1
|
Bankolé A, Srivastava A, Shihavuddin A, Tighanimine K, Faucourt M, Koka V, Weill S, Nemazanyy I, Nelson AJ, Stokes MP, Delgehyr N, Genovesio A, Meunier A, Fumagalli S, Pende M, Spassky N. mTOR controls ependymal cell differentiation by targeting the alternative cell cycle and centrosomal proteins. EMBO Rep 2025:10.1038/s44319-025-00460-2. [PMID: 40307619 DOI: 10.1038/s44319-025-00460-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/18/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025] Open
Abstract
Ependymal cells are multiciliated glial cells lining the ventricles of the mammalian brain. Their differentiation from progenitor cells involves cell enlargement and progresses through centriole amplification phases and ciliogenesis. These phases are accompanied by the sharp up-regulation of mTOR Complex 1 activity (mTORC1), a master regulator of macromolecule biosynthesis and cell growth, whose function in ependymal cell differentiation is unknown. We demonstrate that mTORC1 inhibition by rapamycin preserves the progenitor pool by reinforcing quiescence and preventing alternative cell cycle progression for centriole amplification. Overexpressing E2F4 and MCIDAS circumvents mTORC1-regulated processes, enabling centriole amplification despite rapamycin, and enhancing mTORC1 activity through positive feedback. Acute rapamycin treatment in multicentriolar cells during the late phases of differentiation causes centriole regrouping, indicating a direct role of mTORC1 in centriole dynamics. By phosphoproteomic and phosphomutant analysis, we reveal that the mTORC1-mediated phosphorylation of GAS2L1, a centrosomal protein that links actin and microtubule cytoskeletons, participates in centriole disengagement. This multilayered and sequential control of ependymal development by mTORC1, from the progenitor pool to centriolar function, has implications for pathophysiological conditions like aging and hydrocephalus-prone genetic diseases.
Collapse
Affiliation(s)
- Alexia Bankolé
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Ayush Srivastava
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Asm Shihavuddin
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
- Department of EEE, Presidency University, Dhaka, Bangladesh
| | - Khaled Tighanimine
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Marion Faucourt
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Vonda Koka
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Solene Weill
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Ivan Nemazanyy
- Platform for Metabolic Analyses, Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR 3633, Paris, France
| | - Alissa J Nelson
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Matthew P Stokes
- Cell Signaling Technology INC, 3 Trask Lane, Danvers, MA, 01923, USA
| | - Nathalie Delgehyr
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Auguste Genovesio
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Computational bioimaging and bioinformatics, 75005, Paris, France
| | - Alice Meunier
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France
| | - Stefano Fumagalli
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France
| | - Mario Pende
- Université Paris Cité, CNRS, INSERM, Institut Necker Enfants Malades-INEM, F-75015, Paris, France.
| | - Nathalie Spassky
- Institut de Biologie de l'Ecole Normale Superieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM, Université PSL, Team Cilia Biology and neurogenesis, 75005, Paris, France.
| |
Collapse
|
2
|
Zheng X, Zhou L, Xu T, Wang G, Peng Y, Wen C, Wu M, Tao H, Dai Y. Applications and prospects of phosphoproteomics in renal disease research. PeerJ 2025; 13:e18950. [PMID: 40124608 PMCID: PMC11930217 DOI: 10.7717/peerj.18950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 01/16/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Phosphoproteomics, an advanced branch of molecular biology, utilizes specific techniques such as mass spectrometry, affinity chromatography, and bioinformatics analysis to explore protein phosphorylation, shedding light on the cellular mechanisms that drive various biological processes. This field has become instrumental in advancing our understanding of renal diseases, from identifying underlying mechanisms to pinpointing new therapeutic targets. Areas covered This review will discuss the evolution of phosphoproteomics from its early experimental observations to its current application in renal disease research using liquid chromatography-tandem mass spectrometry (LC-MS/MS). We will explore its role in the identification of disease biomarkers, the elucidation of pathogenic mechanisms, and the development of novel therapeutic strategies. Additionally, the potential of phosphoproteomics in enhancing drug discovery and improving treatment outcomes for renal diseases will be highlighted. Expert opinion Phosphoproteomics is rapidly transforming renal disease research by offering unprecedented insights into cellular processes. Utilizing techniques such as LC-MS/MS, it enables the identification of novel biomarkers and therapeutic targets, enhancing our understanding of drug mechanisms. This field promises significant advancements in the diagnosis and treatment of renal diseases, shifting towards more personalized and effective therapeutic strategies. As the technology evolves, its integration into clinical practice is pivotal for revolutionizing renal healthcare.
Collapse
Affiliation(s)
- XueJia Zheng
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
| | - LingLing Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - TianTian Xu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - GuoYing Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - YaLi Peng
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - ChunMei Wen
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - MengYao Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - HuiHui Tao
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| | - Yong Dai
- The First Affiliated Hospital of Anhui University of Science and Technology, Huainan, Anhui, China
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Huainan, Anhui, China
- Key Laboratory of Industrial Dust Deep Reduction and Occupational Health and Safety of Anhui Higher Education Institutes, Huainan, Anhui, China
| |
Collapse
|
3
|
Alesi N, Asrani K, Lotan TL, Henske EP. The Spectrum of Renal "TFEopathies": Flipping the mTOR Switch in Renal Tumorigenesis. Physiology (Bethesda) 2024; 39:0. [PMID: 39012319 DOI: 10.1152/physiol.00026.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024] Open
Abstract
The mammalian target of Rapamycin complex 1 (mTORC1) is a serine/threonine kinase that couples nutrient and growth factor signaling to the cellular control of metabolism and plays a fundamental role in aberrant proliferation in cancer. mTORC1 has previously been considered an "on/off" switch, capable of phosphorylating the entire pool of its substrates when activated. However, recent studies have indicated that mTORC1 may be active toward its canonical substrates, eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1) and S6 kinase (S6K), involved in mRNA translation and protein synthesis, and inactive toward TFEB and TFE3, transcription factors involved in the regulation of lysosome biogenesis, in several pathological contexts. Among these conditions are Birt-Hogg-Dubé syndrome (BHD) and, recently, tuberous sclerosis complex (TSC). Furthermore, increased TFEB and TFE3 nuclear localization in these syndromes, and in translocation renal cell carcinomas (tRCC), drives mTORC1 activity toward the canonical substrates, through the transcriptional activation of the Rag GTPases, thereby positioning TFEB and TFE3 upstream of mTORC1 activity toward 4EBP1 and S6K. The expanding importance of TFEB and TFE3 in the pathogenesis of these renal diseases warrants a novel clinical grouping that we term "TFEopathies." Currently, there are no therapeutic options directly targeting TFEB and TFE3, which represents a challenging and critically required avenue for cancer research.
Collapse
Affiliation(s)
- Nicola Alesi
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Kaushal Asrani
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Tamara L Lotan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Elizabeth P Henske
- Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
4
|
Swaroop V, Ozkan E, Herrmann L, Thurman A, Kopasz-Gemmen O, Kunamneni A, Inoki K. mTORC1 signaling and diabetic kidney disease. Diabetol Int 2024; 15:707-718. [PMID: 39469564 PMCID: PMC11512951 DOI: 10.1007/s13340-024-00738-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 05/26/2024] [Indexed: 10/30/2024]
Abstract
Diabetic kidney disease (DKD) represents the most lethal complication in both type 1 and type 2 diabetes. The disease progresses without obvious symptoms and is often refractory when apparent symptoms have emerged. Although the molecular mechanisms underlying the onset/progression of DKD have been extensively studied, only a few effective therapies are currently available. Pathogenesis of DKD involves multifaced events caused by diabetes, which include alterations of metabolisms, signals, and hemodynamics. While the considerable efficacy of sodium/glucose cotransporter-2 (SGLT2) inhibitors or angiotensin II receptor blockers (ARBs) for DKD has been recognized, the ever-increasing number of patients with diabetes and DKD warrants additional practical therapeutic approaches that prevent DKD from diabetes. One plausible but promising target is the mechanistic target of the rapamycin complex 1 (mTORC1) signaling pathway, which senses cellular nutrients to control various anabolic and catabolic processes. This review introduces the current understanding of the mTOR signaling pathway and its roles in the development of DKD and other chronic kidney diseases (CKDs), and discusses potential therapeutic approaches targeting this pathway for the future treatment of DKD.
Collapse
Affiliation(s)
- Vinamra Swaroop
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Eden Ozkan
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Lydia Herrmann
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | - Aaron Thurman
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
| | | | | | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
5
|
Zhao S, Hao S, Zhou J, Chen X, Zhang T, Qi Z, Zhang T, Jalal S, Zhai C, Yin L, Bo Y, Teng H, Wang Y, Gao D, Zhang H, Huang L. mTOR/miR-142-3p/PRAS40 signaling cascade is critical for tuberous sclerosis complex-associated renal cystogenesis. Cell Mol Biol Lett 2024; 29:125. [PMID: 39333852 PMCID: PMC11429883 DOI: 10.1186/s11658-024-00638-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Patients with tuberous sclerosis complex (TSC) develop renal cysts and/or angiomyolipomas (AMLs) due to inactive mutations of either TSC1 or TSC2 and consequential mTOR hyperactivation. The molecular events between activated mTOR and renal cysts/AMLs are still largely unknown. METHODS The mouse model of TSC-associated renal cysts were constructed by knocking out Tsc2 specifically in renal tubules (Tsc2f/f; ksp-Cre). We further globally deleted PRAS40 in these mice to investigate the role of PRAS40. Tsc2-/- cells were used as mTOR activation model cells. Inhibition of DNA methylation was used to increase miR-142-3p expression to examine the effects of miR-142-3p on PRAS40 expression and TSC-associated renal cysts. RESULTS PRAS40, a component of mTOR complex 1, was overexpressed in Tsc2-deleted cell lines and mouse kidneys (Tsc2f/f; ksp-Cre), which was decreased by mTOR inhibition. mTOR stimulated PRAS40 expression through suppression of miR-142-3p expression. Unleashed PRAS40 was critical to the proliferation of Tsc2-/- cells and the renal cystogenesis of Tsc2f/f; ksp-Cre mice. In contrast, inhibition of DNA methylation increased miR-142-3p expression, decreased PRAS40 expression, and hindered cell proliferation and renal cystogenesis. CONCLUSIONS Our data suggest that mTOR activation caused by TSC2 deletion increases PRAS40 expression through miR-142-3p repression. PRAS40 depletion or the pharmacological induction of miR-142-3p expression impaired TSC2 deficiency-associated renal cystogenesis. Therefore, harnessing mTOR/miR-142-3p/PRAS40 signaling cascade may mitigate hyperactivated mTOR-related diseases.
Collapse
Affiliation(s)
- Shuyun Zhao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Shuai Hao
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Jiasheng Zhou
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Xinran Chen
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Tianhua Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Zhaolai Qi
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Ting Zhang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Sajid Jalal
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Chuanxin Zhai
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Lu Yin
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yufei Bo
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongming Teng
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Yue Wang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Dongyan Gao
- Department of Pharmacology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China
| | - Hongbing Zhang
- State Key Laboratory of Common Mechanism Research for Major Diseases, Haihe Laboratory of Cell Ecosystem, Department of Physiology, Institute of Basic Medical Sciences and School of Basic Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, People's Republic of China
| | - Lin Huang
- Department of Pathophysiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
- Liaoning Provincial Key Laboratory of Medical Cellular and Molecular Biology, Dalian Medical University, Dalian, 116044, Liaoning, People's Republic of China.
| |
Collapse
|
6
|
Barone S, Zahedi K, Brooks M, Soleimani M. Carbonic Anhydrase 2 Deletion Delays the Growth of Kidney Cysts Whereas Foxi1 Deletion Completely Abrogates Cystogenesis in TSC. Int J Mol Sci 2024; 25:4772. [PMID: 38731991 PMCID: PMC11084925 DOI: 10.3390/ijms25094772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Tuberous sclerosis complex (TSC) presents with renal cysts and benign tumors, which eventually lead to kidney failure. The factors promoting kidney cyst formation in TSC are poorly understood. Inactivation of carbonic anhydrase 2 (Car2) significantly reduced, whereas, deletion of Foxi1 completely abrogated the cyst burden in Tsc1 KO mice. In these studies, we contrasted the ontogeny of cyst burden in Tsc1/Car2 dKO mice vs. Tsc1/Foxi1 dKO mice. Compared to Tsc1 KO, the Tsc1/Car2 dKO mice showed few small cysts at 47 days of age. However, by 110 days, the kidneys showed frequent and large cysts with overwhelming numbers of A-intercalated cells in their linings. The magnitude of cyst burden in Tsc1/Car2 dKO mice correlated with the expression levels of Foxi1 and was proportional to mTORC1 activation. This is in stark contrast to Tsc1/Foxi1 dKO mice, which showed a remarkable absence of kidney cysts at both 47 and 110 days of age. RNA-seq data pointed to profound upregulation of Foxi1 and kidney-collecting duct-specific H+-ATPase subunits in 110-day-old Tsc1/Car2 dKO mice. We conclude that Car2 inactivation temporarily decreases the kidney cyst burden in Tsc1 KO mice but the cysts increase with advancing age, along with enhanced Foxi1 expression.
Collapse
Affiliation(s)
- Sharon Barone
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Kamyar Zahedi
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Marybeth Brooks
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Manoocher Soleimani
- Research Services, New Mexico Veterans Health Care System, Albuquerque, NM 87108, USA; (S.B.); (K.Z.); (M.B.)
- Department of Medicine, Division of Nephrology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
7
|
Zhang Y, Cheng X, Wu L, Li J, Liu C, Wei M, Zhu C, Huang H, Lin W. Pharmacological inhibition of S6K1 rescues synaptic deficits and attenuates seizures and depression in chronic epileptic rats. CNS Neurosci Ther 2024; 30:e14475. [PMID: 37736829 PMCID: PMC10945394 DOI: 10.1111/cns.14475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 08/11/2023] [Accepted: 08/27/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Recent studies have shown that mTOR signaling plays an important role in synaptic plasticity. However, the function of S6K1, the mechanistic target of rapamycin kinase complex 1 (mTORC1) substrate, in epilepsy remains unknown. AIMS Our present study aimed to explore the mechanism by which S6K1 is involved in chronic epilepsy. METHODS First, immunostaining was used to measure neurite length and complexity in kainic acid (KA)-treated primary cultured neurons treated with PF-4708671, a highly selective S6K1 inhibitor. We obtained evidence for the role of S6K1 in protecting and promoting neuronal growth and development in vitro. Next, to explore the function and mechanism of the S6K1 inhibitor in epilepsy, a pilocarpine-induced chronic epileptic rat model was established. In vivo electrophysiology (including local field potentiation in CA1 and long-term potentiation), depression/anxiety-like behavior tests, and Golgi staining were performed to assess seizure behavior, power spectral density, depression/anxiety-like behavior, and synaptic plasticity. Furthermore, western blotting was applied to explore the potential molecular mechanisms. RESULTS We found that inhibition of S6K1 expression significantly decreased seizures and depression-like behavior and restored power at low frequencies (1-80 Hz), especially in the delta, theta, and alpha bands, in chronic epileptic rats. In addition, PF-4708671 reversed the LTP defect in hippocampal CA3-CA1 and corrected spine loss and dendritic pathology. CONCLUSION In conclusion, our data suggest that inhibition of S6K1 attenuates seizures and depression in chronic epileptic rats via the rescue of synaptic structural and functional deficits. Given the wide range of physiological functions of mTOR, inhibition of its effective but relatively simple functional downstream molecules is a promising target for the development of drugs for epilepsy.
Collapse
Affiliation(s)
- Yuying Zhang
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Xiaojuan Cheng
- Fujian Medical University Second Affiliated HospitalQuanzhouChina
| | - Luyan Wu
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Juan Li
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Changyun Liu
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Mingjia Wei
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Chaofeng Zhu
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Huapin Huang
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| | - Wanhui Lin
- Fujian Medical University Union HospitalFuzhouChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhouChina
| |
Collapse
|
8
|
Alesi N, Khabibullin D, Rosenthal DM, Akl EW, Cory PM, Alchoueiry M, Salem S, Daou M, Gibbons WF, Chen JA, Zhang L, Filippakis H, Graciotti L, Miceli C, Monfregola J, Vilardo C, Morroni M, Di Malta C, Napolitano G, Ballabio A, Henske EP. TFEB drives mTORC1 hyperactivation and kidney disease in Tuberous Sclerosis Complex. Nat Commun 2024; 15:406. [PMID: 38195686 PMCID: PMC10776564 DOI: 10.1038/s41467-023-44229-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 12/05/2023] [Indexed: 01/11/2024] Open
Abstract
Tuberous Sclerosis Complex (TSC) is caused by TSC1 or TSC2 mutations, leading to hyperactivation of mechanistic target of rapamycin complex 1 (mTORC1) and lesions in multiple organs including lung (lymphangioleiomyomatosis) and kidney (angiomyolipoma and renal cell carcinoma). Previously, we found that TFEB is constitutively active in TSC. Here, we generated two mouse models of TSC in which kidney pathology is the primary phenotype. Knockout of TFEB rescues kidney pathology and overall survival, indicating that TFEB is the primary driver of renal disease in TSC. Importantly, increased mTORC1 activity in the TSC2 knockout kidneys is normalized by TFEB knockout. In TSC2-deficient cells, Rheb knockdown or Rapamycin treatment paradoxically increases TFEB phosphorylation at the mTORC1-sites and relocalizes TFEB from nucleus to cytoplasm. In mice, Rapamycin treatment normalizes lysosomal gene expression, similar to TFEB knockout, suggesting that Rapamycin's benefit in TSC is TFEB-dependent. These results change the view of the mechanisms of mTORC1 hyperactivation in TSC and may lead to therapeutic avenues.
Collapse
Affiliation(s)
- Nicola Alesi
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Damir Khabibullin
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Dean M Rosenthal
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Elie W Akl
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pieter M Cory
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michel Alchoueiry
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Samer Salem
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Melissa Daou
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - William F Gibbons
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Jennifer A Chen
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Long Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Harilaos Filippakis
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura Graciotti
- Section of Experimental and Technical Sciences, Department of Biomedical Sciences and Public Health, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | | | | | | | - Manrico Morroni
- Section of Neuroscience and Cell Biology, Department of Experimental and Clinical Medicine, School of Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Gennaro Napolitano
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
- SSM School for Advanced Studies, Federico II University, Naples, Italy
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine, Naples, Italy.
- Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy.
- SSM School for Advanced Studies, Federico II University, Naples, Italy.
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA.
| | - Elizabeth P Henske
- Pulmonary and Critical Care Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Ebner M, Puchkov D, López-Ortega O, Muthukottiappan P, Su Y, Schmied C, Zillmann S, Nikonenko I, Koddebusch J, Dornan GL, Lucht MT, Koka V, Jang W, Koch PA, Wallroth A, Lehmann M, Brügger B, Pende M, Winter D, Haucke V. Nutrient-regulated control of lysosome function by signaling lipid conversion. Cell 2023; 186:5328-5346.e26. [PMID: 37883971 DOI: 10.1016/j.cell.2023.09.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 08/04/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
Lysosomes serve dual antagonistic functions in cells by mediating anabolic growth signaling and the catabolic turnover of macromolecules. How these janus-faced activities are regulated in response to cellular nutrient status is poorly understood. We show here that lysosome morphology and function are reversibly controlled by a nutrient-regulated signaling lipid switch that triggers the conversion between peripheral motile mTOR complex 1 (mTORC1) signaling-active and static mTORC1-inactive degradative lysosomes clustered at the cell center. Starvation-triggered relocalization of phosphatidylinositol 4-phosphate (PI(4)P)-metabolizing enzymes reshapes the lysosomal surface proteome to facilitate lysosomal proteolysis and to repress mTORC1 signaling. Concomitantly, lysosomal phosphatidylinositol 3-phosphate (PI(3)P), which marks motile signaling-active lysosomes in the cell periphery, is erased. Interference with this PI(3)P/PI(4)P lipid switch module impairs the adaptive response of cells to altering nutrient supply. Our data unravel a key function for lysosomal phosphoinositide metabolism in rewiring organellar membrane dynamics in response to cellular nutrient status.
Collapse
Affiliation(s)
- Michael Ebner
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Dmytro Puchkov
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Orestes López-Ortega
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Pathma Muthukottiappan
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Yanwei Su
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Christopher Schmied
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Silke Zillmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Iryna Nikonenko
- Department of Basic Neurosciences and the Center for Neuroscience, CMU, University of Geneva, 1211 Geneva 4, Switzerland
| | - Jochen Koddebusch
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Gillian L Dornan
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Max T Lucht
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Vonda Koka
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Wonyul Jang
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | | | - Alexander Wallroth
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, 69120 Heidelberg, Germany
| | - Mario Pende
- Université Paris Cité, INSERM UMR-S1151, CNRS UMR-S8253, Institut Necker Enfants Malades, Paris, France
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, Rheinische Friedrich-Wilhelms-University of Bonn, 53115 Bonn, Germany
| | - Volker Haucke
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125 Berlin, Germany; Department of Biology, Chemistry, Pharmacy, Freie Universität Berlin, 14195 Berlin, Germany; Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
10
|
Prosseda PP, Dannewitz Prosseda S, Tran M, Liton PB, Sun Y. Crosstalk between the mTOR pathway and primary cilia in human diseases. Curr Top Dev Biol 2023; 155:1-37. [PMID: 38043949 PMCID: PMC11227733 DOI: 10.1016/bs.ctdb.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Autophagy is a fundamental catabolic process whereby excessive or damaged cytoplasmic components are degraded through lysosomes to maintain cellular homeostasis. Studies of mTOR signaling have revealed that mTOR controls biomass generation and metabolism by modulating key cellular processes, including protein synthesis and autophagy. Primary cilia, the assembly of which depends on kinesin molecular motors, serve as sensory organelles and signaling platforms. Given these pathways' central role in maintaining cellular and physiological homeostasis, a connection between mTOR and primary cilia signaling is starting to emerge in a variety of diseases. In this review, we highlight recent advances in our understanding of the complex crosstalk between the mTOR pathway and cilia and discuss its function in the context of related diseases.
Collapse
Affiliation(s)
- Philipp P Prosseda
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | | | - Matthew Tran
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States
| | - Paloma B Liton
- Department of Ophthalmology, Duke University School of Medicine, Durham, NC, United States
| | - Yang Sun
- Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, CA, United States; Palo Alto Veterans Administration Medical Center, Palo Alto, CA, United States.
| |
Collapse
|
11
|
Hardt R, Dehghani A, Schoor C, Gödderz M, Cengiz Winter N, Ahmadi S, Sharma R, Schork K, Eisenacher M, Gieselmann V, Winter D. Proteomic investigation of neural stem cell to oligodendrocyte precursor cell differentiation reveals phosphorylation-dependent Dclk1 processing. Cell Mol Life Sci 2023; 80:260. [PMID: 37594553 PMCID: PMC10439241 DOI: 10.1007/s00018-023-04892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Oligodendrocytes are generated via a two-step mechanism from pluripotent neural stem cells (NSCs): after differentiation of NSCs to oligodendrocyte precursor/NG2 cells (OPCs), they further develop into mature oligodendrocytes. The first step of this differentiation process is only incompletely understood. In this study, we utilized the neurosphere assay to investigate NSC to OPC differentiation in a time course-dependent manner by mass spectrometry-based (phospho-) proteomics. We identify doublecortin-like kinase 1 (Dclk1) as one of the most prominently regulated proteins in both datasets, and show that it undergoes a gradual transition between its short/long isoform during NSC to OPC differentiation. This is regulated by phosphorylation of its SP-rich region, resulting in inhibition of proteolytic Dclk1 long cleavage, and therefore Dclk1 short generation. Through interactome analyses of different Dclk1 isoforms by proximity biotinylation, we characterize their individual putative interaction partners and substrates. All data are available via ProteomeXchange with identifier PXD040652.
Collapse
Affiliation(s)
- Robert Hardt
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Alireza Dehghani
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Boehringer Ingelheim Pharma GmbH & Co. KG, 88397, Biberach, Germany
| | - Carmen Schoor
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Markus Gödderz
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Nur Cengiz Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Institute of Human Genetics, University Hospital Cologne, 50931, Cologne, Germany
| | - Shiva Ahmadi
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
- Bayer Pharmaceuticals, 42113, Wuppertal, Germany
| | - Ramesh Sharma
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
- Medical Proteome Analysis, Center for Protein Diagnostics, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Volkmar Gieselmann
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Nussallee 11, 53115, Bonn, Germany.
| |
Collapse
|
12
|
Huynh C, Ryu J, Lee J, Inoki A, Inoki K. Nutrient-sensing mTORC1 and AMPK pathways in chronic kidney diseases. Nat Rev Nephrol 2023; 19:102-122. [PMID: 36434160 DOI: 10.1038/s41581-022-00648-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2022] [Indexed: 11/27/2022]
Abstract
Nutrients such as glucose, amino acids and lipids are fundamental sources for the maintenance of essential cellular processes and homeostasis in all organisms. The nutrient-sensing kinases mechanistic target of rapamycin (mTOR) and AMP-activated protein kinase (AMPK) are expressed in many cell types and have key roles in the control of cell growth, proliferation, differentiation, metabolism and survival, ultimately contributing to the physiological development and functions of various organs, including the kidney. Dysregulation of these kinases leads to many human health problems, including cancer, neurodegenerative diseases, metabolic disorders and kidney diseases. In the kidney, physiological levels of mTOR and AMPK activity are required to support kidney cell growth and differentiation and to maintain kidney cell integrity and normal nephron function, including transport of electrolytes, water and glucose. mTOR forms two functional multi-protein kinase complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Hyperactivation of mTORC1 leads to podocyte and tubular cell dysfunction and vulnerability to injury, thereby contributing to the development of chronic kidney diseases, including diabetic kidney disease, obesity-related kidney disease and polycystic kidney disease. Emerging evidence suggests that targeting mTOR and/or AMPK could be an effective therapeutic approach to controlling or preventing these diseases.
Collapse
Affiliation(s)
- Christopher Huynh
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Jaewhee Ryu
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Jooho Lee
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ayaka Inoki
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ken Inoki
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA.
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
- Department of Internal Medicine, Division of Nephrology, University of Michigan Medical School, Ann Arbor, MI, USA.
| |
Collapse
|
13
|
Primary TSC2-/meth Cells Induce Follicular Neogenesis in an Innovative TSC Mouse Model. Int J Mol Sci 2022; 23:ijms23179713. [PMID: 36077111 PMCID: PMC9456283 DOI: 10.3390/ijms23179713] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/21/2022] [Accepted: 08/22/2022] [Indexed: 12/15/2022] Open
Abstract
Cutaneous lesions are one of the hallmarks of tuberous sclerosis complex (TSC), a genetic disease in which mTOR is hyperactivated due to the lack of hamartin or tuberin. To date, novel pharmacological treatments for TSC cutaneous lesions that are benign but still have an impact on a patient’s life are needed, because neither surgery nor rapamycin administration prevents their recurrence. Here, we demonstrated that primary TSC2-/meth cells that do not express tuberin for an epigenetic event caused cutaneous lesions and follicular neogenesis when they were subcutaneously injected in nude mice. Tuberin-null cells localized in the hair bulbs and alongside mature hairs, where high phosphorylation of S6 and Erk indicated mTOR hyperactivation. Interestingly, 5-azacytidine treatment reduced hair follicles, indicating that chromatin remodeling agents might be effective on TSC lesions in which cells lack tuberin for an epigenetic event. Moreover, we demonstrated that the primary TSC2-/meth cells had metastatic capability: when subcutaneously injected, they reached the bloodstream and lymphatics and invaded the lungs, causing the enlargement of the alveolar walls. The capability of TSC2-/meth cells to survive and migrate in vivo makes our mouse model ideal to follow the progression of the disease and test potential pharmacological treatments in a time-dependent manner.
Collapse
|
14
|
Fumagalli S, Pende M. S6 kinase 1 at the central node of cell size and ageing. Front Cell Dev Biol 2022; 10:949196. [PMID: 36036012 PMCID: PMC9417411 DOI: 10.3389/fcell.2022.949196] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/07/2022] [Indexed: 11/17/2022] Open
Abstract
Genetic evidence in living organisms from yeast to plants and animals, including humans, unquestionably identifies the Target Of Rapamycin kinase (TOR or mTOR for mammalian/mechanistic) signal transduction pathway as a master regulator of growth through the control of cell size and cell number. Among the mTOR targets, the activation of p70 S6 kinase 1 (S6K1) is exquisitely sensitive to nutrient availability and rapamycin inhibition. Of note, in vivo analysis of mutant flies and mice reveals that S6K1 predominantly regulates cell size versus cell proliferation. Here we review the putative mechanisms of S6K1 action on cell size by considering the main functional categories of S6K1 targets: substrates involved in nucleic acid and protein synthesis, fat mass accumulation, retrograde control of insulin action, senescence program and cytoskeleton organization. We discuss how S6K1 may be involved in the observed interconnection between cell size, regenerative and ageing responses.
Collapse
Affiliation(s)
| | - Mario Pende
- *Correspondence: Stefano Fumagalli, ; Mario Pende,
| |
Collapse
|
15
|
LAM Cells as Potential Drivers of Senescence in Lymphangioleiomyomatosis Microenvironment. Int J Mol Sci 2022; 23:ijms23137040. [PMID: 35806041 PMCID: PMC9266844 DOI: 10.3390/ijms23137040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/10/2023] Open
Abstract
Senescence is a stress-response process characterized by the irreversible inhibition of cell proliferation, associated to the acquisition of a senescence-associated secretory phenotype (SASP), that may drive pathological conditions. Lymphangioleiomyomatosis (LAM) is a rare disease in which LAM cells, featuring the hyperactivation of the mammalian Target of Rapamycin Complex 1 (mTORC1) for the absence of tuberin expression, cause the disruption of the lung parenchyma. Considering that LAM cells secrete SASP factors and that mTOR is also a driver of senescence, we deepened the contribution of senescence in LAM cell phenotype. We firstly demonstrated that human primary tuberin-deficient LAM cells (LAM/TSC cells) have senescent features depending on mTOR hyperactivation, since their high positivity to SA-β galactosidase and to phospho-histone H2A.X are reduced by inducing tuberin expression and by inhibiting mTOR with rapamycin. Then, we demonstrated the capability of LAM/TSC cells to induce senescence. Indeed, primary lung fibroblasts (PLFs) grown in LAM/TSC conditioned medium increased the positivity to SA-β galactosidase and to phospho-histone H2A.X, as well as p21WAF1/CIP1 expression, and enhanced the mRNA expression and the secretion of the SASP component IL-8. Taken together, these data make senescence a novel field of study to understand LAM development and progression.
Collapse
|
16
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
17
|
Liang S, Liu X, Zhao J, Liu R, Huang X, Liu Y, Yang X, Yang X. Effects of high-dose folic acid on protein metabolism in breast muscle and performance of broilers. Poult Sci 2022; 101:101935. [PMID: 35961252 PMCID: PMC9382563 DOI: 10.1016/j.psj.2022.101935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 11/19/2022] Open
Abstract
Attaining the optimal feed conversion ratio is the unaltered goal for poultry breeding, meat yield is one of the vital reference indexes for that. Folic acid is involved in protein metabolism by acting as a transmitter of one carbon unit, and the detail mechanism for the high-dose folic acid on growth of broiler skeletal muscle is still unclarified. The present study was conducted to investigate the effect and regulatory mechanism of folic acid on deposition and metabolism of protein in broiler breast muscle. A total of 196 one-day-old AA broilers were randomly assigned to 2 treatment groups. The chicks were fed corn-soybean diet with folic acid levels of 1.3 mg/kg (CON) or 13 mg/kg (FA), respectively. The results showed that high dose of folic acid significantly increased the body weight gain, average daily gain, average daily feed intake, and feed conversion ratio of broilers during 1 to 42 d. Compared with control group, folic acid statistically augmented the breast muscle ratio of broilers at 42 d, abdominal fat percentage was also decreased in FA group. Folic acid significantly increased the gene expression of folate receptor (FR) in duodenum and jejunum at 21 d, and its relative expression in jejunum of broilers at 42 d. Furthermore, relative expression of myogenin in broiler breast muscle was upregulated in folic acid group. Folic acid supplementation significantly enhanced the protein expression of phosphorylated serine/threonine kinase (AKT) and ribosomal protein S6 kinase 1 (S6K1) in the breast muscle of broilers at 21 d and 42 d. In conclusion, the results proved that high-dose folic acid activated the AKT/mammalian target of rapamycin (mTOR) pathway and increased the activity of phosphorylation of S6K1, thereby regulating the protein deposition in breast muscle. Meanwhile, the gene expression of the myogenic determinant factor was upregulated by folic acid and then promoted the growth of breast muscle. Consequently, the growth performance, meat production and feeding efficiency were improved of broilers by adding folic acid at 13 mg/kg.
Collapse
Affiliation(s)
- Saisai Liang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinshuai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Jianfei Zhao
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Rui Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xinhuo Huang
- Nano Vitamin Engineering Research Center of Shaanxi Province, Xi'an, China
| | - Yanli Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xin Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China.
| |
Collapse
|
18
|
Schlingmann KP, Jouret F, Shen K, Nigam A, Arjona FJ, Dafinger C, Houillier P, Jones DP, Kleinerüschkamp F, Oh J, Godefroid N, Eltan M, Güran T, Burtey S, Parotte MC, König J, Braun A, Bos C, Ibars Serra M, Rehmann H, Zwartkruis FJ, Renkema KY, Klingel K, Schulze-Bahr E, Schermer B, Bergmann C, Altmüller J, Thiele H, Beck BB, Dahan K, Sabatini D, Liebau MC, Vargas-Poussou R, Knoers NV, Konrad M, de Baaij JH. mTOR-Activating Mutations in RRAGD Are Causative for Kidney Tubulopathy and Cardiomyopathy. J Am Soc Nephrol 2021; 32:2885-2899. [PMID: 34607910 PMCID: PMC8806087 DOI: 10.1681/asn.2021030333] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 07/07/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Over the last decade, advances in genetic techniques have resulted in the identification of rare hereditary disorders of renal magnesium and salt handling. Nevertheless, approximately 20% of all patients with tubulopathy lack a genetic diagnosis. METHODS We performed whole-exome and -genome sequencing of a patient cohort with a novel, inherited, salt-losing tubulopathy; hypomagnesemia; and dilated cardiomyopathy. We also conducted subsequent in vitro functional analyses of identified variants of RRAGD, a gene that encodes a small Rag guanosine triphosphatase (GTPase). RESULTS In eight children from unrelated families with a tubulopathy characterized by hypomagnesemia, hypokalemia, salt wasting, and nephrocalcinosis, we identified heterozygous missense variants in RRAGD that mostly occurred de novo. Six of these patients also had dilated cardiomyopathy and three underwent heart transplantation. We identified a heterozygous variant in RRAGD that segregated with the phenotype in eight members of a large family with similar kidney manifestations. The GTPase RagD, encoded by RRAGD, plays a role in mediating amino acid signaling to the mechanistic target of rapamycin complex 1 (mTORC1). RagD expression along the mammalian nephron included the thick ascending limb and the distal convoluted tubule. The identified RRAGD variants were shown to induce a constitutive activation of mTOR signaling in vitro. CONCLUSIONS Our findings establish a novel disease, which we call autosomal dominant kidney hypomagnesemia (ADKH-RRAGD), that combines an electrolyte-losing tubulopathy and dilated cardiomyopathy. The condition is caused by variants in the RRAGD gene, which encodes Rag GTPase D; these variants lead to an activation of mTOR signaling, suggesting a critical role of Rag GTPase D for renal electrolyte handling and cardiac function.
Collapse
Affiliation(s)
- Karl P. Schlingmann
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - François Jouret
- Division of Nephrology, Department of Internal Medicine, University of Liège Hospital, Liège, Belgium,Interdisciplinary Group of Applied Genoproteomics, Cardiovascular Sciences, University of Liège, Liège, Belgium
| | - Kuang Shen
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts,Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Anukrati Nigam
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Francisco J. Arjona
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Claudia Dafinger
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Pascal Houillier
- Cordeliers Research Center, Centre National de la Recherche Scientifique (CNRS), ERL8228, Institut National de la Santé et de la Recherche Médicale (INSERM), Sorbonne University, University of Paris, Paris, France,Department of Physiology, Assistance Publique-Hôpitaux de Paris (AP-HP), European Hospital Georges Pompidou, Paris, France,Reference Center for Hereditary Renal Diseases in Children and Adults (MARHEA), Paris, France
| | - Deborah P. Jones
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Felix Kleinerüschkamp
- Department of Pediatric Cardiology, University Children’s Hospital, Münster, Germany
| | - Jun Oh
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nathalie Godefroid
- Division of Pediatric Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - Mehmet Eltan
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Tülay Güran
- Department of Pediatric Endocrinology and Diabetes, School of Medicine, Marmara University, Istanbul, Turkey
| | - Stéphane Burtey
- Center for Nephrology and Renal Transplantation, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille University, Marseille, France
| | - Marie-Christine Parotte
- Division of Nephrology-Dialysis, Department of Internal Medicine, CHR Verviers East Belgium, Verviers, Belgium
| | - Jens König
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Alina Braun
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Caro Bos
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Maria Ibars Serra
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Holger Rehmann
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Fried J.T. Zwartkruis
- Department of Molecular Cancer Research, Center for Molecular Medicine, Oncode Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kirsten Y. Renkema
- Department of Genetics, Center for Molecular Medicine, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Karin Klingel
- Cardiopathology, Institute for Pathology and Neuropathology, University Hospital Tübingen, Tübingen, Germany
| | - Eric Schulze-Bahr
- Institute for Genetics of Heart Diseases (IfGH), Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany
| | - Bernhard Schermer
- Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,CECAD, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Carsten Bergmann
- Limbach Genetics, Medizinische Genetik Mainz, Mainz, Germany,Division of Nephrology, Department of Medicine, University Hospital Freiburg, Breisgau, Germany
| | - Janine Altmüller
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Holger Thiele
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Bodo B. Beck
- Institute of Human Genetics, University Hospital Cologne and University of Cologne, Faculty of Medicine, Cologne, Germany,Center for Molecular Medicine Cologne, University of Cologne, Faculty of Medicine, University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Karin Dahan
- Center of Human Genetics, Gosselies, Belgium,Division of Nephrology, Saint-Luc University Clinics, Catholic University of Louvain, Brussels, Belgium
| | - David Sabatini
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts,Department of Biology, Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts,Koch Institute for Integrative Cancer Research, Cambridge, Massachusetts,Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Max C. Liebau
- Department of Pediatrics and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Department II of Internal Medicine and Center for Molecular Medicine Cologne, Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany,Center for Rare Diseases, Medical Faculty, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Rosa Vargas-Poussou
- Department of Genetics, AP-HP, European Hospital Georges Pompidou, Paris, France
| | - Nine V.A.M. Knoers
- Department of Genetics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Martin Konrad
- Department of General Pediatrics, University Children’s Hospital, Münster, Germany
| | - Jeroen H.F. de Baaij
- Department of Physiology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Zhong FY, Li J, Wang YM, Chen Y, Song J, Yang Z, Zhang L, Tian T, Hu YF, Qin ZY. MicroRNA-506 modulates insulin resistance in human adipocytes by targeting S6K1 and altering the IRS1/PI3K/AKT insulin signaling pathway. J Bioenerg Biomembr 2021; 53:679-692. [PMID: 34718921 PMCID: PMC8595185 DOI: 10.1007/s10863-021-09923-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 09/28/2021] [Indexed: 12/11/2022]
Abstract
The incidence of obesity has increased rapidly, becoming a worldwide public health issue that involves insulin resistance. A growing number of recent studies have demonstrated that microRNAs play a significant role in controlling the insulin signaling network. For example, miR-506-3p expression has been demonstrated to correlate with insulin sensitivity; however, the underlying mechanism remains unknown. In this study, we found that miR-506-3p enhanced glucose uptake by 2-deoxy-D-glucose uptake assays and regulated the protein expression of key genes involved in the PI3K/AKT insulin signaling pathway including IRS1, PI3K, AKT, and GlUT4. We next predicted ribosomal protein S6 kinase B1 (S6K1) to be a candidate target of miR-506-3p by bioinformatics analysis and confirmed using dual-luciferase assays that miR-506-3p regulated S6K1 expression by binding to its 3'-UTR. Moreover, modulating S6K1 expression counteracted the effects of miR-506-3p on glucose uptake and PI3K/AKT pathway activation. In conclusion, miR-506-3p altered IR in adipocytes by regulating S6K1-mediated PI3K/AKT pathway activation. Taken together, these findings provide novel insights and potential targets for IR therapy.
Collapse
Affiliation(s)
- Feng-Yu Zhong
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jing Li
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China
| | - Yu-Mei Wang
- Department of Screening for Neonatal Diseases, Huai'an Maternity and Child Health Care Hospital Affiliated to Yangzhou University Medical College, Huaian, 223002, Jiangsu, China
| | - Yao Chen
- The First Clinical Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Jia Song
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China
| | - Zi Yang
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China
| | - Lin Zhang
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China
| | - Tian Tian
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China
| | - You-Fang Hu
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China.
| | - Zhen-Ying Qin
- Department of Children's Health Care, The First Affiliated Hospital of Nanjing Medical University, Jiangsu Maternal and Child Health Care Hospital, Nanjing, 210036, Jiangsu, China.
| |
Collapse
|
20
|
Lechler T, Mapelli M. Spindle positioning and its impact on vertebrate tissue architecture and cell fate. Nat Rev Mol Cell Biol 2021; 22:691-708. [PMID: 34158639 PMCID: PMC10544824 DOI: 10.1038/s41580-021-00384-4] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2021] [Indexed: 12/18/2022]
Abstract
In multicellular systems, oriented cell divisions are essential for morphogenesis and homeostasis as they determine the position of daughter cells within the tissue and also, in many cases, their fate. Early studies in invertebrates led to the identification of conserved core mechanisms of mitotic spindle positioning centred on the Gαi-LGN-NuMA-dynein complex. In recent years, much has been learnt about the way this complex functions in vertebrate cells. In particular, studies addressed how the Gαi-LGN-NuMA-dynein complex dynamically crosstalks with astral microtubules and the actin cytoskeleton, and how it is regulated to orient the spindle according to cellular and tissue-wide cues. We have also begun to understand how dynein motors and actin regulators interact with mechanosensitive adhesion molecules sensing extracellular mechanical stimuli, such as cadherins and integrins, and with signalling pathways so as to respond to extracellular cues instructing the orientation of the division axis in vivo. In this Review, with the focus on epithelial tissues, we discuss the molecular mechanisms of mitotic spindle orientation in vertebrate cells, and how this machinery is regulated by epithelial cues and extracellular signals to maintain tissue cohesiveness during mitosis. We also outline recent knowledge of how spindle orientation impacts tissue architecture in epithelia and its emerging links to the regulation of cell fate decisions. Finally, we describe how defective spindle orientation can be corrected or its effects eliminated in tissues under physiological conditions, and the pathological implications associated with spindle misorientation.
Collapse
Affiliation(s)
- Terry Lechler
- Department of Dermatology, Duke University Medical Center, Durham, NC, USA.
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology IRCCS, Milan, Italy.
| |
Collapse
|
21
|
Tozzi M, Brown EL, Petersen PSS, Lundh M, Isidor MS, Plucińska K, Nielsen TS, Agueda-Oyarzabal M, Small L, Treebak JT, Emanuelli B. Dynamic interplay between Afadin S1795 phosphorylation and diet regulates glucose homeostasis in obese mice. J Physiol 2021; 600:885-902. [PMID: 34387373 DOI: 10.1113/jp281657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Afadin is a ubiquitously expressed scaffold protein with a recently discovered role in insulin signalling and glucose metabolism. Insulin-stimulated phosphorylation of Afadin at S1795 occurs in insulin-responsive tissues such as adipose tissue, muscle, liver, pancreas and heart. Afadin abundance and AfadinS1795 phosphorylation are dynamically regulated in metabolic tissues during diet-induced obesity progression. Genetic silencing of AfadinS1795 phosphorylation improves glucose homeostasis in the early stages of diet-induced metabolic dysregulation. AfadinS1795 phosphorylation contributes to the early development of obesity-related complications in mice. ABSTRACT Obesity is associated with systemic insulin resistance and numerous metabolic disorders. Yet, the mechanisms underlying impaired insulin action during obesity remain to be fully elucidated. Afadin is a multifunctional scaffold protein with the ability to modulate insulin action through its phosphorylation at S1795 in adipocytes. In the present study, we report that insulin-stimulated AfadinS1795 phosphorylation is not restricted to adipose tissues, but is a common signalling event in insulin-responsive tissues including muscle, liver, pancreas and heart. Furthermore, a dynamic regulation of Afadin abundance occurred during diet-induced obesity progression, while its phosphorylation was progressively attenuated. To investigate the role of AfadinS1795 phosphorylation in the regulation of whole-body metabolic homeostasis, we generated a phospho-defective mouse model (Afadin SA) in which the Afadin phosphorylation site was silenced (S1795A) at the whole-body level using CRISPR-Cas9-mediated gene editing. Metabolic characterization of these mice under basal physiological conditions or during a high-fat diet (HFD) challenge revealed that preventing AfadinS1795 phosphorylation improved insulin sensitivity and glucose tolerance and increased liver glycogen storage in the early stage of diet-induced metabolic dysregulation, without affecting body weight. Together, our findings reveal that AfadinS1795 phosphorylation in metabolic tissues is critical during obesity progression and contributes to promote systemic insulin resistance and glucose intolerance in the early phase of diet-induced obesity.
Collapse
Affiliation(s)
- Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Erin L Brown
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patricia S S Petersen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marie S Isidor
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaja Plucińska
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Thomas S Nielsen
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marina Agueda-Oyarzabal
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Lewin Small
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jonas T Treebak
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Lundh M, Altıntaş A, Tozzi M, Fabre O, Ma T, Shamsi F, Gerhart-Hines Z, Barrès R, Tseng YH, Emanuelli B. Cold-induction of afadin in brown fat supports its thermogenic capacity. Sci Rep 2021; 11:9794. [PMID: 33963248 PMCID: PMC8105362 DOI: 10.1038/s41598-021-89207-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/14/2021] [Indexed: 12/17/2022] Open
Abstract
The profound energy-expending nature of brown adipose tissue (BAT) thermogenesis makes it an attractive target tissue to combat obesity-associated metabolic disorders. While cold exposure is the strongest inducer of BAT activity, the temporal mechanisms tuning BAT adaptation during this activation process are incompletely understood. Here we show that the scaffold protein Afadin is dynamically regulated by cold in BAT, and participates in cold acclimation. Cold exposure acutely increases Afadin protein levels and its phosphorylation in BAT. Knockdown of Afadin in brown pre-adipocytes does not alter adipogenesis but restricts β3-adrenegic induction of thermogenic genes expression and HSL phosphorylation in mature brown adipocytes. Consistent with a defect in thermogenesis, an impaired cold tolerance was observed in fat-specific Afadin knockout mice. However, while Afadin depletion led to reduced Ucp1 mRNA induction by cold, stimulation of Ucp1 protein was conserved. Transcriptomic analysis revealed that fat-specific ablation of Afadin led to decreased functional enrichment of gene sets controlling essential metabolic functions at thermoneutrality in BAT, whereas it led to an altered reprogramming in response to cold, with enhanced enrichment of different pathways related to metabolism and remodeling. Collectively, we demonstrate a role for Afadin in supporting the adrenergic response in brown adipocytes and BAT function.
Collapse
Affiliation(s)
- Morten Lundh
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Ali Altıntaş
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marco Tozzi
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Odile Fabre
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Tao Ma
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Farnaz Shamsi
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Zachary Gerhart-Hines
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Romain Barrès
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
23
|
Patra T, Bose SK, Kwon YC, Meyer K, Ray R. Inhibition of p70 isoforms of S6K1 induces anoikis to prevent transformed human hepatocyte growth. Life Sci 2021; 265:118764. [PMID: 33189822 DOI: 10.1016/j.lfs.2020.118764] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 12/21/2022]
Abstract
AIMS The mTOR/S6K1 signaling axis, known for cell growth regulation, is hyper-activated in multiple cancers. In this study, we have examined the mechanisms for ribosomal protein p70-S6 kinase 1 (S6K1) associated transformed human hepatocyte (THH) growth regulation. MAIN METHODS THH were treated with p70-S6K1 inhibitor and analyzed for cell viability, cell cycle distribution, specific marker protein expression by western blot, and tumor inhibition in a xenograft mouse model. We validated our results by knockdown of p70-S6K1 using specific siRNA. KEY FINDINGS p70-S6K1 inhibitor treatment caused impairment of in vitro hepatocyte growth, and arrested cell cycle progression at the G1 phase. Further, p70-S6K1 inhibitor treatment exhibited a decrease in FAK and Erk activation, followed by altered integrin-β1 expression, caspase 8, and PARP cleavage appeared to be anoikis like growth inhibition. p70-S6K1 inhibitor also depolymerized actin microfilaments and diminished active Rac1/Cdc42 complex formation for loss of cellular attachment. Similar results were obtained with other transformed human hepatocyte cell lines. p70-S6K1 inhibition also resulted in a reduced phospho-EGFR, Slug and Twist; implicating an inhibition of epithelial-mesenchymal transition (EMT) state. A xenograft tumor model, generated from implanted THH in nude mice, following intraperitoneal injection of S6K1 inhibitor prevented further tumor growth. SIGNIFICANCE Our results suggested that p70-S6K1 inhibition alters orchestration of cell cycle progression, induces cell detachment, and sensitizes hepatocyte growth impairment. Targeting p70 isoform of S6K1 by inhibitor may prove to be a promising approach together with other therapies for hepatocellular carcinoma (HCC) treatment.
Collapse
Affiliation(s)
- Tapas Patra
- Departments of Internal Medicine, Saint Louis University, MO, USA.
| | - Sandip K Bose
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA
| | - Young-Chan Kwon
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Keith Meyer
- Departments of Internal Medicine, Saint Louis University, MO, USA
| | - Ranjit Ray
- Departments of Internal Medicine, Saint Louis University, MO, USA; Molecular Microbiology & Immunology, Saint Louis University, MO, USA.
| |
Collapse
|
24
|
Gui Y, Dai C. mTOR Signaling in Kidney Diseases. KIDNEY360 2020; 1:1319-1327. [PMID: 35372878 PMCID: PMC8815517 DOI: 10.34067/kid.0003782020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/02/2020] [Indexed: 04/27/2023]
Abstract
The mammalian target of rapamycin (mTOR), a serine/threonine protein kinase, is crucial in regulating cell growth, metabolism, proliferation, and survival. Under physiologic conditions, mTOR signaling maintains podocyte and tubular cell homeostasis. In AKI, activation of mTOR signaling in tubular cells and interstitial fibroblasts promotes renal regeneration and repair. However, constitutive activation of mTOR signaling in kidneys results in the initiation and progression of glomerular hypertrophy, interstitial fibrosis, polycystic kidney disease, and renal cell carcinoma. Here, we summarize the recent studies about mTOR signaling in renal physiology and injury, and discuss the possibility of its use as a therapeutic target for kidney diseases.
Collapse
Affiliation(s)
- Yuan Gui
- Department of Nephrology, University of Connecticut Health Center, Farmington, Connecticut
| | - Chunsun Dai
- Center for Kidney Disease, 2nd Affiliated Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
25
|
Huxham J, Tabariès S, Siegel PM. Afadin (AF6) in cancer progression: A multidomain scaffold protein with complex and contradictory roles. Bioessays 2020; 43:e2000221. [PMID: 33165933 DOI: 10.1002/bies.202000221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 11/09/2022]
Abstract
Adherens (AJ) and tight junctions (TJ) maintain cell-cell adhesions and cellular polarity in normal tissues. Afadin, a multi-domain scaffold protein, is commonly found in both adherens and tight junctions, where it plays both structural and signal-modulating roles. Afadin is a complex modulator of cellular processes implicated in cancer progression, including signal transduction, migration, invasion, and apoptosis. In keeping with the complexities associated with the roles of adherens and tight junctions in cancer, afadin exhibits both tumor suppressive and pro-metastatic functions. In this review, we will explore the dichotomous roles that afadin plays during cancer progression.
Collapse
Affiliation(s)
- Jennifer Huxham
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Sébastien Tabariès
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Peter M Siegel
- Goodman Cancer Research Centre, McGill University, Montréal, Québec, Canada.,Department of Medicine, McGill University, Montréal, Québec, Canada.,Department of Biochemistry, McGill University, Montréal, Québec, Canada.,Department of Anatomy & Cell Biology, McGill University, Montréal, Québec, Canada.,Department of Oncology, McGill University, Montréal, Québec, Canada
| |
Collapse
|