon drives the formation of membraneless organelles-cellular subcompartments without a lipid bilayer that perform specialized functions. In plants, phase-separated biomolecular condensates play pivotal roles in regulating gene expression, from genome organization to transcriptional and post-transcriptional processes. In addition, phase separation governs plant-specific traits, such as flowering and photosynthesis. As sessile organisms, plants have evolved to leverage phase separation for rapid sensing and response to environmental fluctuations and stress conditions. Recent studies highlight the critical role of phase separation in plant adaptation, particularly in response to abiotic stress. This review compiles the latest research on biomolecular condensates in plant biology, providing examples of their diverse functions in development, environmental adaptation, and stress responses. We propose that phase separation represents a conserved and dynamic mechanism enabling plants to adapt efficiently to ever-changing environmental conditions. Deciphering the molecular mechanisms underlying phase separation in plant stress responses opens new avenues for biotechnological strategies aimed at engineering stress-resistant crops. These advancements have significant implications for agriculture, particularly in addressing crop productivity in the face of climate change.
Collapse
Affiliation(s)
- Karina C Pougy
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil.
| | - Bruna A Brito
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Giovanna S Melo
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| | - Anderson S Pinheiro
- Department of Biochemistry, Institute of Chemistry, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, 21941 909, Brazil
| |
Collapse
|
11
|
Sineshchekov V, Koppel L. Phytochrome A in etiolated wild-type and albino barley seedlings: a far-red pulse induces interconversion between the two physicochemically and functionally distinct phyA types - phyA' into phyA″. FUNCTIONAL PLANT BIOLOGY : FPB 2025; 52:FP25012. [PMID: 40300039 DOI: 10.1071/fp25012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/07/2025] [Indexed: 05/01/2025]
Abstract
The phytochrome (phy) photoreceptors, comprising a small family of species, regulate plant development, being most active under red (R) and far-red (FR) light. One of the major phytochromes, phyA, is unique among the others: it mediates distinct photoreactions - the very low fluence responses (VLFR), the high irradiance responses (HIR), and the low fluence responses (LFR) characteristic of phyB. This functional diversity is likely to be connected with its heterogeneity: there are two native pools, possibly differing by serine phosphorylation at the N-terminus - phyA' mediating the VLFR and phyA″ responsible for the HIR and LFR. In this work, we investigated their nature by in vivo spectrofluorimetry, turning to the chlorophyll-less albino barley mutant. It was characterized both by the higher total phyA content and the proportion of phyA' in etiolated coleoptile tips. The lack of protochlorophyllide (PChlide) allowed characterization of phyA pools in primary leaves (of the mutant) - the phyA'/phyA″ proportion was the same as in the coleoptiles, whereas their content was substantially lower. phyA' in the mutant coleoptiles revealed less lability under light as compared with the wild type, suggesting that the mutation may affect the phyA's proteolytic system. A specific effect of FR light on phyA in coleoptiles was observed - a relatively fast (tens of minutes) conversion of phyA' into phyA″ that may be part of the complex process of plant light adaptation.
Collapse
Affiliation(s)
- V Sineshchekov
- Biochemistry Chair, Biology Department, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| | - L Koppel
- Biochemistry Chair, Biology Department, M.V. Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
12
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
13
|
Yan Y, Zhu J, Qiu Q, Li J, Cao X, Deng X. The Arabidopsis demethylase REF6 physically interacts with phyB to promote hypocotyl elongation under red light. Proc Natl Acad Sci U S A 2025; 122:e2417253122. [PMID: 40063793 PMCID: PMC11929476 DOI: 10.1073/pnas.2417253122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/22/2025] [Indexed: 03/25/2025] Open
Abstract
The plant photoreceptor phytochrome B (phyB) mediates the responses of plants to red (R) light. Trimethylation of histone H3 at Lys27 (H3K27me3) plays a crucial role in governing gene expression and controlling the response of plants to environmental changes. However, how dynamic H3K27me3 mediates plant response to R light is poorly understood. Here, we report that RELATIVE OF EARLY FLOWERING 6 (REF6), an H3K27me3 demethylase, promotes hypocotyl elongation under R light in Arabidopsis. Upon exposure to R light, REF6 preferentially interacts with the active Pfr form of phyB. Consequently, phyB enhances REF6 accumulation and its binding ability, which are necessary for inducing cell-elongation-related genes from open chromatin, ensuring normal plant growth under prolonged light exposure. Moreover, REF6 acts together with the phyB-PIF4 module to mediate light regulation of hypocotyl growth. These findings provide insights into the understanding of how phytochromes, epigenetic factors, and transcription factors coordinately control plant growth in response to changing light environment.
Collapse
Affiliation(s)
- Yan Yan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jiaping Zhu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Qi Qiu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing100193, China
| | - Xiaofeng Cao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing100049, China
| | - Xian Deng
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| |
Collapse
|
14
|
Banisharif A, Amooaghaie R. Seed laser priming enhances defensive responses in milk thistle under Pb toxicity. Sci Rep 2025; 15:7803. [PMID: 40050639 PMCID: PMC11885596 DOI: 10.1038/s41598-025-92414-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Accepted: 02/27/2025] [Indexed: 03/09/2025] Open
Abstract
Heavy metal stress negatively affects the growth of medicinal plants. While the effects of Helium-Neon (He-Ne) laser on seed germination and stress tolerance in plants has garnered significant attention, little is known concerning the impacts of He-Ne laser irradiation on heavy metal tolerance in plants. Therefore, the current study was conducted to appraise the effect of different durations (0, 20, and 40 min) of seed priming with He-Ne laser (10 mW mm-2) on the antioxidant system of Silybum marianum L. plants under various Pb concentrations (0, 250, and 500 ppm). Lead phytotoxicity was evident by significant reductions in fresh and dry weights of shoots and roots, total chlorophyll (TChl) content and relative water content (RWC), as well as increases in H2O2 and malondialdehyde contents in roots and leaves. Seed irradiation with He-Ne laser for 20 min significantly improved these parameters, enhancing Pb tolerance. Conversely, the prolonged laser priming (40 min) resulted in less favorable outcomes, including reduced growth, TChl content, and RWC, while also exacerbating oxidative damage to membranes even under non-stressful conditions. The 20-min laser priming systemically mitigated Pb-induced lipid peroxidation and H2O2 accumulation by boosting the activities of superoxide dismutase and catalase and increasing proline content in leaves and roots of milk thistle plants. These findings and multivariate analysis suggest that optimal dose of laser initiates a "stress memory" in seeds which is activated upon subsequent exposure to Pb stress, boosting the plant defensive mechanisms and enabling the plant to better cope with oxidative damage. This study underscore the promising potential of He-Ne laser priming as a novel strategy for increasing heavy metal tolerance in medicinal plants like milk thistle, offering an eco-friendly technique for maintaining their productivity under heavy metal stress.
Collapse
Affiliation(s)
- Atefeh Banisharif
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran
- Department of Biology, Faculty of Basic Sciences, Shahed University, Tehran, Iran
| | - Rayhaneh Amooaghaie
- Plant Science Department, Faculty of Science, Shahrekord University, Shahrekord, Iran.
- Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran.
| |
Collapse
|
15
|
Li H, Haider AA, Xie Z, Liu C, Zhang H, Jiang H, Li J, Zhu J. Synergetic Contributions of High Quenching Concentration and Tuned Square Antiprism Geometry Boosting Far-Red Emission of Eu 3+ with Near-Unit Efficiency. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415989. [PMID: 39792630 PMCID: PMC11884608 DOI: 10.1002/advs.202415989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Far-red phosphors have emerged as a desirable research hotspot owing to their critical role in promoting plant growth. Especially, Eu3+ ions typically present the 5D0→7FJ (J = 0, 1, 2, 3, 4) transitions, which overlap with the far-red light required for plant photosynthesis. However, achieving high-efficiency far-red emission of Eu3+ remains challenging due to weak 5D0→7F4 transition and concentration quenching. The study constructs two anomalously efficient far-red garnet phosphors A3Sc2C3O12 (A = Y3+, Gd3+. C = Al3+, Ga3+):Eu3+. A high-resolution STEM measurement equipped with an aberration corrector provides the direct proofs for both the [EuO8] configuration-dependent strong 5D0→7F4 and the origin of high quenching concentration. Excitedly, a two-component substitution (replacing Y3+-Al3+ with Gd3+-Ga3+) triggers a near-unity internal quantum efficiency (IQE = 99.01%) and high external quantum efficiency (EQE = 38.73%) in Gd3Sc2Ga3O12:60%Eu3+, resulting from the effective modulation of 5D0→7F4/7F2 transitions. A far-red LEDs device based on Gd3Sc2Ga3O12:60%Eu3+ exhibits an output power of 113 mW at 300 mA. Subsequently, practical applications for promoting plant growth underscore the significance of these findings. This work opens a new path for the development of highly efficient far-red phosphors via the synergistic effect of Eu3+ square antiprism configuration and high quenching concentration.
Collapse
Affiliation(s)
- Hong Li
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Asif Ali Haider
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Zhi Xie
- College of Mechanical and Electrical EngineeringFujian Agriculture and Forestry University FuzhouFuzhou350002China
| | - Conglin Liu
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Hongzhi Zhang
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Hongming Jiang
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Junpeng Li
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| | - Jing Zhu
- Yunnan Key Laboratory of Electromagnetic Materials and DevicesNational Center for International Research on Photoelectric and Energy MaterialsSchool of Materials and EnergyYunnan UniversityKunming650091China
| |
Collapse
|
16
|
Kamo T, Matsushita T, Hamada M, Fujisawa T, Eki T, Unno M, Hirose Y. Probing Bilin-Protein Interaction in the Protochromic Photocycle of Cyanobacteriochrome RcaE by Site-Directed Mutagenesis. PLANT & CELL PHYSIOLOGY 2025; 66:181-192. [PMID: 39092561 DOI: 10.1093/pcp/pcae085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/09/2024] [Accepted: 08/01/2024] [Indexed: 08/04/2024]
Abstract
Cyanobacteriochromes (CBCRs) are members of the phytochrome superfamily of photosensor proteins that bind a bilin chromophore. CBCRs exhibit substantial diversity in their absorption wavelengths through a variety of bilin-protein interactions. RcaE is the first discovered CBCR as a regulator of chromatic acclimation, where cyanobacteria optimize the absorption wavelength of their photosynthetic antenna. RcaE undergoes a reversible photoconversion between green-absorbing (Pg) and red-absorbing (Pr) states, where the bilin chromophore adopts a deprotonated C15-Z,anti and a protonated C15-E,syn structures, respectively. This photocycle is designated as the 'protochromic photocycle' as the change in the bilin protonation state is responsible for the large absorption shift. With the guidance of recently determined Pg and Pr structures of RcaE, in this study, we investigated bilin-protein interaction by site-directed mutagenesis on three key residues referred to as a protochromic triad and also other conserved residues interacting with the bilin. Among the protochromic triad residues, Glu217 and Lys261 are critical for the formation of the Pr state, while Leu249 is critical for the formation of both Pg and Pr states. Substitution in other conserved residues, including Val218, Phe219 and Pro220 in the wind-up helix and Phe252, Phe214 and Leu209 in a part of the bilin-binding pocket, had less substantial effects on the spectral sensitivity in RcaE. These data provide insights into our understanding of the bilin-protein interaction in the protochromic photocycle and also its evolution in the CBCRs.
Collapse
Affiliation(s)
- Takanari Kamo
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Takaaki Matsushita
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Masako Hamada
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjocho, Saga 840-8502, Japan
| | - Toshihiko Eki
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, 1 Honjocho, Saga 840-8502, Japan
| | - Yuu Hirose
- Department of Applied Chemistry and Life Science, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
| |
Collapse
|
17
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
18
|
Dutta S, Chattopadhyay S, Maurya JP. The concerted function of a novel class of transcription factors, ZBFs, in light, jasmonate, and abscisic acid signaling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:746-768. [PMID: 39115948 DOI: 10.1093/jxb/erae323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/07/2024] [Indexed: 08/10/2024]
Abstract
Several classes of transcription factors have been investigated in light signaling pathways that bind to the light-responsive elements (LREs) present in the promoters of light regulatory genes for transcriptional regulation. Some of these transcription factors have been shown to bind to numerous promoters through genome-wide ChIP-on-chip (ChIP-chip) studies. Furthermore, through the integration of ChIP-seq and RNA-seq techniques, it has been demonstrated that a transcription factor modifies the expression of numerous genes with which it interacts. However, the mode of action of these transcription factors and their dependency on other regulators in the pathway has just started to be unraveled. In this review, we focus on a particular class of transcription factors, ZBFs (Z-box-binding factors), and their associated partners within the same or other classes of transcription factors and regulatory proteins during photomorphogenesis. Moreover, we have further made an attempt to summarize the crosstalk of these transcription factors with jasmonic acid-, abscisic acid-, and salicylic acid-mediated defense signaling pathways. This review offers an in-depth insight into the manner in which ZBFs and their interactors reshape cellular functions and plant behavior. The underlying principles not only contribute to a comprehensive understanding but also establish a framework for analyzing the interplay between early developmental events and hormone signaling, a regulation orchestrated by the ZBF family.
Collapse
Affiliation(s)
- Siddhartha Dutta
- Department of Biotechnology, School of Health Science and Translational Research, Sister Nivedita University, Kolkata 700156, West Bengal, India
| | - Sudip Chattopadhyay
- Department of Biotechnology, National Institute of Technology, Mahatma Gandhi Avenue, Durgapur, West Bengal 713209, India
| | - Jay Prakash Maurya
- Plant Development and Molecular Biology Lab, Department of Botany, Institute of Science, Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
19
|
Cai X, Huq E. Shining light on plant growth: recent insights into phytochrome-interacting factors. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:646-663. [PMID: 38877836 DOI: 10.1093/jxb/erae276] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/14/2024] [Indexed: 06/16/2024]
Abstract
Light serves as a pivotal environmental cue regulating various aspects of plant growth and development, including seed germination, seedling de-etiolation, and shade avoidance. Within this regulatory framework, the basic helix-loop-helix transcription factors known as phytochrome-interacting factors (PIFs) play an essential role in orchestrating responses to light stimuli. Phytochromes, acting as red/far-red light receptors, initiate a cascade of events leading to the degradation of PIFs (except PIF7), thereby triggering transcriptional reprogramming to facilitate photomorphogenesis. Recent research has unveiled multiple post-translational modifications that regulate the abundance and/or activity of PIFs, including phosphorylation, dephosphorylation, ubiquitination, deubiquitination, and SUMOylation. Moreover, intriguing findings indicate that PIFs can influence chromatin modifications. These include modulation of histone 3 lysine 9 acetylation (H3K9ac), as well as occupancy of histone variants such as H2A.Z (associated with gene repression) and H3.3 (associated with gene activation), thereby intricately regulating downstream gene expression in response to environmental cues. This review summarizes recent advances in understanding the role of PIFs in regulating various signaling pathways, with a major focus on photomorphogenesis.
Collapse
Affiliation(s)
- Xingbo Cai
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Enamul Huq
- Department of Molecular Biosciences and The Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
20
|
Gautrat P, Matton SEA, Oskam L, Shetty SS, van der Velde KJ, Pierik R. Lights, location, action: shade avoidance signalling over spatial scales. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:695-711. [PMID: 38767295 PMCID: PMC11805592 DOI: 10.1093/jxb/erae217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/18/2024] [Indexed: 05/22/2024]
Abstract
Plants growing in dense vegetation need to flexibly position their photosynthetic organs to ensure optimal light capture in a competitive environment. They do so through a suite of developmental responses referred to as the shade avoidance syndrome. Below ground, root development is also adjusted in response to above-ground neighbour proximity. Canopies are dynamic and complex environments with heterogeneous light cues in the far-red, red, blue, and UV spectrum, which can be perceived by photoreceptors in spatially separated plant tissues. Molecular regulation of plant architecture adjustment via PHYTOCHROME-INTERACTING FACTOR transcription factors and growth-related hormones such as auxin, gibberellic acid, brassinosteroids, and abscisic acid were historically studied without much attention to spatial or tissue-specific context. Recent developments and technologies have, however, sparked strong interest in spatially explicit understanding of shade avoidance regulation. Other environmental factors such as temperature and nutrient availability interact with the molecular shade avoidance regulation network, often depending on the spatial location of the signals, and the responding organs. Here, we review recent advances in how plants respond to heterogeneous light cues and integrate these with other environmental signals.
Collapse
Affiliation(s)
- Pierre Gautrat
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Sanne E A Matton
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Lisa Oskam
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Siddhant S Shetty
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| | - Kyra J van der Velde
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
- Experimental and Computational Plant Development, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Ronald Pierik
- Laboratory of Molecular Biology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|
21
|
Malakar BC, Escudero CM, Sethi V, Upadhyaya G, Gangappa SN, Botto JF. The COP1 W467 tryptophan residue in the WD40 domain is essential for light- and temperature-mediated hypocotyl growth and flowering in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70051. [PMID: 39994971 DOI: 10.1111/tpj.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/28/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025]
Abstract
COP1 is the essential protein that integrates various environmental and hormonal cues to control plant growth and development at multiple levels. COP1 is a RING-finger-type E3 ubiquitin ligase that acts as a potent repressor of photomorphogenesis and flowering by targeting numerous substrates for ubiquitination and promoting their proteolysis via the 26S proteasome system. The WD40 repeat domain with conserved amino acid residues was shown to be essential for interacting with its targets. However, the role of these amino acids in regulating hypocotyl growth and flowering in response to varying light and temperatures remains unknown. Here, we show that tryptophan amino acid at the position 467 residue (COP1W467) is relevant in mediating the interaction with its targets to regulate the COP1-mediated proteolysis. The COP1W467 plays a critical role in inducing growth responses in shade light by interacting and degrading HY5, a crucial negative regulator of shade-avoidance response (SAR). Moreover, COP1W467 integrates warm ambient temperature signals to promote hypocotyl growth by increasing PIF4 and decreasing HY5 protein stability. Finally, we found that COP1W467 is important in inhibiting flowering under a short-day photoperiod, likely through interacting with CO for degradation. Together, this study highlights that the COP1W467 residue is essential to regulate seedling photomorphogenesis, SAR, thermomorphogenesis and flowering for the fine adjustment of plant growth and development under dynamic light and temperature conditions.
Collapse
Affiliation(s)
- Bidhan Chandra Malakar
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Cristian M Escudero
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| | - Vishmita Sethi
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Gouranga Upadhyaya
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Sreeramaiah N Gangappa
- Department of Biological Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, 741246, West Bengal, India
| | - Javier F Botto
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires (UBA), Av. San Martín 4453, Ciudad Autónoma de Buenos Aires, C1417DSE, Argentina
| |
Collapse
|
22
|
Yang Z, Kan W, Wang Z, Tang C, Cheng Y, Wang D, Gao Y, Wu L. Genome-wide identification and expression analysis of phytochrome gene family in Aikang58 wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2025; 15:1520457. [PMID: 39906238 PMCID: PMC11790602 DOI: 10.3389/fpls.2024.1520457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025]
Abstract
Phytochromes are essential photoreceptors in plants that sense red and far-red light, playing a vital role in regulating plant growth and development through light signal transduction. Despite extensive research on phytochromes in model plants like Arabidopsis and rice, they have received relatively little attention in wheat. In this study, we employed bioinformatics methods to identify eight TaAkPHY genes in the Aikang58 wheat variety. Based on gene structure, conserved domains, and phylogenetic relationships, the TaAkPHY gene family exhibits a high degree of conservation. Synteny analysis revealed the evolutionary history of the PHY genes in Aikang58 and Chinese Spring wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), maize (Zea mays L.), quinoa (Chenopodium quinoa Willd.), soybean [Glycine max (L.) Merr.], and Arabidopsis [Arabidopsis thaliana (L.) Heynh.]. Among these species, wheat is most closely related to barley, followed by rice and maize. The cis-acting element analysis indicates that the promoter regions of TaAkPHY genes contain a large number of CAT-box, CGTCA-motif, GC-motif, etc., which are mainly involved in plant development, hormone response, and stress response. Gene expression profiling demonstrated that TaAkPHY genes exhibit varying expression levels across different tissues and are induced by various stress conditions and plant hormone treatments. Co-expression network analysis suggested that TaAkPHY genes may specifically regulate downstream genes associated with stress responses, chloroplast development, and circadian rhythms. Additionally, the least absolute shrinkage and selection operator (LASSO) regression algorithm in machine learning was used to screen transcription factors such as bHLH, WRKY, and MYB that influenced the expression of TaAkPHY genes. This method helps to quickly extract key influencing factors from a large amount of complex data. Overall, these findings provide new insights into the role of phytochromes in wheat growth, development, and stress responses, laying a foundation for future research on phytochromes in wheat.
Collapse
Affiliation(s)
- Zhu Yang
- Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Wenjie Kan
- Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Ziqi Wang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Caiguo Tang
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yuan Cheng
- Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Dacheng Wang
- Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Yameng Gao
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| | - Lifang Wu
- Science Island Branch, University of Science and Technology of China, Hefei, Anhui, China
- The Center for Ion Beam Bioengineering & Green Agriculture, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, China
| |
Collapse
|
23
|
Duchêne C, Bouly JP, Pierella Karlusich JJ, Vernay E, Sellés J, Bailleul B, Bowler C, Ribera d'Alcalà M, Falciatore A, Jaubert M. Diatom phytochromes integrate the underwater light spectrum to sense depth. Nature 2025; 637:691-697. [PMID: 39695224 DOI: 10.1038/s41586-024-08301-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 10/29/2024] [Indexed: 12/20/2024]
Abstract
Aquatic life is strongly structured by the distribution of light, which, besides attenuation in intensity, exhibits a continuous change in the spectrum with depth1. The extent to which these light changes are perceived by phytoplankton through photoreceptors is still inadequately known. We addressed this issue by integrating functional studies of diatom phytochrome (DPH) photoreceptors in model species2 with environmental surveys of their distribution and activity. Here, by developing an in vivo dose-response assay to light spectral variations mediated by DPH, we show that DPH can trigger photoreversible responses across the entire light spectrum, resulting in a change in DPH photoequilibrium with depth. By generating dph mutants in the diatom Thalassiosira pseudonana, we also demonstrate that under simulated low-blue-light conditions of ocean depth, DPH regulates photosynthesis acclimation, thus linking optical depth detection with a functional response. The latitudinal distribution of DPH-containing diatoms from permanently stratified regions to seasonally mixed regions suggests an adaptive value of DPH functions in coping with vertical displacements in the water column. By establishing DPH as a detector of optical depth, this study provides a new view of how information embedded in the underwater light field can be exploited by diatoms to modulate their physiology throughout the photic zone.
Collapse
Affiliation(s)
- Carole Duchêne
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
- Department of Algal Development and Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Jean-Pierre Bouly
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
- UMR 7245, CNRS/MNHN, Molécules de Communication et Adaptation des Micro-Organismes (MCAM), Paris, France.
| | - Juan José Pierella Karlusich
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Emeline Vernay
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Julien Sellés
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Benjamin Bailleul
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France
| | - Chris Bowler
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, Paris, France
- Research Federation for the Study of Global Ocean Systems Ecology and Evolution, FR2022/Tara GOSEE, Paris, France
| | | | - Angela Falciatore
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
| | - Marianne Jaubert
- CNRS, Sorbonne Université, Institut de Biologie Physico-Chimique, Laboratoire de Biologie du Chloroplaste et Perception de la Lumière chez les Microalgues, UMR7141, Paris, France.
| |
Collapse
|
24
|
Bian Y, Song Z, Liu C, Song Z, Dong J, Xu D. The BBX7/8-CCA1/LHY transcription factor cascade promotes shade avoidance by activating PIF4. THE NEW PHYTOLOGIST 2025; 245:637-652. [PMID: 39517111 DOI: 10.1111/nph.20256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024]
Abstract
Sun-loving plants undergo shade avoidance syndrome (SAS) to compete with their neighbors for sunlight in shade conditions. Phytochrome B (phyB) plays a dominant role in sensing the shading signals (low red to far-red ratios) and triggering SAS. Shade drives phyB conversion to inactive form, consequently leading to the accumulation of PHYTOCHROMEINTERACTING FACTOR 4 (PIF4) that promotes plant growth. Here, we show B-box PROTEIN 7 (BBX7)/BBX8 and CIRCADIAN CLOCK ASSOCIATED 1 (CCA1)/LATE ELONGATED HYPOCOTYL (LHY) positively regulate the low R : FR-induced PIF4 expression and promote the low R : FR-triggered hypocotyl growth in Arabidopsis. Shade interferes the interactions of phyB with BBX7 or BBX8 and triggers the accumulation of BBX7 and BBX8 independent of phyB. BBX7 and BBX8 associate with CCA1 and LHY to activate their transcription, the gene produces of which subsequently upregulate the expression of PIF4 in shade. Genetically, BBX7 and BBX8 act upstream of CCA1, LHY, and PIF4 with respect to hypocotyl growth in shade conditions. Our study reveals the BBX7/8-CCA1/LHY transcription factor cascade upregulates PIF4 expression and increases its abundance to promote plant growth and development in response to shade.
Collapse
Affiliation(s)
- Yeting Bian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhuolong Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changseng Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoqing Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jie Dong
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Dongqing Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, National Center for Soybean Improvement, College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
25
|
Li L, Zhou Y, Wang J, Qi X, Fang H, Bai Y, Chen Z, Yu X, Liu D, Liu Q, Liang C. Effects of supplementary light treatment on saffron: integrated physiological, metabolomic, and transcriptome analyses. BMC PLANT BIOLOGY 2024; 24:1247. [PMID: 39722040 DOI: 10.1186/s12870-024-05944-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024]
Abstract
BACKGROUND Saffron (Crocus sativus L.) is a perennial, bulbous flower whose stigma is one of the most valuable spices, herbal medicines, and dyes. Light is an essential environmental regulator of plant growth, development, and metabolism. With the popularization of customized light-emitting diode (LED) light sources in facility agriculture, accurate light control has become essential for regulating crop yield and quality. In this study, white, red, and blue LED lights were applied to extend the photoperiod at the start and end of the day during the indoor stage of saffron cultivation. We investigated saffron growth and flowering using non-target metabolomic and transcriptome analyses to determine the flux and accumulation of metabolites from the stigma under different light treatments. RESULTS The results revealed that supplemental red and white lights both promoted dry mass accumulation in the stigma, with the optimal appearance achieved using white light. Supplemental white light promoted saffron flowering, whereas supplemental blue light delayed it. Supplemental blue light promoted crocin-1 and crocin-3 accumulation, whereas supplemental red light promoted crocin-2 accumulation. Expression analysis of key genes and their correlations with crocin-related metabolites may provide useful information for screening functional genes involved in crocin synthesis. CONCLUSIONS This study provides useful information for future application of LED light to improve the planting technology, quality, and yield of saffron, and reveals underlying molecular information for the further research.
Collapse
Affiliation(s)
- Li Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Yujie Zhou
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Jingting Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Xiwu Qi
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Hailing Fang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Yang Bai
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Zequn Chen
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Xu Yu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Dongmei Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Qun Liu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China
| | - Chengyuan Liang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat- Sen), No. 1 Qianhu Houcun Road, Xuanwu District, Nanjing, 210014, China.
| |
Collapse
|
26
|
Chen Y, Ince YÇ, Kawamura A, Favero DS, Suzuki T, Sugimoto K. ELONGATED HYPOCOTYL5-mediated light signaling promotes shoot regeneration in Arabidopsis thaliana. PLANT PHYSIOLOGY 2024; 196:2549-2564. [PMID: 39315875 DOI: 10.1093/plphys/kiae474] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 08/09/2024] [Indexed: 09/25/2024]
Abstract
Injured plant somatic tissues regenerate themselves by establishing shoot or root meristems. In Arabidopsis (Arabidopsis thaliana), a two-step culture system ensures regeneration by first promoting the acquisition of pluripotency and subsequently specifying the fate of new meristems. Although previous studies have reported the importance of phytohormones auxin and cytokinin in determining the fate of new meristems, whether and how environmental factors influence this process remains elusive. In this study, we investigated the impact of light signals on shoot regeneration using Arabidopsis hypocotyls as explants. We found that light signals promote shoot regeneration while inhibiting root formation. ELONGATED HYPOCOTYL 5 (HY5), the pivotal transcriptional factor in light signaling, plays a central role in this process by mediating the expression of key genes controlling the fate of new meristems. Specifically, HY5 directly represses root development genes and activates shoot meristem genes, leading to the establishment of shoot progenitor from pluripotent callus. We further demonstrated that the early activation of photosynthesis is critical for shoot initiation, and this is transcriptionally regulated downstream of HY5-dependent pathways. In conclusion, we uncovered the intricate molecular mechanisms by which light signals control the establishment of new meristems through the regulatory network governed by HY5, thus highlighting the influence of light signals on plant developmental plasticity.
Collapse
Affiliation(s)
- Yu Chen
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Yetkin Çaka Ince
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Ayako Kawamura
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - David S Favero
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Takamasa Suzuki
- Department of Biological Chemistry, College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi 487-8501, Japan
| | - Keiko Sugimoto
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo 113-0033, Japan
- RIKEN, Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
27
|
Bódizs S, Mészáros P, Grunewald L, Takala H, Westenhoff S. Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism. Structure 2024; 32:1952-1962.e3. [PMID: 39216473 DOI: 10.1016/j.str.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/05/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024]
Abstract
Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
Collapse
Affiliation(s)
- Szabolcs Bódizs
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Petra Mészáros
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Lukas Grunewald
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden
| | - Heikki Takala
- Nanoscience Center, Department of Biological and Environmental Science, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Sebastian Westenhoff
- Department of Chemistry - BMC, Biochemistry, Uppsala University, 75123 Uppsala, Sweden.
| |
Collapse
|
28
|
Zhu W, Fu Y, Zhou H, Zhou Y, Zhang D, Wang Y, Su Y, Li Z, Liang J. RACK1 links phyB and BES1 to coordinate brassinosteroid-dependent root meristem development. THE NEW PHYTOLOGIST 2024; 244:883-899. [PMID: 39149918 DOI: 10.1111/nph.20055] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 07/29/2024] [Indexed: 08/17/2024]
Abstract
Light and brassinosteroids (BR) are indispensable for plant growth and control cell division in the apical meristem. However, how external light signals cooperate with internal brassinosteroids to program root meristem development remains elusive. We reveal that the photoreceptor phytochrome B (phyB) guides the scaffold protein RACK1 to coordinate BR signaling for maintaining root meristematic activity. phyB and RACK1 promote early root meristem development. Mechanistically, RACK1 could reinforce the phyB-SPA1 association by interacting with both phyB and SPA1, which indirectly affects COP1-dependent RACK1 degradation, resulting in the accumulation of RACK1 in roots. Subsequently, RACK1 interacts with BES1 to repress its DNA-binding activity toward the target gene CYCD3;1, leading to the release of BES1-mediated inhibition of CYCD3;1 transcription, and hence the promotion of root meristem development. Our study provides mechanistic insights into the regulation of root meristem development by combination of light and phytohormones signals through the photoreceptors and scaffold proteins.
Collapse
Affiliation(s)
- Wei Zhu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yajuan Fu
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Hua Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yeling Zhou
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Dayan Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuzhu Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yujing Su
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiyong Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Jiansheng Liang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Department of Biology, School of Life Sciences, Institute of Plant and Food Science, Southern University of Science and Technology, Shenzhen, 518055, China
| |
Collapse
|
29
|
Wang Z, Wang W, Zhao D, Song Y, Lin X, Shen M, Chi C, Xu B, Zhao J, Deng XW, Wang J. Light-induced remodeling of phytochrome B enables signal transduction by phytochrome-interacting factor. Cell 2024; 187:6235-6250.e19. [PMID: 39317197 DOI: 10.1016/j.cell.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 08/08/2024] [Accepted: 09/04/2024] [Indexed: 09/26/2024]
Abstract
Phytochrome B (phyB) and phytochrome-interacting factors (PIFs) constitute a well-established signaling module critical for plants adapting to ambient light. However, mechanisms underlying phyB photoactivation and PIF binding for signal transduction remain elusive. Here, we report the cryo-electron microscopy (cryo-EM) structures of the photoactivated phyB or the constitutively active phyBY276H mutant in complex with PIF6, revealing a similar trimer. The light-induced configuration switch of the chromophore drives a conformational transition of the nearby tongue signature within the phytochrome-specific (PHY) domain of phyB. The resulting α-helical PHY tongue further disrupts the head-to-tail dimer of phyB in the dark-adapted state. These structural remodelings of phyB facilitate the induced-fit recognition of PIF6, consequently stabilizing the N-terminal extension domain and a head-to-head dimer of activated phyB. Interestingly, the phyB dimer exhibits slight asymmetry, resulting in the binding of only one PIF6 molecule. Overall, our findings solve a key question with respect to how light-induced remodeling of phyB enables PIF signaling in phytochrome research.
Collapse
Affiliation(s)
- Zhengdong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Wenfeng Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Didi Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Yanping Song
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China
| | - Xiaoli Lin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Meng Shen
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Cheng Chi
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Bin Xu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Jun Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China; Peking-Tsinghua Joint Center for Life Sciences, Peking University, Beijing, China.
| | - Jizong Wang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences at Weifang, Weifang, Shandong, China; State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing, China.
| |
Collapse
|
30
|
Chen K, Bhunia RK, Wendt MM, Campidilli G, McNinch C, Hassan A, Li L, Nikolau BJ, Yandeau-Nelson MD. Cuticle development and the underlying transcriptome-metabolome associations during early seedling establishment. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6500-6522. [PMID: 39031128 PMCID: PMC11522977 DOI: 10.1093/jxb/erae311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/18/2024] [Indexed: 07/22/2024]
Abstract
The plant cuticle is a complex extracellular lipid barrier that has multiple protective functions. This study investigated cuticle deposition by integrating metabolomics and transcriptomics data gathered from six different maize seedling organs of four genotypes, the inbred lines B73 and Mo17, and their reciprocal hybrids. These datasets captured the developmental transition of the seedling from heterotrophic skotomorphogenic growth to autotrophic photomorphogenic growth, a transition that is highly vulnerable to environmental stresses. Statistical interrogation of these data revealed that the predominant determinant of cuticle composition is seedling organ type, whereas the seedling genotype has a smaller effect on this phenotype. Gene-to-metabolite associations assessed by integrated statistical analyses identified three gene networks associated with the deposition of different elements of the cuticle: cuticular waxes; monomers of lipidized cell wall biopolymers, including cutin and suberin; and both of these elements. These gene networks reveal three metabolic programs that appear to support cuticle deposition, including processes of chloroplast biogenesis, lipid metabolism, and molecular regulation (e.g. transcription factors, post-translational regulators, and phytohormones). This study demonstrates the wider physiological metabolic context that can determine cuticle deposition and lays the groundwork for new targets for modulating the properties of this protective barrier.
Collapse
Affiliation(s)
- Keting Chen
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Rupam Kumar Bhunia
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
| | - Matthew M Wendt
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
| | - Grace Campidilli
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Genetics Major, Iowa State University, Ames, IA, USA
| | - Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
| | - Ahmed Hassan
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Undergraduate Data Science Major, Iowa State University, Ames, IA, USA
| | - Ling Li
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Basil J Nikolau
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| | - Marna D Yandeau-Nelson
- Department of Genetics, Development & Cell Biology, Iowa State University, Ames, IA, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State University, Ames, IA, USA
- Interdepartmental Genetics and Genomics Graduate Program, Iowa State University, Ames, IA, USA
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State University, Ames, IA, USA
- Center for Metabolic Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
31
|
Wang H, Xie Z. Cullin-Conciliated Regulation of Plant Immune Responses: Implications for Sustainable Crop Protection. PLANTS (BASEL, SWITZERLAND) 2024; 13:2997. [PMID: 39519916 PMCID: PMC11548191 DOI: 10.3390/plants13212997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 10/16/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024]
Abstract
Cullins are crucial components of the ubiquitin-proteasome system, playing pivotal roles in the regulation of protein metabolism. This review provides insight into the wide-ranging functions of cullins, particularly focusing on their impact on plant growth, development, and environmental stress responses. By modulating cullin-mediated protein mechanisms, researchers can fine-tune hormone-signaling networks to improve various agronomic traits, including plant architecture, flowering time, fruit development, and nutrient uptake. Furthermore, the targeted manipulation of cullins that are involved in hormone-signaling pathways, e.g., cytokinin, auxin, gibberellin, abscisic acids, and ethylene, can boost crop growth and development while increasing yield and enhancing stress tolerance. Furthermore, cullins also play important roles in plant defense mechanisms through regulating the defense-associated protein metabolism, thus boosting resistance to pathogens and pests. Additionally, this review highlights the potential of integrating cullin-based strategies with advanced biological tools, such as CRISPR/Cas9-mediated genome editing, genetic engineering, marker-associated selections, gene overexpression, and gene knockout, to achieve precise modifications for crop improvement and sustainable agriculture, with the promise of creating resilient, high-yielding, and environmentally friendly crop varieties.
Collapse
Affiliation(s)
- Hongtao Wang
- Laboratory of Biological Germplasm Resources Evaluation and Application in Changbai Mountain, School of Life Science, Tonghua Normal University, Yucai Road Tonghua 950, Tonghua 137000, China;
| | - Zhiming Xie
- College of Life Sciences, Baicheng Normal University, Baicheng 137000, China
| |
Collapse
|
32
|
Cai X, Lee S, Gómez Jaime AP, Tang W, Sun Y, Huq E. PHOSPHATASE 2A dephosphorylates PHYTOCHROME-INTERACTING FACTOR3 to modulate photomorphogenesis in Arabidopsis. THE PLANT CELL 2024; 36:4457-4471. [PMID: 38996075 PMCID: PMC11449053 DOI: 10.1093/plcell/koae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/10/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024]
Abstract
The phytochrome (phy) family of sensory photoreceptors modulates developmental programs in response to ambient light. Phys also control gene expression in part by directly interacting with the bHLH class of transcription factors, PHYTOCHROME-INTERACTING FACTORS (PIFs), and inducing their rapid phosphorylation and degradation. Several kinases have been shown to phosphorylate PIFs and promote their degradation. However, the phosphatases that dephosphorylate PIFs are less understood. In this study, we describe 4 regulatory subunits of the Arabidopsis (Arabidopsis thaliana) protein PHOSPHATASE 2A (PP2A) family (B'α, B'β, B″α, and B″β) that interact with PIF3 in yeast 2-hybrid, in vitro and in vivo assays. The pp2ab″αβ and b″αβ/b'αβ mutants display short hypocotyls, while the overexpression of the B subunits induces longer hypocotyls compared with the wild type (WT) under red light. The light-induced degradation of PIF3 is faster in the b″αβ/b'αβ quadruple mutant compared with that in the WT. Consistently, immunoprecipitated PP2A A and B subunits directly dephosphorylate PIF3-MYC in vitro. An RNA-sequencing analysis shows that B″α and B″β alter global gene expression in response to red light. PIFs (PIF1, PIF3, PIF4, and PIF5) are epistatic to these B subunits in regulating hypocotyl elongation under red light. Collectively, these data show an essential function of PP2A in dephosphorylating PIF3 to modulate photomorphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Xingbo Cai
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sanghwa Lee
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Andrea Paola Gómez Jaime
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Wenqiang Tang
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Yu Sun
- Key Laboratory of Molecular and Cellular Biology of Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, Hebei 050024, China
| | - Enamul Huq
- Department of Molecular Biosciences and the Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
33
|
Wu P, Li Y. Prion-like Proteins in Plants: Key Regulators of Development and Environmental Adaptation via Phase Separation. PLANTS (BASEL, SWITZERLAND) 2024; 13:2666. [PMID: 39339640 PMCID: PMC11435361 DOI: 10.3390/plants13182666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024]
Abstract
Prion-like domains (PrLDs), a unique type of low-complexity domain (LCD) or intrinsically disordered region (IDR), have been shown to mediate protein liquid-liquid phase separation (LLPS). Recent research has increasingly focused on how prion-like proteins (PrLPs) regulate plant growth, development, and stress responses. This review provides a comprehensive overview of plant PrLPs. We analyze the structural features of PrLPs and the mechanisms by which PrLPs undergo LLPS. Through gene ontology (GO) analysis, we highlight the diverse molecular functions of PrLPs and explore how PrLPs influence plant development and stress responses via phase separation. Finally, we address unresolved questions about PrLP regulatory mechanisms, offering prospects for future research.
Collapse
Affiliation(s)
- Peisong Wu
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
| | - Yihao Li
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai 519087, China;
- Center for Biological Science and Technology, Guangdong Zhuhai–Macao Joint Biotech Laboratory, Advanced Institute of Natural Science, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
34
|
Yi C, Gerken U, Tang K, Philipp M, Zurbriggen MD, Köhler J, Möglich A. Plant Phytochrome Interactions Decode Light and Temperature Signals. THE PLANT CELL 2024; 36:koae249. [PMID: 39259296 PMCID: PMC11638003 DOI: 10.1093/plcell/koae249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/05/2024] [Accepted: 09/10/2024] [Indexed: 09/13/2024]
Abstract
Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
Collapse
Affiliation(s)
- Chengwei Yi
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
| | - Uwe Gerken
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Kun Tang
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Michael Philipp
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
- CEPLAS – Cluster of Excellence on Plant Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Jürgen Köhler
- Lehrstuhl für Spektroskopie weicher Materie, Universität Bayreuth, 95447 Bayreuth, Germany
- Bayerisches Polymer Institut, Universität Bayreuth, 95447 Bayreuth, Germany
- Bayreuther Institut für Makromolekülforschung, Universität Bayreuth, 95447 Bayreuth, Germany
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, 95447 Bayreuth, Germany
- Bayreuth Center for Biochemistry & Molecular Biology, Universität Bayreuth, 95447 Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, 95447 Bayreuth, Germany
| |
Collapse
|
35
|
Zhang M, Ju J, Hu Y, He R, Song J, Liu H. Meta-Analysis of the Impact of Far-Red Light on Vegetable Crop Growth and Quality. PLANTS (BASEL, SWITZERLAND) 2024; 13:2508. [PMID: 39273992 PMCID: PMC11397353 DOI: 10.3390/plants13172508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/27/2024] [Accepted: 09/02/2024] [Indexed: 09/16/2024]
Abstract
Far-red lights (FRs), with a wavelength range between 700 and 800 nm, have substantial impacts on plant growth, especially horticultural crops. Previous studies showed conflicting results on the effects of FRs on vegetable growth and quality. Therefore, we conducted a meta-analysis on the influence of FRs on vegetable growth, aiming to provide a comprehensive overview of their effects on the growth and nutritional indicators of vegetables. A total of 207 independent studies from 55 literature sources were analyzed. The results showed that FR treatment had significant effects on most growth indicators, including increasing the fresh weight (+25.27%), dry weight (+21.99%), plant height (+81.87%), stem diameter (+12.91%), leaf area (+18.57%), as well as reducing the content of chlorophyll (-11.88%) and soluble protein (-11.66%), while increasing soluble sugar content (+19.12%). Further subgroup analysis based on various factors revealed significant differences in the effects of FR on different physiological indicators, such as FR intensity, plant species, duration of FR exposure, and the ratio of red light to FR. In general, moderate FR treatment is beneficial for vegetable growth. This study provides important references and guidelines for optimizing the application of FR in the future.
Collapse
Affiliation(s)
- Minggui Zhang
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Ju
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Youzhi Hu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Rui He
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Jiali Song
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Houcheng Liu
- College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
36
|
Jiménez A, Gutiérrez A, Orozco A, Vargas G, Morales I, Sánchez E, Muñoz E, Soto F, Martínez-Téllez MÁ, Esqueda M. Native arbuscular mycorrhizal fungi drive ecophysiology through phenotypic integration and functional plasticity under the Sonoran desert conditions. PHYSIOLOGIA PLANTARUM 2024; 176:e14521. [PMID: 39252413 DOI: 10.1111/ppl.14521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/02/2024] [Accepted: 08/20/2024] [Indexed: 09/11/2024]
Abstract
Knowledge is scarce to what extent environmental drivers and native symbiotic fungi in soil induce abrupt (short-term), systemic (multiple traits), or specific (a subset of traits) shifts in C3 plants' ecophysiological/mycorrhizal responses. We cultivated an emblematic native C3 species (Capsicum annuum var. glabriusculum, "Chiltepín") to look at how the extreme heat of the Sonoran desert, sunlight regimes (low = 2, intermediate = 15, high = 46 mol m2 d-1) and density of native arbuscular mycorrhizal fungi in soil (low AMF = 1% v/v, high AMF = 100% v/v), drive shifts on mycorrhizal responses through multiple functional traits (106 traits). The warming thresholds were relentlessly harsh even under intensive shade (e.g. superheat maximum thresholds reached ranged between 47-63°C), and several pivotal traits were synergistically driven by AMF (e.g. photosynthetic capacity, biomass gain/allometry, and mycorrhizal colonization traits); whereas concurrently, sunlight regimes promoted most (76%) alterations in functional acclimation traits in the short-term and opposite directions (e.g. survival, phenology, photosynthetic, carbon/nitrogen economy). Multidimensional reduction analysis suggests that the AMF promotes a synergistic impact on plants' phenotypic integration and functional plasticity in response to sunlight regimes; however, complex relationships among traits suggest that phenotypic variation determines the robustness degree of ecophysiological/mycorrhizal phenotypes between/within environments. Photosynthetic canopy surface expansion, Rubisco activity, photosynthetic nitrogen allocation, carbon gain, and differential colonization traits could be central to plants' overall ecophysiological/mycorrhizal fitness strengthening. In conclusion, we found evidence that a strong combined effect among environmental factors in which AMF are key effectors could drive important trade-offs on plants' ecophysiological/mycorrhizal fitness in the short term.
Collapse
Affiliation(s)
- Alberto Jiménez
- Food and Development Research Center, Hermosillo, Sonora, México
| | - Aldo Gutiérrez
- Food and Development Research Center, Hermosillo, Sonora, México
| | - Antonio Orozco
- Food and Development Research Center, Hermosillo, Sonora, México
| | - Georgina Vargas
- Food and Development Research Center, Hermosillo, Sonora, México
| | - Idaly Morales
- Food and Development Research Center, Hermosillo, Sonora, México
| | - Esteban Sánchez
- Food and Development Research Center, Delicias, Chihuahua, México
| | - Ezequiel Muñoz
- Food and Development Research Center, Delicias, Chihuahua, México
| | - Francisco Soto
- Food and Development Research Center, Hermosillo, Sonora, México
| | | | - Martín Esqueda
- Food and Development Research Center, Hermosillo, Sonora, México
| |
Collapse
|
37
|
Singh Rawat S, Laxmi A. Light at the end of the tunnel: integrating signaling pathways in the coordination of lateral root development. Biochem Soc Trans 2024; 52:1895-1908. [PMID: 39171690 DOI: 10.1042/bst20240049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/26/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Root system architecture (RSA) encompasses a range of physical root attributes, including the lateral roots (LRs), root hairs and adventitious roots, in addition to the primary or main root. This overall structure is a crucial trait for efficient water and mineral capture alongside providing anchorage to the plant in the soil and is vital for plant productivity and fitness. RSA dynamics are dependent upon various environmental cues such as light, soil pH, water, mineral nutrition and the belowground microbiome. Among these factors, light signaling through HY5 significantly influences the flexibility of RSA by controlling different signaling pathways that converge at photoreceptors-mediated signaling, also present in the 'hidden half'. Furthermore, several phytohormones also drive the formation and emergence of LRs and are critical to harmonize intra and extracellular stimuli in this regard. This review endeavors to elucidate the impact of these interactions on RSA, with particular emphasis on LR development and to enhance our understanding of the fundamental mechanisms governing the light-regulation of LR growth and physiology.
Collapse
Affiliation(s)
- Sanjay Singh Rawat
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
38
|
Burgie ES, Basore K, Rau MJ, Summers B, Mickles AJ, Grigura V, Fitzpatrick JAJ, Vierstra RD. Signaling by a bacterial phytochrome histidine kinase involves a conformational cascade reorganizing the dimeric photoreceptor. Nat Commun 2024; 15:6853. [PMID: 39127720 DOI: 10.1038/s41467-024-50412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 07/09/2024] [Indexed: 08/12/2024] Open
Abstract
Phytochromes (Phys) are a divergent cohort of bili-proteins that detect light through reversible interconversion between dark-adapted Pr and photoactivated Pfr states. While our understandings of downstream events are emerging, it remains unclear how Phys translate light into an interpretable conformational signal. Here, we present models of both states for a dimeric Phy with histidine kinase (HK) activity from the proteobacterium Pseudomonas syringae, which were built from high-resolution cryo-EM maps (2.8-3.4-Å) of the photosensory module (PSM) and its following signaling (S) helix together with lower resolution maps for the downstream output region augmented by RoseTTAFold and AlphaFold structural predictions. The head-to-head models reveal the PSM and its photointerconversion mechanism with strong clarity, while the HK region is interpretable but relatively mobile. Pr/Pfr comparisons show that bilin phototransformation alters PSM architecture culminating in a scissoring motion of the paired S-helices linking the PSMs to the HK bidomains that ends in reorientation of the paired catalytic ATPase modules relative to the phosphoacceptor histidines. This action apparently primes autophosphorylation enroute to phosphotransfer to the cognate DNA-binding response regulator AlgB which drives quorum-sensing behavior through transient association with the photoreceptor. Collectively, these models illustrate how light absorption conformationally translates into accelerated signaling by Phy-type kinases.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Katherine Basore
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Michael J Rau
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Bayer Crop Sciences, Chesterfield, MO, USA
| | - Brock Summers
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
| | - Alayna J Mickles
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Vadim Grigura
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - James A J Fitzpatrick
- Washington University in St. Louis Center for Cellular Imaging, St. Louis, MO, 63130, USA
- Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Grenzacherstrasse, 124, 4070, Switzerland
| | - Richard D Vierstra
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| |
Collapse
|
39
|
Dey P, Santra S, Ghosh D. Effect of the protein environment on the excited state phenomena in a bacteriophytochrome. Phys Chem Chem Phys 2024; 26:20875-20882. [PMID: 39044617 DOI: 10.1039/d4cp02112f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
The excited state processes of a bacteriophytochrome are studied using high-level multireference methods. The various non-radiative channels of deactivation are identified for the chromophore. The effects of the protein environment and substituents are elucidated for these excited state processes. It is observed that while the excited states are completely delocalized in the Franck-Condon (FC) region, they acquire significant charge transfer character near the conical intersections. Earlier studies have emphasized the delocalized nature of the excited states in the FC region, which leads to absorption spectra with minimal Stokes shift [Rumyantsev et al., Sci. Rep., 2015, 5, 18348]. The effect of the protein environment on the vertical excitation energies was minimal, while that on the conical intersection (CI) energetics was significant. This may lead one to believe that it is charge transfer driven. However, energy decomposition analysis shows that it is the effect of the dispersion of nearby residues and the steric effect on the rings and substituents that lead to the large effect of proteins on the energetics of the CIs.
Collapse
Affiliation(s)
- Pradipta Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Supriyo Santra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| | - Debashree Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India.
| |
Collapse
|
40
|
Sun J, Liu H, Wang W, Fan C, Yuan G, Zhou R, Lu J, Liu J, Wang C. RcOST1L phosphorylates RcPIF4 for proteasomal degradation to promote flowering in rose. THE NEW PHYTOLOGIST 2024; 243:1387-1405. [PMID: 38849320 DOI: 10.1111/nph.19885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/14/2024] [Indexed: 06/09/2024]
Abstract
Flowering is a vital agronomic trait that determines the economic value of most ornamental plants. The flowering time of rose (Rosa spp.) is photoperiod insensitive and is thought to be tightly controlled by light intensity, although the detailed molecular mechanism remains unclear. Here, we showed that rose plants flower later under low-light (LL) intensity than under high-light (HL) intensity, which is mainly related to the stability of PHYTOCHROME-INTERACTING FACTORs (RcPIFs) mediated by OPEN STOMATA 1-Like (RcOST1L) under different light intensity regimes. We determined that HL conditions trigger the rapid phosphorylation of RcPIFs before their degradation. A yeast two-hybrid screen identified the kinase RcOST1L as interacting with RcPIF4. Moreover, RcOST1L positively regulated rose flowering and directly phosphorylated RcPIF4 on serine 198 to promote its degradation under HL conditions. Additionally, phytochrome B (RcphyB) enhanced RcOST1L-mediated phosphorylation of RcPIF4 via interacting with the active phyB-binding motif. RcphyB was activated upon HL and recruited RcOST1L to facilitate its nuclear accumulation, in turn leading to decreased stability of RcPIF4 and flowering acceleration. Our findings illustrate how RcPIF abundance safeguards proper rose flowering under different light intensities, thus uncovering the essential role of RcOST1L in the RcphyB-RcPIF4 module in flowering.
Collapse
Affiliation(s)
- Jingjing Sun
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hongchi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Weinan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunguo Fan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guozhen Yuan
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Rui Zhou
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jun Lu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyi Liu
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changquan Wang
- Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of State Forestry and Grassland Administration on Biology of Ornamental Plants in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
41
|
Tian J, Wang C, Chen F, Qin W, Yang H, Zhao S, Xia J, Du X, Zhu Y, Wu L, Cao Y, Li H, Zhuang J, Chen S, Zhang H, Chen Q, Zhang M, Deng XW, Deng D, Li J, Tian F. Maize smart-canopy architecture enhances yield at high densities. Nature 2024; 632:576-584. [PMID: 38866052 DOI: 10.1038/s41586-024-07669-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
Increasing planting density is a key strategy for enhancing maize yields1-3. An ideotype for dense planting requires a 'smart canopy' with leaf angles at different canopy layers differentially optimized to maximize light interception and photosynthesis4-6, among other features. Here we identified leaf angle architecture of smart canopy 1 (lac1), a natural mutant with upright upper leaves, less erect middle leaves and relatively flat lower leaves. lac1 has improved photosynthetic capacity and attenuated responses to shade under dense planting. lac1 encodes a brassinosteroid C-22 hydroxylase that predominantly regulates upper leaf angle. Phytochrome A photoreceptors accumulate in shade and interact with the transcription factor RAVL1 to promote its degradation via the 26S proteasome, thereby inhibiting activation of lac1 by RAVL1 and decreasing brassinosteroid levels. This ultimately decreases upper leaf angle in dense fields. Large-scale field trials demonstrate that lac1 boosts maize yields under high planting densities. To quickly introduce lac1 into breeding germplasm, we transformed a haploid inducer and recovered homozygous lac1 edits from 20 diverse inbred lines. The tested doubled haploids uniformly acquired smart-canopy-like plant architecture. We provide an important target and an accelerated strategy for developing high-density-tolerant cultivars, with lac1 serving as a genetic chassis for further engineering of a smart canopy in maize.
Collapse
Affiliation(s)
- Jinge Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
- Maize Research Institute, Beijing Academy of Agriculture and Forestry Sciences (BAAFS), Beijing, China
| | - Chenglong Wang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Fengyi Chen
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Wenchao Qin
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Hong Yang
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Sihang Zhao
- Sanya Institute of China Agricultural University, Sanya, China
| | - Jinliang Xia
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Xian Du
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yifan Zhu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Lishuan Wu
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China
| | - Yan Cao
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hong Li
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Junhong Zhuang
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Shaojiang Chen
- National Maize Improvement Center of China, Key Laboratory of Crop Heterosis and Utilization (MOE), China Agricultural University, Beijing, China
| | | | - Qiuyue Chen
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, USA
| | - Mingcai Zhang
- State Key Laboratory of Plant Environmental Resilience, Engineering Research Center of Plant Growth Regulator, Ministry of Education, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Xing Wang Deng
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | | | - Jigang Li
- State Key Laboratory of Plant Environmental Resilience, Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing, China.
| | - Feng Tian
- State Key Laboratory of Plant Environmental Resilience, Frontiers Science Center for Molecular Design Breeding, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, China.
- Sanya Institute of China Agricultural University, Sanya, China.
| |
Collapse
|
42
|
Kim H, Lee N, Kim Y, Choi G. The phytochrome-interacting factor genes PIF1 and PIF4 are functionally diversified due to divergence of promoters and proteins. THE PLANT CELL 2024; 36:2778-2797. [PMID: 38593049 PMCID: PMC11289632 DOI: 10.1093/plcell/koae110] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 03/19/2024] [Accepted: 03/23/2024] [Indexed: 04/11/2024]
Abstract
Phytochrome-interacting factors (PIFs) are basic helix-loop-helix transcription factors that regulate light responses downstream of phytochromes. In Arabidopsis (Arabidopsis thaliana), 8 PIFs (PIF1-8) regulate light responses, either redundantly or distinctively. Distinctive roles of PIFs may be attributed to differences in mRNA expression patterns governed by promoters or variations in molecular activities of proteins. However, elements responsible for the functional diversification of PIFs have yet to be determined. Here, we investigated the role of promoters and proteins in the functional diversification of PIF1 and PIF4 by analyzing transgenic lines expressing promoter-swapped PIF1 and PIF4, as well as chimeric PIF1 and PIF4 proteins. For seed germination, PIF1 promoter played a major role, conferring dominance to PIF1 gene with a minor contribution from PIF1 protein. Conversely, for hypocotyl elongation under red light, PIF4 protein was the major element conferring dominance to PIF4 gene with the minor contribution from PIF4 promoter. In contrast, both PIF4 promoter and PIF4 protein were required for the dominant role of PIF4 in promoting hypocotyl elongation at high ambient temperatures. Together, our results support that the functional diversification of PIF1 and PIF4 genes resulted from contributions of both promoters and proteins, with their relative importance varying depending on specific light responses.
Collapse
Affiliation(s)
- Hanim Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Nayoung Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Yeojae Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Giltsu Choi
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
43
|
Boycheva I, Bonchev G, Manova V, Stoilov L, Vassileva V. How Histone Acetyltransferases Shape Plant Photomorphogenesis and UV Response. Int J Mol Sci 2024; 25:7851. [PMID: 39063093 PMCID: PMC11276938 DOI: 10.3390/ijms25147851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Higher plants have developed complex mechanisms to adapt to fluctuating environmental conditions with light playing a vital role in photosynthesis and influencing various developmental processes, including photomorphogenesis. Exposure to ultraviolet (UV) radiation can cause cellular damage, necessitating effective DNA repair mechanisms. Histone acetyltransferases (HATs) play a crucial role in regulating chromatin structure and gene expression, thereby contributing to the repair mechanisms. HATs facilitate chromatin relaxation, enabling transcriptional activation necessary for plant development and stress responses. The intricate relationship between HATs, light signaling pathways and chromatin dynamics has been increasingly understood, providing valuable insights into plant adaptability. This review explores the role of HATs in plant photomorphogenesis, chromatin remodeling and gene regulation, highlighting the importance of chromatin modifications in plant responses to light and various stressors. It emphasizes the need for further research on individual HAT family members and their interactions with other epigenetic factors. Advanced genomic approaches and genome-editing technologies offer promising avenues for enhancing crop resilience and productivity through targeted manipulation of HAT activities. Understanding these mechanisms is essential for developing strategies to improve plant growth and stress tolerance, contributing to sustainable agriculture in the face of a changing climate.
Collapse
Affiliation(s)
| | | | | | | | - Valya Vassileva
- Department of Molecular Biology and Genetics, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria; (I.B.); (G.B.); (V.M.); (L.S.)
| |
Collapse
|
44
|
Qu L, Zhong M, Duan F, Li X, Yang J, Zhou Q, Tang D, He R, Liu X, Zhao X. The PHYB-FOF2-VOZ2 module functions to fine-tune flowering in response to changes in light quality by modulating FLC expression in Arabidopsis. PLANT COMMUNICATIONS 2024; 5:100922. [PMID: 38616490 PMCID: PMC11287145 DOI: 10.1016/j.xplc.2024.100922] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 02/06/2024] [Accepted: 04/11/2024] [Indexed: 04/16/2024]
Abstract
Proper timing of flowering under different environmental conditions is critical for plant propagation. Light quality is a pivotal environmental cue that plays a critical role in flowering regulation. Plants tend to flower late under light with a high red (R)/far-red (FR) light ratio but early under light with a low R/FR light ratio. However, how plants fine-tune flowering in response to changes in light quality is not well understood. Here, we demonstrate that F-box of Flowering 2 (FOF2), an autonomous pathway-related regulator, physically interacts with VASCULAR PLANT ONE-ZINC FINGER 1 and 2 (VOZ1 and VOZ2), which are direct downstream factors of the R/FR light receptor phytochrome B (PHYB). We show that PHYB physically interacts with FOF2, mediates stabilization of the FOF2 protein under FR light and end-of-day FR light, and enhances FOF2 binding to VOZ2, which leads to degradation of VOZ2 by SCFFOF2 E3 ligase. By contrast, PHYB mediates degradation of FOF2 protein under R light and end-of-day R light. Genetic interaction studies demonstrated that FOF2 functions downstream of PHYB to promote FLC expression and inhibit flowering under both high R/FR light and simulated shade conditions, processes that are partially dependent on VOZ proteins. Taken together, our findings suggest a novel mechanism whereby plants fine-tune flowering time through a PHYB-FOF2-VOZ2 module that modulates FLC expression in response to changes in light quality.
Collapse
Affiliation(s)
- Lina Qu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Ming Zhong
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Feifei Duan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Jiaxin Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Quanyu Zhou
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Dongying Tang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China
| | - Reqing He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, Hunan Engineering and Technology Research Center of Hybrid Rapeseed, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China.
| |
Collapse
|
45
|
Jia J, Qu G, Jia P, Li D, Yao Y. The contest between artificial management and natural environment determines the adaptive strategies of leaf morphogenesis in Sabina chinensis. TREE PHYSIOLOGY 2024; 44:tpae060. [PMID: 38832722 DOI: 10.1093/treephys/tpae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/05/2024] [Accepted: 06/01/2024] [Indexed: 06/05/2024]
Abstract
Sabina chinensis is a typically heteromorphic leaf evergreen tree worldwide with both ornamental and ecological value. However, the shaping mechanism of heteromorphic leaves of S. chinensis and its adaptability to environment are important factors determining its morphology. The morphological change of S. chinensis under different habitats (tree around) and treatments (light, pruning and nutrients) was investigated. Our findings suggested that the prickle leaves proportion was associated with low light intensity and soil nutrient scarcity. Stems and leaves are pruned together to form clusters of large prickle leaves, while only pruning leaves often form alternately growing small prickle leaves and scale leaves, and the length of the prickle leaves is between 0.5 cm and 1 cm. The gene expression of prickle leaves is higher than that of scale leaves under adverse environmental conditions, and the gene expression correlations between small prickle leaf and scale leaf were the highest. Homologous and heterologous mutants of gene structure in prickle leaves were larger than those in scale leaves. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway showed that phenylpropanone and flavonoid biosynthesis were common enrichment pathways, and that the enrichment genes were mainly related to metabolism, genetic information processing and organismal systems. Therefore, we concluded that the occurrence of the heteromorphic leaf phenomenon was related to the changes in photosynthesis, mechanical damage and nutrient supplementation. The organic matter in the S. chinensis prickle leaves was reduced under environmental stresses, and it will be allocated to the expression of prickle leaf or protective cuticles formation.
Collapse
Affiliation(s)
- Jing Jia
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| | - Guojuan Qu
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| | - Peng Jia
- National Marine Environmental Monitoring Center, Linghe Street 42, Shahekou district, Dalian 116023, China
| | - Dezhi Li
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
- Key Laboratory of Urbanization and Ecological Restoration of Shanghai, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
- Institute of Eco-Chongming (IEC), Cuiniao Road 20, Chongming district, Shanghai 202162, China
- Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, Zhongshan Road 3633, Zhongbei district, Shanghai 200062, China
| | - Yifei Yao
- School of Ecological and Environmental Sciences, East China Normal University, Dongchuan Road 500, Minhang district, Shanghai 200241, China
| |
Collapse
|
46
|
Hughes J, Winkler A. New Insight Into Phytochromes: Connecting Structure to Function. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:153-183. [PMID: 39038250 DOI: 10.1146/annurev-arplant-070623-110636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Red and far-red light-sensing phytochromes are widespread in nature, occurring in plants, algae, fungi, and prokaryotes. Despite at least a billion years of evolution, their photosensory modules remain structurally and functionally similar. Conversely, nature has found remarkably different ways of transmitting light signals from the photosensor to diverse physiological responses. We summarize key features of phytochrome structure and function and discuss how these are correlated, from how the bilin environment affects the chromophore to how light induces cellular signals. Recent advances in the structural characterization of bacterial and plant phytochromes have resulted in paradigm changes in phytochrome research that we discuss in the context of present-day knowledge. Finally, we highlight questions that remain to be answered and suggest some of the benefits of understanding phytochrome structure and function.
Collapse
Affiliation(s)
- Jon Hughes
- Department of Plant Physiology, Justus Liebig University, Giessen, Germany;
- Department of Physics, Free University of Berlin, Berlin, Germany
| | - Andreas Winkler
- Institute of Biochemistry, Graz University of Technology, Graz, Austria;
- BioTechMed-Graz, Graz, Austria
| |
Collapse
|
47
|
Abstract
The hypocotyl is the embryonic stem connecting the primary root to the cotyledons. Hypocotyl length varies tremendously depending on the conditions. This developmental plasticity and the simplicity of the organ explain its success as a model for growth regulation. Light and temperature are prominent growth-controlling cues, using shared signaling elements. Mechanisms controlling hypocotyl elongation in etiolated seedlings reaching the light differ from those in photoautotrophic seedlings. However, many common growth regulators intervene in both situations. Multiple photoreceptors including phytochromes, which also respond to temperature, control the activity of several transcription factors, thereby eliciting rapid transcriptional reprogramming. Hypocotyl growth often depends on sensing in green tissues and interorgan communication comprising auxin. Hypocotyl auxin, in conjunction with other hormones, determines epidermal cell elongation. Plants facing cues with opposite effects on growth control hypocotyl elongation through intricate mechanisms. We discuss the status of the field and end by highlighting open questions.
Collapse
Affiliation(s)
- Johanna Krahmer
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
- Current affiliation: Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg C, Denmark;
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland;
| |
Collapse
|
48
|
Burgie ES, Mickles AJ, Luo F, Miller MD, Vierstra RD. Crystal structure of the photosensory module from a PAS-less cyanobacterial phytochrome as Pr shows a mix of dark-adapted and photoactivated features. J Biol Chem 2024; 300:107369. [PMID: 38750792 PMCID: PMC11264168 DOI: 10.1016/j.jbc.2024.107369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/24/2024] [Accepted: 05/06/2024] [Indexed: 07/08/2024] Open
Abstract
Phytochromes (Phys) are a diverse collection of photoreceptors that regulate numerous physiological and developmental processes in microorganisms and plants through photointerconversion between red-light-absorbing Pr and far-red light-absorbing Pfr states. Light is detected by an N-terminal photo-sensing module (PSM) sequentially comprised of Period/ARNT/Sim (PAS), cGMP-phosphodiesterase/adenylyl cyclase/FhlA (GAF), and Phy-specific (PHY) domains, with the bilin chromophore covalently-bound within the GAF domain. Phys sense light via the Pr/Pfr ratio measured by the light-induced rotation of the bilin D-pyrrole ring that triggers conformational changes within the PSM, which for microbial Phys reaches into an output region. A key step is a β-stranded to α-helical reconfiguration of a hairpin loop extending from the PHY domain to contact the GAF domain. Besides canonical Phys, cyanobacteria express several variants, including a PAS-less subfamily that harbors just the GAF and PHY domains for light detection. Prior 2D-NMR studies of a model PAS-less Phy from Synechococcus_sp._JA-2-3B'a(2-13) (SyB-Cph1) proposed a unique photoconversion mechanism involving an A-pyrrole ring rotation while magic-angle-spinning NMR probing the chromophore proposed the prototypic D-ring flip. To help solve this conundrum, we determined the crystallographic structure of the GAF-PHY region from SyB-Cph1 as Pr. Surprisingly, this structure differs from canonical Phys by having a Pr ZZZsyn,syn,anti bilin configuration but shifted to the activated position in the binding pocket with consequent folding of the hairpin loop to α-helical, an architecture common for Pfr. Collectively, the PSM of SyB-Cph1 as Pr displayed a mix of dark-adapted and photoactivated features whose co-planar A-C pyrrole rings support a D-ring flip mechanism.
Collapse
Affiliation(s)
- E Sethe Burgie
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Alayna J Mickles
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | - Fang Luo
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA
| | | | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, Missouri, USA.
| |
Collapse
|
49
|
Volná A, Červeň J, Nezval J, Pech R, Špunda V. Bridging the Gap: From Photoperception to the Transcription Control of Genes Related to the Production of Phenolic Compounds. Int J Mol Sci 2024; 25:7066. [PMID: 39000174 PMCID: PMC11241081 DOI: 10.3390/ijms25137066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/21/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
Phenolic compounds are a group of secondary metabolites responsible for several processes in plants-these compounds are involved in plant-environment interactions (attraction of pollinators, repelling of herbivores, or chemotaxis of microbiota in soil), but also have antioxidative properties and are capable of binding heavy metals or screening ultraviolet radiation. Therefore, the accumulation of these compounds has to be precisely driven, which is ensured on several levels, but the most important aspect seems to be the control of the gene expression. Such transcriptional control requires the presence and activity of transcription factors (TFs) that are driven based on the current requirements of the plant. Two environmental factors mainly affect the accumulation of phenolic compounds-light and temperature. Because it is known that light perception occurs via the specialized sensors (photoreceptors) we decided to combine the biophysical knowledge about light perception in plants with the molecular biology-based knowledge about the transcription control of specific genes to bridge the gap between them. Our review offers insights into the regulation of genes related to phenolic compound production, strengthens understanding of plant responses to environmental cues, and opens avenues for manipulation of the total content and profile of phenolic compounds with potential applications in horticulture and food production.
Collapse
Affiliation(s)
- Adriana Volná
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Jiří Červeň
- Department of Biology and Ecology, University of Ostrava, 710 00 Ostrava, Czech Republic;
| | - Jakub Nezval
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Radomír Pech
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
| | - Vladimír Špunda
- Department of Physics, University of Ostrava, 710 00 Ostrava, Czech Republic; (A.V.); (J.N.); (R.P.)
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| |
Collapse
|
50
|
Zhu X, Wang H, Li Y, Rao D, Wang F, Gao Y, Zhong W, Zhao Y, Wu S, Chen X, Qiu H, Zhang W, Xia Z. A Novel 10-Base Pair Deletion in the First Exon of GmHY2a Promotes Hypocotyl Elongation, Induces Early Maturation, and Impairs Photosynthetic Performance in Soybean. Int J Mol Sci 2024; 25:6483. [PMID: 38928189 PMCID: PMC11203641 DOI: 10.3390/ijms25126483] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Plants photoreceptors perceive changes in light quality and intensity and thereby regulate plant vegetative growth and reproductive development. By screening a γ irradiation-induced mutant library of the soybean (Glycine max) cultivar "Dongsheng 7", we identified Gmeny, a mutant with elongated nodes, yellowed leaves, decreased chlorophyll contents, altered photosynthetic performance, and early maturation. An analysis of bulked DNA and RNA data sampled from a population segregating for Gmeny, using the BVF-IGV pipeline established in our laboratory, identified a 10 bp deletion in the first exon of the candidate gene Glyma.02G304700. The causative mutation was verified by a variation analysis of over 500 genes in the candidate gene region and an association analysis, performed using two populations segregating for Gmeny. Glyma.02G304700 (GmHY2a) is a homolog of AtHY2a in Arabidopsis thaliana, which encodes a PΦB synthase involved in the biosynthesis of phytochrome. A transcriptome analysis of Gmeny using the Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed changes in multiple functional pathways, including photosynthesis, gibberellic acid (GA) signaling, and flowering time, which may explain the observed mutant phenotypes. Further studies on the function of GmHY2a and its homologs will help us to understand its profound regulatory effects on photosynthesis, photomorphogenesis, and flowering time.
Collapse
Affiliation(s)
- Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyan Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yuzhuo Li
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Demin Rao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Feifei Wang
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Weiyu Zhong
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Yujing Zhao
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; (S.W.); (X.C.)
| | - Hongmei Qiu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 132102, China; (D.R.); (H.Q.); (W.Z.)
| | - Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China; (X.Z.); (H.W.); (Y.L.); (F.W.); (Y.G.); (W.Z.); (Y.Z.)
| |
Collapse
|