1
|
Wang J, Li LL, Zhao ZA, Niu CY, Zhao ZG. NLRP3 Inflammasome-mediated pyroptosis in acute lung injury: Roles of main lung cell types and therapeutic perspectives. Int Immunopharmacol 2025; 154:114560. [PMID: 40184810 DOI: 10.1016/j.intimp.2025.114560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2025] [Revised: 03/14/2025] [Accepted: 03/23/2025] [Indexed: 04/07/2025]
Abstract
The NLRP3 inflammasome plays a pivotal role in the pathogenesis of acute lung injury (ALI) by regulating pyroptosis, a highly inflammatory form of programmed cell death. NLRP3-mediated pyroptosis leads to alveolar epithelial cell injury, increased pulmonary microvascular endothelial permeability, excessive alveolar macrophage activation, and neutrophil dysfunction, collectively driving ALI progression. In addition to the classical NLRP3-dependent pathway, the non-canonical pyroptosis pathway (caspase-4/5/11) also contributes to ALI by inducing pyroptotic cell death in AECs and ECs, further amplifying NLRP3 activation through damage-associated molecular patterns (DAMP) release. Moreover, neutrophils (NE) pyroptosis exhibits dual roles in ALI, as it enhances pathogen clearance but also exacerbates excessive inflammation and tissue damage, highlighting the complexity of its regulation. Targeting the NLRP3 inflammasome and pyroptotic pathways has emerged as a promising therapeutic strategy for ALI. Various NLRP3 inhibitors (e.g., MCC950, CY-09, OLT1177) and pyroptosis inhibitors have demonstrated significant anti-inflammatory and tissue-protective effects in preclinical models. However, the clinical translation of NLRP3-targeted therapies remains challenging due to off-target effects, potential immunosuppression, lack of patient stratification strategies, and compensatory activation of alternative inflammasomes (e.g., AIM2, NLRC4). Future studies should focus on optimizing the selectivity of NLRP3 inhibitors, developing personalized therapeutic approaches, and exploring combination strategies to enhance their clinical applicability in ALI.
Collapse
Affiliation(s)
- Jing Wang
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Lu-Lu Li
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Zhen-Ao Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China
| | - Chun-Yu Niu
- Department of Pathophysiology in Basic Medical College, Hebei Medical University, Shijiazhuang, Hebei 050017, China; Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| | - Zi-Gang Zhao
- Institute of Microcirculation, Hebei North University, Zuanshinan Road 11, Zhangjiakou, Hebei 075000, China; Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Zhangjiakou, Hebei 075000, China.
| |
Collapse
|
2
|
Su K, Tang M, Wu J, Ye N, Jiang X, Zhao M, Zhang R, Cai X, Zhang X, Li N, Peng J, Lin L, Wu W, Ye H. Mechanisms and therapeutic strategies for NLRP3 degradation via post-translational modifications in ubiquitin-proteasome and autophagy lysosomal pathway. Eur J Med Chem 2025; 289:117476. [PMID: 40056798 DOI: 10.1016/j.ejmech.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/20/2025] [Accepted: 03/03/2025] [Indexed: 03/10/2025]
Abstract
The NLRP3 inflammasome is crucial for immune responses. However, its overactivation can lead to severe inflammatory diseases, underscoring its importance as a target for therapeutic intervention. Although numerous inhibitors targeting NLRP3 exist, regulating its degradation offers an alternative and promising strategy to suppress its activation. The degradation of NLRP3 is primarily mediated by the proteasomal and autophagic pathways. The review not only elaborates on the traditional concepts of ubiquitination and NLRP3 degradation but also investigates the important roles of indirect regulatory modifications, such as phosphorylation, acetylation, ubiquitin-like modifications, and palmitoylation-key post-translational modifications (PTMs) that influence NLRP3 degradation. Additionally, we also discuss the potential targets that may affect NLRP3 degradation during the proteasomal and autophagic pathways. By unraveling these complex regulatory mechanisms, the review aims to enhance the understanding of NLRP3 regulation and its implications for developing therapeutic strategies to combat inflammatory diseases.
Collapse
Affiliation(s)
- Kaiyue Su
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Minghai Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jie Wu
- Key Laboratory of Hydrodynamics (Ministry of Education), School of Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Neng Ye
- Scaled Manufacturing Center of Biological Products, Management Office of National Facility for Translational Medicine, West China Hospital, Sichuan University Chengdu 610041, China
| | - Xueqin Jiang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Min Zhao
- Laboratory of Metabolomics and Drug-induced Liver Injury, Department of Gastroenterology & Hepatology, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ruijia Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoying Cai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlu Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Na Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Peng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lei Lin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery and Laboratory of Thyroid and Parathyroid Disease, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Haoyu Ye
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
3
|
Liu P, Chen Z, Guo Y, He Q, Pan C. Recent advances in small molecule inhibitors of deubiquitinating enzymes. Eur J Med Chem 2025; 287:117324. [PMID: 39908798 DOI: 10.1016/j.ejmech.2025.117324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/24/2024] [Accepted: 01/23/2025] [Indexed: 02/07/2025]
Abstract
Proteins play a pivotal role in maintaining cellular homeostasis. Their degradation primarily orchestrated through the ubiquitin-proteasome system (UPS) and cellular autophagy. Dysfunction of the UPS is associated with various human diseases, including cancer, autoimmune disorders, and neurodegenerative conditions. Consequently, the UPS has emerged as a promising therapeutic target. Deubiquitinases (DUBs) have garnered significant attention as potential targets for therapeutic intervention due to their role in modulating protein stability and function. This review focuses on recent advancements of DUBs, particularly their relevance in the UPS and their potential as drug targets. Notably, inhibitors targeting specific DUBs, such as USP1, USP7, USP14, and USP30 have shown promise in preclinical and clinical studies for cancer therapy. Additionally, DUB inhibitors have been involved in novel therapeutic approaches lately, including as targets for proteolysis-targeting chimeras (PROTACs) or as tools in deubiquitinase-targeting chimeras (DUBTACs).
Collapse
Affiliation(s)
- Pengwei Liu
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Zhengyang Chen
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Yiting Guo
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China
| | - Qiaojun He
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| | - Chenghao Pan
- Institute of Pharmacology & Toxicology, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, PR China; Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Hangzhou, 310018, PR China.
| |
Collapse
|
4
|
Cheng L, Meng X, Tian D, Zheng B, Xiao Y, Zhao X, Xu Y, Yang H, Bi J, Li F, Xie Z. Targeting UAF1 Alleviate Neurotoxicity by Inhibiting APP/NLRP3 Axis-Mediated Pyroptosis and Apoptosis. Neurochem Res 2025; 50:135. [PMID: 40183841 PMCID: PMC11971201 DOI: 10.1007/s11064-025-04379-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/05/2025]
Abstract
The accumulation of amyloid β (Aβ) protein, derived from the amyloid precursor protein (APP), plays a pivotal role in the pathogenesis of Alzheimer's disease (AD) by inducing neuronal cell injury. This study investigated the specific functions of ubiquitin-specific protease 1-associated factor 1 (UAF1) in mediating the neurotoxic effects triggered on Aβ. To model AD-related neuronal injury in vitro and in vitro, SH-SY5Y cells exposed to Aβ25-35 and APPswe/PS1dE9 (APP/PS1) transgenic mice were utilized. Compared with control mice, UAF1 levels were significantly elevated in the hippocampus of experimental mice. In vitro experiments showed that UAF1 knockdown reduced Aβ-induced apoptosis and enhanced cell viability. Furthermore, UAF1 knockdown markedly suppressed Aβ25-35 -induced pyroptosis in SH-SY5Y cells and reduced the production of IL-1β and IL-18 through the nucleotide-binding domain and leucine-rich repeat containing family pyrin domain-containing 3 (NLRP3)/Gasdermin D pathway. Mechanistic analyses revealed that UAF1 directly binds to NLRP3 to mediate its effects. In vivo, UAF1 knockdown mitigated cognitive deficits, decreased APP expression, Aβ plaque deposition, and reduced hyperphosphorylated Tau levels. These findings underscore the critical role of UAF1 in regulating neuronal apoptosis and pyroptosis, thereby highlighting its potential as a promising therapeutic target for AD.
Collapse
Affiliation(s)
- Ling Cheng
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Xianguang Meng
- Department of Dermatology, Central Hospital Affiliated to Shandong First Medical University, 105 Jiefang Street, Jinan, 250013, China
| | - Dandan Tian
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Bin Zheng
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yinfan Xiao
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Xueying Zhao
- Department of Blood Transfusion, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Yingying Xu
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Hui Yang
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Jianzhong Bi
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China
| | - Fan Li
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China.
| | - Zhaohong Xie
- Department of Neurology Medicine, The Second Hospital of Shandong University, Jinan, Shandong Province, 250033, China.
| |
Collapse
|
5
|
Mohapatra B, Lavudi K, Kokkanti RR, Patnaik S. Regulation of NLRP3/TRIM family signaling in gut inflammation and colorectal cancer. Biochim Biophys Acta Rev Cancer 2025; 1880:189271. [PMID: 39864469 DOI: 10.1016/j.bbcan.2025.189271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/28/2025]
Abstract
CRC (Colorectal cancer) ranks among the most prevalent tumors in humans and remains a leading cause of cancer-related mortality worldwide. Numerous studies have highlighted the connection between inflammasome over-activation and the initiation and progression of CRC. The activation of the NLRP3 (NOD-like receptor family, pyrin domain containing 3) inflammasome is dependent on the nuclear NF-kβ (Nuclear Factor kappa-light-chain-enhancer of activated B cells) pathway, leading to the maturation and release of inflammatory cytokines such as IL-1ß (Interleukin 1 beta) and IL-18 (Interleukin 18). While inflammation is crucial for defense mechanisms and tissue repair, excessive information can pose significant risks. Mounting evidence suggests that overactivation of the inflammasome contributes to the pathogenesis of inflammatory diseases. Consequently, there is a concerted effort to tightly regulate inflammasome activity and mitigate excessive inflammatory responses, particularly in conditions such as IBD (Inflammatory Bowel Disease), which includes Ulcerative Colitis and Crohn's Disease. The tripartite motif (TRIM) protein family, characterized by a conserved structure and rapid evolutionary diversification, includes members with critical roles in ubiquitination and other regulatory functions. Their importance in modulating inflammatory responses is widely acknowledged. This article aims to investigate the interplay between TRIM proteins and the NLRP3 Inflammasome in CRC and gut inflammation, offering insights for future research endeavors and potential therapeutic strategies.
Collapse
Affiliation(s)
- Bibhashee Mohapatra
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Kousalya Lavudi
- Department of Radiation Oncology, College of Medicine, The Ohio State University, Columbus, OH 43210, United States; Comprehensive cancer center, The Ohio State University, Columbus, OH, United States
| | - Rekha Rani Kokkanti
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India
| | - Srinivas Patnaik
- School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT) Deemed to be University, Bhubaneswar, Odisha 751024, India.
| |
Collapse
|
6
|
Zhou W, Zhao Y, Qin W, Wu W, Liao C, Zhang Y, Yang X, Chen X, Wang Y, Kang Y, Wu J, Zhao J, Quan J, Wang X, Bu X, Yue X. Targeting USP1 Potentiates Radiation-Induced Type I IFN-Dependent Antitumor Immunity by Enhancing Oligo-Ubiquitinated SAR1A-Mediated STING Trafficking and Activation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412687. [PMID: 39976106 PMCID: PMC12005740 DOI: 10.1002/advs.202412687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 01/13/2025] [Indexed: 02/21/2025]
Abstract
The magnitude of Type I interferon (IFN) mediated innate immune response within the tumor microenvironment (TME) critically influences the effectiveness of radiotherapy. Unfortunately, due to a myriad of resistance mechanisms, the double-stranded DNA (dsDNA) signals produced by tumor cells postradiotherapy often induce a diminished response from immune cells. Through chemical screening targeting deubiquitinating enzymes, we identified USP1 (Ubiquitin Specific Peptidase 1) inhibitor as an enhancer of post-radiotherapy dsDNA responses. Mechanistically, within the context of immune-stimulatory cells in TME, USP1 serves as a suppressor in the stress-mediated stages of the cGAS (Cyclic GMP-AMP synthase) -STING (Stimulator of interferon genes protein) signaling pathway, specifically affecting the trafficking of STING from endoplasmic reticulum to Golgi apparatus. It is elucidated that SAR1A (Secretion associated Ras related GTPase 1A) requires K27-linked oligo-ubiquitination to assemble the STING-COP-II (Coat protein II) transport complex for STING trafficking. USP1 counteracts this activation by removing SAR1A ubiquitination, thereby blocking STING trafficking and activation. Consequently, pharmacological USP1 inhibition using ML323 sustains SAR1A ubiquitination and COP-II complex formation, significantly enhancing STING trafficking and subsequent Type I IFN production. This intervention substantially amplifies radiotherapy-induced immune activation in the TME, providing a strategic approach to overcome therapeutic resistance and synergize radiotherapy with immunotherapies.
Collapse
Affiliation(s)
- Weilin Zhou
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yuxuan Zhao
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Wenjing Qin
- The First Affiliated HospitalJinan UniversityGuangzhouGuangdong510630China
| | - Weijian Wu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Chenyang Liao
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yiqiu Zhang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Xingli Yang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xue Chen
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510257China
| | - Youqiao Wang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Yushan Kang
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouGuangdong510257China
| | - Jiaojiao Zhao
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Junmin Quan
- Laboratory of Chemical OncogenomicsGuangdong Provincial Key Laboratory of Chemical GenomicsPeking University Shenzhen Graduate SchoolShenzhenGuangdong518072China
| | - Xuecen Wang
- Department of Radiation OncologyThe First Affiliated HospitalSun Yat‐sen UniversityGuangzhouGuangdong510080China
| | - Xianzhang Bu
- School of Pharmaceutical SciencesSun Yat‐Sen UniversityGuangzhouGuangdong510006China
| | - Xin Yue
- The First Affiliated HospitalJinan UniversityGuangzhouGuangdong510630China
| |
Collapse
|
7
|
You H, Zhang S, Zhang Y, Chen Q, Wu Y, Zhou Z, Zhao Z, Su B, Li X, Guo Y, Chen Y, Tang W, Liu B, Fan H, Geng S, Fang M, Li F, Liu G, Jiang C, Sun T. Engineered Bacterial Outer Membrane Vesicles-Based Doxorubicin and CD47-siRNA Co-Delivery Nanoplatform Overcomes Immune Resistance to Potentiate the Immunotherapy of Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418053. [PMID: 40035513 DOI: 10.1002/adma.202418053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/23/2025] [Indexed: 03/05/2025]
Abstract
Apart from the blood-brain barrier (BBB), the efficacy of immunotherapy for glioblastoma (GBM) is limited by the presence of intrinsic and adaptive immune resistance, implying that co-delivery of various immunotherapeutic agents or simultaneous regulation of different cells is urgently needed. Bacterial outer membrane vesicles (OMVs) offer a unique advantage in the treatment of GBM, owing to their multifunctional properties as carriers and immune adjuvants and their ability to cross the BBB. However, traditional OMVs can lead to toxic side effects and disruption of tight junctions in the BBB. Therefore, to enhance the in vivo safety and targeting capability of OMVs, we introduced engineered OMVs to reduce toxicity and further constructed a modularly assembled nanoplatform by performing simple peptide modifications. This nanoplatform demonstrates satisfactory biosafety and is able to continuously cross the BBB and target GBM with the assistance of Angiopep-2. Subsequently, immunogenic substances on OMVs, along with carried small-interfering RNA (siRNA) and doxorubicin, can promote and enhance the reprogramming and phagocytic abilities of macrophages and microglia, respectively, and increase the immunogenicity of GBM, ultimately overcoming GBM immune resistance to enhance the efficacy of immunotherapy. This OMVs-based nanoplatform provides a new paradigm and insights into the development of immunotherapy for GBM.
Collapse
Affiliation(s)
- Haoyu You
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shilin Zhang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yiwen Zhang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yuxing Wu
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zheng Zhou
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Zhenhao Zhao
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Xuwen Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yun Guo
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Yun Chen
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Weiyi Tang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Bing Liu
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Hongrui Fan
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Shuo Geng
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Mingzhu Fang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Fangxin Li
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Guangna Liu
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Department of Digestive Diseases, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, 350212, China
| | - Tao Sun
- Key Laboratory of Smart Drug Delivery/Innovative Center for New Drug Development of Immune Inflammatory Diseases (Ministry of Education), Minhang Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Pharmaceutics, School of Pharmacy, Fudan University, Shanghai, 201203, China
- Quzhou Fudan Institute, Quzhou, 324003, China
| |
Collapse
|
8
|
Beesetti S. Ubiquitin Ligases in Control: Regulating NLRP3 Inflammasome Activation. FRONT BIOSCI-LANDMRK 2025; 30:25970. [PMID: 40152367 DOI: 10.31083/fbl25970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 03/29/2025]
Abstract
Ubiquitin ligases play pivotal roles in the regulation of NLR family pyrin domain containing 3 (NLRP3) inflammasome activation, a critical process in innate immunity and inflammatory responses. This review explores the intricate mechanisms by which various E3 ubiquitin ligases exert both positive and negative influences on NLRP3 inflammasome activity through diverse post-translational modifications. Negative regulation of NLRP3 inflammasome assembly is mediated by several E3 ligases, including F-box and leucine-rich repeat protein 2 (FBXL2), tripartite motif-containing protein 31 (TRIM31), and Casitas B-lineage lymphoma b (Cbl-b), which induce K48-linked ubiquitination of NLRP3, targeting it for proteasomal degradation. Membrane-associated RING-CH 7 (MARCH7) similarly promotes K48-linked ubiquitination leading to autophagic degradation, while RING finger protein (RNF125) induces K63-linked ubiquitination to modulate NLRP3 function. Ariadne homolog 2 (ARIH2) targets the nucleotide-binding domain (NBD) domain of NLRP3, inhibiting its activation, and tripartite motif-containing protein (TRIM65) employs dual K48 and K63-linked ubiquitination to suppress inflammasome assembly. Conversely, Pellino2 exemplifies a positive regulator, promoting NLRP3 inflammasome activation through K63-linked ubiquitination. Additionally, ubiquitin ligases influence other components critical for inflammasome function. TNF receptor-associated factor 3 (TRAF3) mediates K63 polyubiquitination of apoptosis-associated speck-like protein containing a CARD (ASC), facilitating its degradation, while E3 ligases regulate caspase-1 activation and DEAH-box helicase 33 (DHX33)-NLRP3 complex formation through specific ubiquitination events. Beyond direct inflammasome regulation, ubiquitin ligases impact broader innate immune signaling pathways, modulating pattern-recognition receptor responses and dendritic cell maturation. Furthermore, they intricately control NOD1/NOD2 signaling through K63-linked polyubiquitination of receptor-interacting protein 2 (RIP2), crucial for nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) activation. Furthermore, we explore how various pathogens, including bacteria, viruses, and parasites, have evolved sophisticated strategies to hijack the host ubiquitination machinery, manipulating NLRP3 inflammasome activation to evade immune responses. This comprehensive analysis provides insights into the molecular mechanisms underlying inflammasome regulation and their implications for inflammatory diseases, offering potential avenues for therapeutic interventions targeting the NLRP3 inflammasome. In conclusion, ubiquitin ligases emerge as key regulators of NLRP3 inflammasome activation, exhibiting a complex array of functions that finely tune immune responses. Understanding these regulatory mechanisms not only sheds light on fundamental aspects of inflammation but also offers potential therapeutic avenues for inflammatory disorders and infectious diseases.
Collapse
Affiliation(s)
- Swarna Beesetti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
9
|
Lai Y, Liu J, Hu X, Zeng X, Gao P. N6-methyladenosine (m6A)-forming enzyme METTL3 controls UAF1 stability to promote inflammation in a model of colitis by stimulating NLRP3. Sci Rep 2025; 15:5876. [PMID: 39966502 PMCID: PMC11836354 DOI: 10.1038/s41598-025-88435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 01/28/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND The rising incidence of ulcerative colitis (UC) in China poses a noticeable health challenge. This study aimed to assess the pivotal role of USP1-associated factor 1 (UAF1) in colitis. UC was induced in male C57BL/6 mice using 2.0% dextran sulfate sodium (DSS). In an in vitro model, RAW264.7 cells were exposed to 200 ng/ml of LPS + ATP. UAF1 expression level was evaluated in colonic tissues, macrophages, and serum samples using quantitative reverse transcription polymerase chain reaction (RT-qPCR). The study assessed weight, disease activity index (DAI) score, myeloperoxidase (MPO) activity, crypt length, inflammatory factors, and epithelial cell function in a mouse model of colitis treated with a UAF1 inhibitor. Microarray analysis identified potential UAF1 targets. Gene interference investigated NLR family pyrin domain containing 3 (NLRP3) involvement in UAF1-induced colitis inflammation. Immunoprecipitation, ubiquitination, and luciferase assays examined the effects of methyltransferase-like 3 (METTL3) methylation on the expression levels of NLRP3 and UAF1. UAF1 expression level was upregulated in colon tissues, RAW264.7 macrophages, and serum samples of colitis mice (P < 0.01). The UAF1 inhibitor (ML-323) enhanced weight and reduced DAI score in colitis mice (P < 0.01). It also decreased MPO activity and ulcer area, and restored crypt length (P < 0.01). UAF1 inhibitor improved epithelial cell function by suppressing NLRP3 activity (P < 0.01). UAF1 promoted inflammation in RAW264.7 macrophages via NLRP3 inflammasome induction (P < 0.01). UAF1 modulated NLRP3 protein expression, leading to reduced NLRP3 ubiquitination induced by LPS + ATP. The m6A-forming enzyme METTL3 enhanced UAF1 stability (P < 0.01) to facilitate UAF1 expression. The findings suggested that METTL3, as an m6A-forming enzyme, could regulate UAF1 mRNA, promoting inflammation in colitis through NLRP3 induction. Inhibiting UAF1 emerges as a potential therapeutic strategy for colitis.
Collapse
Affiliation(s)
- Yongqiang Lai
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Institute of Chest Wall Surgery, Guangzhou, 510700, China.
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China.
| | - Junhao Liu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiao Hu
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Xiancheng Zeng
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| | - Peng Gao
- The Affiliated Guangdong Second Provincial General Hospital of Jinan University, the Second Department of General Surgery, Guangzhou, 510317, China
| |
Collapse
|
10
|
Kong L, Li S, Fu Y, Cai Q, Du X, Liang J, Ma T. Mitophagy in relation to chronic inflammation/ROS in aging. Mol Cell Biochem 2025; 480:721-731. [PMID: 38834837 DOI: 10.1007/s11010-024-05042-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 05/22/2024] [Indexed: 06/06/2024]
Abstract
Various assaults on mitochondria occur during the human aging process, contributing to mitochondrial dysfunction. This mitochondrial dysfunction is intricately connected with aging and diseases associated with it. In vivo, the accumulation of defective mitochondria can precipitate inflammatory and oxidative stress, thereby accelerating aging. Mitophagy, an essential selective autophagy process, plays a crucial role in managing mitochondrial quality control and homeostasis. It is a highly specialized mechanism that systematically removes damaged or impaired mitochondria from cells, ensuring their optimal functioning and survival. By engaging in mitophagy, cells are able to maintain a balanced and stable environment, free from the potentially harmful effects of dysfunctional mitochondria. An ever-growing body of research highlights the significance of mitophagy in both aging and age-related diseases. Nonetheless, the association between mitophagy and inflammation or oxidative stress induced by mitochondrial dysfunction remains ambiguous. We review the fundamental mechanisms of mitophagy in this paper, delve into its relationship with age-related stress, and propose suggestions for future research directions.
Collapse
Affiliation(s)
- Liang Kong
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Shuhao Li
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Yu Fu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Qinyun Cai
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Xinyun Du
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Jingyan Liang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Tan Ma
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
- Jiangsu Key Laboratory of Experimental & Translational Non-Coding RNA Research, Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
11
|
Ye B, Xu D, Zhong L, Wang Y, Wang W, Xu H, Han X, Min J, Wu G, Huang W, Liang G. Ubiquitin-specific protease 25 improves myocardial ischemia-reperfusion injury by deubiquitinating NLRP3 and negatively regulating NLRP3 inflammasome activity in cardiomyocytes. Clin Transl Med 2025; 15:e70243. [PMID: 39985261 PMCID: PMC11845855 DOI: 10.1002/ctm2.70243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 12/21/2024] [Accepted: 02/12/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Myocardial ischemia/reperfusion injury (MI/RI) restricts the effect of myocardial reperfusion therapy and lacks effective prevention and treatment methods. Deubiquitinating enzymes (DUBs), especially members of the ubiquitin-specific protease (USP) family of DUBs, are key proteins in the ubiquitination modification process and play a vital role in MI/RI. Therefore, we aimed to investigate the role of USP25, as a member of the USP family, in MI/RI and its molecular mechanism. METHODS Transcriptome sequencing was applied to evaluate the differential expression of USP families during hypoxia/reoxygenation (H/R) and validated in human and mouse heart samples and cardiomyocytes by performing quantitative polymerase chain reaction. Wild-type or USP25-/- mice were used to develop the MI/RI model. Co-immunoprecipitation (Co-IP) combined with liquid chromatography-tandem mass spectrometry analysis was used to screen the potential substrate protein of USP25 in H/R-induced cardiomyocyte injury. TUNEL and Hoechst/propidium iodide staining and western blot were used to detect the level of pyroptosis. In addition, cardiomyocyte-specific USP25 overexpression in NLRP3-/- mice with AAV9 vectors was used to validate the biological function of USP25 and NLRP3 interaction. RESULTS We found that the expression level of USP25 was significantly decreased in I/R-induced mouse heart tissues and primary cardiomyocytes in a time-dependent manner. USP25 deficiency exacerbated MI/RI and aggravated I/R-induced cardiac remodelling in mice. Mechanistically, USP25 directly binds to NLRP3 protein and K63-linkedly deubiquitinates NLRP3 at residue K243 via its active site C178, thus hindering NLRP3-ASC interaction and ASC oligomerization to inhibit NLRP3 activation and pyroptosis in cardiomyocytes. We further showed that the overexpression of USP25 in cardiomyocytes ameliorated MI/RI in mice, whereas this protective effect disappeared when NLRP3 is knocked out. CONCLUSIONS Our study demonstrated that USP25 ameliorates MI/RI by regulating NLRP3 activation and its mediated pyroptosis. This finding extends the protective role of USP25 in cardiovascular disease and provides an experimental basis for future USP25-based drug development for the treatment of MI/RI. KEY POINTS The deubiquitinating enzyme USP25 was down-regulated both in myocardial ischemia/reperfusion injury (MI/RI) myocardium tissues. The deficiency of USP25 worsened exacerbated MI/RI in mice, whereas the overexpression of USP25 in cardiomyocytes mitigated this pathological phenotype. USP25 directly interacts with the NLRP3 protein and deubiquitinates it via K63 linkage at residue K243 through its active site C178, thus affecting NLRP3-ASC interaction and ASC oligomerization to inhibit NLRP3 activation and pyroptosis in cardiomyocytes.
Collapse
Affiliation(s)
- Bozhi Ye
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Diyun Xu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| | - Lingfeng Zhong
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Yi Wang
- School of Pharmaceutical SciencesHangzhou Normal UniversityHangzhouZhejiangChina
| | - Wei Wang
- Affiliated Yongkang First People's HospitalHangzhou Medical CollegeYongkangZhejiangChina
| | - Haowen Xu
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Xue Han
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Julian Min
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Gaojun Wu
- Department of Cardiology and the Key Laboratory of Cardiovascular Disease of Wenzhou, the First Affiliated HospitalWenzhou Medical UniversityWenzhouZhejiangChina
| | - Wenhai Huang
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
| | - Guang Liang
- Department of Pharmacy and Institute of Inflammation, Zhejiang Provincial People's Hospital, Affiliated People's HospitalHangzhou Medical CollegeHangzhouZhejiangChina
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhouZhejiangChina
- Chemical Biology Research Center, School of Pharmaceutical SciencesWenzhou Medical UniversityWenzhouZhejiangChina
| |
Collapse
|
12
|
Liao Y, Kong Y, Chen H, Xia J, Zhao J, Zhou Y. Unraveling the priming phase of NLRP3 inflammasome activation: Molecular insights and clinical relevance. Int Immunopharmacol 2025; 146:113821. [PMID: 39674000 DOI: 10.1016/j.intimp.2024.113821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 11/10/2024] [Accepted: 12/05/2024] [Indexed: 12/16/2024]
Abstract
The NLRP3 inflammasome plays a pivotal role in the innate immune response. Its activation involves a two-step mechanism that consists of priming and activation. The priming of the NLRP3 inflammasome is a vital initial phase necessary for its activation and subsequent involvement in the immune response, though its understanding varies across studies. Recent research has identified key proteins that influence the priming process, revealing a sophisticated regulatory network. This review provides a comprehensive review of the priming phase of NLRP3 inflammasome activation, with a particular focus on the underlying molecular mechanisms, including transcriptional regulation, orchestration of the phosphorylation status, deubiquitination and the relationships with the inflammation-associated diseases. Understanding the intricacies of NLRP3 inflammasome priming not only elucidates fundamental aspects of immune regulation, but also provides potential avenues for therapeutic intervention in inflammatory diseases.
Collapse
Affiliation(s)
- Yonghong Liao
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China
| | - Yueyao Kong
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Hongyu Chen
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jing Xia
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China
| | - Jianjun Zhao
- College of Animal Science and Technology, Southwest University, 402460 Chongqing, China
| | - Yang Zhou
- College of Veterinary Medicine, Southwest University, 402460 Chongqing, China; National Center of Technology Innovation for Pigs, 402460, Rongchang, Chongqing, China.
| |
Collapse
|
13
|
Wang Z, Sun S, Huang L, Chen X, Xu H, Ma H, Xiao M, Wang L. METTL3/YTHDF1-mediated m 6A modification stabilizes USP12 to deubiquitinate FOXO3 and promote apoptosis in sepsis-induced myocardial dysfunction. Mol Immunol 2025; 177:17-31. [PMID: 39662205 DOI: 10.1016/j.molimm.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/13/2024]
Abstract
Sepsis-induced myocardial dysfunction (SIMD) is a life-threatening complication primarily driven by inflammation, yet its molecular mechanisms remain unclear. In this study, we identified significant upregulation of the m6A methyltransferase METTL3 (methyltransferase-like 3), the m6A reader protein YTHDF1 (YTH N6-methyladenosine RNA binding protein 1), as well as increased expression levels of USP12 (ubiquitin-specific peptidase 12), FOXO3 (forkhead box O3), and key molecules in the intrinsic apoptotic pathway, PUMA (p53 upregulated modulator of apoptosis) and BAX (Bcl-2-associated X), through proteomic profiling in an LPS (Lipopolysaccharide)-induced SIMD mouse model. In vitro and in vivo experiments demonstrated that METTL3 and YTHDF1 regulated USP12 mRNA expression and stability through m6A modification. Elevated USP12 interacted with FOXO3, preventing its ubiquitin-mediated degradation, which enhanced FOXO3 binding to the PUMA promoter, leading to upregulation of PUMA. PUMA upregulation initiated the intrinsic apoptotic pathway, activating downstream BAX, Apaf1 (apoptotic protease-activating factor 1), and Caspases, ultimately driving SIMD. Inhibition of METTL3 (with STM2457), YTHDF1 (with Ebselen), or PUMA (with CLZ-8) significantly suppressed intrinsic apoptosis and alleviated SIMD symptoms. These findings underscore the critical role of METTL3/YTHDF1-dependent m6A modification in modulating the USP12-FOXO3-PUMA-BAX-Apaf1-Caspases signaling axis in SIMD, and suggest that targeting this pathway may offer a potential therapeutic strategy for SIMD.
Collapse
Affiliation(s)
- Zhiping Wang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China; Nantong Fourth People's Hospital, Nantong 226005, China
| | - Simiao Sun
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Lili Huang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Xinlong Chen
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Huifen Xu
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Hongwei Ma
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China
| | - Mingbing Xiao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, Jiangsu, China; Department of Laboratory Medicine, Affiliated Hospital and Medical School of Nantong University, Nantong, Jiangsu, China.
| | - Linhua Wang
- Department of Critical Care Medicine, Affiliated Hospital of Nantong University, Nantong, China, Medical school of Nantong University, Nantong 226001, China.
| |
Collapse
|
14
|
Liao Y, Zhang W, Zhou M, Zhu C, Zou Z. Ubiquitination in pyroptosis pathway: A potential therapeutic target for sepsis. Cytokine Growth Factor Rev 2024; 80:72-86. [PMID: 39294049 DOI: 10.1016/j.cytogfr.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 09/03/2024] [Indexed: 09/20/2024]
Abstract
Sepsis remains a significant clinical challenge, causing numerous deaths annually and representing a major global health burden. Pyroptosis, a unique form of programmed cell death characterized by cell lysis and the release of inflammatory mediators, is a crucial factor in the pathogenesis and progression of sepsis, septic shock, and organ dysfunction. Ubiquitination, a key post-translational modification influencing protein fate, has emerged as a promising target for managing various inflammatory conditions, including sepsis. This review integrates the current knowledge on sepsis, pyroptosis, and the ubiquitin system, focusing on the molecular mechanisms of ubiquitination within pyroptotic pathways activated during sepsis. By exploring how modulating ubiquitination can regulate pyroptosis and its associated inflammatory signaling pathways, this review provides insights into potential therapeutic strategies for sepsis, highlighting the need for further research into these complex molecular networks.
Collapse
Affiliation(s)
- Yan Liao
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Wangzheqi Zhang
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China
| | - Miao Zhou
- Department of Anesthesiology, the Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University, Nanjing, Jiangsu 210009, China
| | - Chenglong Zhu
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| | - Zui Zou
- School of Anesthesiology, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
15
|
Xian Y, Ye J, Tang Y, Zhang N, Peng C, Huang W, He G. Deubiquitinases as novel therapeutic targets for diseases. MedComm (Beijing) 2024; 5:e70036. [PMID: 39678489 PMCID: PMC11645450 DOI: 10.1002/mco2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/17/2024] Open
Abstract
Deubiquitinating enzymes (DUBs) regulate substrate ubiquitination by removing ubiquitin or cleaving within ubiquitin chains, thereby maintaining cellular homeostasis. Approximately 100 DUBs in humans counteract E3 ubiquitin ligases, finely balancing ubiquitination and deubiquitination processes to maintain cellular proteostasis and respond to various stimuli and stresses. Given their role in modulating ubiquitination levels of various substrates, DUBs are increasingly linked to human health and disease. Here, we review the DUB family, highlighting their distinctive structural characteristics and chain-type specificities. We show that DUB family members regulate key signaling pathways, such as NF-κB, PI3K/Akt/mTOR, and MAPK, and play crucial roles in tumorigenesis and other diseases (neurodegenerative disorders, cardiovascular diseases, inflammatory disorders, and developmental diseases), making them promising therapeutic targets Our review also discusses the challenges in developing DUB inhibitors and underscores the critical role of the DUBs in cellular signaling and cancer. This comprehensive analysis enhances our understanding of the complex biological functions of the DUBs and underscores their therapeutic potential.
Collapse
Affiliation(s)
- Yali Xian
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Jing Ye
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Yu Tang
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| | - Nan Zhang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine ResourcesSchool of PharmacyChengdu University of Traditional Chinese MedicineChengduChina
| | - Gu He
- Department of Dermatology & VenerologyState Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduChina
| |
Collapse
|
16
|
Liao Y, Zhang W, Liu Y, Zhu C, Zou Z. The role of ubiquitination in health and disease. MedComm (Beijing) 2024; 5:e736. [PMID: 39329019 PMCID: PMC11424685 DOI: 10.1002/mco2.736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Ubiquitination is an enzymatic process characterized by the covalent attachment of ubiquitin to target proteins, thereby modulating their degradation, transportation, and signal transduction. By precisely regulating protein quality and quantity, ubiquitination is essential for maintaining protein homeostasis, DNA repair, cell cycle regulation, and immune responses. Nevertheless, the diversity of ubiquitin enzymes and their extensive involvement in numerous biological processes contribute to the complexity and variety of diseases resulting from their dysregulation. The ubiquitination process relies on a sophisticated enzymatic system, ubiquitin domains, and ubiquitin receptors, which collectively impart versatility to the ubiquitination pathway. The widespread presence of ubiquitin highlights its potential to induce pathological conditions. Ubiquitinated proteins are predominantly degraded through the proteasomal system, which also plays a key role in regulating protein localization and transport, as well as involvement in inflammatory pathways. This review systematically delineates the roles of ubiquitination in maintaining protein homeostasis, DNA repair, genomic stability, cell cycle regulation, cellular proliferation, and immune and inflammatory responses. Furthermore, the mechanisms by which ubiquitination is implicated in various pathologies, alongside current modulators of ubiquitination are discussed. Enhancing our comprehension of ubiquitination aims to provide novel insights into diseases involving ubiquitination and to propose innovative therapeutic strategies for clinical conditions.
Collapse
Affiliation(s)
- Yan Liao
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Wangzheqi Zhang
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Yang Liu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Chenglong Zhu
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| | - Zui Zou
- Faculty of Anesthesiology Changhai Hospital Naval Medical University Shanghai China
- School of Anesthesiology Naval Medical University Shanghai China
| |
Collapse
|
17
|
Hu Q, Li C, Zhang T, Yi L, Shan Y, Ma X, Cai T, Ran L, Shen H, Li Y. Dihydromyricetin suppresses endothelial NLRP3 inflammasome activation and attenuates atherogenesis by promoting mitophagy. Lipids Health Dis 2024; 23:279. [PMID: 39227809 PMCID: PMC11370113 DOI: 10.1186/s12944-024-02263-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/18/2024] [Indexed: 09/05/2024] Open
Abstract
BACKGROUND NOD-like receptor protein 3 (NLRP3) inflammasome activation is indispensable for atherogenesis. Mitophagy has emerged as a potential strategy to counteract NLRP3 inflammasome activation triggered by impaired mitochondria. Our previous research has indicated that dihydromyricetin, a natural flavonoid, can mitigate NLRP3-mediated endothelial inflammation, suggesting its potential to treat atherosclerosis. However, the precise underlying mechanisms remain elusive. This study sought to investigate whether dihydromyricetin modulates endothelial mitophagy and inhibits NLRP3 inflammasome activation to alleviate atherogenesis, along with the specific mechanisms involved. METHODS Apolipoprotein E-deficient mice on a high-fat diet were administered daily oral gavages of dihydromyricetin for 14 weeks. Blood samples were procured to determine the serum lipid profiles and quantify proinflammatory cytokine concentrations. Aortas were harvested to evaluate atherosclerotic plaque formation and NLRP3 inflammasome activation. Concurrently, in human umbilical vein endothelial cells, Western blotting, flow cytometry, and quantitative real-time PCR were employed to elucidate the mechanistic role of mitophagy in the modulation of NLRP3 inflammasome activation by dihydromyricetin. RESULTS Dihydromyricetin administration significantly attenuated NLRP3 inflammasome activation and vascular inflammation in mice on a high-fat diet, thereby exerting a pronounced inhibitory effect on atherogenesis. Both in vivo and in vitro, dihydromyricetin treatment markedly enhanced mitophagy. This enhancement in mitophagy ameliorated the mitochondrial damage instigated by saturated fatty acids, thereby inhibiting the activation and nuclear translocation of NF-κB. Consequently, concomitant reductions in the transcript levels of NLRP3 and interleukin-1β (IL-1β), alongside decreased activation of NLRP3 inflammasome and IL-1β secretion, were discerned. Notably, the inhibitory effects of dihydromyricetin on the activation of NF-κB and subsequently the NLRP3 inflammasome were determined to be, at least in part, contingent upon its capacity to promote mitophagy. CONCLUSION This study suggested that dihydromyricetin may function as a modulator to promote mitophagy, which in turn mitigates NF-κB activity and subsequent NLRP3 inflammasome activation, thereby conferring protection against atherosclerosis.
Collapse
Affiliation(s)
- Qin Hu
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Chengying Li
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Ting Zhang
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Long Yi
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Yifan Shan
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Xiangyu Ma
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Tongjian Cai
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Li Ran
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Hui Shen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China
| | - Yafei Li
- Department of Epidemiology, Institute of Military Preventive Medicine, Army Medical University (Third Military Medical University), Chongqing, 400038, P. R. China.
| |
Collapse
|
18
|
Shao C, Yan X, Li H, Nian D, Ren L, Pang S, Sun J. Intranuclear Irradiation Inhibits Solid Tumor Growth by Upregulating Caspase8 and Activating Apoptosis. Mol Pharm 2024; 21:4259-4271. [PMID: 39077844 DOI: 10.1021/acs.molpharmaceut.4c00092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Radioimmunotherapy (RIT) is a novel and promising cancer treatment method, with ongoing research focusing on RIT antibody selection, radionuclides, treatment options, and benefited patient groups. As we dive into the mechanisms of tumor biology, a deeper exploration of how RIT affects tumor tissue is needed to provide new ways to improve clinical treatment outcome and patient prognosis. We labeled the anti-PD-L1 monoclonal antibody atezolizumab with iodine-131 (131I), separated and purified the labeled mAb with Sephadex G-25 medium gel filtration resin, and tested product stability. We detected the in vivo activity of 131I-PD-L1 mAb by analyzing its in vivo biodistribution and performing SPECT imaging and then set different treatment groups to study the effect of 131I-atezolizumab on the survival of tumor-bearing mice. Western blot, real-time quantitative PCR, and immunohistochemistry were used to detect the expression level of Caspase8 and Nlrp3 in tumor. TUNEL fluorescence staining was used to detect the apoptosis in the tumor. The radiopharmaceutical molecular probe 131I-atezolizumab showed high stability and in vivo biological activity. The treatment regimen adopted had a positive effect on the survival of tumor-bearing mice. 131I internal irradiation upregulated Caspase8 in tumor and ultimately inhibited solid tumor growth by activating apoptosis pathways. We also found a significant increase in the expression of NLRP3, which plays an important role in the pyroptosis pathway, in tumor. In summary, our data demonstrated that radiopharmaceuticals combined with immunotherapy affected tumor tissue by modulating relevant biological pathways, thereby achieving better antitumor effects compared with single therapy and providing new insights for promoting better patient prognosis and combination treatment strategies.
Collapse
Affiliation(s)
- Chenxu Shao
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Xiaoping Yan
- Department of Radiology, The People's Hospital of Jiangyou, Jiangyou 621799, P. R. China
| | - Hui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233004, P. R. China
| | - Di Nian
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Li Ren
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Shangjie Pang
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| | - Junjie Sun
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, Anhui Province, P. R. China
| |
Collapse
|
19
|
Zhao X, Ni W, Zheng W, Ni W, Sun C, Gu Y, Gu Z. Multi-regulatory potency of USP1 on inflammasome components promotes pyroptosis in thyroid follicular cells and contributes to the progression of Hashimoto's thyroiditis. Mol Med 2024; 30:121. [PMID: 39134949 PMCID: PMC11318162 DOI: 10.1186/s10020-024-00885-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/22/2024] [Indexed: 08/16/2024] Open
Abstract
BACKGROUND Inflammatory diseases are often initiated by the activation of inflammasomes triggered by pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs), which mediate pyroptosis. Although pyroptosis resulting from aberrant inflammasome triggering in thyroid follicular cells (TFCs) has been observed in Hashimoto's thyroiditis (HT) patients, the underlying mechanisms remain largely unknown. Given the extensive involvement of protein ubiquitination and deubiquitination in inflammatory diseases, we aimed to investigate how deubiquitinating enzymes regulate thyroid follicular cell pyroptosis and HT pathogenesis. METHODS Our study specifically investigated the role of Ubiquitin-specific peptidase 1 (USP1), a deubiquitinase (DUB), in regulating the inflammasome components NLRP3 and AIM2, which are crucial in pyroptosis. We conducted a series of experiments to elucidate the function of USP1 in promoting pyroptosis associated with inflammasomes and the progression of HT. These experiments involved techniques such as USP1 knockdown or inhibition, measurement of key pyroptosis indicators including caspase-1, caspase-1 p20, and GSDMD-N, and examination of the effects of USP1 abrogation on HT using a mouse model. Furthermore, we explored the impact of USP1 on NLRP3 transcription and its potential interaction with p65 nuclear transportation. RESULTS Our findings provide compelling evidence indicating that USP1 plays a pivotal role in promoting inflammasome-mediated pyroptosis and HT progression by stabilizing NLRP3 and AIM2 through deubiquitination. Furthermore, we discovered that USP1 modulates the transcription of NLRP3 by facilitating p65 nuclear transportation. Knockdown or inhibition of USP1 resulted in weakened cell pyroptosis, as evidenced by reduced levels of caspase-1 p20 and GSDMD-N, which could be restored upon AIM2 overexpression. Remarkably, USP1 abrogation significantly ameliorated HT in the mice model, likely to that treating mice with pyroptosis inhibitors VX-765 and disulfiram. CONCLUSIONS Our study highlights a regulatory mechanism of USP1 on inflammasome activation and pyroptosis in TFCs during HT pathogenesis. These findings expand our understanding of HT and suggest that inhibiting USP1 may be a potential treatment strategy for managing HT.
Collapse
Affiliation(s)
- Xuying Zhao
- Dalian Medical University, Dalian, Liaoning, China
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China
| | - Wenyu Ni
- Department of Endocrinology and Metabolism, Qidong People's Hospital, Nantong, Jiangsu, China
| | - Wenjie Zheng
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Wenkai Ni
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Chunfeng Sun
- Department of Nuclear Medicine, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Yunjuan Gu
- Department of Endocrinology and Metabolism, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| | - Zhifeng Gu
- Dalian Medical University, Dalian, Liaoning, China.
- Department of Rheumatology, Affiliated Hospital of Nantong University, No. 20 Xisi Road, Nantong, 226001, Jiangsu, China.
| |
Collapse
|
20
|
Qin D, Wang C, Yan R, Qin Y, Ying Z, Kong H, Zhao W, Zhang L, Song H. ZAP facilitates NLRP3 inflammasome activation via promoting the oligomerization of NLRP3. Int Immunopharmacol 2024; 133:112123. [PMID: 38663314 DOI: 10.1016/j.intimp.2024.112123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 05/12/2024]
Abstract
The NOD-like receptor family protein 3 (NLRP3) inflammasome is a crucial complex for the host to establish inflammatory immune responses and plays vital roles in a series of disorders, including Alzheimer's disease and acute peritonitis. However, its regulatory mechanism remains largely unclear. Zinc finger antiviral protein (ZAP), also known as zinc finger CCCH-type antiviral protein 1 (ZC3HAV1), promotes viral RNA degradation and plays vital roles in host antiviral immune responses. However, the role of ZAP in inflammation, especially in NLRP3 activation, is unclear. Here, we show that ZAP interacts with NLRP3 and promotes NLRP3 oligomerization, thus facilitating NLRP3 inflammasome activation in peritoneal macrophages of C57BL/6 mice. The shorter isoform of ZAP (ZAPS) appears to play a greater role than the full-length isoform (ZAPL) in HEK293T cells. Congruously, Zap-deficient C57BL/6 mice may be less susceptible to alum-induced peritonitis and lipopolysaccharide-induced sepsis in vivo. Therefore, we propose that ZAP is a positive regulator of NLRP3 activation and a potential therapeutic target for NLRP3-related inflammatory disorders.
Collapse
Affiliation(s)
- Danhui Qin
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiwei Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rongzhen Yan
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Qin
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Physiology & Pathophysiology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhendong Ying
- Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China
| | - Hongyi Kong
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lei Zhang
- Department of Orthopedic Surgery, the First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Key Laboratory of Rheumatic Disease and Translational Medicine, Jinan, Shandong, China.
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Department of Pathogenic Biology, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
21
|
Liang Z, Damianou A, Vendrell I, Jenkins E, Lassen FH, Washer SJ, Grigoriou A, Liu G, Yi G, Lou H, Cao F, Zheng X, Fernandes RA, Dong T, Tate EW, Di Daniel E, Kessler BM. Proximity proteomics reveals UCH-L1 as an essential regulator of NLRP3-mediated IL-1β production in human macrophages and microglia. Cell Rep 2024; 43:114152. [PMID: 38669140 DOI: 10.1016/j.celrep.2024.114152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/28/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Activation of the NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome complex is an essential innate immune signaling mechanism. To reveal how human NLRP3 inflammasome assembly and activation are controlled, in particular by components of the ubiquitin system, proximity labeling, affinity purification, and RNAi screening approaches were performed. Our study provides an intricate time-resolved molecular map of different phases of NLRP3 inflammasome activation. Also, we show that ubiquitin C-terminal hydrolase 1 (UCH-L1) interacts with the NACHT domain of NLRP3. Downregulation of UCH-L1 decreases pro-interleukin-1β (IL-1β) levels. UCH-L1 chemical inhibition with small molecules interfered with NLRP3 puncta formation and ASC oligomerization, leading to altered IL-1β cleavage and secretion, particularly in microglia cells, which exhibited elevated UCH-L1 expression as compared to monocytes/macrophages. Altogether, we profiled NLRP3 inflammasome activation dynamics and highlight UCH-L1 as an important modulator of NLRP3-mediated IL-1β production, suggesting that a pharmacological inhibitor of UCH-L1 may decrease inflammation-associated pathologies.
Collapse
Affiliation(s)
- Zhu Liang
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| | - Andreas Damianou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Iolanda Vendrell
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward Jenkins
- Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, UK
| | - Frederik H Lassen
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Old Road Campus, Oxford OX3 7LF, UK
| | - Sam J Washer
- James and Lillian Martin Centre for Stem Cell Research, Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK; Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Athina Grigoriou
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Guihai Liu
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Gangshun Yi
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Hantao Lou
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, UK
| | - Fangyuan Cao
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Xiaonan Zheng
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Ricardo A Fernandes
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Tao Dong
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Edward W Tate
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, UK
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, UK
| | - Benedikt M Kessler
- Chinese Academy for Medical Sciences Oxford Institute, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK; Target Discovery Institute, Centre for Medicines Discovery, Nuffield Department of Medicine, University of Oxford, Roosevelt Drive, Oxford OX3 7FZ, UK.
| |
Collapse
|
22
|
Liu C, Fan C, Liu J, Zhang S, Tang H, Liu Y, Zhang S, Wu Q, Zhang J, Qi Z, Shen Y. YOD1 protects against MRSA sepsis-induced DIC through Lys33-linked deubiquitination of NLRP3. Cell Death Dis 2024; 15:360. [PMID: 38789414 PMCID: PMC11126606 DOI: 10.1038/s41419-024-06731-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Disseminated intravascular coagulation (DIC) is considered to be the most common and lethal complication of sepsis. NLR-family pyrin domain-containing-3 (NLRP3) inflammasome plays an important role in host defense against microbial pathogens, and its deregulation may cause coagulation cascade and should be strictly managed. Here, we identified the deubiquitinase YOD1, which played a vital role in regulating coagulation in a NLRP3 inflammasome-dependent manner in sepsis induced by methicillin-resistant Staphylococcus aureus (MRSA). YOD1 interacted with NLRP3 to remove K33-linked ubiquitination of NLRP3 based on its deubiquitinating enzyme activity and specifically inhibited expression of NLRP3 as well as activation of NLRP3 inflammasome. Deficiency of YOD1 expression enhanced NLRP3 inflammasome activation and coagulation both in vitro and in vivo. In addition, pharmacological inhibition of the NLRP3 effectively improved coagulation and alleviated organ injury in Yod1-/- mice infected with MRSA. Thus, our study reported that YOD1 is a key regulator of coagulation during MRSA infection, and provided YOD1 as a potential therapeutic target for the treatment of NLRP3 inflammasome-related diseases, especially MRSA sepsis-induced DIC.
Collapse
Affiliation(s)
- Chang Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | - Caihong Fan
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Jia Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shiqi Zhang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Huixin Tang
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Yashan Liu
- School of Medical Technology, Tianjin Medical University, Tianjin, China
| | - Shengzheng Zhang
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China
| | - Qiang Wu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, China
| | | | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine, Nankai University, Tianjin, China.
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying, China.
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin, China.
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, China.
| | - Yanna Shen
- School of Medical Technology, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
23
|
Liu J, Song K, Lin B, Chen Z, Liu Y, Qiu X, He Q, Zuo Z, Yao X, Huang X, Liu Z, Liu Z, Huang Q, Guo X. The suppression of HSPA8 attenuates NLRP3 ubiquitination through SKP2 to promote pyroptosis in sepsis-induced lung injury. Cell Biosci 2024; 14:56. [PMID: 38698431 PMCID: PMC11064404 DOI: 10.1186/s13578-024-01239-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/25/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND Acute lung injury (ALI) is strongly associated with hospitalization and mortality in patients with sepsis. Recent evidence suggests that pyroptosis mediated by NLRP3(NOD-, LRR- and pyrin domain-containing 3) inflammasome activation plays a key role in sepsis. However, the mechanism of NLRP3 inflammasome activation in sepsis-induced lung injury remains unclear. RESULTS in this study, we demonstrated that NLRP3 inflammasome was activated by the down-regulation of heat shock protein family A member 8 (HSPA8) in Lipopolysaccharide (LPS) and adenosine triphosphate (ATP)-treated mouse alveolar epithelial cells (AECs). Geranylgeranylacetone (GGA)-induced HSPA8 overexpression in cecum ligation and puncture (CLP) mice could significantly reduce systemic inflammatory response and mortality, effectively protect lung function, whilst HSPA8 inhibitor VER155008 aggravated this effect. The inhibition of HSPA8 was involved in sepsis induced acute lung injury by promoting pyroptosis of AECs. The down-regulation of HSPA8 activated NLRP3 inflammasome to mediate pyroptosis by promoting the degradation of E3 ubiquitin ligase S-phase kinase-associated protein 2 (SKP2). In addition, when stimulated by LPS and ATP, down-regulated SKP2 promoted pyroptosis of AECs by further attenuating ubiquitination of NLRP3. Adeno-associated virus 9-SKP2(AAV9-SKP2) could promote NLRP3 ubiquitination and degradation, alleviate lung injury and inhibit systemic inflammatory response in vivo. CONCLUSION in summary, our study shows there is strong statistical evidence that the suppression of HSPA8 mediates alveolar epithelial pyroptosis by promoting the degradation of E3 ubiquitin ligase SKP2 and subsequently attenuating the ubiquitination of NLRP3 to activate the NLRP3 inflammasome, which provides a new perspective and therapeutic target for the treatment of sepsis-induced lung injury.
Collapse
Affiliation(s)
- Jinlian Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ke Song
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingqi Lin
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Yan Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xianshuai Qiu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Qi He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zirui Zuo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaodan Yao
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaoxia Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhuanhua Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Zhifeng Liu
- Department of Medicine intensive care unit , National Clinical Research Center for Geriatric Diseases (Chinese PLA General Hospital), General Hospital of Southern Theatre Command of PLA, Guangdong Branch Center, Guangzhou, Guangdong, China.
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Tonghe, Guangzhou, 510515, China.
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, School of Basic Medical Sciences, National Experimental Education Demonstration Center for Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
- School of Basic Medical Sciences, Southern Medical University, 1023 Shatai Road, Tonghe, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Ri-Wen, Yang YH, Zhang TN, Liu CF, Yang N. Targeting epigenetic and post-translational modifications regulating pyroptosis for the treatment of inflammatory diseases. Pharmacol Res 2024; 203:107182. [PMID: 38614373 DOI: 10.1016/j.phrs.2024.107182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/15/2024]
Abstract
Inflammatory diseases, including infectious diseases, diabetes-related diseases, arthritis-related diseases, neurological diseases, digestive diseases, and tumor, continue to threaten human health and impose a significant financial burden despite advancements in clinical treatment. Pyroptosis, a pro-inflammatory programmed cell death pathway, plays an important role in the regulation of inflammation. Moderate pyroptosis contributes to the activation of native immunity, whereas excessive pyroptosis is associated with the occurrence and progression of inflammation. Pyroptosis is complicated and tightly controlled by various factors. Accumulating evidence has confirmed that epigenetic modifications and post-translational modifications (PTMs) play vital roles in the regulation of pyroptosis. Epigenetic modifications, which include DNA methylation and histone modifications (such as methylation and acetylation), and post-translational modifications (such as ubiquitination, phosphorylation, and acetylation) precisely manipulate gene expression and protein functions at the transcriptional and post-translational levels, respectively. In this review, we summarize the major pathways of pyroptosis and focus on the regulatory roles and mechanisms of epigenetic and post-translational modifications of pyroptotic components. We also illustrate these within pyroptosis-associated inflammatory diseases. In addition, we discuss the effects of novel therapeutic strategies targeting epigenetic and post-translational modifications on pyroptosis, and provide prospective insight into the regulation of pyroptosis for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ri-Wen
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yu-Hang Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Tie-Ning Zhang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Chun-Feng Liu
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Ni Yang
- Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
25
|
Wang Z, Li T, Liu D, Li M, Liu S, Yu X, Li H, Song H, Zhao W, Liu Z, Chen X, Lu G, Chen ZJ, Huang T, Liu H. The deubiquitinase cofactor UAF1 interacts with USP1 and plays an essential role in spermiogenesis. iScience 2024; 27:109456. [PMID: 38591005 PMCID: PMC10999478 DOI: 10.1016/j.isci.2024.109456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/02/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024] Open
Abstract
Spermiogenesis defines the final phase of male germ cell differentiation. While multiple deubiquitinating enzymes have been linked to spermiogenesis, the impacts of deubiquitination on spermiogenesis remain poorly characterized. Here, we investigated the function of UAF1 in mouse spermiogenesis. We selectively deleted Uaf1 in premeiotic germ cells using the Stra8-Cre knock-in mouse strain (Uaf1 sKO), and found that Uaf1 is essential for spermiogenesis and male fertility. Further, UAF1 interacts and colocalizes with USP1 in the testes. Conditional knockout of Uaf1 in testes results in disturbed protein levels and localization of USP1, suggesting that UAF1 regulates spermiogenesis through the function of the deubiquitinating enzyme USP1. Using tandem mass tag-based proteomics, we identified that conditional knockout of Uaf1 in the testes results in reduced levels of proteins that are essential for spermiogenesis. Thus, we conclude that the UAF1/USP1 deubiquitinase complex is essential for normal spermiogenesis by regulating the levels of spermiogenesis-related proteins.
Collapse
Affiliation(s)
- Ziqi Wang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Tongtong Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Dongkai Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Mengjing Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Shangming Liu
- School of Basic Medical Sciences, Shandong University, Jinan 250012, China
| | - Xiaochen Yu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
| | - Hanzhen Li
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
| | - Hui Song
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Wei Zhao
- Department of Immunology, Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Zhaojian Liu
- Advanced Medical Research Institute, Shandong University, Jinan, China
| | - Xiangfeng Chen
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
| | - Gang Lu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Zi-Jiang Chen
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai 200135, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Tao Huang
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| | - Hongbin Liu
- Center for Reproductive Medicine, Shandong University, Jinan, Shandong 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences, Jinan, Shandong 250012, China
- Key Laboratory of Reproductive Endocrinology of Ministry of Education, Shandong University, Jinan, Shandong 250012, China
- Shandong Provincial Clinical Medicine Research Center for Reproductive Health, Jinan, Shandong 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong 250012, China
- CUHK-SDU Joint Laboratory on Reproductive Genetics, School of Biomedical Sciences, the Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
26
|
Zheng L, Mei W, Zhou J, Wei X, Huang Z, Lin X, Zhang L, Liu W, Wu Q, Li J, Yan Y. Fluorofenidone attenuates renal fibrosis by inhibiting lysosomal cathepsin‑mediated NLRP3 inflammasome activation. Exp Ther Med 2024; 27:142. [PMID: 38476910 PMCID: PMC10928820 DOI: 10.3892/etm.2024.12430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 01/30/2024] [Indexed: 03/14/2024] Open
Abstract
Currently, no antifibrotic drug in clinical use can effectively treat renal fibrosis. Fluorofenidone (AKFPD), a novel pyridone agent, significantly reduces renal fibrosis by inhibiting the activation of the NOD-like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome; however, the underlying mechanism of this inhibition is not fully understood. The present study aimed to reveal the molecular mechanism underlying the suppression of NLRP3 inflammasome activation by AKFPD. It investigated the effect of AKFPD on NLRP3 activation and lysosomal cathepsins in a unilateral ureteral obstruction (UUO) rat model, and hypoxia/reoxygenation (H/R)-treated HK-2 cells and murine peritoneal-derived macrophages (PDMs) stimulated with lipopolysaccharide (LPS) and ATP. The results confirmed that AKFPD suppressed renal interstitial fibrosis and inflammation by inhibiting NLRP3 inflammasome activation in UUO rat kidney tissues. In addition, AKFPD reduced the production of activated caspase-1 and maturation of IL-1β by suppressing NLRP3 inflammasome activation in H/R-treated HK-2 cells and murine PDMs stimulated with LPS and ATP. AKFPD also decreased the activities of cathepsins B, L and S both in vivo and in vitro. Notably, AKFPD downregulated cathepsin B expression and NLRP3 colocalization in the cytoplasm after lysosomal disruptions. Overall, the results suggested that AKFPD attenuates renal fibrosis by inhibiting lysosomal cathepsin-mediated activation of the NLRP3 inflammasome.
Collapse
Affiliation(s)
- Linfeng Zheng
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wenjuan Mei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jing Zhou
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xin Wei
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Zhijuan Huang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiaozhen Lin
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Li Zhang
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Wei Liu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Qian Wu
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jinhong Li
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Yan Yan
- Department of Nephrology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
27
|
Zhang S, Zhao N, Song S, Wang Y, Wang Y, Sun C, Dong M, Huo M, Xu N, Liu W, Li G. Crosstalk between autophagy and inflammasomes in ricin-induced inflammatory injury. Toxicol Appl Pharmacol 2024; 485:116890. [PMID: 38492674 DOI: 10.1016/j.taap.2024.116890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/04/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
Ricin (ricin toxin, RT) has the potential to cause damage to multiple organs and systems. Currently, there are no existing antidotes, vaccinations, or effective therapies to prevent or treat RT intoxication. Apart from halting protein synthesis, RT also induces oxidative stress, inflammation and autophagy. To explore the mechanisms of RT-induced inflammatory injury and specific targets of prevention and treatment for RT poisoning, we characterized the role of cross-talk between autophagy and NLRP3 inflammasome in RT-induced damage and elucidated the underlying mechanisms. We showed that RT-induced inflammation was attributed to activation of the TLR4/MyD88/NLRP3 signaling and ROS production, evidenced by increased ASC speck formation and attenuated TXNIP/TRX-1 interaction, as well as pre-treatment with MCC950, MyD88 knockdown and NAC significantly reduced IL-1β, IL-6 and TNF-α mRNA expression. In addition, autophagy is also enhanced in RT-triggered MLE-12 cells. RT elevated the levels of ATG5, p62 and Beclin1 protein, provoked the accumulation of LC3 puncta detected by immunofluorescence staining. Treatment with rapamycin (Rapa) reversed the RT-caused TLR4/MyD88/NLRP3 signaling activation, ASC specks formation as well as the levels of IL-1β, IL-6 and TNF-α mRNA. In conclusion, RT promoted NLRP3 inflammasome activation and autophgay. Inflammation induced by RT was attenuated by autophagy activation, which suppressed the NLRP3 inflammasome. These findings suggest Rapa as a potential therapeutic drug for the treatment of RT-induced inflammation-related diseases.
Collapse
Affiliation(s)
- Shiji Zhang
- Inner Mongolia Minzu University, Inner Mongolia 028000, PR China
| | - Na Zhao
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China
| | - Suli Song
- Changchun University of Science and Technology, Changchun 130122, PR China
| | - Yanchun Wang
- Jinlin Medical University, Jilin 132013, PR China
| | - Yan Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun 130122, PR China
| | - Chengbiao Sun
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China
| | - Mingxin Dong
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China
| | - Mengqi Huo
- Inner Mongolia Minzu University, Inner Mongolia 028000, PR China
| | - Na Xu
- Jinlin Medical University, Jilin 132013, PR China.
| | - Wensen Liu
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun 130122, PR China.
| | - Guorui Li
- Inner Mongolia Minzu University, Inner Mongolia 028000, PR China.
| |
Collapse
|
28
|
Yang J, Huang X, Yu Q, Wang S, Wen X, Bai S, Cao L, Zhang K, Zhang S, Wang X, Chen Z, Cai Z, Zhang G. Extracellular vesicles derived from M2-like macrophages alleviate acute lung injury in a miR-709-mediated manner. J Extracell Vesicles 2024; 13:e12437. [PMID: 38594787 PMCID: PMC11004041 DOI: 10.1002/jev2.12437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/24/2024] [Indexed: 04/11/2024] Open
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is characterised by an uncontrolled inflammatory response, and current treatment strategies have limited efficacy. Although the protective effect of M2-like macrophages (M2φ) and their extracellular vesicles (EVs) has been well-documented in other inflammatory diseases, the role of M2φ-derived EVs (M2φ-EVs) in the pathogenesis of ALI/ARDS remains poorly understood. The present study utilised a mouse model of lipopolysaccharide-induced ALI to first demonstrate a decrease in endogenous M2-like alveolar macrophage-derived EVs. And then, intratracheal instillation of exogenous M2φ-EVs from the mouse alveolar macrophage cell line (MH-S) primarily led to a take up by alveolar macrophages, resulting in reduced lung inflammation and injury. Mechanistically, the M2φ-EVs effectively suppressed the pyroptosis of alveolar macrophages and inhibited the release of excessive cytokines such as IL-6, TNF-α and IL-1β both in vivo and in vitro, which were closely related to NF-κB/NLRP3 signalling pathway inhibition. Of note, the protective effect of M2φ-EVs was partly mediated by miR-709, as evidenced by the inhibition of miR-709 expression in M2φ-EVs mitigated their protective effect against lipopolysaccharide-induced ALI in mice. In addition, we found that the expression of miR-709 in EVs derived from bronchoalveolar lavage fluid was correlated negatively with disease severity in ARDS patients, indicating its potential as a marker for ARDS severity. Altogether, our study revealed that M2φ-EVs played a protective role in the pathogenesis of ALI/ARDS, partly mediated by miR-709, offering a potential strategy for assessing disease severity and treating ALI/ARDS.
Collapse
Affiliation(s)
- Jie Yang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xiaofang Huang
- Department of Critical Care MedicineQilu Hospital of Shandong UniversityJinanShandongChina
| | - Qing Yu
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shibo Wang
- Department of Orthopedics, Institute of Immunology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xuehuan Wen
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Songjie Bai
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Lanxin Cao
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Kai Zhang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Shufang Zhang
- Department of Cardiology, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Xingang Wang
- Department of Burns & Wound Care Centre, the Second Affiliated Hospital of Zhejiang University School of Medicinethe Key Laboratory of Trauma and Burns of Zhejiang UniversityHangzhouZhejiangChina
| | - Zhanghui Chen
- Zhanjiang Institute of Clinical Medicine, Zhanjiang Central HospitalGuangdong Medical UniversityZhanjiangGuangdongChina
| | - Zhijian Cai
- Department of Orthopedics, Institute of Immunology, the Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
| | - Gensheng Zhang
- Department of Critical Care Medicine, Second Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiangChina
- Key Laboratory of Multiple Organ Failure (Zhejiang University)Ministry of EducationHangzhouZhejiangChina
| |
Collapse
|
29
|
Zeng D, Zhang W, Chen X, Ou G, Huang Y, Yu C. Inhibitory Effect of P22077 on Airway Inflammation in Rats with COPD and Its Mechanism. Int J Chron Obstruct Pulmon Dis 2024; 19:779-788. [PMID: 38529479 PMCID: PMC10962660 DOI: 10.2147/copd.s451244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/13/2024] [Indexed: 03/27/2024] Open
Abstract
Purpose Here, we studied the pharmacological effect of P22077 on airway inflammation induced by lipopolysaccharide and cigarette smoke and explored the therapeutic mechanism of P22077 in COPD model RAT. Patients and Methods The COPD model was established by lipopolysaccharide combined with fumigation; animals were treated with vehicle or P22077. Serum, bronchoalveolar lavage fluid (BALF), and lung tissues were collected for analysis. Results Our results showed that P22077 treatment significantly improved the airway inflammation of COPD model RAT and reduced the recruitment of leukocytes in BALF, and hypersecretion of interleukin-18 (IL-18), interleukin-1β (IL-1β) in BALF and serum. H&E staining showed that P22077 treatment could effectively reduce emphysema, immune cell infiltration and airway wall destruction. PAS staining showed that The proliferation of cup cells in the airway wall and the number of bronchial cup cells were significantly reduced in rats treated with P22077. In addition, we found that P22077 treatment suppressed the generation of the NLRP3/ASC/Caspase 1 inflammasome complex to inhibit the inflammatory response caused by IL-1β and IL-18. Conclusion Conclusion: P22077 inhibits expression of NLRP3 pathway-related inflammatory factors and proteins and reduces the airway inflammatory response and inflammatory cell aggregation in COPD rats. The underlying mechanism may be related to the down-regulation of NLRP3 inflammatory vesicle signaling pathway expression.
Collapse
Affiliation(s)
- Di Zeng
- Department of General Practice, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Wenbo Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Xiaoju Chen
- Clinical Medical College, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, 610081, People’s Republic of China
| | - Guochun Ou
- Department of Respiratory and Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Yuewei Huang
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Chengxiu Yu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| |
Collapse
|
30
|
Que X, Zheng S, Song Q, Pei H, Zhang P. Fantastic voyage: The journey of NLRP3 inflammasome activation. Genes Dis 2024; 11:819-829. [PMID: 37692521 PMCID: PMC10491867 DOI: 10.1016/j.gendis.2023.01.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/07/2023] [Indexed: 09/12/2023] Open
Abstract
NLRP3 inflammasome, an intracellular multiprotein complex, can be activated by a range of pathogenic microbes or endogenous hazardous chemicals. Its activation results in the release of cytokines such as IL-1β and IL-18, as well as Gasdermin D which eventually causes pyroptosis. The activation of NLRP3 inflammasome is under strict control and regulation by numerous pathways and mechanisms. Its excessive activation can lead to a persistent inflammatory response, which is linked to the onset and progression of severe illnesses. Recent studies have revealed that the subcellular localization of NLRP3 changes significantly during the activation process. In this review, we review the current understanding of the molecular mechanism of NLRP3 inflammasome activation, focusing on the subcellular localization of NLRP3 and the associated regulatory mechanisms. We aim to provide a comprehensive understanding of the dynamic transportation, activation, and degradation processes of NLRP3.
Collapse
Affiliation(s)
- Xiangyong Que
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Sihao Zheng
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Pingfeng Zhang
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| |
Collapse
|
31
|
Wei C, Fu M, Zhang H, Yao B. How is the P2X7 receptor signaling pathway involved in epileptogenesis? Neurochem Int 2024; 173:105675. [PMID: 38211839 DOI: 10.1016/j.neuint.2024.105675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/13/2024]
Abstract
Epilepsy, a condition characterized by spontaneous recurrent epileptic seizures, is among the most prevalent neurological disorders. This disorder is estimated to affect approximately 70 million people worldwide. Although antiseizure medications are considered the first-line treatments for epilepsy, most of the available antiepileptic drugs are not effective in nearly one-third of patients. This calls for the development of more effective drugs. Evidence from animal models and epilepsy patients suggests that strategies that interfere with the P2X7 receptor by binding to adenosine triphosphate (ATP) are potential treatments for this patient population. This review describes the role of the P2X7 receptor signaling pathways in epileptogenesis. We highlight the genes, purinergic signaling, Pannexin1, glutamatergic signaling, adenosine kinase, calcium signaling, and inflammatory response factors involved in the process, and conclude with a synopsis of these key connections. By unraveling the intricate interplay between P2X7 receptors and epileptogenesis, this review provides ideas for designing potent clinical therapies that will revolutionize both prevention and treatment for epileptic patients.
Collapse
Affiliation(s)
- Caichuan Wei
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Miaoying Fu
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Haiju Zhang
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China
| | - Baozhen Yao
- Department of Pediatrics, Renmin Hospital of Wuhan University, 99 Zhang Zhidong Road, Wuchang District, Wuhan, Hubei Province 430060, China.
| |
Collapse
|
32
|
Gao T, Wang T, Wu L, Tong Y, Tian J, Zhao K, Wang H. Saikosaponin-d alleviates depression by promoting NLRP3 ubiquitination and inhibiting inflammasome activation. Int Immunopharmacol 2024; 127:111324. [PMID: 38070467 DOI: 10.1016/j.intimp.2023.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024]
Abstract
Saikosaponin-d (SSd) is a triterpene saponin from the roots of Bupleurum chinese. Recent studies have revealed its antidepressant activity, but its mechanism involved is unclear. This study's objective was to ascertain how SSd may reduce depression in depressed mice subjected to chronic unpredictable animal stress (CUMS) and to investigate the mechanisms underlying these effects. Models of CUMS depression were established and different groups were treated with SSd and escitalopram. After the last day of administration of the treatment, behavioral tests were performed. ELISA was used to measure the expression of IL-1β, TNF-α, and IL-18, and western blot was used to measure the presence of proteins associated with NLRP3. Hippocampal neuronal damage was observed using Nissl staining, and NLRP3 ubiquitination assay was performed by immunoprecipitation and gene silencing. An inflammatory cell model was constructed by treating BV2 cells with lipopolysaccharides (LPS) and adenosine triphosphate (ATP) to verify the ubiquitination modification of NLRP3 by SSd. Behavioral tests demonstrated that SSd effectively alleviated depression-like symptoms. SSd should substantially limit the degrees of proteins associated with NLRP3, as properly as limit the harm to hippocampal neurons. Gene silencing results showed that SSd regulates NLRP3 through the E3 ubiquitin ligase MARCHF7. In vitro, SSd remarkably increased the protein expression of K48-linked ubiquitin in inflammatory BV2 cells, while decreasing the protein levels of NLRP3. Our findings suggest that SSd has antidepressant effects in CUMS mice by promoting ubiquitination of NLRP3 to inhibit inflammasome activation and improve the inflammatory state.
Collapse
Affiliation(s)
- Tiantian Gao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Tao Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Lili Wu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Yue Tong
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jinlong Tian
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Keke Zhao
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China
| | - Hanqing Wang
- College of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, China.
| |
Collapse
|
33
|
Yu Z, Tong L, Ma C, Song H, Wang J, Chai L, Wang C, Wang M, Wang C, Yan R, Fu Y, Jia M, Zhao W, Zhao C. The UAF1-USP1 Deubiquitinase Complex Stabilizes cGAS and Facilitates Antiviral Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:295-301. [PMID: 38054892 DOI: 10.4049/jimmunol.2200462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/08/2023] [Indexed: 12/07/2023]
Abstract
Cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS) detects cytoplasmic microbial DNA and self-DNA from genomic instability, initiates innate immunity, and plays fundamental roles in defense against viruses and the development of various diseases. The cellular cGAS level determines the magnitude of the response to DNA. However, the underlying mechanisms of the control of cGAS stability, especially its feedback regulation during viral infection, remain largely unknown. In this study, we show that viral infection induces the expression of the UAF1-USP1 deubiquitinase complex in primary peritoneal macrophages (PMs) of C57BL/6J mice. UAF1-USP interacts with cGAS, selectively cleaves its K48-linked polyubiquitination, and thus stabilizes its protein expression in PMs and HEK293T cells. Concordantly, the UAF1-USP1 deubiquitinase complex enhances cGAS-dependent type I IFN responses in PMs. Uaf1 deficiency and ML323 (a specific inhibitor of UAF1-USP1 deubiquitinase complex) attenuates cGAS-triggered antiviral responses and facilitates viral replication both in vitro and in vivo. Thus, our study uncovers a positive feedback mechanism of cGAS-dependent antiviral responses and suggests the UAF1-USP1 complex as a potential target for the treatment of diseases caused by aberrant cGAS activation.
Collapse
Affiliation(s)
- Zhongxia Yu
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Tong
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chenkai Ma
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hui Song
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jie Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Li Chai
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Caiwei Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengge Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunying Wang
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Rongzhen Yan
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yue Fu
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mutian Jia
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Chunyuan Zhao
- Key Laboratory for Experimental Teratology of the Chinese Ministry of Education, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
34
|
Tang S, Geng Y, Wang Y, Lin Q, Yu Y, Li H. The roles of ubiquitination and deubiquitination of NLRP3 inflammasome in inflammation-related diseases: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:708-721. [PMID: 38193803 PMCID: PMC11293225 DOI: 10.17305/bb.2023.9997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/15/2023] [Accepted: 01/08/2024] [Indexed: 01/10/2024]
Abstract
The inflammatory response is a natural immune response that prevents microbial invasion and repairs damaged tissues. However, excessive inflammatory responses can lead to various inflammation-related diseases, posing a significant threat to human health. The NOD-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome is a vital mediator in the activation of the inflammatory cascade. Targeting the hyperactivation of the NLRP3 inflammasome may offer potential strategies for the prevention or treatment of inflammation-related diseases. It has been established that the ubiquitination and deubiquitination modifications of the NLRP3 inflammasome can provide protective effects in inflammation-related diseases. These modifications modulate several pathological processes, including excessive inflammatory responses, pyroptosis, abnormal autophagy, proliferation disorders, and oxidative stress damage. Therefore, this review discusses the regulation of NLRP3 inflammasome activation by ubiquitination and deubiquitination modifications, explores the role of these modifications in inflammation-related diseases, and examines the potential underlying mechanisms.
Collapse
Affiliation(s)
- Shaokai Tang
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yuanwen Geng
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Yawei Wang
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Qinqin Lin
- School of Physical Education, Yanshan University, Qinhuangdao, China
- School of Public Administration, Yanshan University, Qinhuangdao, China
| | - Yirong Yu
- School of Physical Education, Yanshan University, Qinhuangdao, China
| | - Hao Li
- School of Physical Education, Yanshan University, Qinhuangdao, China
| |
Collapse
|
35
|
Shi W, Chen J, Zhao N, Xing Y, Liu S, Chen M, Fang W, Zhang T, Li L, Zhang H, Zhang M, Zeng X, Chen S, Wang S, Xie S, Deng W. Targeting heat shock protein 47 alleviated doxorubicin-induced cardiotoxicity and remodeling in mice through suppression of the NLRP3 inflammasome. J Mol Cell Cardiol 2024; 186:81-93. [PMID: 37995517 DOI: 10.1016/j.yjmcc.2023.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/11/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023]
Abstract
AIM Doxorubicin-induced cardiotoxicity (DIC) is an increasing problem, occurring in many cancer patients receiving anthracycline chemotherapy, ultimately leading to heart failure (HF). Unfortunately, DIC remains difficult to manage due to an ignorance regarding pathophysiological mechanisms. Our work aimed to evaluate the role of HSP47 in doxorubicin-induced HF, and to explore the molecular mechanisms. METHODS AND RESULTS Mice were exposed to multi-intraperitoneal injection of doxorubicin (DOX, 4mg/kg/week, for 6 weeks continuously) to produce DIC. HSP47 expression was significantly upregulated in serum and in heart tissue in DOX-treated mice and in isolated cardiomyocytes. Mice with cardiac-specific HSP47 overexpression and knockdown were generated using recombinant adeno-associated virus (rAVV9) injection. Importantly, cardiac-specific HSP47 overexpression exacerbated cardiac dysfunction in DIC, while HSP47 knockdown prevented DOX-induced cardiac dysfunction, cardiac atrophy and fibrosis in vivo and in vitro. Mechanistically, we identified that HSP47 directly interacted with IRE1α in cardiomyocytes. Furthermore, we provided powerful evidence that HSP47-IRE1α complex promoted TXNIP/NLRP3 inflammasome and reinforced USP1-mediated NLRP3 ubiquitination. Moreover, NLRP3 deficiency in vivo conspicuously abolished HSP47-mediated cardiac atrophy and fibrogenesis under DOX condition. CONCLUSION HSP47 was highly expressed in serum and cardiac tissue after doxorubicin administration. HSP47 contributed to long-term anthracycline chemotherapy-associated cardiac dysfunction in an NLRP3-dependent manner. HSP47 therefore represents a plausible target for future therapy of doxorubicin-induced HF.
Collapse
Affiliation(s)
- Wenke Shi
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Jiaojiao Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Department of Pediatrics, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | - Nan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Yun Xing
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Shiqiang Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Mengya Chen
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Wenxi Fang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Tong Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Lanlan Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Heng Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China
| | - Min Zhang
- Department of Endocrinology, The Central Hospital of Enshi Tujia and Miao Autonomous Prefecture, Enshi 445000, PR China
| | - Xiaofeng Zeng
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Si Chen
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Shasha Wang
- Cardiovascular Research Institute of Wuhan University, Wuhan 430060, PR China
| | - Saiyang Xie
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| | - Wei Deng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China; Hubei Key Laboratory of Metabolic and Chronic Diseases, Wuhan, PR China.
| |
Collapse
|
36
|
Liu F, Gao C. Regulation of the Inflammasome Activation by Ubiquitination Machinery. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1466:123-134. [PMID: 39546140 DOI: 10.1007/978-981-97-7288-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Inflammasomes are multiprotein complexes that assemble in response to the detection of stress- or infection-associated stimuli and lead to the activation of caspase-1 and consequent maturation of caspase-1 target molecules such as interleukin (IL)-1β and IL-18. Although inflammasome is the essential component of the innate immunity system to defense against insults, inappropriate or prolonged activation of inflammasome may be harmful and is associated with various diseases, e.g., gout, atherosclerosis, diabetes, and Alzheimer's disease. Therefore, regulating inflammasome activation is crucial for maintaining immune homeostasis. Studies have found that post-translational modifications (PTMs), e.g., ubiquitination and phosphorylation, are critical for inflammasome activation. Ubiquitination is an important form of post-translational modification of proteins that plays a pivotal role in various cellular functions. In recent years, its function in regulating inflammasome assembly has been a hot topic of interest. This study discussed the function and mechanism of the ubiquitin system controlling inflammasome activation and highlighted the challenges of this research area.
Collapse
Affiliation(s)
- Feng Liu
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China
| | - Chengjiang Gao
- Key Laboratory of Infection and Immunity of Shandong Province, Shandong University, Jinan, Shandong, P.R. China.
- Department of Immunology, School of Biomedical Sciences, Shandong University, Jinan, Shandong, P.R. China.
| |
Collapse
|
37
|
Cheng H, Villahoz BF, Ponzio RD, Aschner M, Chen P. Signaling Pathways Involved in Manganese-Induced Neurotoxicity. Cells 2023; 12:2842. [PMID: 38132161 PMCID: PMC10742340 DOI: 10.3390/cells12242842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/07/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Manganese (Mn) is an essential trace element, but insufficient or excessive bodily amounts can induce neurotoxicity. Mn can directly increase neuronal insulin and activate insulin-like growth factor (IGF) receptors. As an important cofactor, Mn regulates signaling pathways involved in various enzymes. The IGF signaling pathway plays a protective role in the neurotoxicity of Mn, reducing apoptosis in neurons and motor deficits by regulating its downstream protein kinase B (Akt), mitogen-activated protein kinase (MAPK), and mammalian target of rapamycin (mTOR). In recent years, some new mechanisms related to neuroinflammation have been shown to also play an important role in Mn-induced neurotoxicity. For example, DNA-sensing receptor cyclic GMP-AMP synthase (cCAS) and its downstream signal efficient interferon gene stimulator (STING), NOD-like receptor family pyrin domain containing 3(NLRP3)-pro-caspase1, cleaves to the active form capase1 (CASP1), nuclear factor κB (NF-κB), sirtuin (SIRT), and Janus kinase (JAK) and signal transducers and activators of the transcription (STAT) signaling pathway. Moreover, autophagy, as an important downstream protein degradation pathway, determines the fate of neurons and is regulated by these upstream signals. Interestingly, the role of autophagy in Mn-induced neurotoxicity is bidirectional. This review summarizes the molecular signaling pathways of Mn-induced neurotoxicity, providing insight for further understanding of the mechanisms of Mn.
Collapse
Affiliation(s)
| | | | | | | | - Pan Chen
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (H.C.); (B.F.V.); (R.D.P.); (M.A.)
| |
Collapse
|
38
|
Hu S, Wang L. The potential role of ubiquitination and deubiquitination in melanogenesis. Exp Dermatol 2023; 32:2062-2071. [PMID: 37846904 DOI: 10.1111/exd.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/31/2023] [Accepted: 10/03/2023] [Indexed: 10/18/2023]
Abstract
Melanogenesis is a critical biochemical process in which melanocytes produce melanin, a crucial element involved in the formation of coat colour in mammals. According to several earlier studies, melanocytes' post-translational modifications of proteins primarily control melanogenesis. Among the many post-translational changes that can affect melanin production, ubiquitination and deubiquitination can keep melanin production going by changing how proteins that are related to melanin are broken down or kept stable. Ubiquitination and deubiquitination maintain ubiquitin homeostasis, which is a highly dynamic process in balance under the action of E3 ubiquitin ligase and deubiquitinating enzymes. However, the regulatory mechanisms underlying ubiquitination and deubiquitination in melanogenesis are yet to be thoroughly investigated. As a result, there has been a growing focus on exploring the potential correlation between melanogenesis, ubiquitination and deubiquitination. This study discusses the mechanisms of ubiquitination and deubiquitination in the context of melanogenesis, a crucial process for enhancing mammalian coat coloration and addressing pigment-related diseases.
Collapse
Affiliation(s)
- Shuaishuai Hu
- College of Life Science, Luoyang Normal University, Luoyang, China
| | - Lu Wang
- College of Life Science, Luoyang Normal University, Luoyang, China
| |
Collapse
|
39
|
Yao J, Wang Z, Song W, Zhang Y. Targeting NLRP3 inflammasome for neurodegenerative disorders. Mol Psychiatry 2023; 28:4512-4527. [PMID: 37670126 DOI: 10.1038/s41380-023-02239-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/07/2023]
Abstract
Neuroinflammation is a key pathological feature in neurological diseases, including Alzheimer's disease (AD). The nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) belong to the pattern recognition receptors (PRRs) family that sense stress signals, which play an important role in inflammation. As a member of NLRs, the NACHT, LRR and PYD domains-containing protein 3 (NLRP3) is predominantly expressed in microglia, the principal innate immune cells in the central nervous system (CNS). Microglia release proinflammatory cytokines to cause pyroptosis through activating NLRP3 inflammasome. The active NLRP3 inflammasome is involved in a variety of neurodegenerative diseases (NDs). Recent studies also indicate the key role of neuronal NLRP3 in the pathogenesis of neurological disorders. In this article, we reviewed the mechanisms of NLRP3 expression and activation and discussed the role of active NLRP3 inflammasome in the pathogenesis of NDs, particularly focusing on AD. The studies suggest that targeting NLRP3 inflammasome could be a novel approach for the disease modification.
Collapse
Affiliation(s)
- Jing Yao
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Zhe Wang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China
| | - Weihong Song
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Clinical Research Center for Mental Disorders, School of Mental Health and The Affiliated Kangning Hospital, Wenzhou Medical University, Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, 325000, Zhejiang, China.
| | - Yun Zhang
- The National Clinical Research Center for Geriatric Disease, Xuanwu Hospital, Capital Medical University, 100053, Beijing, China.
| |
Collapse
|
40
|
Huang P, Wang Y, Zhang P, Li Q. Ubiquitin-specific peptidase 1: assessing its role in cancer therapy. Clin Exp Med 2023; 23:2953-2966. [PMID: 37093451 DOI: 10.1007/s10238-023-01075-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Reversible protein ubiquitination represents an essential determinator of cellular homeostasis, and the ubiquitin-specific enzymes, particularly deubiquitinases (DUBs), are emerging as promising targets for drug development. DUBs are composed of seven different subfamilies, out of which ubiquitin-specific proteases (USPs) are the largest family with 56 members. One of the well-characterized USPs is USP1, which contributes to several cellular biological processes including DNA damage response, immune regulation, cell proliferation, apoptosis, and migration. USP1 levels and activity are regulated by multiple mechanisms, including transcription regulation, phosphorylation, autocleavage, and proteasomal degradation, ensuring that the cellular function of USP1 is performed in a suitably modulated spatio-temporal manner. Moreover, USP1 with deregulated expression and activity are found in several human cancers, indicating that targeting USP1 is a feasible therapeutic approach in anti-cancer treatment. In this review, we highlight the essential role of USP1 in cancer development and the regulatory landscape of USP1 activity, which might provide novel insights into cancer treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YuHan Wang
- Department of Anorectal, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - PengFei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
41
|
Zhang H, Deng Z, Wang Y, Zheng X, Zhou L, Yan S, Wang Y, Dai Y, Kanwar Y, Deng F. CHIP protects against septic acute kidney injury by inhibiting NLRP3-mediated pyroptosis. iScience 2023; 26:107762. [PMID: 37692286 PMCID: PMC10492219 DOI: 10.1016/j.isci.2023.107762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/16/2023] [Accepted: 08/25/2023] [Indexed: 09/12/2023] Open
Abstract
Septic acute kidney injury (S-AKI), the most common type of acute kidney injury (AKI), is intimately related to pyroptosis and oxidative stress in its pathogenesis. Carboxy-terminus of Hsc70-interacting protein (CHIP), a U-box E3 ligase, modulates oxidative stress by degrading its targeted proteins. The role of CHIP in S-AKI and its relevance with pyroptosis have not been investigated. In this study, we showed that CHIP was downregulated in renal proximal tubular cells in lipopolysaccharide (LPS)-induced S-AKI. Besides, the extent of redox injuries in S-AKI was attenuated by CHIP overexpression or activation but accentuated by CHIP gene disruption. Mechanistically, our work demonstrated that CHIP interacted with and ubiquitinated NLRP3 to promote its proteasomal degradation, leading to the inhibition of NLRP3/ACS inflammasome-mediated pyroptosis. In summary, this study revealed that CHIP ubiquitinated NLRP3 to alleviate pyroptosis in septic renal injuries, suggesting that CHIP might be a potential therapeutic target for S-AKI.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Zebin Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yilong Wang
- Department of Cardiology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoping Zheng
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Lizhi Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Shu Yan
- Guangzhou Institute of Pediatrics, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| | - Yingbo Dai
- Department of Urology, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Yashpal.S. Kanwar
- Departments of Pathology & Medicine, Northwestern University, Chicago, IL, USA
| | - Fei Deng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China
| |
Collapse
|
42
|
Qin Y, Meng X, Wang M, Liang W, Xu R, Chen J, Song H, Fu Y, Li J, Gao C, Jia M, Zhao C, Zhao W. Posttranslational ISGylation of NLRP3 by HERC enzymes facilitates inflammasome activation in models of inflammation. J Clin Invest 2023; 133:e161935. [PMID: 37651190 PMCID: PMC10575725 DOI: 10.1172/jci161935] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/24/2023] [Indexed: 09/02/2023] Open
Abstract
The NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is a crucial component of the innate immune system that initiates inflammatory responses. Posttranslational modifications (PTMs) of NLRP3, including ubiquitination and phosphorylation, control inflammasome activation and determine the intensity of inflammation. However, the role of other PTMs in controlling NLRP3 inflammasome activation remains unclear. This study found that TLR priming induced NLRP3 ISGylation (a type of PTM in which ISG15 covalently binds to the target protein) to stabilize the NLRP3 protein. Viral infection, represented by SARS-COV-2 infection, and type I IFNs induced expression of ISG15 and the predominant E3 ISGylation ligases HECT domain- and RCC1-like domain-containing proteins (HERCs; HERC5 in humans and HERC6 in mice). HERCs promoted NLRP3 ISGylation and inhibited K48-linked ubiquitination and proteasomal degradation, resulting in the enhancement of NLRP3 inflammasome activation. Concordantly, Herc6 deficiency ameliorated NLRP3-dependent inflammation as well as hyperinflammation caused by viral infection. The results illustrate the mechanism by which type I IFNs responses control inflammasome activation and viral infection-induced aberrant NLRP3 activation. This work identifies ISGylation as a PTM of NLRP3, revealing a priming target that modulates NLRP3-dependent immunopathology.
Collapse
|
43
|
Zheng X, Zhao D, Jin Y, Liu Y, Liu D. Role of the NLRP3 inflammasome in gynecological disease. Biomed Pharmacother 2023; 166:115393. [PMID: 37660654 DOI: 10.1016/j.biopha.2023.115393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023] Open
Abstract
The NLR family pyrin domain containing 3 (NLRP3) inflammasome is involved in the innate immune system and is a three-part macromolecular complex comprising the NLRP3 protein, apoptosis-associated speck-like protein containing a CARD (ASC) and the cysteine protease pro-caspase-1. When the NLRP3 inflammasome is activated, it can produce interleukin (IL)- 1β and IL-18 and eventually lead to inflammatory cell pyroptosis. Related studies have demonstrated that the NLRP3 inflammasome can induce an immune response and is related to the occurrence and development of gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer. NLRP3 inflammasome inhibitors are beneficial for maintaining cellular homeostasis and tissue health and have been found effective in targeting some gynecological diseases. However, excessive inhibitor concentrations have been found to cause adverse effects. Therefore, proper control of NLRP3 inflammasome activity is critical. This paper summarizes the structure and function of the NLRP3 inflammasome and highlights the therapeutic potential of targeting it in gynecological diseases, such as endometriosis, polycystic ovary syndrome and breast cancer The application of NLRP3 inflammasome inhibitors is also discussed.
Collapse
Affiliation(s)
- Xu Zheng
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Dan Zhao
- College of Acupuncture and Massage, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China
| | - Ye Jin
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Yang Liu
- Acupuncture department,Affiliated Hospital of Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| | - Da Liu
- School of Pharmacy, Changchun University of Chinese Medicine, Changchun 130117, Jilin, China.
| |
Collapse
|
44
|
Qin Y, Zhao W. Posttranslational modifications of NLRP3 and their regulatory roles in inflammasome activation. Eur J Immunol 2023; 53:e2350382. [PMID: 37382218 DOI: 10.1002/eji.202350382] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/09/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is a multimolecular complex that plays a fundamental role in inflammation. Optimal activation of NLRP3 inflammasome is crucial for host defense against pathogens and the maintenance of immune homeostasis. Aberrant NLRP3 inflammasome activity has been implicated in various inflammatory diseases. Posttranslational modifications (PTMs) of NLRP3, a key inflammasome sensor, play critical roles in directing inflammasome activation and controlling the severity of inflammation and inflammatory diseases, such as arthritis, peritonitis, inflammatory bowel disease, atherosclerosis, and Parkinson's disease. Various NLRP3 PTMs, including phosphorylation, ubiquitination, and SUMOylation, could direct inflammasome activation and control inflammation severity by affecting the protein stability, ATPase activity, subcellular localization, and oligomerization of NLRP3 as well as the association between NLRP3 and other inflammasome components. Here, we provide an overview of the PTMs of NLRP3 and their roles in controlling inflammation and summarize potential anti-inflammatory drugs targeting NLRP3 PTMs.
Collapse
Affiliation(s)
- Ying Qin
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhao
- Department of Pathogenic Biology and Key Laboratory of Infection and Immunity of Shandong Province, School of Basic Medical Science, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
45
|
Chen C, Xue N, Liu K, He Q, Wang C, Guo Y, Tian J, Liu X, Pan Y, Chen G. USP12 promotes nonsmall cell lung cancer progression through deubiquitinating and stabilizing RRM2. Mol Carcinog 2023; 62:1518-1530. [PMID: 37341611 DOI: 10.1002/mc.23593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/22/2023]
Abstract
RRM2 is the catalytic subunit of ribonucleotide reductase (RNR), which catalyzes de novo synthesis of deoxyribonucleotide triphosphates (dNTPs) and plays critical roles in cancer cell proliferation. RRM2 protein level is controlled by ubiquitination mediated protein degradation system; however, its deubiquitinase has not been identified yet. Here we showed that ubiquitin-specific peptidase 12 (USP12) directly interacts with and deubiquitinates RRM2 in non-small cell lung cancer (NSCLC) cells. Knockdown of USP12 causes DNA replication stress and retards tumor growth in vivo and in vitro. Meanwhile, USP12 protein levels were positively correlated to RRM2 protein levels in human NSCLC tissues. In addition, high expression of USP12 was associated with poor prognosis in NSCLC patients. Therefore, our study reveals that USP12 is a RRM2 regulator and targeting USP12 could be considered as a potential therapeutical strategy for NSCLC treatment.
Collapse
Affiliation(s)
- Congcong Chen
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Ning Xue
- Department of Acupuncture, Jurong Hospital Affiliated to Jiangsu University, Zhenjiang, P.R. China
| | - Kangshou Liu
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Qiang He
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Cong Wang
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| | - Yanguan Guo
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Jiaxin Tian
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
| | - Xinjian Liu
- Department of Pathogen Biology, Key Laboratory of Antibody Technique of National Health Commission of China, Nanjing Medical University, Nanjing, P.R. China
| | - Yunlong Pan
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, P.R. China
| | - Guo Chen
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, P.R. China
- School of Biopharmacy, China Pharmaceutical University, Nanjing, P.R. China
| |
Collapse
|
46
|
Niu K, Shi Y, Lv Q, Wang Y, Chen J, Zhang W, Feng K, Zhang Y. Spotlights on ubiquitin-specific protease 12 (USP12) in diseases: from multifaceted roles to pathophysiological mechanisms. J Transl Med 2023; 21:665. [PMID: 37752518 PMCID: PMC10521459 DOI: 10.1186/s12967-023-04540-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/16/2023] [Indexed: 09/28/2023] Open
Abstract
Ubiquitination is one of the most significant post-translational modifications that regulate almost all physiological processes like cell proliferation, autophagy, apoptosis, and cell cycle progression. Contrary to ubiquitination, deubiquitination removes ubiquitin from targeted protein to maintain its stability and thus regulate cellular homeostasis. Ubiquitin-Specific Protease 12 (USP12) belongs to the biggest family of deubiquitinases named ubiquitin-specific proteases and has been reported to be correlated with various pathophysiological processes. In this review, we initially introduce the structure and biological functions of USP12 briefly and summarize multiple substrates of USP12 as well as the underlying mechanisms. Moreover, we discuss the influence of USP12 on tumorigenesis, tumor immune microenvironment (TME), disease, and related signaling pathways. This study also provides updated information on the roles and functions of USP12 in different types of cancers and other diseases, including prostate cancer, breast cancer, lung cancer, liver cancer, cardiac hypertrophy, multiple myeloma, and Huntington's disease. Generally, this review sums up the research advances of USP12 and discusses its potential clinical application value which deserves more exploration in the future.
Collapse
Affiliation(s)
- Kaiyi Niu
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yanlong Shi
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Qingpeng Lv
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yizhu Wang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Jiping Chen
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Wenning Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Kung Feng
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China
| | - Yewei Zhang
- Hepato-Pancreato-Biliary Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210003, Jiangsu Province, China.
| |
Collapse
|
47
|
Tang L, Xu Y, Wang L, Pan J. Adipose-derived stem cell exosomes ameliorate traumatic brain injury through the NLRP3 signaling pathway. Neuroreport 2023; 34:677-684. [PMID: 37506308 PMCID: PMC10399942 DOI: 10.1097/wnr.0000000000001941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
The exosomes of mesenchymal stem cells have immunoregulatory properties and can effectively mitigate secondary neuroinflammation due to traumatic brain injury (TBI). In this study, we found that adipose-derived stem cell exosomes (ADSCs-Exo) could reduce the inflammatory response after traumatic brain injury by reducing NLRP3 inflammasome secretion by microglial. ADSCs-Exo were monitored by Western blot and electron microscopy. An in-vitro lipopolysaccharide (LPS)-caused primary microglia model and a TBI rat model were constructed. Functional recovery was examined using the modified neurological severity score and foot fault tests. Inflammasome inactivation in LPS-stimulated microglial, ADSCs-Exo can reduce the secretion of interleukin (IL)-1β, IL-6 and tumor necrosis factor α. Compared with PBS-processed controls, the sensorimotor functional recovery was significantly improved by exosome treatment after injury at 14-35 days. Additionally, NLRP3 inflammasome was stimulated within 24 h after TBI. ADSCs-Exo application led to remarkable down-expression of NLRP3 and caspase-1. ADSCs-Exo can ameliorate LPS-induced inflammatory activation by reducing microglial pro-inflammatory cytokines. Moreover, the neuroprotective effect of ADSCs-Exo may be partially attributed to the inhibition thereof on the formation of NLRP3-mediated inflammasome. Such findings imply a potential function of ADSCs-Exo in treating TBI.
Collapse
Affiliation(s)
- Linjun Tang
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Yong Xu
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Liangwei Wang
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| | - Jingjing Pan
- Department of Neurosurgery, The Second People’s Hospital of Wuhu, Wuhu, Anhui, China
| |
Collapse
|
48
|
Wei C, Zhao X, Zhang H, Wang L. USP2 promotes cell proliferation and metastasis in choroidal melanoma via stabilizing Snail. J Cancer Res Clin Oncol 2023; 149:9263-9276. [PMID: 37199836 DOI: 10.1007/s00432-023-04855-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Choroidal melanoma (CM) is an intraocular tumor that arises from melanocytes. While ubiquitin-specific protease 2 (USP2) modulates the progression of numerous diseases, its role in CM is not known. This study aimed to determine the role of USP2 in CM and elucidate its molecular mechanisms. METHODS MTT, Transwell, and wound-scratch assays were used to investigate the function of USP2 in the proliferation and metastasis of CM. Western blotting and qRT-PCR were used to analyze the expression of USP2, Snail, and factors associated with the epithelial-mesenchymal transition (EMT). The relationship between USP2 and Snail was explored by co-immunoprecipitation and in vitro ubiquitination assays. A nude mouse model of CM was established for verifying the role of USP2 in vivo. RESULTS USP2 overexpression promoted proliferation and metastasis, and induced the EMT in CM cells in vitro, while specific inhibition of USP2 by ML364 produced the opposite effects. ML364 also suppressed CM tumor growth in vivo. Mechanistically, USP2 is known to deubiquitinate Snail, stabilizing the latter through the removal of its K48 poly-ubiquitin chains. However, a catalytically inactive form of USP2 (C276A) had no effect on Snail ubiquitination and failed to increase Snail protein expression. The C276A mutant was also unable to promote CM cell proliferation, migration, and invasion, as well as EMT progression. Furthermore, Snail overexpression partly counteracted the effects of ML364 on proliferation and migration, while rescuing the effects of the inhibitor on the EMT. CONCLUSIONS The findings demonstrated that USP2 modulated CM development through the stabilization of Snail and suggest that USP2 may be a useful target for the development of novel treatments for CM.
Collapse
Affiliation(s)
- Chao Wei
- Department of Ophthalmology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xiaofei Zhao
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Han Zhang
- Department of Ophthalmology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Lijuan Wang
- Pathology Tissue Bank, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
49
|
Hadian K, Stockwell BR. The therapeutic potential of targeting regulated non-apoptotic cell death. Nat Rev Drug Discov 2023; 22:723-742. [PMID: 37550363 DOI: 10.1038/s41573-023-00749-8] [Citation(s) in RCA: 144] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/16/2023] [Indexed: 08/09/2023]
Abstract
Cell death is critical for the development and homeostasis of almost all multicellular organisms. Moreover, its dysregulation leads to diverse disease states. Historically, apoptosis was thought to be the major regulated cell death pathway, whereas necrosis was considered to be an unregulated form of cell death. However, research in recent decades has uncovered several forms of regulated necrosis that are implicated in degenerative diseases, inflammatory conditions and cancer. The growing insight into these regulated, non-apoptotic cell death pathways has opened new avenues for therapeutic targeting. Here, we describe the regulatory pathways of necroptosis, pyroptosis, parthanatos, ferroptosis, cuproptosis, lysozincrosis and disulfidptosis. We discuss small-molecule inhibitors of the pathways and prospects for future drug discovery. Together, the complex mechanisms governing these pathways offer strategies to develop therapeutics that control non-apoptotic cell death.
Collapse
Affiliation(s)
- Kamyar Hadian
- Research Unit Signaling and Translation, Helmholtz Zentrum München, Neuherberg, Germany.
| | - Brent R Stockwell
- Department of Biological Sciences and Department of Chemistry, Columbia University, New York, NY, USA.
| |
Collapse
|
50
|
Jiang Q, Zhu Z, Mao X. Ubiquitination is a major modulator for the activation of inflammasomes and pyroptosis. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194955. [PMID: 37331650 DOI: 10.1016/j.bbagrm.2023.194955] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 05/25/2023] [Accepted: 06/12/2023] [Indexed: 06/20/2023]
Abstract
Inflammasomes are a central node of the innate immune defense system against the threat of homeostatic perturbance caused by pathogenic organisms or host-derived molecules. Inflammasomes are generally composed of multimeric protein complexes that assemble in the cytosol after sensing danger signals. Activated inflammasomes promote downstream proteolytic activation, which triggers the release of pro-inflammatory cytokines therefore inducing pyroptotic cell death. The inflammasome pathway is finely tuned by various mechanisms. Recent studies found that protein post-translational modifications such as ubiquitination also modulate inflammasome activation. Targeting the ubiquitination modification of the inflammasome pathway might be a promising strategy for related diseases. In this review, we extensively discuss the advances in inflammasome activation and pyroptosis modulated by ubiquitination which help in-depth understanding and controlling the inflammasome and pyroptosis in various diseases.
Collapse
Affiliation(s)
- Qiuyun Jiang
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Zhigang Zhu
- Division of Hematology & Oncology, Department of Geriatrics, Guangzhou First People's Hospital, College of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China
| | - Xinliang Mao
- Guangdong Institute of Cardiovascular Diseases, Guangdong Key Laboratory of Vascular Diseases, the Second Affiliated Hospital of Guangzhou Medical University, Guangzhou 510260, PR China; Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Diseases, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China.
| |
Collapse
|