1
|
Chen Y, Wei Y, Liu J, Zhu T, Zhou C, Zhang D. Spatial transcriptomics combined with single-nucleus RNA sequencing reveals glial cell heterogeneity in the human spinal cord. Neural Regen Res 2025; 20:3302-3316. [PMID: 38934400 PMCID: PMC11881709 DOI: 10.4103/nrr.nrr-d-23-01876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 03/04/2024] [Accepted: 04/30/2024] [Indexed: 06/28/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202511000-00032/figure1/v/2024-12-20T164640Z/r/image-tiff Glial cells play crucial roles in regulating physiological and pathological functions, including sensation, the response to infection and acute injury, and chronic neurodegenerative disorders. Glial cells include astrocytes, microglia, and oligodendrocytes in the central nervous system, and satellite glial cells and Schwann cells in the peripheral nervous system. Despite the greater understanding of glial cell types and functional heterogeneity achieved through single-cell and single-nucleus RNA sequencing in animal models, few studies have investigated the transcriptomic profiles of glial cells in the human spinal cord. Here, we used high-throughput single-nucleus RNA sequencing and spatial transcriptomics to map the cellular and molecular heterogeneity of astrocytes, microglia, and oligodendrocytes in the human spinal cord. To explore the conservation and divergence across species, we compared these findings with those from mice. In the human spinal cord, astrocytes, microglia, and oligodendrocytes were each divided into six distinct transcriptomic subclusters. In the mouse spinal cord, astrocytes, microglia, and oligodendrocytes were divided into five, four, and five distinct transcriptomic subclusters, respectively. The comparative results revealed substantial heterogeneity in all glial cell types between humans and mice. Additionally, we detected sex differences in gene expression in human spinal cord glial cells. Specifically, in all astrocyte subtypes, the levels of NEAT1 and CHI3L1 were higher in males than in females, whereas the levels of CST3 were lower in males than in females. In all microglial subtypes, all differentially expressed genes were located on the sex chromosomes. In addition to sex-specific gene differences, the levels of MT-ND4 , MT2A , MT-ATP6 , MT-CO3 , MT-ND2 , MT-ND3 , and MT-CO2 in all spinal cord oligodendrocyte subtypes were higher in females than in males. Collectively, the present dataset extensively characterizes glial cell heterogeneity and offers a valuable resource for exploring the cellular basis of spinal cord-related illnesses, including chronic pain, amyotrophic lateral sclerosis, and multiple sclerosis.
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yiyong Wei
- Department of Anesthesiology, Longgang District Maternity & Child Healthcare Hospital of Shenzhen City (Longgang Maternity and Child Institute of Shantou University Medical College), Shenzhen, Guangdong Province, China
- Department of Anesthesiology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Tao Zhu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Cheng Zhou
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Donghang Zhang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Laboratory of Anesthesia and Critical Care Medicine, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Braaker PN, Mi X, Soong D, Bin JM, Marshall-Phelps K, Bradley S, Benito-Kwiecinski S, Meng J, Arafa D, Richmond C, Keatinge M, Yu G, Almeida RG, Lyons DA. Activity-driven myelin sheath growth is mediated by mGluR5. Nat Neurosci 2025; 28:1213-1225. [PMID: 40369366 DOI: 10.1038/s41593-025-01956-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 03/25/2025] [Indexed: 05/16/2025]
Abstract
Myelination by oligodendrocytes in the central nervous system is influenced by neuronal activity, but the molecular mechanisms by which this occurs have remained unclear. Here we employed pharmacological, genetic, functional imaging and optogenetic-stimulation approaches in zebrafish to assess activity-regulated myelination in vivo. Pharmacological inhibition and activation of metabotropic glutamate receptor 5 (mGluR5) impaired and promoted myelin sheath elongation, respectively, during development, without otherwise affecting the oligodendrocyte lineage. Correspondingly, mGluR5 loss-of-function mutants exhibit impaired myelin growth, while oligodendrocyte-specific mGluR5 gain of function promoted sheath elongation. Functional imaging and optogenetic-stimulation studies revealed that mGluR5 mediates activity-driven high-amplitude Ca2+ transients in myelin. Furthermore, we found that long-term stimulation of neuronal activity drives myelin sheath elongation in an mGluR5-dependent manner. Together these data identify mGluR5 as a mediator of the influence of neuronal activity on myelination by oligodendrocytes in vivo, opening up opportunities to assess the functional relevance of activity-regulated myelination.
Collapse
Affiliation(s)
- Philipp N Braaker
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Xuelong Mi
- Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, Arlington, VA, USA
| | - Daniel Soong
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Jenea M Bin
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Katy Marshall-Phelps
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Stephen Bradley
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Silvia Benito-Kwiecinski
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Julia Meng
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Donia Arafa
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Claire Richmond
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - Marcus Keatinge
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
- Centre for Clinical Brain Sciences, UK Dementia Research Institute at University of Edinburgh, University of Edinburgh, Edinburgh, UK
| | - Guoqiang Yu
- Department of Automation, Tsinghua University, Beijing, China
| | - Rafael G Almeida
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK
| | - David A Lyons
- Centre for Discovery Brain Sciences, MS Society Edinburgh Centre for Multiple Sclerosis Research, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Weng C, Groh AM, Yaqubi M, Cui QL, Stratton JA, Moore GRW, Antel JP. Heterogeneity of mature oligodendrocytes in the central nervous system. Neural Regen Res 2025; 20:1336-1349. [PMID: 38934385 PMCID: PMC11624867 DOI: 10.4103/nrr.nrr-d-24-00055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/26/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Mature oligodendrocytes form myelin sheaths that are crucial for the insulation of axons and efficient signal transmission in the central nervous system. Recent evidence has challenged the classical view of the functionally static mature oligodendrocyte and revealed a gamut of dynamic functions such as the ability to modulate neuronal circuitry and provide metabolic support to axons. Despite the recognition of potential heterogeneity in mature oligodendrocyte function, a comprehensive summary of mature oligodendrocyte diversity is lacking. We delve into early 20 th -century studies by Robertson and Río-Hortega that laid the foundation for the modern identification of regional and morphological heterogeneity in mature oligodendrocytes. Indeed, recent morphologic and functional studies call into question the long-assumed homogeneity of mature oligodendrocyte function through the identification of distinct subtypes with varying myelination preferences. Furthermore, modern molecular investigations, employing techniques such as single cell/nucleus RNA sequencing, consistently unveil at least six mature oligodendrocyte subpopulations in the human central nervous system that are highly transcriptomically diverse and vary with central nervous system region. Age and disease related mature oligodendrocyte variation denotes the impact of pathological conditions such as multiple sclerosis, Alzheimer's disease, and psychiatric disorders. Nevertheless, caution is warranted when subclassifying mature oligodendrocytes because of the simplification needed to make conclusions about cell identity from temporally confined investigations. Future studies leveraging advanced techniques like spatial transcriptomics and single-cell proteomics promise a more nuanced understanding of mature oligodendrocyte heterogeneity. Such research avenues that precisely evaluate mature oligodendrocyte heterogeneity with care to understand the mitigating influence of species, sex, central nervous system region, age, and disease, hold promise for the development of therapeutic interventions targeting varied central nervous system pathology.
Collapse
Affiliation(s)
- Chao Weng
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Adam M.R. Groh
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Moein Yaqubi
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Qiao-Ling Cui
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jo Anne Stratton
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - G. R. Wayne Moore
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Jack P. Antel
- Neuroimmunology Unit, Montreal Neurological Institute-Hospital, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| |
Collapse
|
4
|
Wu X, Hu Z, Yue H, Wang C, Li J, Yang Y, Luan Z, Wang L, Shen Y, Gu Y. Enhancing myelinogenesis through LIN28A rescues impaired cognition in PWMI mice. Stem Cell Res Ther 2025; 16:141. [PMID: 40102931 PMCID: PMC11921748 DOI: 10.1186/s13287-025-04267-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 03/04/2025] [Indexed: 03/20/2025] Open
Abstract
BACKGROUND In premature newborn infants, preterm white matter injury (PWMI) causes motor and cognitive disabilities. Accumulating evidence suggests that PWMI may result from defected differentiation of oligodendrocyte precursor cells (OPCs) and impaired maturation of oligodendrocytes. However, the underlying mechanisms remain unclear. METHODS Using RNAscope, we analyzed the expression level of RNA-binding protein LIN28A in individual OPCs. Knockout of one or both alleles of Lin28a in OPCs was achieved by administrating tamoxifen to NG2CreER::Ai14::Lin28aflox/+ or NG2CreER::Ai14::Lin28aflox/flox mice. Lentivirus expressing FLEX-Lin28a was used in NG2CreER mice to overexpress LIN28A in OPCs. A series of behavioral tests were performed to assess the cognitive functions of mice. Two-tailed unpaired t-tests was carried out for statistical analysis between groups. RESULTS We found that the expression of Lin28a was decreased in OPCs in a PWMI mouse model. Knockout of one or both alleles of Lin28a in OPCs postnatally resulted in reduced OPC differentiation, decreased myelinogenesis and impaired cognitive functions. Supplementing LIN28A in OPCs postnatally was able to promote OPC differentiation and enhance myelinogenesis, thus rescuing the cognitive functions in PWMI mice. CONCLUSION Our study reveals that LIN28A is critical in regulating postnatal myelinogenesis. Overexpression of LIN28A in OPCs rescues cognitive deficits in PWMI mice by promoting myelinogenesis, thus providing a potential strategy for the treatment of PWMI.
Collapse
Affiliation(s)
- Xuan Wu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Zhechun Hu
- School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Huimin Yue
- Department of Neurology of the First Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, Zhejiang University School of Medicine, Hangzhou, 310027, China
| | - Chao Wang
- Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Jie Li
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yinxiang Yang
- Department of Pediatrics, the Sixth Medical Center of PLA General Hospital, Beijing, 10048, China
| | - Zuo Luan
- Department of Pediatrics, the Sixth Medical Center of PLA General Hospital, Beijing, 10048, China
| | - Liang Wang
- Department of Neurology of the Second Affiliated Hospital and Department of Human Anatomy, Histology and Embryology, System Medicine Research Center, Zhejiang University School of Medicine, Hangzhou, 310058, China
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Ying Shen
- International Institutes of Medicine, Department of Neurology, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, 322000, China
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yan Gu
- Center of Stem Cell and Regenerative Medicine, and Department of Neurology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- MOE Frontier Science Center for Brain Science & Brain-Machine Integration, Zhejiang University, Hangzhou, 310058, China.
- NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| |
Collapse
|
5
|
Sheikhi K, Ghaderi S, Firouzi H, Rahimibarghani S, Shabani E, Afkhami H, Yarahmadi A. Recent advances in mesenchymal stem cell therapy for multiple sclerosis: clinical applications and challenges. Front Cell Dev Biol 2025; 13:1517369. [PMID: 39963155 PMCID: PMC11830822 DOI: 10.3389/fcell.2025.1517369] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/09/2025] [Indexed: 02/20/2025] Open
Abstract
Multiple sclerosis (MS), a chronic autoimmune disorder of the central nervous system (CNS), is characterized by inflammation, demyelination, and neurodegeneration, leading to diverse clinical manifestations such as fatigue, sensory impairment, and cognitive dysfunction. Current pharmacological treatments primarily target immune modulation but fail to arrest disease progression or entirely reverse CNS damage. Mesenchymal stem cell (MSC) therapy offers a promising alternative, leveraging its immunomodulatory, neuroprotective, and regenerative capabilities. This review provides an in-depth analysis of MSC mechanisms of action, including immune system regulation, promotion of remyelination, and neuroregeneration. It examines preclinical studies and clinical trials evaluating the efficacy, safety, and limitations of MSC therapy in various MS phenotypes. Special attention is given to challenges such as delivery routes, dosing regimens, and integrating MSCs with conventional therapies. By highlighting advancements and ongoing challenges, this review underscores the potential of MSCs to revolutionize MS treatment, paving the way for personalized and combinatory therapeutic approaches.
Collapse
Affiliation(s)
- Kamran Sheikhi
- Kurdistan University of Medical Sciences, Kurdistan, Iran
| | | | - Hassan Firouzi
- Department of Medical Laboratory, Faculty of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Sarvenaz Rahimibarghani
- Department of Physical Medicine and Rehabilitation, Tehran University of Medical Sciences, Tehran, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| |
Collapse
|
6
|
Sztachera M, Wendlandt-Stanek W, Serwa RA, Stanaszek L, Smuszkiewicz M, Wronka D, Piwecka M. Interrogation of RNA-bound proteome with XRNAX illuminates molecular alterations in the mouse brain affected with dysmyelination. Cell Rep 2025; 44:115095. [PMID: 39709601 DOI: 10.1016/j.celrep.2024.115095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 10/21/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
RNA-protein interactions orchestrate hundreds of pathways in homeostatic and stressed cells. We applied an RNA-protein interactome capture method called protein cross-linked RNA extraction (XRNAX) to shed light on the RNA-bound proteome in dysmyelination. We found sets of canonical RNA-binding proteins (RBPs) regulating alternative splicing and engaged in the cytoplasmic granules to be perturbed at the level of their RNA interactome. We validated these observations for PCBP1 and MBNL1. We show that the number of PCBP1 bodies is markedly increased in the mossy cells of the hippocampus and that the pattern of MBNL1-regulated alternatively spliced exons differs between the myelin-deficient and the wild-type brain, which is likely associated with Mbnl1 splicing perturbation and circular RNA generation from this locus. In the broader perspective, our results demonstrate that, with the application of the RNA-protein interactome approach, we can uncover alterations in RBP functioning in the disease context that are not always directly visible from their mRNA or protein levels.
Collapse
Affiliation(s)
- Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Weronika Wendlandt-Stanek
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Remigiusz A Serwa
- Proteomics Core Facility, IMol Polish Academy of Sciences, 02-247 Warsaw, Poland
| | - Luiza Stanaszek
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Dorota Wronka
- Laboratory of Mammalian Model Organisms, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry of the Polish Academy of Sciences, 61-704 Poznan, Poland.
| |
Collapse
|
7
|
Onat F, Andersson M, Çarçak N. The Role of Glial Cells in the Pathophysiology of Epilepsy. Cells 2025; 14:94. [PMID: 39851521 PMCID: PMC11763453 DOI: 10.3390/cells14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
Epilepsy is a chronic neurological disorder marked by recurrent seizures, significantly impacting individuals worldwide. Current treatments are often ineffective for a third of patients and can cause severe side effects, necessitating new therapeutic approaches. Glial cells, particularly astrocytes, microglia, and oligodendrocytes, are emerging as crucial targets in epilepsy management. Astrocytes regulate neuronal homeostasis, excitability, and synaptic plasticity, playing key roles in maintaining the blood-brain barrier (BBB) and mediating neuroinflammatory responses. Dysregulated astrocyte functions, such as reactive astrogliosis, can lead to abnormal neuronal activity and seizure generation. They release gliotransmitters, cytokines, and chemokines that may exacerbate or mitigate seizures. Microglia, the innate immune cells of the CNS, contribute to neuroinflammation, glutamate excitotoxicity, and the balance between excitatory and inhibitory neurotransmission, underscoring their dual role in seizure promotion and protection. Meanwhile, oligodendrocytes, primarily involved in myelination, also modulate axonal excitability and contribute to the neuron-glia network underlying seizure pathogenesis. Understanding the dynamic interactions of glial cells with neurons provides promising avenues for novel epilepsy therapies. Targeting these cells may lead to improved seizure control and better clinical outcomes, offering hope for patients with refractory epilepsy.
Collapse
Affiliation(s)
- Filiz Onat
- Department of Medical Pharmacology, School of Medicine, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
| | - My Andersson
- Department of Experimental Medicine, Faculty of Medicine, Lund University, 221 00 Lund, Sweden;
| | - Nihan Çarçak
- Institute of Health Sciences, Department of Neuroscience, Acibadem Mehmet Ali Aydinlar University, 34684 Istanbul, Türkiye
- Department of Pharmacology, Faculty of Pharmacy, Istanbul University, 34452 Istanbul, Türkiye
| |
Collapse
|
8
|
Kim W, Angulo MC. Unraveling the role of oligodendrocytes and myelin in pain. J Neurochem 2025; 169:e16206. [PMID: 39162089 PMCID: PMC11657919 DOI: 10.1111/jnc.16206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/21/2024]
Abstract
Oligodendrocytes, the myelin-producing cells in the central nervous system (CNS), are crucial for rapid action potential conduction and neuronal communication. While extensively studied for their roles in neuronal support and axonal insulation, their involvement in pain modulation is an emerging research area. This review explores the interplay between oligodendrocytes, myelination, and pain, focusing on neuropathic pain following peripheral nerve injury, spinal cord injury (SCI), chemotherapy, and HIV infection. Studies indicate that a decrease in oligodendrocytes and increased cytokine production by oligodendroglia in response to injury can induce or exacerbate pain. An increase in endogenous oligodendrocyte precursor cells (OPCs) may be a compensatory response to repair damaged oligodendrocytes. Exogenous OPC transplantation shows promise in alleviating SCI-induced neuropathic pain and enhancing remyelination. Additionally, oligodendrocyte apoptosis in brain regions such as the medial prefrontal cortex is linked to opioid-induced hyperalgesia, highlighting their role in central pain mechanisms. Chemotherapeutic agents disrupt oligodendrocyte differentiation, leading to persistent pain, while HIV-associated neuropathy involves up-regulation of oligodendrocyte lineage cell markers. These findings underscore the multifaceted roles of oligodendrocytes in pain pathways, suggesting that targeting myelination processes could offer new therapeutic strategies for chronic pain management. Further research should elucidate the underlying molecular mechanisms to develop effective pain treatments.
Collapse
Affiliation(s)
- Woojin Kim
- Department of Physiology, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
- Korean Medicine‐Based Drug Repositioning Cancer Research Center, College of Korean MedicineKyung Hee UniversitySeoulRepublic of Korea
| | - María Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, “Team: Interactions between Neurons and Oligodendroglia in Myelination and Myelin Repair”ParisFrance
- GHU PARIS Psychiatrie & NeurosciencesParisFrance
| |
Collapse
|
9
|
Ozgür-Gunes Y, Le Stunff C, Bougnères P. Oligodendrocytes, the Forgotten Target of Gene Therapy. Cells 2024; 13:1973. [PMID: 39682723 PMCID: PMC11640421 DOI: 10.3390/cells13231973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
If the billions of oligodendrocytes (OLs) populating the central nervous system (CNS) of patients could express their feelings, they would undoubtedly tell gene therapists about their frustration with the other neural cell populations, neurons, microglia, or astrocytes, which have been the favorite targets of gene transfer experiments. This review questions why OLs have been left out of most gene therapy attempts. The first explanation is that the pathogenic role of OLs is still discussed in most CNS diseases. Another reason is that the so-called ubiquitous CAG, CBA, CBh, or CMV promoters-widely used in gene therapy studies-are unable or poorly able to activate the transcription of episomal transgene copies brought by adeno-associated virus (AAV) vectors in OLs. Accordingly, transgene expression in OLs has either not been found or not been evaluated in most gene therapy studies in rodents or non-human primates. The aims of the current review are to give OLs their rightful place among the neural cells that future gene therapy could target and to encourage researchers to test the effect of OL transduction in various CNS diseases.
Collapse
Affiliation(s)
- Yasemin Ozgür-Gunes
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Catherine Le Stunff
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- UMR1195 Inserm and University Paris Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Pierre Bougnères
- MIRCen Institute, Laboratoire des Maladies Neurodégénératives, Commissariat à l’Energie Atomique, 92260 Fontenay-aux-Roses, France;
- NEURATRIS at MIRCen, 92260 Fontenay-aux-Roses, France
- Therapy Design Consulting, 94300 Vincennes, France
| |
Collapse
|
10
|
Grouza V, Bagheri H, Liu H, Tuznik M, Wu Z, Robinson N, Siminovitch KA, Peterson AC, Rudko DA. Ultra-high-resolution mapping of myelin and g-ratio in a panel of Mbp enhancer-edited mouse strains using microstructural MRI. Neuroimage 2024; 300:120850. [PMID: 39260782 DOI: 10.1016/j.neuroimage.2024.120850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/27/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Non-invasive myelin water fraction (MWF) and g-ratio mapping using microstructural MRI have the potential to offer critical insights into brain microstructure and our understanding of neuroplasticity and neuroinflammation. By leveraging a unique panel of variably hypomyelinating mouse strains, we validated a high-resolution, model-free image reconstruction method for whole-brain MWF mapping. Further, by employing a bipolar gradient echo MRI sequence, we achieved high spatial resolution and robust mapping of MWF and g-ratio across the whole mouse brain. Our regional white matter-tract specific analyses demonstrated a graded decrease in MWF in white matter tracts which correlated strongly with myelin basic protein gene (Mbp) mRNA levels. Using these measures, we derived the first sensitive calibrations between MWF and Mbp mRNA in the mouse. Minimal changes in axonal density supported our hypothesis that observed MWF alterations stem from hypomyelination. Overall, our work strongly emphasizes the potential of non-invasive, MRI-derived MWF and g-ratio modeling for both preclinical model validation and ultimately translation to humans.
Collapse
Affiliation(s)
- Vladimir Grouza
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hooman Bagheri
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Hanwen Liu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Marius Tuznik
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Zhe Wu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Nicole Robinson
- Histology Innovation Platform, Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, Quebec, Canada
| | - Katherine A Siminovitch
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Department of Immunology, University of Toronto, Toronto, Ontario, Canada; Mount Sinai Hospital, Lunenfeld-Tanenbaum and Toronto General Hospital Research Institutes, Toronto, Ontario, Canada
| | - Alan C Peterson
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Gerald Bronfman Department of Oncology, McGill University, Montreal, Quebec, Canada
| | - David A Rudko
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada; Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
11
|
Rangel-Gomez M, Alberini CM, Deneen B, Drummond GT, Manninen T, Sur M, Vicentic A. Neuron-Glial Interactions: Implications for Plasticity, Behavior, and Cognition. J Neurosci 2024; 44:e1231242024. [PMID: 39358030 PMCID: PMC11450529 DOI: 10.1523/jneurosci.1231-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024] Open
Abstract
The traditional view of glial cells as mere supportive tissue has shifted, due to advances in technology and theoretical conceptualization, to include a diversity of other functions, such as regulation of complex behaviors. Astrocytes, the most abundant glial cells in the central nervous system (CNS), have been shown to modulate synaptic functions through gliotransmitter-mediated neurotransmitter reuptake, influencing neuronal signaling and behavioral functions. Contemporary studies further highlight astrocytes' involvement in complex cognitive functions. For instance, inhibiting astrocytes in the hippocampus can lead to memory deficits, suggesting their integral role in memory processes. Moreover, astrocytic calcium activity and astrocyte-neuron metabolic coupling have been linked to changes in synaptic strength and learning. Microglia, another type of glial cell, also extend beyond their supportive roles, contributing to learning and memory processes, with microglial reductions impacting these functions in a developmentally dependent manner. Oligodendrocytes, traditionally thought to have limited roles postdevelopment, are now recognized for their activity-dependent modulation of myelination and plasticity, thus influencing behavioral responses. Recent advancements in technology and computational modeling have expanded our understanding of glial functions, particularly how astrocytes influence neuronal circuits and behaviors. This review underscores the importance of glial cells in CNS functions and the need for further research to unravel the complexities of neuron-glia interactions, the impact of these interactions on brain functions, and potential implications for neurological diseases.
Collapse
Affiliation(s)
- Mauricio Rangel-Gomez
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| | | | - Benjamin Deneen
- Center for Cell and Gene Therapy, Center for Cancer Neuroscience, and Department of Neurosurgery, Baylor College of Medicine, Houston, Texas 77030
| | - Gabrielle T Drummond
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Tiina Manninen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland 33720
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Aleksandra Vicentic
- Division of Neuroscience and Basic Behavioral Sciences, National Institute of Mental Health, Bethesda, Maryland 20852
| |
Collapse
|
12
|
Kurioka T, Mizutari K. Gap detection ability declines with central auditory neurodegeneration following age-related cochlear synaptopathy. Eur J Neurosci 2024; 60:5861-5875. [PMID: 39237477 DOI: 10.1111/ejn.16534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/29/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Age-related hearing impairment (ARHI) is commonly associated with decreased auditory temporal resolution caused by auditory neurodegeneration. Age-related deterioration in gap detection ability, resulting in poor temporal auditory processing, is often attributed to pathophysiological changes in both the peripheral and central auditory systems. This study aimed to investigate whether the gap detection ability declines in the early stages of ageing and to determine its usefulness in detecting peripheral and central auditory degeneration. The study used 1-month-old (1 M), 6-month-old (6 M) and 12-month-old (12 M) mice to examine changes in gap detection ability and associated auditory pathophysiology. Although hearing thresholds did not significantly differ between the groups, the amplitude of auditory brainstem response (ABR) wave I decreased significantly in an age-dependent manner, consistent with age-related cochlear synaptopathy. The relative ABR amplitude ratio of waves 2 and 5 to wave 1 was significantly increased in 12 M mice, indicating that the central auditory system had increased in relative neuroactivity. A significant increase in gap detection thresholds was observed in 12 M mice compared to 1 M mice. Although cochlear synaptopathy and central hyperactivity were positively correlated with gap detection thresholds, central hyperactivity strongly influenced gap detection ability. In the cochlear nucleus and auditory cortex, the inhibitory synaptic expression of GAD65 and the expression of parvalbumin were significantly decreased in 12 M mice, consistent with central hyperactivity. Evaluating gap detection performance may allow the identification of decreased auditory temporal resolution in the early stages of ARHI, which is strongly associated with auditory neurodegeneration.
Collapse
Affiliation(s)
- Takaomi Kurioka
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| | - Kunio Mizutari
- Department of Otolaryngology, Head and Neck Surgery, National Defense Medical College, Saitama, Japan
| |
Collapse
|
13
|
Marshall-Phelps KL, Almeida R. Axonal neurotransmitter release in the regulation of myelination. Biosci Rep 2024; 44:BSR20231616. [PMID: 39230890 PMCID: PMC11427734 DOI: 10.1042/bsr20231616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/05/2024] Open
Abstract
Myelination of axons is a key determinant of fast action potential propagation, axonal health and circuit function. Previously considered a static structure, it is now clear that myelin is dynamically regulated in response to neuronal activity in the central nervous system (CNS). However, how activity-dependent signals are conveyed to oligodendrocytes remains unclear. Here, we review the potential mechanisms by which neurons could communicate changing activity levels to myelin, with a focus on the accumulating body of evidence to support activity-dependent vesicular signalling directly onto myelin sheaths. We discuss recent in vivo findings of activity-dependent fusion of neurotransmitter vesicles from non-synaptic axonal sites, and how modulation of this vesicular fusion regulates the stability and growth of myelin sheaths. We also consider the potential mechanisms by which myelin could sense and respond to axon-derived signals to initiate remodelling, and the relevance of these adaptations for circuit function. We propose that axonal vesicular signalling represents an important and underappreciated mode of communication by which neurons can transmit activity-regulated signals to myelinating oligodendrocytes and, potentially, more broadly to other cell types in the CNS.
Collapse
Affiliation(s)
- Katy L.H. Marshall-Phelps
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| | - Rafael G. Almeida
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, U.K
- MS Society Edinburgh Centre for MS Research, University of Edinburgh, Edinburgh, U.K
| |
Collapse
|
14
|
Xu H, Li H, Zhang P, Gao Y, Ma H, Gao T, Liu H, Hua W, Zhang L, Zhang X, Yang P, Liu J. The functions of exosomes targeting astrocytes and astrocyte-derived exosomes targeting other cell types. Neural Regen Res 2024; 19:1947-1953. [PMID: 38227520 PMCID: PMC11040311 DOI: 10.4103/1673-5374.390961] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/20/2023] [Accepted: 09/08/2023] [Indexed: 01/17/2024] Open
Abstract
Astrocytes are the most abundant glial cells in the central nervous system; they participate in crucial biological processes, maintain brain structure, and regulate nervous system function. Exosomes are cell-derived extracellular vesicles containing various bioactive molecules including proteins, peptides, nucleotides, and lipids secreted from their cellular sources. Increasing evidence shows that exosomes participate in a communication network in the nervous system, in which astrocyte-derived exosomes play important roles. In this review, we have summarized the effects of exosomes targeting astrocytes and the astrocyte-derived exosomes targeting other cell types in the central nervous system. We also discuss the potential research directions of the exosome-based communication network in the nervous system. The exosome-based intercellular communication focused on astrocytes is of great significance to the biological and/or pathological processes in different conditions in the brain. New strategies may be developed for the diagnosis and treatment of neurological disorders by focusing on astrocytes as the central cells and utilizing exosomes as communication mediators.
Collapse
Affiliation(s)
- Hongye Xu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - He Li
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
- Department of Emergency, Naval Hospital of Eastern Theater, Zhoushan, Zhejiang Province, China
| | - Ping Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yuan Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hongyu Ma
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Tianxiang Gao
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Hanchen Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Weilong Hua
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Lei Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Xiaoxi Zhang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Pengfei Yang
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Jianmin Liu
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, China
| |
Collapse
|
15
|
Kim JH, Bae HG, Wu WC, Nip K, Gould E. SCN2A-linked myelination deficits and synaptic plasticity alterations drive auditory processing disorders in ASD. RESEARCH SQUARE 2024:rs.3.rs-4925935. [PMID: 39257993 PMCID: PMC11384822 DOI: 10.21203/rs.3.rs-4925935/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by complex sensory processing deficits. A key unresolved question is how alterations in neural connectivity and communication translate into the behavioral manifestations seen in ASD. Here, we investigate how oligodendrocyte dysfunction alters myelin plasticity and neuronal activity, leading to auditory processing disorder associated with ASD. We focus on the SCN2A gene, an ASD-risk factor, to understand its role in myelination and neural processing within the auditory nervous system. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes in Scn2a conditional knockout mice, highlighting the cellular consequences engendered by Scn2a deletion in oligodendrocytes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption instigates changes in axonal properties, presynaptic excitability, and synaptic plasticity at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity. Our findings reveal a novel pathway linking myelin deficits to synaptic activity and sensory abnormalities in ASD.
Collapse
|
16
|
Osso LA, Hughes EG. Dynamics of mature myelin. Nat Neurosci 2024; 27:1449-1461. [PMID: 38773349 PMCID: PMC11515933 DOI: 10.1038/s41593-024-01642-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/05/2024] [Indexed: 05/23/2024]
Abstract
Myelin, which is produced by oligodendrocytes, insulates axons to facilitate rapid and efficient action potential propagation in the central nervous system. Traditionally viewed as a stable structure, myelin is now known to undergo dynamic modulation throughout life. This Review examines these dynamics, focusing on two key aspects: (1) the turnover of myelin, involving not only the renewal of constituents but the continuous wholesale replacement of myelin membranes; and (2) the structural remodeling of pre-existing, mature myelin, a newly discovered form of neural plasticity that can be stimulated by external factors, including neuronal activity, behavioral experience and injury. We explore the mechanisms regulating these dynamics and speculate that myelin remodeling could be driven by an asymmetry in myelin turnover or reactivation of pathways involved in myelin formation. Finally, we outline how myelin remodeling could have profound impacts on neural function, serving as an integral component of behavioral adaptation.
Collapse
Affiliation(s)
- Lindsay A Osso
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Ethan G Hughes
- Department of Cell and Developmental Biology, University of Colorado School of Medicine, Aurora, CO, USA.
| |
Collapse
|
17
|
Wang X, Yi R, Liang X, Zhang N, Zhong F, Lu Y, Chen W, Yu T, Zhang L, Wang H, Zhou L. Myelin modulates the process of isoflurane anesthesia through the regulation of neural activity. CNS Neurosci Ther 2024; 30:e14922. [PMID: 39138640 PMCID: PMC11322027 DOI: 10.1111/cns.14922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/01/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024] Open
Abstract
AIMS The mechanism underlying the reversible unconsciousness induced by general anesthetics (GA) remains unclear. Recent studies revealed the critical roles of myelin and oligodendrocytes (OLs) in higher functions of the brain. However, it is unknown whether myelin actively participates in the regulation of GA. The aim of this study is to investigate the roles and possible mechanisms of myelin in the regulation of consciousness alterations induced by isoflurane anesthesia. METHODS First, demyelination models for the entire brain and specific neural nuclei were established to investigate the potential role of myelination in the regulation of GA, as well as its possible regional specificity. c-Fos staining was then performed on the demyelinated nuclei to verify the impact of myelin loss on neuronal activity. Finally, the activity of neurons during isoflurane anesthesia in demyelinated mice was recorded by optical fiber photometric calcium signal. The related behavioral indicators and EEG were recorded and analyzed. RESULTS A prolonged emergence time was observed from isoflurane anesthesia in demyelinated mice, which suggested the involvement of myelin in regulating GA. The demyelination in distinct nuclei by LPC further clarified the region-specific roles of isoflurane anesthesia regulation by myelin. The effect of demyelination on isoflurane anesthesia in the certain nucleus was consistent with that in neurons towards isoflurane anesthesia. Finally, we found that the mechanism of myelin in the modulation of isoflurane anesthesia is possibly through the regulation of neuronal activity. CONCLUSIONS In brief, myelin in the distinct neural nucleus plays an essential role in regulating the process of isoflurane anesthesia. The possible mechanism of myelin in the regulation of isoflurane anesthesia is neuronal activity modification by myelin integrity during GA. Our findings enhanced the comprehension of myelin function, and offered a fresh perspective for investigating the neural mechanisms of GA.
Collapse
Affiliation(s)
- Xu Wang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Rulan Yi
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Xiaoling Liang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Ning Zhang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Fuwang Zhong
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Yali Lu
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Wenjia Chen
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
| | - Tian Yu
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Linyong Zhang
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Haiying Wang
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Liang Zhou
- Key Laboratory of Anesthesia and Organ Protection (Zunyi Medical University), Ministry of EducationZunyi Medical UniversityZunyiChina
- Key Laboratory of Brain ScienceZunyi Medical UniversityZunyiChina
- Guizhou Key Laboratory of Anesthesia and Organ ProtectionZunyi Medical UniversityZunyiChina
- Department of AnesthesiologyAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
18
|
Filippini A, Cannone E, Mazziotti V, Carini G, Mutti V, Ravelli C, Gennarelli M, Schiavone M, Russo I. Leucine-Rich Repeat Kinase-2 Controls the Differentiation and Maturation of Oligodendrocytes in Mice and Zebrafish. Biomolecules 2024; 14:870. [PMID: 39062584 PMCID: PMC11274935 DOI: 10.3390/biom14070870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Leucine-rich repeat kinase-2 (LRRK2), a gene mutated in familial and sporadic Parkinson's disease (PD), controls multiple cellular processes important for GLIA physiology. Interestingly, emerging studies report that LRRK2 is highly expressed in oligodendrocyte precursor cells (OPCs) compared to the pathophysiology of other brain cells and oligodendrocytes (OLs) in PD. Altogether, these observations suggest crucial function(s) of LRRK2 in OPCs/Ols, which would be interesting to explore. In this study, we investigated the role of LRRK2 in OLs. We showed that LRRK2 knock-out (KO) OPC cultures displayed defects in the transition of OPCs into OLs, suggesting a role of LRRK2 in OL differentiation. Consistently, we found an alteration of myelin basic protein (MBP) striosomes in LRRK2 KO mouse brains and reduced levels of oligodendrocyte transcription factor 2 (Olig2) and Mbp in olig2:EGFP and mbp:RFP transgenic zebrafish embryos injected with lrrk2 morpholino (MO). Moreover, lrrk2 knock-down zebrafish exhibited a lower amount of nerve growth factor (Ngf) compared to control embryos, which represents a potent regulator of oligodendrogenesis and myelination. Overall, our findings indicate that LRRK2 controls OL differentiation, affecting the number of mature OLs.
Collapse
Affiliation(s)
- Alice Filippini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Elena Cannone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Valentina Mazziotti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Giulia Carini
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Veronica Mutti
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Cosetta Ravelli
- Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Massimo Gennarelli
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| | - Marco Schiavone
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
| | - Isabella Russo
- Unit of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (A.F.); (E.C.); (G.C.); (M.G.)
- IRCCS Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, Italy; (V.M.); (V.M.)
| |
Collapse
|
19
|
Helgudóttir SS, Mørkholt AS, Lichota J, Bruun-Nyzell P, Andersen MC, Kristensen NMJ, Johansen AK, Zinn MR, Jensdóttir HM, Nieland JDV. Rethinking neurodegenerative diseases: neurometabolic concept linking lipid oxidation to diseases in the central nervous system. Neural Regen Res 2024; 19:1437-1445. [PMID: 38051885 PMCID: PMC10883494 DOI: 10.4103/1673-5374.387965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 12/07/2023] Open
Abstract
ABSTRACT Currently, there is a lack of effective medicines capable of halting or reversing the progression of neurodegenerative disorders, including amyotrophic lateral sclerosis, Parkinson's disease, multiple sclerosis, or Alzheimer's disease. Given the unmet medical need, it is necessary to reevaluate the existing paradigms of how to target these diseases. When considering neurodegenerative diseases from a systemic neurometabolic perspective, it becomes possible to explain the shared pathological features. This innovative approach presented in this paper draws upon extensive research conducted by the authors and researchers worldwide. In this review, we highlight the importance of metabolic mitochondrial dysfunction in the context of neurodegenerative diseases. We provide an overview of the risk factors associated with developing neurodegenerative disorders, including genetic, epigenetic, and environmental factors. Additionally, we examine pathological mechanisms implicated in these diseases such as oxidative stress, accumulation of misfolded proteins, inflammation, demyelination, death of neurons, insulin resistance, dysbiosis, and neurotransmitter disturbances. Finally, we outline a proposal for the restoration of mitochondrial metabolism, a crucial aspect that may hold the key to facilitating curative therapeutic interventions for neurodegenerative disorders in forthcoming advancements.
Collapse
Affiliation(s)
| | | | - Jacek Lichota
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | | | - Mads Christian Andersen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Nanna Marie Juhl Kristensen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Amanda Krøger Johansen
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Mikela Reinholdt Zinn
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - Hulda Maria Jensdóttir
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John Dirk Vestergaard Nieland
- 2N Pharma ApS, NOVI Science Park, Aalborg, Denmark
- Molecular Pharmacology Group, Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| |
Collapse
|
20
|
Zacher AC, Felmy F. Anatomy of superior olivary complex and lateral lemniscus in Etruscan shrew. Sci Rep 2024; 14:14734. [PMID: 38926520 PMCID: PMC11208622 DOI: 10.1038/s41598-024-65451-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024] Open
Abstract
Based on the auditory periphery and the small head size, Etruscan shrews (Suncus etruscus) approximate ancestral mammalian conditions. The auditory brainstem in this insectivore has not been investigated. Using labelling techniques, we assessed the structures of their superior olivary complex (SOC) and the nuclei of the lateral lemniscus (NLL). There, we identified the position of the major nuclei, their input pattern, transmitter content, expression of calcium binding proteins (CaBPs) and two voltage-gated ion channels. The most prominent SOC structures were the medial nucleus of the trapezoid body (MNTB), the lateral nucleus of the trapezoid body (LNTB), the lateral superior olive (LSO) and the superior paraolivary nucleus (SPN). In the NLL, the ventral (VNLL), a specific ventrolateral VNLL (VNLLvl) cell population, the intermediate (INLL) and dorsal (DNLL) nucleus, as well as the inferior colliculus's central aspect were discerned. INLL and VNLL were clearly separated by the differential distribution of various marker proteins. Most labelled proteins showed expression patterns comparable to rodents. However, SPN neurons were glycinergic and not GABAergic and the overall CaBPs expression was low. Next to the characterisation of the Etruscan shrew's auditory brainstem, our work identifies conserved nuclei and indicates variable structures in a species that approximates ancestral conditions.
Collapse
Affiliation(s)
- Alina C Zacher
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany
- Hannover Graduate School for Neurosciences, Infection Medicine and Veterinary Sciences (HGNI), Buenteweg 2, 30559, Hannover, Germany
| | - Felix Felmy
- Institute of Zoology, University of Veterinary Medicine Foundation, Buenteweg 17, 30559, Hannover, Germany.
| |
Collapse
|
21
|
Affrald R J, Narayan S. A review: oligodendrocytes in neuronal axonal conduction and methods for enhancing their performance. Int J Neurosci 2024:1-22. [PMID: 38850232 DOI: 10.1080/00207454.2024.2362200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES This review explores the vital role of oligodendrocytes in axon myelination and efficient neuronal transmission and the impact of dysfunction resulting from neurotransmitter deficiencies related disorders. Furthermore, the review also provides insight into the potential of bionanotechnology for addressing neurodegenerative diseases by targeting oligodendrocytes. METHODS A review of literature in the field was conducted using Google scholar. Systematic searches were performed to identify relevant studies and reviews addressing the role of oligodendrocytes in neural function, the influence of neurotransmitters on oligodendrocyte differentiation, and the potential of nanotechnology-based strategies for targeted therapy of oligodendrocytes. RESULTS This review indicates the mechanisms underlying oligodendrocyte differentiation and the influence of neurotransmitters on this process. The importance of action potentials and neurotransmission in neural function and the susceptibility of damaged nerve axons to ischemic or toxic damage is provided in detail. The potential of bionanotechnology for targeting neurodegenerative diseases using nanotechnology-based strategies, including polymeric, lipid-based, inorganic, organic, and biomimetic nanoparticles, suggests better management of neurodegenerative disorders. CONCLUSION While nanotechnology-based biomaterials show promise for targeted oligodendrocyte therapy in addressing neurodegenerative disorders linked to oligodendrocyte dysfunction, encapsulating neuroprotective agents within nanoparticles offers additional advantages. Nano-based delivery systems effectively protect drugs from degradation and prolong their therapeutic effects, holding promise in overcoming the blood-brain barrier by facilitating drug transport. However, a multifaceted approach is essential to enhance oligodendrocyte differentiation, promote myelin repair, and facilitate myelin dynamics with reduced toxicity. Further research is needed to elucidate the optimal therapeutic approaches and enhance patient outcomes.
Collapse
Affiliation(s)
- Jino Affrald R
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| | - Shoba Narayan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, Tamilnadu, India
| |
Collapse
|
22
|
Chen K, Forrest AM, Burgos GG, Kozai TDY. Neuronal functional connectivity is impaired in a layer dependent manner near chronically implanted intracortical microelectrodes in C57BL6 wildtype mice. J Neural Eng 2024; 21:10.1088/1741-2552/ad5049. [PMID: 38788704 PMCID: PMC11948186 DOI: 10.1088/1741-2552/ad5049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 05/24/2024] [Indexed: 05/26/2024]
Abstract
Objective.This study aims to reveal longitudinal changes in functional network connectivity within and across different brain structures near chronically implanted microelectrodes. While it is well established that the foreign-body response (FBR) contributes to the gradual decline of the signals recorded from brain implants over time, how the FBR affects the functional stability of neural circuits near implanted brain-computer interfaces (BCIs) remains unknown. This research aims to illuminate how the chronic FBR can alter local neural circuit function and the implications for BCI decoders.Approach.This study utilized single-shank, 16-channel,100µm site-spacing Michigan-style microelectrodes (3 mm length, 703µm2 site area) that span all cortical layers and the hippocampal CA1 region. Sex balanced C57BL6 wildtype mice (11-13 weeks old) received perpendicularly implanted microelectrode in left primary visual cortex. Electrophysiological recordings were performed during both spontaneous activity and visual sensory stimulation. Alterations in neuronal activity near the microelectrode were tested assessing cross-frequency synchronization of local field potential (LFP) and spike entrainment to LFP oscillatory activity throughout 16 weeks after microelectrode implantation.Main results. The study found that cortical layer 4, the input-receiving layer, maintained activity over the implantation time. However, layers 2/3 rapidly experienced severe impairment, leading to a loss of proper intralaminar connectivity in the downstream output layers 5/6. Furthermore, the impairment of interlaminar connectivity near the microelectrode was unidirectional, showing decreased connectivity from Layers 2/3 to Layers 5/6 but not the reverse direction. In the hippocampus, CA1 neurons gradually became unable to properly entrain to the surrounding LFP oscillations.Significance. This study provides a detailed characterization of network connectivity dysfunction over long-term microelectrode implantation periods. This new knowledge could contribute to the development of targeted therapeutic strategies aimed at improving the health of the tissue surrounding brain implants and potentially inform engineering of adaptive decoders as the FBR progresses. Our study's understanding of the dynamic changes in the functional network over time opens the door to developing interventions for improving the long-term stability and performance of intracortical microelectrodes.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | - Adam M Forrest
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
| | | | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Neural Basis of Cognition, Pittsburgh, PA, United States of America
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, United States of America
- McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, United States of America
- NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, United States of America
| |
Collapse
|
23
|
Yalçın B, Pomrenze MB, Malacon K, Drexler R, Rogers AE, Shamardani K, Chau IJ, Taylor KR, Ni L, Contreras-Esquivel D, Malenka RC, Monje M. Myelin plasticity in the ventral tegmental area is required for opioid reward. Nature 2024; 630:677-685. [PMID: 38839962 PMCID: PMC11186775 DOI: 10.1038/s41586-024-07525-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 05/07/2024] [Indexed: 06/07/2024]
Abstract
All drugs of abuse induce long-lasting changes in synaptic transmission and neural circuit function that underlie substance-use disorders1,2. Another recently appreciated mechanism of neural circuit plasticity is mediated through activity-regulated changes in myelin that can tune circuit function and influence cognitive behaviour3-7. Here we explore the role of myelin plasticity in dopaminergic circuitry and reward learning. We demonstrate that dopaminergic neuronal activity-regulated myelin plasticity is a key modulator of dopaminergic circuit function and opioid reward. Oligodendroglial lineage cells respond to dopaminergic neuronal activity evoked by optogenetic stimulation of dopaminergic neurons, optogenetic inhibition of GABAergic neurons, or administration of morphine. These oligodendroglial changes are evident selectively within the ventral tegmental area but not along the axonal projections in the medial forebrain bundle nor within the target nucleus accumbens. Genetic blockade of oligodendrogenesis dampens dopamine release dynamics in nucleus accumbens and impairs behavioural conditioning to morphine. Taken together, these findings underscore a critical role for oligodendrogenesis in reward learning and identify dopaminergic neuronal activity-regulated myelin plasticity as an important circuit modification that is required for opioid reward.
Collapse
Affiliation(s)
- Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Matthew B Pomrenze
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Karen Malacon
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Richard Drexler
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Abigail E Rogers
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Isabelle J Chau
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Robert C Malenka
- Nancy Pritzker Laboratory, Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford, CA, USA.
| |
Collapse
|
24
|
Ji L, Borges BC, Martel DT, Wu C, Liberman MC, Shore SE, Corfas G. From hidden hearing loss to supranormal auditory processing by neurotrophin 3-mediated modulation of inner hair cell synapse density. PLoS Biol 2024; 22:e3002665. [PMID: 38935589 PMCID: PMC11210788 DOI: 10.1371/journal.pbio.3002665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 05/07/2024] [Indexed: 06/29/2024] Open
Abstract
Loss of synapses between spiral ganglion neurons and inner hair cells (IHC synaptopathy) leads to an auditory neuropathy called hidden hearing loss (HHL) characterized by normal auditory thresholds but reduced amplitude of sound-evoked auditory potentials. It has been proposed that synaptopathy and HHL result in poor performance in challenging hearing tasks despite a normal audiogram. However, this has only been tested in animals after exposure to noise or ototoxic drugs, which can cause deficits beyond synaptopathy. Furthermore, the impact of supernumerary synapses on auditory processing has not been evaluated. Here, we studied mice in which IHC synapse counts were increased or decreased by altering neurotrophin 3 (Ntf3) expression in IHC supporting cells. As we previously showed, postnatal Ntf3 knockdown or overexpression reduces or increases, respectively, IHC synapse density and suprathreshold amplitude of sound-evoked auditory potentials without changing cochlear thresholds. We now show that IHC synapse density does not influence the magnitude of the acoustic startle reflex or its prepulse inhibition. In contrast, gap-prepulse inhibition, a behavioral test for auditory temporal processing, is reduced or enhanced according to Ntf3 expression levels. These results indicate that IHC synaptopathy causes temporal processing deficits predicted in HHL. Furthermore, the improvement in temporal acuity achieved by increasing Ntf3 expression and synapse density suggests a therapeutic strategy for improving hearing in noise for individuals with synaptopathy of various etiologies.
Collapse
Affiliation(s)
- Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - David T. Martel
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Calvin Wu
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - M. Charles Liberman
- Mass Eye and Ear Infirmary and Harvard Medical School. Boston, Massachusetts, United States of America
| | - Susan E. Shore
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
- Biomedical Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology—Head and Neck Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
25
|
Bae HG, Wu WC, Nip K, Gould E, Kim JH. Scn2a deletion disrupts oligodendroglia function: Implication for myelination, neural circuitry, and auditory hypersensitivity in ASD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.15.589242. [PMID: 38659965 PMCID: PMC11042360 DOI: 10.1101/2024.04.15.589242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Autism spectrum disorder (ASD) is characterized by a complex etiology, with genetic determinants significantly influencing its manifestation. Among these, the Scn2a gene emerges as a pivotal player, crucially involved in both glial and neuronal functionality. This study elucidates the underexplored roles of Scn2a in oligodendrocytes, and its subsequent impact on myelination and auditory neural processes. The results reveal a nuanced interplay between oligodendrocytes and axons, where Scn2a deletion causes alterations in the intricate process of myelination. This disruption, in turn, instigates changes in axonal properties and neuronal activities at the single cell level. Furthermore, oligodendrocyte-specific Scn2a deletion compromises the integrity of neural circuitry within auditory pathways, leading to auditory hypersensitivity-a common sensory abnormality observed in ASD. Through transcriptional profiling, we identified alterations in the expression of myelin-associated genes, highlighting the cellular consequences engendered by Scn2a deletion. In summary, the findings provide unprecedented insights into the pathway from Scn2a deletion in oligodendrocytes to sensory abnormalities in ASD, underscoring the integral role of Scn2a -mediated myelination in auditory responses. This research thereby provides novel insights into the intricate tapestry of genetic and cellular interactions inherent in ASD.
Collapse
|
26
|
Khelfaoui H, Ibaceta-Gonzalez C, Angulo MC. Functional myelin in cognition and neurodevelopmental disorders. Cell Mol Life Sci 2024; 81:181. [PMID: 38615095 PMCID: PMC11016012 DOI: 10.1007/s00018-024-05222-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/18/2024] [Accepted: 03/30/2024] [Indexed: 04/15/2024]
Abstract
In vertebrates, oligodendrocytes (OLs) are glial cells of the central nervous system (CNS) responsible for the formation of the myelin sheath that surrounds the axons of neurons. The myelin sheath plays a crucial role in the transmission of neuronal information by promoting the rapid saltatory conduction of action potentials and providing neurons with structural and metabolic support. Saltatory conduction, first described in the peripheral nervous system (PNS), is now generally recognized as a universal evolutionary innovation to respond quickly to the environment: myelin helps us think and act fast. Nevertheless, the role of myelin in the central nervous system, especially in the brain, may not be primarily focused on accelerating conduction speed but rather on ensuring precision. Its principal function could be to coordinate various neuronal networks, promoting their synchronization through oscillations (or rhythms) relevant for specific information processing tasks. Interestingly, myelin has been directly involved in different types of cognitive processes relying on brain oscillations, and myelin plasticity is currently considered to be part of the fundamental mechanisms for memory formation and maintenance. However, despite ample evidence showing the involvement of myelin in cognition and neurodevelopmental disorders characterized by cognitive impairments, the link between myelin, brain oscillations, cognition and disease is not yet fully understood. In this review, we aim to highlight what is known and what remains to be explored to understand the role of myelin in high order brain processes.
Collapse
Affiliation(s)
- Hasni Khelfaoui
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Cristobal Ibaceta-Gonzalez
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France
| | - Maria Cecilia Angulo
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, 75014, Paris, France.
- GHU-PARIS Psychiatrie Et Neurosciences, Hôpital Sainte Anne, 75014, Paris, France.
| |
Collapse
|
27
|
Smandri A, Al-Masawa ME, Hwei NM, Fauzi MB. ECM-derived biomaterials for regulating tissue multicellularity and maturation. iScience 2024; 27:109141. [PMID: 38405613 PMCID: PMC10884934 DOI: 10.1016/j.isci.2024.109141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Recent breakthroughs in developing human-relevant organotypic models led to the building of highly resemblant tissue constructs that hold immense potential for transplantation, drug screening, and disease modeling. Despite the progress in fine-tuning stem cell multilineage differentiation in highly controlled spatiotemporal conditions and hosting microenvironments, 3D models still experience naive and incomplete morphogenesis. In particular, existing systems and induction protocols fail to maintain stem cell long-term potency, induce high tissue-level multicellularity, or drive the maturity of stem cell-derived 3D models to levels seen in their in vivo counterparts. In this review, we highlight the use of extracellular matrix (ECM)-derived biomaterials in providing stem cell niche-mimicking microenvironment capable of preserving stem cell long-term potency and inducing spatial and region-specific differentiation. We also examine the maturation of different 3D models, including organoids, encapsulated in ECM biomaterials and provide looking-forward perspectives on employing ECM biomaterials in building more innovative, transplantable, and functional organs.
Collapse
Affiliation(s)
- Ali Smandri
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Maimonah Eissa Al-Masawa
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Ng Min Hwei
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| | - Mh Busra Fauzi
- Centre for Tissue Engineering and Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
28
|
Luo Y, Wang Z. The Impact of Microglia on Neurodevelopment and Brain Function in Autism. Biomedicines 2024; 12:210. [PMID: 38255315 PMCID: PMC10813633 DOI: 10.3390/biomedicines12010210] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/29/2023] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Microglia, as one of the main types of glial cells in the central nervous system (CNS), are widely distributed throughout the brain and spinal cord. The normal number and function of microglia are very important for maintaining homeostasis in the CNS. In recent years, scientists have paid widespread attention to the role of microglia in the CNS. Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder, and patients with ASD have severe deficits in behavior, social skills, and communication. Most previous studies on ASD have focused on neuronal pathological changes, such as increased cell proliferation, accelerated neuronal differentiation, impaired synaptic development, and reduced neuronal spontaneous and synchronous activity. Currently, more and more research has found that microglia, as immune cells, can promote neurogenesis and synaptic pruning to maintain CNS homeostasis. They can usually reduce unnecessary synaptic connections early in life. Some researchers have proposed that many pathological phenotypes of ASD may be caused by microglial abnormalities. Based on this, we summarize recent research on microglia in ASD, focusing on the function of microglia and neurodevelopmental abnormalities. We aim to clarify the essential factors influenced by microglia in ASD and explore the possibility of microglia-related pathways as potential research targets for ASD.
Collapse
Affiliation(s)
- Yuyi Luo
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| | - Zhengbo Wang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming 650500, China;
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming 650500, China
| |
Collapse
|
29
|
Adeck A, Millwater M, Bragg C, Zhang R, SheikhBahaei S. Morphological deficits of glial cells in a transgenic mouse model for developmental stuttering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.04.574051. [PMID: 38260402 PMCID: PMC10802298 DOI: 10.1101/2024.01.04.574051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Vocal production involves intricate neural coordination across various brain regions. Stuttering, a common speech disorder, has genetic underpinnings, including mutations in lysosomal-targeting pathway genes. Using a Gnptab-mutant mouse model linked to stuttering, we examined neuron and glial cell morphology in vocal production circuits. Our findings revealed altered astrocyte and microglia processes in these circuits in Gnptab-mutant mice, while control regions remained unaffected. Our results shed light on the potential role of glial cells in stuttering pathophysiology and highlight their relevance in modulating vocal production behaviors.
Collapse
|
30
|
Nelson MC, Royer J, Lu WD, Leppert IR, Campbell JSW, Schiavi S, Jin H, Tavakol S, Vos de Wael R, Rodriguez-Cruces R, Pike GB, Bernhardt BC, Daducci A, Misic B, Tardif CL. The human brain connectome weighted by the myelin content and total intra-axonal cross-sectional area of white matter tracts. Netw Neurosci 2023; 7:1363-1388. [PMID: 38144691 PMCID: PMC10697181 DOI: 10.1162/netn_a_00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/19/2023] [Indexed: 12/26/2023] Open
Abstract
A central goal in neuroscience is the development of a comprehensive mapping between structural and functional brain features, which facilitates mechanistic interpretation of brain function. However, the interpretability of structure-function brain models remains limited by a lack of biological detail. Here, we characterize human structural brain networks weighted by multiple white matter microstructural features including total intra-axonal cross-sectional area and myelin content. We report edge-weight-dependent spatial distributions, variance, small-worldness, rich club, hubs, as well as relationships with function, edge length, and myelin. Contrasting networks weighted by the total intra-axonal cross-sectional area and myelin content of white matter tracts, we find opposite relationships with functional connectivity, an edge-length-independent inverse relationship with each other, and the lack of a canonical rich club in myelin-weighted networks. When controlling for edge length, networks weighted by either fractional anisotropy, radial diffusivity, or neurite density show no relationship with whole-brain functional connectivity. We conclude that the co-utilization of structural networks weighted by total intra-axonal cross-sectional area and myelin content could improve our understanding of the mechanisms mediating the structure-function brain relationship.
Collapse
Affiliation(s)
- Mark C. Nelson
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jessica Royer
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Wen Da Lu
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Ilana R. Leppert
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Jennifer S. W. Campbell
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Hyerang Jin
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Shahin Tavakol
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Reinder Vos de Wael
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Raul Rodriguez-Cruces
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - G. Bruce Pike
- Hotchkiss Brain Institute and Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Canada
| | - Boris C. Bernhardt
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | | | - Bratislav Misic
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
| | - Christine L. Tardif
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, Montreal, QC, Canada
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| |
Collapse
|
31
|
Fiore F, Alhalaseh K, Dereddi RR, Bodaleo Torres F, Çoban I, Harb A, Agarwal A. Norepinephrine regulates calcium signals and fate of oligodendrocyte precursor cells in the mouse cerebral cortex. Nat Commun 2023; 14:8122. [PMID: 38065932 PMCID: PMC10709653 DOI: 10.1038/s41467-023-43920-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Oligodendrocyte precursor cells (OPCs) generate oligodendrocytes, contributing to myelination and myelin repair. OPCs contact axons and respond to neuronal activity, but how the information relayed by the neuronal activity translates into OPC Ca2+ signals, which in turn influence their fate, remains unknown. We generated transgenic mice for concomitant monitoring of OPCs Ca2+ signals and cell fate using 2-photon microscopy in the somatosensory cortex of awake-behaving mice. Ca2+ signals in OPCs mainly occur within processes and confine to Ca2+ microdomains. A subpopulation of OPCs enhances Ca2+ transients while mice engaged in exploratory locomotion. We found that OPCs responsive to locomotion preferentially differentiate into oligodendrocytes, and locomotion-non-responsive OPCs divide. Norepinephrine mediates locomotion-evoked Ca2+ increases in OPCs by activating α1 adrenergic receptors, and chemogenetic activation of OPCs or noradrenergic neurons promotes OPC differentiation. Hence, we uncovered that for fate decisions OPCs integrate Ca2+ signals, and norepinephrine is a potent regulator of OPC fate.
Collapse
Affiliation(s)
- Frederic Fiore
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Khaleel Alhalaseh
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ram R Dereddi
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Felipe Bodaleo Torres
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Ilknur Çoban
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany
| | - Ali Harb
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Amit Agarwal
- The Chica and Heinz Schaller Research Group, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany.
- Interdisciplinary Center for Neurosciences, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
32
|
Réus GZ, Manosso LM, Quevedo J, Carvalho AF. Major depressive disorder as a neuro-immune disorder: Origin, mechanisms, and therapeutic opportunities. Neurosci Biobehav Rev 2023; 155:105425. [PMID: 37852343 DOI: 10.1016/j.neubiorev.2023.105425] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/16/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Notwithstanding advances in understanding the pathophysiology of major depressive disorder (MDD), no single mechanism can explain all facets of this disorder. An expanding body of evidence indicates a putative role for the inflammatory response. Several meta-analyses showed an increase in systemic peripheral inflammatory markers in individuals with MDD. Numerous conditions and circumstances in the modern world may promote chronic systemic inflammation through mechanisms, including alterations in the gut microbiota. Peripheral cytokines may reach the brain and contribute to neuroinflammation through cellular, humoral, and neural pathways. On the other hand, antidepressant drugs may decrease peripheral levels of inflammatory markers. Anti-inflammatory drugs and nutritional strategies that reduce inflammation also could improve depressive symptoms. The present study provides a critical review of recent advances in the role of inflammation in the pathophysiology of MDD. Furthermore, this review discusses the role of glial cells and the main drivers of changes associated with neuroinflammation. Finally, we highlight possible novel neurotherapeutic targets for MDD that could exert antidepressant effects by modulating inflammation.
Collapse
Affiliation(s)
- Gislaine Z Réus
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil.
| | - Luana M Manosso
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - João Quevedo
- Translational Psychiatry Laboratory, Graduate Program in Health Sciences, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil; Center of Excellence on Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA
| | - André F Carvalho
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada; Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| |
Collapse
|
33
|
Li H, Jacob MA, Cai M, Duering M, Chamberland M, Norris DG, Kessels RPC, de Leeuw FE, Marques JP, Tuladhar AM. Regional cortical thinning, demyelination and iron loss in cerebral small vessel disease. Brain 2023; 146:4659-4673. [PMID: 37366338 PMCID: PMC10629800 DOI: 10.1093/brain/awad220] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/07/2023] [Accepted: 06/11/2023] [Indexed: 06/28/2023] Open
Abstract
The link between white matter hyperintensities (WMH) and cortical thinning is thought to be an important pathway by which WMH contributes to cognitive deficits in cerebral small vessel disease (SVD). However, the mechanism behind this association and the underlying tissue composition abnormalities are unclear. The objective of this study is to determine the association between WMH and cortical thickness, and the in vivo tissue composition abnormalities in the WMH-connected cortical regions. In this cross-sectional study, we included 213 participants with SVD who underwent standardized protocol including multimodal neuroimaging scans and cognitive assessment (i.e. processing speed, executive function and memory). We identified the cortex connected to WMH using probabilistic tractography starting from the WMH and defined the WMH-connected regions at three connectivity levels (low, medium and high connectivity level). We calculated the cortical thickness, myelin and iron of the cortex based on T1-weighted, quantitative R1, R2* and susceptibility maps. We used diffusion-weighted imaging to estimate the mean diffusivity of the connecting white matter tracts. We found that cortical thickness, R1, R2* and susceptibility values in the WMH-connected regions were significantly lower than in the WMH-unconnected regions (all Pcorrected < 0.001). Linear regression analyses showed that higher mean diffusivity of the connecting white matter tracts were related to lower thickness (β = -0.30, Pcorrected < 0.001), lower R1 (β = -0.26, Pcorrected = 0.001), lower R2* (β = -0.32, Pcorrected < 0.001) and lower susceptibility values (β = -0.39, Pcorrected < 0.001) of WMH-connected cortical regions at high connectivity level. In addition, lower scores on processing speed were significantly related to lower cortical thickness (β = 0.20, Pcorrected = 0.030), lower R1 values (β = 0.20, Pcorrected = 0.006), lower R2* values (β = 0.29, Pcorrected = 0.006) and lower susceptibility values (β = 0.19, Pcorrected = 0.024) of the WMH-connected regions at high connectivity level, independent of WMH volumes and the cortical measures of WMH-unconnected regions. Together, our study demonstrated that the microstructural integrity of white matter tracts passing through WMH is related to the regional cortical abnormalities as measured by thickness, R1, R2* and susceptibility values in the connected cortical regions. These findings are indicative of cortical thinning, demyelination and iron loss in the cortex, which is most likely through the disruption of the connecting white matter tracts and may contribute to processing speed impairment in SVD, a key clinical feature of SVD. These findings may have implications for finding intervention targets for the treatment of cognitive impairment in SVD by preventing secondary degeneration.
Collapse
Affiliation(s)
- Hao Li
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mina A Jacob
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Mengfei Cai
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 510080 Guangzhou, China
| | - Marco Duering
- Medical Image Analysis Center (MIAC AG) and Department of Biomedical Engineering, University of Basel, 4051 Basel, Switzerland
- LMU Munich, University Hospital, Institute for Stroke and Dementia Research (ISD), 81377 Munich, Germany
| | - Maxime Chamberland
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Roy P C Kessels
- Department of Medical Psychology and Radboudumc Alzheimer Center, Radboud University Medical Center, 6525 GC, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
- Vincent van Gogh Institute for Psychiatry, 5803 AC Venray, The Netherlands
| | - Frank-Erik de Leeuw
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - José P Marques
- Donders Institute for Brain, Cognition and Behaviour, Center for Cognitive Neuroimaging, Radboud University, 6525 EN Nijmegen, The Netherlands
| | - Anil M Tuladhar
- Department of Neurology, Donders Center for Medical Neurosciences, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
34
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [PMID: 37899464 PMCID: PMC10614412 DOI: 10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 10/31/2023] Open
Abstract
OBJECTIVE There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account. METHOD In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4-7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC. RESULTS We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed. CONCLUSION This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern. Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 ( https://clinicaltrials.gov/ct2/show/NCT02807766 ).
Collapse
Affiliation(s)
- Xinyue Huang
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yating Ming
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Weixing Zhao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Rui Feng
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Yuanyue Zhou
- Department of Medical Psychology, The First Affiliated Hospital, Hainan Medical University, Haikou, 571199, Hainan, People's Republic of China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, 150086, People's Republic of China
| | - Jinming Xiao
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Lei Li
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Xiaolong Shan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China
| | - Jing Cao
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Xiaodong Kang
- Child Rehabilitation Unit, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of TCM, Sichuan Bayi Rehabilitation Center, Chengdu, 611135, People's Republic of China
| | - Huafu Chen
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| | - Xujun Duan
- The Clinical Hospital of Chengdu Brain Science Institute, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
- MOE Key Lab for Neuro Information, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, 610054, People's Republic of China.
| |
Collapse
|
35
|
Huang X, Ming Y, Zhao W, Feng R, Zhou Y, Wu L, Wang J, Xiao J, Li L, Shan X, Cao J, Kang X, Chen H, Duan X. Developmental prediction modeling based on diffusion tensor imaging uncovering age-dependent heterogeneity in early childhood autistic brain. Mol Autism 2023; 14:41. [DOI: https:/doi.org/10.1186/s13229-023-00573-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/22/2023] [Indexed: 04/08/2025] Open
Abstract
Abstract
Objective
There has been increasing evidence for atypical white matter (WM) microstructure in autistic people, but findings have been divergent. The development of autistic people in early childhood is clouded by the concurrently rapid brain growth, which might lead to the inconsistent findings of atypical WM microstructure in autism. Here, we aimed to reveal the developmental nature of autistic children and delineate atypical WM microstructure throughout early childhood while taking developmental considerations into account.
Method
In this study, diffusion tensor imaging was acquired from two independent cohorts, containing 91 autistic children and 100 typically developing children (TDC), aged 4–7 years. Developmental prediction modeling using support vector regression based on TDC participants was conducted to estimate the WM atypical development index of autistic children. Then, subgroups of autistic children were identified by using the k-means clustering method and were compared to each other on the basis of demographic information, WM atypical development index, and autistic trait by using two-sample t-test. Relationship of the WM atypical development index with age was estimated by using partial correlation. Furthermore, we performed threshold-free cluster enhancement-based two-sample t-test for the group comparison in WM microstructures of each subgroup of autistic children with the rematched subsets of TDC.
Results
We clustered autistic children into two subgroups according to WM atypical development index. The two subgroups exhibited distinct developmental stages and age-dependent diversity. WM atypical development index was found negatively associated with age. Moreover, an inverse pattern of atypical WM microstructures and different clinical manifestations in the two stages, with subgroup 1 showing overgrowth with low level of autistic traits and subgroup 2 exhibiting delayed maturation with high level of autistic traits, were revealed.
Conclusion
This study illustrated age-dependent heterogeneity in early childhood autistic children and delineated developmental stage-specific difference that ranged from an overgrowth pattern to a delayed pattern.
Trial registration This study has been registered at ClinicalTrials.gov (Identifier: NCT02807766) on June 21, 2016 (https://clinicaltrials.gov/ct2/show/NCT02807766).
Collapse
|
36
|
Khan MAS, Chang SL. Alcohol and the Brain-Gut Axis: The Involvement of Microglia and Enteric Glia in the Process of Neuro-Enteric Inflammation. Cells 2023; 12:2475. [PMID: 37887319 PMCID: PMC10605902 DOI: 10.3390/cells12202475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Binge or chronic alcohol consumption causes neuroinflammation and leads to alcohol use disorder (AUD). AUD not only affects the central nervous system (CNS) but also leads to pathologies in the peripheral and enteric nervous systems (ENS). Thus, understanding the mechanism of the immune signaling to target the effector molecules in the signaling pathway is necessary to alleviate AUD. Growing evidence shows that excessive alcohol consumption can activate neuroimmune cells, including microglia, and change the status of neurotransmitters, affecting the neuroimmune system. Microglia, like peripheral macrophages, are an integral part of the immune defense and represent the reticuloendothelial system in the CNS. Microglia constantly survey the CNS to scavenge the neuronal debris. These cells also protect parenchymal cells in the brain and spinal cord by repairing nerve circuits to keep the nervous system healthy against infectious and stress-derived agents. In an activated state, they become highly dynamic and mobile and can modulate the levels of neurotransmitters in the CNS. In several ways, microglia, enteric glial cells, and macrophages are similar in terms of causing inflammation. Microglia also express most of the receptors that are constitutively present in macrophages. Several receptors on microglia respond to the inflammatory signals that arise from danger-associated molecular patterns (DAMPs), pathogen-associated molecular patterns (PAMPs), endotoxins (e.g., lipopolysaccharides), and stress-causing molecules (e.g., alcohol). Therefore, this review article presents the latest findings, describing the roles of microglia and enteric glial cells in the brain and gut, respectively, and their association with neurotransmitters, neurotrophic factors, and receptors under the influence of binge and chronic alcohol use, and AUD.
Collapse
Affiliation(s)
- Mohammed A. S. Khan
- Department of Neurosurgery, Brigham Hospital for Children, Harvard Medical School, Boston, MA 02115, USA;
| | - Sulie L. Chang
- Institute of NeuroImmune Pharmacology, Seton Hall University, South Orange, NJ 07079, USA
- Department of Biological Sciences, Seton Hall University, South Orange, NJ 07079, USA
| |
Collapse
|
37
|
Sanadgol N, Miraki Feriz A, Lisboa SF, Joca SRL. Putative role of glial cells in treatment resistance depression: An updated critical literation review and evaluation of single-nuclei transcriptomics data. Life Sci 2023; 331:122025. [PMID: 37574044 DOI: 10.1016/j.lfs.2023.122025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 08/01/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
AIMS Major depressive disorder (MDD) is a prevalent global mental illness with diverse underlying causes. Despite the availability of first-line antidepressants, approximately 10-30 % of MDD patients do not respond to these medications, falling into the category of treatment-resistant depression (TRD). Our study aimed to elucidate the precise molecular mechanisms through which glial cells contribute to depression-like episodes in TRD. MATERIALS AND METHODS We conducted a comprehensive literature search using the PubMed and Scopus electronic databases with search terms carefully selected to be specific to our topic. We strictly followed inclusion and exclusion criteria during the article selection process, adhering to PRISMA guidelines. Additionally, we carried out an in-depth analysis of postmortem brain tissue obtained from patients with TRD using single-nucleus transcriptomics (sn-RNAseq). KEY FINDINGS Our data confirmed the involvement of multiple glia-specific markers (25 genes) associated with TRD. These differentially expressed genes (DEGs) primarily regulate cytokine signaling, and they are enriched in important pathways such as NFκB and TNF-α. Notably, DEGs showed significant interactions with the transcription factor CREB1. sn-RNAseq analysis confirmed dysregulation of nearly all designated DEGs; however, only Cx30/43, AQP4, S100β, and TNF-αR1 were significantly downregulated in oligodendrocytes (OLGs) of TRD patients. With further exploration, we identified the GLT-1 in OLGs as a hub gene involved in TRD. SIGNIFICANCE Our findings suggest that glial dysregulation may hinder the effectiveness of existing therapies for TRD. By targeting specific glial-based genes, we could develop novel interventions with minimal adverse side effects, providing new hope for TRD patients who currently experience limited benefits from invasive treatments.
Collapse
Affiliation(s)
- Nima Sanadgol
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Institute of Neuroanatomy, RWTH University Hospital Aachen, Aachen, Germany.
| | - Adib Miraki Feriz
- Student Research Committee, Birjand University of Medical Sciences, Birjand, Iran
| | - Sabrina F Lisboa
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Sâmia R L Joca
- Department of Biomolecular Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil; Department of Biomedicine, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
38
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. Biomaterials 2023; 301:122210. [PMID: 37413842 PMCID: PMC10528716 DOI: 10.1016/j.biomaterials.2023.122210] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 07/08/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over the chronic implantation period. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period.
Collapse
Affiliation(s)
- Keying Chen
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA
| | - Franca Cambi
- Veterans Administration Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Center for Neural Basis of Cognition, Pittsburgh, PA, USA; Center for Neuroscience, University of Pittsburgh, Pittsburgh, PA, USA; McGowan Institute of Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA; NeuroTech Center, University of Pittsburgh Brain Institute, Pittsburgh, PA, USA.
| |
Collapse
|
39
|
Pantoja IEM, Ding L, Leite PEC, Marques SA, Romero JC, Din DMAE, Zack DJ, Chamling X, Smirnova L. A novel approach to increase glial cell populations in brain microphysiological systems. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557775. [PMID: 37745321 PMCID: PMC10515937 DOI: 10.1101/2023.09.14.557775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Brain microphysiological systems (bMPS), which recapitulate human brain cellular architecture and functionality more closely than traditional monolayer cultures, have become a practical, non-invasive, and increasingly relevant platform for the study of neurological function in health and disease. These models include 3D spheroids and organoids as well as organ-on-chip models. Currently, however, existing 3D brain models vary in reflecting the relative populations of the different cell types present in the human brain. Most of the models consist mainly of neurons, while glial cells represent a smaller portion of the cell populations. Here, by means of a chemically defined glial-enriched medium (GEM), we present an improved method to expand the population of astrocytes and oligodendrocytes without compromising neuronal differentiation in bMPS. An important finding is that astrocytes not only increased in number but also changed in morphology when cultured in GEM, more closely recapitulating primary culture astrocytes. We demonstrate oligodendrocyte and astrocyte enrichment in GEM bMPS using a variety of complementary methods. We found that GEM bMPS are electro-chemically active and showed different patterns of Ca +2 staining and flux. Synaptic vesicles and terminals observed by electron microscopy were also present. No significant changes in neuronal differentiation were observed by gene expression, however, GEM enhanced neurite outgrowth and cell migration, and differentially modulated neuronal maturation in two different iPSC lines. Our results have the potential to significantly improve in vivo-like functionality of bMPS for the study of neurological diseases and drug discovery, contributing to the unmet need for safe human models.
Collapse
|
40
|
Lemcke R, Egebjerg C, Berendtsen NT, Egerod KL, Thomsen AR, Pers TH, Christensen JP, Kornum BR. Molecular consequences of peripheral Influenza A infection on cell populations in the murine hypothalamus. eLife 2023; 12:RP87515. [PMID: 37698546 PMCID: PMC10497288 DOI: 10.7554/elife.87515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Infection with Influenza A virus (IAV) causes the well-known symptoms of the flu, including fever, loss of appetite, and excessive sleepiness. These responses, mediated by the brain, will normally disappear once the virus is cleared from the system, but a severe respiratory virus infection may cause long-lasting neurological disturbances. These include encephalitis lethargica and narcolepsy. The mechanisms behind such long lasting changes are unknown. The hypothalamus is a central regulator of the homeostatic response during a viral challenge. To gain insight into the neuronal and non-neuronal molecular changes during an IAV infection, we intranasally infected mice with an H1N1 virus and extracted the brain at different time points. Using single-nucleus RNA sequencing (snRNA-seq) of the hypothalamus, we identify transcriptional effects in all identified cell populations. The snRNA-seq data showed the most pronounced transcriptional response at 3 days past infection, with a strong downregulation of genes across all cell types. General immune processes were mainly impacted in microglia, the brain resident immune cells, where we found increased numbers of cells expressing pro-inflammatory gene networks. In addition, we found that most neuronal cell populations downregulated genes contributing to the energy homeostasis in mitochondria and protein translation in the cytosol, indicating potential reduced cellular and neuronal activity. This might be a preventive mechanism in neuronal cells to avoid intracellular viral replication and attack by phagocytosing cells. The change of microglia gene activity suggest that this is complemented by a shift in microglia activity to provide increased surveillance of their surroundings.
Collapse
Affiliation(s)
- René Lemcke
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Christine Egebjerg
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Nicolai T Berendtsen
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Kristoffer L Egerod
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Allan R Thomsen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Tune H Pers
- Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Jan P Christensen
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| | - Birgitte R Kornum
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
41
|
Hu J, Ji Y, Lang X, Zhang XY. Prevalence and clinical correlates of abnormal lipid metabolism in first-episode and drug-naïve patients with major depressive disorder: A large-scale cross-sectional study. J Psychiatr Res 2023; 163:55-62. [PMID: 37201238 DOI: 10.1016/j.jpsychires.2023.05.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/03/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023]
Abstract
OBJECTIVE Studies have shown an association between abnormal lipid profiles and MDD, but there are few studies on the clinical correlates of lipid abnormalities in patients with major depressive disorder (MDD). The purpose of this study was to investigate the prevalence of abnormal lipid metabolism and its correlates in Chinese first-episode and drug-naïve MDD patients, which has not yet been reported. METHODS A total of 1718 outpatients with first-episode and drug-naïve MDD were included. Demographic data were collected by a standardized questionnaire and blood lipid levels were measured, including total cholesterol (TC), triglyceride (TG), low density lipoprotein (LDL-C), high density lipoprotein (HDL-C). The Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Positive and Negative Syndrome Scale (PANSS) positive subscale, and Clinical Global Impression of Severity Scale (CGI-S) were assessed for each patient. RESULTS The prevalence of abnormal lipid metabolism was 72.73% (1301/1718), and the rates of high TC, high TG, high LDL-C and low HDL-C were 51.05% (877/1718), 61.18% (1051/1718), 30.09% (517/1718), 23.40% (402/1718), respectively. Logistic regression showed the risk factors for abnormal lipid metabolism were severe anxiety, HAMD score, CGI-S score, BMI and systolic blood pressure (SBP). Multiple linear regression analysis showed that age at onset, SBP, HAMD score, HAMA score, PANSS positive subscale score, and CGI-S were independently associated with TC levels. BMI, HAMD score, PANSS positive subscale score and CGI-S score were independently associated with TG levels. SBP, HAMD score, PANSS positive subscale score and CGI-S score were independently associated with LDL-C levels. Age of onset, SBP and CGI-S score were independently associated with HDL-C levels. CONCLUSIONS The prevalence of abnormal lipid metabolism in first-episode and drug-naïve MDD patients is quite high. The severity of psychiatric symptoms may be closely associated with the presence of abnormal lipid metabolism in patients with MDD.
Collapse
Affiliation(s)
- Jieqiong Hu
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - Yunxin Ji
- Department of Psychosomatic Medicine, Ningbo First Hospital, Ningbo, Zhejiang, China
| | - XiaoE Lang
- Department of Psychiatry, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiang-Yang Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
42
|
Schäffner E, Bosch-Queralt M, Edgar JM, Lehning M, Strauß J, Fleischer N, Kungl T, Wieghofer P, Berghoff SA, Reinert T, Krueger M, Morawski M, Möbius W, Barrantes-Freer A, Stieler J, Sun T, Saher G, Schwab MH, Wrede C, Frosch M, Prinz M, Reich DS, Flügel A, Stadelmann C, Fledrich R, Nave KA, Stassart RM. Myelin insulation as a risk factor for axonal degeneration in autoimmune demyelinating disease. Nat Neurosci 2023; 26:1218-1228. [PMID: 37386131 PMCID: PMC10322724 DOI: 10.1038/s41593-023-01366-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 05/17/2023] [Indexed: 07/01/2023]
Abstract
Axonal degeneration determines the clinical outcome of multiple sclerosis and is thought to result from exposure of denuded axons to immune-mediated damage. Therefore, myelin is widely considered to be a protective structure for axons in multiple sclerosis. Myelinated axons also depend on oligodendrocytes, which provide metabolic and structural support to the axonal compartment. Given that axonal pathology in multiple sclerosis is already visible at early disease stages, before overt demyelination, we reasoned that autoimmune inflammation may disrupt oligodendroglial support mechanisms and hence primarily affect axons insulated by myelin. Here, we studied axonal pathology as a function of myelination in human multiple sclerosis and mouse models of autoimmune encephalomyelitis with genetically altered myelination. We demonstrate that myelin ensheathment itself becomes detrimental for axonal survival and increases the risk of axons degenerating in an autoimmune environment. This challenges the view of myelin as a solely protective structure and suggests that axonal dependence on oligodendroglial support can become fatal when myelin is under inflammatory attack.
Collapse
Affiliation(s)
- Erik Schäffner
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Mar Bosch-Queralt
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Julia M Edgar
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Institute of Infection, Immunity and Inflammation, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, UK
| | - Maria Lehning
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Judith Strauß
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Niko Fleischer
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Theresa Kungl
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Peter Wieghofer
- Institute of Anatomy, Leipzig University, Leipzig, Germany
- Cellular Neuroanatomy, Institute of Theoretical Medicine, Medical Faculty, University of Augsburg, Augsburg, Germany
| | - Stefan A Berghoff
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Tilo Reinert
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Martin Krueger
- Institute of Anatomy, Leipzig University, Leipzig, Germany
| | - Markus Morawski
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Wiebke Möbius
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | | | - Jens Stieler
- Paul Flechsig Institute of Brain Research, Leipzig University, Leipzig, Germany
| | - Ting Sun
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Gesine Saher
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Markus H Schwab
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany
| | - Christoph Wrede
- Institute of Functional and Applied Anatomy, Research Core Unit Electron Microscopy, Hannover Medical School, Hannover, Germany
| | - Maximilian Frosch
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
- Centre for NeuroModulation (NeuroModBasics), University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexander Flügel
- Institute of Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Christine Stadelmann
- Institute of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Fledrich
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Institute of Anatomy, Leipzig University, Leipzig, Germany.
| | - Klaus-Armin Nave
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Ruth M Stassart
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Paul Flechsig Institute of Neuropathology, University Clinic Leipzig, Leipzig, Germany.
| |
Collapse
|
43
|
Qi C, Feng Y, Jiang Y, Chen W, Vakal S, Chen JF, Zheng W. A 2AR antagonist treatment for multiple sclerosis: Current progress and future prospects. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2023; 170:185-223. [PMID: 37741692 DOI: 10.1016/bs.irn.2023.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2023]
Abstract
Emerging evidence suggests that both selective and non-selective Adenosine A2A receptor (A2AR) antagonists could effectively protect mice from experimental autoimmune encephalomyelitis (EAE), which is the most commonly used animal model for multiple sclerosis (MS) research. Meanwhile, the recent FDA approval of Nourianz® (istradefylline) in 2019 as an add-on treatment to levodopa in Parkinson's disease (PD) with "OFF" episodes, along with its proven clinical safety, has prompted us to explore the potential of A2AR antagonists in treating multiple sclerosis (MS) through clinical trials. However, despite promising findings in experimental autoimmune encephalomyelitis (EAE), the complex and contradictory role of A2AR signaling in EAE pathology has raised concerns about the feasibility of using A2AR antagonists as a therapeutic approach for MS. This review addresses the potential effect of A2AR antagonists on EAE/MS in both the peripheral immune system (PIS) and the central nervous system (CNS). In brief, A2AR antagonists had a moderate effect on the proliferation and inflammatory response, while exhibiting a potent anti-inflammatory effect in the CNS through their impact on microglia, astrocytes, and the endothelial cells/epithelium of the blood-brain barrier. Consequently, A2AR signaling remains an essential immunomodulator in EAE/MS, suggesting that A2AR antagonists hold promise as a drug class for treating MS.
Collapse
Affiliation(s)
- Chenxing Qi
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Yijia Feng
- Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, P.R. China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Serhii Vakal
- Structural Bioinformatics Laboratory, Biochemistry, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - Jiang-Fan Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China
| | - Wu Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China; Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, P.R. China.
| |
Collapse
|
44
|
Li S, Sheng ZH. Oligodendrocyte-derived transcellular signaling regulates axonal energy metabolism. Curr Opin Neurobiol 2023; 80:102722. [PMID: 37028201 PMCID: PMC10225329 DOI: 10.1016/j.conb.2023.102722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/28/2023] [Accepted: 03/07/2023] [Indexed: 04/08/2023]
Abstract
The unique morphology and functionality of central nervous system (CNS) neurons necessitate specialized mechanisms to maintain energy metabolism throughout long axons and extensive terminals. Oligodendrocytes (OLs) enwrap CNS axons with myelin sheaths in a multilamellar fashion. Apart from their well-established function in action potential propagation, OLs also provide intercellular metabolic support to axons by transferring energy metabolites and delivering exosomes consisting of proteins, lipids, and RNAs. OL-derived metabolic support is crucial for the maintenance of axonal integrity; its dysfunction has emerged as an important player in neurological disorders that are associated with axonal energy deficits and degeneration. In this review, we discuss recent advances in how these transcellular signaling pathways maintain axonal energy metabolism in health and neurological disorders.
Collapse
Affiliation(s)
- Sunan Li
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA. https://twitter.com/@sunan_li
| | - Zu-Hang Sheng
- Synaptic Function Section, The Porter Neuroscience Research Center, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Room 2B-215, 35 Convent Drive, Bethesda, MD 20892-3706, USA.
| |
Collapse
|
45
|
Ma J, Chen T, Wang R. Astragaloside IV ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway. Neurochem Int 2023; 167:105535. [PMID: 37209830 DOI: 10.1016/j.neuint.2023.105535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/08/2023] [Accepted: 04/23/2023] [Indexed: 05/22/2023]
Abstract
Subcortical ischemic vascular dementia (SIVD), which is caused by chronic cerebral hypoperfusion, is a common subtype of vascular dementia, accompanied by white matter damage and cognitive impairment. Currently, there are no effective treatments for this condition. Oxidative stress is a key factor in the pathogenesis of white matter damage. Astragaloside IV (AS-IV), one of the main active components of astragaloside, has antioxidant properties and promotes cognitive improvement; however, its effect on SIVD and its potential mechanism remain unknown. We aimed to clarify whether AS-IV had a protective effect against SIVD injury caused by right unilateral common carotid artery occlusion and the underlying mechanism. The results showed that AS-IV treatment improved cognitive function and white matter damage, inhibited oxidative stress and glial cells activation, and promoted the survival of mature oligodendrocytes after chronic cerebral hypoperfusion. Moreover, the protein expression levels of NQO1, HO-1, SIRT1 and Nrf2 were increased by AS-IV treatment. However, pre-treatment with EX-527, a SIRT1-specific inhibitor, eliminated the beneficial effects of AS-IV. These results demonstrate that AS-IV plays a neuroprotective role in SIVD by suppressing oxidative stress and increasing the number of mature oligodendrocytes via the modulation of SIRT1/Nrf2 signaling. Our results support AS-IV as a potential therapeutic agent for SIVD.
Collapse
Affiliation(s)
- Jing Ma
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China
| | - Ting Chen
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| | - Ranran Wang
- Department of Pharmacy, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200092, PR China.
| |
Collapse
|
46
|
Kapell H, Fazio L, Dyckow J, Schwarz S, Cruz-Herranz A, Mayer C, Campos J, D’Este E, Möbius W, Cordano C, Pröbstel AK, Gharagozloo M, Zulji A, Narayanan Naik V, Delank A, Cerina M, Müntefering T, Lerma-Martin C, Sonner JK, Sin JH, Disse P, Rychlik N, Sabeur K, Chavali M, Srivastava R, Heidenreich M, Fitzgerald KC, Seebohm G, Stadelmann C, Hemmer B, Platten M, Jentsch TJ, Engelhardt M, Budde T, Nave KA, Calabresi PA, Friese MA, Green AJ, Acuna C, Rowitch DH, Meuth SG, Schirmer L. Neuron-oligodendrocyte potassium shuttling at nodes of Ranvier protects against inflammatory demyelination. J Clin Invest 2023; 133:e164223. [PMID: 36719741 PMCID: PMC10065072 DOI: 10.1172/jci164223] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/27/2023] [Indexed: 02/01/2023] Open
Abstract
Multiple sclerosis (MS) is a progressive inflammatory demyelinating disease of the CNS. Increasing evidence suggests that vulnerable neurons in MS exhibit fatal metabolic exhaustion over time, a phenomenon hypothesized to be caused by chronic hyperexcitability. Axonal Kv7 (outward-rectifying) and oligodendroglial Kir4.1 (inward-rectifying) potassium channels have important roles in regulating neuronal excitability at and around the nodes of Ranvier. Here, we studied the spatial and functional relationship between neuronal Kv7 and oligodendroglial Kir4.1 channels and assessed the transcriptional and functional signatures of cortical and retinal projection neurons under physiological and inflammatory demyelinating conditions. We found that both channels became dysregulated in MS and experimental autoimmune encephalomyelitis (EAE), with Kir4.1 channels being chronically downregulated and Kv7 channel subunits being transiently upregulated during inflammatory demyelination. Further, we observed that pharmacological Kv7 channel opening with retigabine reduced neuronal hyperexcitability in human and EAE neurons, improved clinical EAE signs, and rescued neuronal pathology in oligodendrocyte-Kir4.1-deficient (OL-Kir4.1-deficient) mice. In summary, our findings indicate that neuron-OL compensatory interactions promoted resilience through Kv7 and Kir4.1 channels and identify pharmacological activation of nodal Kv7 channels as a neuroprotective strategy against inflammatory demyelination.
Collapse
Affiliation(s)
- Hannah Kapell
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Luca Fazio
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
- Department of Neurology, University of Düsseldorf, Dusseldorf, Germany
| | - Julia Dyckow
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Sophia Schwarz
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Andrés Cruz-Herranz
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Joaquin Campos
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Elisa D’Este
- Optical Microscopy Facility, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Wiebke Möbius
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Cluster of Excellence, “Multiscale Bioimaging: from Molecular Machines to Network of Excitable Cells” (MBExC), University of Göttingen, Göttingen, Germany
| | - Christian Cordano
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Anne-Katrin Pröbstel
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
- Neurologic Clinic and Policlinic and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital of Basel, University of Basel, Basel, Switzerland
| | - Marjan Gharagozloo
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amel Zulji
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Venu Narayanan Naik
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | - Anna Delank
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | - Manuela Cerina
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
| | | | - Celia Lerma-Martin
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Jana K. Sonner
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Jung Hyung Sin
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
| | - Paul Disse
- Institute for Genetics of Heart Diseases (IfGH), Cellular Electrophysiology and Molecular Biology, UKM, Münster, Germany
- University of Münster, Chembion, Münster, Germany
| | - Nicole Rychlik
- University of Münster, Chembion, Münster, Germany
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Khalida Sabeur
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Manideep Chavali
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
| | - Rajneesh Srivastava
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Heidenreich
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
| | - Kathryn C. Fitzgerald
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Guiscard Seebohm
- Institute for Genetics of Heart Diseases (IfGH), Cellular Electrophysiology and Molecular Biology, UKM, Münster, Germany
| | - Christine Stadelmann
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
- Institute of Neuropathology, University Medical Center, Göttingen, Germany
| | - Bernhard Hemmer
- Department of Neurology, School of Medicine, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
| | - Michael Platten
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- DKTK Clinical Cooperation Unit Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), INF 280, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN) and
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Thomas J. Jentsch
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP) and Max-Delbrück-Centrum für Molekulare Medizin (MDC), Berlin, Germany
- Neurocure Cluster of Excellence, Charité University Medicine Berlin, Berlin, Germany
| | - Maren Engelhardt
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute of Neuroanatomy, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Institute of Anatomy and Cell Biology, Johannes Kepler University Linz, Linz, Austria
| | - Thomas Budde
- Institute of Physiology I, University of Münster, Münster, Germany
| | - Klaus-Armin Nave
- Electron Microscopy Core Unit, Department of Neurogenetics, Max Planck Institute of Experimental Medicine, Göttingen, Germany
| | - Peter A. Calabresi
- Departments of Neurology and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Ari J. Green
- Weill Institute for Neurosciences, Department of Neurology, UCSF, San Francisco, California, USA
- Department of Ophthalmology, UCSF, San Francisco, California, USA
| | - Claudio Acuna
- Chica and Heinz Schaller Research Group, Institute of Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - David H. Rowitch
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research and
- Department of Pediatrics, UCSF, San Francisco, California, USA
- Wellcome Trust–Medical Research Council Stem Cell Institute and
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Department of Neurosurgery, UCSF, San Francisco, California, USA
| | - Sven G. Meuth
- Department of Neurology with Institute of Translational Neurology, University Hospital Münster (UKM), Münster, Germany
- Department of Neurology, University of Düsseldorf, Dusseldorf, Germany
| | - Lucas Schirmer
- Department of Neurology, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
- Interdisciplinary Center for Neurosciences (IZN) and
- Mannheim Center for Translational Neuroscience and Institute for Innate Immunoscience, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
47
|
Locatelli G, Marques-Ferreira F, Katsoulas A, Kalaitzaki V, Krueger M, Ingold-Heppner B, Walthert S, Sankowski R, Prazeres da Costa O, Dolga A, Huber M, Gold M, Culmsee C, Waisman A, Bechmann I, Milchevskaya V, Prinz M, Tresch A, Becher B, Buch T. IGF1R expression by adult oligodendrocytes is not required in the steady-state but supports neuroinflammation. Glia 2023; 71:616-632. [PMID: 36394300 DOI: 10.1002/glia.24299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/21/2022] [Accepted: 10/26/2022] [Indexed: 11/18/2022]
Abstract
In the central nervous system (CNS), insulin-like growth factor 1 (IGF-1) regulates myelination by oligodendrocyte (ODC) precursor cells and shows anti-apoptotic properties in neuronal cells in different in vitro and in vivo systems. Previous work also suggests that IGF-1 protects ODCs from cell death and enhances remyelination in models of toxin-induced and autoimmune demyelination. However, since evidence remains controversial, the therapeutic potential of IGF-1 in demyelinating CNS conditions is unclear. To finally shed light on the function of IGF1-signaling for ODCs, we deleted insulin-like growth factor 1 receptor (IGF1R) specifically in mature ODCs of the mouse. We found that ODC survival and myelin status were unaffected by the absence of IGF1R until 15 months of age, indicating that IGF-1 signaling does not play a major role in post-mitotic ODCs during homeostasis. Notably, the absence of IGF1R did neither affect ODC survival nor myelin status upon cuprizone intoxication or induction of experimental autoimmune encephalomyelitis (EAE), models for toxic and autoimmune demyelination, respectively. Surprisingly, however, the absence of IGF1R from ODCs protected against clinical neuroinflammation in the EAE model. Together, our data indicate that IGF-1 signaling is not required for the function and survival of mature ODCs in steady-state and disease.
Collapse
Affiliation(s)
- Giuseppe Locatelli
- Institute of Experimental Immunology, University of Zurich, Zurich.,Theodor Kocher Institute, University Bern, Bern, Switzerland
| | | | - Antonis Katsoulas
- Institute of Laboratory Animal Science, University of Zurich, Zurich
| | | | - Martin Krueger
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Barbara Ingold-Heppner
- Institute of Pathology, Campus Mitte, Charité -Universitätsmedizin Berlin, Berlin, Germany
| | | | - Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Olivia Prazeres da Costa
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| | - Amalia Dolga
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany.,Groningen Research Institute of Pharmacy, Department of Molecular Pharmacology, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Magdalena Huber
- Institute for Medical Microbiology and Hospital Hygiene, Philipps University of Marburg, Marburg, Germany
| | - Maike Gold
- Department of Neurology, Philipps University of Marburg, Marburg, Germany
| | - Carsten Culmsee
- Institute for Pharmacology and Clinical Pharmacy, Philipps-Universität Marburg, Marburg, Germany
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Ingo Bechmann
- Institute of Anatomy, University of Leipzig, Leipzig, Germany
| | - Vladislava Milchevskaya
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Achim Tresch
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,Institute of Medical Statistics and Computational Biology, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich
| | - Thorsten Buch
- Institute of Experimental Immunology, University of Zurich, Zurich.,Institute of Laboratory Animal Science, University of Zurich, Zurich.,Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
48
|
Warhaftig G, Almeida D, Turecki G. Early life adversity across different cell- types in the brain. Neurosci Biobehav Rev 2023; 148:105113. [PMID: 36863603 DOI: 10.1016/j.neubiorev.2023.105113] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/13/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023]
Abstract
Early life adversity (ELA)- which includes physical, psychological, emotional, and sexual abuse is one of the most common predictors to diverse psychopathologies later in adulthood. As ELA has a lasting impact on the brain at a developmental stage, recent findings from the field highlighted the specific contributions of different cell types to ELA and their association with long lasting consequences. In this review we will gather recent findings describing morphological, transcriptional and epigenetic alterations within neurons, glia and perineuronal nets and their associated cellular subpopulation. The findings reviewed and summarized here highlight important mechanisms underlying ELA and point to therapeutic approaches for ELA and related psychopathologies later in life.
Collapse
Affiliation(s)
- Gal Warhaftig
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Daniel Almeida
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Hospital Research Center, Montreal QC H4H 1R3, Canada; Department of Psychiatry, McGill University, Montreal QC H3A 1A1, Canada.
| |
Collapse
|
49
|
Chen K, Cambi F, Kozai TDY. Pro-myelinating Clemastine administration improves recording performance of chronically implanted microelectrodes and nearby neuronal health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.31.526463. [PMID: 36778360 PMCID: PMC9915570 DOI: 10.1101/2023.01.31.526463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Intracortical microelectrodes have become a useful tool in neuroprosthetic applications in the clinic and to understand neurological disorders in basic neurosciences. Many of these brain-machine interface technology applications require successful long-term implantation with high stability and sensitivity. However, the intrinsic tissue reaction caused by implantation remains a major failure mechanism causing loss of recorded signal quality over time. Oligodendrocytes remain an underappreciated intervention target to improve chronic recording performance. These cells can accelerate action potential propagation and provides direct metabolic support for neuronal health and functionality. However, implantation injury causes oligodendrocyte degeneration and leads to progressive demyelination in surrounding brain tissue. Previous work highlighted that healthy oligodendrocytes are necessary for greater electrophysiological recording performance and the prevention of neuronal silencing around implanted microelectrodes over chronic implantation. Thus, we hypothesize that enhancing oligodendrocyte activity with a pharmaceutical drug, Clemastine, will prevent the chronic decline of microelectrode recording performance. Electrophysiological evaluation showed that the promyelination Clemastine treatment significantly elevated the signal detectability and quality, rescued the loss of multi-unit activity, and increased functional interlaminar connectivity over 16-weeks of implantation. Additionally, post-mortem immunohistochemistry showed that increased oligodendrocyte density and myelination coincided with increased survival of both excitatory and inhibitory neurons near the implant. Overall, we showed a positive relationship between enhanced oligodendrocyte activity and neuronal health and functionality near the chronically implanted microelectrode. This study shows that therapeutic strategy that enhance oligodendrocyte activity is effective for integrating the functional device interface with brain tissue over chronic implantation period. Abstract Figure
Collapse
|
50
|
Zhang T, Bae HG, Bhambri A, Zhang Y, Barbosa D, Xue J, Wazir S, Mulinyawe SB, Kim JH, Sun LO. Autophagy collaborates with apoptosis pathways to control myelination specificity and function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2022.12.31.522394. [PMID: 36712125 PMCID: PMC9881874 DOI: 10.1101/2022.12.31.522394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Oligodendrocytes are the sole myelin producing cells in the central nervous system. Oligodendrocyte numbers are tightly controlled across diverse brain regions to match local axon type and number, but the underlying mechanisms and functional significance remain unclear. Here, we show that autophagy, an evolutionarily conserved cellular process that promotes cell survival under canonical settings, elicits premyelinating oligodendrocyte apoptosis during development and regulates critical aspects of nerve pulse propagation. Autophagy flux is increased in premyelinating oligodendrocytes, and its genetic blockage causes ectopic oligodendrocyte survival throughout the entire brain. Autophagy acts in the TFEB-Bax/Bak pathway and elevates PUMA mRNA levels to trigger premyelinating oligodendrocyte apoptosis cell-autonomously. Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath numbers and fine-tune nerve pulse propagation. Our results provide in vivo evidence showing that autophagy promotes apoptosis in mammalian cells under physiological conditions and reveal key intrinsic mechanisms governing oligodendrocyte number. HIGHLIGHTS Autophagy flux increases in the premyelinating and myelinating oligodendrocytesAutophagy promotes premyelinating oligodendrocyte (pre-OL) apoptosis to control myelination location and timing Autophagy acts in the TFEB-PUMA-Bax/Bak pathway and elevates PUMA mRNA levels to determine pre-OL fate Autophagy continuously functions in the myelinating oligodendrocytes to limit myelin sheath thickness and finetune nerve pulse propagation.
Collapse
|