1
|
He Z, Cole KD, He HJ. A novel immortalization method for immortalizing human primary CD8 + T cells by inserting a single copy of human telomerase reverse transcriptase via CRISPR/Cas9. Tissue Cell 2025; 95:102908. [PMID: 40311322 DOI: 10.1016/j.tice.2025.102908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/22/2025] [Accepted: 04/01/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Existing cell immortalization methods made the cells obtain oncogenesis phenotype and/or caused the cells gain and/or lose chromosomes. Immortalized normal human T cells lines provide critical in vitro models for basic research and therapeutic products development. METHODS We developed a novel method utilizing a CRISPR/Cas9 system to replace the exon 2 of the cell cycle inhibitor gene CDKN2A (encoding p16 and p14 proteins) with a single copy of human telomerase reverse transcriptase (hTERT) to immortalize human primary CD8+ T cells (hCD8+T-TERT). RESULTS By using Cas9 protein and low donor DNA copies/cell, we successfully immortalized hCD8+T cells with a single copy of hTERT transgene, which also avoided uncontrolled insertion of Cas9 gene and guide RNA vector. Human primary CD8+ cells from independent donors were immortalized and expanded more than 2.6 × 107 times. Characterization of one of the immortalized CD8+ T-TERT cell lines revealed that the cells retained most of the cell surface markers and normal karyotype. The CD8+ T-TERT cells also retained the dependence of IL-2 and CD3/CD28 activator for survival and expansion. CONCLUSION We established a stable immortalized cell lines using the novel immortalization method, and the immortalized CD8+ T cells had a phenotype consistent with T cells.
Collapse
Affiliation(s)
- Zhiyong He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA.
| | - Kenneth D Cole
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| | - Hua-Jun He
- Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD 20899, USA
| |
Collapse
|
2
|
Viramontes KM, Thone MN, De La Torre JJ, Neubert EN, DeRogatis JM, Garcia C, Henriquez ML, Tinoco R. Contrasting roles of PSGL-1 and PD-1 in regulating T-cell exhaustion and function during chronic viral infection. J Virol 2025; 99:e0224224. [PMID: 39912665 PMCID: PMC11915808 DOI: 10.1128/jvi.02242-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 01/19/2025] [Indexed: 02/07/2025] Open
Abstract
Immune checkpoints are critical regulators of T-cell exhaustion, impairing their ability to eliminate antigens present during chronic viral infections. Current immune checkpoint inhibitors (ICIs) used in the clinic aim to reinvigorate exhausted T cells; yet, most patients fail to respond or develop resistance to these therapies, underscoring the need to better understand these immunosuppressive pathways. PSGL-1 (Selplg), a recently discovered immune checkpoint, negatively regulates T-cell function. We investigated the cell-intrinsic effects of PSGL-1, PD-1, and combined deletion on CD8+ T cells during chronic viral infection. We found that combined PSGL-1 and PD-1 (Selplg-/-Pdcd1-/-) deficiency in CD8+ T cells increased their frequencies and numbers throughout chronic infection compared to the wild type. This phenotype was primarily driven by PD-1 deficiency. Furthermore, while PD-1 deletion increased virus-specific T-cell frequencies, it was detrimental to their function. Conversely, PSGL-1 deletion improved T-cell function but resulted in lower frequencies and numbers. The primary mechanism behind these differences in cell maintenance was driven by proliferation rather than survival. Combined PSGL-1 and PD-1 deletion resulted in defective T-cell differentiation, driving cells from a progenitor self-renewal state to a more terminal dysfunctional state. These findings suggest that PD-1 and PSGL-1 have distinct, yet complementary, roles in regulating T-cell exhaustion and differentiation during chronic viral infection. Overall, this study provides novel insights into the individual and combined roles of PSGL-1 and PD-1 in CD8+ T-cell exhaustion. It underscores the potential of targeting these checkpoints in a more dynamic and sequential manner to optimize virus-specific T-cell responses, offering critical perspectives for improving therapeutic strategies aimed at reinvigorating exhausted CD8+ T cells.IMPORTANCEOur findings provide a comprehensive analysis of how the dual deletion of PD-1 and PSGL-1 impacts the response and function of virus-specific CD8+ T cells, revealing novel insights into their roles in chronic infection. Notably, our findings show that while PD-1 deletion enhances T-cell frequencies, it paradoxically reduces T-cell functionality. Conversely, PSGL-1 deletion improves T-cell function but reduces their survival. Whereas the combined deletion of PSGL-1 and PD-1 in CD8+ T cells improved their survival but decreased their function and progenitor-exhausted phenotypes during infection. We believe our study advances the understanding of immune checkpoint regulation in chronic infections and has significant implications for developing more effective immune checkpoint inhibitor (ICI) therapies.
Collapse
Affiliation(s)
- Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Melissa N. Thone
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Jamie-Jean De La Torre
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Chris Garcia
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, Charlie Dunlop School of Biological Sciences, University of California Irvine, Irvine, California, USA
- Center for Virus Research, University of California Irvine, Irvine, California, USA
- Institute for Immunology, University of California Irvine, Irvine, California, USA
- Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, USA
| |
Collapse
|
3
|
Reina-Campos M, Monell A, Ferry A, Luna V, Cheung KP, Galletti G, Scharping NE, Takehara KK, Quon S, Challita PP, Boland B, Lin YH, Wong WH, Indralingam CS, Neadeau H, Alarcón S, Yeo GW, Chang JT, Heeg M, Goldrath AW. Tissue-resident memory CD8 T cell diversity is spatiotemporally imprinted. Nature 2025; 639:483-492. [PMID: 39843748 PMCID: PMC11903307 DOI: 10.1038/s41586-024-08466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/27/2024] [Indexed: 01/24/2025]
Abstract
Tissue-resident memory CD8 T (TRM) cells provide protection from infection at barrier sites. In the small intestine, TRM cells are found in at least two distinct subpopulations: one with higher expression of effector molecules and another with greater memory potential1. However, the origins of this diversity remain unknown. Here we proposed that distinct tissue niches drive the phenotypic heterogeneity of TRM cells. To test this, we leveraged spatial transcriptomics of human samples, a mouse model of acute systemic viral infection and a newly established strategy for pooled optically encoded gene perturbations to profile the locations, interactions and transcriptomes of pathogen-specific TRM cell differentiation at single-transcript resolution. We developed computational approaches to capture cellular locations along three anatomical axes of the small intestine and to visualize the spatiotemporal distribution of cell types and gene expression. Our study reveals that the regionalized signalling of the intestinal architecture supports two distinct TRM cell states: differentiated TRM cells and progenitor-like TRM cells, located in the upper villus and lower villus, respectively. This diversity is mediated by distinct ligand-receptor activities, cytokine gradients and specialized cellular contacts. Blocking TGFβ or CXCL9 and CXCL10 sensing by antigen-specific CD8 T cells revealed a model consistent with anatomically delineated, early fate specification. Ultimately, our framework for the study of tissue immune networks reveals that T cell location and functional state are fundamentally intertwined.
Collapse
Affiliation(s)
- Miguel Reina-Campos
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alexander Monell
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Amir Ferry
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Vida Luna
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kitty P Cheung
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Giovanni Galletti
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Nicole E Scharping
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Kennidy K Takehara
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Sara Quon
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Peter P Challita
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA
| | - Brigid Boland
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Yun Hsuan Lin
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - William H Wong
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | | | - Suzie Alarcón
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - John T Chang
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- Department of Medicine, Veteran Affairs San Diego Healthcare System, San Diego, CA, USA
| | - Maximilian Heeg
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| | - Ananda W Goldrath
- School of Biological Sciences, Department of Molecular Biology, University of California, San Diego, La Jolla, CA, USA.
- Allen Institute for Immunology, Seattle, WA, USA.
| |
Collapse
|
4
|
Beckers D, Jainarayanan AK, Dustin ML, Capera J. T Cell Resistance: On the Mechanisms of T Cell Non-activation. Immune Netw 2024; 24:e42. [PMID: 39801736 PMCID: PMC11711127 DOI: 10.4110/in.2024.24.e42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/28/2024] [Accepted: 11/12/2024] [Indexed: 01/16/2025] Open
Abstract
Immunological tolerance is a fundamental arm of any functioning immune system. Not only does tolerance mitigate collateral damage from host immune responses, but in doing so permits a robust response sufficient to clear infection as necessary. Yet, despite occupying such a cornerstone, research aiming to unravel the intricacies of tolerance induction is mired by interchangeable and often misused terminologies, with markers and mechanistic pathways that beg the question of redundancy. In this review we aim to define these boarders by providing new perspectives to long-standing theories of tolerance. Given the central role of T cells in enforcing immune cascades, in this review we choose to explore immunological tolerance through the perspective of T cell 'resistance to activation,' to delineate the contexts in which one tolerance mechanism has evolved over the other. By clarifying the important biological markers and cellular players underpinning T cell resistance to activation, we aim to encourage more purposeful and directed research into tolerance and, more-over, potential therapeutic strategies in autoimmune diseases and cancer. The tolerance field is in much need of reclassification and consideration, and in this review, we hope to open that conversation.
Collapse
Affiliation(s)
- Daniel Beckers
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Ashwin K. Jainarayanan
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael L. Dustin
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Jesusa Capera
- The Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics Rheumatology & Musculoskeletal Sciences, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
5
|
Li X, Liu Y, Gui J, Gan L, Xue J. Cell Identity and Spatial Distribution of PD-1/PD-L1 Blockade Responders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400702. [PMID: 39248327 PMCID: PMC11538707 DOI: 10.1002/advs.202400702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 07/08/2024] [Indexed: 09/10/2024]
Abstract
The programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) axis inhibits T cell activity, impairing anti-tumor immunity. Blocking this axis with therapeutic antibodies is one of the most promising anti-tumor immunotherapies. It has long been recognized that PD-1/PD-L1 blockade reinvigorates exhausted T (TEX) cells already present in the tumor microenvironment (TME). However, recent advancements in high-throughput gene sequencing and bioinformatic tools have provided researchers with a more granular and dynamic insight into PD-1/PD-L1 blockade-responding cells, extending beyond the TME and TEX populations. This review provides an update on the cell identity, spatial distribution, and treatment-induced spatiotemporal dynamics of PD-1/PD-L1 blockade responders. It also provides a synopsis of preliminary reports of potential PD-1/PD-L1 blockade responders other than T cells to depict a panoramic picture. Important questions to answer in further studies and the translational and clinical potential of the evolving understandings are also discussed.
Collapse
Affiliation(s)
- Xintong Li
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Yuanxin Liu
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jun Gui
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Lu Gan
- Research Laboratory of Emergency MedicineDepartment of Emergency MedicineNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengdu610041China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality TreatmentState Key Laboratory of Biotherapy and Cancer CenterNational Clinical Research Center for GeriatricsLaboratory of Clinical Cell TherapyWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
6
|
Arnold F, Kupferschmid L, Weissenborn P, Heldmann L, Hummel JF, Zareba P, Sagar, Rogg M, Schell C, Tanriver Y. Tissue-resident memory T cells break tolerance to renal autoantigens and orchestrate immune-mediated nephritis. Cell Mol Immunol 2024; 21:1066-1081. [PMID: 38961265 PMCID: PMC11364874 DOI: 10.1038/s41423-024-01197-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/13/2024] [Indexed: 07/05/2024] Open
Abstract
Immune-mediated nephritis is a leading cause of acute kidney injury and chronic kidney disease. While the role of B cells and antibodies has been extensively investigated in the past, the advent of immune-checkpoint inhibitors has led to a reappraisal of the role of T cells in renal immunology. However, it remains elusive how T cells with specificity for renal autoantigens are activated and participate in immune-mediated nephritis. Here, we followed the fate and function of pathogen-activated autoreactive CD8 T cells that are specific for a renal autoantigen. We demonstrate that recently activated splenic CD8 T cells developed a hybrid phenotype in the context of renal autoantigen cross-presentation, combining hallmarks of activation and T cell dysfunction. While circulating memory T cells rapidly disappeared, tissue-resident memory T cells emerged and persisted within the kidney, orchestrating immune-mediated nephritis. Notably, T cells infiltrating kidneys of patients with interstitial nephritis also expressed key markers of tissue residency. This study unveils how a tissue-specific immune response can dissociate from its systemic counterpart driving a compartmentalized immune response in the kidneys of mice and man. Consequently, targeting tissue-resident memory T cells emerges as a promising strategy to control immune-mediated kidney disease.
Collapse
Affiliation(s)
- Frederic Arnold
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Laurence Kupferschmid
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Weissenborn
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Lukas Heldmann
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jonas F Hummel
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paulina Zareba
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sagar
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Manuel Rogg
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christoph Schell
- Institute of Pathology, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Yakup Tanriver
- Department of Medicine IV, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Microbiology and Hygiene, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
7
|
Hale BD, Severin Y, Graebnitz F, Stark D, Guignard D, Mena J, Festl Y, Lee S, Hanimann J, Zangger NS, Meier M, Goslings D, Lamprecht O, Frey BM, Oxenius A, Snijder B. Cellular architecture shapes the naïve T cell response. Science 2024; 384:eadh8697. [PMID: 38843327 DOI: 10.1126/science.adh8967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 04/16/2024] [Indexed: 06/15/2024]
Abstract
After antigen stimulation, naïve T cells display reproducible population-level responses, which arise from individual T cells pursuing specific differentiation trajectories. However, cell-intrinsic predeterminants controlling these single-cell decisions remain enigmatic. We found that the subcellular architectures of naïve CD8 T cells, defined by the presence (TØ) or absence (TO) of nuclear envelope invaginations, changed with maturation, activation, and differentiation. Upon T cell receptor (TCR) stimulation, naïve TØ cells displayed increased expression of the early-response gene Nr4a1, dependent upon heightened calcium entry. Subsequently, in vitro differentiation revealed that TØ cells generated effector-like cells more so compared with TO cells, which proliferated less and preferentially adopted a memory-precursor phenotype. These data suggest that cellular architecture may be a predeterminant of naïve CD8 T cell fate.
Collapse
MESH Headings
- Animals
- Mice
- Calcium/metabolism
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/ultrastructure
- Cell Differentiation
- Immunologic Memory
- Lymphocyte Activation
- Mice, Inbred C57BL
- Nuclear Envelope/metabolism
- Nuclear Receptor Subfamily 4, Group A, Member 1/genetics
- Nuclear Receptor Subfamily 4, Group A, Member 1/metabolism
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Microscopy, Fluorescence
- Fluorescent Antibody Technique
- Humans
Collapse
Affiliation(s)
- Benjamin D Hale
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yannik Severin
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Fabienne Graebnitz
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Dominique Stark
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Daniel Guignard
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Julien Mena
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Yasmin Festl
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Sohyon Lee
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Jacob Hanimann
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Nathan S Zangger
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Michelle Meier
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - David Goslings
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Olga Lamprecht
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Beat M Frey
- Blood Transfusion Service Zürich, Swiss Red Cross (SRC), Schlieren, Switzerland
| | - Annette Oxenius
- Institute of Microbiology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Berend Snijder
- Institute of Molecular Systems Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Comprehensive Cancer Center Zurich (CCCZ), Zürich, Switzerland
| |
Collapse
|
8
|
Jin Y, He Y, Liu B, Zhang X, Song C, Wu Y, Hu W, Yan Y, Chen N, Ding Y, Ou Y, Wu Y, Zhang M, Xing S. Single-cell RNA sequencing reveals the dynamics and heterogeneity of lymph node immune cells during acute and chronic viral infections. Front Immunol 2024; 15:1341985. [PMID: 38352870 PMCID: PMC10863051 DOI: 10.3389/fimmu.2024.1341985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/12/2024] [Indexed: 02/16/2024] Open
Abstract
Introduction The host immune response determines the differential outcome of acute or chronic viral infections. The comprehensive comparison of lymphoid tissue immune cells at the single-cell level between acute and chronic viral infections is largely insufficient. Methods To explore the landscape of immune responses to acute and chronic viral infections, single-cell RNA sequencing(scRNA-seq), scTCR-seq and scBCR-seq were utilized to evaluate the longitudinal dynamics and heterogeneity of lymph node CD45+ immune cells in mouse models of acute (LCMV Armstrong) and chronic (LCMV clone 13) viral infections. Results In contrast with acute viral infection, chronic viral infection distinctly induced more robust NK cells and plasma cells at the early stage (Day 4 post-infection) and acute stage (Day 8 post-infection), respectively. Moreover, chronic viral infection exerted decreased but aberrantly activated plasmacytoid dendritic cells (pDCs) at the acute phase. Simultaneously, there were significantly increased IgA+ plasma cells (MALT B cells) but differential usage of B-cell receptors in chronic infection. In terms of T-cell responses, Gzma-high effector-like CD8+ T cells were significantly induced at the early stage in chronic infection, which showed temporally reversed gene expression throughout viral infection and the differential usage of the most dominant TCR clonotype. Chronic infection also induced more robust CD4+ T cell responses, including follicular helper T cells (Tfh) and regulatory T cells (Treg). In addition, chronic infection compromised the TCR diversity in both CD8+ and CD4+ T cells. Discussion In conclusion, gene expression and TCR/BCR immune repertoire profiling at the single-cell level in this study provide new insights into the dynamic and differential immune responses to acute and chronic viral infections.
Collapse
Affiliation(s)
- Yubei Jin
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yudan He
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Xiaohui Zhang
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Caimei Song
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yunchen Wu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Wenjing Hu
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yiwen Yan
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Nuo Chen
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| | - Yingying Ding
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yuanyuan Ou
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Yixiu Wu
- Department of Life Sciences, Bengbu Medical College, Bengbu, Anhui, China
| | - Mingxia Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, The Third People’s Hospital of Shenzhen, Shenzhen, Guangdong, China
| | - Shaojun Xing
- Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Pathogen Biology, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen, China
| |
Collapse
|
9
|
Yilmaz I, Tavukcuoglu E, Horzum U, Yilmaz KB, Akinci M, Gulcelik MA, Oral HB, Esendagli G. Immune checkpoint status and exhaustion-related phenotypes of CD8 + T cells from the tumor-draining regional lymph nodes in breast cancer. Cancer Med 2023; 12:22196-22205. [PMID: 38069525 PMCID: PMC10757146 DOI: 10.1002/cam4.6802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/31/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND Functional status of T cells determines the responsiveness of cancer patients to immunotherapeutic interventions. Even though T cell-mediated immunity is inaugurated in the tumor-adjacent lymph nodes, peripheral blood has been routinely sampled for testing the immunological assays. The purpose of this study is to determine the immune checkpoint molecule expression and the exhaustion-related phenotype of cytotoxic T cells in the regional lymph nodes from breast cancer patients. PATIENTS AND METHODS Multicolor immunophenotyping was used to determine the expression of PD-1, TIM-3, LAG3, CTLA-4, CCR7, CD45RO, CD127, CD25, CXCR5, and ICOS molecules on CD3+ CD4- CD56- CD8+ cytotoxic T cells freshly obtained from the lymph nodes and the peripheral blood samples of the breast cancer patients. The results were assessed together with the clinical data. RESULTS A population of cytotoxic T cells was noted with high PD-1 and CXCR5 expression in the lymph nodes of the breast cancer patients. Co-expression of PD-1, CXCR5, TIM-3, and ICOS indicated a follicular helper T cell (Tfh)-like, exhaustion-related immunophenotype in these cytotoxic T cells. Only a minor population with CTLA-4 and LAG3 expression was noted. The PD-1+ CXCR5+ cytotoxic T cells largely displayed CD45RO+ CCR7+ central memory markers. The amount of CXCR5-expressing PD-1- cytotoxic T cells was elevated in the lymph nodes of the patients. CONCLUSION The regional lymph nodes of breast cancer patients harbor Tfh-like exhausted cytotoxic T lymphocytes with high PD-1 and TIM-3 checkpoint molecule expression. The immunological conditions in the regional lymph nodes should be implicated for immune checkpoint immunotherapy (ICI) of cancer.
Collapse
Affiliation(s)
- Izel Yilmaz
- Department of Medical Immunology, Institute of Health SciencesBursa Uludag UniversityBursaTurkey
- Department of Basic OncologyHacettepe University Cancer InstituteAnkaraTurkey
| | - Ece Tavukcuoglu
- Department of Basic OncologyHacettepe University Cancer InstituteAnkaraTurkey
| | - Utku Horzum
- Department of Basic OncologyHacettepe University Cancer InstituteAnkaraTurkey
| | - Kerim Bora Yilmaz
- Department of General Surgery, Gulhane Training and Research HospitalUniversity of Health SciencesAnkaraTurkey
- Department of Medical and Surgical ResearchHacettepe University Institute of Health SciencesAnkaraTurkey
| | - Melih Akinci
- Department of General Surgery, Gulhane Training and Research HospitalUniversity of Health SciencesAnkaraTurkey
| | - Mehmet Ali Gulcelik
- Department of General Surgery, Gulhane Training and Research HospitalUniversity of Health SciencesAnkaraTurkey
| | - Haluk Barbaros Oral
- Department of Immunology, Faculty of MedicineBursa Uludag UniversityBursaTurkey
| | - Gunes Esendagli
- Department of Basic OncologyHacettepe University Cancer InstituteAnkaraTurkey
- Department of Medical and Surgical ResearchHacettepe University Institute of Health SciencesAnkaraTurkey
| |
Collapse
|
10
|
Wang L, Song J. Role of T Cells in Microbial Pathogenesis. Pathogens 2023; 12:1321. [PMID: 38003786 PMCID: PMC10674777 DOI: 10.3390/pathogens12111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
The immune system functions as a sophisticated defense mechanism, shielding the body from harmful pathogenic invaders [...].
Collapse
Affiliation(s)
- Liqing Wang
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843, USA
| | - Jianxun Song
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, TX 77807, USA;
| |
Collapse
|
11
|
Globig AM, Zhao S, Roginsky J, Maltez VI, Guiza J, Avina-Ochoa N, Heeg M, Araujo Hoffmann F, Chaudhary O, Wang J, Senturk G, Chen D, O'Connor C, Pfaff S, Germain RN, Schalper KA, Emu B, Kaech SM. The β 1-adrenergic receptor links sympathetic nerves to T cell exhaustion. Nature 2023; 622:383-392. [PMID: 37731001 PMCID: PMC10871066 DOI: 10.1038/s41586-023-06568-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 08/24/2023] [Indexed: 09/22/2023]
Abstract
CD8+ T cells are essential components of the immune response against viral infections and tumours, and are capable of eliminating infected and cancerous cells. However, when the antigen cannot be cleared, T cells enter a state known as exhaustion1. Although it is clear that chronic antigen contributes to CD8+ T cell exhaustion, less is known about how stress responses in tissues regulate T cell function. Here we show a new link between the stress-associated catecholamines and the progression of T cell exhaustion through the β1-adrenergic receptor ADRB1. We identify that exhausted CD8+ T cells increase ADRB1 expression and that exposure of ADRB1+ T cells to catecholamines suppresses their cytokine production and proliferation. Exhausted CD8+ T cells cluster around sympathetic nerves in an ADRB1-dependent manner. Ablation of β1-adrenergic signalling limits the progression of T cells towards the exhausted state in chronic infection and improves effector functions when combined with immune checkpoint blockade (ICB) in melanoma. In a pancreatic cancer model resistant to ICB, β-blockers and ICB synergize to boost CD8+ T cell responses and induce the development of tissue-resident memory-like T cells. Malignant disease is associated with increased catecholamine levels in patients2,3, and our results establish a connection between the sympathetic stress response, tissue innervation and T cell exhaustion. Here, we uncover a new mechanism by which blocking β-adrenergic signalling in CD8+ T cells rejuvenates anti-tumour functions.
Collapse
Affiliation(s)
- Anna-Maria Globig
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Steven Zhao
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jessica Roginsky
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Vivien I Maltez
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Juan Guiza
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Natalia Avina-Ochoa
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Maximilian Heeg
- Division of Biological Sciences, Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Filipe Araujo Hoffmann
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Omkar Chaudhary
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Jiawei Wang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - Gokhan Senturk
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Dan Chen
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Carolyn O'Connor
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
- Flow Cytometry Core Facility, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Samuel Pfaff
- Gene Expression Laboratory, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Ronald N Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD, USA
| | - Kurt A Schalper
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Brinda Emu
- Section of Infectious Diseases, Yale School of Medicine, New Haven, CT, USA
| | - Susan M Kaech
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
12
|
Zhu Q, Yang Y, Deng X, Chao N, Chen Z, Ye Y, Zhang W, Liu W, Zhao S. High CD8 +tumor-infiltrating lymphocytes indicate severe exhaustion and poor prognosis in angioimmunoblastic T-cell lymphoma. Front Immunol 2023; 14:1228004. [PMID: 37781365 PMCID: PMC10540231 DOI: 10.3389/fimmu.2023.1228004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023] Open
Abstract
Background Exhaustion of CD8+ tumor-infiltrating lymphocytes (TILs), characterized by the overexpression of immune checkpoints (IC), is a major impediment to anti-tumor immunity. However, the exhaustion status of CD8+TILs in angioimmunoblastic T cell lymphoma (AITL) remains unclear. Therefore, we aimed to elucidate the exhaustion status of CD8+TILs in AITL and its influence on prognosis. Methods The correlation between CD8+TILs and IC expression in AITL was analyzed using single-cell RNA sequencing (n = 2), flow cytometry (n = 20), and RNA sequencing (n = 20). Biological changes related to CD8+TILs exhaustion at different cytotoxic T lymphocyte (CTL) levels (mean expression levels of CD8A, CD8B, GZMA, GZMB, and PRF1) in AITL were evaluated using RNA sequencing (n = 20) and further validated using the GEO dataset (n = 51). The impact of CD8 protein expression and CTL levels on patient prognosis was analyzed using flow cytometry and RNA sequencing, respectively. Results Our findings demonstrated that the higher the infiltration of CD8+TILs, the higher was the proportion of exhausted CD8+TILs characterized by the overexpression of multiple IC. This was accompanied by extensive exhaustion-related biological changes, which suggested severe exhaustion in CD8+TILs and may be one of the main reasons for the poor prognosis of patients with high CD8+TILs and CTL. Conclusion Our study comprehensively reveals the exhaustion status of CD8+TILs and their potential negative impact on AITL prognosis, which facilitates further mechanistic studies and is valuable for guiding immunotherapy strategies.
Collapse
Affiliation(s)
- Qiqi Zhu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yiming Yang
- Department of Pathology, North Sichuan Medical College, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
- Institute of Basic Medicine and Forensic Medicine, North Sichuan Medical College, Nanchong, China
| | - Xueqin Deng
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Ningning Chao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| | - Zihang Chen
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yunxia Ye
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Wenyan Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Weiping Liu
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Sha Zhao
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
13
|
Lan X, Zebley CC, Youngblood B. Cellular and molecular waypoints along the path of T cell exhaustion. Sci Immunol 2023; 8:eadg3868. [PMID: 37656775 PMCID: PMC10618911 DOI: 10.1126/sciimmunol.adg3868] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/09/2023] [Indexed: 09/03/2023]
Abstract
Thirty years of foundational research investigating molecular and cellular mechanisms promoting T cell exhaustion are now enabling rational design of T cell-based therapies for the treatment of chronic infections and cancer. Once described as a static cell fate, it is now well appreciated that the developmental path toward exhaustion is composed of a heterogeneous pool of cells with varying degrees of effector potential that ultimately converge on a terminally differentiated state. Recent description of the developmental stages along the differentiation trajectory of T cell exhaustion has provided insight into past immunotherapeutic success and future opportunities. Here, we discuss the hallmarks of distinct developmental stages occurring along the path to T cell dysfunction and the impact of these discrete CD8+ T cell fates on cancer immunotherapy.
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
14
|
Gamer J, Van Booven DJ, Zarnowski O, Arango S, Elias M, Kurian A, Joseph A, Perez M, Collado F, Klimas N, Oltra E, Nathanson L. Sex-Dependent Transcriptional Changes in Response to Stress in Patients with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Pilot Project. Int J Mol Sci 2023; 24:10255. [PMID: 37373402 PMCID: PMC10299261 DOI: 10.3390/ijms241210255] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 06/04/2023] [Indexed: 06/29/2023] Open
Abstract
Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a complex, multi-symptom illness characterized by debilitating fatigue and post-exertional malaise (PEM). Numerous studies have reported sex differences at the epidemiological, cellular, and molecular levels between male and female ME/CFS patients. To gain further insight into these sex-dependent changes, we evaluated differential gene expression by RNA-sequencing (RNA-Seq) in 33 ME/CFS patients (20 female, 13 male) and 34 matched healthy controls (20 female and 14 male) before, during, and after an exercise challenge intended to provoke PEM. Our findings revealed that pathways related to immune-cell signaling (including IL-12) and natural killer cell cytotoxicity were activated as a result of exertion in the male ME/CFS cohort, while female ME/CFS patients did not show significant enough changes in gene expression to meet the criteria for the differential expression. Functional analysis during recovery from an exercise challenge showed that male ME/CFS patients had distinct changes in the regulation of specific cytokine signals (including IL-1β). Meanwhile, female ME/CFS patients had significant alterations in gene networks related to cell stress, response to herpes viruses, and NF-κβ signaling. The functional pathways and differentially expressed genes highlighted in this pilot project provide insight into the sex-specific pathophysiology of ME/CFS.
Collapse
Affiliation(s)
- Jackson Gamer
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.G.); (N.K.)
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Derek J. Van Booven
- Dr. J.P. Hussman Institute for Human Genomics, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Oskar Zarnowski
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Sebastian Arango
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Mark Elias
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Asha Kurian
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Andrew Joseph
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Melanie Perez
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| | - Fanny Collado
- Department of Veterans Affairs, Miami VA Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Miami, FL 33125, USA;
- South Florida Veterans Affairs Foundation for Research and Education Inc., Fort Lauderdale, FL 33125, USA
| | - Nancy Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.G.); (N.K.)
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
- Department of Veterans Affairs, Miami VA Healthcare System, Geriatric Research Education and Clinical Center (GRECC), Miami, FL 33125, USA;
- South Florida Veterans Affairs Foundation for Research and Education Inc., Fort Lauderdale, FL 33125, USA
| | - Elisa Oltra
- School Medicine, Universidad Católica de Valencia San Vicente Mártir, 46001 Valencia, Spain;
| | - Lubov Nathanson
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (J.G.); (N.K.)
- Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Fort Lauderdale, FL 33328, USA; (O.Z.); (S.A.); (M.E.); (A.K.); (A.J.); (M.P.)
| |
Collapse
|
15
|
Klein S, Mischke J, Beruldsen F, Prinz I, Antunes DA, Cornberg M, Kraft ARM. Individual Epitope-Specific CD8 + T Cell Immune Responses Are Shaped Differently during Chronic Viral Infection. Pathogens 2023; 12:pathogens12050716. [PMID: 37242386 DOI: 10.3390/pathogens12050716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
A hallmark in chronic viral infections are exhausted antigen-specific CD8+ T cell responses and the inability of the immune system to eliminate the virus. Currently, there is limited information on the variability of epitope-specific T cell exhaustion within one immune response and the relevance to the T cell receptor (TCR) repertoire. The aim of this study was a comprehensive analysis and comparison of three lymphocytic choriomeningitis virus (LCMV) epitope-specific CD8+ T cell responses (NP396, GP33 and NP205) in a chronic setting with immune intervention, e.g., immune checkpoint inhibitor (ICI) therapy, in regard to the TCR repertoire. These responses, though measured within the same mice, were individual and independent from each other. The massively exhausted NP396-specific CD8+ T cells revealed a significantly reduced TCR repertoire diversity, whereas less-exhausted GP33-specific CD8+ T cell responses were rather unaffected by chronicity in regard to their TCR repertoire diversity. NP205-specific CD8+ T cell responses showed a very special TCR repertoire with a prominent public motif of TCR clonotypes that was present in all NP205-specific responses, which separated this from NP396- and GP33-specific responses. Additionally, we showed that TCR repertoire shifts induced by ICI therapy are heterogeneous on the epitope level, by revealing profound effects in NP396-, less severe and opposed effects in NP205-, and minor effects in GP33-specific responses. Overall, our data revealed individual epitope-specific responses within one viral response that are differently affected by exhaustion and ICI therapy. These individual shapings of epitope-specific T cell responses and their TCR repertoires in an LCMV mouse model indicates important implications for focusing on epitope-specific responses in future evaluations for therapeutic approaches, e.g., for chronic hepatitis virus infections in humans.
Collapse
Affiliation(s)
- Sebastian Klein
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Jasmin Mischke
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
| | - Finn Beruldsen
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Immo Prinz
- Institute of Systems Immunology, University Medical Center Eppendorf, 20251 Hamburg, Germany
- Institute of Immunology, Hannover Medical School, 30625 Hannover, Germany
| | - Dinler A Antunes
- Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, TX 77204, USA
| | - Markus Cornberg
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| | - Anke R M Kraft
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany
- Twincore Centre for Experimental and Clinical Infection Medicine, 30625 Hannover, Germany
- German Centre for Infection Research (DZIF), 30625 Hannover, Germany
- Centre for Individualised Infection Medicine (CIIM), c/o CRC Hannover, 30625 Hannover, Germany
| |
Collapse
|
16
|
Soto-Heredero G, Gómez de Las Heras MM, Escrig-Larena JI, Mittelbrunn M. Extremely Differentiated T Cell Subsets Contribute to Tissue Deterioration During Aging. Annu Rev Immunol 2023; 41:181-205. [PMID: 37126417 DOI: 10.1146/annurev-immunol-101721-064501] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
There is a dramatic remodeling of the T cell compartment during aging. The most notorious changes are the reduction of the naive T cell pool and the accumulation of memory-like T cells. Memory-like T cells in older people acquire a phenotype of terminally differentiated cells, lose the expression of costimulatory molecules, and acquire properties of senescent cells. In this review, we focus on the different subsets of age-associated T cells that accumulate during aging. These subsets include extremely cytotoxic T cells with natural killer properties, exhausted T cells with altered cytokine production, and regulatory T cells that gain proinflammatory features. Importantly, all of these subsets lose their lymph node homing capacity and migrate preferentially to nonlymphoid tissues, where they contribute to tissue deterioration and inflammaging.
Collapse
Affiliation(s)
- Gonzalo Soto-Heredero
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - Manuel M Gómez de Las Heras
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| | - J Ignacio Escrig-Larena
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Departamento de Biología Molecular, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain;
| | - María Mittelbrunn
- Homeostasis de Tejidos y Órganos, Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Científicas (CSIC) and Universidad Autónoma de Madrid, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital 12 de Octubre, Madrid, Spain
| |
Collapse
|
17
|
Bending D, Zikherman J. Nr4a nuclear receptors: markers and modulators of antigen receptor signaling. Curr Opin Immunol 2023; 81:102285. [PMID: 36764055 DOI: 10.1016/j.coi.2023.102285] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 01/10/2023] [Accepted: 01/17/2023] [Indexed: 02/11/2023]
Abstract
Nr4a1-3 encode a small family of orphan nuclear hormone receptors with transcriptional activity. Their expression reflects both acute and chronic antigen-receptor signaling in T and B-cells, and they have been implicated in critical aspects of lymphocyte development, tolerance, and function. These include roles in regulatory T-cell (Treg), thymic-negative selection, humoral responses, anergy, and exhaustion. Here, we review recent advances in this field such as functional roles in B-cells, transcriptional targets, and mechanism of action. We highlight recurrent themes, including integration of antigen-receptor signaling with costimulatory input, as well as unanswered questions and translational applications of this work.
Collapse
Affiliation(s)
- David Bending
- Institute of Immunology and Immunotherapy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK.
| | - Julie Zikherman
- Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, UCSF, San Francisco, CA 94143, USA.
| |
Collapse
|
18
|
Oubounyt M, Elkjaer ML, Laske T, Grønning AB, Moeller M, Baumbach J. De-novo reconstruction and identification of transcriptional gene regulatory network modules differentiating single-cell clusters. NAR Genom Bioinform 2023; 5:lqad018. [PMID: 36879901 PMCID: PMC9985332 DOI: 10.1093/nargab/lqad018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 01/16/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) technology provides an unprecedented opportunity to understand gene functions and interactions at single-cell resolution. While computational tools for scRNA-seq data analysis to decipher differential gene expression profiles and differential pathway expression exist, we still lack methods to learn differential regulatory disease mechanisms directly from the single-cell data. Here, we provide a new methodology, named DiNiro, to unravel such mechanisms de novo and report them as small, easily interpretable transcriptional regulatory network modules. We demonstrate that DiNiro is able to uncover novel, relevant, and deep mechanistic models that not just predict but explain differential cellular gene expression programs. DiNiro is available at https://exbio.wzw.tum.de/diniro/.
Collapse
Affiliation(s)
- Mhaned Oubounyt
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Chair of Experimental Bioinformatics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Maria L Elkjaer
- Department of Neurology, Odense University Hospital, Odense, Denmark
- Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
- Institute of Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Tanja Laske
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
| | - Alexander G B Grønning
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Marcus J Moeller
- Heisenberg Chair of Preventive and Translational Nephrology, Department of Nephrology, Rheumatology and Clinical Immunology, RWTH Aachen University, Aachen, Germany
| | - Jan Baumbach
- Institute for Computational Systems Biology, University of Hamburg, Hamburg, Germany
- Department of Mathematics and Computer Science, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Role of PARP Inhibitors in Cancer Immunotherapy: Potential Friends to Immune Activating Molecules and Foes to Immune Checkpoints. Cancers (Basel) 2022; 14:cancers14225633. [PMID: 36428727 PMCID: PMC9688455 DOI: 10.3390/cancers14225633] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 11/04/2022] [Accepted: 11/13/2022] [Indexed: 11/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors (PARPi) induce cytotoxic effects as single agents in tumors characterized by defective repair of DNA double-strand breaks deriving from BRCA1/2 mutations or other abnormalities in genes associated with homologous recombination. Preclinical studies have shown that PARPi-induced DNA damage may affect the tumor immune microenvironment and immune-mediated anti-tumor response through several mechanisms. In particular, increased DNA damage has been shown to induce the activation of type I interferon pathway and up-regulation of PD-L1 expression in cancer cells, which can both enhance sensitivity to Immune Checkpoint Inhibitors (ICIs). Despite the recent approval of ICIs for a number of advanced cancer types based on their ability to reinvigorate T-cell-mediated antitumor immune responses, a consistent percentage of treated patients fail to respond, strongly encouraging the identification of combination therapies to overcome resistance. In the present review, we analyzed both established and unexplored mechanisms that may be elicited by PARPi, supporting immune reactivation and their potential synergism with currently used ICIs. This analysis may indicate novel and possibly patient-specific immune features that might represent new pharmacological targets of PARPi, potentially leading to the identification of predictive biomarkers of response to their combination with ICIs.
Collapse
|
20
|
Yuan W, Ren X, Zhu J, Huang J, Zhang W, Zhang C, Guan Z, Wang H, Leng H, Song C. Single-intraosseous simvastatin injection suppresses cancers via activating CD8 + T cells. Biomed Pharmacother 2022; 155:113665. [PMID: 36095962 DOI: 10.1016/j.biopha.2022.113665] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Immunotherapies provide effective strategies for cancer treatment. Cholesterol induces CD8+ T cell exhaustion, which inhibits antitumor immunity. CD8+ T cells are derived from bone marrow and transport and function in bone marrow, where provides more porous cavities for drugs to access the circulation than other solid organs. We previously found that single-dose intraosseous (i.o.) injection of simvastatin suppresses breast cancer development and prolongs survival, but the exact mechanism remains unclear. In this study, we found the antitumor activity of simvastatin i.o. mainly depended on CD8+ T cells. Simvastatin i.o. increased the percentage and cytotoxicity of CD8+ T cells and downregulated the expression of PD-1, TIM3 and CTLA4 in CD8+ T cells in vivo. Simvastatin promoted the activation, proliferation and cytotoxicity of tumor antigen-specific CD8+ T cells in vitro. Furthermore, Simvastatin i.o. suppressed cancers by activating the T-cell antigen receptor signaling pathway. Taken together, simvastatin i.o. effectively suppresses cancer progression, which would be a potential strategy for cancer treatment.
Collapse
Affiliation(s)
- Wanqiong Yuan
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease, 49 North Garden Rd., Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd., Haidian District, Beijing, China
| | - Xiaoqing Ren
- Department of Pharmacy, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Junxiong Zhu
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Jie Huang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Wang Zhang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Chenggui Zhang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Zhiyuan Guan
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China
| | - Hong Wang
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease, 49 North Garden Rd., Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd., Haidian District, Beijing, China
| | - Huijie Leng
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease, 49 North Garden Rd., Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd., Haidian District, Beijing, China
| | - Chunli Song
- Department of Orthopedics, Peking University Third Hospital, 49 North Garden Rd., Haidian District, Beijing, China; Beijing Key Laboratory of Spinal Disease, 49 North Garden Rd., Haidian District, Beijing, China; Engineering Research Center of Bone and Joint Precision Medicine, 49 North Garden Rd., Haidian District, Beijing, China.
| |
Collapse
|
21
|
Li F, Liu H, Zhang D, Ma Y, Zhu B. Metabolic plasticity and regulation of T cell exhaustion. Immunology 2022; 167:482-494. [DOI: 10.1111/imm.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/06/2022] [Indexed: 11/28/2022] Open
Affiliation(s)
- Fei Li
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Huiling Liu
- Department of gynecology and obstetrics Gansu Provincial Hospital Lanzhou China
| | - Dan Zhang
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Yanlin Ma
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence‐Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences Lanzhou University Lanzhou China
- State Key Laboratory of Veterinary Etiological Biology, School of Veterinary Medicine and Biosafety Lanzhou University Lanzhou China
| |
Collapse
|
22
|
Pichler AC, Cannons JL, Schwartzberg PL. The Road Less Taken: Less Appreciated Pathways for Manipulating CD8 + T Cell Exhaustion. Front Immunol 2022; 13:926714. [PMID: 35874734 PMCID: PMC9297918 DOI: 10.3389/fimmu.2022.926714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Exhausted CD8+ T (Tex) cells are a distinct cell population that arise during persistent antigen exposure in the context of chronic infections and cancers. Although characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression and distinct transcriptional and epigenetic programs, Tex cells are heterogeneous. Among these, a self-renewing TCF-1+ Tex population, having unique characteristics and the ability to respond to immune-checkpoint blockade, gives rise to TCF-1- terminally Tex cells. These TCF-1+ cells have stem cell-like properties similar to memory T cell populations, but the signals that regulate the developmental pathways and relationships among exhausted cell populations are still unclear. Here, we review our current understanding of Tex cell biology, and discuss some less appreciated molecules and pathways affecting T cell exhaustion. We highlight two co-stimulatory receptors, CD226 and CD137, and their role in inducing or restraining T cell exhaustion, as well as signaling pathways that may be amenable to pharmacological inhibition with a focus on Phosphoinositide-3 Kinase and IL-2 partial agonists. Finally, we discuss novel methods that may increase TCF-1+ populations and therefore improve immunotherapy responsiveness. Understanding features of and pathways to exhaustion has important implications for the success of immunotherapy, including checkpoint blockade and adoptive T-cell transfer therapies.
Collapse
Affiliation(s)
- Andrea C. Pichler
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Jennifer L. Cannons
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
| | - Pamela L. Schwartzberg
- Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, United States
- National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
23
|
Viramontes KM, Neubert EN, DeRogatis JM, Tinoco R. PD-1 Immune Checkpoint Blockade and PSGL-1 Inhibition Synergize to Reinvigorate Exhausted T Cells. Front Immunol 2022; 13:869768. [PMID: 35774790 PMCID: PMC9237324 DOI: 10.3389/fimmu.2022.869768] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 05/23/2022] [Indexed: 11/25/2022] Open
Abstract
Chronic viral infections where the antigen persists long-term, induces an exhaustion phenotype in responding T cells. It is now evident that immune checkpoints on T cells including PD-1, CTLA-4, and PSGL-1 (Selplg) are linked with the differentiation of exhausted cells. Chronic T cell receptor signaling induces transcriptional signatures that result in the development of various exhausted T cell subsets, including the stem-like T cell precursor exhausted (Tpex) cells, which can be reinvigorated by immune checkpoint inhibitors (ICIs). While PSGL-1 has been shown to inhibit T cell responses in various disease models, the cell-intrinsic function of PSGL-1 in the differentiation, maintenance, and reinvigoration of exhausted T cells is unknown. We found Selplg-/- T cells had increased expansion in melanoma tumors and in early stages of chronic viral infection. Despite their increase, both WT and Selplg-/- T cells eventually became phenotypically and functionally exhausted. Even though virus-specific Selplg-/- CD4+ and CD8+ T cells were increased at the peak of T cell expansion, they decreased to lower levels than WT T cells at later stages of chronic infection. We found that Selplg-/- CD8+ Tpex (SLAMF6hiTIM3lo, PD-1+TIM3+, TOX+, TCF-1+) cell frequencies and numbers were decreased compared to WT T cells. Importantly, even though virus-specific Selplg-/- CD4+ and CD8+ T cells were lower, they were reinvigorated more effectively than WT T cells after anti-PD-L1 treatment. We found increased SELPLG expression in Hepatitis C-specific CD8+ T cells in patients with chronic infection, whereas these levels were decreased in patients that resolved the infection. Together, our findings showed multiple PSGL-1 regulatory functions in exhausted T cells. We found that PSGL-1 is a cell-intrinsic inhibitor that limits T cells in tumors and in persistently infected hosts. Additionally, while PSGL-1 is linked with T cell exhaustion, its expression was required for their long-term maintenance and optimal differentiation into Tpex cells. Finally, PSGL-1 restrained the reinvigoration potential of exhausted CD4+ and CD8+ T cells during ICI therapy. Our findings highlight that targeting PSGL-1 may have therapeutic potential alone or in combination with other ICIs to reinvigorate exhausted T cells in patients with chronic infections or cancer.
Collapse
Affiliation(s)
- Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| | - Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, Irvine, CA, United States
- Center for Virus Research, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
24
|
'Stem-like' precursors are the fount to sustain persistent CD8 + T cell responses. Nat Immunol 2022; 23:836-847. [PMID: 35624209 DOI: 10.1038/s41590-022-01219-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 04/07/2022] [Indexed: 01/22/2023]
Abstract
Virus-specific CD8+ T cells that differentiate in the context of resolved versus persisting infections exhibit divergent phenotypic and functional characteristics, which suggests that their differentiation trajectories are governed by distinct cellular dynamics, developmental pathways and molecular mechanisms. For acute infection, it is long known that antigen-specific T cell populations contain terminally differentiated effector T cells, known as short-lived effector T cells, and proliferation-competent and differentiation-competent memory precursor T cells. More recently, it was identified that a similar functional segregation occurs in chronic infections. A failure to generate proliferation-competent precursor cells in chronic infections and tumors results in the collapse of the T cell response. Thus, these precursor cells are major therapeutic and prophylactic targets of immune interventions. These observations suggest substantial commonality between T cell responses in acute and chronic infections but there are also critical differences. We are therefore reviewing the common features and peculiarities of precursor cells in acute infections, different types of persistent infection and cancer.
Collapse
|
25
|
DeRogatis JM, Viramontes KM, Neubert EN, Henriquez ML, Guerrero-Juarez CF, Tinoco R. Targeting the PSGL-1 Immune Checkpoint Promotes Immunity to PD-1-Resistant Melanoma. Cancer Immunol Res 2022; 10:612-625. [PMID: 35303066 PMCID: PMC9064985 DOI: 10.1158/2326-6066.cir-21-0690] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 12/10/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022]
Abstract
Immune-checkpoint inhibitors have had impressive efficacy in some patients with cancer, reinvigorating long-term durable immune responses against tumors. Despite the clinical success of these therapies, most patients with cancer continue to be unresponsive to these treatments, highlighting the need for novel therapeutic options. Although P-selectin glycoprotein ligand-1 (PSGL-1) has been shown to inhibit immune responses in a variety of disease models, previous work has yet to address whether PSGL-1 can be targeted therapeutically to promote antitumor immunity. Using an aggressive melanoma tumor model, we targeted PSGL-1 in tumor-bearing mice and found increased effector CD4+ and CD8+ T-cell responses and decreased regulatory T cells (Treg) in tumors. T cells exhibited increased effector function, activation, and proliferation, which delayed tumor growth in mice after anti-PSGL-1 treatment. Targeting PD-1 in PSGL-1-deficient, tumor-bearing mice led to an increased frequency of mice with complete tumor eradication. Targeting both PSGL-1 and PD-1 in wild-type tumor-bearing mice also showed enhanced antitumor immunity and slowed melanoma tumor growth. Our findings showed that therapeutically targeting the PSGL-1 immune checkpoint can reinvigorate antitumor immunity and suggest that targeting PSGL-1 may represent a new therapeutic strategy for cancer treatment.
Collapse
Affiliation(s)
- Julia M. DeRogatis
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Karla M. Viramontes
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Contributed equally
| | - Emily N. Neubert
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
- Contributed equally
| | - Monique L. Henriquez
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Christian F. Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, CA 92697, USA
- Department of Mathematics, University of California, Irvine, CA, 92697, USA
- Center for Complex Biological Systems, University of California, Irvine, CA 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, CA, 92697, USA
| | - Roberto Tinoco
- Department of Molecular Biology and Biochemistry, School of Biological Sciences, University of California, Irvine, CA 92697, USA
| |
Collapse
|
26
|
Madi A, Weisshaar N, Buettner M, Poschet G, Ma S, Wu J, Mieg A, Hering M, Ming Y, Mohr K, Ten Bosch N, Cui G. CD8 agonism functionally activates memory T cells and enhances anti-tumor immunity. Int J Cancer 2022; 151:797-808. [PMID: 35499751 DOI: 10.1002/ijc.34059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/30/2022] [Accepted: 04/11/2022] [Indexed: 11/12/2022]
Abstract
Memory CD8+ T cells mature after antigen clearance and ultimately express CD8 protein at levels higher than those detected in effector CD8+ T cells. However, it is not clear whether engagement of CD8 in the absence of antigenic stimulation will result in the functional activation of T cells. Here, we found that CD8 antibody-mediated activation of memory CD8+ T cells triggered T cell receptor (TCR) downstream signaling, enhanced T cell-mediated cytotoxicity, and promoted effector cytokine production in a glucose- and glutamine-dependent manner. Furthermore, pretreatment of memory CD8+ T cells with an agonistic anti-CD8 antibody enhanced their tumoricidal activity in vitro and in vivo. From these studies, we conclude that CD8 agonism activates glucose and glutamine metabolism in memory T cells and enhances the efficacy of memory T cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Alaa Madi
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Nina Weisshaar
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Buettner
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies (COS), Heidelberg University, Heidelberg, Germany
| | - Sicong Ma
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jingxia Wu
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Alessa Mieg
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Marvin Hering
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
| | - Yanan Ming
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kerstin Mohr
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nora Ten Bosch
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| | - Guoliang Cui
- T Cell Metabolism Group (D192), German Cancer Research Center (DKFZ), Heidelberg, Germany.,Faculty of Biosciences, Heidelberg University, Heidelberg, Germany.,Helmholtz Institute for Translational Oncology (HI-TRON), Mainz, Germany
| |
Collapse
|
27
|
Park J, Lee SY, Jeon Y, Kim KM, Lee JK, Ko J, Park EJ, Yoon JS, Kang BE, Ryu D, Lee H, Shin SJ, Go H, Lee CW. The Pellino1-PKCθ signaling axis is an essential target for improving anti-tumor CD8+ T-lymphocyte function. Cancer Immunol Res 2022; 10:327-342. [DOI: 10.1158/2326-6066.cir-21-0419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 01/18/2022] [Indexed: 11/16/2022]
|
28
|
Kaminski H, Marseres G, Yared N, Nokin MJ, Pitard V, Zouine A, Garrigue I, Loizon S, Capone M, Gauthereau X, Mamani-Matsuda M, Coueron R, Durán RV, Pinson B, Pellegrin I, Thiébaut R, Couzi L, Merville P, Déchanet-Merville J. mTOR Inhibitors Prevent CMV Infection through the Restoration of Functional αβ and γδ T cells in Kidney Transplantation. J Am Soc Nephrol 2022; 33:121-137. [PMID: 34725108 PMCID: PMC8763189 DOI: 10.1681/asn.2020121753] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 10/06/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND The reported association of mTOR-inhibitor (mTORi) treatment with a lower incidence of cytomegalovirus (CMV) infection in kidney transplant recipients (KTR) who are CMV seropositive (R+) remains unexplained. METHODS The incidence of CMV infection and T-cell profile was compared between KTRs treated with mTORis and mycophenolic acid (MPA), and in vitro mTORi effects on T-cell phenotype and functions were analyzed. RESULTS In KTRs who were R+ and treated with MPA, both αβ and γδ T cells displayed a more dysfunctional phenotype (PD-1+, CD85j+) at day 0 of transplantation in the 16 KTRs with severe CMV infection, as compared with the 17 KTRs without or with spontaneously resolving CMV infection. In patients treated with mTORis (n=27), the proportion of PD-1+ and CD85j+ αβ and γδ T cells decreased, when compared with patients treated with MPA (n=44), as did the frequency and severity of CMV infections. mTORi treatment also led to higher proportions of late-differentiated and cytotoxic γδ T cells and IFNγ-producing and cytotoxic αβ T cells. In vitro, mTORis increased proliferation, viability, and CMV-induced IFNγ production of T cells and decreased PD-1 and CD85j expression in T cells, which shifted the T cells to a more efficient EOMESlow Hobithigh profile. In γδ T cells, the mTORi effect was related to increased TCR signaling. CONCLUSION Severe CMV replication is associated with a dysfunctional T-cell profile and mTORis improve T-cell fitness along with better control of CMV. A dysfunctional T-cell phenotype could serve as a new biomarker to predict post-transplantation infection and to stratify patients who should benefit from mTORi treatment. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER Proportion of CMV Seropositive Kidney Transplant Recipients Who Will Develop a CMV Infection When Treated With an Immunosuppressive Regimen Including Everolimus and Reduced Dose of Cyclosporine Versus an Immunosuppressive Regimen With Mycophenolic Acid and Standard Dose of Cyclosporine A (EVERCMV), NCT02328963.
Collapse
Affiliation(s)
- Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France,ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Gabriel Marseres
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Nathalie Yared
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Marie-Julie Nokin
- Actions for onCogenesis understanding and Target Identification in ONcology, Institut Europeen de chimie et de biologie, Institut National de la Santé et de la Recherche Médicale, U1218, University of Bordeaux, Pessac, France
| | - Vincent Pitard
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France,Centre National de la Recherche Scientifique Unité Mixte de Service 3427, Institut National de la Santé et de la Recherche Médicale US 005, TransBioMed Core, Flow Cytometry Facility, University of Bordeaux, Bordeaux, France
| | - Atika Zouine
- Centre National de la Recherche Scientifique Unité Mixte de Service 3427, Institut National de la Santé et de la Recherche Médicale US 005, TransBioMed Core, Flow Cytometry Facility, University of Bordeaux, Bordeaux, France
| | - Isabelle Garrigue
- Virology Department, Centre National de la Recherche Scientifique Unité Mixte de Recherche 5234 and CHU Bordeaux, University of Bordeaux, Bordeaux, France
| | - Séverine Loizon
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Myriam Capone
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Xavier Gauthereau
- Centre National de la Recherche Scientifique Unité Mixte de Service 3427, Institut National de la Santé et de la Recherche Médicale US 005, TransBioMed Core, PCRq’UB, University of Bordeaux, Bordeaux, France
| | - Maria Mamani-Matsuda
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Roxane Coueron
- Institut National de la Santé et de la Recherche Médicale U1219 Bordeaux Population Health Research Center, Inria SISTM, University of Bordeaux, Bordeaux, France
| | - Raúl V. Durán
- Actions for onCogenesis understanding and Target Identification in ONcology, Institut Europeen de chimie et de biologie, Institut National de la Santé et de la Recherche Médicale, U1218, University of Bordeaux, Pessac, France
| | - Benoît Pinson
- Centre National de la Recherche Scientifique Unité Mixte de Service 3427, Institut National de la Santé et de la Recherche Médicale US 005, TransBioMed Core, Service Analyses Métaboliques, University of Bordeaux, Bordeaux, France,Centre National de la Recherche Scientifique, Institut de Biochimie et Genetique Cellulaire Unité Mixte de Recherche 5095, University of Bordeaux, Bordeaux, France
| | - Isabelle Pellegrin
- Laboratory of Immunology and Immunogenetics, Bordeaux University Hospital, Bordeaux, France
| | - Rodolphe Thiébaut
- Institut National de la Santé et de la Recherche Médicale U1219 Bordeaux Population Health Research Center, Inria SISTM, University of Bordeaux, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France,ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France,ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| | - Julie Déchanet-Merville
- ImmunoConcEpT, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5164, University of Bordeaux, Bordeaux, France
| |
Collapse
|
29
|
Tumino N, Weber G, Besi F, Del Bufalo F, Bertaina V, Paci P, Quatrini L, Antonucci L, Sinibaldi M, Quintarelli C, Maggi E, De Angelis B, Locatelli F, Moretta L, Vacca P, Caruana I. Polymorphonuclear myeloid-derived suppressor cells impair the anti-tumor efficacy of GD2.CAR T-cells in patients with neuroblastoma. J Hematol Oncol 2021; 14:191. [PMID: 34772439 PMCID: PMC8588686 DOI: 10.1186/s13045-021-01193-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
The outcome of patients affected by high-risk or metastatic neuroblastoma (NB) remains grim, with ≥ 50% of the children experiencing relapse or progression of the disease despite multimodal, intensive treatment. In order to identify new strategies to improve the overall survival and the quality of life of these children, we recently developed and optimized a third-generation GD2-specific chimeric antigen receptor (CAR) construct, which is currently under evaluation in our Institution in a phase I/II clinical trial (NCT03373097) enrolling patients with relapsed/refractory NB. We observed that our CAR T-cells are able to induce marked tumor reduction and even achieve complete remission with a higher efficiency than that of other CAR T-cells reported in previous studies. However, often responses are not sustained and relapses occur. Here, we demonstrate for the first time a mechanism of resistance to GD2.CAR T-cell treatment, showing how polymorphonuclear myeloid-derived suppressor cells (PMN-MDSC) increase in the peripheral blood (PB) of NB patients after GD2.CAR T-cell treatment in case of relapse and loss of response. In vitro, isolated PMN-MDSC demonstrate to inhibit the anti-tumor cytotoxicity of different generations of GD2.CAR T-cells. Gene-expression profiling of GD2.CAR T-cells "conditioned" with PMN-MDSC shows downregulation of genes involved in cell activation, signal transduction, inflammation and cytokine/chemokine secretion. Analysis of NB gene-expression dataset confirms a correlation between expression of these genes and patient outcome. Moreover, in patients treated with GD2.CAR T-cells, the frequency of circulating PMN-MDSC inversely correlates with the levels of GD2.CAR T-cells, resulting more elevated in patients who did not respond or lost response to the treatment. The presence and the frequency of PMN-MDSC in PB of high-risk and metastatic NB represents a useful prognostic marker to predict the response to GD2.CAR T-cells and other adoptive immunotherapy. This study underlines the importance of further optimization of both CAR T-cells and clinical trial in order to target elements of the tumor microenvironment.
Collapse
Affiliation(s)
- Nicola Tumino
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Gerrit Weber
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy.,Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University Children's Hospital of Würzburg, 97080, Würzburg, Germany
| | - Francesca Besi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Francesca Del Bufalo
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Valentina Bertaina
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Paola Paci
- Institute for Systems Analysis and Computer Science "Antonio Ruberti", National Research Council, Rome, Italy
| | - Linda Quatrini
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Laura Antonucci
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Matilde Sinibaldi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Concetta Quintarelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Enrico Maggi
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Biagio De Angelis
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy. .,Department of Maternal, Infantile, and Urological Sciences, Sapienza University of Rome, Rome, Italy.
| | - Lorenzo Moretta
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy.
| | - Paola Vacca
- Immunology Research Area, IRCCS Bambino Gesù Children's Hospital, Viale San Paolo 15, 00146, Rome, Italy
| | - Ignazio Caruana
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, IRCCS Bambino Gesù Children's Hospital, Piazza Sant'Onofrio, 4, 00165, Rome, Italy.,Department of Pediatric Hematology, Oncology and Stem Cell Transplantation University Children's Hospital of Würzburg, 97080, Würzburg, Germany
| |
Collapse
|
30
|
Baudi I, Kawashima K, Isogawa M. HBV-Specific CD8+ T-Cell Tolerance in the Liver. Front Immunol 2021; 12:721975. [PMID: 34421926 PMCID: PMC8378532 DOI: 10.3389/fimmu.2021.721975] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022] Open
Abstract
Hepatitis B virus (HBV) remains a leading cause of liver-related morbidity and mortality through chronic hepatitis that may progress to liver cirrhosis and cancer. The central role played by HBV-specific CD8+ T cells in the clearance of acute HBV infection, and HBV-related liver injury is now well established. Vigorous, multifunctional CD8+ T cell responses are usually induced in most adult-onset HBV infections, while chronic hepatitis B (CHB) is characterized by quantitatively and qualitatively weak HBV-specific CD8+ T cell responses. The molecular basis of this dichotomy is poorly understood. Genomic analysis of dysfunctional HBV-specific CD8+ T cells in CHB patients and various mouse models suggest that multifaceted mechanisms including negative signaling and metabolic abnormalities cooperatively establish CD8+ T cell dysfunction. Immunoregulatory cell populations in the liver, including liver resident dendritic cells (DCs), hepatic stellate cells (HSCs), myeloid-derived suppressor cells (MDSCs), may contribute to intrahepatic CD8+ T cell dysfunction through the production of soluble mediators, such as arginase, indoleamine 2,3-dioxygenase (IDO) and suppressive cytokines and the expression of co-inhibitory molecules. A series of recent studies with mouse models of HBV infection suggest that genetic and epigenetic changes in dysfunctional CD8+ T cells are the manifestation of prolonged antigenic stimulation, as well as the absence of co-stimulatory or cytokine signaling. These new findings may provide potential new targets for immunotherapy aiming at invigorating HBV-specific CD8+ T cells, which hopefully cures CHB.
Collapse
Affiliation(s)
- Ian Baudi
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Keigo Kawashima
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Masanori Isogawa
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
31
|
Gunasinghe SD, Peres NG, Goyette J, Gaus K. Biomechanics of T Cell Dysfunctions in Chronic Diseases. Front Immunol 2021; 12:600829. [PMID: 33717081 PMCID: PMC7948521 DOI: 10.3389/fimmu.2021.600829] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 01/12/2021] [Indexed: 12/12/2022] Open
Abstract
Understanding the mechanisms behind T cell dysfunctions during chronic diseases is critical in developing effective immunotherapies. As demonstrated by several animal models and human studies, T cell dysfunctions are induced during chronic diseases, spanning from infections to cancer. Although factors governing the onset and the extent of the functional impairment of T cells can differ during infections and cancer, most dysfunctional phenotypes share common phenotypic traits in their immune receptor and biophysical landscape. Through the latest developments in biophysical techniques applied to explore cell membrane and receptor-ligand dynamics, we are able to dissect and gain further insights into the driving mechanisms behind T cell dysfunctions. These insights may prove useful in developing immunotherapies aimed at reinvigorating our immune system to fight off infections and malignancies more effectively. The recent success with checkpoint inhibitors in treating cancer opens new avenues to develop more effective, targeted immunotherapies. Here, we highlight the studies focused on the transformation of the biophysical landscape during infections and cancer, and how T cell biomechanics shaped the immunopathology associated with chronic diseases.
Collapse
Affiliation(s)
- Sachith D Gunasinghe
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Newton G Peres
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, University of New South Wales, Sydney, NSW, Australia.,ARC Centre of Excellence in Advanced Molecular Imaging, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
32
|
Jiang W, He Y, He W, Wu G, Zhou X, Sheng Q, Zhong W, Lu Y, Ding Y, Lu Q, Ye F, Hua H. Exhausted CD8+T Cells in the Tumor Immune Microenvironment: New Pathways to Therapy. Front Immunol 2021; 11:622509. [PMID: 33633741 PMCID: PMC7902023 DOI: 10.3389/fimmu.2020.622509] [Citation(s) in RCA: 181] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 12/17/2020] [Indexed: 12/24/2022] Open
Abstract
Tumor-specific CD8+T cells are exposed to persistent antigenic stimulation which induces a dysfunctional state called "exhaustion." Though functioning to limit damage caused by immune response, T cell exhaustion leads to attenuated effector function whereby cytotoxic CD8+T cells fail to control tumor progression in the late stage. This pathway is a dynamic process from activation to "progenitor exhaustion" through to "terminally exhaustion" with distinct properties. With the rapid development of immunotherapy via enhancing T cell function, new studies are dissecting the mechanisms and identifying specific biomarkers of dynamic differentiation during the process of exhaustion. Further, although immune checkpoint inhibitors (ICIs) have achieved great success in clinical practice, most patients still show limited efficacy to ICIs. The expansion and differentiation of progenitor exhausted T cells explained the success of ICIs while the depletion of the progenitor T cell pool and the transient effector function of terminally exhausted T cells accounted for the failure of immune monotherapy in the context of exorbitant tumor burden. Thus, combination strategies are urgent to be utilized based on the reduction of tumor burden or the expansion of the progenitor T cell pool. In this review, we aim to introduce the concept of homeostasis of the activated and exhausted status of CD8+T cells in the tumor immune microenvironment, and present recent findings on dynamic differentiation process during T cell exhaustion and the implications for combination strategies in immune therapy.
Collapse
Affiliation(s)
- Weiqin Jiang
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yinjun He
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Wenguang He
- Department of Radiology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guosheng Wu
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xile Zhou
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qinsong Sheng
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Weixiang Zhong
- Department of Pathology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yimin Lu
- Department of Surgical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Qi Lu
- College of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ye
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hanju Hua
- Department of Colorectal Surgery, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
33
|
Trefzer A, Kadam P, Wang SH, Pennavaria S, Lober B, Akçabozan B, Kranich J, Brocker T, Nakano N, Irmler M, Beckers J, Straub T, Obst R. Dynamic adoption of anergy by antigen-exhausted CD4 + T cells. Cell Rep 2021; 34:108748. [PMID: 33567282 DOI: 10.1016/j.celrep.2021.108748] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 09/21/2020] [Accepted: 01/19/2021] [Indexed: 12/11/2022] Open
Abstract
Exhausted immune responses to chronic diseases represent a major challenge to global health. We study CD4+ T cells in a mouse model with regulatable antigen presentation. When the cells are driven through the effector phase and are then exposed to different levels of persistent antigen, they lose their T helper 1 (Th1) functions, upregulate exhaustion markers, resemble naturally anergic cells, and modulate their MAPK, mTORC1, and Ca2+/calcineurin signaling pathways with increasing dose and time. They also become unable to help B cells and, at the highest dose, undergo apoptosis. Transcriptomic analyses show the dynamic adjustment of gene expression and the accumulation of T cell receptor (TCR) signals over a period of weeks. Upon antigen removal, the cells recover their functionality while losing exhaustion and anergy markers. Our data suggest an adjustable response of CD4+ T cells to different levels of persisting antigen and contribute to a better understanding of chronic disease.
Collapse
Affiliation(s)
- Anne Trefzer
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Pallavi Kadam
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Shu-Hung Wang
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Stefanie Pennavaria
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Benedikt Lober
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Batuhan Akçabozan
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Jan Kranich
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Thomas Brocker
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Naoko Nakano
- Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba 278-0022, Japan
| | - Martin Irmler
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany
| | - Johannes Beckers
- Institute of Experimental Genetics, Helmholtz Zentrum München GmbH, 85764 Neuherberg, Germany; Chair of Experimental Genetics, Technische Universität München, 85354 Freising, Germany; German Center for Diabetes Research (DZD e. V.), Neuherberg, Germany
| | - Tobias Straub
- Bioinformatics Core Facility, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Reinhard Obst
- Institute for Immunology, Biomedical Center, Medical Faculty, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
34
|
Christen U, Kimmel R. Chemokines as Drivers of the Autoimmune Destruction in Type 1 Diabetes: Opportunity for Therapeutic Intervention in Consideration of an Optimal Treatment Schedule. Front Endocrinol (Lausanne) 2020; 11:591083. [PMID: 33193102 PMCID: PMC7604482 DOI: 10.3389/fendo.2020.591083] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/30/2020] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes (T1D) is mainly precipitated by the destruction of insulin-producing β-cells in the pancreatic islets of Langerhans by autoaggressive T cells. The etiology of the disease is still not clear, but besides genetic predisposition the exposure to environmental triggers seems to play a major role. Virus infection of islets has been demonstrated in biopsies of T1D patients, but there is still no firm proof that such an infection indeed results in islet-specific autoimmunity. However, virus infection results in a local inflammation with expression of inflammatory factors, such as cytokines and chemokines that attract and activate immune cells, including potential autoreactive T cells. Many chemokines have been found to be elevated in the serum and expressed by islet cells of T1D patients. In mouse models, it has been demonstrated that β-cells express chemokines involved in the initial recruitment of immune cells to the islets. The bulk load of chemokines is however released by the infiltrating immune cells that also express multiple chemokine receptors. The result is a mutual attraction of antigen-presenting cells and effector immune cells in the local islet microenvironment. Although there is a considerable redundancy within the chemokine ligand-receptor network, a few chemokines, such as CXCL10, seem to play a key role in the T1D pathogenesis. Studies with neutralizing antibodies and investigations in chemokine-deficient mice demonstrated that interfering with certain chemokine ligand-receptor axes might also ameliorate human T1D. However, one important aspect of such a treatment is the time of administration. Blockade of the recruitment of immune cells to the site of autoimmune destruction might not be effective when the disease process is already ongoing. By that time, autoaggressive cells have already arrived in the islet microenvironment and a blockade of migration might even hold them in place leading to accelerated destruction. Thus, an anti-chemokine therapy makes most sense in situations where the cells have not yet migrated to the islets. Such situations include treatment of patients at risk already carrying islet-antigen autoantibodies but are not yet diabetic, islet transplantation recipients, and patients that have undergone a T cell reset as occurring after anti-CD3 antibody treatment.
Collapse
|