1
|
Gao J, Qin L, Wang M, Hu H, Lou Z, Cui X, Liu J, Jiang L. Switching alkaline hydrogen oxidation reaction pathway via microenvironment modulation of Ru catalysts. J Colloid Interface Sci 2025; 689:137215. [PMID: 40056686 DOI: 10.1016/j.jcis.2025.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/27/2025] [Accepted: 03/01/2025] [Indexed: 03/10/2025]
Abstract
Ruthenium (Ru) has emerged as a promising catalyst for alkaline hydrogen oxidation reaction (HOR). Nevertheless, its catalytic performance still remains substantially inferior to the requirements of practical applications. Strategic modulation of the Ru micro-environment offers significant potential for optimizing its intrinsic catalytic activity. In this study, by elaborately designing a micro-environment of asymmetrically coordinated cobalt single-atom (Co-N3O-C) structures for Ru, the obtained Ru/Co-N3O-C achieves an exceptional HOR activity of 0.98 mA μg-1Ru, which is 4.5-folds higher than Pt/C and 3.4-folds higher than Ru/Co-N4-C. Combined experimental and theoretical investigations uncover that the outstanding HOR activity originates from three positive influences brought by the precisely engineered asymmetric coordination of Co sites, as compared to the symmetric Co-N4-C environment, i.e., (i) through the electronic interaction between Ru and Co-N3O-C, the excessively high hydrogen binding energy (HBE) at Ru sites is suppressed, (ii) by lowering the d-band center of Co, the strong hydroxide binding energy (OHBE) on Co sites is alleviated and (iii) the hydrogen bonding network within the electronic double layer is more connective, facilitating the OH- transfer to react with Had, thus switching the HOR pathway from the OHBE mechanism to the apparent HBE mechanism. This work accentuates the critical role of microenvironment modulation in regulating the HOR pathway and provides a novel strategy for devising superior-performance HOR catalysts.
Collapse
Affiliation(s)
- Jie Gao
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Lishuai Qin
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Mengdi Wang
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Hao Hu
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Zhangrong Lou
- Dalian University of Technology, Dalian 116024, PR China
| | - Xuejing Cui
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China
| | - Jing Liu
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| | - Luhua Jiang
- College of Materials Science & Engineering, Qingdao University of Science & Technology, Qingdao 266042, PR China.
| |
Collapse
|
2
|
Liu Y, Zhu Z, Wang W, Qian W, Wang Q, Lu W. Polyacrylonitrile-supported symmetrical configuration pyridine bridged bi-iron phthalocyanine nanofibers for efficient degradation of carbamazepine in the presence of peroxymonosulfate. J Colloid Interface Sci 2025; 687:158-167. [PMID: 39952108 DOI: 10.1016/j.jcis.2025.02.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/25/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
In this study, the 4-aminopyridine (Py) was employed to link with terephthaloyl chloride (TPC) through amide bonding to generate the symmetric ligand Py-TPC, and the iron phthalocyanine (FePc) was axially coordinated with Py-TPC to synthetic the composite catalyst FePc-Py-TPC. By introducing Py-TPC, the π-π conjugated stack structure within phthalocyanine molecules was disrupted and more active sites were exposed. FePc-Py-TPC was dispersed in polyacrylonitrile (PAN) through electrospinning to obtain FePc-Py-TPC/PAN nanofibers, which solved the problem of difficult recycling and utilization of powder catalysts. FePc-Py-TPC/PAN can effectively activate peroxymonosulfate (PMS) at room temperature, and the removal rate of carbamazepine (CBZ) approaches 100 % within 40 min. After five recycles for CBZ degradation over the FePc-Py-TPC/PAN/PMS system, the removal ratios of CBZ remained at 90 %. O2- is the main active radical, SO4-, OH, and 1O2 play a secondary role. Six intermediate products and two final products of CBZ were identified by ultra-performance liquid chromatography and high-definition mass spectrometry, and the possible degradation pathways were speculated. All CBZ and the aromatic intermediates were eventually converted into small acids.
Collapse
Affiliation(s)
- Yu Liu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China.
| | - Wenjuan Wang
- Zhejiang Marine Ecology and Environment Monitoring Center (Zhejiang), Hangzhou 310018 China
| | - Wenjie Qian
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Qian Wang
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials and Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018 China
| |
Collapse
|
3
|
Ashraf G, Wang H, Ahmed K, Xiong H, Kong J, Fang X. Microneedle-Integrated FePc-MOF-MXene Nanozyme Patch for In Vivo L-Cysteine Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2502804. [PMID: 40405623 DOI: 10.1002/adma.202502804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/25/2025] [Indexed: 05/24/2025]
Abstract
Advancing clinical diagnostics requires platforms that combine catalytic efficiency, biocompatibility, and real-time, in vivo accessibility. Herein, this study reports a structurally integrated FePc-ZIF-8-MX nanozyme that combines the redox activity of FePc, the porous confinement of ZIF-8, and the electrical conductivity of MX. Synthesized via a low-energy, ambient-condition process, this hybrid enables efficient electron transfer, enhanced analyte enrichment, and sustained catalytic activity in physiological environments. To translate this functionality into a wearable diagnostic format, the hybrid is seamlessly incorporated into a microneedle array, offering minimally invasive access to interstitial fluid for continuous L-cysteine (L-Cys) monitoring. The resulting platform exhibits high selectivity and sensitivity across complex biological matrices, including serum, urine, cultured cells, and a murine model of myocardial infarction. This study presents a multifunctional electrochemical platform that enables on-body metabolite monitoring through a microneedle-integrated nanozyme interface. To the best of our knowledge, it constitutes the first realization of real-time, in vivo L-Cys sensing in this format, setting a new benchmark for precision biosensing in translational healthcare.
Collapse
Affiliation(s)
- Ghazala Ashraf
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Haonan Wang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Khalil Ahmed
- College of Civil Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Huiwen Xiong
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Jilie Kong
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| | - Xueen Fang
- Department of Chemistry, Fudan University, Shanghai, 200433, P. R. China
| |
Collapse
|
4
|
Shi W, Wang X, Niu C, Cai T, Wang Z. Exposed redox-active iron enables electrochemically highly selective capture and conversion of arsenic from water. JOURNAL OF HAZARDOUS MATERIALS 2025; 494:138461. [PMID: 40347614 DOI: 10.1016/j.jhazmat.2025.138461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/20/2025] [Accepted: 04/30/2025] [Indexed: 05/14/2025]
Abstract
Trace amounts of highly toxic arsenic, particularly arsenite (As(III)), in urban and agricultural water present a significant challenge to ensuring water safety. Existing separation processes have significant limitations, mainly due to poor selectivity and insufficient oxidation of As(III). In this study, we introduce a redox-active iron coordination electrode with exposed iron active sites (FePc-CNTS), designed for the selective electrochemical removal and oxidation of As(III) from water. At a cell voltage of 1.2 V, the FePc-CNTS electrode effectively remediated arsenic at concentrations as low as 150 μg L-1 with a removal rate of 92.3 %, even in the presence of more than 1000-fold excess of competing anions. More than 93 % of the captured As(III) is converted and released in a less harmful pentavalent form. The high affinity (-18.96 kcal mol-1) and strong electron transfer capability of the exposed iron active sites for As(III) enables the synergistic selective capture and conversion of As(III). The exposed iron active sites-based electrode exhibits high selectivity, remediating arsenic-contaminated water with low energy consumption (0.08 kWh m-3). This study elucidates the advantages of exposing metal sites for the efficient electrochemical removal and conversion of pollutants, offering a new strategy for design and optimization of electrochemical separation technologies.
Collapse
Affiliation(s)
- Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xueye Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Chengxin Niu
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Teng Cai
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
5
|
Liu W, Liang Z, Jing S, Zhong J, Liu N, Liao B, Song Z, Huang Y, Yan B, Gan L, Xie X, Zou Y, Gui X, Yang HB, Yu D, Zeng Z, Yang G. Asymmetrical Triatomic Sites with Long-Range Electron Coupling for Ultra-Durable and Extreme-Low-Temperature Zinc-Air Batteries. Angew Chem Int Ed Engl 2025; 64:e202503493. [PMID: 40078090 DOI: 10.1002/anie.202503493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/10/2025] [Accepted: 03/12/2025] [Indexed: 03/14/2025]
Abstract
Reversible zinc-air battery (ZAB) is a promising alternative for sustainable fuel cells, but the performance is impeded by the sluggish oxygen redox kinetics owing to the suboptimal adsorption and desorption of oxygen intermediates. Here, hetero-trimetallic atom catalysts (TACs) uniquely incorporate an electron regulatory role beyond primary and secondary active sites found in dual-atom catalysts. In situ X-ray absorption fine structure (XAFS) and Raman spectroscopy elucidate Fe in FeCoNi SA catalyst (FCN-TM/NC) functions as the main active site, leveraging long-range electron coupling from neighboring Co and Ni to boost catalytic efficiency. The ZAB equipped with FCN-TM/NC exhibits ultra-stable rechargeability (over 5500 h at 1 mA cm-2 under -60 °C). The in-depth theoretical and experimental investigations attribute such superior catalytic activity to the asymmetric FeN4 configuration, long-distance electron coupling, modulated local microenvironment, optimized d orbital energy levels, and lower energy barrier for bifunctional oxygen electrocatalysis. This work provides a comprehensive mechanistic understanding of the structure-reactivity relationship in TACs for energy conversion.
Collapse
Affiliation(s)
- Wencai Liu
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhanhao Liang
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaojie Jing
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Junjie Zhong
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Ning Liu
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Bin Liao
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zichen Song
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yihui Huang
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bo Yan
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Liyong Gan
- College of Physics and Center of Quantum Materials and Devices, Chongqing University, Chongqing, 401331, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yichao Zou
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, 510275, China
| | - Hong Bin Yang
- School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Dingshan Yu
- Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Key Laboratory of High-Performance Polymer-Based Composites of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Zhiping Zeng
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Guowei Yang
- State Key Laboratory of Optoelectronic Materials, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| |
Collapse
|
6
|
Liu C, Yang R, Wang J, Liu B, Chang X, Feng P, Zhang X, Zhong L, Zhao X, Niu L, Gan S, Xi Y, Huang M, Wang H. Synergistic Catalysts with Fe Single Atoms and Fe 3C Clusters for Accelerated Oxygen Adsorption Kinetics in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202501266. [PMID: 40065733 DOI: 10.1002/anie.202501266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/06/2025] [Accepted: 03/07/2025] [Indexed: 03/18/2025]
Abstract
The design of cost-effective and efficient catalysts based on transition metal-based electrocatalysts for the oxygen reduction reaction (ORR) is crucial yet challenging for energy-conversion devices like metal-air batteries. In this work, we present a cost-effective strategy for preparing catalysts consisting of single-atomic Fe sites and Fe3C clusters encapsulated in nitrogen-doped carbon layers (FeSA-Fe3C/NC). The FeSA-Fe3C/NC electrocatalyst demonstrates outstanding ORR performance in alkaline electrolytes, achieving a high half-wave potential (E1/2 = 0.902 V), 4e- ORR selectivity, and robust methanol tolerance. The exceptional ORR catalytic performance is credited to the relatively substantial specific surface area and the optimal arrangement of active sites, including atomically dispersed Fe-N sites and synergistic Fe3C clusters. In situ spectroelectrochemical characterization and theoretical calculations verify that Fe3C clusters disrupt the symmetric electronic structure of Fe-N4, optimizing 3d orbitals of Fe centers, thereby accelerating O─O bond cleavage in *OOH to boost ORR activity. Furthermore, a zinc-air battery constructed with FeSA-Fe3C/NC demonstrates excellent potential in energy storage application, yielding a maximum power density of 151.3 mW cm-2 and robust cycling durability surpassing that of commercial Pt/C catalysts. This study establishes a cost-effective route for producing metal-based carbon electrocatalysts with exceptional performance using environmentally friendly raw materials.
Collapse
Affiliation(s)
- Chunlian Liu
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Ruizhe Yang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Jiacheng Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bowen Liu
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Xiaowan Chang
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Pingxian Feng
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xuanzhen Zhang
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Lijie Zhong
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiaoli Zhao
- School of Materials Science and Engineering, Xihua University, Chengdu, 610039, China
| | - Li Niu
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shiyu Gan
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yuebin Xi
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| | - Ming Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Huan Wang
- Guangdong Engineering Technology Research Center for Sensing Materials Devices, Guangzhou Key Laboratory of Sensing Materials Devices School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
- State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, China
| |
Collapse
|
7
|
Huang M, Gu Q, Wu Y, Wei Y, Pei Y, Hu T, Lützenkirchen-Hecht D, Yuan K, Chen Y. Linkage Microenvironment and Oxygen Electroreduction Reaction Performance Correlationship of Iron Phthalocyanine-based Polymers. Angew Chem Int Ed Engl 2025; 64:e202501506. [PMID: 39930898 DOI: 10.1002/anie.202501506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 02/10/2025] [Indexed: 02/26/2025]
Abstract
Iron phthalocyanine-based conjugated polymers (PFePc) offer well-defined sites, rendering them ideal model systems to elucidate structure-property relationships towards oxygen reduction reaction (ORR), but have struggled to achieve improved catalytic activity due to uniform electron distribution of iron center and difficulty in molecular-level structure design. Although rationally linkage microenvironmental regulation is an effective approach to adjusting activity, the underlying fundamental mechanism is incompletely understood. Herein, systematic DFT calculations and experimental investigation of PFePc analogous reveal that the incorporation of the electron-withdrawing benzophenone linkage into the PFePc backbone (PFePc-3) drives the delocalization of Fe d-orbital electrons, downshifts the d-band energy level, thereby tailoring the key OH* intermediate interaction, demonstrating enhanced ORR performance with a half-wave potential of 0.91 V, a high mass activity of 21.43 A g-1, and a high turnover frequency of 2.18 e s-1 site-1. Magnetic susceptibility measurements and electron paramagnetic resonance spectroscopy reveal that linkage regulation can induce a 3d electron with high spin-state (t2g 3eg 2) of PFePc-3, significantly accelerating the ORR kinetics. In situ scanning electrochemical microscopy and variable-frequency square wave voltammetry further highlight the rapid kinetics of PFePc-3 to the high accessible site density (6.14×1019 site g-1) and fast electron outbound propagation mechanism.
Collapse
Affiliation(s)
- Mingtao Huang
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Qiao Gu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yonggan Wu
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yuanhao Wei
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yangfan Pei
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Ting Hu
- School of Physics and Materials Science, Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Dirk Lützenkirchen-Hecht
- Faculty of Mathematics and Natural Sciences-Physics Department, Bergische Universität Wuppertal, Gauss-Str. 20, 42119, Wuppertal, Germany
| | - Kai Yuan
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
| | - Yiwang Chen
- College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC)/Institute of Polymers and Energy Chemistry (IPEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China
- College of Chemistry and Materials/Key Lab of Fluorine and Silicon for Energy Materials and Chemistry of Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang, 330022, China
| |
Collapse
|
8
|
Liu M, Liu Y, Zhang X, Li L, Xue X, Humayun M, Yang H, Sun L, Bououdina M, Zeng J, Wang D, Snyders R, Wang D, Wang X, Wang C. Altering the Symmetry of Fe-N-C by Axial Cl-Mediation for High-Performance Zinc-Air Batteries. Angew Chem Int Ed Engl 2025:e202504923. [PMID: 40232866 DOI: 10.1002/anie.202504923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/17/2025]
Abstract
Fe-N-C catalyst is acknowledged as a promising alternative for the state-of-the-art Pt/C in oxygen reduction reaction (ORR) toward cutting-edge electrochemical energy conversion/storage applications. Herein, a "Cl-mediation" strategy is proposed on Fe-N-C for modulating the catalyst's electronic structure toward achieving remarkable ORR activity. By coordinating axial Cl atoms to iron phthalocyanine (FePc) molecules on carbon nanotubes (CNTs) matrix, a Cl-modulated Fe-N-C (FePc-Cl-CNTs) catalyst is synthesized. The as-prepared FePc-Cl-CNTs exhibit an improved ORR activity with a half-wave potential of 0.91 V versus RHE in alkaline solution, significantly outperforming the parent FePc-CNTs (0.88 V versus RHE). The advanced nature of the as-prepared FePc-Cl-CNTs is evidenced by a configured high-performance rechargeable Zn-air battery, which operates stably for over 150 h. The experiments and density functional theory calculations unveil that axial Cl atoms induce the transformation of FePc from its original D4h to C4v symmetry, effectively altering the electrons distribution around the Fe-center, by which it optimizes *OH desorption and subsequently boosts the reaction kinetics. This work paves ways for resolving the dilemma of Fe-N-C catalysts' exploration via engineering Fe-N-C configuration.
Collapse
Affiliation(s)
- Mengni Liu
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Yuxiao Liu
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xia Zhang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Linfeng Li
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Xinying Xue
- Department of Physics, College of Science, Shihezi University, Xinjiang, 832003, P.R. China
| | - Muhammad Humayun
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Haowei Yang
- School of Materials Science and Engineering, Central South University, Changsha, 410083, P.R. China
| | - Libo Sun
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Mohamed Bououdina
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| | - Jianrong Zeng
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P.R. China
| | - Deli Wang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
| | - Rony Snyders
- Chimie des Interactions Plasma Surfaces (ChIPS), University of Mons, Mons, 7000, Belgium
- Materia Nova Research Center, Mons, B-7000, Belgium
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, 100084, P.R. China
| | - Xin Wang
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chundong Wang
- School of Integrated Circuits, State Key Laboratory of New Textile Materials and Advanced Processing, Huazhong University of Science and Technology, Wuhan, 430074, P.R. China
- Energy, Water and Environment Lab, College of Humanities and Sciences, Prince Sultan University, Riyadh, 11586, Saudi Arabia
| |
Collapse
|
9
|
Zhang W, Jiao D, Zhang LH, Yu F. Tuning the spin state of the iron center by FePc/Mg(OH) 2 heterojunction boosting oxygen reduction performance. J Colloid Interface Sci 2025; 684:690-695. [PMID: 39813785 DOI: 10.1016/j.jcis.2025.01.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/27/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Iron phthalocyanine (FePc) is a promising non-noble metal catalyst for oxygen reduction reaction (ORR). While, with the plane-symmetric FeN4 site, the ORR activity of FePc is generally low due to its low ability to adsorb and activate O2. Herein, we anchor FePc on Mg(OH)2/N-doped carbon nanosheets building the ternary plate-like catalyst FePc/Mg(OH)2/NC. Theoretical and experimental results show that due to the formation of FePc/Mg(OH)2 heterojunction, the electron spin state of the monodisperse iron active site ranges from medium spin (MS, t2g5eg1) to low spin (LS, t2g6eg0), enhancing the adsorption with oxygen-containing intermediates, thereby improving the dynamics of the oxygen reduction reaction. As a result, FePc/Mg(OH)2/NC catalyst exhibits an outstanding performance (E0 = 1.02 V, E1/2 = 0.91 V) for ORR, superior to the commercial Pt/C electrode (E0 = 1.01 V, E1/2 = 0.85 V) and FePc/NC (E0 = 0.97 V, E1/2 = 0.87 V) under the alkaline conditions. This work offers a new way for the rational design of effective FeNC catalysts with the support of metal oxides/hydroxides.
Collapse
Affiliation(s)
- Wenlin Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Di Jiao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Lu-Hua Zhang
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China
| | - Fengshou Yu
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130 PR China.
| |
Collapse
|
10
|
Yu A, Yang Y. Atomically Dispersed Metal Catalysts for Oxygen Reduction Reaction: Two-Electron vs. Four-Electron Pathways. Angew Chem Int Ed Engl 2025; 64:e202424161. [PMID: 39891655 DOI: 10.1002/anie.202424161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/09/2025] [Accepted: 01/31/2025] [Indexed: 02/03/2025]
Abstract
Developing eco-friendly electrochemical devices for electrosynthesis, fuel cells (FCs), and metal-air batteries (MABs) requires precisely designing the electronic pathway in the oxygen reduction reaction (ORR) process. Understanding the principle of developing low-cost, highly active, and stable catalysts helps to reduce the usage of noble metals in ORR. Atomically dispersed metal catalysts (ADMCs) emerge as promising alternatives to replace commercial noble metals due to their high utilization of active metal atoms, high intrinsic activity, and controllable coordination environments. In this review, the research tendency and reaction mechanisms in ORR are first summarized. The basic principles concerning the geometric size and chemical coordination of two-electron ORR (2e- ORR) catalysts were then discussed, aiming to outline the evolution of material design from 2e- ORR to four-electron ORR (4e- ORR). Subsequently, recent advances in ADMCs primarily investigated for the 4e- ORR are well-documented. These advances encompass studies on M-N-C coordination, light heteroatom doping, dual-metal atoms-based coordination, and interaction between nanoparticle (NPs)/nanoclusters (NCs) and atomically dispersed metals (ADMs). Finally, the setups for 2/4e- ORR applications, key challenges, and opportunities in the future design of ADMCs for the ORR are highlighted.
Collapse
Affiliation(s)
- Ao Yu
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
| | - Yang Yang
- NanoScience Technology Center, University of Central Florida, Orlando, FL 32826, USA
- Department of Materials Science and Engineering, University of Central Florida, Orlando, FL 32826, USA
- Renewable Energy and Chemical Transformation Cluster, University of Central Florida, Orlando, FL 32826, USA
- Department of Chemistry, University of Central Florida, Orlando, FL 32826, USA
- The Stephen W. Hawking Center for Microgravity Research and Education, University of Central Florida, Orlando, FL 32826, USA
| |
Collapse
|
11
|
Liu T, Zhang D, Hirai Y, Ito K, Ishibashi K, Todoroki N, Matsuo Y, Yoshida J, Ono S, Li H, Yabu H. Surface Charge Transfer Enhanced Cobalt-Phthalocyanine Crystals for Efficient CO 2-to-CO Electroreduction with Large Current Density Exceeding 1000 mA cm -2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501459. [PMID: 40184600 DOI: 10.1002/advs.202501459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/03/2025] [Indexed: 04/06/2025]
Abstract
Phthalocyanines (Pcs) have garnered significant attention as promising catalysts for electrochemical CO2 reduction (ECR); however, traditional methods for preparing carbon-supported Pcs are often complex and time-consuming, limiting their industrial applicability. Herein, a rapid spray-growth method is introduced that directly deposits CoPc crystals onto carbon paper (CP) in just 15 min. The resulting CoPc/CP electrode maintains > 90% CO selectivity across a broad ECR window (-0.57 to -1.32 V vs RHE), achieves a record-breaking CO current density of -1034 mA cm-2, an ultrahigh mass activity of 5180 A g-1, and demonstrates excellent long-term stability (145 h @ -150 mA cm-2), surpassing all reported Pc-based catalysts. Comprehensive characterization attributes this high performance to its carbon-supported-crystalline structure and surface charge transfer (SCT). Density functional theory (DFT) calculations further reveal that even minimal SCT effectively optimizes the adsorption energies of key intermediates (*CO and *COOH), thereby significantly enhancing intrinsic activity. Moreover, this spray-grown electrode offers unique structural advantages, such as strong substrate adhesion and internal layers that replenish active sites-features absent in traditional carbon-supported electrodes. It is believed that this facile spray-growth method holds broad potential and enables the application of additional Pc-based materials for industrial-scale ECR.
Collapse
Affiliation(s)
- Tengyi Liu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Di Zhang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | | | - Koju Ito
- AZUL Energy Inc., Sendai, 980-0811, Japan
| | - Kosuke Ishibashi
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Naoto Todoroki
- Graduate School of Environmental Studies, Tohoku University, Sendai, 980-8579, Japan
| | - Yasutaka Matsuo
- Research Institute for Electronic Research (RIES), Hokkaido University, Sapporo, 001-0020, Japan
| | - Junya Yoshida
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai, 980-8579, Japan
| | - Shimpei Ono
- International Center for Synchrotron Radiation Innovation Smart, Tohoku University, Sendai, 980-8579, Japan
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Hiroshi Yabu
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
- AZUL Energy Inc., Sendai, 980-0811, Japan
| |
Collapse
|
12
|
He J, Li Q, Liu D, Feng Z, Qin C, Wang W, Yang J, Liu L, Xiao JD, Chen S, Chen X, Wang J, Yuan CZ, Yang Z. Biomimetic Square Pyramidal N 1-Fe-N 4 Single Sites with Optimized Electron Distribution for the Efficient Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2500897. [PMID: 39989160 DOI: 10.1002/smll.202500897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Single atom iron-nitrogen-carbon (Fe-N-C) catalysts with a planar Fe─N4 structure are widely investigated as potential alternatives to platinum-based materials for oxygen reduction reaction (ORR), while they still suffer from the imperfect adsorption and activation of reaction intermediates, limiting their reduction efficiency. Herein, a Fe single-atom catalyst with a biomimetic square pyramidal N1-Fe-N4 site supported by honeycomb-like porous carbon (SA-FeN5/HPC) is successfully prepared by a supramolecular confinement-pyrolysis strategy. Theoretical calculations unveil that the introduction of spatially axial N ligands effectively regulates the charge redistribution around the planar Fe─N4 active centers and confers Fe active moieties with appropriate adsorption strength for intermediates, thereby resulting in accelerated ORR kinetics. Consequently, the oversaturated SA-FeN5/HPC catalyst showed excellent electrocatalytic ORR activity, achieving a half-wave potential of 0.93 V versus RHE and superior durability. Moreover, Zn-air batteries with SA-FeN5/HPC as the cathode electrocatalyst displayed excellent performance, demonstrating great potential for practical application. This work paves the way for the design and development of high-coordination single-atom electrocatalysts.
Collapse
Affiliation(s)
- Jiaxin He
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Qingyi Li
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Daomeng Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Ziyi Feng
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Chenchen Qin
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Wenjun Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Jia Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Lu Liu
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Juan-Ding Xiao
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Shuai Chen
- Division of Nanomaterials and Chemistry Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xifan Chen
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Junzhong Wang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| | - Cheng-Zong Yuan
- Institute of Resources and Ecological Environment, Jiangxi Province Key Laboratory of Cleaner Production of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Science, Ganzhou, 341119, China
- School of Rare Earth, University of Science and Technology of China, Hefei, China
| | - Zhengkun Yang
- Institutes of Physical Science and Information Technology, Anhui Graphene Carbon Fiber Materials Research Center, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, China
| |
Collapse
|
13
|
Cao Y, Liu Y, Zheng X, Yang J, Wang H, Zhang J, Han X, Deng Y, Rupprechter G, Hu W. Quantifying Asymmetric Coordination to Correlate with Oxygen Reduction Activity in Fe-Based Single-Atom Catalysts. Angew Chem Int Ed Engl 2025; 64:e202423556. [PMID: 39844730 DOI: 10.1002/anie.202423556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/24/2025]
Abstract
Precisely manipulating asymmetric coordination configurations and examining electronic effects enable to tunethe intrinsic oxygen reduction reaction (ORR) activity of single-atom catalysts (SACs). However, the lackof a definite relationship between coordination asymmetry and catalytic activity makes the rational design of SACs ambiguous. Here, we propose a concept of "asymmetry degree" to quantify asymmetric coordination configurations and assess the effectiveness of active moieties in Fe-based SACs. A theoretical framework is established, elucidating the volcanic relationship between asymmetry degree and ORR activity by constructing a series of Fe-based SAC models doped with non-metal atoms (B, P, S, Se, and Te) in the first or second coordination sphere, which aligns with Sabatier principle. The predicted ORR activity of Fe asymmetric active moieties is then experimentally validated using asymmetry degree. The combined computational and experimental results suggest that single-atom moiety with a moderate asymmetry degree exhibits optimal intrinsic ORR activity, because breaking the square-planar symmetry of FeN4 can alter the electronic population of the Fe 3d-orbital, thereby optimizing the adsorption-desorption strength of intermediates and thus enhancing the intrinsic ORR activity. This fundamental understanding of catalytic activity from geometric and electronic aspects offers a rational guidance to design high-performance SACs with asymmetric configurations.
Collapse
Affiliation(s)
- Yanhui Cao
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yuan Liu
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xuerong Zheng
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Jingxia Yang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, P. R. China
| | - Haozhi Wang
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaopeng Han
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| | - Yida Deng
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
- School of Materials Science and Engineering, State Key Laboratory of Tropic Ocean Engineering Materials and Materials Evaluation, Key Laboratory of Pico Electron Microscopy of Hainan Province, Hainan University, Haikou, 570228, P. R. China
| | - Günther Rupprechter
- Institute of Materials Chemistry, TU Wien, Getreidemarkt 9/BC, 1060, Vienna, Austria
| | - Wenbin Hu
- School of Materials Science and Engineering, State Key Laboratory of Precious Metal Functional Materials, Tianjin Key Laboratory of Composite and Functional Materials, Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin, 300072, P. R. China
| |
Collapse
|
14
|
Lin Y, Wang S, Liu H, Liu X, Yang L, Su X, Shan L, Li X, Song L. Regulating the electrocatalytic active centers for accelerated proton transfer towards efficient CO 2 reduction. Natl Sci Rev 2025; 12:nwaf010. [PMID: 40041031 PMCID: PMC11879416 DOI: 10.1093/nsr/nwaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/12/2024] [Accepted: 12/26/2024] [Indexed: 03/06/2025] Open
Abstract
The electrochemical CO2 reduction reaction (CO2RR) is an important application that can considerably mitigate environmental and energy crises. However, the slow proton-coupled electron transfer process continues to limit overall catalytic performance. Fine-tuning the reaction microenvironment by accurately constructing the local structure of catalysts provides a novel approach to enhancing reaction kinetics. Here, cubic-phase α-MoC1-x nanoparticles were incorporated into a carbon matrix and coupled with cobalt phthalocyanine molecules (α-MoC1-x-CoPc@C) for the co-reduction of CO2 and H2O, achieving an impressive Faradaic efficiency for CO close to 100%. Through a combination of in-situ spectroscopies, electrochemical measurements, and theoretical simulations, it is demonstrated that α-MoC1-x nanoparticles and CoPc molecules with optimized local configuration serve as the active centers for H2O activation and CO2 reduction, respectively. The interfacial water molecules were rearranged, forming a dense hydrogen bond network on the catalyst surface. This optimized microenvironment at the electrode-electrolyte interface synergistically enhanced water dissociation, accelerated proton transfer, and improved the overall performance of CO2RR.
Collapse
Affiliation(s)
- Yunxiang Lin
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Shaocong Wang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Xue Liu
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Xiaozhi Su
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Lei Shan
- Institutes of Physical Science and Information Technology, Leibniz International Joint Research Center of Materials Sciences, Information Materials and Intelligent Sensing Laboratory of Anhui Province, Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei 230601, China
| | - Xiyu Li
- Songshan Lake Materials Laboratory, Dongguan 523808, China
- School of Physical Sciences, Great Bay University, Dongguan 523000, China
| | - Li Song
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
- Zhejiang Institute of Photonelectronics, Jinhua 321004, China
| |
Collapse
|
15
|
Liu M, Yang W, Xiao R, Li J, Tan R, Qin Y, Bai Y, Zheng L, Hu L, Gu W, Zhu C. Lattice atom-bridged chemical bond interface facilitates charge transfer for boosted photoelectric response. Natl Sci Rev 2025; 12:nwae465. [PMID: 39926201 PMCID: PMC11804805 DOI: 10.1093/nsr/nwae465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/06/2024] [Accepted: 11/29/2024] [Indexed: 02/11/2025] Open
Abstract
The construction of chemical bonds at heterojunction interfaces currently presents a promising avenue for enhancing photogenerated carrier interfacial transfer. However, the deliberate modulation of these interfacial chemical bonds remains a significant challenge. In this study, we successfully established a p-n junction composed of atomic-level Pt-doped CeO2 and 2D metalloporphyrins metal-organic framework nanosheets (Pt-CeO2/CuTCPP(Fe)), which enables the realization of photoelectric enhancement by regulating the interfacial Fe-O bond and optimizing the built-in electric field. Atomic-level Pt doping in CeO2 leads to an increased density of oxygen vacancies and lattice mutation, which induces a transition in interfacial Fe-O bonds from adsorbed oxygen (Fe-OA) to lattice oxygen (Fe-OL). This transition changes the interfacial charge flow pathway from Fe-OA-Ce to Fe-OL, effectively reducing the carrier transport distance along the atomic-level charge transport highway. This results in a 2.5-fold enhancement in photoelectric performance compared with the CeO2/CuTCPP(Fe). Furthermore, leveraging the peroxidase-like activity of the p-n junction, we employed this functional heterojunction interface to develop a photoelectrochemical immunoassay for the sensitive detection of prostate-specific antigens.
Collapse
Affiliation(s)
- Mingwang Liu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Wenhong Yang
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Runshi Xiao
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Jinli Li
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Rong Tan
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Ying Qin
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Lirong Zheng
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Liuyong Hu
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials, Wuhan Institute of Technology, Wuhan 430205, China
| | - Wenling Gu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Chengzhou Zhu
- State Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
16
|
Sang L, Zhu H, Zhang S, Wang S, Jiao Z, Wang Y, Zhang P, Hu R, Liu B, Li Y. FeCu-N 6-C Diatomic Sites Catalyst for the Boosted Oxygen Reduction Reactions in Zinc-Air Batteries. Chempluschem 2025; 90:e202400733. [PMID: 39714875 DOI: 10.1002/cplu.202400733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/19/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
Due to the high catalytic activity and stability for oxygen reduction reaction, N-coordinated Fe-Cu dual-metal doped carbon material (FeCu-N-C) is considered to be one of the promising electrode materials for metal-air battery and fuel cells. Herein, FeCu-N-C dual-metal catalysts was synthesized by an adsorption-calcination strategy. The prepared FeCu-N-C exhibited high activity and stability both in alkaline and acidic media. In alkaline/acid medium, the half-wave potential reaches to 0.90/0.80 V, which is better than Fe-N-C catalyst. The power density for FeCu-N-C in zinc-air battery reaches to 220 mW cm-2 and shows high electrochemical stability for more than 600 hours in charge/discharge cycles, much higher than 130 hours for Pt/C (40 %) and 100 hours for Fe-N-C. Density-functional theory calculations showed that the FeCu-N-C dual-metal catalysts got lower overpotential of 0.50 V than Fe-N-C (0.53 V), which improved the ORR activity. The results are helpful for the deep understanding of high-performance diatomic catalysts.
Collapse
Affiliation(s)
- Longrun Sang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Haosheng Zhu
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Shan Zhang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Shipeng Wang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - ZiPan Jiao
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Yunsi Wang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Peng Zhang
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - Riming Hu
- Institute for Smart Materials and Engineering, University of Jinan, Jinan, 250022, P. R. China
| | - Bingxin Liu
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| | - YongCheng Li
- School of Mechanical Engineering, Qinghai University, Xining, 810016, P. R. China
| |
Collapse
|
17
|
Song Q, Gong Z, Liu J, Huang K, Ye G, Niu S, Fei H. Boosting the Hydrogen Evolution Activity of a Low-Coordinated Co─N─C Catalyst via Vacancy Defect-Mediated Alteration of the Intermediate Adsorption Configuration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2415665. [PMID: 39804785 PMCID: PMC11884577 DOI: 10.1002/advs.202415665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 12/21/2024] [Indexed: 01/16/2025]
Abstract
The cobalt-nitrogen-carbon (Co─N─C) single-atom catalysts (SACs) are promising alternatives to precious metals for catalyzing the hydrogen evolution reaction (HER) and their activity is highly dependent on the coordination environments of the metal centers. Herein, a NaHCO3 etching strategy is developed to introduce abundant in-plane pores within the carbon substrates that further enable the construction of low-coordinated and asymmetric Co─N3 sites with nearby vacancy defects in a Co─N─C catalyst. This catalyst exhibits a high HER activity with an overpotential (η) of merely 78 mV to deliver a current density of 10 mA cm-2, a Tafel slope of 45.2 mV dec-1, and a turnover frequency of 1.67 s-1 (at η = 100 mV). Experimental investigations and theoretical calculations demonstrate that the vacancy defects neighboring the Co─N3 sites can modulate the electronic structure of the catalyst and alter the adsorption configuration of the H intermediate from the typical atop mode to the side mode, resulting in weakened H adsorption strength and thus improved HER activity. This work provides an efficient strategy to regulate the coordination environment of SACs for improved catalytic performance and sheds light on the atomic-level understanding of the structure-activity relationships.
Collapse
Affiliation(s)
- Qianwei Song
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Zhichao Gong
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Jianbin Liu
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Kang Huang
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Gonglan Ye
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| | - Shuwen Niu
- College of Chemistry and Chemical Engineering InstitutionQingdao UniversityQingdao266071P. R. China
| | - Huilong Fei
- State Key Laboratory for Chemo/Biosensing and ChemometricsAdvanced Catalytic Engineering Research Center of the Ministry of Education and College of Chemistry and Chemical EngineeringHunan UniversityChangsha410082P. R. China
| |
Collapse
|
18
|
Li L, Li Z, Li J, Wang J, Xu H, Yu H, Lin Q, Huang H, Liu Y, Kang Z. Isomer-Effects of Aminophenol Decorated Gold Nanoclusters for H 2O 2 Photoproduction via Two-Step One-Electron Oxygen Reduction Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2410843. [PMID: 39780734 DOI: 10.1002/smll.202410843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/21/2024] [Indexed: 01/11/2025]
Abstract
Gold (Au) nanoclustersare promising photocatalysts for biomedicine, sensing, and environmental remediation. However, the short carrier lifetime, inherent instability, and unclear charge transfer mechanism hinder their application. Herein, the Au nanoclusters decorated with three different isomers of o-Aminophenol, m-Aminophenol, and p-Aminophenol are synthesized, namely o-Au, m-Au, and p-Au, which achieve efficient hydrogen peroxide (H2O2) photoproduction through two-step one-electron oxygen reduction reaction (ORR). The interfacial kinetics for the photocatalytic process in this system are investigated in detail, in which, the isomer-effects of aminophenol decorated in Au nanoclusters are definitely elucidated by combining transient photovoltage (TPV), transient potential scanning (TPS), and photo-induced current (TPC) tests. The reaction pathway of o-Au, m-Au, and p-Au is confirmed to be the same through TPC. Although the conduction band values of o-Au, m-Au, and p-Au are essentially the same under working conditions, the values of surface effective charges (ne) for both m-Au and p-Au are higher than that of o-Au. In addition, m-Au has a stronger adsorption capacity for O2 and a faster ORR rate. Thus, the m-Au manifests the highest photocatalytic activity for the H2O2 photoproduction. This work shows a new way for the in-situ study on charge distribution and transfer on photocatalysts.
Collapse
Affiliation(s)
- Luhan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zenan Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jiacheng Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Jiaxuan Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haojie Xu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Haizhou Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Qianyu Lin
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, P. R. China
- Macao Institute of Materials Science and Engineering (MIMSE), MUST-SUDA Joint Research Center for Advanced Functional Materials, Macau University of Science and Technology, Taipa, Macao, 999078, P. R. China
| |
Collapse
|
19
|
Xie Y, Feng Y, Zhu S, Yu Y, Bao H, Liu Q, Luo F, Yang Z. Modulation in Spin State of Co 3O 4 Decorated Fe Single Atom Enables a Superior Rechargeable Zinc-Air Battery Performance. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2414801. [PMID: 39629528 DOI: 10.1002/adma.202414801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/26/2024] [Indexed: 02/06/2025]
Abstract
High-performance bifunctional electrocatalyst for oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) is the keystone for the industrialization of rechargeable zinc-air battery (ZAB). In this work, the modulation in the spin state of Fe single atom on nitrogen doped carbon (Fe1-NC) is devised by Co3O4 (Co3O4@Fe1-NC), and a mediate spin state is recorded. Besides, the d band center of Fe is downshifted associated with the increment in eg filling revealing the weakened interaction with OH* moiety, resulting in a boosted ORR performance. The ORR kinetic current density of Co3O4@Fe1-NC is 2.0- and 5.6 times higher than Fe1-NC and commercial Pt/C, respectively. Moreover, high spin state is found for Co in Co3O4@Fe1-NC contributing to the accelerated surface reconstruction of Co3O4 witnessed by operando Raman and electrochemical impedance spectroscopies. A robust OER activity with overpotential of 352 mV at 50 mA cm-2 is achieved, decreased by 18 and 60 mV by comparison with Co3O4@NC and IrO2. The operando Raman reveals a balanced adsorption of OH* species and its deprotonation leading to robust stability. The ZAB performance of Co3O4@Fe1-NC is 193.2 mW cm-2 and maintains for 200 h. Furthermore, the all-solid-state ZAB shows a promising battery performance of 163.1 mW cm-2.
Collapse
Affiliation(s)
- Yuhua Xie
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Yumei Feng
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Shiao Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| | - Yingjie Yu
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Haifeng Bao
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, 430068, China
| | - Fang Luo
- State Key Laboratory of New Textile Materials & Advanced Processing Technology, College of Materials Science and Engineering, Wuhan Textile University, Wuhan, 430200, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, 388 Lumo RD, Wuhan, 430074, China
| |
Collapse
|
20
|
Luo S, Zhao C, Wang R, Chang Z, Di J, Wang Y, Gan Z, Wu D. Higher Tumor/Organ Accumulation Ratio of Porous Dual Infinite Coordination Polymer Nanocomposites for Efficient Tumor Photothermal-Starvation-Dual Hypoxia Chemo Synergistic Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411188. [PMID: 39723716 DOI: 10.1002/smll.202411188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/16/2024] [Indexed: 12/28/2024]
Abstract
To enhance tumor comprehensive therapeutic effect of nanomedicines, an efficient strategy that integrates polydopamine and IR780 photothermal therapy, glucose oxidase (GOx) starvation therapy, Banoxantrone (AQ4N) and Tirapazamine (TPZ) dual hypoxia chemotherapy is developed in chronological order. Higher tumor accumulation of porous dual infinite coordination polymer nanocomposites are designed and prepared to implement this strategy, in which fluorescent dye IR780 doped hypoxic prodrugs AQ4N and TPZ coordinated with Cu(II) as the core, this core is encapsulated by GOx-loaded porous polydopamine coordinated with Fe(III) (Fe-MPDA). These nanocomposites exhibit a particle dimension of 118.5 ± 21.7 nm with pore size of 20.1 nm (pore volume 0.012 cm3 g-1 nm-1), facilitating easy accumulation in tumor tissues. Particularly, their ratio of the area under the curve (AUC) of the tumor/organ drug concentration versus time (AUCtumor/AUCorgans) is 1.28. Upon reaching the tumor, the nanocomposites release GOx and Fe-MPDA in initial stage to execute photothermal and starvation therapy, simultaneously enhance the hypoxic level at the tumor site. Then AQ4N and TPZ undergo synergistic chemotherapy in the enhanced hypoxic environment. Animal experiments show a tumor inhibition rate of 100% and a tumor recurrence rate of 0% after 60 d, demonstrating their great potential application for tumor treatment.
Collapse
Affiliation(s)
- Siyuan Luo
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Chenyu Zhao
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Rong Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Zepu Chang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jingran Di
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Ya Wang
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- Center for Gut Microbiome Research, Med-X Institute, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, P. R. China
| | - Zhenhai Gan
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Daocheng Wu
- Key Laboratory of Biomedical Information Engineering of Education Ministry, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
21
|
Ma J, Zhang S, Shi X, Dai L, Liu Z, Liu X, Lu X, Jiang Z. Highly Efficient Degradation of Bisphenol A by Peroxymonosulfate Activation Using Bamboo Kraft Lignin Single-Atom Catalyst. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409803. [PMID: 39828539 DOI: 10.1002/smll.202409803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/24/2024] [Indexed: 01/22/2025]
Abstract
A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%. The degradation rate of bisphenol A (BPA) approached 99% within 5 min, with the observed rate constant (kobs) of the catalysts markedly increasing from 0.070 to 0.615 min-1. The catalyst-mediated electron transfer pathway is identified as the predominant mechanism for BPA degradation. Both experimental data and DFT analysis of the nitrogen ligands demonstrated that pyridinic N-coordinated Fe single atoms are the principal active sites, attributed to the enhanced electron density and delocalization concentrated around the Fe sites. These findings significantly elucidate the role of nitrogen ligands in designing efficient lignin-derived carbon single-atom catalysts for environmental applications.
Collapse
Affiliation(s)
- Jianfeng Ma
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Shumin Zhang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Xin Shi
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Linxin Dai
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Zhenzhen Liu
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Xinge Liu
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem & Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Zehui Jiang
- Key Lab of Bamboo and Rattan Science & Technology, International Center for Bamboo and Rattan, Beijing, 100102, P. R. China
| |
Collapse
|
22
|
Shao H, Zhong L, Wu X, Wang YX, Smith SC, Tan X. Recent progress of density functional theory studies on carbon-supported single-atom catalysts for energy storage and conversion. Chem Commun (Camb) 2025; 61:2203-2216. [PMID: 39760522 DOI: 10.1039/d4cc05900j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Single-atom catalysts (SACs) have become the forefront and hotspot in energy storage and conversion research, inheriting the advantages of both homogeneous and heterogeneous catalysts. In particular, carbon-supported SACs (CS-SACs) are excellent candidates for many energy storage and conversion applications, due to their maximum atomic efficiency, unique electronic and coordination structures, and beneficial synergistic effects between active catalytic sites and carbon substrates. In this review, we briefly review the atomic-level regulation strategies for optimizing CS-SACs for energy storage and conversion, including coordination structure control, nonmetallic elemental doping, axial coordination design, and polymetallic active site construction. Then we summarize the recent progress of density functional theory studies on designing CS-SACs by the above strategies for electrocatalysis, such as hydrogen evolution reaction, oxygen evolution reaction, oxygen reduction reaction, CO2 reduction reaction, nitrogen reduction reaction, and electrosynthesis of urea, and electrochemical energy storage systems such as monovalent metal-sulfur batteries (Li-S and Na-S batteries). Finally, the current challenges and future opportunities in this emerging field are highlighted. This review will provide a helpful guideline for the rational design of the structure and functionality of CS-SACs, and contribute to material optimizations in applications of energy storage and conversion.
Collapse
Affiliation(s)
- Hengjia Shao
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Li Zhong
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Xingqiao Wu
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| | - Yun-Xiao Wang
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Sean C Smith
- Integrated Materials Design Laboratory, Department of Materials Physics, Research School of Physics, Australian National University, Canberra, ACT 2601, Australia.
| | - Xin Tan
- Institute for Carbon Neutralization Technology, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325035, China.
| |
Collapse
|
23
|
Musgrave CB, Su J, Xiong P, Song Y, Huang L, Liu Y, Li G, Zhang Q, Xin Y, Li MMJ, Kwok RTK, Lam JWY, Tang BZ, Goddard WA, Ye R. Molecular Strain Accelerates Electron Transfer for Enhanced Oxygen Reduction. J Am Chem Soc 2025; 147:3786-3795. [PMID: 39818842 PMCID: PMC11783534 DOI: 10.1021/jacs.4c16637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/31/2024] [Accepted: 01/03/2025] [Indexed: 01/19/2025]
Abstract
Fe-N-C materials are emerging catalysts for replacing precious platinum in the oxygen reduction reaction (ORR) for renewable energy conversion. However, their potential is hindered by sluggish ORR kinetics, leading to a high overpotential and impeding efficient energy conversion. Using iron phthalocyanine (FePc) as a model catalyst, we elucidate how the local strain can enhance the ORR performance of Fe-N-Cs. We use density functional theory to predict the reaction mechanism for the four-electron reduction of oxygen to water. Several key differences between the reaction mechanisms for curved and flat FePc suggest that molecular strain accelerates the reductive desorption of *OH by decreasing the energy barrier by ∼60 meV. Our theoretical predictions are substantiated by experimental validation; we find that strained FePc on single-walled carbon nanotubes attains a half-wave potential (E1/2) of 0.952 V versus the reversible hydrogen electrode and a Tafel slope of 35.7 mV dec-1, which is competitive with the best-reported Fe-N-C values. We also observe a 70 mV change in E1/2 and dramatically different Tafel slopes for the flat and curved configurations, which agree well with the calculated energies. When integrated into a zinc-air battery, our device affords a maximum power density of 350.6 mW cm-2 and a mass activity of 810 mAh gZn-1 at 10 mA cm-2. Our results indicate that molecular strain provides a compelling tool for modulating the ORR activities of Fe-N-C materials.
Collapse
Affiliation(s)
- Charles B. Musgrave
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena 91125, California, United States
| | - Jianjun Su
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Pei Xiong
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hong Kong 999077, P. R. China
| | - Yun Song
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Libei Huang
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
- Division
of Science, Engineering and Health Study, School of Professional Education
and Executive Development (PolyU SPEED), The Hong Kong Polytechnic University, Hong Kong 999077, P. R. China
| | - Yong Liu
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Geng Li
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Qiang Zhang
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Yinger Xin
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
| | - Molly Meng-Jung Li
- Department
of Applied Physics, Hong Kong Polytechnic
University, Hong Kong 999077, P. R. China
| | - Ryan Tsz Kin Kwok
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Jacky W. Y. Lam
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
| | - Ben Zhong Tang
- Department
of Chemistry and the Hong Kong Branch of Chinese National Engineering
Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Hong Kong 999077, China
- School of
Science and Engineering, Shenzhen Institute of Aggregate Science and
Technology, The Chinese University of Hong
Kong, Shenzhen 518172, Guangdong, China
| | - William A. Goddard
- Materials
and Process Simulation Center, California
Institute of Technology, Pasadena 91125, California, United States
| | - Ruquan Ye
- Department
of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong 999077, P. R. China
- City University
of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
24
|
Li H, Li H, Du M, Zhou E, Leow WR, Liu M. A perspective on field-effect in energy and environmental catalysis. Chem Sci 2025; 16:1506-1527. [PMID: 39759941 PMCID: PMC11694487 DOI: 10.1039/d4sc07740g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 12/17/2024] [Indexed: 01/07/2025] Open
Abstract
The development of catalytic technologies for sustainable energy conversion is a critical step toward addressing fossil fuel depletion and associated environmental challenges. High-efficiency catalysts are fundamental to advancing these technologies. Recently, field-effect facilitated catalytic processes have emerged as a promising approach in energy and environmental applications, including water splitting, CO2 reduction, nitrogen reduction, organic electrosynthesis, and biomass recycling. Field-effect catalysis offers multiple advantages, such as enhancing localized reactant concentration, facilitating mass transfer, improving reactant adsorption, modifying electronic excitation and work functions, and enabling efficient charge transfer and separation. This review begins by defining and classifying field effects in catalysis, followed by an in-depth discussion on their roles and potential to guide further exploration of field-effect catalysis. To elucidate the theory-structure-activity relationship, we explore corresponding reaction mechanisms, modification strategies, and catalytic properties, highlighting their relevance to sustainable energy and environmental catalysis applications. Lastly, we offer perspectives on potential challenges that field-effect catalysis may face, aiming to provide a comprehensive understanding and future direction for this emerging area.
Collapse
Affiliation(s)
- HuangJingWei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Hongmei Li
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| | - Mengzhen Du
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
- College of Chemical and Materials Engineering, Xuchang University Xuchang Henan 461000 P. R. China
| | - Erjun Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University Jiaxing Zhejiang 314001 P. R. China
| | - Wan Ru Leow
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR) Singapore 627833 Singapore
| | - Min Liu
- Hunan Joint International Research Center for Carbon Dioxide Resource Utilization, State Key Laboratory of Powder Metallurgy, School of Physics, Central South University Changsha 410083 P. R. China
| |
Collapse
|
25
|
Song K, Jing H, Yang B, Shao J, Tao Y, Zhang W. Enhancing Oxygen Reduction Reaction of Single-Atom Catalysts by Structure Tuning. CHEMSUSCHEM 2025; 18:e202401713. [PMID: 39187438 DOI: 10.1002/cssc.202401713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 08/28/2024]
Abstract
Deciphering the fine structure has always been a crucial approach to unlocking the distinct advantages of high activity, selectivity, and stability in single-atom catalysts (SACs). However, the complex system and unclear catalytic mechanism have obscured the significance of exploring the fine structure. Therefore, we endeavored to develop a three-component strategy to enhance oxygen reduction reaction (ORR), delving deep into the profound implications of the fine structure, focusing on central atoms, coordinating atoms, and environmental atoms. Firstly, the mechanism by which the chemical state and element type of central atoms influence catalytic performance is discussed. Secondly, the significance of coordinating atoms in SACs is analyzed, considering both the number and type. Lastly, the impact of environmental atoms in SACs is reviewed, encompassing existence state and atomic structure. Thorough analysis and summarization of how the fine structure of SACs influences the ORR have the potential to offer valuable insights for the accurate design and construction of SACs.
Collapse
Affiliation(s)
- Kexin Song
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Haifeng Jing
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Binbin Yang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| | - Jing Shao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518055, China
| | - Youkun Tao
- College of Science, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials Ministry of Education, School of Materials Science & Engineering, Electron Microscopy Center, International Center of Future Science, Jilin Provincial International Cooperation Key Laboratory of High-Efficiency Clean Energy Materials, Jilin University, Changchun, 130012, China
| |
Collapse
|
26
|
Wang X, Yi ZY, Wang YQ, Wang D. Molecular Evidence for the Axial Coordination Effect of Atomic Iodine on Fe-N 4 Sites in Oxygen Reduction Reaction. Angew Chem Int Ed Engl 2025; 64:e202413673. [PMID: 39278835 DOI: 10.1002/anie.202413673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/02/2024] [Accepted: 09/13/2024] [Indexed: 09/18/2024]
Abstract
We present a molecular-scale investigation of the axial coordination effect of atomic iodine on Fe-N4 sites in the oxygen reduction reaction (ORR) by electrochemical scanning tunneling microscopy (ECSTM). A well-defined model catalytic system with explicit and uniform iodine-coordinated Fe-N4 sites was constructed facilely by the self-assembly of iron(II) phthalocyanine (FePc) on an I-modified Au(111) surface. The electrocatalytic activity of FePc for the ORR shows notable enhancement with axial iodine ligands. The modulation of the electronic structure of Fe sites to evoke a higher spin configuration by axial iodine was evidenced. The interaction strength between oxygen-containing species and active centers becomes weaker due to the presence of iodine ligands, and the reaction is thermodynamically preferable. Furthermore, the reaction dynamics of FePc on I/Au(111) were explicitly determined via in situ ECSTM potential pulse experiments. In contrast, axial atomic iodine was found inefficacious for improving the activity of Co-N4 sites, and electron rearrangement was found to be marginal, demonstrating that adequate interactions between axial ligands and metal sites for optimizing electronic structures and catalytic behaviors are prerequisites for the impactful role of axial ligands.
Collapse
Affiliation(s)
- Xiang Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Zhen-Yu Yi
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| | - Yu-Qi Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, Beijing National Laboratory for Molecular Science (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Zhongguancun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, No.1 Yanqihu East Rd, Beijing, 101408, China
| |
Collapse
|
27
|
Guan X, Lei Z, Xue R, Li Z, Li P, David M, Yi J, Jia B, Huang H, Li X, Ma T. Polarization: A Universal Driving Force for Energy, Environment, and Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413525. [PMID: 39551991 DOI: 10.1002/adma.202413525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/30/2024] [Indexed: 11/19/2024]
Abstract
The sustainable future relies on the synergistic development of energy, environmental, and electronic systems, founded on the development of functional materials by exploring their quantum mechanisms. Effective control over the distribution and behavior of charges within these materials, a basic quantum attribute, is crucial in dictating their physical, chemical, and electronic properties. At the core of charge manipulation lies "polarization"-a ubiquitous phenomenon marked by separating positive and negative charges. This review thoroughly examines polarization techniques, spotlighting their transformative role in catalysis, energy storage, solar cells, and electronics. Starting with the foundational mechanisms underlying various forms of polarization, including piezoelectric, ferroelectric, and pyroelectric effects, the perspective is expanded to cover any asymmetric phenomena that generate internal fields, such as heterostructures and doping. Afterward, the critical role of polarization across various applications, including charge separation, surface chemistry modification, and energy band alignment, is highlighted. Special emphasis is placed on the synergy between polarization and material properties, demonstrating how this interplay is pivotal in overcoming existing technological limitations and unlocking new functionalities. Through a comprehensive analysis, a holistic roadmap is offered for harnessing polarization across the broad spectrum of applications, thus finding sustainable solutions for future energy, environment, and electronics.
Collapse
Affiliation(s)
- Xinwei Guan
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Zhihao Lei
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ruichang Xue
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Zhixuan Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Peng Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Matthew David
- GrapheneX Pty Ltd, Level 3A, Suite 2, 1 Bligh Street, Sydney, NSW, 2000, Australia
| | - Jiabao Yi
- Global Innovative Center of Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Baohua Jia
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Hongwei Huang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes, National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing, 100083, P. R. China
| | - Xiaoning Li
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| | - Tianyi Ma
- Centre for Atomaterials and Nanomanufacturing (CAN), School of Science, RMIT University, Melbourne, VIC, 3000, Australia
- ARC Industrial Transformation Research Hub for Intelligent Energy Efficiency in Future Protected Cropping (E2Crop), Melbourne, VIC, 3000, Australia
| |
Collapse
|
28
|
Liu Z, Huang X, Liu X, Liu J, Wang M, Ding T, Yan L, Zhang Z, Shi G. Electrochemical Synthesis of Metasequoia-Like Reduced Graphene Oxide Coated Cobalt-Silver Catalyst for Stable and Efficient Electrocatalytic Nitrate Reduction to Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408566. [PMID: 39498700 DOI: 10.1002/smll.202408566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/28/2024] [Indexed: 11/07/2024]
Abstract
Electrocatalytic nitrate (NO3 -) reduction to ammonia (NH3) is a green and efficient NH3 synthesis technology. Metallic silver (Ag) is one of the well-known electrocatalysts for NO3 - reduction. However, under alkaline conditions, its poor water-splitting ability fails to provide sufficient protonic hydrogen required for NH3 synthesis, resulting in low NH3 selectivity. Additionally, metal catalysts are prone to leaching and oxidation during electrocatalysis, resulting in poor stability. Herein, cobalt (Co) into Ag (CoAg) catalyst is doped, which not only increases the NH3 selectivity by 34.4%, but also reduces the reduction potential by 0.1 V. Meanwhile, reduced graphene oxide (rGO) as a protective "armor" is used to encapsulate the CoAg catalyst (rGO2.92@CoAg). The rGO2.92@CoAg catalyst shows excellent stability for over 300 hours (h) of continuous reaction. The Co and Ag contents in the rGO2.92@CoAg catalyst after continuous tests decreases by only 4.3% and 3.1%, respectively, which are much lower than those of the CoAg catalyst without the rGO (90.8%, 52.6%). Moreover, the rGO2.92@CoAg catalyst shows high Faradaic efficiency (99.3%) and NH3 yield rate (1.47 mmol h-1 cm-2). Therefore, a high performance and strong stability rGO2.92@CoAg catalyst is obtained by Co doping and rGO coating, which provides theoretical basis for practical industrial application.
Collapse
Affiliation(s)
- Zhengyang Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Xiaohan Huang
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Xing Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Jie Liu
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Mengting Wang
- Department of Chemical & Biological Engineering, Monash University, Wellington Road, Clayton, VC3800, Australia
| | - Tao Ding
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Linghui Yan
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Zehui Zhang
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
| | - Guosheng Shi
- Shanghai Applied Radiation Institute, State Key Lab, Shanghai University, No. 99 Shangda Road, Baoshan, Shanghai, 200444, China
- University of Chinese Academy of Sciences, China National Nuclear Corporation, Wenzhou, 325001, China
| |
Collapse
|
29
|
Xiao X, Zhuang Z, Yin S, Zhu J, Gan T, Yu R, Wu J, Tian X, Jiang Y, Wang D, Zhao F. Topological transformation of microbial proteins into iron single-atom sites for selective hydrogen peroxide electrosynthesis. Nat Commun 2024; 15:10758. [PMID: 39737987 PMCID: PMC11685441 DOI: 10.1038/s41467-024-55041-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 11/29/2024] [Indexed: 01/01/2025] Open
Abstract
The emergence of single-atom catalysts offers exciting prospects for the green production of hydrogen peroxide; however, their optimal local structure and the underlying structure-activity relationships remain unclear. Here we show trace Fe, up to 278 mg/kg and derived from microbial protein, serve as precursors to synthesize a variety of Fe single-atom catalysts containing FeN5-xOx (1 ≤ x ≤ 4) moieties through controlled pyrolysis. These moieties resemble the structural features of nonheme Fe-dependent enzymes while being effectively confined on a microbe-derived, electrically conductive carbon support, enabling high-current density electrolysis. A comparative analysis involving catalysts derived from eleven representative microbes reveals that the presence of 0.05 wt% Fe single-atom sites leads to a significant 26% increase in hydrogen peroxide selectivity. Remarkably, the optimal catalyst featuring FeN3O2 sites demonstrates a selectivity of up to 93.7% and generates hydrogen peroxide in a flow cell at an impressive rate of 29.6 mol g-1 h-1 at 200 mA cm-2. This work achieves structural fine-tuning of metal single-atom sites at the trace level and provides topological insights into single-atom catalyst design to achieve cost-efficient hydrogen peroxide production.
Collapse
Affiliation(s)
- Xiaofeng Xiao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zechao Zhuang
- Department of Chemistry, Tsinghua University, Beijing, China
- Department of Chemical Engineering, Columbia University, New York, NY, USA
| | - Shuhu Yin
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Jiexin Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, China
| | - Tao Gan
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Ruohan Yu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Jinsong Wu
- Nanostructure Research Centre, Wuhan University of Technology, Wuhan, China
| | - Xiaochun Tian
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Yanxia Jiang
- College of Chemistry and Chemical Engineering, Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen, China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing, China.
| | - Feng Zhao
- Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.
| |
Collapse
|
30
|
Jin S, Tan W, Tang X, Li M, Yu X, Zhang H, Song S, Zeng T. Unraveling the Fundamentals of Axial Coordination FeN 4+1 Sites Regulating the Peroxymonosulfate Activation for Fenton-Like Activity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405012. [PMID: 39380378 DOI: 10.1002/smll.202405012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/14/2024] [Indexed: 10/10/2024]
Abstract
Precise modulation of the axial coordination microenvironment in single-atom catalysts (SACs) to enhance peroxymonosulfate (PMS) activation represents a promising yet underexplored approach. This study introduces a pyrolysis-free strategy to fabricate SACs with well-defined axial-FeN4+1 coordination structures. By incorporating additional out-of-plane axial nitrogen into well-defined FeN4 active sites within a planar, fully conjugated polyphthalocyanine framework, FeN4+1 configurations are developed that significantly enhance PMS activation. The axial-FeN4+1 catalyst excelled in activating PMS, with a high bisphenol A (BPA) degradation rate of 2.256 min-1, surpassing planar-FeN4/PMS systems by 6.8 times. Theoretical calculations revealed that the axial coordination between N and the Fe sites forms an optimized axial FeN4+1 structure, disrupting the electron distribution symmetry of Fe and optimizing the electron distribution of the Fe 3d orbital (increasing the d-band center from -1.231 to -0.432 eV). Consequently, this led to an enhanced perpendicular adsorption energy of PMS from -1.79 to -1.82 eV and reduced energy barriers for the formation of the key reaction intermediate (O*) that generates 1O2. This study provides new insights into PMS activation through the axial coordinated engineering of well-defined SACs in water purification processes.
Collapse
Affiliation(s)
- Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Wenxian Tan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Mengxuan Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Xinyi Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
| | - Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, P. R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, 310024, P. R. China
- Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing, Zhejiang, 312000, P. R. China
| |
Collapse
|
31
|
Liu D, Wan X, Shui J. Tailoring Oxygen Reduction Reaction on M-N-C Catalysts via Axial Coordination Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406078. [PMID: 39314019 DOI: 10.1002/smll.202406078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/13/2024] [Indexed: 09/25/2024]
Abstract
The development of fuel cells and metal-air batteries is an important link in realizing a sustainable energy supply and a green environment for the future. Oxygen reduction reaction (ORR) is the core reaction of such energy conversion devices. M-N-C catalysts exhibit encouraging ORR catalytic activity and are the most promising candidates for replacing Pt/C. The electrocatalytic performance of M-N-C catalysts is intimately related to the specific metal species and the coordination environment of the central metal atom. Axial coordination engineering presents an avenue for the development of highly active ORR catalysts and has seen considerable progress over the past decade. Nevertheless, the accurate control over the coordination environment and electronic structure of M-N-C catalysts at the atomic scale poses a big challenge. Herein, the diverse axial ligands, characterization techniques, and modulation mechanisms for axial coordination engineering are encompassed and discussed. Furthermore, some pressing matters to be solved and challenges that deserve to be explored and investigated in the future for axial coordination engineering are proposed.
Collapse
Affiliation(s)
- Dandan Liu
- Tianmushan Laboratory, Hangzhou, 310023, China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Xin Wan
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| | - Jianglan Shui
- Tianmushan Laboratory, Hangzhou, 310023, China
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, China
| |
Collapse
|
32
|
Lu Y, Li W, Fan Y, Cheng L, Tang Y, Sun H. Recent Advances in Bonding Regulation of Metalloporphyrin-Modified Carbon-Based Catalysts for Accelerating Energy Electrocatalytic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2406180. [PMID: 39385633 DOI: 10.1002/smll.202406180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/20/2024] [Indexed: 10/12/2024]
Abstract
Metalloporphyrins modified carbon-based materials, owing to the excellent acid-base resistance, optimal electron transfer rates, and superior catalytic performance, have shown great potential in energy electrocatalysis. Recently, numerous efforts have concentrated on employing carbon-based substrates as platforms to anchor metalloporphyrins, thereby fabricating a diverse array of composite catalysts tailored for assorted electrocatalytic processes. However, the interplay through bonding regulation of metalloporphyrins with carbon materials and the resultant enhancement in catalyst performance remains inadequately elucidated. Gaining an in-depth comprehension of the synergistic interactions between metalloporphyrins and carbon-based materials within the realm of electrocatalysis is imperative for advancing the development of innovative composite catalysts. Herein, the review systematically classifies the binding modes (i.e., covalent grafting and non-covalent interactions) between carbon-based materials and metalloporphyrins, followed by a discussion on the structural characteristics and applications of metalloporphyrins supported on various carbon-based substrates, categorized according to their binding modes. Additionally, this review underscores the principal challenges and emerging opportunities for carbon-supported metalloporphyrin composite catalysts, offering both inspiration and methodological insights for researchers involved in the design and application of these advanced catalytic systems.
Collapse
Affiliation(s)
- Yang Lu
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Wenyan Li
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yiyi Fan
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Lei Cheng
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yawen Tang
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanjun Sun
- School of Chemistry and Materials Science, Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
33
|
Yadav A, Hiremath N, Saini B, Matsagar BM, Han PC, Ujihara M, Modi MH, Wu KCW, Sharma RK, Vankayala R, Dutta S. Coordinately unsaturated single Fe-atoms with N vacancies and enhanced sp 3 carbon defects in Fe-N(sp 2)-C structural units for suppression of cancer cell metabolism and electrochemical oxygen evolution. NANOSCALE 2024; 16:21416-21430. [PMID: 39354807 DOI: 10.1039/d4nr02553a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
Installing coordinately unsaturated Fe-N-C structural units on polymer-composite-derived N-doped carbon offers highly active Fe-Nx sites for the electrochemical oxygen evolution reaction (OER) and reactive oxygen species (ROS) generation in tumor cells. An NH4Cl-driven high-temperature etching method was employed for the formation of FeSA950NC with coordinately unsaturated single Fe-atoms in an Fe-N(sp2)-C structural unit together with N vacancies (VN) and sp3 defects. The carbonization of Fe-phen@ZIF-8 at 800 °C for 30 min under argon, followed by grinding Fe-ZIF-8@RF-urea with NH4Cl at 950 °C for 2 hours, resulted in sp3 carbon defects and VN sites with coordination unsaturation in Fe-Nx due to NH4Cl decomposition to NH3 and HCl, which produced substantial internal stress for etching the carbon matrix. FeSA950NC was used to treat both A549 lung cancer cells and NIH3T3 mouse fibroblast cells to determine its potential as an efficient tumor therapeutic strategy using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and ROS assays. Additionally, FeSA950NC provided high stability and excellent OER activity through the Fe-N(sp2)-C structural unit on pyridinic nitrogen by delivering at a minimum overpotential of 300 mV, which is much lower than that of structurally similar Fe-atom sites. The significantly stronger ROS and OER activities of FeSA950NC suggested the role of VN and sp3-carbon defects with coordinately unsaturated Fe-N2 sites in improving its catalytic performance.
Collapse
Affiliation(s)
- Anubha Yadav
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| | - Netra Hiremath
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
| | - Bhagirath Saini
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Babasaheb M Matsagar
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Chun Han
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Masaki Ujihara
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, Taiwan
| | - Mohammed Hussein Modi
- Soft X-ray Applications Lab, Synchrotron Utilization Section, Raja Ramanna Centre for Advanced Technology, Indore, India
| | - Kevin C-W Wu
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taoyuan, Taiwan
| | - Rakesh K Sharma
- Sustainable Materials & Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, India.
| | - Raviraj Vankayala
- Interdisciplinary Research Platform Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India
- The Nanomed Laboratory, Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, Rajasthan, India.
| | - Saikat Dutta
- Electrochemical Energy & Sensor Research Laboratory, Amity Institute of Click Chemistry Research & Studies, Amity University, Noida, India.
| |
Collapse
|
34
|
Zhao Q, Zhang Q, Xu Y, Han A, He H, Zheng H, Zhang W, Lei H, Apfel UP, Cao R. Improving Active Site Local Proton Transfer in Porous Organic Polymers for Boosted Oxygen Electrocatalysis. Angew Chem Int Ed Engl 2024; 63:e202414104. [PMID: 39145688 DOI: 10.1002/anie.202414104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/16/2024]
Abstract
Improving proton transfer is vital for electrocatalysis with porous materials. Although several strategies are reported to assist proton transfer in channels, few studies are dedicated to improving proton transfer at the local environments of active sites in porous materials. Herein, we report on new Co-corrole-based porous organic polymers (POPs) with improved proton transfer for electrocatalytic oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). By tuning the pore sizes and installing proton relays at Co corrole sites, we designed and synthesized POP-2-OH with improved proton transfer both in channels and at local Co active sites. This POP shows remarkable activity for both electrocatalytic ORR with E1/2=0.91 V vs RHE and OER with η10=255 mV. Therefore, this work is significant to present a strategy to improve active site local proton transfer in porous materials and highlight the key role of such structural functionalization in boosting oxygen electrocatalysis.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Qingxin Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Yuhan Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Anhao Han
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haowen He
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| | - Ulf-Peter Apfel
- Ruhr-Universität Bochum, Fakultät für Chemie und Biochemie, Activation of Small Molecules/Technical Electrochemistry, Universitätsstrasse 150, 44801, Bochum, Germany
- Fraunhofer UMSICHT, Osterfelder Strasse 3, 46047, Oberhausen, Germany
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an, 710119, China
| |
Collapse
|
35
|
Kment Š, Bakandritsos A, Tantis I, Kmentová H, Zuo Y, Henrotte O, Naldoni A, Otyepka M, Varma RS, Zbořil R. Single Atom Catalysts Based on Earth-Abundant Metals for Energy-Related Applications. Chem Rev 2024; 124:11767-11847. [PMID: 38967551 PMCID: PMC11565580 DOI: 10.1021/acs.chemrev.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 07/06/2024]
Abstract
Anthropogenic activities related to population growth, economic development, technological advances, and changes in lifestyle and climate patterns result in a continuous increase in energy consumption. At the same time, the rare metal elements frequently deployed as catalysts in energy related processes are not only costly in view of their low natural abundance, but their availability is often further limited due to geopolitical reasons. Thus, electrochemical energy storage and conversion with earth-abundant metals, mainly in the form of single-atom catalysts (SACs), are highly relevant and timely technologies. In this review the application of earth-abundant SACs in electrochemical energy storage and electrocatalytic conversion of chemicals to fuels or products with high energy content is discussed. The oxygen reduction reaction is also appraised, which is primarily harnessed in fuel cell technologies and metal-air batteries. The coordination, active sites, and mechanistic aspects of transition metal SACs are analyzed for two-electron and four-electron reaction pathways. Further, the electrochemical water splitting with SACs toward green hydrogen fuel is discussed in terms of not only hydrogen evolution reaction but also oxygen evolution reaction. Similarly, the production of ammonia as a clean fuel via electrocatalytic nitrogen reduction reaction is portrayed, highlighting the potential of earth-abundant single metal species.
Collapse
Affiliation(s)
- Štĕpán Kment
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Iosif Tantis
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Hana Kmentová
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Yunpeng Zuo
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Olivier Henrotte
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Alberto Naldoni
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Department
of Chemistry and NIS Centre, University
of Turin, Turin, Italy 10125
| | - Michal Otyepka
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- IT4Innovations, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| | - Rajender S. Varma
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
| | - Radek Zbořil
- Regional
Centre of Advanced Technologies and Materials, Czech Advanced Technology
and Research Institute, Palacký University, Křížkovského
511/8, 779 00 Olomouc, Czech Republic
- Nanotechnology
Centre, Centre for Energy and Environmental Technologies, VŠB − Technical University of Ostrava, 17. Listopadu 2172/15, 708 00 Ostrava-Poruba, Czech Republic
| |
Collapse
|
36
|
Chu S, Xia M, Xu P, Lin D, Jiang Y, Lu Y. Single-atom Fe nanozymes with excellent oxidase-like and laccase-like activity for colorimetric detection of ascorbic acid and hydroquinone. Anal Bioanal Chem 2024; 416:6067-6077. [PMID: 38108842 DOI: 10.1007/s00216-023-05077-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/19/2023]
Abstract
Although traditional Fe-based nanozymes have shown great potential, generally only a small proportion of the Fe atoms on the catalyst's surface are used. Herein, we synthesized single-atom Fe on N-doped graphene nanosheets (Fe-CNG) with high atom utilization efficiency and a unique coordination structure. Active oxygen species including superoxide radicals (O2•-) and singlet oxygen (1O2) were efficiently generated from the interaction of the Fe-CNG with dissolved oxygen in acidic conditions. The Fe-CNG nanozymes were found to display enhanced oxidase-like and laccase-like activity, with Vmax of 2.07 × 10-7 M∙S-1 and 4.54 × 10-8 M∙S-1 and Km of 0.324 mM and 0.082 mM, respectively, which is mainly due to Fe active centers coordinating with O and N atoms simultaneously. The oxidase-like performance of the Fe-CNG can be effectively inhibited by ascorbic acid (AA) or hydroquinone (HQ), which can directly obstruct the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB). Therefore, a direct and sensitive colorimetric method for the detection of AA and HQ activity was established, which exhibited good linear detection and limit of detection (LOD) of 0.048 μM and 0.025 μM, respectively. Moreover, a colorimetric method based on the Fe-CNG catalyst was fabricated for detecting the concentration of AA in vitamin C. Therefore, this work offers a new method for preparing a single-atom catalyst (SAC) nanozyme and a promising strategy for detecting AA and HQ.
Collapse
Affiliation(s)
- Shushu Chu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Mingyuan Xia
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Peng Xu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Dalei Lin
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yuanyuan Jiang
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China
| | - Yizhong Lu
- School of Materials Science and Engineering, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
37
|
Chen W, Yu Y, Du Y, Wang Y, Zhao Y, Guo K, Yuan P, Zhang JN, Qu G. A Click Chemistry Strategy Toward Spin-Polarized Transition-Metal Single Site Catalysts for Dynamic Probing of Sulfur Redox Electrocatalysis. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409369. [PMID: 39285844 DOI: 10.1002/adma.202409369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Indexed: 11/08/2024]
Abstract
Catalytic conversion of lithium polysulfides (LiPSs) is a crucial approach to enhance the redox kinetics and suppress the shuttle effect in lithium-sulfur (Li-S) batteries. However, the roles of a typical heterogenous catalyst cannot be easily identified due to its structural complexity. Compared with the distinct sites of single atom catalysts (SACs), each active site of single site catalysts (SSCs) is identical and uniform in their spatial energy, binding mode, and coordination sphere, etc. Benefiting from the well-defined structure, iron phthalocyanine (FePc) is covalently clicked onto CuO nanosheet to prepare low spin-state Fe SSCs as the model catalyst for Li-S electrochemistry. The periodic polarizability evolution of Fe-N bonding is probed during sulfur redox reaction by in situ Raman spectra. Theoretical analysis shows the decreased d-band center gap of Fe (Δd) and delocalization of dxz/dyz after the axial click confinement. Consequently, Li-S batteries with Fe SSCs exhibit a capacity decay rate of 0.029% per cycle at 2 C. The universality of this methodological approach is demonstrated by a series of M SSCs (M = Mn, Co, and Ni) with similar variation of electronic configuration. This work provides guidance for the design of efficient electrocatalysis in Li-S batteries.
Collapse
Affiliation(s)
- Weijie Chen
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yue Yu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Du
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yu Wang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yan Zhao
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Kai Guo
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Pengfei Yuan
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai, 265503, P. R. China
| | - Jia-Nan Zhang
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Gan Qu
- Key Laboratory of Advanced Energy Catalytic and Functional Materials Preparation of Zhengzhou City, College of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
38
|
Li H, Xu L, Bo S, Wang Y, Xu H, Chen C, Miao R, Chen D, Zhang K, Liu Q, Shen J, Shao H, Jia J, Wang S. Ligand engineering towards electrocatalytic urea synthesis on a molecular catalyst. Nat Commun 2024; 15:8858. [PMID: 39402058 PMCID: PMC11473519 DOI: 10.1038/s41467-024-52832-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 09/23/2024] [Indexed: 10/17/2024] Open
Abstract
Electrocatalytic C-N coupling from carbon dioxide and nitrate provides a sustainable alternative to the conventional energy-intensive urea synthetic protocol, enabling wastes upgrading and value-added products synthesis. The design of efficient and stable electrocatalysts is vital to promote the development of electrocatalytic urea synthesis. In this work, copper phthalocyanine (CuPc) is adopted as a modeling catalyst toward urea synthesis owing to its accurate and adjustable active configurations. Combining experimental and theoretical studies, it can be observed that the intramolecular Cu-N coordination can be strengthened with optimization in electronic structure by amino substitution (CuPc-Amino) and the electrochemically induced demetallation is efficiently suppressed, serving as the origination of its excellent activity and stability. Compared to that of CuPc (the maximum urea yield rate of 39.9 ± 1.9 mmol h-1 g-1 with 67.4% of decay in 10 test cycles), a high rate of 103.1 ± 5.3 mmol h-1 g-1 and remarkable catalytic durability have been achieved on CuPc-Amino. Isotope-labelling operando electrochemical spectroscopy measurements are performed to disclose reaction mechanisms and validate the C-N coupling processes. This work proposes a unique scheme for the rational design of molecular electrocatalysts for urea synthesis.
Collapse
Grants
- 22250006 National Natural Science Foundation of China (National Science Foundation of China)
- 22202065 National Natural Science Foundation of China (National Science Foundation of China)
- BX20200116 China Postdoctoral Science Foundation
- The National Key R&D Program of China (2020YFA0710000), the National Natural Science Foundation of China (Nos. 22425021, 22250006, 22261160640, 22202065, 22102054), the Hunan Provincial Science Fund for Distinguished Young Scholars (2023JJ10002), the China Postdoctoral Science Foundation (Nos. BX20200116, 2020M682540), the Natural Science Foundation of Shandong Province (ZR2020QB120), the Joint Scientific Research Project Funding by the National Natural Science Foundation of China and the Macao Science and Technology Development Fund (0090/2022/AFJ), the Multi-Year Research Grant (MYRG) from University of Macau (MYRG2022-00105-IAPME).
Collapse
Affiliation(s)
- Han Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Leitao Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Shuowen Bo
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Yujie Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Han Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Chen Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| | - Ruping Miao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Dawei Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| | - Kefan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui, P. R. China
| | - Jingjun Shen
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, P. R. China
| | - Huaiyu Shao
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau SAR, P. R. China
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan, Shanxi, P. R. China
| | - Shuangyin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, Hunan University, Changsha, P. R. China.
| |
Collapse
|
39
|
Long X, Xie Y, Li Q, Zhu S, Chen Y, Luo F, Yang Z. Built-in Electric Field in 1D/2D Heterostructure Boosts Zinc Air Battery Performance. ACS APPLIED MATERIALS & INTERFACES 2024; 16:52364-52372. [PMID: 39295081 DOI: 10.1021/acsami.4c10727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
The realization of a rechargeable zinc-air battery (ZAB) is hindered by the low intrinsic oxygen evolution reaction (OER) and oxygen reduction reaction (ORR) activities. In this work, an abundant built-in electric field is noticed in a 1D/2D CoO/CoS2 heterostructure, triggering electron transfer from CoO to CoS2 associated with a downshifted d band center of the Co atom mitigating the strong electrochemical adsorption of *OH species on active sites; thereby, boosted OER and ORR performance are achieved. Namely, the OER specific activity of CoO/CoS2 is enhanced by 3.8- and 2.2-fold compared to the counterpart of CoO and CoS2, respectively. Furthermore, the kinetic current density of CoO/CoS2, a fingerprint of intrinsic ORR activity, is promoted by 46 and 6.6 times relative to CoO and CoS2. The rechargeable ZAB performance attains 215.6 mW cm-2, 1.6-times better than Pt/C-IrO2. Moreover, the superior performance remained for 600 h. Besides, the battery performance of the all-solid-state ZAB reaches 83.8 mW cm-2, revealing its promising application in wearable device.
Collapse
Affiliation(s)
- Xue Long
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Yuhua Xie
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Qing Li
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Shiao Zhu
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| | - Yazhou Chen
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Fang Luo
- State Key Laboratory for Hubei New Textile Materials and Advanced Processing Technology, School of Materials Science and Engineering, Wuhan Textile University, 430200 Wuhan, China
| | - Zehui Yang
- Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan, Wuhan, 430074, China
| |
Collapse
|
40
|
Cheng J, Zhang Z, Shao J, Wang T, Li R, Zhang W. Construction of an Axial Charge Transfer Channel Between Single-Atom Fe Sites and Nitrogen-Doped Carbon Supports for Boosting Oxygen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402583. [PMID: 38804883 DOI: 10.1002/smll.202402583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/13/2024] [Indexed: 05/29/2024]
Abstract
The introduction of axial-coordinated heteroatoms in Fe─N─C single-atom catalysts enables the significant enhancement of their oxygen reduction reaction (ORR) performance. However, the interaction relationship between the axial-coordinated heteroatoms and their carbon supports is still unclear. In this work, a gas phase surface treatment method is proposed to prepare a series of X─Fe─N─C (X = O, P, and S) single-atom catalysts with axial X-coordination on graphitic-N-rich carbon supports. Synchrotron-based X-ray absorption near-edge structure spectra and X-ray photoelectron spectroscopy indicate the formation of an axial charge transfer channel between the graphitic-N-rich carbon supports and single-atom Fe sites by axial O atoms in O─Fe─N─C. As a result, the O─Fe─N─C exhibits excellent ORR performance with a half-wave potential of 0.905 V versus RHE and a high specific capacity of 884 mAh g-1 for zinc-air battery, which is superior to other X─Fe─N─C catalysts without axial charge transfer and the commercial Pt/C catalyst. This work not only demonstrates a general synthesis strategy for the preparation of single-atom catalysts with axial-coordinated heteroatoms, but also presents insights into the interaction between single-atom active sites and doped carbon supports.
Collapse
Affiliation(s)
- Jiahao Cheng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Zheng Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Jibin Shao
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Tang Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Rui Li
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - Wang Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| |
Collapse
|
41
|
Gong L, Xia F, Zhu J, Mu X, Chen D, Zhao H, Chen L, Mu S. Hydrogen Evolution Reactivity of Pentagonal Carbon Rings and p-d Orbital Hybridization Effect with Ru. Angew Chem Int Ed Engl 2024:e202411125. [PMID: 39276024 DOI: 10.1002/anie.202411125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/24/2024] [Accepted: 09/13/2024] [Indexed: 09/16/2024]
Abstract
Topological defects are inevitable existence in carbon-based frameworks, but their intrinsic electrocatalytic activity and mechanism remain under-explored. Herein, the hydrogen evolution reaction (HER) of pentagonal carbon-rings is probed by constructing pentagonal ring-rich carbon (PRC), with optimized electronic structures and higher HER activity relative to common hexagonal carbon (HC). Furthermore, to improve the reactivity, we couple Ru clusters with PRC (Ru@PRC) through p-d orbital hybridization between C and Ru atoms, which drives a shortcut transfer of electrons from Ru clusters to pentagonal rings. The electron-deficient Ru species leads to a notable negative shift in d-band centers of Ru and weakens their binding strength with hydrogen intermediates, thus enhancing the HER activity in different pH media. Especially, at a current density of 10 mA cm-2, PRC greatly reduces alkaline HER overpotentials from 540 to 380 mV. And Ru@PRC even exhibits low overpotentials of 28 and 275 mV to reach current densities of 10 and 1000 mA cm-2, respectively. Impressively, the mass activity and price activity of Ru@PRC are 7.83 and 15.7 times higher than that of Pt/C at the overpotential of 50 mV. Our data unveil the positive HER reactivity of pentagonal defects and good application prospects.
Collapse
Affiliation(s)
- Lei Gong
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Fanjie Xia
- NRC, Nanostructure Research Centre), Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Jiawei Zhu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Xueqin Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Ding Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Hongyu Zhao
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Lei Chen
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| | - Shichun Mu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, 430070, Wuhan, P. R. China
| |
Collapse
|
42
|
Huang Z, Li M, Yang X, Zhang T, Wang X, Song W, Zhang J, Wang H, Chen Y, Ding J, Hu W. Diatomic Iron with a Pseudo-Phthalocyanine Coordination Environment for Highly Efficient Oxygen Reduction over 150,000 Cycles. J Am Chem Soc 2024; 146:24842-24854. [PMID: 39186017 DOI: 10.1021/jacs.4c05111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Atomically dispersed Fe-N-C catalysts emerged as promising alternatives to commercial Pt/C for the oxygen reduction reaction. However, the majority of Fe-N-C catalysts showed unsatisfactory activity and durability due to their inferior O-O bond-breaking capability and rapid Fe demetallization. Herein, we create a pseudo-phthalocyanine environment coordinated diatomic iron (Fe2-pPc) catalyst by grafting the core domain of iron phthalocyanine (Fe-Nα-Cα-Nβ) onto defective carbon. In situ characterizations and theoretical calculation confirm that Fe2-pPc follows the fast-kinetic dissociative pathway, whereby Fe2-pPc triggers bridge-mode oxygen adsorption and catalyzes direct O-O radical cleavage. Compared to traditional Fe-N-C and FePc-based catalysts exhibiting superoxo-like oxygen adsorption and an *OOH-involved pathway, Fe2-pPc delivers a superior half-wave potential of 0.92 V. Furthermore, the ultrastrong Nα-Cα bonds in the pPc environment endow the diatomic iron active center with high tolerance for reaction-induced geometric stress, leading to significantly promoted resistance to demetallization. Upon an unprecedented harsh accelerated degradation test of 150,000 cycles, Fe2-pPc experiences negligible Fe loss and an extremely small activity decay of 17 mV, being the most robust candidate among previously reported Fe-N-C catalysts. Zinc-air batteries employing Fe2-pPc exhibit a power density of 255 mW cm-2 and excellent operation stability beyond 440 h. This work brings new insights into the design of atomically precise metallic catalysts.
Collapse
Affiliation(s)
- Zechuan Huang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Mianfeng Li
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Xinyi Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Tao Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Xin Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wanqing Song
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jinfeng Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Haozhi Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- School of Materials Science and Engineering, Hainan University, Haikou 570228, China
| | - Yanan Chen
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Jia Ding
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
| | - Wenbin Hu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin University, Tianjin 300350, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
43
|
Chen Y, Zhen C, Chen Y, Zhao H, Wang Y, Yue Z, Wang Q, Li J, Gu MD, Cheng Q, Yang H. Oxygen Functional Groups Regulate Cobalt-Porphyrin Molecular Electrocatalyst for Acidic H 2O 2 Electrosynthesis at Industrial-Level Current. Angew Chem Int Ed Engl 2024; 63:e202407163. [PMID: 38864252 DOI: 10.1002/anie.202407163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 06/11/2024] [Indexed: 06/13/2024]
Abstract
Electrosynthesis of hydrogen peroxide (H2O2) based on proton exchange membrane (PEM) reactor represents a promising approach to industrial-level H2O2 production, while it is hampered by the lack of high-efficiency electrocatalysts in acidic medium. Herein, we present a strategy for the specific oxygen functional group (OFG) regulation to promote the H2O2 selectivity up to 92 % in acid on cobalt-porphyrin molecular assembled with reduced graphene oxide. In situ X-ray adsorption spectroscopy, in situ Raman spectroscopy and Kelvin probe force microscopy combined with theoretical calculation unravel that different OFGs exert distinctive regulation effects on the electronic structure of Co center through either remote (carboxyl and epoxy) or vicinal (hydroxyl) interaction manners, thus leading to the opposite influences on the promotion in 2e- ORR selectivity. As a consequence, the PEM electrolyzer integrated with the optimized catalyst can continuously and stably produce the high-concentration of ca. 7 wt % pure H2O2 aqueous solution at 400 mA cm-2 over 200 h with a cell voltage as low as ca. 2.1 V, suggesting the application potential in industrial-scale H2O2 electrosynthesis.
Collapse
Affiliation(s)
- Yihe Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Cheng Zhen
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Yubin Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hao Zhao
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Yuda Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Zhouying Yue
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Qiansen Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Jun Li
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - M Danny Gu
- Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R., China
| | - Qingqing Cheng
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| | - Hui Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, P. R. China
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, P. R. China
| |
Collapse
|
44
|
Xu Q, Hu J, Yao H, Lei J, Zhou C, Zhang L, Pang H. Pyridinic-N Regulated Electron Injection to Modulate *OH Adsorption at Fe-N-C Sites for an Efficient Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42352-42362. [PMID: 39080825 DOI: 10.1021/acsami.4c10604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
To enhance the efficiency of oxygen reduction reaction (ORR) catalysts, precise control over the adsorption/desorption energy barriers of oxygen intermediates at atomically dispersed Fe-N-C sites is essential yet challenging. Addressing this, we employed a pyrolysis approach using a nitrogen-containing polymer to fabricate Fe single-atom (SA) catalysts embedded in a pyridinic-N enriched carbon matrix. This synthesis strategy yielded Fe SAs that demonstrated a superior electrochemical ORR performance, evidenced by an impressive half-wave potential of 0.941 V and a high limiting current density of 5.72 mA/cm2. Moreover, when applied in homemade Zn-air batteries, this premier catalyst exhibited exceptional specific capacity (720 mAh/gZn), peak power density (253 mW/cm2), and notable long-term stability. Theoretical insights revealed that the increased pyridinic-N content in the catalyst facilitated efficient electron transfer from N atoms to the Fe active sites, thus fine-tuning the d-band center and effectively controlling the adsorption energy barrier of *OH species. These mechanisms synergistically improve the ORR performance. Crucially, this fabrication method shows promise for adaptation to other transition metal-based SAs, including Co, Ni, and Cu, potentially establishing a versatile synthesis route for developing atomically dispersed catalyst systems in future applications.
Collapse
Affiliation(s)
- Qiaoling Xu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jinsong Hu
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
- Institute of Energy, Hefei Comprehensive National Science Center, Hefei Anhui 230031, PR China
| | - Huiying Yao
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Jie Lei
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Chunhui Zhou
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Lei Zhang
- School of Chemical Engineering, Anhui Provincial Key Laboratory of Specialty Polymers, Anhui University of Science and Technology, Huainan 232001, PR China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Institute for Innovative Materials and Energy, Yangzhou University, Yangzhou 225002, PR China
| |
Collapse
|
45
|
Jang I, Lee S, Kim DG, Paidi VK, Lee S, Kim ND, Jung JY, Lee KS, Lim HK, Kim P, Yoo SJ. Instantaneous Thermal Energy for Swift Synthesis of Single-Atom Catalysts for Unparalleled Performance in Metal-Air Batteries and Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403273. [PMID: 38742630 DOI: 10.1002/adma.202403273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/05/2024] [Indexed: 05/16/2024]
Abstract
Based on experimental and computational evidence, phthalocyanine (Pc) compounds in the form of quaternary-bound metal-nitrogen (N) atoms are the most effective catalysts for oxygen reduction reaction (ORR). However, the heat treatment process used in their synthesis may compromise the ideal structure, causing the agglomeration of transition metals. To overcome this issue, a novel method is developed for synthesizing iron (Fe) single-atom catalysts with ideal structures supported by thermally exfoliated graphene oxide (GO). This is achieved through a short heat treatment of only 2.5 min involving FePc and N, N-dimethylformamide in the presence of GO. According to the synthesis mechanism revealed by this study, carbon monoxide acts as a strong linker between the single Fe atoms and graphene. It facilitates the formation of a structure containing oxygen species between FeN4 and graphene, which provides high activity and stability for the ORR. These catalysts possess an enormous number of active sites and exhibit enhanced activity toward the alkaline ORR. They demonstrate excellent performance when applied to real electrochemical devices, such as zinc-air batteries and anion exchange membrane fuel cells. It is expected that the instantaneous heat treatment method developed in this study will aid in the development of high-performing single-atom catalysts.
Collapse
Affiliation(s)
- Injoon Jang
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Sehyun Lee
- Department of Environment and Energy Engineering, Sungshin Women's University, Seoul, 01133, Republic of Korea
| | - Dong-Gun Kim
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Vinod K Paidi
- European Synchrotron Radiation Facility, Grenoble, 38043 Cedex 9, France
| | - Sujin Lee
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Nam Dong Kim
- Functional Composite Materials Research Center, Korea Institute of Science and Technology (KIST), Jeollabuk-do, 55324, Republic of Korea
| | - Jae Young Jung
- Fuel Cell Research and Demonstration Center, Hydrogen Energy Institute, Korea Institute of Energy Research (KIER), Joellabuk-do, 56332, Republic of Korea
| | - Kug-Seung Lee
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 37673, Republic of Korea
| | - Hyung-Kyu Lim
- Division of Chemical and Bioengineering, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Pil Kim
- School of Chemical Engineering, School of Semiconductor and Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Jong Yoo
- Hydrogen·Fuel Cell Research Center, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Energy & Environmental Technology, KIST school, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| |
Collapse
|
46
|
Xue D, Yuan Y, Yu Y, Xu S, Wei Y, Zhang J, Guo H, Shao M, Zhang JN. Spin occupancy regulation of the Pt d-orbital for a robust low-Pt catalyst towards oxygen reduction. Nat Commun 2024; 15:5990. [PMID: 39013873 PMCID: PMC11252259 DOI: 10.1038/s41467-024-50332-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 07/05/2024] [Indexed: 07/18/2024] Open
Abstract
Disentangling the limitations of O-O bond activation and OH* site-blocking effects on Pt sites is key to improving the intrinsic activity and stability of low-Pt catalysts for the oxygen reduction reaction (ORR). Herein, we integrate of PtFe alloy nanocrystals on a single-atom Fe-N-C substrate (PtFe@FeSAs-N-C) and further construct a ferromagnetic platform to investigate the regulation behavior of the spin occupancy state of the Pt d-orbital in the ORR. PtFe@FeSAs-N-C delivers a mass activity of 0.75 A mgPt-1 at 0.9 V and a peak power density of 1240 mW cm-2 in the fuel-cell, outperforming the commercial Pt/C catalyst, and a mass activity retention of 97%, with no noticeable current drop at 0.6 V for more than 220 h, is attained. Operando spectroelectrochemistry decodes the orbital interaction mechanism between the active center and reaction intermediates. The Pt dz2 orbital occupation state is regulated to t2g6eg3 by spin-charge injection, suppressing the OH* site-blocking effect and effectively inhibiting H2O2 production. This work provides valuable insights into designing high-performance and low-Pt catalysts via spintronics-level engineering.
Collapse
Affiliation(s)
- Dongping Xue
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifang Yuan
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Yue Yu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Siran Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Yifan Wei
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Jiaqi Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Haizhong Guo
- Key Laboratory of Materials Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong
| | - Jia-Nan Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
47
|
Wu Y, Feng H, Tang J, Yang Z, Lan C, Guo Y, Tang L. Selective Capacitive Removal of Pb 2+ from Wastewater over Biochar Electrodes by Zinc Regulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311401. [PMID: 38348946 DOI: 10.1002/smll.202311401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/22/2024] [Indexed: 07/13/2024]
Abstract
Biochar materials have shown great potential for broad catalytic application. However, using these materials in the capacitive deionization technology (CDI) system for heavy metal removal still faces a significant challenge due to their low specific capacity and removal capability. Here, a comprehensive regulation on the interfacial/bulk electrochemistry of biochar by Zn doping is reported, which suggests a high renewable capacity (20 mg g-1) and outstanding selective capacitive removal ability (SCR) of Pb2+ from leachate. The SCR efficiency of Pb2+ is as high as 99% compared to K+ (8%), Na+ (13%), and Cd2+ (37%). This work proves that the doped Zn on the biochar can combine with OH- generated by water splitting to form M─OH bonds, which is beneficial for improving the specific capacity. Significantly, the relationship between double-layer capacitance and pseudo-capacitance can also be optimized by regulating the content of Zn, leading to different removal abilities of heavy metals. Therefore, this work offers insights into charge-storage kinetics, which provide valuable guidelines for designing and optimizing the biochar electrode for broader environmental applications.
Collapse
Affiliation(s)
- Yangfeng Wu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Haopeng Feng
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Jing Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Zhenhao Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Chenrui Lan
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Yuyao Guo
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, China
- Key Laboratory of Environmental Biology and Pollution Control, Ministry of Education, Hunan University, Changsha, 410082, China
| |
Collapse
|
48
|
Ye J, Lu J, Yuan H, Wan Z, Wan X, Tang Y, Li L, Wen D. Monodispersed Molecular Phthalocyanine with Sulfur-Driven Electron Delocalization for Enhanced Electrochemical Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308285. [PMID: 38353330 DOI: 10.1002/smll.202308285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/14/2023] [Indexed: 07/05/2024]
Abstract
Heterogenizing the molecular catalysts on conductive scaffolds to achieve the isolated molecular dispersion and expected coordination structures is significant yet still challenging. Herein, a sulfur-driving strategy to anchor monodispersed cobalt phthalocyanine on nitrogen and sulfur co-doped graphene (NSG-CoPc) is demonstrated. Experimental and theoretical analysis prove that the incorporation of S dramatically improves the adsorption capability of NSG and evokes the monodispersion of the CoPc molecule, promoting the axial Co─N coordination and the electron delocalization of the Co catalytic center. Benefiting from the reduced activation energy barrier and boosted electron transfer, as well as the maximized active site utilization, NSG-CoPc exhibits outstanding H2O2 oxidization and sensing performance (used as a representative reaction). Moreover, the usage of NSG as a substrate can be readily extended to other metal (Ni, Cu, and Fe) phthalocyanine molecules with molecular-level dispersion. This work clarifies the mechanism of heteroatoms decoration and provides a new paradigm in devising monodispersed molecular catalysts with modulated chemical surroundings for broad applications.
Collapse
Affiliation(s)
- Jianqi Ye
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Lu
- State Key Laboratory of Solidification Processing, Carbon/Carbon Composites Research Center, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Hongxing Yuan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Ziqi Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Xinhao Wan
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Yarui Tang
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Lanqing Li
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Dan Wen
- State Key Laboratory of Solidification Processing, Shaanxi Joint Laboratory of Graphene, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| |
Collapse
|
49
|
Honig HC, Mostoni S, Presman Y, Snitkoff-Sol RZ, Valagussa P, D'Arienzo M, Scotti R, Santoro C, Muhyuddin M, Elbaz L. Morphological and structural design through hard-templating of PGM-free electrocatalysts for AEMFC applications. NANOSCALE 2024; 16:11174-11186. [PMID: 38770663 DOI: 10.1039/d4nr01779j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This study delves into the critical role of customized materials design and synthesis methods in influencing the performance of electrocatalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). It introduces a novel approach to obtain platinum-free (PGM-free) electrocatalysts based on the controlled integration of iron active sites onto the surface of silica nanoparticles (NPs) by using nitrogen-based surface ligands. These NPs are used as hard templates to form tailored nanostructured electrocatalysts with an improved iron dispersion into the carbon matrix. By utilizing a wide array of analytical techniques including infrared and X-ray photoelectron spectroscopy techniques, X-ray diffraction and surface area measurements, this work provides insight into the physical parameters that are critical for ORR electrocatalysis with PGM-free electrocatalysts. The new catalysts showed a hierarchical structure containing a large portion of graphitic zones which contribute to the catalyst stability. They also had a high electrochemically active site density reaching 1.47 × 1019 sites g-1 for SAFe_M_P1AP2 and 1.14 × 1019 sites g-1 for SEFe_M_P1AP2, explaining the difference in performance in fuel cell measurements. These findings underscore the potential impact of a controlled materials design for advancing green energy applications.
Collapse
Affiliation(s)
- Hilah C Honig
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Silvia Mostoni
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Yan Presman
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Rifael Z Snitkoff-Sol
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Paolo Valagussa
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Massimiliano D'Arienzo
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Roberto Scotti
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
- Institute for Photonics and Nanotechnologies-CNR, Via alla Cascata 56/C, 38123 Povo, TN, Italy
| | - Carlo Santoro
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Mohsin Muhyuddin
- Department of Materials Science, University of Milano-Bicocca U5, Via Roberto Cozzi 55, 20125, Milano, Italy.
| | - Lior Elbaz
- Chemistry Department, Bar-Ilan Center for Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel.
| |
Collapse
|
50
|
Wang G, Ren R, Feng X, Wang Y, Meng J, Jia J. First-principle calculations study of the ORR/OER electrocatalytic activity of ruthenium polyphthalocyanine axially modified with aliphatic thiol groups. Phys Chem Chem Phys 2024; 26:16207-16217. [PMID: 38804323 DOI: 10.1039/d4cp00424h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
In this study, the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) catalytic activity of ruthenium polyphthalocyanine axially modified with different aliphatic thiol groups, RuPPc-SR (SR = -SCH3, -SC2H5, -SC3H7, -SC4H9, -SC5H11, and -SC6H13), in an acidic medium were simulated using DFT. All -SR groups can effectively enhance the ORR and OER catalytic activities of RuPPc. The ORR and OER overpotentials of RuPPc-SC4H9 are 0.237 V and 0.436 V, respectively, which are far lower than those of RuPPc (0.960 V and 0.903 V). For RuPPc-SC4H9, the four C and S atoms of the -SC4H9 chain and Ru atom are coplanar, and thus, conjugate effects and inductive effects exist between the -SC4H9 chain and Ru atom. This makes the Ru atom exhibit the least positive Bader charge and smallest spin density, and the anti-bonding orbitals of dxz, dyz, and dz2 of the Ru atom shift below the Fermi level (Ef). This makes the adsorption strength of RuPPc-SC4H9 toward ORR and OER intermediates the weakest, which accelerates the reaction process, thus resulting in better ORR and OER catalytic activity. Therefore, the introduction of the aliphatic thiol groups might effectively improve the OER/ORR catalytic activity of RuPPc.
Collapse
Affiliation(s)
- Guilin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
- Department of Physics and Electronic Engineering, Yuncheng University, Yuncheng 044000, China
| | - Rongrong Ren
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Xiaoqin Feng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Yuxin Wang
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jie Meng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| | - Jianfeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials (Ministry of Education), School of Chemistry and Material Science, Shanxi Normal University, Taiyuan 030031, China.
| |
Collapse
|