1
|
Ghosh T, Sollich P, Nandi SK. An elastoplastic model approach for the relaxation dynamics of active glasses. SOFT MATTER 2025; 21:3047-3057. [PMID: 40162833 DOI: 10.1039/d4sm01394h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
How activity affects the glassy dynamics is crucial for several biological processes. Furthermore, active glasses offer fascinating phenomenologies, extend the scope of equilibrium glass-forming liquids, and can provide novel insights into the original problem. We introduce a family of novel approaches to investigating the relaxation dynamics of active glasses via an active elastoplastic model (EPM). These approaches describe the relaxation dynamics via local plastic yielding and can provide improved insights as we can study various aspects of the system separately. Activity enters the model via three crucial features: activity-mediated plastic yielding, activated barrier crossing, and persistent rotational dynamics of the yielding direction. We first consider a minimal active EPM that adds the effect of active yielding to a thermal EPM. We show that this active EPM captures the known results of active glasses within a reasonable parameter space. The results also agree well with the analytical results for active glasses when activity is small. The minimal model breaks down at very low temperatures where other effects become important. Looking at the broader model class, we demonstrate that whereas active yielding primarily dominates the relaxation dynamics, the persistence of the yielding direction governs the dynamic heterogeneity in active glasses.
Collapse
Affiliation(s)
- Tanmoy Ghosh
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad 500046, India.
| | - Peter Sollich
- Institute for Theoretical Physics, University of Göttingen, Friedrich-Hund-Platz 1, 37077 Göttingen, Germany
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, Gopanpally Village, Hyderabad 500046, India.
| |
Collapse
|
2
|
Matsuda M, Sokol SY. Prickle2 regulates apical junction remodeling and tissue fluidity during vertebrate neurulation. J Cell Biol 2025; 224:e202407025. [PMID: 39951022 PMCID: PMC11827586 DOI: 10.1083/jcb.202407025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 12/29/2024] [Accepted: 01/21/2025] [Indexed: 02/16/2025] Open
Abstract
The process of folding the flat neuroectoderm into an elongated neural tube depends on tissue fluidity, a property that allows epithelial deformation while preserving tissue integrity. Neural tube folding also requires the planar cell polarity (PCP) pathway. Here, we report that Prickle2 (Pk2), a core PCP component, increases tissue fluidity by promoting the remodeling of apical junctions (AJs) in Xenopus embryos. This Pk2 activity is mediated by the unique evolutionarily conserved Ser/Thr-rich region (STR) in the carboxyterminal half of the protein. Mechanistically, the effects of Pk2 require Rac1 and are accompanied by increased dynamics of C-cadherin and tricellular junctions, the hotspots of AJ remodeling. Notably, Pk2 depletion leads to the accumulation of mediolaterally oriented cells in the neuroectoderm, whereas the overexpression of Pk2 or Pk1 containing the Pk2-derived STR promotes cell elongation along the anteroposterior axis. We propose that Pk2-dependent regulation of tissue fluidity contributes to anteroposterior tissue elongation in response to extrinsic cues.
Collapse
Affiliation(s)
- Miho Matsuda
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sergei Y. Sokol
- Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
3
|
De Marzio M, Das A, Fredberg JJ, Bi D. Epithelial Layer Fluidization by Curvature-Induced Unjamming. PHYSICAL REVIEW LETTERS 2025; 134:138402. [PMID: 40250361 DOI: 10.1103/physrevlett.134.138402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 03/04/2025] [Indexed: 04/20/2025]
Abstract
The transition of an epithelial layer from a stationary, quiescent state to a highly migratory, dynamic state is required for wound healing, development, and regeneration. This transition, known as the unjamming transition (UJT), is responsible for epithelial fluidization and collective migration. Previous theoretical models have primarily focused on the UJT in flat epithelial layers, neglecting the effects of strong surface curvature characteristic of the epithelium in vivo. In this Letter, we investigate the role of surface curvature on tissue plasticity and cellular migration using a vertex model embedded on a spherical surface. Our findings reveal that increasing curvature promotes the UJT by reducing the energy barriers to cellular rearrangements. Higher curvature favors cell intercalation, mobility, and self-diffusivity, resulting in epithelial structures that are malleable and migratory when small, but become more rigid and stationary as they grow. Together, these results provide a conceptual framework to better understand how cell shape, cell propulsion, and tissue geometry contribute to tissue malleability, remodeling, and stabilization.
Collapse
Affiliation(s)
- Margherita De Marzio
- Brigham and Women's Hospital, Channing Division of Network Medicine, and Harvard Medical School, Boston, Massachusetts 02115, USA
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Amit Das
- IIT Delhi, Department of Biochemical Engineering and Biotechnology, New Delhi, India
| | - Jeffrey J Fredberg
- Harvard T. H. Chan School of Public Health, Boston, Massachusetts 02115, USA
| | - Dapeng Bi
- Northeastern University, Department of Physics and the Center for Theoretical Biological Physics, Boston, Massachusetts 02115, USA
| |
Collapse
|
4
|
Brückner DB, Hannezo E. Tissue Active Matter: Integrating Mechanics and Signaling into Dynamical Models. Cold Spring Harb Perspect Biol 2025; 17:a041653. [PMID: 38951023 PMCID: PMC11960702 DOI: 10.1101/cshperspect.a041653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The importance of physical forces in the morphogenesis, homeostatic function, and pathological dysfunction of multicellular tissues is being increasingly characterized, both theoretically and experimentally. Analogies between biological systems and inert materials such as foams, gels, and liquid crystals have provided striking insights into the core design principles underlying multicellular organization. However, these connections can seem surprising given that a key feature of multicellular systems is their ability to constantly consume energy, providing an active origin for the forces that they produce. Key emerging questions are, therefore, to understand whether and how this activity grants tissues novel properties that do not have counterparts in classical materials, as well as their consequences for biological function. Here, we review recent discoveries at the intersection of active matter and tissue biology, with an emphasis on how modeling and experiments can be combined to understand the dynamics of multicellular systems. These approaches suggest that a number of key biological tissue-scale phenomena, such as morphogenetic shape changes, collective migration, or fate decisions, share unifying design principles that can be described by physical models of tissue active matter.
Collapse
Affiliation(s)
- David B Brückner
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Edouard Hannezo
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
5
|
Suh K, Thornton RH, Nguyen L, Farahani PE, Cohen DJ, Toettcher JE. Large-scale control over collective cell migration using light-activated epidermal growth factor receptors. Cell Syst 2025; 16:101203. [PMID: 40037348 DOI: 10.1016/j.cels.2025.101203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/26/2024] [Accepted: 02/04/2025] [Indexed: 03/06/2025]
Abstract
Receptor tyrosine kinases (RTKs) play key roles in coordinating cell movement at both single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggests that these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled epidermal growth factor (EGF) receptor (OptoEGFR) can be deployed in epithelial cells for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by phosphoinositide 3-kinase (PI3K) signaling, rather than diffusible ligands, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications, including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA; Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Richard H Thornton
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Long Nguyen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Daniel J Cohen
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ 08544, USA.
| | - Jared E Toettcher
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
6
|
Aparicio-Yuste R, Hundsdorfer L, Bastounis EE, Gomez-Benito MJ. Hybrid model to simulate host cell biomechanics and infection spread during intracellular infection of epithelial monolayers. Comput Biol Med 2025; 185:109506. [PMID: 39662314 DOI: 10.1016/j.compbiomed.2024.109506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/19/2024] [Accepted: 11/27/2024] [Indexed: 12/13/2024]
Abstract
Mechanical signals are crucial in regulating the response of cells in a monolayer to both physiological and pathological stressors, including intracellular bacterial infections. In particular, during intracellular infection of epithelial cells in monolayer with the food-borne bacterial pathogen Listeria monocytogenes, cellular biomechanics dictates the degree of bacterial dissemination across the monolayer. This occurs through a process whereby surrounder uninfected cells mechanically compete and eventually extrude infected cells. However, the plethora of physical mechanisms involved and their temporal dynamics are still not fully uncovered, which could inform whether they benefit or harm the host. To further investigate these mechanisms, we propose a two-dimensional hybrid computational model that combines an agent-based model with a finite element method to simulate the kinematics and dynamics of epithelial cell monolayers in the absence or presence of infection. The model accurately replicated the impact of cell density on the mechanical behaviour of uninfected monolayers, showing that increased cell density reduces cell motility and coordination of motion, cell fluidity and monolayer stresses. Moreover, when simulating the intercellular spread of infection, the model successfully reproduced the mechanical competition between uninfected and infected cells. Infected cells showed a reduction in cell area, while the surrounder cells migrated towards the infection site, exerting increased monolayer stresses, consistent with our in vitro observations. This model offers a powerful tool for studying epithelial monolayers in health and disease, by providing in silico predictions of cell shapes, kinematics and dynamics that can then be tested experimentally.
Collapse
Affiliation(s)
- Raul Aparicio-Yuste
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain; Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI, EXC 2124), University of Tuebingen, Tuebingen, 72074, Germany.
| | - Maria Jose Gomez-Benito
- Multiscale in Mechanical and Biological Engineering (M2BE), Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, Universidad de Zaragoza, Zaragoza, 50018, Spain.
| |
Collapse
|
7
|
Hundsdorfer L, Muenkel M, Aparicio-Yuste R, Sanchez-Rendon JC, Gomez-Benito MJ, Balmes A, Schäffer TE, Velic A, Yeh YT, Constantinou I, Wright K, Özbaykal Güler G, Brokatzky D, Maček B, Mostowy S, Bastounis EE. ERK activation waves coordinate mechanical cell competition leading to collective elimination via extrusion of bacterially infected cells. Cell Rep 2025; 44:115193. [PMID: 39817903 DOI: 10.1016/j.celrep.2024.115193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/22/2024] [Accepted: 12/19/2024] [Indexed: 01/18/2025] Open
Abstract
Epithelial cells respond to infection with the intracellular bacterial pathogen Listeria monocytogenes by altering their mechanics to promote collective infected cell extrusion (CICE) and limit infection spread across cell monolayers. However, the underlying biochemical pathways remain elusive. Here, using in vitro (epithelial monolayers) and in vivo (zebrafish larvae) models of infection with L. monocytogenes or Shigella flexneri, we explored the role of extracellular-signal-regulated kinase (ERK) activity waves in coordinating the mechanical battle between infected and surrounder uninfected cells that leads to CICE. We discovered that when ERK waves are suppressed, cells fail to exhibit alterations in cell shape and kinematics associated with CICE and behave more like quiescent uninfected monolayers. In particular, uninfected cells surrounding infection foci are unable to polarize, reinforce their monolayer stresses, and promote CICE. Our findings reveal that crosstalk between ERK waves and cell mechanics is key to collective elimination of large domains of infected cells.
Collapse
Affiliation(s)
- Lara Hundsdorfer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Marie Muenkel
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Raul Aparicio-Yuste
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Julio Cesar Sanchez-Rendon
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Maria Jose Gomez-Benito
- Engineering Research Institute of Aragon (I3A), Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Aragon, Spain
| | - Aylin Balmes
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Tilman E Schäffer
- Institute of Applied Physics, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Ana Velic
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Yi-Ting Yeh
- Department of Mechanical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Iordania Constantinou
- Institute of Microtechnology, Technische Universität Brauschweig, 38106 Braunschweig, Lower Saxony, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, 38106 Braunschweig, Lower Saxony, Germany
| | - Kathryn Wright
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Gizem Özbaykal Güler
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Dominik Brokatzky
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Boris Maček
- Proteome Center Tübingen, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany
| | - Serge Mostowy
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Effie E Bastounis
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, 72076 Tübingen, Baden-Württemberg, Germany.
| |
Collapse
|
8
|
Lin WJ, Yu H, Pathak A. Gradients in cell density and shape transitions drive collective cell migration into confining environments. SOFT MATTER 2025; 21:719-728. [PMID: 39784299 PMCID: PMC11715644 DOI: 10.1039/d3sm01240a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 12/27/2024] [Indexed: 01/12/2025]
Abstract
Epithelial cell collectives migrate through tissue interfaces and crevices to orchestrate development processes, tumor invasion, and wound healing. Naturally, the traversal of cell collective through confining environments involves crowding due to narrowing spaces, which seems tenuous given the conventional inverse relationship between cell density and migration. However, the physical transitions required to overcome such epithelial densification for migration across confinements remain unclear. Here, in a system of contiguous microchannels of varying confinements, we show that epithelial (MCF10A) monolayers accumulate higher cell density and undergo fluid-like shape transitions before entering narrower channels. However, overexpression of breast cancer oncogene ErbB2 did not require such accumulation of cell density to migrate across matrix confinement. While wild-type MCF10A cells migrated faster in narrow channels, this confinement sensitivity was reduced after +ErbB2 mutation or with constitutively active RhoA. This physical interpretation of collective cell migration as density and shape transitions in granular matter could advance our understanding of complex living systems.
Collapse
Affiliation(s)
- Wan-Jung Lin
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Hongsheng Yu
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, USA.
| |
Collapse
|
9
|
Bagchi A, Sarker B, Zhang J, Foston M, Pathak A. Fast yet force-effective mode of supracellular collective cell migration due to extracellular force transmission. PLoS Comput Biol 2025; 21:e1012664. [PMID: 39787053 PMCID: PMC11717197 DOI: 10.1371/journal.pcbi.1012664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 11/21/2024] [Indexed: 01/12/2025] Open
Abstract
Cell collectives, like other motile entities, generate and use forces to move forward. Here, we ask whether environmental configurations alter this proportional force-speed relationship, since aligned extracellular matrix fibers are known to cause directed migration. We show that aligned fibers serve as active conduits for spatial propagation of cellular mechanotransduction through matrix exoskeleton, leading to efficient directed collective cell migration. Epithelial (MCF10A) cell clusters adhered to soft substrates with aligned collagen fibers (AF) migrate faster with much lesser traction forces, compared to random fibers (RF). Fiber alignment causes higher motility waves and transmission of normal stresses deeper into cell monolayer while minimizing shear stresses and increased cell-division based fluidization. By contrast, fiber randomization induces cellular jamming due to breakage in motility waves, disrupted transmission of normal stresses, and heightened shear driven flow. Using a novel motor-clutch model, we explain that such 'force-effective' fast migration phenotype occurs due to rapid stabilization of contractile forces at the migrating front, enabled by higher frictional forces arising from simultaneous compressive loading of parallel fiber-substrate connections. We also model 'haptotaxis' to show that increasing ligand connectivity (but not continuity) increases migration efficiency. According to our model, increased rate of front stabilization via higher resistance to substrate deformation is sufficient to capture 'durotaxis'. Thus, our findings reveal a new paradigm wherein the rate of leading-edge stabilization determines the efficiency of supracellular collective cell migration.
Collapse
Affiliation(s)
- Amrit Bagchi
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Bapi Sarker
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| | - Jialiang Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Marcus Foston
- Department of Energy, Environmental & Chemical Engineering, Washington University, St. Louis, Missouri, United States of America
| | - Amit Pathak
- Department of Mechanical Engineering & Materials Science, Washington University, St. Louis, Missouri, United States of America
| |
Collapse
|
10
|
van der Net A, Rahman Z, Bordoloi AD, Muntz I, ten Dijke P, Boukany PE, Koenderink GH. EMT-related cell-matrix interactions are linked to states of cell unjamming in cancer spheroid invasion. iScience 2024; 27:111424. [PMID: 39717087 PMCID: PMC11665421 DOI: 10.1016/j.isci.2024.111424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 12/25/2024] Open
Abstract
Epithelial-to-mesenchymal transitions (EMT) and unjamming transitions provide two distinct pathways for cancer cells to become invasive, but it is still unclear to what extent these pathways are connected. Here, we addressed this question by performing 3D spheroid invasion assays on epithelial-like (A549) and mesenchymal-like (MV3) cancer cell lines in collagen-based hydrogels, where we varied both the invasive character of the cells and matrix porosity. We found that the onset time of invasion was correlated with the matrix porosity and vimentin levels, while the spheroid expansion rate correlated with MMP1 levels. Spheroids displayed solid-like (non-invasive) states in small-pore hydrogels and fluid-like (strand-based) or gas-like (disseminating cells) states in large-pore hydrogels or for mesenchymal-like cells. Our findings are consistent with different unjamming states as a function of cell motility and matrix confinement predicted in recent models for cancer invasion, but show that cell motility and matrix confinement are coupled via EMT-related matrix degradation.
Collapse
Affiliation(s)
- Anouk van der Net
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Zaid Rahman
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Ankur D. Bordoloi
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Iain Muntz
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| | - Peter ten Dijke
- Leiden University Medical Center, Department of Cell and Chemical Biology and Oncode Institute, Leiden 2333 ZC, the Netherlands
| | - Pouyan E. Boukany
- Delft University of Technology, Department of Chemical Engineering, Delft 2629 HZ, the Netherlands
| | - Gijsje H. Koenderink
- Delft University of Technology, Department of Bionanoscience, Kavli Institute of Nanoscience, Delft 2629 HZ, the Netherlands
| |
Collapse
|
11
|
Cai G, Rodgers NC, Liu AP. Unjamming Transition as a Paradigm for Biomechanical Control of Cancer Metastasis. Cytoskeleton (Hoboken) 2024. [PMID: 39633605 DOI: 10.1002/cm.21963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/27/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024]
Abstract
Tumor metastasis is a complex phenomenon that poses significant challenges to current cancer therapeutics. While the biochemical signaling involved in promoting motile phenotypes is well understood, the role of biomechanical interactions has recently begun to be incorporated into models of tumor cell migration. Specifically, we propose the unjamming transition, adapted from physical paradigms describing the behavior of granular materials, to better discern the transition toward an invasive phenotype. In this review, we introduce the jamming transition broadly and narrow our discussion to the different modes of 3D tumor cell migration that arise. Then we discuss the mechanical interactions between tumor cells and their neighbors, along with the interactions between tumor cells and the surrounding extracellular matrix. We center our discussion on the interactions that induce a motile state or unjamming transition in these contexts. By considering the interplay between biochemical and biomechanical signaling in tumor cell migration, we can advance our understanding of biomechanical control in cancer metastasis.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, Michigan, USA
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, USA
- Department of Biophysics, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
12
|
Latham ZD, Bermudez A, Hu JK, Lin NYC. Regulation of epithelial cell jamming transition by cytoskeleton and cell-cell interactions. BIOPHYSICS REVIEWS 2024; 5:041301. [PMID: 39416285 PMCID: PMC11479637 DOI: 10.1063/5.0220088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Multicellular systems, such as epithelial cell collectives, undergo transitions similar to those in inert physical systems like sand piles and foams. To remodel or maintain tissue organization during development or disease, these collectives transition between fluid-like and solid-like states, undergoing jamming or unjamming transitions. While these transitions share principles with physical systems, understanding their regulation and implications in cell biology is challenging. Although cell jamming and unjamming follow physics principles described by the jamming diagram, they are fundamentally biological processes. In this review, we explore how cellular processes and interactions regulate jamming and unjamming transitions. We begin with an overview of how these transitions control tissue remodeling in epithelial model systems and describe recent findings of the physical principles governing tissue solidification and fluidization. We then explore the mechanistic pathways that modulate the jamming phase diagram axes, focusing on the regulation of cell fluctuations and geometric compatibility. Drawing upon seminal works in cell biology, we discuss the roles of cytoskeleton and cell-cell adhesion in controlling cell motility and geometry. This comprehensive view illustrates the molecular control of cell jamming and unjamming, crucial for tissue remodeling in various biological contexts.
Collapse
Affiliation(s)
- Zoe D. Latham
- Bioengineering Department, UCLA, Los Angeles, California 90095, USA
| | | | - Jimmy K. Hu
- Authors to whom correspondence should be addressed: and
| | | |
Collapse
|
13
|
Becker ME, Martin-Sancho L, Simons LM, McRaven MD, Chanda SK, Hultquist JF, Hope TJ. Live imaging of airway epithelium reveals that mucociliary clearance modulates SARS-CoV-2 spread. Nat Commun 2024; 15:9480. [PMID: 39488529 PMCID: PMC11531594 DOI: 10.1038/s41467-024-53791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/20/2024] [Indexed: 11/04/2024] Open
Abstract
SARS-CoV-2 initiates infection in the conducting airways, where mucociliary clearance inhibits pathogen penetration. However, it is unclear how mucociliary clearance impacts SARS-CoV-2 spread after infection is established. To investigate viral spread at this site, we perform live imaging of SARS-CoV-2 infected differentiated primary human bronchial epithelium cultures for up to 12 days. Using a fluorescent reporter virus and markers for cilia and mucus, we longitudinally monitor mucus motion, ciliary motion, and infection. Infected cell numbers peak at 4 days post infection, forming characteristic foci that tracked mucus movement. Inhibition of MCC using physical and genetic perturbations limits foci. Later in infection, mucociliary clearance deteriorates. Increased mucus secretion accompanies ciliary motion defects, but mucociliary clearance and vectorial infection spread resume after mucus removal, suggesting that mucus secretion may mediate MCC deterioration. Our work shows that while MCC can facilitate SARS-CoV-2 spread after initial infection, subsequent MCC decreases inhibit spread, revealing a complex interplay between SARS-CoV-2 and MCC.
Collapse
Affiliation(s)
- Mark E Becker
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Lacy M Simons
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Michael D McRaven
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sumit K Chanda
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Judd F Hultquist
- Division of Infectious Diseases, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Thomas J Hope
- Department of Cell & Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
14
|
Chen JH, Li JJ, Yuan Y, Tian Q, Feng DD, Zhuang LL, Cao Q, Zhou GP, Jin R. ETS1 and RBPJ transcriptionally regulate METTL14 to suppress TGF-β1-induced epithelial-mesenchymal transition in human bronchial epithelial cells. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167349. [PMID: 39002703 DOI: 10.1016/j.bbadis.2024.167349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Asthma is a chronic respiratory disease characterized by airway inflammation and remodeling. Epithelial-mesenchymal transition (EMT) of bronchial epithelial cells is considered to be a crucial player in asthma. Methyltransferase-like 14 (METTL14), an RNA methyltransferase, is implicated in multiple pathological processes, including EMT, cell proliferation and migration. However, the role of METTL14 in asthma remains uncertain. This research aimed to explore the biological functions of METTL14 in asthma and its underlying upstream mechanisms. METTL14 expression was down-regulated in asthmatic from three GEO datasets (GSE104468, GSE165934, and GSE74986). Consistent with this trend, METTL14 was decreased in the lung tissues of OVA-induced asthmatic mice and transforming growth factor-β1 (TGF-β1)-stimulated human bronchial epithelial cells (Beas-2B) in this study. Overexpression of METTL14 caused reduction in mesenchymal markers (FN1, N-cad, Col-1 and α-SMA) in TGF-β1-treated cells, but caused increase in epithelial markers (E-cad), thus inhibiting EMT. Also, METTL14 suppressed the proliferation and migration ability of TGF-β1-treated Beas-2B cells. Two transcription factors, ETS1 and RBPJ, could both bind to the promoter region of METTL14 and drive its expression. Elevating METTL14 expression could reversed EMT, cell proliferation and migration promoted by ETS1 or RBPJ deficiency. These results indicate that the ETS1/METTL14 and RBPJ/METTL14 transcription axes exhibit anti-EMT, anti-proliferation and anti-migration functions in TGF-β1-induced bronchial epithelial cells, implying that METTL14 may be considered an alternative candidate target for the treatment of asthma.
Collapse
Affiliation(s)
- Jia-He Chen
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiao-Jiao Li
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yue Yuan
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiang Tian
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Dan-Dan Feng
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Li-Li Zhuang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qian Cao
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Guo-Ping Zhou
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| | - Rui Jin
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China; Clinical Allergy Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China.
| |
Collapse
|
15
|
Divoux T, Agoritsas E, Aime S, Barentin C, Barrat JL, Benzi R, Berthier L, Bi D, Biroli G, Bonn D, Bourrianne P, Bouzid M, Del Gado E, Delanoë-Ayari H, Farain K, Fielding S, Fuchs M, van der Gucht J, Henkes S, Jalaal M, Joshi YM, Lemaître A, Leheny RL, Manneville S, Martens K, Poon WCK, Popović M, Procaccia I, Ramos L, Richards JA, Rogers S, Rossi S, Sbragaglia M, Tarjus G, Toschi F, Trappe V, Vermant J, Wyart M, Zamponi F, Zare D. Ductile-to-brittle transition and yielding in soft amorphous materials: perspectives and open questions. SOFT MATTER 2024; 20:6868-6888. [PMID: 39028363 DOI: 10.1039/d3sm01740k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Soft amorphous materials are viscoelastic solids ubiquitously found around us, from clays and cementitious pastes to emulsions and physical gels encountered in food or biomedical engineering. Under an external deformation, these materials undergo a noteworthy transition from a solid to a liquid state that reshapes the material microstructure. This yielding transition was the main theme of a workshop held from January 9 to 13, 2023 at the Lorentz Center in Leiden. The manuscript presented here offers a critical perspective on the subject, synthesizing insights from the various brainstorming sessions and informal discussions that unfolded during this week of vibrant exchange of ideas. The result of these exchanges takes the form of a series of open questions that represent outstanding experimental, numerical, and theoretical challenges to be tackled in the near future.
Collapse
Affiliation(s)
- Thibaut Divoux
- ENSL, CNRS, Laboratoire de physique, F-69342 Lyon, France.
| | - Elisabeth Agoritsas
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Stefano Aime
- Molecular, Macromolecular Chemistry, and Materials, ESPCI Paris, Paris, France
| | - Catherine Barentin
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Jean-Louis Barrat
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Roberto Benzi
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Ludovic Berthier
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Giulio Biroli
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
| | - Daniel Bonn
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Philippe Bourrianne
- PMMH, CNRS, ESPCI Paris, Université PSL, Sorbonne Université, Université Paris Cité, Paris, France
| | - Mehdi Bouzid
- Univ. Grenoble Alpes, CNRS, Grenoble INP, 3SR, F-38000 Grenoble, France
| | - Emanuela Del Gado
- Georgetown University, Department of Physics, Institute for Soft Matter Synthesis and Metrology, Washington, DC, USA
| | - Hélène Delanoë-Ayari
- Univ. de Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622 Villeurbanne, France
| | - Kasra Farain
- Soft Matter Group, van der Waals-Zeeman Institute, University of Amsterdam, Science Park 904, 1098XH Amsterdam, The Netherlands
| | - Suzanne Fielding
- Department of Physics, Durham University, South Road, Durham DH1 3LE, UK
| | - Matthias Fuchs
- Fachbereich Physik, Universität Konstanz, 78457 Konstanz, Germany
| | - Jasper van der Gucht
- Physical Chemistry and Soft Matter, Wageningen University & Research, Stippeneng 4, 6708WE Wageningen, The Netherlands
| | - Silke Henkes
- Lorentz Institute, Leiden University, 2300 RA Leiden, The Netherlands
| | - Maziyar Jalaal
- Institute of Physics, University of Amsterdam, Science Park 904, Amsterdam, The Netherlands
| | - Yogesh M Joshi
- Department of Chemical Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Anaël Lemaître
- Navier, École des Ponts, Univ Gustave Eiffel, CNRS, Marne-la-Vallée, France
| | - Robert L Leheny
- Department of Physics and Astronomy, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | | | | | - Wilson C K Poon
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Marko Popović
- Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Str.38, 01187 Dresden, Germany
| | - Itamar Procaccia
- Dept. of Chemical Physics, The Weizmann Institute of Science, Rehovot 76100, Israel
- Sino-Europe Complex Science Center, School of Mathematics, North University of China, Shanxi, Taiyuan 030051, China
| | - Laurence Ramos
- Laboratoire Charles Coulomb (L2C), Université Montpellier, CNRS, Montpellier, France
| | - James A Richards
- SUPA and the School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh EH9 3FD, UK
| | - Simon Rogers
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Saverio Rossi
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Mauro Sbragaglia
- Department of Physics & INFN, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133, Rome, Italy
| | - Gilles Tarjus
- LPTMC, CNRS-UMR 7600, Sorbonne Université, 4 Pl. Jussieu, F-75005 Paris, France
| | - Federico Toschi
- Department of Applied Physics and Science Education, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
- CNR-IAC, Via dei Taurini 19, 00185 Rome, Italy
| | - Véronique Trappe
- Department of Physics, University of Fribourg, Chemin du Musée 3, Fribourg 1700, Switzerland
| | - Jan Vermant
- Department of Materials, ETH Zürich, Vladimir Prelog Weg 5, 8032 Zürich, Switzerland
| | - Matthieu Wyart
- Department of Quantum Matter Physics (DQMP), University of Geneva, Quai Ernest-Ansermet 24, CH-1211 Geneva, Switzerland
| | - Francesco Zamponi
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, F-75005 Paris, France
- Dipartimento di Fisica, Sapienza Università di Roma, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Davoud Zare
- Fonterra Research and Development Centre, Dairy Farm Road, Fitzherbert, Palmerston North 4442, New Zealand
- Nestlé Institute of Food Sciences, Nestlé Research, Vers Chez les Blancs, Lausanne, Switzerland
| |
Collapse
|
16
|
Sadhukhan S, Nandi MK, Pandey S, Paoluzzi M, Dasgupta C, Gov NS, Nandi SK. Motility driven glassy dynamics in confluent epithelial monolayers. SOFT MATTER 2024; 20:6160-6175. [PMID: 39044639 DOI: 10.1039/d4sm00352g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As wounds heal, embryos develop, cancer spreads, or asthma progresses, the cellular monolayer undergoes a glass transition between solid-like jammed and fluid-like flowing states. During some of these processes, the cells undergo an epithelial-to-mesenchymal transition (EMT): they acquire in-plane polarity and become motile. Thus, how motility drives the glassy dynamics in epithelial systems is critical for the EMT process. However, no analytical framework that is indispensable for deeper insights exists. Here, we develop such a theory inspired by a well-known glass theory. One crucial result of this work is that the confluency affects the effective persistence time-scale of active force, described by its rotational diffusivity, Deffr. Deffr differs from the bare rotational diffusivity, Dr, of the motile force due to cell shape dynamics, which acts to rectify the force dynamics: Deffr is equal to Dr when Dr is small and saturates when Dr is large. We test the theoretical prediction of Deffr and how it affects the relaxation dynamics in our simulations of the active Vertex model. This novel effect of Deffr is crucial to understanding the new and previously published simulation data of active glassy dynamics in epithelial monolayers.
Collapse
Affiliation(s)
- Souvik Sadhukhan
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Manoj Kumar Nandi
- Institut National de la Santé et de la Recherche Médicale, Stem Cell and Brain Research Institute, Université Claude Bernard Lyon 1, Bron 69500, France
| | - Satyam Pandey
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| | - Matteo Paoluzzi
- Istituto per le Applicazioni del Calcolo del Consiglio Nazionale delle Ricerche, Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Chandan Dasgupta
- Department of Physics, Indian Institute of Science, Bangalore 560012, India
- International Centre for Theoretical Sciences, TIFR, Bangalore 560089, India
| | - Nir S Gov
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Saroj Kumar Nandi
- Tata Institute of Fundamental Research, 36/P Gopanpally Village, Hyderabad-500046, India.
| |
Collapse
|
17
|
Mao Y, Wickström SA. Mechanical state transitions in the regulation of tissue form and function. Nat Rev Mol Cell Biol 2024; 25:654-670. [PMID: 38600372 DOI: 10.1038/s41580-024-00719-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2024] [Indexed: 04/12/2024]
Abstract
From embryonic development, postnatal growth and adult homeostasis to reparative and disease states, cells and tissues undergo constant changes in genome activity, cell fate, proliferation, movement, metabolism and growth. Importantly, these biological state transitions are coupled to changes in the mechanical and material properties of cells and tissues, termed mechanical state transitions. These mechanical states share features with physical states of matter, liquids and solids. Tissues can switch between mechanical states by changing behavioural dynamics or connectivity between cells. Conversely, these changes in tissue mechanical properties are known to control cell and tissue function, most importantly the ability of cells to move or tissues to deform. Thus, tissue mechanical state transitions are implicated in transmitting information across biological length and time scales, especially during processes of early development, wound healing and diseases such as cancer. This Review will focus on the biological basis of tissue-scale mechanical state transitions, how they emerge from molecular and cellular interactions, and their roles in organismal development, homeostasis, regeneration and disease.
Collapse
Affiliation(s)
- Yanlan Mao
- Laboratory for Molecular Cell Biology, University College London, London, UK.
- Institute for the Physics of Living Systems, University College London, London, UK.
| | - Sara A Wickström
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany.
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
18
|
Mancini A, Gentile MT, Pentimalli F, Cortellino S, Grieco M, Giordano A. Multiple aspects of matrix stiffness in cancer progression. Front Oncol 2024; 14:1406644. [PMID: 39015505 PMCID: PMC11249764 DOI: 10.3389/fonc.2024.1406644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/27/2024] [Indexed: 07/18/2024] Open
Abstract
The biophysical and biomechanical properties of the extracellular matrix (ECM) are crucial in the processes of cell differentiation and proliferation. However, it is unclear to what extent tumor cells are influenced by biomechanical and biophysical changes of the surrounding microenvironment and how this response varies between different tumor forms, and over the course of tumor progression. The entire ensemble of genes encoding the ECM associated proteins is called matrisome. In cancer, the ECM evolves to become highly dysregulated, rigid, and fibrotic, serving both pro-tumorigenic and anti-tumorigenic roles. Tumor desmoplasia is characterized by a dramatic increase of α-smooth muscle actin expressing fibroblast and the deposition of hard ECM containing collagen, fibronectin, proteoglycans, and hyaluronic acid and is common in many solid tumors. In this review, we described the role of inflammation and inflammatory cytokines, in desmoplastic matrix remodeling, tumor state transition driven by microenvironment forces and the signaling pathways in mechanotransduction as potential targeted therapies, focusing on the impact of qualitative and quantitative variations of the ECM on the regulation of tumor development, hypothesizing the presence of matrisome drivers, acting alongside the cell-intrinsic oncogenic drivers, in some stages of neoplastic progression and in some tumor contexts, such as pancreatic carcinoma, breast cancer, lung cancer and mesothelioma.
Collapse
Affiliation(s)
- Alessandro Mancini
- Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
- BioUp Sagl, Lugano, Switzerland
| | - Maria Teresa Gentile
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Francesca Pentimalli
- Department of Medicine and Surgery, LUM University “Giuseppe De Gennaro,” Casamassima, Bari, Italy
| | - Salvatore Cortellino
- Laboratory of Molecular Oncology, Responsible Research Hospital, Campobasso, Italy
- Scuola Superiore Meridionale (SSM), Clinical and Translational Oncology, Naples, NA, Italy
- Sbarro Health Research Organization (S.H.R.O.) Italia Foundation ETS, Candiolo, TO, Italy
| | - Michele Grieco
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, United States
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| |
Collapse
|
19
|
Goldstien L, Lavi Y, Atia L. ConfluentFUCCI for fully-automated analysis of cell-cycle progression in a highly dense collective of migrating cells. PLoS One 2024; 19:e0305491. [PMID: 38924026 PMCID: PMC11207131 DOI: 10.1371/journal.pone.0305491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Understanding mechanisms underlying various physiological and pathological processes often requires accurate and fully automated analysis of dense cell populations that collectively migrate. In such multicellular systems, there is a rising interest in the relations between biophysical and cell cycle progression aspects. A seminal tool that led to a leap in real-time study of cell cycle is the fluorescent ubiquitination-based cell cycle indicator (FUCCI). Here, we introduce ConfluentFUCCI, an open-source graphical user interface-based framework that is designed, unlike previous tools, for fully automated analysis of cell cycle progression, cellular dynamics, and cellular morphology, in highly dense migrating cell collectives. We integrated into ConfluentFUCCI's pipeline state-of-the-art tools such as Cellpose, TrackMate, and Napari, some of which incorporate deep learning, and we wrap the entire tool into an isolated computational environment termed container. This provides an easy installation and workflow that is independent of any specific operation system. ConfluentFUCCI offers accurate nuclear segmentation and tracking using FUCCI tags, enabling comprehensive investigation of cell cycle progression at both the tissue and single-cell levels. We compare ConfluentFUCCI to the most recent relevant tool, showcasing its accuracy and efficiency in handling large datasets. Furthermore, we demonstrate the ability of ConfluentFUCCI to monitor cell cycle transitions, dynamics, and morphology within densely packed epithelial cell populations, enabling insights into mechanotransductive regulation of cell cycle progression. The presented tool provides a robust approach for investigating cell cycle-related phenomena in complex biological systems, offering potential applications in cancer research and other fields.
Collapse
Affiliation(s)
- Leo Goldstien
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yael Lavi
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Lior Atia
- Department of Mechanical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
20
|
Gupta P, Kayal S, Tanimura N, Pothapragada SP, Senapati HK, Devendran P, Fujita Y, Bi D, Das T. Mechanical imbalance between normal and transformed cells drives epithelial homeostasis through cell competition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.27.559723. [PMID: 37961252 PMCID: PMC10635021 DOI: 10.1101/2023.09.27.559723] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cell competition in epithelial tissue eliminates transformed cells expressing activated oncoproteins to maintain epithelial homeostasis. Although the process is now understood to be of mechanochemical origin, direct mechanical characterization and associated biochemical underpinnings are lacking. Here, we employ tissue-scale stress and compressibility measurements and theoretical modeling to unveil a mechanical imbalance between normal and transformed cells, which drives cell competition. In the mouse intestinal epithelium and epithelial monolayer, transformed cells get compacted during competition. Stress microscopy reveals an emergent compressive stress at the transformed loci leading to this compaction. A cell-based self-propelled Voronoi model predicts that this compressive stress originates from a difference in the collective compressibility of the competing populations. A new collective compressibility measurement technique named gel compression microscopy then elucidates a two-fold higher compressibility of the transformed population than the normal population. Mechanistically, weakened cell-cell adhesions due to reduced junctional abundance of E-cadherin in the transformed cells render them collectively more compressible than normal cells. Taken together, our findings unveil a mechanical basis for epithelial homeostasis against oncogenic transformations with implications in epithelial defense against cancer.
Collapse
Affiliation(s)
- Praver Gupta
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500046, India
| | - Sayantani Kayal
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Nobuyuki Tanimura
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Shilpa P. Pothapragada
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500046, India
- Present address: Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115. USA
| | - Harish K. Senapati
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500046, India
- Present address: Max Planck Institute for Medical Research, Heidelberg 69120, Germany
| | - Padmashree Devendran
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500046, India
| | - Yasuyuki Fujita
- Department of Molecular Oncology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-Cho, Sakyo-Ku, Kyoto-city, Kyoto 606-8501, Japan
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA 02115, USA
| | - Tamal Das
- Tata Institute of Fundamental Research Hyderabad (TIFRH), Hyderabad 500046, India
| |
Collapse
|
21
|
Dwivedi A, Mazumder A, Pullmannová P, Paraskevopoulou A, Opálka L, Kováčik A, Macháček M, Jančálková P, Svačinová P, Peterlik H, Maixner J, Vávrová K. Lipid Monolayer on Cell Surface Protein Templates Functional Extracellular Lipid Assembly. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307793. [PMID: 38243890 DOI: 10.1002/smll.202307793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/18/2023] [Indexed: 01/22/2024]
Abstract
When the ancestors of men moved from aquatic habitats to the drylands, their evolutionary strategy to restrict water loss is to seal the skin surface with lipids. It is unknown how these rigid ceramide-dominated lipids with densely packed chains squeeze through narrow extracellular spaces and how they assemble into their complex multilamellar architecture. Here it is shown that the human corneocyte lipid envelope, a monolayer of ultralong covalently bound lipids on the cell surface protein, templates the functional barrier assembly by partly fluidizing and rearranging the free extracellular lipids in its vicinity during the sculpting of a functional skin lipid barrier. The lipid envelope also maintains the fluidity of the extracellular lipids during mechanical stress. This local lipid fluidization does not compromise the permeability barrier. The results provide new testable hypotheses about epidermal homeostasis and the pathophysiology underlying diseases with impaired lipid binding to corneocytes, such as congenital ichthyosis. In a broader sense, this lipoprotein-mediated fluidization of rigid (sphingo)lipid patches may also be relevant to lipid rafts and cellular signaling events and inspire new functional materials.
Collapse
Affiliation(s)
- Anupma Dwivedi
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Anisha Mazumder
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Petra Pullmannová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Anna Paraskevopoulou
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Lukáš Opálka
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Miloslav Macháček
- Department of Biochemical Sciences, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Pavla Jančálková
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Petra Svačinová
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| | - Herwig Peterlik
- Faculty of Physics, University of Vienna, Boltzmanngasse 5, Vienna, 1090, Austria
| | - Jaroslav Maixner
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Technická 5, Prague, 16628, Czech Republic
| | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy, Charles University, Heyrovského 1203, Hradec Králové, 50005, Czech Republic
| |
Collapse
|
22
|
Suh K, Thornton R, Farahani PE, Cohen D, Toettcher J. Large-scale control over collective cell migration using light-controlled epidermal growth factor receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.30.596676. [PMID: 38853934 PMCID: PMC11160748 DOI: 10.1101/2024.05.30.596676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Receptor tyrosine kinases (RTKs) are thought to play key roles in coordinating cell movement at single-cell and tissue scales. The recent development of optogenetic tools for controlling RTKs and their downstream signaling pathways suggested these responses may be amenable to engineering-based control for sculpting tissue shape and function. Here, we report that a light-controlled EGF receptor (OptoEGFR) can be deployed in epithelial cell lines for precise, programmable control of long-range tissue movements. We show that in OptoEGFR-expressing tissues, light can drive millimeter-scale cell rearrangements to densify interior regions or produce rapid outgrowth at tissue edges. Light-controlled tissue movements are driven primarily by PI 3-kinase signaling, rather than diffusible signals, tissue contractility, or ERK kinase signaling as seen in other RTK-driven migration contexts. Our study suggests that synthetic, light-controlled RTKs could serve as a powerful platform for controlling cell positions and densities for diverse applications including wound healing and tissue morphogenesis.
Collapse
Affiliation(s)
- Kevin Suh
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
| | - Richard Thornton
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| | - Payam E Farahani
- Department of Chemical and Biological Engineering, Princeton University, Princeton 08544
| | - Daniel Cohen
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton 08544
| | - Jared Toettcher
- Omenn-Darling Bioengineering Institutes, Princeton University, Princeton 08544
- Department of Molecular Biology, Princeton University, Princeton 08544
| |
Collapse
|
23
|
Tang Y, Chen S, Bowick MJ, Bi D. Cell Division and Motility Enable Hexatic Order in Biological Tissues. PHYSICAL REVIEW LETTERS 2024; 132:218402. [PMID: 38856284 PMCID: PMC11267118 DOI: 10.1103/physrevlett.132.218402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 04/19/2024] [Indexed: 06/11/2024]
Abstract
Biological tissues transform between solid- and liquidlike states in many fundamental physiological events. Recent experimental observations further suggest that in two-dimensional epithelial tissues these solid-liquid transformations can happen via intermediate states akin to the intermediate hexatic phases observed in equilibrium two-dimensional melting. The hexatic phase is characterized by quasi-long-range (power-law) orientational order but no translational order, thus endowing some structure to an otherwise structureless fluid. While it has been shown that hexatic order in tissue models can be induced by motility and thermal fluctuations, the role of cell division and apoptosis (birth and death) has remained poorly understood, despite its fundamental biological role. Here we study the effect of cell division and apoptosis on global hexatic order within the framework of the self-propelled Voronoi model of tissue. Although cell division naively destroys order and active motility facilitates deformations, we show that their combined action drives a liquid-hexatic-liquid transformation as the motility increases. The hexatic phase is accessed by the delicate balance of dislocation defect generation from cell division and the active binding of disclination-antidisclination pairs from motility. We formulate a mean-field model to elucidate this competition between cell division and motility and the consequent development of hexatic order.
Collapse
Affiliation(s)
- Yiwen Tang
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| | - Siyuan Chen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Mark J Bowick
- Department of Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
- Kavli Institute of Theoretical Physics, University of California, Santa Barbara, Santa Barbara, California 93106, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA
- Center for Theoretical Biological Physics, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|
24
|
Brézin L, Korolev KS. Mechanically-driven growth and competition in a Voronoi model of tissues. ARXIV 2024:arXiv:2405.07899v1. [PMID: 38800651 PMCID: PMC11118596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The mechanisms leading cells to acquire a fitness advantage and establish themselves in a population are paramount to understanding the development and growth of cancer. Although there are many works that study separately either the evolutionary dynamics or the mechanics of cancer, little has been done to couple evolutionary dynamics to mechanics. To address this question, we study a confluent model of tissue using a Self-Propelled Voronoi (SPV) model with stochastic growth rates that depend on the mechanical variables of the system. The SPV model is an out-of-equilibrium model of tissue derived from an energy functional that has a jamming/unjamming transition between solid-like and liquid-like states. By considering several scenarios of mutants invading a resident population in both phases, we determine the range of parameters that confer a fitness advantage and show that the preferred area and perimeter are the most relevant ones. We find that the liquid-like state is more resistant to invasion and show that the outcome of the competition can be determined from the simulation of a non-growing mixture. Moreover, a mean-field approximation can accurately predict the fate of a mutation affecting mechanical properties of a cell. Our results can be used to infer evolutionary dynamics from tissue images, understand cancer-suppressing effects of tissue mechanics, and even search for mechanics-based therapies.
Collapse
Affiliation(s)
- Louis Brézin
- Department of Physics, Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| | - Kirill S. Korolev
- Department of Physics, Graduate Program in Bioinformatics and Biological Design Center, Boston University, Boston, Massachusetts 02215, USA
| |
Collapse
|
25
|
Cai G, Li X, Lin SS, Chen SJ, Rodgers NC, Koning KM, Bi D, Liu AP. Matrix confinement modulates 3D spheroid sorting and burst-like collective migration. Acta Biomater 2024; 179:192-206. [PMID: 38490482 PMCID: PMC11263001 DOI: 10.1016/j.actbio.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
While it is known that cells with differential adhesion tend to segregate and preferentially sort, the physical forces governing sorting and invasion in heterogeneous tumors remain poorly understood. To investigate this, we tune matrix confinement, mimicking changes in the stiffness and confinement of the tumor microenvironment, to explore how physical confinement influences individual and collective cell migration in 3D spheroids. High levels of confinement lead to cell sorting while reducing matrix confinement triggers the collective fluidization of cell motion. Cell sorting, which depends on cell-cell adhesion, is crucial to this phenomenon. Burst-like migration does not occur for spheroids that have not undergone sorting, regardless of the degree of matrix confinement. Using computational Self-Propelled Voronoi modeling, we show that spheroid sorting and invasion into the matrix depend on the balance between cell-generated forces and matrix resistance. The findings support a model where matrix confinement modulates 3D spheroid sorting and unjamming in an adhesion-dependent manner, providing insights into the mechanisms of cell sorting and migration in the primary tumor and toward distant metastatic sites. STATEMENT OF SIGNIFICANCE: The mechanical properties of the tumor microenvironment significantly influence cancer cell migration within the primary tumor, yet how these properties affect intercellular interactions in heterogeneous tumors is not well understood. By utilizing calcium and calcium chelators, we dynamically alter collagen-alginate hydrogel stiffness and investigate tumor cell behavior within co-culture spheroids in response to varying degrees of matrix confinement. High confinement is found to trigger cell sorting while reducing confinement for sorted spheroids facilitates collective cell invasion. Notably, without prior sorting, spheroids do not exhibit burst-like migration, regardless of confinement levels. This work establishes that matrix confinement and intercellular adhesion regulate 3D spheroid dynamics, offering insights into cellular organization and migration within the primary tumor.
Collapse
Affiliation(s)
- Grace Cai
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA
| | - Xinzhi Li
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Shan-Shan Lin
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Samuel J Chen
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Nicole C Rodgers
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Katherine M Koning
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
| | - Dapeng Bi
- Department of Physics, Northeastern University, Boston, MA, USA.
| | - Allen P Liu
- Applied Physics Program, University of Michigan, Ann Arbor, MI, USA; Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, USA; Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA; Department of Biophysics, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
26
|
Drazen JM, Fredberg JJ. Epithelial cells crowded out in asthma. Science 2024; 384:30-31. [PMID: 38574157 DOI: 10.1126/science.ado4514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
Bronchoconstriction causes epithelial cell extrusion that promotes airway inflammation.
Collapse
Affiliation(s)
- Jeffrey M Drazen
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| | - Jeffrey J Fredberg
- Department of Environmental Health, Harvard School of Public Health, Boston, MA, USA
| |
Collapse
|
27
|
Bagley DC, Russell T, Ortiz-Zapater E, Stinson S, Fox K, Redd PF, Joseph M, Deering-Rice C, Reilly C, Parsons M, Brightling C, Rosenblatt J. Bronchoconstriction damages airway epithelia by crowding-induced excess cell extrusion. Science 2024; 384:66-73. [PMID: 38574138 DOI: 10.1126/science.adk2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/12/2024] [Indexed: 04/06/2024]
Abstract
Asthma is deemed an inflammatory disease, yet the defining diagnostic feature is mechanical bronchoconstriction. We previously discovered a conserved process called cell extrusion that drives homeostatic epithelial cell death when cells become too crowded. In this work, we show that the pathological crowding of a bronchoconstrictive attack causes so much epithelial cell extrusion that it damages the airways, resulting in inflammation and mucus secretion in both mice and humans. Although relaxing the airways with the rescue treatment albuterol did not affect these responses, inhibiting live cell extrusion signaling during bronchoconstriction prevented all these features. Our findings show that bronchoconstriction causes epithelial damage and inflammation by excess crowding-induced cell extrusion and suggest that blocking epithelial extrusion, instead of the ensuing downstream inflammation, could prevent the feed-forward asthma inflammatory cycle.
Collapse
Affiliation(s)
- Dustin C Bagley
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Tobias Russell
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Elena Ortiz-Zapater
- Department of Biochemistry and Molecular Biology, University of Valencia, 46010 Valencia, Spain
| | - Sally Stinson
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | | | - Polly F Redd
- University of Utah, Salt Lake City, UT 84112, USA
| | - Merry Joseph
- University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | | | | | - Maddy Parsons
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
| | - Christopher Brightling
- Institute for Lung Health, Leicester NIHR BRC, University of Leicester, Leicester LE3 9QP, UK
| | - Jody Rosenblatt
- The Randall Centre for Cell & Molecular Biophysics, School of Basic & Medical Biosciences, King's College London, London SE1 1UL, UK
- School of Cancer and Pharmaceutical Sciences, King's College London, London SE1 1UL, UK
| |
Collapse
|
28
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
29
|
Kayalar Ö, Rajabi H, Konyalilar N, Mortazavi D, Aksoy GT, Wang J, Bayram H. Impact of particulate air pollution on airway injury and epithelial plasticity; underlying mechanisms. Front Immunol 2024; 15:1324552. [PMID: 38524119 PMCID: PMC10957538 DOI: 10.3389/fimmu.2024.1324552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/20/2024] [Indexed: 03/26/2024] Open
Abstract
Air pollution plays an important role in the mortality and morbidity of chronic airway diseases, such as asthma and chronic obstructive pulmonary disease (COPD). Particulate matter (PM) is a significant fraction of air pollutants, and studies have demonstrated that it can cause airway inflammation and injury. The airway epithelium forms the first barrier of defense against inhaled toxicants, such as PM. Airway epithelial cells clear airways from inhaled irritants and orchestrate the inflammatory response of airways to these irritants by secreting various lipid mediators, growth factors, chemokines, and cytokines. Studies suggest that PM plays an important role in the pathogenesis of chronic airway diseases by impairing mucociliary function, deteriorating epithelial barrier integrity, and inducing the production of inflammatory mediators while modulating the proliferation and death of airway epithelial cells. Furthermore, PM can modulate epithelial plasticity and airway remodeling, which play central roles in asthma and COPD. This review focuses on the effects of PM on airway injury and epithelial plasticity, and the underlying mechanisms involving mucociliary activity, epithelial barrier function, airway inflammation, epithelial-mesenchymal transition, mesenchymal-epithelial transition, and airway remodeling.
Collapse
Affiliation(s)
- Özgecan Kayalar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Hadi Rajabi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Nur Konyalilar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Deniz Mortazavi
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Gizem Tuşe Aksoy
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
| | - Jun Wang
- Department of Biomedicine and Biopharmacology, School of Biological Engineering and Food, Hubei University of Technology, Wuhan, Hubei, China
| | - Hasan Bayram
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University School of Medicine, Istanbul, Türkiye
- Department of Pulmonary Medicine, School of Medicine, Koç University, Zeytinburnu, Istanbul, Türkiye
| |
Collapse
|
30
|
Crossley RM, Johnson S, Tsingos E, Bell Z, Berardi M, Botticelli M, Braat QJS, Metzcar J, Ruscone M, Yin Y, Shuttleworth R. Modeling the extracellular matrix in cell migration and morphogenesis: a guide for the curious biologist. Front Cell Dev Biol 2024; 12:1354132. [PMID: 38495620 PMCID: PMC10940354 DOI: 10.3389/fcell.2024.1354132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The extracellular matrix (ECM) is a highly complex structure through which biochemical and mechanical signals are transmitted. In processes of cell migration, the ECM also acts as a scaffold, providing structural support to cells as well as points of potential attachment. Although the ECM is a well-studied structure, its role in many biological processes remains difficult to investigate comprehensively due to its complexity and structural variation within an organism. In tandem with experiments, mathematical models are helpful in refining and testing hypotheses, generating predictions, and exploring conditions outside the scope of experiments. Such models can be combined and calibrated with in vivo and in vitro data to identify critical cell-ECM interactions that drive developmental and homeostatic processes, or the progression of diseases. In this review, we focus on mathematical and computational models of the ECM in processes such as cell migration including cancer metastasis, and in tissue structure and morphogenesis. By highlighting the predictive power of these models, we aim to help bridge the gap between experimental and computational approaches to studying the ECM and to provide guidance on selecting an appropriate model framework to complement corresponding experimental studies.
Collapse
Affiliation(s)
- Rebecca M. Crossley
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Samuel Johnson
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | - Erika Tsingos
- Computational Developmental Biology Group, Institute of Biodynamics and Biocomplexity, Utrecht University, Utrecht, Netherlands
| | - Zoe Bell
- Northern Institute for Cancer Research, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Massimiliano Berardi
- LaserLab, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Optics11 life, Amsterdam, Netherlands
| | | | - Quirine J. S. Braat
- Department of Applied Physics and Science Education, Eindhoven University of Technology, Eindhoven, Netherlands
| | - John Metzcar
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, United States
- Department of Informatics, Indiana University, Bloomington, IN, United States
| | | | - Yuan Yin
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
31
|
Han MM, Tang L, Huang B, Li XN, Fang YF, Qi L, Duan BW, Yao YT, He YJ, Xing L, Jiang HL. Inhaled nanoparticles for treating idiopathic pulmonary fibrosis by inhibiting honeycomb cyst and alveoli interstitium remodeling. J Control Release 2024; 366:732-745. [PMID: 38242209 DOI: 10.1016/j.jconrel.2024.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/03/2024] [Accepted: 01/15/2024] [Indexed: 01/21/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease with high mortality. The Food and Drug Administration-approved drugs, nintedanib and pirfenidone, could delay progressive fibrosis by inhibiting the overactivation of fibroblast, however, there was no significant improvement in patient survival due to low levels of drug accumulation and remodeling of honeycomb cyst and interstitium surrounding the alveoli. Herein, we constructed a dual drug (verteporfin and pirfenidone)-loaded nanoparticle (Lip@VP) with the function of inhibiting airway epithelium fluidization and fibroblast overactivation to prevent honeycomb cyst and interstitium remodeling. Specifically, Lip@VP extensively accumulated in lung tissues via atomized inhalation. Released verteporfin inhibited the fluidization of airway epithelium and the formation of honeycomb cyst, and pirfenidone inhibited fibroblast overactivation and reduced cytokine secretion that promoted the fluidization of airway epithelium. Our results indicated that Lip@VP successfully rescued lung function through inhibiting honeycomb cyst and interstitium remodeling. This study provided a promising strategy to improve the therapeutic efficacy for IPF.
Collapse
Affiliation(s)
- Meng-Meng Han
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ling Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Bin Huang
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xue-Na Li
- College of Pharmacy, Yanbian University, Yanji 133002, China
| | - Yue-Fei Fang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Liang Qi
- Department of Endocrinology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bo-Wen Duan
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Ya-Ting Yao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lei Xing
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China
| | - Hu-Lin Jiang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China; College of Pharmacy, Yanbian University, Yanji 133002, China; Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
32
|
Pinheiro D, Mitchel J. Pulling the strings on solid-to-liquid phase transitions in cell collectives. Curr Opin Cell Biol 2024; 86:102310. [PMID: 38176350 DOI: 10.1016/j.ceb.2023.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/14/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
Cell collectives must dynamically adapt to different biological contexts. For instance, in homeostatic conditions, epithelia must establish a barrier between body compartments and resist external stresses, while during development, wound healing or cancer invasion, these tissues undergo extensive remodeling. Using analogies from inert, passive materials, changes in cellular density, shape, rearrangements and/or migration were shown to result in collective transitions between solid and fluid states. However, what biological mechanisms govern these transitions remains an open question. In particular, the upstream signaling pathways and molecular effectors controlling the key physical axes determining tissue rheology and dynamics remain poorly understood. In this perspective, we focus on emerging evidence identifying the first biological signals determining the collective state of living tissues, with an emphasis on how these mechanisms are exploited for functionality across biological contexts.
Collapse
Affiliation(s)
- Diana Pinheiro
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Vienna, 1030, Austria
| | - Jennifer Mitchel
- Department of Biology, Wesleyan University, Middletown, CT, USA.
| |
Collapse
|
33
|
Hertaeg MJ, Fielding SM, Bi D. Discontinuous Shear Thickening in Biological Tissue Rheology. PHYSICAL REVIEW. X 2024; 14:011027. [PMID: 38994232 PMCID: PMC11238743 DOI: 10.1103/physrevx.14.011027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
During embryonic morphogenesis, tissues undergo dramatic deformations in order to form functional organs. Similarly, in adult animals, living cells and tissues are continually subjected to forces and deformations. Therefore, the success of embryonic development and the proper maintenance of physiological functions rely on the ability of cells to withstand mechanical stresses as well as their ability to flow in a collective manner. During these events, mechanical perturbations can originate from active processes at the single-cell level, competing with external stresses exerted by surrounding tissues and organs. However, the study of tissue mechanics has been somewhat limited to either the response to external forces or to intrinsic ones. In this work, we use an active vertex model of a 2D confluent tissue to study the interplay of external deformations that are applied globally to a tissue with internal active stresses that arise locally at the cellular level due to cell motility. We elucidate, in particular, the way in which this interplay between globally external and locally internal active driving determines the emergent mechanical properties of the tissue as a whole. For a tissue in the vicinity of a solid-fluid jamming or unjamming transition, we uncover a host of fascinating rheological phenomena, including yielding, shear thinning, continuous shear thickening, and discontinuous shear thickening. These model predictions provide a framework for understanding the recently observed nonlinear rheological behaviors in vivo.
Collapse
Affiliation(s)
- Michael J Hertaeg
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Suzanne M Fielding
- Department of Physics, Durham University, Science Laboratories, South Road, Durham DH1 3LE, United Kingdom
| | - Dapeng Bi
- Department of Physics, Northeastern University, Massachusetts 02115, USA
| |
Collapse
|
34
|
Ahmed DW, Eiken MK, DePalma SJ, Helms AS, Zemans RL, Spence JR, Baker BM, Loebel C. Integrating mechanical cues with engineered platforms to explore cardiopulmonary development and disease. iScience 2023; 26:108472. [PMID: 38077130 PMCID: PMC10698280 DOI: 10.1016/j.isci.2023.108472] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2024] Open
Abstract
Mechanical forces provide critical biological signals to cells during healthy and aberrant organ development as well as during disease processes in adults. Within the cardiopulmonary system, mechanical forces, such as shear, compressive, and tensile forces, act across various length scales, and dysregulated forces are often a leading cause of disease initiation and progression such as in bronchopulmonary dysplasia and cardiomyopathies. Engineered in vitro models have supported studies of mechanical forces in a number of tissue and disease-specific contexts, thus enabling new mechanistic insights into cardiopulmonary development and disease. This review first provides fundamental examples where mechanical forces operate at multiple length scales to ensure precise lung and heart function. Next, we survey recent engineering platforms and tools that have provided new means to probe and modulate mechanical forces across in vitro and in vivo settings. Finally, the potential for interdisciplinary collaborations to inform novel therapeutic approaches for a number of cardiopulmonary diseases are discussed.
Collapse
Affiliation(s)
- Donia W. Ahmed
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Madeline K. Eiken
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Samuel J. DePalma
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rachel L. Zemans
- Department of Internal Medicine, Division of Pulmonary Sciences and Critical Care Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine – Gastroenterology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109, USA
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
| | - Claudia Loebel
- Department of Biomedical Engineering, University of Michigan, Lurie Biomedical Engineering Building, 1101 Beal Avenue, Ann Arbor, MI 48109, USA
- Department of Materials Science & Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
| |
Collapse
|
35
|
Atia L, Fredberg JJ. A life off the beaten track in biomechanics: Imperfect elasticity, cytoskeletal glassiness, and epithelial unjamming. BIOPHYSICS REVIEWS 2023; 4:041304. [PMID: 38156333 PMCID: PMC10751956 DOI: 10.1063/5.0179719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/17/2023] [Indexed: 12/30/2023]
Abstract
Textbook descriptions of elasticity, viscosity, and viscoelasticity fail to account for certain mechanical behaviors that typify soft living matter. Here, we consider three examples. First, strong empirical evidence suggests that within lung parenchymal tissues, the frictional stresses expressed at the microscale are fundamentally not of viscous origin. Second, the cytoskeleton (CSK) of the airway smooth muscle cell, as well as that of all eukaryotic cells, is more solid-like than fluid-like, yet its elastic modulus is softer than the softest of soft rubbers by a factor of 104-105. Moreover, the eukaryotic CSK expresses power law rheology, innate malleability, and fluidization when sheared. For these reasons, taken together, the CSK of the living eukaryotic cell is reminiscent of the class of materials called soft glasses, thus likening it to inert materials such as clays, pastes slurries, emulsions, and foams. Third, the cellular collective comprising a confluent epithelial layer can become solid-like and jammed, fluid-like and unjammed, or something in between. Esoteric though each may seem, these discoveries are consequential insofar as they impact our understanding of bronchospasm and wound healing as well as cancer cell invasion and embryonic development. Moreover, there are reasons to suspect that certain of these phenomena first arose in the early protist as a result of evolutionary pressures exerted by the primordial microenvironment. We have hypothesized, further, that each then became passed down virtually unchanged to the present day as a conserved core process. These topics are addressed here not only because they are interesting but also because they track the journey of one laboratory along a path less traveled by.
Collapse
Affiliation(s)
- Lior Atia
- Ben Gurion University of the Negev, Beer Sheva, Israel
| | | |
Collapse
|
36
|
Hohmann U, Ghadban C, Prell J, Strauss C, Dehghani F, Hohmann T. A toolbox to analyze collective cell migration, proliferation and cellular organization simultaneously. Cell Adh Migr 2023; 17:1-11. [PMID: 37938930 PMCID: PMC10773533 DOI: 10.1080/19336918.2023.2276615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 10/19/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Analyses of collective cell migration and orientation phenomena are needed to assess the behavior of multicellular clusters. While some tools to the authors' knowledge none is capable to analyze collective migration, cellular orientation and proliferation in phase contrast images simultaneously. METHODS We provide a tool based to analyze phase contrast images of dense cell layers. PIV is used to calculatevelocity fields, while the structure tensor provides cellular orientation. An artificial neural network is used to identify cell division events, allowing to correlate migratory and organizational phenomena with cell density. CONCLUSION The presented tool allows the simultaneous analysis of collective cell behavior from phase contrast images in terms of migration, (self-)organization and proliferation.
Collapse
Affiliation(s)
- Urszula Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Chalid Ghadban
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Julian Prell
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Christian Strauss
- Department of Neurosurgery, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Faramarz Dehghani
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Tim Hohmann
- Department of Anatomy and Cell Biology, Medical Faculty, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
37
|
Kamioka J, Sasaki K, Baba K, Tanaka T, Teranishi Y, Ogasawara T, Inoie M, Hata KI, Nishida K, Kino-Oka M. Agent-based approach for elucidating the release from collective arrest of cell motion in corneal epithelial cell sheet. J Biosci Bioeng 2023; 136:477-486. [PMID: 37923618 DOI: 10.1016/j.jbiosc.2023.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Changes in cell fluidity have been observed in various cellular tissues and are strongly linked to biological phenomena such as self-organization. Recent studies suggested variety of mechanisms and factors, which are still being investigated. This study aimed to investigate changes in cell fluidity in multi-layered cell sheets, by exploring the collective arrest of cell motion and its release in cultures of corneal epithelial cells. We constructed mathematical models to simulate the behaviors of individual cells, including cell differentiation and time-dependent changes in cell-cell connections, which are defined by stochastic or kinetic rules. Changes in cell fluidity and cell sheet structures were expressed by simulating autonomous cell behaviors and interactions in tissues using an agent-based model. A single-cell level spatiotemporal analysis of cell state transition between migratable and non-migratable states revealed that the release from collective arrest of cell motion was initially triggered by a decreased ability to form cell-cell connections in the suprabasal layers, and was propagated by chain migration. Notably, the disruption of cell-cell connections and stratification occurred in the region of migratable state cells. Hence, a modeling approach that considers time-dependent changes in cell properties and behavior, and spatiotemporal analysis at the single-cell level can effectively delineate emergent phenomena arising from the complex interplay of cells.
Collapse
Affiliation(s)
- Junya Kamioka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kei Sasaki
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Global Center for Medical Engineering and Informatics, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Koichi Baba
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Visual Regenerative Medicine, Division of Health Sciences, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tomoyo Tanaka
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan
| | - Yosuke Teranishi
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan
| | - Takahiro Ogasawara
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan
| | - Masukazu Inoie
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan
| | - Ken-Ichiro Hata
- Japan Tissue Engineering Co., Ltd., 6-209-1 Miyakitadori, Gamagori, Aichi 443-0022, Japan
| | - Kohji Nishida
- Department of Ophthalmology, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masahiro Kino-Oka
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Research Base for Cell Manufacturability, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
38
|
Pajic-Lijakovic I, Milivojevic M. Cell jamming-to-unjamming transitions and vice versa in development: Physical aspects. Biosystems 2023; 234:105045. [PMID: 37813238 DOI: 10.1016/j.biosystems.2023.105045] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/11/2023]
Abstract
Collective cell migration is essential for a wide range of biological processes such as: morphogenesis, wound healing, and cancer spreading. However, it is well known that migrating epithelial collectives frequently undergo jamming, stay trapped some period of time, and then start migration again. Consequently, only a part of epithelial cells actively contributes to the tissue development. In contrast to epithelial cells, migrating mesenchymal collectives successfully avoid the jamming. It has been confirmed that the epithelial unjamming cannot be treated as the epithelial-to-mesenchymal transition. Some other mechanism is responsible for the epithelial jamming/unjamming. Despite extensive research devoted to study the cell jamming/unjamming, we still do not understand the origin of this phenomenon. The origin is connected to physical factors such as: the cell compressive residual stress accumulation and surface characteristics of migrating (unjamming) and resting (jamming) epithelial clusters which depend primarily on the strength of cell-cell adhesion contacts and cell contractility. The main goal of this theoretical consideration is to clarify these cause-consequence relations.
Collapse
Affiliation(s)
- Ivana Pajic-Lijakovic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia.
| | - Milan Milivojevic
- Faculty of Technology and Metallurgy, Belgrade University, Karnegijeva 4, Belgrade, Serbia
| |
Collapse
|
39
|
Wiese R, Kroy K, Levis D. Fluid-Glass-Jamming Rheology of Soft Active Brownian Particles. PHYSICAL REVIEW LETTERS 2023; 131:178302. [PMID: 37955492 DOI: 10.1103/physrevlett.131.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/13/2023] [Accepted: 10/03/2023] [Indexed: 11/14/2023]
Abstract
We numerically study the shear rheology of a binary mixture of soft active Brownian particles, from the fluid to the disordered solid regime. At low shear rates, we find a Newtonian regime, where a Green-Kubo relation with an effective temperature provides the linear viscosity. It is followed by a shear-thinning regime at high shear rates. At high densities, solidification is signaled by the emergence of a finite yield stress. We construct a "fluid-glass-jamming" phase diagram with activity replacing temperature. While both parameters gauge fluctuations, activity also changes the exponent characterizing the decay of the diffusivity close to the glass transition and the shape of the yield stress surface. The dense disordered active solid appears to be mostly dominated by athermal jamming rather than glass rheology.
Collapse
Affiliation(s)
- Roland Wiese
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Klaus Kroy
- Institute for Theoretical Physics, Leipzig University, 04103 Leipzig, Germany
| | - Demian Levis
- Departement de Física de la Materia Condensada, Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
- University of Barcelona Institute of Complex Systems (UBICS), Facultat de Física, Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
40
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
41
|
Yousafzai MS, Hammer JA. Using Biosensors to Study Organoids, Spheroids and Organs-on-a-Chip: A Mechanobiology Perspective. BIOSENSORS 2023; 13:905. [PMID: 37887098 PMCID: PMC10605946 DOI: 10.3390/bios13100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/19/2023] [Indexed: 10/28/2023]
Abstract
The increasing popularity of 3D cell culture models is being driven by the demand for more in vivo-like conditions with which to study the biochemistry and biomechanics of numerous biological processes in health and disease. Spheroids and organoids are 3D culture platforms that self-assemble and regenerate from stem cells, tissue progenitor cells or cell lines, and that show great potential for studying tissue development and regeneration. Organ-on-a-chip approaches can be used to achieve spatiotemporal control over the biochemical and biomechanical signals that promote tissue growth and differentiation. These 3D model systems can be engineered to serve as disease models and used for drug screens. While culture methods have been developed to support these 3D structures, challenges remain to completely recapitulate the cell-cell and cell-matrix biomechanical interactions occurring in vivo. Understanding how forces influence the functions of cells in these 3D systems will require precise tools to measure such forces, as well as a better understanding of the mechanobiology of cell-cell and cell-matrix interactions. Biosensors will prove powerful for measuring forces in both of these contexts, thereby leading to a better understanding of how mechanical forces influence biological systems at the cellular and tissue levels. Here, we discussed how biosensors and mechanobiological research can be coupled to develop accurate, physiologically relevant 3D tissue models to study tissue development, function, malfunction in disease, and avenues for disease intervention.
Collapse
Affiliation(s)
- Muhammad Sulaiman Yousafzai
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - John A. Hammer
- Cell and Developmental Biology Center, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
42
|
Kumar V, Bauer C, Stewart JH. Cancer cell-specific cGAS/STING Signaling pathway in the era of advancing cancer cell biology. Eur J Cell Biol 2023; 102:151338. [PMID: 37423035 DOI: 10.1016/j.ejcb.2023.151338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/11/2023] Open
Abstract
Pattern-recognition receptors (PRRs) are critical to recognizing endogenous and exogenous threats to mount a protective proinflammatory innate immune response. PRRs may be located on the outer cell membrane, cytosol, and nucleus. The cGAS/STING signaling pathway is a cytosolic PRR system. Notably, cGAS is also present in the nucleus. The cGAS-mediated recognition of cytosolic dsDNA and its cleavage into cGAMP activates STING. Furthermore, STING activation through its downstream signaling triggers different interferon-stimulating genes (ISGs), initiating the release of type 1 interferons (IFNs) and NF-κB-mediated release of proinflammatory cytokines and molecules. Activating cGAS/STING generates type 1 IFN, which may prevent cellular transformation and cancer development, growth, and metastasis. The current article delineates the impact of the cancer cell-specific cGAS/STING signaling pathway alteration in tumors and its impact on tumor growth and metastasis. This article further discusses different approaches to specifically target cGAS/STING signaling in cancer cells to inhibit tumor growth and metastasis in conjunction with existing anticancer therapies.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| | - Caitlin Bauer
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA
| | - John H Stewart
- Department of Interdisciplinary Oncology, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA; Louisiana Children's Medical Center Cancer Center, Stanley S. Scott Cancer Center, School of Medicine, Louisiana State University Health Science Center (LSUHSC), 1700 Tulane Avenue, New Orleans, LA 70012, USA.
| |
Collapse
|
43
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
44
|
Le HA, Mayor R. Cell-matrix and cell-cell interaction mechanics in guiding migration. Biochem Soc Trans 2023; 51:1733-1745. [PMID: 37610008 PMCID: PMC10586762 DOI: 10.1042/bst20230211] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/24/2023]
Abstract
Physical properties of tissue are increasingly recognised as major regulatory cues affecting cell behaviours, particularly cell migration. While these properties of the extracellular matrix have been extensively discussed, the contribution from the cellular components that make up the tissue are still poorly appreciated. In this mini-review, we will discuss two major physical components: stiffness and topology with a stronger focus on cell-cell interactions and how these can impact cell migration.
Collapse
Affiliation(s)
- Hoang Anh Le
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, U.K
| |
Collapse
|
45
|
Dy ABC, Girkin J, Marrocco A, Collison A, Mwase C, O'Sullivan MJ, Phung TKN, Mattes J, Koziol-White C, Gern JE, Bochkov YA, Bartlett NW, Park JA. Rhinovirus infection induces secretion of endothelin-1 from airway epithelial cells in both in vitro and in vivo models. Respir Res 2023; 24:205. [PMID: 37598152 PMCID: PMC10440034 DOI: 10.1186/s12931-023-02510-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 08/11/2023] [Indexed: 08/21/2023] Open
Abstract
BACKGROUND Rhinovirus (RV) infection of airway epithelial cells triggers asthma exacerbations, during which airway smooth muscle (ASM) excessively contracts. Due to ASM contraction, airway epithelial cells become mechanically compressed. We previously reported that compressed human bronchial epithelial (HBE) cells are a source of endothelin-1 (ET-1) that causes ASM contraction. Here, we hypothesized that epithelial sensing of RV by TLR3 and epithelial compression induce ET-1 secretion through a TGF-β receptor (TGFβR)-dependent mechanism. METHODS To test this, we used primary HBE cells well-differentiated in air-liquid interface culture and two mouse models (ovalbumin and house dust mite) of allergic airway disease (AAD). HBE cells were infected with RV-A16, treated with a TLR3 agonist (poly(I:C)), or exposed to compression. Thereafter, EDN1 (ET-1 protein-encoding gene) mRNA expression and secreted ET-1 protein were measured. We examined the role of TGFβR in ET-1 secretion using either a pharmacologic inhibitor of TGFβR or recombinant TGF-β1 protein. In the AAD mouse models, allergen-sensitized and allergen-challenged mice were subsequently infected with RV. We then measured ET-1 in bronchoalveolar lavage fluid (BALF) and airway hyperresponsiveness (AHR) following methacholine challenge. RESULTS Our data reveal that RV infection induced EDN1 expression and ET-1 secretion in HBE cells, potentially mediated by TLR3. TGFβR activation was partially required for ET-1 secretion, which was induced by RV, poly(I:C), or compression. TGFβR activation alone was sufficient to increase ET-1 secretion. In AAD mouse models, RV induced ET-1 secretion in BALF, which positively correlated with AHR. CONCLUSIONS Our data provide evidence that RV infection increased epithelial-cell ET-1 secretion through a TGFβR-dependent mechanism, which contributes to bronchoconstriction during RV-induced asthma exacerbations.
Collapse
Affiliation(s)
- Alane Blythe C Dy
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA
| | - Jason Girkin
- College of Health, Medicine and Wellbeing, University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Antonella Marrocco
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA
| | - Adam Collison
- College of Health, Medicine and Wellbeing, University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Chimwemwe Mwase
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA
| | - Michael J O'Sullivan
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA
| | - Thien-Khoi N Phung
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA
| | - Joerg Mattes
- College of Health, Medicine and Wellbeing, University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, Australia
| | | | - James E Gern
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Yury A Bochkov
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathan W Bartlett
- College of Health, Medicine and Wellbeing, University of Newcastle and Hunter Medical Research Institute, New Lambton Heights, Australia
| | - Jin-Ah Park
- Program in Molecular and Integrative Physiological Sciences, Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, SPH1-315, USA.
| |
Collapse
|
46
|
Lee YL, Mathur J, Walter C, Zmuda H, Pathak A. Matrix obstructions cause multiscale disruption in collective epithelial migration by suppressing leader cell function. Mol Biol Cell 2023; 34:ar94. [PMID: 37379202 PMCID: PMC10398892 DOI: 10.1091/mbc.e22-06-0226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/06/2023] [Accepted: 06/21/2023] [Indexed: 06/30/2023] Open
Abstract
During disease and development, physical changes in extracellular matrix cause jamming, unjamming, and scattering in epithelial migration. However, whether disruptions in matrix topology alter collective cell migration speed and cell-cell coordination remains unclear. We microfabricated substrates with stumps of defined geometry, density, and orientation, which create obstructions for migrating epithelial cells. Here, we show that cells lose their speed and directionality when moving through densely spaced obstructions. Although leader cells are stiffer than follower cells on flat substrates, dense obstructions cause overall cell softening. Through a lattice-based model, we identify cellular protrusions, cell-cell adhesions, and leader-follower communication as key mechanisms for obstruction-sensitive collective cell migration. Our modeling predictions and experimental validations show that cells' obstruction sensitivity requires an optimal balance of cell-cell adhesions and protrusions. Both MDCK (more cohesive) and α-catenin-depleted MCF10A cells were less obstruction sensitive than wild-type MCF10A cells. Together, microscale softening, mesoscale disorder, and macroscale multicellular communication enable epithelial cell populations to sense topological obstructions encountered in challenging environments. Thus, obstruction-sensitivity could define "mechanotype" of cells that collectively migrate yet maintain intercellular communication.
Collapse
Affiliation(s)
- Ye Lim Lee
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Jairaj Mathur
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Christopher Walter
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| | - Hannah Zmuda
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
| | - Amit Pathak
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130
- Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, St. Louis, MO 63130
| |
Collapse
|
47
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. J Virol 2023; 97:e0039423. [PMID: 37338373 PMCID: PMC10373540 DOI: 10.1128/jvi.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor β1 (TGF-β1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
48
|
Najafi A, Jolly MK, George JT. Population dynamics of EMT elucidates the timing and distribution of phenotypic intra-tumoral heterogeneity. iScience 2023; 26:106964. [PMID: 37426354 PMCID: PMC10329148 DOI: 10.1016/j.isci.2023.106964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/24/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
The Epithelial-to-Mesenchymal Transition (EMT) is a hallmark of cancer metastasis and morbidity. EMT is a non-binary process, and cells can be stably arrested en route to EMT in an intermediate hybrid state associated with enhanced tumor aggressiveness and worse patient outcomes. Understanding EMT progression in detail will provide fundamental insights into the mechanisms underlying metastasis. Despite increasingly available single-cell RNA sequencing (scRNA-seq) data that enable in-depth analyses of EMT at the single-cell resolution, current inferential approaches are limited to bulk microarray data. There is thus a great need for computational frameworks to systematically infer and predict the timing and distribution of EMT-related states at single-cell resolution. Here, we develop a computational framework for reliable inference and prediction of EMT-related trajectories from scRNA-seq data. Our model can be utilized across a variety of applications to predict the timing and distribution of EMT from single-cell sequencing data.
Collapse
Affiliation(s)
- Annice Najafi
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Mohit K. Jolly
- Centre for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Jason T. George
- Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA
- Intercollegiate School of Engineering Medicine, Texas A&M University, Houston, TX 77030, USA
| |
Collapse
|
49
|
Herrera-Perez RM, Cupo C, Allan C, Dagle AB, Kasza KE. Tissue flows are tuned by actomyosin-dependent mechanics in developing embryos. PRX LIFE 2023; 1:013004. [PMID: 38736460 PMCID: PMC11086709 DOI: 10.1103/prxlife.1.013004] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Rapid epithelial tissue flows are essential to building and shaping developing embryos. However, the mechanical properties of embryonic epithelial tissues and the factors that control these properties are not well understood. Actomyosin generates contractile tensions and contributes to the mechanical properties of cells and cytoskeletal networks in vitro, but it remains unclear how the levels and patterns of actomyosin activity contribute to embryonic epithelial tissue mechanics in vivo. To dissect the roles of cell-generated tensions in the mechanics of flowing epithelial tissues, we use optogenetic tools to manipulate actomyosin contractility with spatiotemporal precision in the Drosophila germband epithelium, which rapidly flows during body axis elongation. We find that manipulating actomyosin-dependent tensions by either optogenetic activation or deactivation of actomyosin alters the solid-fluid mechanical properties of the germband epithelium, leading to changes in cell rearrangements and tissue-level flows. Optogenetically activating actomyosin leads to increases in the overall level but decreases in the anisotropy of tension in the tissue, whereas optogenetically deactivating actomyosin leads to decreases in both the level and anisotropy of tension compared to in wild-type embryos. We find that optogenetically activating actomyosin results in more solid-like (less fluid-like) tissue properties, which is associated with reduced cell rearrangements and tissue flow compared to in wild-type embryos. Optogenetically deactivating actomyosin also results in more solid-like properties than in wild-type embryos but less solid-like properties compared to optogenetically activating actomyosin. Together, these findings indicate that increasing the overall tension level is associated with more solid-like properties in tissues that are relatively isotropic, whereas high tension anisotropy fluidizes the tissue. Our results reveal that epithelial tissue flows in developing embryos involve the coordinated actomyosin-dependent regulation of the mechanical properties of tissues and the tensions driving them to flow in order to achieve rapid tissue remodeling.
Collapse
Affiliation(s)
| | - Christian Cupo
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Cole Allan
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Alicia B Dagle
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York, 10027, USA
| |
Collapse
|
50
|
Hartmann J, Mayor R. Self-organized collective cell behaviors as design principles for synthetic developmental biology. Semin Cell Dev Biol 2023; 141:63-73. [PMID: 35450765 DOI: 10.1016/j.semcdb.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/12/2022] [Indexed: 10/18/2022]
Abstract
Over the past two decades, molecular cell biology has graduated from a mostly analytic science to one with substantial synthetic capability. This success is built on a deep understanding of the structure and function of biomolecules and molecular mechanisms. For synthetic biology to achieve similar success at the scale of tissues and organs, an equally deep understanding of the principles of development is required. Here, we review some of the central concepts and recent progress in tissue patterning, morphogenesis and collective cell migration and discuss their value for synthetic developmental biology, emphasizing in particular the power of (guided) self-organization and the role of theoretical advances in making developmental insights applicable in synthesis.
Collapse
Affiliation(s)
- Jonas Hartmann
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|