1
|
Briante R, Zhai Q, Mohanty S, Zhang P, O’Connor A, Misker H, Wang W, Tan C, Abuhay M, Morgan J, Theolis R, Ponath P, Arathoon R. Successful targeting of multidrug-resistant tumors with bispecific antibodies. MAbs 2025; 17:2492238. [PMID: 40248904 PMCID: PMC12013451 DOI: 10.1080/19420862.2025.2492238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 04/04/2025] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
Multidrug resistance (MDR) hinders efficacious cancer chemotherapy. Overexpression of the P-glycoprotein (P-gp) efflux pump (EP) on cancer cells is a primary cause of MDR since it expels numerous anticancer drugs. Small molecule intracellular P-gp antagonists have been investigated clinically to redress MDR but have failed primarily due to adverse effects on P-gp in normal tissue. We used a new approach to counteract P-gp with bispecific antibodies (BsAbs) that simultaneously bound P-gp and CD47 in cis on MDR cells but not normal tissue. Affinities of the individual arms of the BsAbs were low enough to minimize normal tissue binding, but, when the two targets were co-located on MDR cancer cells, both arms of the BsAb engaged with effective avidity. Proof-of-concept was shown in three different MDR xenograft tumor models with a non-humanized chimeric BsAb (targeting P-gp and CD47) that potently restored tumor sensitivity to paclitaxel. Fully humanized variants were successfully developed and characterized. Significant anti-tumor efficacy was observed with the BsAbs both when combined with paclitaxel and as single agents in the absence of paclitaxel. Treatment of MDR cancers with BsAbs using this novel approach has several distinct advantages over prior efforts with small molecule antagonists, including 1) invoking a direct immune attack on the tumors, 2) multimodal mechanisms of action, 3) tumor-specific targeting (with reduced toxicity to normal tissue), and 4) broad applicability as single agents and compatibility with other therapeutics.
Collapse
MESH Headings
- Humans
- Antibodies, Bispecific/pharmacology
- Antibodies, Bispecific/immunology
- Antibodies, Bispecific/therapeutic use
- Animals
- Drug Resistance, Neoplasm/drug effects
- Mice
- Xenograft Model Antitumor Assays
- Cell Line, Tumor
- Drug Resistance, Multiple/drug effects
- CD47 Antigen/immunology
- Paclitaxel/pharmacology
- Neoplasms/drug therapy
- Neoplasms/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors
- ATP Binding Cassette Transporter, Subfamily B, Member 1/immunology
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Female
Collapse
Affiliation(s)
- Raffaella Briante
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Qianting Zhai
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | | | - Pingping Zhang
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Alissa O’Connor
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Hiwot Misker
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Willie Wang
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Cindy Tan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Mastewal Abuhay
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Jessica Morgan
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Richard Theolis
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Paul Ponath
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| | - Robert Arathoon
- Antibody Engineering, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Discovery, Kenjockety Biotechnology Inc, Tiburon, CA, USA
- Antibody Development, Kenjockety Biotechnology Inc, Tiburon, CA, USA
| |
Collapse
|
2
|
Ai Z, Wang B, Song Y, Cheng P, Liu X, Sun P. Prodrug-based bispecific antibodies for cancer therapy: advances and future directions. Front Immunol 2025; 16:1523693. [PMID: 39911391 PMCID: PMC11794264 DOI: 10.3389/fimmu.2025.1523693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/08/2025] [Indexed: 02/07/2025] Open
Abstract
Bispecific antibodies represent an innovative paradigm in cancer therapy, offering broader therapeutic potential compared to conventional monoclonal antibodies. To increase tumor selectivity while mitigating off-target effects in normal tissues, the concept of prodrug-based bispecific antibodies has emerged. This review delineates the various mechanisms underlying the action of prodrug-based bispecific antibodies, including protease-mediated activation, steric hindrance release via proteolytic processing, activation by soluble factors, conditional assembly, and chain exchange-mediated activation. We also address the critical challenges that must be overcome to optimize the development and clinical application of these sophisticated therapeutic agents.
Collapse
Affiliation(s)
- Zhijuan Ai
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Bing Wang
- Biomedical Center of Qingdao University, Qingdao University, Qingdao, China
| | - Yunlong Song
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Panpan Cheng
- Qingdao Municipal Center for Disease Control and Prevention, Qingdao Institute of Preventive Medicine, Qingdao, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, China
- Qingdao Cancer Institute, Qingdao, China
| | - Peng Sun
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
4
|
Heidarnejad K, Nooreddin Faraji S, Mahfoozi S, Ghasemi Z, Sadat Dashti F, Asadi M, Ramezani A. Breast cancer immunotherapy using scFv antibody-based approaches, a systematic review. Hum Immunol 2024; 85:111090. [PMID: 39214066 DOI: 10.1016/j.humimm.2024.111090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 08/07/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer is considered as the most common malignancy in women and the second leading cause of death related to cancer. Recombinant DNA technologies accelerated the development of antibody-based cancer therapy, which is effective in a broad range of cancers. The objective of the present study was to perform a systematic review on breast cancer immunotherapy using single-chain fragment variable (scFv) antibody formats. Searches were performed up to March 2023 using PubMed, Scopus, and Web of Science (ISI) databases. Three reviewers independently assessed study eligibility, data extraction, and evaluated the methodological quality of included primary studies. Different immunotherapy approaches have been identified and the most common approaches were scFv-conjugates, followed by simple scFvs and chimeric antigen receptor (CAR) therapy, respectively. Among breast cancer antigens, HER superfamily, CD family, and EpCAM were applied as the most important breast cancer immunotherapy targets. The present study shed more lights on scFv-based breast cancer immunotherapy approaches.
Collapse
Affiliation(s)
- Kamran Heidarnejad
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- Department of Pathology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Shirin Mahfoozi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Ghasemi
- Department of Immunology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fateme Sadat Dashti
- Reproductive Immunology Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Maryam Asadi
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amin Ramezani
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran; Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
5
|
Yuan S, Bremmer A, Yang X, Li J, Hu Q. Splittable systems in biomedical applications. Biomater Sci 2024; 12:4103-4116. [PMID: 39012216 DOI: 10.1039/d4bm00709c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Splittable systems have emerged as a powerful approach for the precise spatiotemporal control of biological processes. This concept relies on splitting a functional molecule into inactive fragments, which can be reassembled under specific conditions or stimuli to regain activity. Several binding pairs and orthogonal split fragments are introduced by fusing with other modalities to develop more complex and robust designs. One of the pillars of these splittable systems is modularity, which involves decoupling targeting, activation, and effector functions. Challenges, such as off-target effects and overactivation, can be addressed through precise control. This review provides an overview of the design principles, strategies, and applications of splittable systems across diverse fields including immunotherapy, gene editing, prodrug activation, biosensing, and synthetic biology.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| | - Alexa Bremmer
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Xicheng Yang
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Jiayue Li
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA.
- Wisconsin Center for NanoBioSystems, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison (UW-Madison), Madison, Wisconsin 53705, USA
| |
Collapse
|
6
|
Goebeler ME, Stuhler G, Bargou R. Bispecific and multispecific antibodies in oncology: opportunities and challenges. Nat Rev Clin Oncol 2024; 21:539-560. [PMID: 38822215 DOI: 10.1038/s41571-024-00905-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/08/2024] [Indexed: 06/02/2024]
Abstract
Research into bispecific antibodies, which are designed to simultaneously bind two antigens or epitopes, has advanced enormously over the past two decades. Owing to advances in protein engineering technologies and considerable preclinical research efforts, bispecific antibodies are constantly being developed and optimized to improve their efficacy and to mitigate toxicity. To date, >200 of these agents, the majority of which are bispecific immune cell engagers, are in either preclinical or clinical evaluation. In this Review, we discuss the role of bispecific antibodies in patients with cancer, including history and development, as well as innovative targeting strategies, clinical applications, and adverse events. We also discuss novel alternative bispecific antibody constructs, such as those targeting two antigens expressed by tumour cells or cells located in the tumour microenvironment. Finally, we consider future research directions in this rapidly evolving field, including innovative antibody engineering strategies, which might enable more effective delivery, overcome resistance, and thus optimize clinical outcomes.
Collapse
Affiliation(s)
- Maria-Elisabeth Goebeler
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany.
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany.
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Gernot Stuhler
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | - Ralf Bargou
- Comprehensive Cancer Center Mainfranken, University Hospital Würzburg, Würzburg, Germany
- National Center for Tumour Diseases, NCT WERA, University Hospital Würzburg, Würzburg, Germany
| |
Collapse
|
7
|
Paul S, Konig MF, Pardoll DM, Bettegowda C, Papadopoulos N, Wright KM, Gabelli SB, Ho M, van Elsas A, Zhou S. Cancer therapy with antibodies. Nat Rev Cancer 2024; 24:399-426. [PMID: 38740967 PMCID: PMC11180426 DOI: 10.1038/s41568-024-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/29/2024] [Indexed: 05/16/2024]
Abstract
The greatest challenge in cancer therapy is to eradicate cancer cells with minimal damage to normal cells. Targeted therapy has been developed to meet that challenge, showing a substantially increased therapeutic index compared with conventional cancer therapies. Antibodies are important members of the family of targeted therapeutic agents because of their extraordinarily high specificity to the target antigens. Therapeutic antibodies use a range of mechanisms that directly or indirectly kill the cancer cells. Early antibodies were developed to directly antagonize targets on cancer cells. This was followed by advancements in linker technologies that allowed the production of antibody-drug conjugates (ADCs) that guide cytotoxic payloads to the cancer cells. Improvement in our understanding of the biology of T cells led to the production of immune checkpoint-inhibiting antibodies that indirectly kill the cancer cells through activation of the T cells. Even more recently, bispecific antibodies were synthetically designed to redirect the T cells of a patient to kill the cancer cells. In this Review, we summarize the different approaches used by therapeutic antibodies to target cancer cells. We discuss their mechanisms of action, the structural basis for target specificity, clinical applications and the ongoing research to improve efficacy and reduce toxicity.
Collapse
Affiliation(s)
- Suman Paul
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA.
| | - Maximilian F Konig
- Division of Rheumatology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Drew M Pardoll
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Katharine M Wright
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA
| | - Sandra B Gabelli
- Discovery Chemistry, Merck Research Laboratory, Merck and Co, West Point, PA, USA.
| | - Mitchell Ho
- Antibody Engineering Program, Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | | | - Shibin Zhou
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Lampe H, Tam L, Hansen AR. Bi-specific T-cell engagers (BiTEs) in prostate cancer and strategies to enhance development: hope for a BiTE-r future. Front Pharmacol 2024; 15:1399802. [PMID: 38873417 PMCID: PMC11169794 DOI: 10.3389/fphar.2024.1399802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metastatic castrate resistant prostate cancer (mCRPC) continues to have poor survival rates due to limited treatment options. Bi-specific T cell engagers (BiTEs) are a promising class of novel immunotherapies with demonstrated success in haematological malignancies and melanoma. BiTEs developed for tumour associated antigens in prostate cancer have entered clinical testing. These trials have been hampered by high rates of treatment related adverse events, minimal or transient anti-tumour efficacy and generation of high titres of anti-drug antibodies. This paper aims to analyse the challenges faced by the different BiTE therapy constructs and the mCRPC tumour microenvironment that result in therapeutic resistance and identify possible strategies to overcome these issues.
Collapse
Affiliation(s)
| | | | - Aaron R. Hansen
- Department of Medical Oncology, Division of Cancer Care Services, Princess Alexandra Hospital, Metro South Health Service, Queensland Health, Brisbane, QLD, Australia
| |
Collapse
|
9
|
Breitenecker K, Heiden D, Demmer T, Weber G, Primorac AM, Hedrich V, Ortmayr G, Gruenberger T, Starlinger P, Herndler-Brandstetter D, Barozzi I, Mikulits W. Tumor-Extrinsic Axl Expression Shapes an Inflammatory Microenvironment Independent of Tumor Cell Promoting Axl Signaling in Hepatocellular Carcinoma. Int J Mol Sci 2024; 25:4202. [PMID: 38673795 PMCID: PMC11050718 DOI: 10.3390/ijms25084202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
The activation of the receptor tyrosine kinase Axl by Gas6 is a major driver of tumorigenesis. Despite recent insights, tumor cell-intrinsic and -extrinsic Axl functions are poorly understood in hepatocellular carcinoma (HCC). Thus, we analyzed the cell-specific aspects of Axl in liver cancer cells and in the tumor microenvironment. We show that tumor-intrinsic Axl expression decreased the survival of mice and elevated the number of pulmonary metastases in a model of resection-based tumor recurrence. Axl expression increased the invasion of hepatospheres by the activation of Akt signaling and a partial epithelial-to-mesenchymal transition (EMT). However, the liver tumor burden of Axl+/+ mice induced by diethylnitrosamine plus carbon tetrachloride was reduced compared to systemic Axl-/- mice. Tumors of Axl+/+ mice were highly infiltrated with cytotoxic cells, suggesting a key immune-modulatory role of Axl. Interestingly, hepatocyte-specific Axl deficiency did not alter T cell infiltration, indicating that these changes are independent of tumor cell-intrinsic Axl. In this context, we observed an upregulation of multiple chemokines in Axl+/+ compared to Axl-/- tumors, correlating with HCC patient data. In line with this, Axl is associated with a cytotoxic immune signature in HCC patients. Together these data show that tumor-intrinsic Axl expression fosters progression, while tumor-extrinsic Axl expression shapes an inflammatory microenvironment.
Collapse
Affiliation(s)
- Kristina Breitenecker
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Denise Heiden
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Tobias Demmer
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gerhard Weber
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Ana-Maria Primorac
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Viola Hedrich
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Gregor Ortmayr
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Thomas Gruenberger
- Department of Surgery, HPB Center, Viennese Health Network, Clinic Favoriten and Sigmund Freud Private University, 1100 Vienna, Austria
| | - Patrick Starlinger
- Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Centre of Physiology and Pharmacology, Medical University of Vienna, 1090 Vienna, Austria
| | - Dietmar Herndler-Brandstetter
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Iros Barozzi
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| | - Wolfgang Mikulits
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, 1090 Vienna, Austria (D.H.); (T.D.); (G.W.); (V.H.); (G.O.); (D.H.-B.); (I.B.)
| |
Collapse
|
10
|
Klein C, Brinkmann U, Reichert JM, Kontermann RE. The present and future of bispecific antibodies for cancer therapy. Nat Rev Drug Discov 2024; 23:301-319. [PMID: 38448606 DOI: 10.1038/s41573-024-00896-6] [Citation(s) in RCA: 116] [Impact Index Per Article: 116.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/22/2024] [Indexed: 03/08/2024]
Abstract
Bispecific antibodies (bsAbs) enable novel mechanisms of action and/or therapeutic applications that cannot be achieved using conventional IgG-based antibodies. Consequently, development of these molecules has garnered substantial interest in the past decade and, as of the end of 2023, 14 bsAbs have been approved: 11 for the treatment of cancer and 3 for non-oncology indications. bsAbs are available in different formats, address different targets and mediate anticancer function via different molecular mechanisms. Here, we provide an overview of recent developments in the field of bsAbs for cancer therapy. We focus on bsAbs that are approved or in clinical development, including bsAb-mediated dual modulators of signalling pathways, tumour-targeted receptor agonists, bsAb-drug conjugates, bispecific T cell, natural killer cell and innate immune cell engagers, and bispecific checkpoint inhibitors and co-stimulators. Finally, we provide an outlook into next-generation bsAbs in earlier stages of development, including trispecifics, bsAb prodrugs, bsAbs that induce degradation of tumour targets and bsAbs acting as cytokine mimetics.
Collapse
Affiliation(s)
- Christian Klein
- Roche Pharma Research and Early Development, Roche Innovation Center Zurich, Schlieren, Switzerland.
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development, Roche Innovation Center Munich, Penzberg, Germany
| | | | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University Stuttgart, Stuttgart, Germany.
| |
Collapse
|
11
|
Chen H, Lee SJ, Li R, Sura A, Suen N, Dilip A, Pomogov Y, Vuppalapaty M, Suen TT, Lu C, Post Y, Li Y. BRAIDing receptors for cell-specific targeting. eLife 2024; 12:RP90221. [PMID: 38193894 PMCID: PMC10945505 DOI: 10.7554/elife.90221] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024] Open
Abstract
Systemic toxicity is a major challenge in the development of therapeutics. Consequently, cell-type-specific targeting is needed to improve on-target efficacy while reducing off-target toxicity. Here, we describe a cell-targeting system we have termed BRAID (BRidged Activation by Intra/intermolecular Division) whereby an active molecule is divided into two inactive or less active parts that are subsequently brought together via a so-called 'bridging receptor' on the target cell. This concept was validated using the WNT/β-catenin signaling system, demonstrating that a multivalent WNT agonist molecule divided into two inactive components assembled from different epitopes via the hepatocyte receptor βKlotho induces signaling specifically on hepatocytes. These data provide proof of concept for this cell-specific targeting strategy, and in principle, this may also allow activation of multiple signaling pathways where desirable. This approach has broad application potential for other receptor systems.
Collapse
Affiliation(s)
- Hui Chen
- Surrozen IncSouth San FranciscoUnited States
| | | | - Ryan Li
- Surrozen IncSouth San FranciscoUnited States
| | - Asmiti Sura
- Surrozen IncSouth San FranciscoUnited States
| | | | | | - Yan Pomogov
- Surrozen IncSouth San FranciscoUnited States
| | | | | | | | - Yorick Post
- Surrozen IncSouth San FranciscoUnited States
| | - Yang Li
- Surrozen IncSouth San FranciscoUnited States
| |
Collapse
|
12
|
Surowka M, Klein C. A pivotal decade for bispecific antibodies? MAbs 2024; 16:2321635. [PMID: 38465614 PMCID: PMC10936642 DOI: 10.1080/19420862.2024.2321635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024] Open
Abstract
Bispecific antibodies (bsAbs) are a class of antibodies that can mediate novel mechanisms of action compared to monospecific monoclonal antibodies (mAbs). Since the discovery of mAbs and their adoption as therapeutic agents in the 1980s and 1990s, the development of bsAbs has held substantial appeal. Nevertheless, only three bsAbs (catumaxomab, blinatumomab, emicizumab) were approved through the end of 2020. However, since then, 11 bsAbs received regulatory agency approvals, of which nine (amivantamab, tebentafusp, mosunetuzumab, cadonilimab, teclistamab, glofitamab, epcoritamab, talquetamab, elranatamab) were approved for the treatment of cancer and two (faricimab, ozoralizumab) in non-oncology indications. Notably, of the 13 currently approved bsAbs, two, emicizumab and faricimab, have achieved blockbuster status, showing the promise of this novel class of therapeutics. In the 2020s, the approval of additional bsAbs can be expected in hematological malignancies, solid tumors and non-oncology indications, establishing bsAbs as essential part of the therapeutic armamentarium.
Collapse
Affiliation(s)
- Marlena Surowka
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Roche Glycart AG, Schlieren, Switzerland
| | - Christian Klein
- Roche Innovation Center Zurich, Roche Pharma Research & Early Development, Roche Glycart AG, Schlieren, Switzerland
| |
Collapse
|
13
|
Wagenbauer KF, Pham N, Gottschlich A, Kick B, Kozina V, Frank C, Trninic D, Stömmer P, Grünmeier R, Carlini E, Tsiverioti CA, Kobold S, Funke JJ, Dietz H. Programmable multispecific DNA-origami-based T-cell engagers. NATURE NANOTECHNOLOGY 2023; 18:1319-1326. [PMID: 37591933 PMCID: PMC10656288 DOI: 10.1038/s41565-023-01471-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/26/2023] [Indexed: 08/19/2023]
Abstract
Multispecific antibodies have emerged as versatile therapeutic agents, and therefore, approaches to optimize and streamline their design and assembly are needed. Here we report on the modular and programmable assembly of IgG antibodies, F(ab) and scFv fragments on DNA origami nanocarriers. We screened 105 distinct quadruplet antibody variants in vitro for the ability to activate T cells in the presence of target cells. T-cell engagers were identified, which in vitro showed the specific and efficient T-cell-mediated lysis of five distinct target cell lines. We used these T-cell engagers to target and lyse tumour cells in vivo in a xenograft mouse tumour model. Our approach enables the rapid generation, screening and testing of bi- and multispecific antibodies to facilitate preclinical pharmaceutical development from in vitro discovery to in vivo proof of concept.
Collapse
Grants
- This work was supported by a European Research Council Consolidator Grant to H.D. (grant agreement 724261), the Deutsche Forschungsgemeinschaft through grants provided within the Gottfried Wilhelm Leibniz Program (to H.D.), the Medical Valley Award, the M4 Award, a GO-Bio initial award (Federal Ministry of Education and Research (BMBF) of Germany), and a Funding by the ForTra gGmbH für Forschungstransfer der Else Kröner-Fresenius Stiftung all to KFW, JJF, BK and HD. The work has received support from the Max Planck School Matter to Life (to H.D.) jointly financed by the Federal Ministry of Education and Research (BMBF) of Germany and the Max Planck Society
- This study was further supported by the international doctoral program the Förderprogramm für Forschung und Lehre der Medizinischen Fakultät der LMU (A.G, grant number 1139), the Deutsche Forschungsgemeinschaft (A.G. – grant number: GO 3823/1-1); S.K. - grant number: KO 5055/3-1), ‘i-Target: immunotargeting of cancer’ (funded by the Elite Network of Bavaria; to S.K.), Melanoma Research Alliance (grant number 409510 to S.K.), Marie Sklodowska-Curie Training Network for Optimizing Adoptive T Cell Therapy of Cancer (funded by the Horizon 2020 programme of the European Union; grant 955575 to S.K.), Else Kröner-Fresenius-Stiftung (to S.K.), German Cancer Aid (AvantCAR.de to S. Kobold), Ernst Jung Stiftung (to S.K.), the Wilhelm-Sander Stiftung (to S. Kobold), Institutional Strategy LMUexcellent of LMU Munich (within the framework of the German Excellence Initiative; to S.K.), Bundesministerium für Bildung und Forschung (S.K.), European Research Council (Starting Grant 756017 and Proof of Concept Grant 101100460 to S. Kobold), Deutsche Forschungsgemeinschaft (DFG; KO5055-2-1 and 510821390 to S.K.), by the SFB-TRR 338/1 2021–452881907 (to S.K.), Fritz-Bender Foundation (to S.K.), Deutsche José Carreras Leukämie Stiftung (to S.K.) and Hector Foundation (to S.K.).
Collapse
Affiliation(s)
- Klaus F Wagenbauer
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Nhi Pham
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Adrian Gottschlich
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
- Department of Medicine III, University Hospital, LMU Munich, Munich, Germany
| | - Benjamin Kick
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Viktorija Kozina
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Christopher Frank
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Daniela Trninic
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Pierre Stömmer
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany
| | - Ruth Grünmeier
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Emanuele Carlini
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Christina Angeliki Tsiverioti
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sebastian Kobold
- Division of Clinical Pharmacology, University Hospital, LMU Munich, Member of the German Center for Lung Research (DZL), Munich, Germany.
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany.
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Munich, Research Center for Environmental Health (HMGU), Neuherberg, Germany.
| | - Jonas J Funke
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| | - Hendrik Dietz
- Department of Biosciences, School of Natural Sciences, Technical University of Munich, Garching, Germany.
- Munich Institute of Biomedical Engineering, Technical University of Munich, Garching, Germany.
| |
Collapse
|
14
|
Bargou RC. The expanding success of T cell-engaging bispecific antibodies. NATURE CANCER 2023; 4:1054-1055. [PMID: 37316727 DOI: 10.1038/s43018-023-00586-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Ralf C Bargou
- Comprehensive Cancer Center Mainfranken and Bavarian Cancer Research Center (BZKF), University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
15
|
van de Donk NWCJ, Zweegman S. T-cell-engaging bispecific antibodies in cancer. Lancet 2023; 402:142-158. [PMID: 37271153 DOI: 10.1016/s0140-6736(23)00521-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/06/2023] [Accepted: 03/02/2023] [Indexed: 06/06/2023]
Abstract
T-cell-engaging bispecific antibodies (BsAbs) simultaneously bind to antigens on tumour cells and CD3 subunits on T cells. This simultaneous binding results in the recruitment of T cells to the tumour, followed by T-cell activation and degranulation, and tumour cell elimination. T-cell-engaging BsAbs have shown substantial activity in several haematological malignancies by targeting CD19 in acute lymphoblastic leukaemia, CD20 in B-cell non-Hodgkin lymphoma, and BCMA and GPRC5D in multiple myeloma. Progress with solid tumours has been slower, in part due to the paucity of therapeutic targets with a tumour-specific expression profile, which is needed to limit on-target off-tumour side-effects. Nevertheless, BsAb-mediated recognition of a peptide fragment of gp100 presented by HLA-A2:01 molecules has shown marked activity in patients with unresectable or metastatic uveal melanoma. Cytokine release syndrome is the most frequent toxicity associated with BsAb treatment and is caused by activated T cells secreting proinflammatory cytokines. Understanding of resistance mechanisms has resulted in the development of new T cell-redirecting formats and novel combination strategies, which are expected to further improve depth and duration of response.
Collapse
Affiliation(s)
- Niels W C J van de Donk
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands.
| | - Sonja Zweegman
- Amsterdam University Medical Centres, Vrije Universiteit Amsterdam, Department of Hematology, Amsterdam, Netherlands; Cancer Center Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
16
|
Lejeune M, Köse MC, Jassin M, Gou MJ, Herbet A, Duray E, Cobraiville G, Foguenne J, Boquet D, Gothot A, Beguin Y, Fillet M, Caers J. Integrative Analysis of Proteomics and Transcriptomics Reveals Endothelin Receptor B as Novel Single Target and Identifies New Combinatorial Targets for Multiple Myeloma. Hemasphere 2023; 7:e901. [PMID: 37359190 PMCID: PMC10289631 DOI: 10.1097/hs9.0000000000000901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 04/25/2023] [Indexed: 06/28/2023] Open
Abstract
Despite the recent introduction of next-generation immunotherapeutic agents, multiple myeloma (MM) remains incurable. New strategies targeting MM-specific antigens may result in a more effective therapy by preventing antigen escape, clonal evolution, and tumor resistance. In this work, we adapted an algorithm that integrates proteomic and transcriptomic results of myeloma cells to identify new antigens and possible antigen combinations. We performed cell surface proteomics on 6 myeloma cell lines based and combined these results with gene expression studies. Our algorithm identified 209 overexpressed surface proteins from which 23 proteins could be selected for combinatorial pairing. Flow cytometry analysis of 20 primary samples confirmed the expression of FCRL5, BCMA, and ICAM2 in all samples and IL6R, endothelin receptor B (ETB), and SLCO5A1 in >60% of myeloma cases. Analyzing possible combinations, we found 6 combinatorial pairs that can target myeloma cells and avoid toxicity on other organs. In addition, our studies identified ETB as a tumor-associated antigen that is overexpressed on myeloma cells. This antigen can be targeted with a new monoclonal antibody RB49 that recognizes an epitope located in a region that becomes highly accessible after activation of ETB by its ligand. In conclusion, our algorithm identified several candidate antigens that can be used for either single-antigen targeting approaches or for combinatorial targeting in new immunotherapeutic approaches in MM.
Collapse
Affiliation(s)
- Margaux Lejeune
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Murat Cem Köse
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Mégane Jassin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Marie-Jia Gou
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Amaury Herbet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - Elodie Duray
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
| | - Gaël Cobraiville
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jacques Foguenne
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Didier Boquet
- Université Paris-Saclay, CEA, Département Médicaments et Technologies pour la Santé (DMTS), SPI, Gif-sur-Yvette, France
| | - André Gothot
- Department of Hematobiology and Immunohematology, CHU de Liège, Belgium
| | - Yves Beguin
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| | - Marianne Fillet
- Laboratory for the Analysis of Medicines, Center for Interdisciplinary Research on Medicines (CIRM), University of Liège, Belgium
| | - Jo Caers
- Laboratory of Hematology, GIGA I3, University of Liège, Belgium
- Department of Hematology, CHU de Liège, Belgium
| |
Collapse
|
17
|
Gambles MT, Yang J, Kopeček J. Multi-targeted immunotherapeutics to treat B cell malignancies. J Control Release 2023; 358:232-258. [PMID: 37121515 PMCID: PMC10330463 DOI: 10.1016/j.jconrel.2023.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/20/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
The concept of multi-targeted immunotherapeutic systems has propelled the field of cancer immunotherapy into an exciting new era. Multi-effector molecules can be designed to engage with, and alter, the patient's immune system in a plethora of ways. The outcomes can vary from effector cell recruitment and activation upon recognition of a cancer cell, to a multipronged immune checkpoint blockade strategy disallowing evasion of the cancer cells by immune cells, or to direct cancer cell death upon engaging multiple cell surface receptors simultaneously. Here, we review the field of multi-specific immunotherapeutics implemented to treat B cell malignancies. The mechanistically diverse strategies are outlined and discussed; common B cell receptor antigen targeting strategies are outlined and summarized; and the challenges of the field are presented along with optimistic insights for the future.
Collapse
Affiliation(s)
- M Tommy Gambles
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA.
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT 84112, USA; Department of Molecular Pharmaceutics, University of Utah, Salt Lake City, UT 84112, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
18
|
Shen Y, Jin SJ, Chen YC, Liu WH, Li YM, Zhao WY, Xu YC, Chen SQ, Zhao WB. Improving the tumor selectivity of T cell engagers by logic-gated dual tumor-targeting. Pharmacol Res 2023; 192:106781. [PMID: 37119880 DOI: 10.1016/j.phrs.2023.106781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
Targeting single tumor antigens makes it difficult to provide sufficient tumor selectivity for T cell engagers (TCEs), leading to undesirable toxicity and even treatment failure, which is particularly serious in solid tumors. Here, we designed novel trispecific TCEs (TriTCEs) to improve the tumor selectivity of TCEs by logic-gated dual tumor-targeting. TriTCE can effectively redirect and activate T cells to kill tumor cells (~18 pM EC50) by inducing the aggregation of dual tumor antigens, which was ~70- or 750- fold more effective than the single tumor-targeted isotype controls, respectively. Further in vivo experiments indicated that TriTCE has the ability to accumulate in tumor tissue and can induce circulating T cells to infiltrate into tumor sites. Hence, TriTCE showed a stronger tumor growth inhibition ability and significantly prolonged the survival time of the mice. Finally, we revealed that this concept of logic-gated dual tumor-targeted TriTCE can be applied to target different tumor antigens. Cumulatively, we reported novel dual tumor-targeted TriTCEs that can mediate a robust T cell response by simultaneous recognition of dual tumor antigens at the same cell surface. TriTCEs allow better selective T cell activity on tumor cells, resulting in safer TCE treatment.
Collapse
Affiliation(s)
- Ying Shen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Shi-Jie Jin
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yi-Chang Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Hui Liu
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Hangzhou Biosun Pharmaceutical Co., Ltd, Hangzhou, 310015, China
| | - Yi-Ming Li
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wen-Yi Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China
| | - Ying-Chun Xu
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wen-Bin Zhao
- Institute of Drug Metabolism and Pharmaceutical Analysis & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China; Innovation Institute for Artificial Intelligence in Medicine, Zhejiang University, Hangzhou 310018, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou, 310022, China.
| |
Collapse
|
19
|
Vasic V, Buldun C, Ritz M, Dickopf S, Georges GJ, Spick C, Peuker A, Meier T, Mayer K, Brinkmann U. Targeted chain-exchange-mediated reconstitution of a split type-I cytokine for conditional immunotherapy. MAbs 2023; 15:2245111. [PMID: 37608616 PMCID: PMC10448976 DOI: 10.1080/19420862.2023.2245111] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/17/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Antibody-cytokine fusions targeted against tumor-associated antigens (TAAs) are promising cancer immunotherapy agents, with many such molecules currently undergoing clinical trials. However, due to the limited number of tumor-specific targets, on-target off-tumor effects can lead to systemic toxicity. Additionally, targeted cytokines can be scavenged by cytokine receptors on peripheral cells, decreasing tumor penetration. This study aims at overcoming these issues by engineering a platform for targeted conditionally active type I cytokines. Building on our previously reported PACE (Prodrug-Activating Chain Exchange) platform, we split the type I cytokine interleukin-4 (IL-4) to create two inactive IL-4 prodrugs, and fused these split IL-4 counterparts to the C-termini of antibody-like molecules that undergo proximity-induced chain exchange. In doing so, we developed IL-4 prodrugs that preferentially reconstitute into active IL-4 on target cells. We demonstrate that pre-assembled split IL-4 (without additional inactivation) retains activity and present two different strategies of splitting and inactivating IL-4. Using an IL-4 responsive cell-line, we show that IL-4 prodrugs are targeted to TAAs on target cells and regain activity upon chain exchange, primarily in a cis-activation setting. Furthermore, we demonstrate that split IL-4 complementation is also possible in a trans-activation setting, which opens up the possibility for activation of immune cells in the tumor vicinity. We demonstrate that targeted on-cell prodrug conversion is more efficient than nonspecific activation in-solution. Due to the structural similarity between IL-4 and other type I cytokines relevant in cancer immunotherapy such as IL-2, IL-15, and IL-21, cytokine-PACE may be expanded to develop a variety of targeted conditionally active cytokines for cancer immunotherapy.
Collapse
Affiliation(s)
- Vedran Vasic
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Can Buldun
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Bellevue Asset Management, Küsnacht, Switzerland
| | - Manfred Ritz
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Steffen Dickopf
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
- Discovery Biology, Morphosys AG, Planegg, Germany
| | - Guy J. Georges
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Christian Spick
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Alessa Peuker
- Reagent Research and Design, Roche Diagnostics GmbH, Penzberg, Germany
| | - Thomas Meier
- Reagent Research and Design, Roche Diagnostics GmbH, Penzberg, Germany
| | - Klaus Mayer
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Ulrich Brinkmann
- Roche Pharma Research and Early Development (pRED), Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| |
Collapse
|
20
|
Liu D, Qi X, Wei X, Zhao L, Wang X, Li S, Wang Z, Shi L, Xu J, Hong M, Liu Z, Zhao L, Wang X, Zhang B, Zhang Y, Wang F, Cao YJ. A Novel Her2/VEGFR2/CD3 trispecific antibody with an optimal structural design showed improved T-cell-redirecting antitumor efficacy. Am J Cancer Res 2022; 12:7788-7803. [PMID: 36451856 PMCID: PMC9706591 DOI: 10.7150/thno.75037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Rationale: T-cell-redirecting bispecific antibodies (bsAbs) and trispecific antibodies (tsAbs) designed to recognize different epitopes or antigens have emerged as promising cancer therapies. Current approaches are all designed to include another antibody specific to the site of the primary antibody, and the molecular structures are generally established. However, the dimensions of target molecule and epitope location play a key role in the efficiency of the immunological synapse (IS) formation and subsequent T-cell-redirecting activities, therefore the connection flexibility of these antibodies determines the geometries of different formats of these molecules and will have a major impact on the efficacy. Methods: We describe a novel recombination strategy using various linker designs to site-specifically fuse anti-Her2 (2Rs15) or anti-VEGFR2 (3VGR19) nanobodies to different positions of the anti-CD3 antibody fragment (Fab, SP34). Based on the comparison among the various antigen-specific bsAbs, we could determine the desired fusion site of each nanobody to SP34, and further ensure the optimal structure of tsAbs with synergistic dual-antigen enhanced T-cell-redirecting activities. Results: This approach allows precise control of the formation of IS between Her2- and/or VEGFR2-expressing cancer cells and T cells, to obtain the optimal structure of the Her2/VEGFR2/CD3 tsAb without the need to map antibody-binding epitopes. Optimization of Her2/VEGFR2/CD3 tsAb results in enhanced T-cell-redirecting in vitro and in vivo antitumor efficacy compared with the corresponding bsAbs alone or in combination, and the potency to overcome tumor relapse due to antigen escape or resistance to Herceptin and Cyramza therapy. Conclusion: The novel design strategy for developing tsAbs using a site-specific recombination approach represents a promising platform for immuno-oncology and in applications other than cancer therapy.
Collapse
Affiliation(s)
- Dong Liu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Xuexiu Qi
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Xiaoyi Wei
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Lijun Zhao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Xuechun Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Shuhong Li
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zhidong Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Licai Shi
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Jiean Xu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Mei Hong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China
| | - Zhong Liu
- Lunan Pharmaceutical Group Co., Ltd, Feixian County, Shandong, 273400, China
| | - Lili Zhao
- National Engineering Laboratory of High Level Expression in Mammalian Cells, Feixian County, Shandong, 273400, China.,✉ Corresponding authors: ;
| | - Xiankun Wang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.,Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Bo Zhang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.,Institute of Neurological and Psychiatric Disorders, Shenzhen Bay Laboratory, Shenzhen, Guangdong, 518132, China
| | - Yuhan Zhang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Beijing Translational Center for Biopharmaceuticals Institute of Biophysics, Chinese Academy of Sciences Beijing 100101, China
| | - Feng Wang
- Key Laboratory of Protein and Peptide Pharmaceuticals, Beijing Translational Center for Biopharmaceuticals Institute of Biophysics, Chinese Academy of Sciences Beijing 100101, China
| | - Yu J. Cao
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, 518055, China.,Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen, 518132, China.,✉ Corresponding authors: ;
| |
Collapse
|
21
|
Wei J, Yang Y, Wang G, Liu M. Current landscape and future directions of bispecific antibodies in cancer immunotherapy. Front Immunol 2022; 13:1035276. [PMID: 36389699 PMCID: PMC9650279 DOI: 10.3389/fimmu.2022.1035276] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/14/2022] [Indexed: 07/31/2023] Open
Abstract
Recent advances in cancer immunotherapy using monoclonal antibodies have dramatically revolutionized the therapeutic strategy against advanced malignancies, inspiring the exploration of various types of therapeutic antibodies. Bispecific antibodies (BsAbs) are recombinant molecules containing two different antigens or epitopes identifying binding domains. Bispecific antibody-based tumor immunotherapy has gained broad potential in preclinical and clinical investigations in a variety of tumor types following regulatory approval of newly developed technologies involving bispecific and multispecific antibodies. Meanwhile, a series of challenges such as antibody immunogenicity, tumor heterogeneity, low response rate, treatment resistance, and systemic adverse effects hinder the application of BsAbs. In this review, we provide insights into the various architecture of BsAbs, focus on BsAbs' alternative different mechanisms of action and clinical progression, and discuss relevant approaches to overcome existing challenges in BsAbs clinical application.
Collapse
Affiliation(s)
- Jing Wei
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yueyao Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Gang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Ming Liu
- Gastric Cancer Center/Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
22
|
Oostindie SC, Rinaldi DA, Zom GG, Wester MJ, Paulet D, Al-Tamimi K, van der Meijden E, Scheick JR, Wilpshaar T, de Jong B, Hoff-van den Broek M, Grattan RM, Oosterhoff JJ, Vignau J, Verploegen S, Boross P, Beurskens FJ, Lidke DS, Schuurman J, de Jong RN. Logic-gated antibody pairs that selectively act on cells co-expressing two antigens. Nat Biotechnol 2022; 40:1509-1519. [PMID: 35879362 PMCID: PMC9546771 DOI: 10.1038/s41587-022-01384-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/02/2022] [Indexed: 01/11/2023]
Abstract
The use of therapeutic monoclonal antibodies is constrained because single antigen targets often do not provide sufficient selectivity to distinguish diseased from healthy tissues. We present HexElect®, an approach to enhance the functional selectivity of therapeutic antibodies by making their activity dependent on clustering after binding to two different antigens expressed on the same target cell. lmmunoglobulin G (lgG)-mediated clustering of membrane receptors naturally occurs on cell surfaces to trigger complement- or cell-mediated effector functions or to initiate intracellular signaling. We engineer the Fc domains of two different lgG antibodies to suppress their individual homo-oligomerization while promoting their pairwise hetero-oligomerization after binding co-expressed antigens. We show that recruitment of complement component C1q to these hetero-oligomers leads to clustering-dependent activation of effector functions such as complement mediated killing of target cells or activation of cell surface receptors. HexElect allows selective antibody activity on target cells expressing unique, potentially unexplored combinations of surface antigens.
Collapse
Affiliation(s)
- Simone C Oostindie
- Genmab, Utrecht, the Netherlands
- Department of Immunology, Leiden University Medical Center, Leiden, the Netherlands
| | - Derek A Rinaldi
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | - Michael J Wester
- Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
| | | | | | | | | | | | | | | | - Rachel M Grattan
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | | | | | | | | | | | - Diane S Lidke
- Department of Pathology, University of New Mexico School of Medicine, Albuquerque, NM, USA
- Comprehensive Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | | | | |
Collapse
|
23
|
Tang R, Fu Y, Gong B, Fan Y, Wang H, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T Cells for Precise Cancer Cell Targeting. Angew Chem Int Ed Engl 2022; 61:e202205902. [DOI: 10.1002/anie.202205902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Rui Tang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yu‐Hao Fu
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Bo Gong
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ying‐Ying Fan
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| | - Hong‐Hui Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Yan Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Zhou Nie
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering College of Biology Hunan University Changsha 410082 P. R. China
| | - Ping Wei
- Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences Academy for Advanced Interdisciplinary Studies Peking University Beijing 100871 China
- Center for Cell and Gene Circuit Design CAS Key Laboratory of Quantitative Engineering Biology Shenzhen Institute of Synthetic Biology Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 China
| |
Collapse
|
24
|
Espinosa-Cotton M, Cheung NKV. Bispecific antibodies for the treatment of neuroblastoma. Pharmacol Ther 2022; 237:108241. [PMID: 35830901 PMCID: PMC10351215 DOI: 10.1016/j.pharmthera.2022.108241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022]
Abstract
Bispecific antibodies (BsAb) are a new generation of antibody-based therapy, conveying artificial specificity to polyclonal T cells or radiohaptens. These drugs have been successfully implemented to cure hematologic malignancies and are under clinical investigation for solid tumors including HRNB. BsAbs designed to engage T cells or increase the therapeutic index of radiotherapy hold the potential to significantly improve the long-term survival of HRNB patients by shrinking bulky tumors and more effectively eliminating micrometastases and preventing relapse. BsAbs can also be used to arm T cells, yielding a product analogous to CAR T cells, possibly with an improved safety profile. A thoughtful and realistic integration of these therapies into the standard of care should benefit more patients worldwide. Here we describe the history of development of BsAbs for HRNB, which dates back almost three decades. We discuss the merits and pitfalls of all relevant BsAbs, including T cell-engagers and agents used for radioimmunotherapy, highlighting the importance of structural design and interdomain spacing for anti-tumor efficacy.
Collapse
Affiliation(s)
- Madelyn Espinosa-Cotton
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York.
| | - Nai-Kong V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, 1275 York Ave, NY 10065, New York
| |
Collapse
|
25
|
Precision cancer targeting with antibody pairs. Nat Biotechnol 2022; 40:1434-1435. [PMID: 35879363 DOI: 10.1038/s41587-022-01401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Tang R, Fu YH, Gong B, Fan YY, Wang HH, Huang Y, Nie Z, Wei P. A Chimeric Conjugate of Antibody and Programmable DNA Nanoassembly Smartly Activates T cell for Precise Cancer Cell Targeting. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rui Tang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology CHINA
| | - Yu-Hao Fu
- Peking University Center for Quantitative Biology and Peking-Tsinghua Joint Center for Life Sciences, Academy for Advanced Interdisciplinary Studies CHINA
| | - Bo Gong
- Hunan University Sensing and Chemometrics, College of Chemistry and Chemical Engineerin CHINA
| | - Ying-Ying Fan
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology CHINA
| | - Hong-Hui Wang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, CHINA
| | - Yan Huang
- Hunan University State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, CHINA
| | - Zhou Nie
- Hunan University College of Chemistry and Chemical Engineering Yuelushan, Changsha, Hunan, 410082, P.R.China 410082 Changsha CHINA
| | - Ping Wei
- Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Center for Cell and Gene Circuit Design, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology CHINA
| |
Collapse
|
27
|
Dickopf S, Buldun C, Vasic V, Georges G, Hage C, Mayer K, Forster M, Wessels U, Stubenrauch KG, Benz J, Ehler A, Lauer ME, Ringler P, Kobold S, Endres S, Klein C, Brinkmann U. Prodrug-Activating Chain Exchange (PACE) converts targeted prodrug derivatives to functional bi- or multispecific antibodies. Biol Chem 2022; 403:495-508. [PMID: 35073465 PMCID: PMC9125802 DOI: 10.1515/hsz-2021-0401] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 12/23/2021] [Indexed: 12/26/2022]
Abstract
Driven by the potential to broaden the target space of conventional monospecific antibodies, the field of multi-specific antibody derivatives is growing rapidly. The production and screening of these artificial proteins entails a high combinatorial complexity. Antibody-domain exchange was previously shown to be a versatile strategy to produce bispecific antibodies in a robust and efficient manner. Here, we show that the domain exchange reaction to generate hybrid antibodies also functions under physiological conditions. Accordingly, we modified the exchange partners for use in therapeutic applications, in which two inactive prodrugs convert into a product with additional functionalities. We exemplarily show the feasibility for generating active T cell bispecific antibodies from two inactive prodrugs, which per se do not activate T cells alone. The two complementary prodrugs harbor antigen-targeting Fabs and non-functional anti-CD3 Fvs fused to IgG-CH3 domains engineered to drive chain-exchange reactions between them. Importantly, Prodrug-Activating Chain Exchange (PACE) could be an attractive option to conditionally activate therapeutics at the target site. Several examples are provided that demonstrate the efficacy of PACE as a new principle of cancer immunotherapy in vitro and in a human xenograft model.
Collapse
Affiliation(s)
- Steffen Dickopf
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Can Buldun
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Vedran Vasic
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Guy Georges
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Carina Hage
- Discovery Oncology, Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Klaus Mayer
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Matthias Forster
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Uwe Wessels
- Pharmaceutical Sciences (PS), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Kay-Gunnar Stubenrauch
- Pharmaceutical Sciences (PS), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| | - Jörg Benz
- Small Molecule Research, Roche Innovation Center Basel , Roche Pharma Research and Early Development (pRED) , Basel , Switzerland
| | - Andreas Ehler
- Small Molecule Research, Roche Innovation Center Basel , Roche Pharma Research and Early Development (pRED) , Basel , Switzerland
| | - Matthias E. Lauer
- Chemical Biology, Roche Innovation Center Basel , Roche Pharma Research and Early Development (pRED) , Basel , Switzerland
| | - Philippe Ringler
- Center for Cellular Imaging and Nano Analytics , Biozentrum University of Basel , Basel , Switzerland
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV , University Hospital, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL) , Munich , Germany
- German Center for Translational Cancer Research (DKTK) , Partner Site Munich , Munich , Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV , University Hospital, Ludwig Maximilians University of Munich, German Center for Lung Research (DZL) , Munich , Germany
- German Center for Translational Cancer Research (DKTK) , Partner Site Munich , Munich , Germany
| | - Christian Klein
- Discovery Oncology, Roche Innovation Center Zurich , Roche Pharma Research and Early Development (pRED) , Schlieren , Switzerland
| | - Ulrich Brinkmann
- Large Molecule Research (LMR), Roche Innovation Center Munich , Roche Pharma Research and Early Development (pRED) , Penzberg , Germany
| |
Collapse
|
28
|
Blanco B, Domínguez-Alonso C, Alvarez-Vallina L. Bispecific Immunomodulatory Antibodies for Cancer Immunotherapy. Clin Cancer Res 2021; 27:5457-5464. [PMID: 34108185 PMCID: PMC9306338 DOI: 10.1158/1078-0432.ccr-20-3770] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/25/2021] [Accepted: 05/21/2021] [Indexed: 01/07/2023]
Abstract
The recent advances in the field of immuno-oncology have dramatically changed the therapeutic strategy against advanced malignancies. Bispecific antibody-based immunotherapies have gained momentum in preclinical and clinical investigations following the regulatory approval of the T cell-redirecting antibody blinatumomab. In this review, we focus on emerging and novel mechanisms of action of bispecific antibodies interacting with immune cells with at least one of their arms to regulate the activity of the immune system by redirecting and/or reactivating effector cells toward tumor cells. These molecules, here referred to as bispecific immunomodulatory antibodies, have the potential to improve clinical efficacy and safety profile and are envisioned as a second wave of cancer immunotherapies. Currently, there are more than 50 bispecific antibodies under clinical development for a range of indications, with promising signs of therapeutic activity. We also discuss two approaches for in vivo secretion, direct gene delivery, and infusion of ex vivo gene-modified cells, which may become instrumental for the clinical application of next-generation bispecific immunomodulatory antibodies.
Collapse
Affiliation(s)
- Belén Blanco
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Carmen Domínguez-Alonso
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain
| | - Luis Alvarez-Vallina
- Cancer Immunotherapy Unit (UNICA), Department of Immunology, Hospital Universitario 12 de Octubre, Madrid, Spain.,Immuno-Oncology and Immunotherapy Group, Instituto de Investigación Sanitaria 12 de Octubre (imas12), Madrid, Spain.,Corresponding Author: Luis Alvarez-Vallina, Cancer Immunotherapy Unit, Hospital Universitario 12 de Octubre, Madrid, 28041, Spain. E-mail:
| |
Collapse
|
29
|
The EHA Research Roadmap: Immune-based Therapies for Hematological Malignancies. Hemasphere 2021; 5:e642. [PMID: 34522844 PMCID: PMC8432635 DOI: 10.1097/hs9.0000000000000642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 08/16/2021] [Indexed: 11/27/2022] Open
Abstract
In 2016, the European Hematology Association (EHA) published the EHA Roadmap for European Hematology Research1 aiming to highlight achievements in the diagnostics and treatment of blood disorders, and to better inform European policy makers and other stakeholders about the urgent clinical and scientific needs and priorities in the field of hematology. Each section was coordinated by 1-2 section editors who were leading international experts in the field. In the 5 years that have followed, advances in the field of hematology have been plentiful. As such, EHA is pleased to present an updated Research Roadmap, now including 11 sections, each of which will be published separately. The updated EHA Research Roadmap identifies the most urgent priorities in hematology research and clinical science, therefore supporting a more informed, focused, and ideally a more funded future for European Hematology Research. the 11 EHA Research Roadmap sections include normal hematopoiesis; malignant lymphoid diseases; malignant myeloid diseases; anemias and related diseases; platelet disorders; blood coagulation and hemostatic disorders; transfusion medicine; infections in hematology; hematopoietic stem cell transplantation; CAR-T and Other cell-based immune therapies; and gene therapy.
Collapse
|
30
|
Krejcik J, Barnkob MB, Nyvold CG, Larsen TS, Barington T, Abildgaard N. Harnessing the Immune System to Fight Multiple Myeloma. Cancers (Basel) 2021; 13:4546. [PMID: 34572773 PMCID: PMC8467095 DOI: 10.3390/cancers13184546] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 12/14/2022] Open
Abstract
Multiple myeloma (MM) is a heterogeneous plasma cell malignancy differing substantially in clinical behavior, prognosis, and response to treatment. With the advent of novel therapies, many patients achieve long-lasting remissions, but some experience aggressive and treatment refractory relapses. So far, MM is considered incurable. Myeloma pathogenesis can broadly be explained by two interacting mechanisms, intraclonal evolution of cancer cells and development of an immunosuppressive tumor microenvironment. Failures in isotype class switching and somatic hypermutations result in the neoplastic transformation typical of MM and other B cell malignancies. Interestingly, although genetic alterations occur and evolve over time, they are also present in premalignant stages, which never progress to MM, suggesting that genetic mutations are necessary but not sufficient for myeloma transformation. Changes in composition and function of the immune cells are associated with loss of effective immune surveillance, which might represent another mechanism driving malignant transformation. During the last decade, the traditional view on myeloma treatment has changed dramatically. It is increasingly evident that treatment strategies solely based on targeting intrinsic properties of myeloma cells are insufficient. Lately, approaches that redirect the cells of the otherwise suppressed immune system to take control over myeloma have emerged. Evidence of utility of this principle was initially established by the observation of the graft-versus-myeloma effect in allogeneic stem cell-transplanted patients. A variety of new strategies to harness both innate and antigen-specific immunity against MM have recently been developed and intensively tested in clinical trials. This review aims to give readers a basic understanding of how the immune system can be engaged to treat MM, to summarize the main immunotherapeutic modalities, their current role in clinical care, and future prospects.
Collapse
Affiliation(s)
- Jakub Krejcik
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Mike Bogetofte Barnkob
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Charlotte Guldborg Nyvold
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
- Haematology-Pathology Research Laboratory, Research Unit for Haematology and Research Unit for Pathology, University of Southern Denmark and Odense University Hospital, 5000 Odense, Denmark
| | - Thomas Stauffer Larsen
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| | - Torben Barington
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Clinical Immunology, Odense University Hospital, 5000 Odense, Denmark
| | - Niels Abildgaard
- Centre for Cellular Immunotherapy of Haematological Cancer Odense (CITCO), Odense University Hospital, 5000 Odense, Denmark; (J.K.); (M.B.B.); (C.G.N.); (T.S.L.); (T.B.)
- Department of Haematology, Odense University Hospital, 5000 Odense, Denmark
- Haematology Research Unit, Department of Clinical Research, University of Southern Denmark, 5000 Odense, Denmark
| |
Collapse
|
31
|
You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee SW. Bispecific Antibodies: A Smart Arsenal for Cancer Immunotherapies. Vaccines (Basel) 2021; 9:724. [PMID: 34358141 PMCID: PMC8310217 DOI: 10.3390/vaccines9070724] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Following the clinical success of cancer immunotherapies such as immune checkpoint inhibitors blocking B7/CTLA-4 or PD-1/PD-L1 signaling and ongoing numerous combination therapies in the clinic,3 bispecific antibodies (BsAbs) are now emerging as a growing class of immunotherapies with the potential to improve clinical efficacy and safety further. Here, we describe four classes of BsAbs: (a) immune effector cell redirectors; (b) tumor-targeted immunomodulators; (c) dual immunomodulators; and (d) dual tumor-targeting BsAbs. This review describes each of these classes of BsAbs and presents examples of BsAbs in development. We reviewed the biological rationales and characteristics of BsAbs and summarized the current status and limitations of clinical development of BsAbs and strategies to overcome limitations. The field of BsAb-based cancer immunotherapy is growing, and more data from clinical trials are accumulating. Thus, BsAbs could be the next generation of new treatment options for cancer patients.
Collapse
Affiliation(s)
- Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Jonghwa Won
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Yangsoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Yunji Park
- Biotechcenter, POSTECH, Pohang 37673, Korea;
| | - Sang Hoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| |
Collapse
|
32
|
Enderle L, Shalaby KH, Gorelik M, Weiss A, Blazer LL, Paduch M, Cardarelli L, Kossiakoff A, Adams JJ, Sidhu SS. A T cell redirection platform for co-targeting dual antigens on solid tumors. MAbs 2021; 13:1933690. [PMID: 34190031 PMCID: PMC8253144 DOI: 10.1080/19420862.2021.1933690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
In order to direct T cells to specific features of solid cancer cells, we engineered a bispecific antibody format, named Dual Antigen T cell Engager (DATE), by fusing a single-chain variable fragment targeting CD3 to a tumor-targeting antigen-binding fragment. In this format, multiple novel paratopes against different tumor antigens were able to recruit T-cell cytotoxicity to tumor cells in vitro and in an in vivo pancreatic ductal adenocarcinoma xenograft model. Since unique surface antigens in solid tumors are limited, in order to enhance selectivity, we further engineered “double-DATEs” targeting two tumor antigens simultaneously. The double-DATE contains an additional autonomous variable heavy-chain domain, which binds a second tumor antigen without itself eliciting a cytotoxic response. This novel modality provides a strategy to enhance the selectivity of immune redirection through binary targeting of native tumor antigens. The modularity and use of a common, stable human framework for all components enables a pipeline approach to rapidly develop a broad repertoire of tailored DATEs and double-DATEs with favorable biophysical properties and high potencies and selectivities.
Collapse
Affiliation(s)
- Leonie Enderle
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Karim H Shalaby
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Maryna Gorelik
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Alexander Weiss
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Levi L Blazer
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Marcin Paduch
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA
| | - Lia Cardarelli
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Anthony Kossiakoff
- Institute for Biophysical Dynamics, Gordon Center for Integrative Science, Chicago, USA.,Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, USA
| | - Jarrett J Adams
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sachdev S Sidhu
- Donnelly Centre, University of Toronto, Toronto, Canada.,Department of Molecular Genetics, University of Toronto, Toronto, Canada
| |
Collapse
|
33
|
Affiliation(s)
- Ulrich Brinkmann
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Nonnenwald 2, 82377 Penzberg, Germany.
| | - Roland E Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Allmandring 31, 70569 Stuttgart, Germany.
| |
Collapse
|
34
|
Elshiaty M, Schindler H, Christopoulos P. Principles and Current Clinical Landscape of Multispecific Antibodies against Cancer. Int J Mol Sci 2021; 22:5632. [PMID: 34073188 PMCID: PMC8198225 DOI: 10.3390/ijms22115632] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 05/19/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023] Open
Abstract
Building upon the resounding therapeutic success of monoclonal antibodies, and supported by accelerating progress in engineering methods, the field of multispecific therapeutic antibodies is growing rapidly. Over 140 different molecules are currently in clinical testing, with excellent results in recent phase 1-3 clinical trials for several of them. Multivalent bispecific IgG-modified formats predominate today, with a clear tendency for more target antigens and further increased valency in newer constructs. The strategies to augment anticancer efficacy are currently equally divided between disruption of multiple surface antigens, and additional redirection of cytotoxic T or NK lymphocytes against the tumor. Both effects complement other modern modalities, such as tyrosine kinase inhibitors and adoptive cell therapies, with which multispecifics are increasingly applied in combination or merged, for example, in the form of antibody producing CAR-T cells and oncolytics. While mainly focused on B-cell malignancies early on, the contemporary multispecific antibody sector accommodates twice as many trials against solid compared to hematologic cancers. An exciting emerging prospect is the targeting of intracellular neoantigens using T-cell receptor (TCR) fusion proteins or TCR-mimic antibody fragments. Considering the fact that introduction of PD-(L)1 inhibitors only a few years ago has already facilitated 5-year survival rates of 30-50% for per se highly lethal neoplasms, such as metastatic melanoma and non-small-cell lung carcinoma, the upcoming enforcement of current treatments with "next-generation" immunotherapeutics, offers a justified hope for the cure of some advanced cancers in the near future.
Collapse
Affiliation(s)
- Mariam Elshiaty
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| | - Hannah Schindler
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| | - Petros Christopoulos
- Thoraxklinik and National Center for Tumor Diseases (NCT) at Heidelberg University Hospital, 69126 Heidelberg, Germany; (M.E.); (H.S.)
- Translational Lung Cancer Center Heidelberg, Member of the German Center for Lung Research (DZL), 69126 Heidelberg, Germany
| |
Collapse
|
35
|
Schwerdtfeger M, Benmebarek MR, Endres S, Subklewe M, Desiderio V, Kobold S. Chimeric Antigen Receptor-Modified T Cells and T Cell-Engaging Bispecific Antibodies: Different Tools for the Same Job. Curr Hematol Malig Rep 2021; 16:218-233. [PMID: 33939108 PMCID: PMC8154758 DOI: 10.1007/s11899-021-00628-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW Both chimeric antigen receptor (CAR) T cells and T cell-engaging antibodies (BiAb) have been approved for the treatment of hematological malignancies. However, despite targeting the same antigen, they represent very different classes of therapeutics, each with its distinct advantages and drawbacks. In this review, we compare BiAb and CAR T cells with regard to their mechanism of action, manufacturing, and clinical application. In addition, we present novel strategies to overcome limitations of either approach and to combine the best of both worlds. RECENT FINDINGS By now there are multiple approaches combining the advantages of BiAb and CAR T cells. A major area of research is the application of both formats for solid tumor entities. This includes improving the infiltration of T cells into the tumor, counteracting immunosuppression in the tumor microenvironment, targeting antigen heterogeneity, and limiting off-tumor on-target effects. BiAb come with the major advantage of being an off-the-shelf product and are more controllable because of their half-life. They have also been reported to induce less frequent and less severe adverse events. CAR T cells in turn demonstrate superior response rates, have the potential for long-term persistence, and can be additionally genetically modified to overcome some of their limitations, e.g., to make them more controllable.
Collapse
MESH Headings
- Animals
- Antibodies, Bispecific/genetics
- Antibodies, Bispecific/immunology
- Antigens, Neoplasm/immunology
- Genetic Engineering
- Humans
- Immunotherapy, Adoptive/adverse effects
- Immunotherapy, Adoptive/methods
- Lymphocyte Activation/immunology
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Neoplasms/etiology
- Neoplasms/therapy
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- Signal Transduction
- T-Lymphocyte Subsets/immunology
- T-Lymphocyte Subsets/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Microenvironment/genetics
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Melanie Schwerdtfeger
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Mohamed-Reda Benmebarek
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| | - Marion Subklewe
- Department of Medicine III, Klinikum der Universität München, LMU Munich, Munich, Germany
| | - Vincenzo Desiderio
- Department of Experimental Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Sebastian Kobold
- Center of Integrated Protein Science Munich (CIPS-M) and Division of Clinical Pharmacology, Department of Medicine IV, Klinikum der Universität München, LMU Munich, Munich, Germany
- German Center for Translational Cancer Research (DKTK), Munich, Germany
- Einheit für Klinische Pharmakologie (EKLiP), Helmholtz Zentrum München, German Research Center for Environmental Health (HMGU), Neuherberg, Germany
| |
Collapse
|
36
|
Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer 2021; 124:1037-1048. [PMID: 33469153 PMCID: PMC7960983 DOI: 10.1038/s41416-020-01225-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023] Open
Abstract
The development of bispecific antibodies that redirect the cytotoxic activity of CD3+ T cells to tumours is a promising immunotherapeutic strategy for the treatment of haematological malignancies and solid cancers. Since the landmark FDA approval at the end of 2014 of the anti-CD3 × anti-CD19 bispecific antibody blinatumomab (Blincyto®) for the treatment of relapsed/refractory B-cell acute lymphoblastic leukaemia, ~100 clinical trials investigating the safety and efficacy of CD3+ bispecific T-cell redirectors for cancer have been initiated. However, despite early success, numerous challenges pertaining to CD3+ T-cell redirection in the context of cancer exist, including the recruitment of counterproductive CD3+ T-cell subsets, the release of systemic cytokines, the expansion of immune checkpoint molecules, the presence of an immunosuppressive tumour microenvironment, tumour antigen loss/escape, on-target off-tumour toxicity and suboptimal potency. The aim of the present review is to discuss novel approaches to overcome the key challenges associated with CD3+ bispecific T-cell redirection in order to achieve an optimal balance of anti-tumour activity and safety.
Collapse
Affiliation(s)
- Ajit Singh
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
| |
Collapse
|
37
|
Middelburg J, Kemper K, Engelberts P, Labrijn AF, Schuurman J, van Hall T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers (Basel) 2021; 13:287. [PMID: 33466732 PMCID: PMC7829968 DOI: 10.3390/cancers13020287] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/08/2021] [Accepted: 01/10/2021] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy of cancer with CD3-bispecific antibodies is an approved therapeutic option for some hematological malignancies and is under clinical investigation for solid cancers. However, the treatment of solid tumors faces more pronounced hurdles, such as increased on-target off-tumor toxicities, sparse T-cell infiltration and impaired T-cell quality due to the presence of an immunosuppressive tumor microenvironment, which affect the safety and limit efficacy of CD3-bispecific antibody therapy. In this review, we provide a brief status update of the CD3-bispecific antibody therapy field and identify intrinsic hurdles in solid cancers. Furthermore, we describe potential combinatorial approaches to overcome these challenges in order to generate selective and more effective responses.
Collapse
Affiliation(s)
- Jim Middelburg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Kristel Kemper
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Patrick Engelberts
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Aran F. Labrijn
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Janine Schuurman
- Genmab, 3584 CT Utrecht, The Netherlands; (K.K.); (P.E.); (A.F.L.); (J.S.)
| | - Thorbald van Hall
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| |
Collapse
|
38
|
Geis M, Nowotny B, Bohn MD, Kouhestani D, Einsele H, Bumm T, Stuhler G. Combinatorial targeting of multiple myeloma by complementing T cell engaging antibody fragments. Commun Biol 2021; 4:44. [PMID: 33420283 PMCID: PMC7794243 DOI: 10.1038/s42003-020-01558-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 11/30/2020] [Indexed: 01/08/2023] Open
Abstract
Bispecific T cell engaging antibodies (BiTEs) address tumor associated antigens that are over-expressed on cancer but that can also be found on healthy tissues, causing substantial on-target/off-tumor toxicities. To overcome this hurdle, we recently introduced hemibodies, a pair of complementary antibody fragments that redirect T cells against cancer-defining antigen combinations. Here we show that hemibodies addressing CD38 and SLAMF7 recruit T cells for the exquisite elimination of dual antigen positive multiple myeloma cells while leaving single antigen positive bystanders unharmed. Moreover, CD38 and SLAMF7 targeting BiTEs, but not hemibodies induce massive cytokine release and T cell fratricide reactions, a major drawback of T cell recruiting strategies. Together, we provide evidence in vitro and in vivo that hemibodies can be developed for the effective and highly specific immunotherapy of multiple myeloma. Geis et al. investigate the potential application of hemibodies, a pair of complementary antibody fragments that redirect T cells against cancer-defining antigen combinations, such as CD38 and SLAMF7, to target multiple myeloma. Their study provides evidence that hemibodies can be developed for effective immunotherapy against multiple myeloma.
Collapse
Affiliation(s)
- Maria Geis
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Boris Nowotny
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Marc-Dominic Bohn
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Dina Kouhestani
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Thomas Bumm
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Gernot Stuhler
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
39
|
Gaissmaier L, Christopoulos P. Immune Modulation in Lung Cancer: Current Concepts and Future Strategies. Respiration 2020; 99:1-27. [PMID: 33291116 DOI: 10.1159/000510385] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/10/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer immunotherapy represents the most dynamic field of biomedical research currently, with thoracic immuno-oncology as a forerunner. PD-(L)1 inhibitors are already part of standard first-line treatment for both non-small-cell and small-cell lung cancer, while unprecedented 5-year survival rates of 15-25% have been achieved in pretreated patients with metastatic disease. Evolving strategies are mainly aiming for improvement of T-cell function, increase of immune activation in the tumor microenvironment (TME), and supply of tumor-reactive lymphocytes. Several novel therapeutics have demonstrated preclinical efficacy and are increasingly used in rational combinations within clinical trials. Two overarching trends dominate: extension of immunotherapy to earlier disease stages, mainly as neoadjuvant treatment, and a shift of focus towards multivalent, individualized, mutatome-based antigen-specific modalities, mainly adoptive cell therapies and cancer vaccines. The former ensures ample availability of treated and untreated patient samples, the latter facilitates deeper mechanistic insights, and both in combination build an overwhelming force that is accelerating progress and driving the greatest revolution cancer medicine has seen so far. Today, immune modulation represents the most potent therapeutic modality in oncology, the most important topic in clinical and translational cancer research, and arguably our greatest, meanwhile justified hope for achieving cure of pulmonary neoplasms and other malignancies in the next future.
Collapse
Affiliation(s)
- Lena Gaissmaier
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Petros Christopoulos
- Department of Thoracic Oncology, Thoraxklinik at Heidelberg University Hospital, Heidelberg, Germany,
- Translational Lung Research Center Heidelberg (TLRC-H), German Center for Lung Research (DZL), Heidelberg, Germany,
| |
Collapse
|
40
|
Huang S, van Duijnhoven SMJ, Sijts AJAM, van Elsas A. Bispecific antibodies targeting dual tumor-associated antigens in cancer therapy. J Cancer Res Clin Oncol 2020; 146:3111-3122. [PMID: 32989604 PMCID: PMC7679314 DOI: 10.1007/s00432-020-03404-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Bispecific antibodies (BsAbs) have emerged as a leading drug class for cancer therapy and are becoming increasingly of interest for therapeutic applications. As of April 2020, over 123 BsAbs are under clinical evaluation for use in oncology (including the two marketed BsAbs Blinatumomab and Catumaxomab). The majority (82 of 123) of BsAbs under clinical evaluation can be categorized as bispecific immune cell engager whereas a second less well-discussed subclass of BsAbs targets two tumor-associated antigens (TAAs). In this review, we summarize the clinical development of dual TAAs targeting BsAbs and provide an overview of critical considerations when designing dual TAA targeting BsAbs. METHODS Herein the relevant literature and clinical trials published in English until April 1st 2020 were searched using PubMed and ClinicalTrials.gov database. BsAbs were considered to be active in clinic if their clinical trials were not terminated, withdrawn or completed before 2018 without reporting results. Data missed by searching ClinicalTrials.gov was manually curated. RESULTS Dual TAAs targeting BsAbs offer several advantages including increased tumor selectivity, potential to concurrently modulate two functional pathways in the tumor cell and may yield improved payload delivery. CONCLUSIONS Dual TAAs targeting BsAbs represent a valuable class of biologics and early stage clinical studies have demonstrated promising anti-tumor efficacy in both hematologic malignancies and solid tumors.
Collapse
Affiliation(s)
- Shuyu Huang
- Aduro Biotech Europe, Oss, The Netherlands
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | | - Alice J A M Sijts
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, The Netherlands
| | | |
Collapse
|
41
|
Kouhestani D, Geis M, Alsouri S, Bumm TGP, Einsele H, Sauer M, Stuhler G. Variant signaling topology at the cancer cell-T-cell interface induced by a two-component T-cell engager. Cell Mol Immunol 2020; 18:1568-1570. [PMID: 32709925 PMCID: PMC8166904 DOI: 10.1038/s41423-020-0507-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Affiliation(s)
- Dina Kouhestani
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Maria Geis
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Saed Alsouri
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Thomas G P Bumm
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Hermann Einsele
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany
| | - Markus Sauer
- Department of Biotechnology and Biophysics, University Würzburg, Würzburg, Germany
| | - Gernot Stuhler
- Department of Internal Medicine II, Hematology and Oncology, University Clinic Würzburg, Würzburg, Germany.
| |
Collapse
|
42
|
Zhou X, Einsele H, Danhof S. Bispecific Antibodies: A New Era of Treatment for Multiple Myeloma. J Clin Med 2020; 9:jcm9072166. [PMID: 32659909 PMCID: PMC7408718 DOI: 10.3390/jcm9072166] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 07/02/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023] Open
Abstract
Despite the introduction of novel agents such as proteasome inhibitors, immunomodulatory drugs, and autologous stem cell transplant, multiple myeloma (MM) largely remains an incurable disease. In recent years, monoclonal antibody-based treatment strategies have been developed to target specific surface antigens on MM cells. Treatment with bispecific antibodies (bsAbs) is an immunotherapeutic strategy that leads to an enhanced interaction between MM cells and immune effector cells, e.g., T-cells and natural killer cells. With the immune synapse built by bsAbs, the elimination of MM cells can be facilitated. To date, bsAbs have demonstrated encouraging results in preclinical studies, and clinical trials evaluating bsAbs in patients with MM are ongoing. Early clinical data show the promising efficacy of bsAbs in relapsed/refractory MM. Together with chimeric antigen receptor-modified (CAR)-T-cells, bsAbs represent a new dimension of precision medicine. In this review, we provide an overview of rationale, current clinical development, resistance mechanisms, and future directions of bsAbs in MM.
Collapse
|
43
|
Caraccio C, Krishna S, Phillips DJ, Schürch CM. Bispecific Antibodies for Multiple Myeloma: A Review of Targets, Drugs, Clinical Trials, and Future Directions. Front Immunol 2020; 11:501. [PMID: 32391000 PMCID: PMC7193016 DOI: 10.3389/fimmu.2020.00501] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Accepted: 03/04/2020] [Indexed: 12/15/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy and the second most common hematological neoplasm in adults, comprising 1.8% of all cancers. With an annual incidence of ~30,770 cases in the United States, MM has a high mortality rate, leading to 12,770 deaths per year. MM is a genetically complex, highly heterogeneous malignancy, with significant inter- and intra-patient clonal variability. Recent years have witnessed dramatic improvements in the diagnostics, classification, and treatment of MM. However, patients with high-risk disease have not yet benefited from therapeutic advances. High-risk patients are often primary refractory to treatment or relapse early, ultimately resulting in progression toward aggressive end-stage MM, with associated extramedullary disease or plasma cell leukemia. Therefore, novel treatment modalities are needed to improve the outcomes of these patients. Bispecific antibodies (BsAbs) are immunotherapeutics that simultaneously target and thereby redirect effector immune cells to tumor cells. BsAbs have shown high efficacy in B cell malignancies, including refractory/relapsed acute lymphoblastic leukemia. Various BsAbs targeting MM-specific antigens such as B cell maturation antigen (BCMA), CD38, and CD138 are currently in pre-clinical and clinical development, with promising results. In this review, we outline these advances, focusing on BsAb drugs, their targets, and their potential to improve survival, especially for high-risk MM patients. In combination with current treatment strategies, BsAbs may pave the way toward a cure for MM.
Collapse
|