1
|
Jarabicová I, Horváth C, Marciníková A, Adameová A. Receptor-interacting protein kinase 3: A macromolecule with multiple cellular actions and its perspective in the diagnosis and treatment of heart disease. Int J Biol Macromol 2025; 314:144280. [PMID: 40389003 DOI: 10.1016/j.ijbiomac.2025.144280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/02/2025] [Accepted: 05/14/2025] [Indexed: 05/21/2025]
Abstract
Receptor-interacting protein kinase 3 (RIP3), a serine/threonine kinase of the RIP family, has emerged as a critical regulator of necroptosis, a necrosis-like form of cell demise. However, recent research has revealed that overactivated RIP3 might also be involved in the regulation of other cell death forms, such as pyroptosis, autophagy, mitochondrial permeability transition pore (mPTP)-necrosis and ferroptosis, and operates in diverse cellular compartments. RIP3 can therefore affect inflammation, oxidative stress and energy metabolism, further underscoring its pivotal role in cellular homeostasis. Furthermore, elevated circulating levels of RIP3 have been observed in cardiac disorders such as heart failure, myocardial infarction, and coronary artery disease and might correlate with disease severity and worse prognostic outcomes. On the contrary, the pharmacological inhibition of RIP3 has shown protective effects due to complex mechanisms involving necroptosis retardation, prevention of immune cell infiltration, and mitigation of cardiac cells mitochondrial damage. A detailed understanding of the complexity of RIP3's function in the heart may favour its diagnostic potential and lead to the development of future therapeutic interventions.
Collapse
Affiliation(s)
- Izabela Jarabicová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovak Republic.
| | - Csaba Horváth
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovak Republic.
| | - Andrea Marciníková
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovak Republic.
| | - Adriana Adameová
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Comenius University, Bratislava, Slovak Republic; Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, Bratislava, Slovak Republic.
| |
Collapse
|
2
|
Yeap HW, Goh GR, Rosli SN, Pung HS, Giogha C, Eng VV, Pearson JS, Hartland EL, Chen KW. A bacterial network of T3SS effectors counteracts host pro-inflammatory responses and cell death to promote infection. EMBO J 2025; 44:2424-2445. [PMID: 40128366 PMCID: PMC12048508 DOI: 10.1038/s44318-025-00412-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 02/21/2025] [Accepted: 02/21/2025] [Indexed: 03/26/2025] Open
Abstract
Innate immune signalling and cell death pathways are highly interconnected processes involving receptor-interacting protein kinases (RIPKs) as mediators of potent anti-microbial responses. However, these processes are often antagonised by bacterial type III secretion system (T3SS) effectors, and the cellular mechanisms by which the host retaliates are not completely understood. Here, we demonstrate that during Citrobacter rodentium infection, murine macrophages and colonic epithelial cells exhibit RIPK1 kinase-dependent caspase-8 activation to counteract NleE effector-mediated suppression of pro-inflammatory signalling. While C. rodentium injects into the host cells a second effector, NleB, to block caspase-8 signalling, macrophages respond by triggering RIPK3-mediated necroptosis, whereupon a third T3SS effector, EspL, acts to inactivate necroptosis. We further show that NleB and EspL collaborate to suppress caspase-8 and NLRP3 inflammasome activation in macrophages. Our findings suggest that C. rodentium has evolved to express a complex network of effectors as an adaptation to the importance of cell death for anti-bacterial defence in the host-pathogen arms race.
Collapse
Affiliation(s)
- Hui Wen Yeap
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Ghin Ray Goh
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Hai Shin Pung
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Cristina Giogha
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
| | - Vik Ven Eng
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Jaclyn S Pearson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
- School of Medicine, University of St Andrews, St Andrews, KY16 9TF, Fife, UK
| | - Elizabeth L Hartland
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, VIC, Australia
- Department of Microbiology, Monash University, Clayton, VIC, Australia
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
3
|
Shi Y, He L, Ni J, Zhou Y, Yu X, Du Y, Li Y, Tan X, Li Y, Xu X, Sun S, Kang L, Xu B, Han J, Wang L. Myeloid deficiency of Z-DNA binding protein 1 restricts septic cardiomyopathy via promoting macrophage polarisation towards the M2-subtype. Clin Transl Med 2025; 15:e70315. [PMID: 40289345 PMCID: PMC12034574 DOI: 10.1002/ctm2.70315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 04/05/2025] [Accepted: 04/12/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Septic cardiomyopathy is a frequent complication in patients with sepsis and is associated with a high mortality rate. Given its clinical significance, understanding the precise underlying mechanism is of great value. METHODS AND RESULTS Our results unveiled that Z-DNA binding protein 1 (ZBP1) is upregulated in myocardial tissues of lipopolysaccharide (LPS)-treated mice. Single-cell mRNA sequencing (scRNA-seq) and single-nucleus mRNA sequencing (snRNA-seq) indicated that Zbp1 mRNA in endothelial cells, fibroblasts and macrophages appeared to be elevated by LPS, which is partially consistent with the results of immunofluorescence. Through echocardiography, we identified that global deletion of ZBP1 improves cardiac dysfunction and the survival rate of LPS-treated mice. Mechanistically, snRNA-seq showed that ZBP1 is mainly expressed in macrophages and deletion of ZBP1 promotes the macrophage polarisation towards M2-subtype, which reduces inflammatory cell infiltration. Notably, myeloid-specific deficiency of ZBP1 also promotes M2 macrophage polarisation and improves cardiac dysfunction, validating the role of macrophage-derived ZBP1 in septic myocardial dysfunction. Finally, we revealed that LPS increases the transcription and expression of ZBP1 through signal transducer and activator of transcription 1 (STAT1). Fludarabine, the inhibitor of STAT1, could also promote M2 macrophage polarisation and improve cardiac dysfunction of LPS-treated mice. CONCLUSIONS Our study provides evidence of a novel STAT1-ZBP1 axis in macrophage promoting septic cardiomyopathy, and underscores the potential of macrophage-derived ZBP1 as a therapeutic target for septic cardiomyopathy. KEY POINTS Macrophage-derivedZBP1 exacerbates LPS-induced myocardial dysfunction and inflammatory cellinfiltration. Deletionof ZBP1 promotes macrophage polarisation from M1 to M2. STAT1-ZBP1axis promotes septic cardiomyopathy. ZBP1has emerged as a potential therapeutic target for inflammationand septic cardiomyopathy.
Collapse
Affiliation(s)
- Yifan Shi
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Lu He
- Department of NeurosurgeryThe First Affiliated HospitalHengyang Medical SchoolUniversity of South ChinaHengyangHunanChina
| | - Jie Ni
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Yuyuan Zhou
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Xiaohua Yu
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yao Du
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Yang Li
- Department of Cardiologythe Second Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Xi Tan
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Yufang Li
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Xiaoying Xu
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
| | - Si Sun
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
| | - Lina Kang
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering MedicineInstitute of Clinical MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingJiangsuChina
| | - Biao Xu
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
- Department of CardiologyNanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese MedicineNanjingJiangsuChina
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering MedicineInstitute of Clinical MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingJiangsuChina
| | - Jibo Han
- Department of Cardiologythe Second Affiliated Hospital of Jiaxing UniversityJiaxingZhejiangChina
| | - Lintao Wang
- Department of CardiologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNanjingJiangsuChina
- Nanjing Key Laboratory for Cardiovascular Information and Health Engineering MedicineInstitute of Clinical MedicineNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingJiangsuChina
| |
Collapse
|
4
|
Kofman SB, Chu LH, Ames JM, Chavarria SD, Lichauco K, Daniels BP, Oberst A. RIPK3 coordinates RHIM domain-dependent antiviral inflammatory transcription in neurons. Sci Signal 2025; 18:eado9745. [PMID: 40168465 PMCID: PMC12042699 DOI: 10.1126/scisignal.ado9745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Neurons are postmitotic, nonregenerative cells that have evolved fine-tuned immunological responses to maintain life-long cellular integrity, including resistance to common programmed cell death pathways such as necroptosis. We previously demonstrated a necroptosis-independent role for the key necroptotic kinase RIPK3 in host defense against neurotropic flavivirus infection. Here, we show that RIPK3 activation had distinct outcomes in primary cortical neurons when compared with mouse embryonic fibroblasts (MEFs) during Zika virus (ZIKV) infection or after sterile activation. We found that RIPK3 activation did not induce neuronal death but instead drove antiviral gene transcription after ZIKV infection. Although RIPK3 activation in MEFs induced cell death, ablation of downstream cell death effectors unveiled a RIPK3-dependent transcriptional program that largely overlapped with that observed in ZIKV-infected neurons. In death-resistant MEFs, RIPK3-dependent transcription relied on interactions with the RHIM domain-containing proteins RIPK1 and TRIF, similar to the requirements for the RIPK3-dependent antiviral transcriptional signature in ZIKV-infected neurons. These findings suggest that the pleotropic functions of RIPK3 are largely context dependent and that in cells that are resistant to cell death, RIPK3 acts as a mediator of inflammatory transcription.
Collapse
Affiliation(s)
- Sigal B. Kofman
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Lan H. Chu
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Joshua M. Ames
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | | | - Katrina Lichauco
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| | - Brian P. Daniels
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ, 08854, USA
| | - Andrew Oberst
- Department of Immunology, University of Washington, Seattle, WA 98109, USA
| |
Collapse
|
5
|
Evdokimova M, Feng S, Caobi A, Moreira FR, Jones D, Alysandratos KD, Tully ES, Kotton DN, Boyd DF, Banach BS, Kirchdoerfer RN, Saeed M, Baker SC. Coronavirus endoribonuclease antagonizes ZBP1-mediated necroptosis and delays multiple cell death pathways. Proc Natl Acad Sci U S A 2025; 122:e2419620122. [PMID: 40035769 PMCID: PMC11912388 DOI: 10.1073/pnas.2419620122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 01/13/2025] [Indexed: 03/06/2025] Open
Abstract
Identifying conserved mechanisms used by viruses to delay host innate responses can reveal potential targets for antiviral therapeutics. Here, we investigated coronavirus nonstructural protein 15 (nsp15), which encodes a highly conserved endoribonuclease (EndoU). EndoU functions as an immune antagonist by limiting the accumulation of viral replication intermediates that would otherwise be sensed by the host. Despite being a promising antiviral target, it has been difficult to develop small-molecule inhibitors that target the EndoU active site. We generated nsp15 mutants of the coronaviruses severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and mouse hepatitis virus (MHV)-A59 and identified conserved residues within the amino-terminal domain that are required for EndoU activity. Loss of EndoU activity caused the activation of host sensors, which limited viral replication in interferon-responsive cells and attenuated disease in MHV-infected mice. Using transcriptional profiling, we found that MHV EndoU mutant viruses upregulate multiple host sensors, including Z-form nucleic acid-binding protein 1 (ZBP1). We found that nsp15 mutants induced early, robust ZBP1-mediated necroptosis. EndoU mutant viruses also induced ZBP1-independent apoptosis and pyroptosis pathways, causing early, robust cell death that limits virus replication and pathogenesis. Overall, we document the importance of the amino-terminal domain for EndoU function. We also highlight the importance of nsp15/EndoU activity for evading host sensors, delaying cell death, and promoting pathogenesis.
Collapse
Affiliation(s)
- Monika Evdokimova
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Shuchen Feng
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Allen Caobi
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
| | - Fernando R. Moreira
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| | - Dakota Jones
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - Konstantinos-Dionysios Alysandratos
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - Ena S. Tully
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Darrell N. Kotton
- Center for Regenerative Medicine, Boston University and Boston Medical Center, Boston, MA02118
- The Pulmonary Center and Department of Medicine, Boston University Chobanian and Avedisian School of Medicine, Boston, MA02118
| | - David F. Boyd
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, CA95064
| | - Bridget S. Banach
- Department of Pathology, Delnor Hospital-Northwestern Medicine, Geneva, IL60134
| | - Robert N. Kirchdoerfer
- Department of Biochemistry, College of Agricultural and Life Sciences, University of Wisconsin-Madison, Madison, WI53706
| | - Mohsan Saeed
- Department of Biochemistry and Cell Biology, Boston University Chobanian and Avedisian School of Medicine, Boston University, Boston, MA02118
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, MA02118
| | - Susan C. Baker
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL60153
| |
Collapse
|
6
|
Bayer AL, Magri Z, Muendlein H, Poltorak A, Alcaide P. MyD88 determines T cell fate through BCAP-PI3K signaling. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2025; 214:vkae037. [PMID: 40073160 PMCID: PMC11952871 DOI: 10.1093/jimmun/vkae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/26/2024] [Indexed: 03/14/2025]
Abstract
The life cycle of effector T cells is determined by signals downstream of the T cell receptor (TCR) that induce activation and proinflammatory activity, or death as part of the process to resolve inflammation. We recently reported that T cell myeloid differentiation primary response 88 (MyD88) tunes down TCR activation and limits T cell survival in the cardiac and tumor inflammatory environments, in contrast to its proinflammatory role in myeloid cells upon toll-like receptor (TLR) recognition of pathogen- and damage-associated molecular patterns. However, the molecular mechanism remains unknown. Here, we report a central regulatory role for MyD88 in T cell apoptosis after TCR activation and Fas ligation through an association with the B cell adaptor for phosphoinositide 3-kinase (B cell activating protein [BCAP]). We show that TCR engagement upregulates MyD88 and BCAP and promotes their interaction, thereby limiting availability of BCAP for downstream TCR-BCAP-PI3K-AKT signaling required for T cell activation and survival, which are enhanced in MyD88-/- activated T cells. Further, MyD88 and BCAP association and localization to the TCR was prevented by lipopolysaccharide (LPS) activation of TLR4 and restored T cell survival in wild-type cells. The enhanced T cell activation markers, proinflammatory signals, and survival advantage observed in MyD88-/- T cells was fully eliminated upon BCAP knockdown in T cells. Our data demonstrate that MyD88 acts downstream of the TCR to regulate T cell fate through its association with BCAP and elucidate a novel molecular mechanism for MyD88 in T cell biology that could be targeted to fine-tune T cell effector function and survival therapeutically.
Collapse
Affiliation(s)
- Abraham L Bayer
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University Boston, MA, United States
| | - Zoie Magri
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University Boston, MA, United States
| | - Hayley Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University Boston, MA, United States
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University Boston, MA, United States
| | - Pilar Alcaide
- Department of Immunology, Tufts University School of Medicine, Boston, MA, United States
- Immunology Graduate Program, Graduate School of Biomedical Sciences, Tufts University Boston, MA, United States
| |
Collapse
|
7
|
Zhang X, Li H, Zhao Y, Zhao T, Wang Z, Tang Q. Neuronal Injury after Ischemic Stroke: Mechanisms of Crosstalk Involving Necroptosis. J Mol Neurosci 2025; 75:15. [PMID: 39903429 DOI: 10.1007/s12031-025-02313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 01/22/2025] [Indexed: 02/06/2025]
Abstract
Ischemic stroke is a leading cause of disability and death worldwide, largely due to its increasing incidence associated with an aging population. This condition results from arterial obstruction, significantly affecting patients' quality of life and imposing a substantial economic burden on healthcare systems. While current treatments primarily focus on the rapid restoration of blood flow through thrombolytic therapy or surgical interventions, a limited understanding of neuronal injury mechanisms hampers the development of more effective treatments.This article explores the interplay among various cell death pathways-necroptosis, apoptosis, autophagy, ferroptosis, and pyroptosis-in the context of ischemic stroke to identify novel therapeutic targets. Each mode of cell death displays unique characteristics and roles post-stroke, and the activation of these pathways may vary across different animal models, complicating the translation of therapeutic strategies to clinical settings. Notably, the interaction between apoptosis and necroptosis is highlighted; inhibiting apoptosis might heighten the risk of necroptosis. Therefore, a balanced regulation of these pathways could promote enhanced neuronal survival.Additionally, we introduce PANoptosis, a form of cell death that encompasses pyroptosis, apoptosis, and necroptosis, emphasizing the complexity and potential therapeutic implications of these interactions. In summary, understanding the relationships among these cell death mechanisms in ischemic stroke is vital for developing new neuroprotective agents. Future research should aim for combinatorial interventions targeting multiple pathways to optimize treatment strategies and improve patient outcomes.
Collapse
Affiliation(s)
- Xuanning Zhang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Hongyu Li
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Yaowei Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Tingting Zhao
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Zhihao Wang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China
| | - Qiang Tang
- Heilongjiang University of Chinese Medicine, Harbin, 150040, Heilongjiang, China.
| |
Collapse
|
8
|
Hoblos H, Cawthorne W, Samson AL, Murphy JM. Protein shapeshifting in necroptotic cell death signaling. Trends Biochem Sci 2025; 50:92-105. [PMID: 39730228 DOI: 10.1016/j.tibs.2024.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/16/2024] [Accepted: 11/22/2024] [Indexed: 12/29/2024]
Abstract
Necroptosis is a mode of programmed cell death executed by the mixed lineage kinase domain-like (MLKL) pseudokinase following its activation by the upstream receptor-interacting protein kinase-3 (RIPK3), subsequent to activation of death, Toll-like, and pathogen receptors. The pathway originates in innate immunity, although interest has surged in therapeutically targeting necroptosis owing to its dysregulation in inflammatory diseases. Here, we explore how protein conformation and higher order assembly of the pathway effectors - Z-DNA-binding protein-1 (ZBP1), RIPK1, RIPK3, and MLKL - can be modulated by post-translational modifications, such as phosphorylation, ubiquitylation, and lipidation, and intermolecular interactions to tune activities and modulate necroptotic signaling flux. As molecular level knowledge of cell death signaling grows, we anticipate targeting the conformations of key necrosomal effector proteins will emerge as new avenues for drug development.
Collapse
Affiliation(s)
- Hanadi Hoblos
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Wayne Cawthorne
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - André L Samson
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - James M Murphy
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia; Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia.
| |
Collapse
|
9
|
Bi X, Li M, Guo Y, Hu M, Chen Y, Lian N, Chen S, Li M, Gu H, Chen X. ZBP1-mediated PANoptosis is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. Cell Death Dis 2025; 16:44. [PMID: 39863598 PMCID: PMC11762280 DOI: 10.1038/s41419-025-07351-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/20/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
UVB irradiation induces diverse modalities of regulatory cell death in keratinocytes. Recently, the pattern of coexistence of pyroptosis, apoptosis, and necroptosis has been termed PANoptosis; however, whether PANoptosis occurs in keratinocytes in UVB-induced skin injury remains unclear. We observed that the key molecules of GSDMD-mediated pyroptosis, apoptosis, and necroptosis, which are N-terminal GSDMD, cleaved caspase-3/PARP, and phosphorylated MLKL, respectively, were elevated in keratinocytes of UVB-challenged mice and human skin tissue. Through keratinocyte-specific gene knockout or using corresponding inhibitors, we found that individual inhibition of GSDMD-mediated pyroptosis, caspase-3-mediated apoptosis, or MLKL-mediated necroptosis did not reduce the overall level of keratinocyte death after UVB exposure, and that the other two pathways maintained the activation. However, when the PANoptosome sensor ZBP1 was knocked out, keratinocyte death was reduced and epidermal thickening was alleviated in UVB-challenged mice. In conclusion, our study demonstrated that UVB irradiation induces ZBP1-mediated PANoptosis in keratinocytes, which is a crucial lethal form in diverse keratinocyte death modalities in UVB-induced skin injury. The above findings provide a new insight on the complexity of regulated cell death modalities in keratinocytes exposed to UV irradiation.
Collapse
Affiliation(s)
- Xuechan Bi
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Yiming Guo
- State Key Laboratory of Natural Medicines, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211198, Jiangsu, China
| | - Mengyao Hu
- School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
| | - Yujie Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Ni Lian
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Sihan Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Min Li
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China
| | - Heng Gu
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| | - Xu Chen
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences & Peking Union Medical College, Nanjing, 210042, Jiangsu, China.
| |
Collapse
|
10
|
Sun Y, Yu H, Zhan Z, Liu W, Liu P, Sun J, Zhang P, Wang X, Liu X, Xu X. TRIF-TAK1 signaling suppresses caspase-8/3-mediated GSDMD/E activation and pyroptosis in influenza A virus-infected airway epithelial cells. iScience 2025; 28:111581. [PMID: 39811662 PMCID: PMC11732511 DOI: 10.1016/j.isci.2024.111581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/23/2024] [Accepted: 12/09/2024] [Indexed: 01/16/2025] Open
Abstract
Pyroptosis plays an important role in attracting innate immune cells to eliminate infected niches. Our study focuses on how influenza A virus (IAV) infection triggers pyroptosis in respiratory epithelial cells. Here, we report that IAV infection induces pyroptosis in a human and murine airway epithelial cell line. Mechanistically, IAV infection activates caspase-8 and caspase-3, which cleave and activate gasdermin (GSDM) D and GSDME, respectively. Z-nucleic acid-binding protein 1 (ZBP1) and receptor-interacting protein kinase (RIPK) 1 activity but not RIPK3 are required for caspase-8/3 and GSDMD/E activation and pyroptosis. GSDMD/E, ZBP1, and RIPK1 knockout all block IAV-induced pyroptosis but enhance virus replication. Transforming growth factor β-activated kinase 1 (TAK1) activation via the adaptor protein TRIF suppresses RIPK1, caspase-8/3, and GSDMD/E activation and pyroptosis. The TAK1 inhibitor 5Z-oxzeneonal (5Z) enhances IAV-induced caspase-8/3 and GSDMD/E cleavage in the lung tissues of IAV-infected mice. Our study unveils a previously unrecognized mechanism of regulation of IAV-induced pyroptosis in respiratory epithelial cells.
Collapse
Affiliation(s)
- Yuling Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Huidi Yu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Zhihao Zhan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Wei Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Penggang Liu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Jing Sun
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Pinghu Zhang
- Institute of Translational Medicine, Yangzhou University Medical College, Yangzhou 225009, Jiangsu Province, P.R. China
| | - Xiaoquan Wang
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiufan Liu
- Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| | - Xiulong Xu
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, Jiangsu Province, P.R. China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis, Yangzhou University, Yangzhou 225009, Jiangsu Province, China
| |
Collapse
|
11
|
Zhang M, Shang L, Zhou F, Li J, Wang S, Lin Q, Cai Y, Yang S. Dachengqi decoction dispensing granule ameliorates LPS-induced acute lung injury by inhibiting PANoptosis in vivo and in vitro. JOURNAL OF ETHNOPHARMACOLOGY 2025; 336:118699. [PMID: 39181290 DOI: 10.1016/j.jep.2024.118699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury (ALI) is a serious health-threatening syndrome of intense inflammatory response in the lungs, with progression leading to acute respiratory distress syndrome (ARDS). Dachengqi decoction dispensing granule (DDG) has a pulmonary protective role, but its potential modulatory mechanism to alleviate ALI needs further excavation. AIM OF THE STUDY This study aims to investigate the effect and potential mechanism of DDG on lipopolysaccharide (LPS)-induced ALI models in vivo and in vitro. MATERIALS AND METHODS LPS-treated Balb/c mice and BEAS-2B cells were used to construct in vivo and in vitro ALI models, respectively. Hematoxylin-eosin (HE), Wet weight/Dry weight (W/D) calculation of lung tissue, and total protein and Lactic dehydrogenase (LDH) assays in BALF were performed to assess the extent of lung tissue injury and pulmonary edema. Enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β), and interleukin-18 (IL-18) in BALF, serum, and cell supernatant. The qRT-PCR was used to detect inflammatory factors, Z-DNA binding protein 1 (ZBP1), and receptor-interacting protein kinase 1 (RIPK1) expression in lung tissues and BEAS-2B cells. Double immunofluorescence staining and co-immunoprecipitation were used to detect the relative expression and co-localization of ZBP1 and RIPK1. The effects of LPS and DDG on BEAS-2B cell activity were detected by Cell Counting Kit-8 (CCK-8). Western blot (WB) was performed to analyze the expression of PANoptosis-related proteins in lung tissues and BEAS-2B cells. RESULTS In vivo, DDG pretreatment could dose-dependently improve the pathological changes of lung tissue in ALI mice, and reduce the W/D ratio of lung, total protein concentration, and LDH content in BALF. In vitro, DDG reversed the inhibitory effect of LPS on BEAS-2B cell viability. Meanwhile, DDG significantly reduced the levels of inflammatory factors in vitro and in vivo. In addition, DDG could inhibit the expression levels of PANoptosis-related proteins, especially the upstream key regulatory molecules ZBP1 and RIPK1. CONCLUSION DDG could inhibit excessive inflammation and PANoptosis to alleviate LPS-induced ALI, thus possessing good anti-inflammatory and lung-protective effects. This study establishes a theoretical basis for the further development of DDG and provides a new prospect for ALI treatment by targeting PANoptosis.
Collapse
Affiliation(s)
- Mengqi Zhang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Luorui Shang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Fangyuan Zhou
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Jinxiao Li
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Shuhan Wang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Qifeng Lin
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Yuju Cai
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China
| | - Shenglan Yang
- Department of Clinical Nutrition, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1227 Jiefang Avenue, Wuhan City, 430022, Hubei Province, China.
| |
Collapse
|
12
|
Gomes MTR, Guimarães ES, Oliveira SC. ZBP1 senses Brucella abortus DNA triggering type I interferon signaling pathway and unfolded protein response activation. Front Immunol 2025; 15:1511949. [PMID: 39850894 PMCID: PMC11754416 DOI: 10.3389/fimmu.2024.1511949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/24/2024] [Indexed: 01/30/2025] Open
Abstract
The innate immune system promptly detects and responds to invading pathogens, with a key role played by the recognition of bacterial-derived DNA through pattern recognition receptors. The Z-DNA binding protein 1 (ZBP1) functions as a DNA sensor inducing type I interferon (IFN) production, innate immune responses and also inflammatory cell death. ZBP1 interacts with cytosolic DNA via its DNA-binding domains, crucial for its activation. Brucella abortus is the etiologic agent of brucellosis in livestock and humans, leading to significant economic losses and public health impact. Despite other innate immune sensors that recognize B. abortus DNA, including Toll-like receptor 9 and the Stimulator of interferon genes (STING), here we evaluated the ZBP1 participation as a cytosolic receptor sensing Brucella infection. Using macrophages derived from ZBP1 knockout (KO) mice we demonstrated that ZBP1 partially contributes to IFN-β expression upon B. abortus infection or Brucella DNA transfection. The knockdown of STING by siRNA decreased the residual IFN-β signal elicited by B. abortus infection, demonstrating the presence of a redundant cytosolic DNA-sensing mechanism driving type I IFN production. Furthermore, ZBP1 is involved in type I IFN signaling inducing IRF-1 expression. Additionally, ZBP1 also contributes to Unfolded Protein Response (UPR) activation during infection. However, ZBP1 does not influence the production of proinflammatory mediators, inflammasome activation and it is dispensable to control bacterial infection in mice or replication in macrophages. This study highlights the complex interactions of Brucella components with innate immune receptors and identifies ZBP1 as a sensor for B. abortus DNA-induced IFN-β response.
Collapse
Affiliation(s)
- Marco Túlio R. Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Erika S. Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Sergio C. Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Institut Pasteur de São Paulo, São Paulo, Brazil
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
13
|
Mishra S, Dey AA, Kesavardhana S. Z-Nucleic Acid Sensing and Activation of ZBP1 in Cellular Physiology and Disease Pathogenesis. Immunol Rev 2025; 329:e13437. [PMID: 39748135 DOI: 10.1111/imr.13437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/04/2025]
Abstract
Z-nucleic acid binding protein 1 (ZBP1) is an innate immune sensor recognizing nucleic acids in Z-conformation. Upon Z-nucleic acid sensing, ZBP1 triggers innate immune activation, inflammation, and programmed cell death during viral infections, mice development, and inflammation-associated diseases. The Zα domains of ZBP1 sense Z-nucleic acids and promote RIP-homotypic interaction motif (RHIM)-dependent signaling complex assembly to mount cell death and inflammation. The studies on ZBP1 spurred an understanding of the role of Z-form RNA and DNA in cellular and physiological functions. In particular, short viral genomic segments, endogenous retroviral elements, and 3'UTR regions are likely sources of Z-RNAs that orchestrate ZBP1 functions. Recent seminal studies identify an intriguing association of ZBP1 with adenosine deaminase acting on RNA-1 (ADAR1), and cyclic GMP-AMP synthase (cGAS) in regulating aberrant nucleic acid sensing, chronic inflammation, and cancer. Thus, ZBP1 is an attractive target to aid the development of specific therapeutic regimes for disease biology. Here, we discuss the role of ZBP1 in Z-RNA sensing, activation of programmed cell death, and inflammation. Also, we discuss how ZBP1 coordinates intracellular perturbations in homeostasis, and Z-nucleic acid formation to regulate chronic diseases and cancer.
Collapse
Affiliation(s)
- Sanchita Mishra
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Ayushi Amin Dey
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| | - Sannula Kesavardhana
- Department of Biochemistry, Division of Biological Sciences, Indian Institute of Science, Bengaluru, Karnataka, India
| |
Collapse
|
14
|
Jena KK, Mambu J, Boehmer D, Sposito B, Millet V, de Sousa Casal J, Muendlein HI, Spreafico R, Fenouil R, Spinelli L, Wurbel S, Riquier C, Galland F, Naquet P, Chasson L, Elkins M, Mitsialis V, Ketelut-Carneiro N, Bugda Gwilt K, Thiagarajah JR, Ruan HB, Lin Z, Lien E, Shao F, Chou J, Poltorak A, Ordovas-Montanes J, Fitzgerald KA, Snapper SB, Broggi A, Zanoni I. Type III interferons induce pyroptosis in gut epithelial cells and impair mucosal repair. Cell 2024; 187:7533-7550.e23. [PMID: 39500322 DOI: 10.1016/j.cell.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 06/25/2024] [Accepted: 10/07/2024] [Indexed: 11/30/2024]
Abstract
Tissue damage and repair are hallmarks of inflammation. Despite a wealth of information on the mechanisms that govern tissue damage, mechanistic insight into how inflammation affects repair is lacking. Here, we investigated how interferons influence tissue repair after damage to the intestinal mucosa. We found that type III, not type I or type II, interferons delay epithelial cell regeneration by inducing the upregulation of Z-DNA-binding protein 1 (ZBP1). Z-nucleic acids formed following intestinal damage are sensed by ZBP1, leading to caspase-8 activation and the cleavage of gasdermin C (GSDMC). Cleaved GSDMC drives epithelial cell death by pyroptosis and delays repair of the large or small intestine after colitis or irradiation, respectively. The type III interferon/ZBP1/caspase-8/GSDMC axis is also active in patients with inflammatory bowel disease (IBD). Our findings highlight the capacity of type III interferons to delay gut repair, which has implications for IBD patients or individuals exposed to radiation therapies.
Collapse
Affiliation(s)
- Kautilya K Jena
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Julien Mambu
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Daniel Boehmer
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedetta Sposito
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Virginie Millet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Joshua de Sousa Casal
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biosciences, University of California, Los Angeles, CA, USA
| | - Romain Fenouil
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Spinelli
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Sarah Wurbel
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Chloé Riquier
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Franck Galland
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Philippe Naquet
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Lionel Chasson
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France
| | - Megan Elkins
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Vanessa Mitsialis
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Natália Ketelut-Carneiro
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Jay R Thiagarajah
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Hai-Bin Ruan
- Department of Integrative Biology and Physiology, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | - Zhaoyu Lin
- State Key Laboratory of Pharmaceutical Biotechnology, Ministry of Education Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, National Resource Center for Mutant Mice of China, Nanjing Drum Tower Hospital, School of Medicine, Nanjing University, Nanjing 210061, China
| | - Egil Lien
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; Center for Molecular inflammation Research, Norwegian University of Science and Technology (NTNU), 7491 Trondheim, Norway
| | - Feng Shao
- National Institute of Biological Sciences, Beijing 102206, China
| | - Janet Chou
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA
| | - Katherine A Fitzgerald
- Program in Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Scott B Snapper
- Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA
| | - Achille Broggi
- Aix Marseille Université, CNRS, INSERM, Centre d'Immunologie de Marseille-Luminy (CIML), 13288 Marseille Cedex, France.
| | - Ivan Zanoni
- Division of Immunology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Division of Gastroenterology, Harvard Medical School and Boston Children's Hospital, Boston, MA 02115, USA; Program in Immunology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
15
|
Sun Y, Liu K. Mechanistic Insights into Influenza A Virus-Induced Cell Death and Emerging Treatment Strategies. Vet Sci 2024; 11:555. [PMID: 39591329 PMCID: PMC11598850 DOI: 10.3390/vetsci11110555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
Influenza A virus (IAV) infection initiates a complex interplay of cell death modalities, including apoptosis, necroptosis, pyroptosis, and their integration, known as PANoptosis, which significantly impacts host immune responses and tissue integrity. These pathways are intricately regulated by viral proteins and host factors, contributing to both viral clearance and pathogenesis-related tissue damage. This review comprehensively explores the molecular mechanisms underlying these cell death processes in influenza infection. We highlight the roles of key regulatory proteins, such as ZBP1 (Z-DNA binding protein 1) and RIPK3 (receptor-interacting protein kinase 3), in orchestrating these responses, emphasizing the dual roles of cell death in both antiviral defense and tissue injury. Furthermore, we discuss emerging therapeutic strategies targeting these pathways, aiming to enhance antiviral efficacy while minimizing collateral tissue damage. Future research should focus on targeted approaches to modulate cell death mechanisms, aiming to reduce tissue damage and improve clinical outcomes for patients with severe influenza.
Collapse
Affiliation(s)
- Yuling Sun
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| | - Kaituo Liu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
16
|
Wu H, Han Y, Liu J, Zhao R, Dai S, Guo Y, Li N, Yang F, Zeng S. The assembly and activation of the PANoptosome promote porcine granulosa cell programmed cell death during follicular atresia. J Anim Sci Biotechnol 2024; 15:147. [PMID: 39497227 PMCID: PMC11536665 DOI: 10.1186/s40104-024-01107-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/18/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND Follicular atresia significantly impairs female fertility and hastens reproductive senescence. Apoptosis of granulosa cells is the primary cause of follicular atresia. Pyroptosis and necroptosis, as additional forms of programmed cell death, have been reported in mammalian cells. However, the understanding of pyroptosis and necroptosis pathways in granulosa cells during follicular atresia remains unclear. This study explored the effects of programmed cell death in granulosa cells on follicular atresia and the underlying mechanisms. RESULTS The results revealed that granulosa cells undergo programmed cell death including apoptosis, pyroptosis, and necroptosis during follicular atresia. For the first time, we identified the formation of a PANoptosome complex in porcine granulosa cells. This complex was initially identified as being composed of ZBP1, RIPK3, and RIPK1, and is recruited through the RHIM domain. Additionally, we demonstrated that caspase-6 is activated and cleaved, interacting with RIPK3 as a component of the PANoptosome. Heat stress may exacerbate the activation of the PANoptosome, leading to programmed cell death in granulosa cells. CONCLUSIONS Our data identified the formation of a PANoptosome complex that promoted programmed cell death in granulosa cells during the process of follicular atresia. These findings provide new insights into the molecular mechanisms underlying follicular atresia.
Collapse
Affiliation(s)
- Hao Wu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yingxue Han
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jikang Liu
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Rong Zhao
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shizhen Dai
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yajun Guo
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Nan Li
- Department of Clinical Sciences, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Feng Yang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Shenming Zeng
- National Engineering Laboratory for Animal Breeding, Key Laboratory of Animal Genetics and Breeding of the Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
17
|
Magri Z, Jetton D, Muendlein HI, Connolly WM, Russell H, Smirnova I, Sharma S, Bunnell S, Poltorak A. CD14 is a decision-maker between Fas-mediated death and inflammation. Cell Rep 2024; 43:114685. [PMID: 39213151 PMCID: PMC11471008 DOI: 10.1016/j.celrep.2024.114685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/12/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Signaling through classical death receptor Fas was mainly appreciated as a pro-death pathway until recent reports characterized pro-inflammatory outcomes of Fas-mediated activation in pathological contexts. How Fas signaling can switch to pro-inflammatory activation is poorly understood. Herein, we report that in macrophages and neutrophils, the Toll-like receptor (TLR) adapter CD14 determines the inflammatory output of Fas-mediated signaling. Our findings propose CD14 as a crucial chaperone of Fas receptor internalization in macrophages and neutrophils, resulting in Cd14-/- myeloid cells that are protected from FasL-induced apoptosis, activate nuclear factor κB (NF-κB), and release cytokines in response. As in TLR signaling, CD14 is also required for Fas to signal through the adaptor TRIF (TIR-domain-containing adapter-inducing interferon-β) and induce a pro-death complex. Our findings demonstrate that CD14 availability can determine the switch between Fas-mediated pro-death and pro-inflammatory outcomes by internalizing the receptor.
Collapse
Affiliation(s)
- Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Hunter Russell
- Graduate Program in Genetics, Molecular & Cellular Biology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Shruti Sharma
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Stephen Bunnell
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| | - Alexander Poltorak
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
18
|
Chen KW, Broz P. Gasdermins as evolutionarily conserved executors of inflammation and cell death. Nat Cell Biol 2024; 26:1394-1406. [PMID: 39187689 DOI: 10.1038/s41556-024-01474-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 07/04/2024] [Indexed: 08/28/2024]
Abstract
The gasdermins are a family of pore-forming proteins that have recently emerged as executors of pyroptosis, a lytic form of cell death that is induced by the innate immune system to eradicate infected or malignant cells. Mammalian gasdermins comprise a cytotoxic N-terminal domain, a flexible linker and a C-terminal repressor domain. Proteolytic cleavage in the linker releases the cytotoxic domain, thereby allowing it to form β-barrel membrane pores. Formation of gasdermin pores in the plasma membrane eventually leads to a loss of the electrochemical gradient, cell death and membrane rupture. Here we review recent work that has expanded our understanding of gasdermin biology and function in mammals by revealing their activation mechanism, their regulation and their roles in autoimmunity, host defence and cancer. We further highlight fungal and bacterial gasdermin pore formation pointing to a conserved mechanism of cell death induction.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| | - Petr Broz
- Department of Immunobiology, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
19
|
Jetton D, Muendlein HI, Connolly WM, Magri Z, Smirnova I, Batorsky R, Mecsas J, Degterev A, Poltorak A. Non-canonical autophosphorylation of RIPK1 drives timely pyroptosis to control Yersinia infection. Cell Rep 2024; 43:114641. [PMID: 39154339 PMCID: PMC11465231 DOI: 10.1016/j.celrep.2024.114641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/17/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024] Open
Abstract
Caspase-8-dependent pyroptosis has been shown to mediate host protection from Yersinia infection. For this mode of cell death, the kinase activity of receptor-interacting protein kinase 1 (RIPK1) is required, but the autophosphorylation sites required to drive caspase-8 activation have not been determined. Here, we show that non-canonical autophosphorylation of RIPK1 at threonine 169 (T169) is necessary for caspase-8-mediated pyroptosis. Mice with alanine in the T169 position are highly susceptible to Yersinia dissemination. Mechanistically, the delayed formation of a complex containing RIPK1, ZBP1, Fas-associated protein with death domain (FADD), and caspase-8 abrogates caspase-8 maturation in T169A mice and leads to the eventual activation of RIPK3-dependent necroptosis in vivo; however, this is insufficient to protect the host, suggesting that timely pyroptosis during early response is specifically required to control infection. These results position RIPK1 T169 phosphorylation as a driver of pyroptotic cell death critical for host defense.
Collapse
Affiliation(s)
- David Jetton
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Hayley I Muendlein
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Wilson M Connolly
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Zoie Magri
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA
| | - Irina Smirnova
- Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Rebecca Batorsky
- Data Intensive Studies Center, Tufts University, Medford, MA 02155, USA
| | - Joan Mecsas
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexei Degterev
- Department of Cell, Molecular & Developmental Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Alexander Poltorak
- Graduate Program in Immunology, Tufts Graduate School of Biomedical Sciences, Boston, MA 02111, USA; Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA.
| |
Collapse
|
20
|
Yang Y, Fang H, Xie Z, Ren F, Yan L, Zhang M, Xu G, Song Z, Chen Z, Sun W, Shan B, Zhu ZJ, Xu D. Yersinia infection induces glucose depletion and AMPK-dependent inhibition of pyroptosis in mice. Nat Microbiol 2024; 9:2144-2159. [PMID: 38844594 DOI: 10.1038/s41564-024-01734-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 04/04/2024] [Indexed: 08/09/2024]
Abstract
Nutritional status and pyroptosis are important for host defence against infections. However, the molecular link that integrates nutrient sensing into pyroptosis during microbial infection is unclear. Here, using metabolic profiling, we found that Yersinia pseudotuberculosis infection results in a significant decrease in intracellular glucose levels in macrophages. This leads to activation of the glucose and energy sensor AMPK, which phosphorylates the essential kinase RIPK1 at S321 during caspase-8-mediated pyroptosis. This phosphorylation inhibits RIPK1 activation and thereby restrains pyroptosis. Boosting the AMPK-RIPK1 cascade by glucose deprivation, AMPK agonists, or RIPK1-S321E knockin suppresses pyroptosis, leading to increased susceptibility to Y. pseudotuberculosis infection in mice. Ablation of AMPK in macrophages or glucose supplementation in mice is protective against infection. Thus, we reveal a molecular link between glucose sensing and pyroptosis, and unveil a mechanism by which Y. pseudotuberculosis reduces glucose levels to impact host AMPK activation and limit host pyroptosis to facilitate infection.
Collapse
Affiliation(s)
- Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongwen Fang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhangdan Xie
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fandong Ren
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Lingjie Yan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Guifang Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Ziwen Song
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zezhao Chen
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Weimin Sun
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Zheng-Jiang Zhu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
- Shanghai Key Laboratory of Aging Studies, Shanghai, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
- Shanghai Key Laboratory of Aging Studies, Shanghai, China.
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
21
|
Hongquan L, Nina C, Xia Y, Lujiang Z, Qiuyue R, Fan Y, Fei W, Hongping S, Ting Y, Qiuyan C, Ping W, Zaihui F. BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in MI/R induced myocyte apoptosis. Int J Cardiol 2024; 408:132158. [PMID: 38744338 DOI: 10.1016/j.ijcard.2024.132158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 03/26/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Cardiomyocyte apoptosis plays a vital role in myocardial ischemia-reperfusion (MI/R) injury; however, the role of beclin1 (BECN1) remains unclear. This study aimed at revealing the function of BECN1 during cardiomyocyte apoptosis after MI/R injury. METHODS In vivo, TTC and Evan's blue double staining was applied to verify the gross morphological alteration in both wild type (WT) mice and BECN1 transgene mice (BECN1-TG), and TUNEL staining and western blot were adopted to evaluate the cardiomyocyte apoptosis. In vitro, a hypoxia/reoxygenation (H/R) model was established in H9c2 cells to simulate MI/R injury. Proteomics analysis was preformed to verify if apoptosis occurs in the H/R cellular model. And apoptosis factors, RIPK1, Caspase-1, Caspase-3, and cleaved Caspase-3, were investigated using western bolting. In addition, the mRNA level were verified using RT-PCR. To further investigate the protein interactions small interfering RNA and lentiviral transfection were used. To continue investigate the protein interactions, immunofluorescence and coimmunoprecipitation were applied. RESULTS Morphologically, BECN1 significantly attenuated the apoptosis from TTC-Evan's staining, TUNEL, and cardiac tissue western blot. After H/R, a RIPK1-induced complex (complex II) containing RIPK1, Caspase-8, and FADD was formed. Thereafter, cleaved Caspase-3 was activated, and myocyte apoptosis occurred. However, BECN1 decreased the expression of RIPK1, Caspase-8, and FADD. Nevertheless, BECN1 overexpression increased RIPK1 ubiquitination before apoptosis by inhibiting OTUD1. CONCLUSIONS BECN1 regulates FADD/RIPK1/Caspase-8 complex formation via RIPK1 ubiquitination by downregulating OTUD1 in C-Caspase-3-induced myocyte apoptosis after MI/R injury. Therefore, BECN1 can function as a cardioprotective candidate.
Collapse
Affiliation(s)
- Lu Hongquan
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China; Department of Anatomy, Tarim University School of Medicine, Alaer, 843300, China
| | - Chen Nina
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China
| | - Yang Xia
- Department of Neurosurgery, Mianyang Central Hospital, Mianyang, China
| | - Zhan Lujiang
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China
| | - Ruan Qiuyue
- Department of Nephrology, the First People's Hospital of Honghe, Honghe 661000, China
| | - Yang Fan
- Department of Medicine, Honghe Health Vocational College, Honghe, 661100, China
| | - Wen Fei
- Department of Orthopedic, People's Hospital of Rongchang District, Chongqing 402460, China
| | - Shi Hongping
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China
| | - Yang Ting
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China
| | - Chen Qiuyan
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China
| | - Wang Ping
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China; Department of Anatomy, Tarim University School of Medicine, Alaer, 843300, China.
| | - Feng Zaihui
- Department of Radiology and Nuclear Medicine, the Third People's Hospital of Honghe, Honghe 661000, China.
| |
Collapse
|
22
|
Sun K, Lu F, Hou L, Zhang X, Pan C, Liu H, Zheng Z, Guo Z, Ruan Z, Hou Y, Zhang J, Guo F, Zhu W. IRF1 regulation of ZBP1 links mitochondrial DNA and chondrocyte damage in osteoarthritis. Cell Commun Signal 2024; 22:366. [PMID: 39026271 PMCID: PMC11256489 DOI: 10.1186/s12964-024-01744-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 07/10/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Z-DNA binding protein 1 (ZBP1) is a nucleic acid sensor that is involved in multiple inflammatory diseases, but whether and how it contributes to osteoarthritis (OA) are unclear. METHODS Cartilage tissues were harvested from patients with OA and a murine model of OA to evaluate ZBP1 expression. Subsequently, the functional role and mechanism of ZBP1 were examined in primary chondrocytes, and the role of ZBP1 in OA was explored in mouse models. RESULTS We showed the upregulation of ZBP1 in articular cartilage originating from OA patients and mice with OA after destabilization of the medial meniscus (DMM) surgery. Specifically, knockdown of ZBP1 alleviated chondrocyte damage and protected mice from DMM-induced OA. Mechanistically, tumor necrosis factor alpha induced ZBP1 overexpression in an interferon regulatory factor 1 (IRF1)-dependent manner and elicited the activation of ZBP1 via mitochondrial DNA (mtDNA) release and ZBP1 binding. The upregulated and activated ZBP1 could interact with receptor-interacting protein kinase 1 and activate the transforming growth factor-beta-activated kinase 1-NF-κB signaling pathway, which led to chondrocyte inflammation and extracellular matrix degradation. Moreover, inhibition of the mtDNA-IRF1-ZBP1 axis with Cyclosporine A, a blocker of mtDNA release, could delay the progression of DMM-induced OA. CONCLUSIONS Our data revealed the pathological role of the mtDNA-IRF1-ZBP1 axis in OA chondrocytes, suggesting that inhibition of this axis could be a viable therapeutic approach for OA.
Collapse
Affiliation(s)
- Kai Sun
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fan Lu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Liangcai Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Xiong Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chunran Pan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Haigang Liu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zehang Zheng
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhou Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Zhaoxuan Ruan
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yanjun Hou
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Jinming Zhang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Fengjing Guo
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Wentao Zhu
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
23
|
Xie F, Wu D, Huang J, Liu X, Shen Y, Huang J, Su Z, Li J. ZBP1 condensate formation synergizes Z-NAs recognition and signal transduction. Cell Death Dis 2024; 15:487. [PMID: 38982083 PMCID: PMC11233663 DOI: 10.1038/s41419-024-06889-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/11/2024]
Abstract
Z-DNA binding protein 1 (ZBP1) is a crucial player in the intracellular recognition of Z-form nucleic acids (Z-NAs) through its Zαβ domain, initiating downstream interactions with RIPK1 and RIPK3 via RHIM domains. This engagement leads to the assembly of PANoptosomes, ultimately inducing programmed cell death to curb pathogen dissemination. How Zαβ and RHIM domain cooperate to trigger Z-NAs recognition and signal transduction remains unclear. Here, we show that ZBP1 condensate formation facilitates Z-NAs binding and antiviral signal transduction. The ZBP1 Zαβ dimerizes in a concentration-dependent manner, forming characteristic condensates in solutions evidenced by DLS and SAXS methods. ZBP1 exhibits a binding preference for 10-bp length CG (10CG) DNA and Z-RNA ligand, which in turn enhanced Zαβ dimerization, expediting the formation of droplet condensates in vitro and amyloid-like puncta in cells. Subsequent investigations reveal that Zαβ could form condensates with liquid-liquid phase separation property upon HSV and IAV infections, while full-length ZBP1 forms amyloid-like puncta with or without infections. Furthermore, ZBP1 RHIM domains show typical amyloidal fibril characterizations and cross-polymerize with RIPK1 depending on the core motif of 206IQIG209, while mutated ZBP1 could impede necroptosis and antiviral immunity in HT-29 cells. Thus, ZBP1 condensate formation facilitates the recognition of viral Z-NAs and activation of downstream signal transduction via synergic action of different domains, revealing its elaborated mechanism in innate immunity.
Collapse
Affiliation(s)
- Feiyan Xie
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Di Wu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jing Huang
- Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, 410083, Hunan, China
| | - Xuehe Liu
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Yanfang Shen
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China
| | - Jinqing Huang
- Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Zhipeng Su
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| | - Jixi Li
- Department of Neurology, Huashan Hospital and School of Life Sciences, State Key Laboratory of Genetic Engineering, Fudan University, 200438, Shanghai, China.
| |
Collapse
|
24
|
Yow SJ, Rosli SN, Hutchinson PE, Chen KW. Differential signalling requirements for RIPK1-dependent pyroptosis in neutrophils and macrophages. Cell Death Dis 2024; 15:479. [PMID: 38965211 PMCID: PMC11224406 DOI: 10.1038/s41419-024-06871-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/23/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
TLR4 and TNFR1 signalling promotes potent proinflammatory signal transduction events, thus, are often hijacked by pathogenic microorganisms. We recently reported that myeloid cells retaliate Yersinia blockade of TAK1/IKK signalling by triggering RIPK1-dependent caspase-8 activation that promotes downstream GSDMD and GSDME-mediated pyroptosis in macrophages and neutrophils respectively. However, the upstream signalling events for RIPK1 activation in these cells are not well defined. Here, we demonstrate that unlike in macrophages, RIPK1-driven pyroptosis and cytokine priming in neutrophils are driven through TNFR1 signalling, while TLR4-TRIF signalling is dispensable. Furthermore, we demonstrate that activation of RIPK1-dependent pyroptosis in neutrophils during Yersinia infection requires IFN-γ priming, which serves to induce surface TNFR1 expression and amplify soluble TNF secretion. In contrast, macrophages utilise both TNFR1 and TLR4-TRIF signalling to trigger cell death, but only require TRIF but not autocrine TNFR1 for cytokine production. Together, these data highlight the emerging theme of cell type-specific regulation in cell death and immune signalling in myeloid cells.
Collapse
Affiliation(s)
- See Jie Yow
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Safwah Nasuha Rosli
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Paul E Hutchinson
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
25
|
Liu R, Cao H, Zhang S, Cai M, Zou T, Wang G, Zhang D, Wang X, Xu J, Deng S, Li T, Xu D, Gu J. ZBP1-mediated apoptosis and inflammation exacerbate steatotic liver ischemia/reperfusion injury. J Clin Invest 2024; 134:e180451. [PMID: 38743492 PMCID: PMC11213514 DOI: 10.1172/jci180451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Steatotic donor livers are becoming more and more common in liver transplantation. However, the current use of steatotic grafts is less acceptable than normal grafts due to their higher susceptibility to ischemia/reperfusion (I/R) injury. To investigate the mechanism underlying the susceptibility of steatotic liver to I/R injury, we detected cell death markers and inflammation in clinical donor livers and animal models. We found that caspase-8-mediated hepatic apoptosis is activated in steatotic liver I/R injury. However, ablation of caspase-8 only slightly mitigated steatotic liver I/R injury without affecting inflammation. We further demonstrated that RIPK1 kinase induces both caspase-8-mediated apoptosis and cell death-independent inflammation. Inhibition of RIPK1 kinase significantly protects against steatotic liver I/R injury by alleviating both hepatic apoptosis and inflammation. Additionally, we found that RIPK1 activation is induced by Z-DNA binding protein 1 (ZBP1) but not the canonical TNF-α pathway during steatotic liver I/R injury. Deletion of ZBP1 substantially decreases the steatotic liver I/R injury. Mechanistically, ZBP1 is amplified by palmitic acid-activated JNK pathway in steatotic livers. Upon I/R injury, excessive reactive oxygen species trigger ZBP1 activation by inducing its aggregation independent of the Z-nucleic acids sensing action in steatotic livers, leading to the kinase activation of RIPK1 and the subsequent aggravation of liver injury. Thus, ZBP1-mediated RIPK1-driven apoptosis and inflammation exacerbate steatotic liver I/R injury, which could be targeted to protect steatotic donor livers during transplantation.
Collapse
Affiliation(s)
- Ran Liu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shuhua Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mao Cai
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tianhao Zou
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoliang Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Di Zhang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueling Wang
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianjun Xu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shenghe Deng
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tongxi Li
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, China
| | - Jinyang Gu
- Center for Liver Transplantation, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Organ Transplantation, Ministry of Education; NHC Key Laboratory of Organ Transplantation; Key Laboratory of Organ Transplantation, Chinese Academy of Medical Sciences, Wuhan, Hubei, China
| |
Collapse
|
26
|
Meng X, Song Q, Liu Z, Liu X, Wang Y, Liu J. Neurotoxic β-amyloid oligomers cause mitochondrial dysfunction-the trigger for PANoptosis in neurons. Front Aging Neurosci 2024; 16:1400544. [PMID: 38808033 PMCID: PMC11130508 DOI: 10.3389/fnagi.2024.1400544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
As the global population ages, the incidence of elderly patients with dementia, represented by Alzheimer's disease (AD), will continue to increase. Previous studies have suggested that β-amyloid protein (Aβ) deposition is a key factor leading to AD. However, the clinical efficacy of treating AD with anti-Aβ protein antibodies is not satisfactory, suggesting that Aβ amyloidosis may be a pathological change rather than a key factor leading to AD. Identification of the causes of AD and development of corresponding prevention and treatment strategies is an important goal of current research. Following the discovery of soluble oligomeric forms of Aβ (AβO) in 1998, scientists began to focus on the neurotoxicity of AβOs. As an endogenous neurotoxin, the active growth of AβOs can lead to neuronal death, which is believed to occur before plaque formation, suggesting that AβOs are the key factors leading to AD. PANoptosis, a newly proposed concept of cell death that includes known modes of pyroptosis, apoptosis, and necroptosis, is a form of cell death regulated by the PANoptosome complex. Neuronal survival depends on proper mitochondrial function. Under conditions of AβO interference, mitochondrial dysfunction occurs, releasing lethal contents as potential upstream effectors of the PANoptosome. Considering the critical role of neurons in cognitive function and the development of AD as well as the regulatory role of mitochondrial function in neuronal survival, investigation of the potential mechanisms leading to neuronal PANoptosis is crucial. This review describes the disruption of neuronal mitochondrial function by AβOs and elucidates how AβOs may activate neuronal PANoptosis by causing mitochondrial dysfunction during the development of AD, providing guidance for the development of targeted neuronal treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jinyu Liu
- Department of Toxicology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
27
|
Wang K, Huang H, Zhan Q, Ding H, Li Y. Toll-like receptors in health and disease. MedComm (Beijing) 2024; 5:e549. [PMID: 38685971 PMCID: PMC11057423 DOI: 10.1002/mco2.549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 05/02/2024] Open
Abstract
Toll-like receptors (TLRs) are inflammatory triggers and belong to a family of pattern recognition receptors (PRRs) that are central to the regulation of host protective adaptive immune responses. Activation of TLRs in innate immune myeloid cells directs lymphocytes to produce the most appropriate effector responses to eliminate infection and maintain homeostasis of the body's internal environment. Inappropriate TLR stimulation can lead to the development of general autoimmune diseases as well as chronic and acute inflammation, and even cancer. Therefore, TLRs are expected to be targets for therapeutic treatment of inflammation-related diseases, autoimmune diseases, microbial infections, and human cancers. This review summarizes the recent discoveries in the molecular and structural biology of TLRs. The role of different TLR signaling pathways in inflammatory diseases, autoimmune diseases such as diabetes, cardiovascular diseases, respiratory diseases, digestive diseases, and even cancers (oral, gastric, breast, colorectal) is highlighted and summarizes new drugs and related clinical treatments in clinical trials, providing an overview of the potential and prospects of TLRs for the treatment of TLR-related diseases.
Collapse
Affiliation(s)
- Kunyu Wang
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Hanyao Huang
- Department of Oral and Maxillofacial Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Qi Zhan
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Haoran Ding
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| | - Yi Li
- Department of Head and Neck Oncology Surgery, State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengduChina
| |
Collapse
|
28
|
Liu D, He W, Yang LL. Revitalizing antitumor immunity: Leveraging nucleic acid sensors as therapeutic targets. Cancer Lett 2024; 588:216729. [PMID: 38387757 DOI: 10.1016/j.canlet.2024.216729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/30/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
Nucleic acid sensors play a critical role in recognizing and responding to pathogenic nucleic acids as danger signals. Upon activation, these sensors initiate downstream signaling cascades that lead to the production and release of pro-inflammatory cytokines, chemokines, and type I interferons. These immune mediators orchestrate diverse effector responses, including the activation of immune cells and the modulation of the tumor microenvironment. However, careful consideration must be given to balancing the activation of nucleic acid sensors to avoid unwanted autoimmune or inflammatory responses. In this review, we provide an overview of nucleic acid sensors and their role in combating cancer through the perception of various aberrant nucleic acids and activation of the immune system. We discuss the connections between different programmed cell death modes and nucleic acid sensors. Finally, we outline the development of nucleic acid sensor agonists, highlighting how their potential as therapeutic targets opens up new avenues for cancer immunotherapy.
Collapse
Affiliation(s)
- Danfeng Liu
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China
| | - Wei He
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| | - Lei-Lei Yang
- Department of Stomatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, PR China.
| |
Collapse
|
29
|
Kim YA, Choi Y, Kim TG, Jeong J, Yu S, Kim T, Sheen K, Lee Y, Choi T, Park YH, Kang MS, Kim MS. Multi-System-Level Analysis with RNA-Seq on Pterygium Inflammation Discovers Association between Inflammatory Responses, Oxidative Stress, and Oxidative Phosphorylation. Int J Mol Sci 2024; 25:4789. [PMID: 38732006 PMCID: PMC11083828 DOI: 10.3390/ijms25094789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
A pterygium is a common conjunctival degeneration and inflammatory condition. It grows onto the corneal surface or limbus, causing blurred vision and cosmetic issues. Ultraviolet is a well-known risk factor for the development of a pterygium, although its pathogenesis remains unclear, with only limited understanding of its hereditary basis. In this study, we collected RNA-seq from both pterygial tissues and conjunctival tissues (as controls) from six patients (a total of twelve biological samples) and retrieved publicly available data, including eight pterygium samples and eight controls. We investigated the intrinsic gene regulatory mechanisms closely linked to the inflammatory reactions of pterygiums and compared Asian (Korea) and the European (Germany) pterygiums using multiple analysis approaches from different perspectives. The increased expression of antioxidant genes in response to oxidative stress and DNA damage implies an association between these factors and pterygium development. Also, our comparative analysis revealed both similarities and differences between Asian and European pterygiums. The decrease in gene expressions involved in the three primary inflammatory signaling pathways-JAK/STAT, MAPK, and NF-kappa B signaling-suggests a connection between pathway dysfunction and pterygium development. We also observed relatively higher activity of autophagy and antioxidants in the Asian group, while the European group exhibited more pronounced stress responses against oxidative stress. These differences could potentially be necessitated by energy-associated pathways, specifically oxidative phosphorylation.
Collapse
Affiliation(s)
- Ye-Ah Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yueun Choi
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Tae Gi Kim
- Department of Ophthalmology, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea;
| | - Jisu Jeong
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Sanghyeon Yu
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Taeyoon Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Kisung Sheen
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
- Department of Biomedical Science and Technology, Graduate School, Kyung Hee University, Seoul 02453, Republic of Korea
| | - Yoonsung Lee
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| | - Taesoo Choi
- Department of Urology, School of Medicine, Kyung Hee University, Seoul 05278, Republic of Korea;
| | - Yong Hwan Park
- Department of Microbiology, Ajou University School of Medicine, Suwon 16499, Republic of Korea;
| | - Min Seok Kang
- Department of Ophthalmology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul 02447, Republic of Korea
| | - Man S. Kim
- Translational-Transdisciplinary Research Center, Clinical Research Institute, Kyung Hee University Hospital at Gangdong, Kyung Hee University College of Medicine, Seoul 05278, Republic of Korea; (Y.-A.K.); (Y.C.); (J.J.); (S.Y.); (T.K.); (K.S.); (Y.L.)
| |
Collapse
|
30
|
Xie J, Cheng J, Ko H, Tang Y. Cytosolic DNA sensors in neurodegenerative diseases: from physiological defenders to pathological culprits. EMBO Mol Med 2024; 16:678-699. [PMID: 38467840 PMCID: PMC11018843 DOI: 10.1038/s44321-024-00046-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/13/2024] Open
Abstract
Cytosolic DNA sensors are a group of pattern recognition receptors (PRRs) that vary in structures, molecular mechanisms, and origins but share a common function to detect intracellular microbial DNA and trigger the innate immune response like type 1 interferon production and autophagy. Cytosolic DNA sensors have been proven as indispensable defenders against the invasion of many pathogens; however, growing evidence shows that self-DNA misplacement to cytoplasm also frequently occurs in non-infectious circumstances. Accumulation of cytosolic DNA causes improper activation of cytosolic DNA sensors and triggers an abnormal autoimmune response, that significantly promotes pathological progression. Neurodegenerative diseases are a group of neurological disorders characterized by neuron loss and still lack effective treatments due to a limited understanding of pathogenesis. But current research has found a solid relationship between neurodegenerative diseases and cytosolic DNA sensing pathways. This review summarizes profiles of several major cytosolic DNA sensors and their common adaptor protein STING. It also discusses both the beneficial and detrimental roles of cytosolic DNA sensors in the genesis and progression of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiatian Xie
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China
| | - Ho Ko
- Division of Neurology, Department of Medicine and Therapeutics & Li Ka Shing Institute of Health Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
- Brain Research Center, Sun Yat-sen Memorial Hospital, Sun Yat‑sen University, Guangzhou, 510120, China.
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan, 528200, China.
| |
Collapse
|
31
|
Kaurani L, Islam MR, Heilbronner U, Krüger DM, Zhou J, Methi A, Strauss J, Pradhan R, Schröder S, Burkhardt S, Schuetz AL, Pena T, Erlebach L, Bühler A, Budde M, Senner F, Kohshour MO, Schulte EC, Schmauß M, Reininghaus EZ, Juckel G, Kronenberg-Versteeg D, Delalle I, Odoardi F, Flügel A, Schulze TG, Falkai P, Sananbenesi F, Fischer A. Regulation of Zbp1 by miR-99b-5p in microglia controls the development of schizophrenia-like symptoms in mice. EMBO J 2024; 43:1420-1444. [PMID: 38528182 PMCID: PMC11021462 DOI: 10.1038/s44318-024-00067-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 03/27/2024] Open
Abstract
Current approaches to the treatment of schizophrenia have mainly focused on the protein-coding part of the genome; in this context, the roles of microRNAs have received less attention. In the present study, we analyze the microRNAome in the blood and postmortem brains of schizophrenia patients, showing that the expression of miR-99b-5p is downregulated in both the prefrontal cortex and blood of patients. Lowering the amount of miR-99b-5p in mice leads to both schizophrenia-like phenotypes and inflammatory processes that are linked to synaptic pruning in microglia. The microglial miR-99b-5p-supressed inflammatory response requires Z-DNA binding protein 1 (Zbp1), which we identify as a novel miR-99b-5p target. Antisense oligonucleotides against Zbp1 ameliorate the pathological effects of miR-99b-5p inhibition. Our findings indicate that a novel miR-99b-5p-Zbp1 pathway in microglia might contribute to the pathogenesis of schizophrenia.
Collapse
Affiliation(s)
- Lalit Kaurani
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
| | - Md Rezaul Islam
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Urs Heilbronner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Dennis M Krüger
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Jiayin Zhou
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Aditi Methi
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Judith Strauss
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Ranjit Pradhan
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Sophie Schröder
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Susanne Burkhardt
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Anna-Lena Schuetz
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Tonatiuh Pena
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany
| | - Lena Erlebach
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Anika Bühler
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Monika Budde
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Fanny Senner
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
| | - Eva C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
- Institute of Human Genetics, University Hospital Bonn, Medical Faculty, University of Bonn, Bonn, Germany
| | - Max Schmauß
- Clinic for Psychiatry, Psychotherapy and Psychosomatics, Augsburg University, Medical Faculty, Bezirkskrankenhaus Augsburg, Augsburg, 86156, Germany
| | - Eva Z Reininghaus
- Department of Psychiatry and Psychotherapeutic Medicine, Research Unit for Bipolar Affective Disorder, Medical University of Graz, Graz, 8036, Austria
| | - Georg Juckel
- Department of Psychiatry, Ruhr University Bochum, LWL University Hospital, Bochum, 44791, Germany
| | - Deborah Kronenberg-Versteeg
- Department of Cellular Neurology, Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; Germany and German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Ivana Delalle
- Department of Pathology, Lifespan Academic Medical Center, Alpert Medical School of Brown University, Providence, RI, 02903, USA
| | - Francesca Odoardi
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Alexander Flügel
- Institute for Neuroimmunology and Multiple Sclerosis Research, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany.
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany.
| | - Farahnaz Sananbenesi
- Research Group for Genome Dynamics in Brain Diseases, 37077, Göttingen, Germany.
| | - Andre Fischer
- Department for Epigenetics and Systems Medicine in Neurodegenerative Diseases, German Center for Neurodegenerative Diseases (DZNE) Goettingen, 37077, Göttingen, Germany.
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, 37077, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
32
|
Zhan J, Wang J, Liang Y, Wang L, Huang L, Liu S, Zeng X, Zeng E, Wang H. Apoptosis dysfunction: unravelling the interplay between ZBP1 activation and viral invasion in innate immune responses. Cell Commun Signal 2024; 22:149. [PMID: 38402193 PMCID: PMC10893743 DOI: 10.1186/s12964-024-01531-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 02/13/2024] [Indexed: 02/26/2024] Open
Abstract
Apoptosis plays a pivotal role in pathogen elimination and maintaining homeostasis. However, viruses have evolved strategies to evade apoptosis, enabling their persistence within the host. Z-DNA binding protein 1 (ZBP1) is a potent innate immune sensor that detects cytoplasmic nucleic acids and activates the innate immune response to clear pathogens. When apoptosis is inhibited by viral invasion, ZBP1 can be activated to compensate for the effect of apoptosis by triggering an innate immune response. This review examined the mechanisms of apoptosis inhibition and ZBP1 activation during viral invasion. The authors outlined the mechanisms of ZBP1-induced type I interferon, pyroptosis and necroptosis, as well as the crosstalk between ZBP1 and the cGAS-STING signalling pathway. Furthermore, ZBP1 can reverse the suppression of apoptotic signals induced by viruses. Intriguingly, a positive feedback loop exists in the ZBP1 signalling pathway, which intensifies the innate immune response while triggering a cytokine storm, leading to tissue and organ damage. The prudent use of ZBP1, which is a double-edged sword, has significant clinical implications for treating infections and inflammation.
Collapse
Affiliation(s)
- Jianhao Zhan
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Jisheng Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Yuqing Liang
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Lisha Wang
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Le Huang
- HuanKui Academy, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Shanshan Liu
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
| | - Xiaoping Zeng
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China
- Medical College, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321017, China
| | - Erming Zeng
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
| | - Hongmei Wang
- Department of Neurosurgery, the First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- School of Basic Medical Sciences, Nanchang University, Nanchang, Jiangxi Province, 330006, China.
- Medical College, Jinhua Polytechnic, Jinhua, Zhejiang Province, 321017, China.
| |
Collapse
|
33
|
Wang A, Zheng WS, Luo Z, Bai L, Zhang S. The innovative checkpoint inhibitors of lung adenocarcinoma, cg09897064 methylation and ZBP1 expression reduction, have implications for macrophage polarization and tumor growth in lung cancer. J Transl Med 2024; 22:173. [PMID: 38369516 PMCID: PMC10874569 DOI: 10.1186/s12967-024-04995-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/12/2024] [Indexed: 02/20/2024] Open
Abstract
Lung cancer, a prevalent and aggressive disease, is characterized by recurrence and drug resistance. It is essential to comprehend the fundamental processes and discover novel therapeutic objectives for augmenting treatment results. Based on our research findings, we have identified a correlation between methylation of cg09897064 and decreased expression of ZBP1, indicating a link to unfavorable prognosis in patients with lung cancer. Furthermore, these factors play a role in macrophage polarization, with ZBP1 upregulated in M1 macrophages compared to both M0 and M2 polarized macrophages. We observed cg09897064 methylation in M2 polarization, but not in M0 and M1 polarized macrophages. ATACseq analysis revealed closed chromatin accessibility of ZBP1 in M0 polarized macrophages, while open accessibility was observed in both M1 and M2 polarized macrophages. Our findings suggest that ZBP1 is downregulated in M0 polarized macrophages due to closed chromatin accessibility and downregulated in M2 polarized macrophages due to cg09897064 methylation. Further investigations manipulating cg09897064 methylation and ZBP1 expression through overexpression plasmids and shRNAs provided evidence for their role in modulating macrophage polarization and tumor growth. ZBP1 inhibits M2 polarization and suppresses tumor growth, while cg09897064 methylation promotes M2 polarization and macrophage-induced tumor growth. In mechanism investigations, we found that cg09897064 methylation impairs CEBPA binding to the ZBP1 promoter, leading to decreased ZBP1 expression. Clinical experiments were conducted to validate the correlation between methylation at cg09897064, ZBP1 expression, and macrophage M2 polarization. Targeting these factors may hold promise as a strategy for developing innovative checkpoint inhibitors in lung cancer treatment.
Collapse
Affiliation(s)
- Ailing Wang
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wei-Sha Zheng
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhen Luo
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Lian Bai
- Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Shi Zhang
- Department of Pulmonary and Critical Care Medicine, Central Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, School of Medicine, Zhongda Hospital, Southeast University, Nanjing, Jiangsu, China.
| |
Collapse
|
34
|
Wang L, Zhang Y, Huang M, Yuan Y, Liu X. RIP3 in Necroptosis: Underlying Contributions to Traumatic Brain Injury. Neurochem Res 2024; 49:245-257. [PMID: 37743445 DOI: 10.1007/s11064-023-04038-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/07/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Traumatic brain injury (TBI) is a global public safety issue that poses a threat to death, characterized by high fatality rates, severe injuries and low recovery rates. There is growing evidence that necroptosis regulates the pathophysiological processes of a variety of diseases, particularly those affecting the central nervous system. Thus, moderate necroptosis inhibition may be helpful in the management of TBI. Receptor-interacting protein kinase (RIP) 3 is a key mediator in the necroptosis, and its absence helps restore the microenvironment at the injured site and improve cognitive impairment after TBI. In this report, we review different domains of RIP3, multiple analyses of necroptosis, and associations between necroptosis and TBI, RIP3, RIP1, and mixed lineage kinase domain-like. Next, we elucidate the potential involvement of RIP3 in TBI and highlight how RIP3 deficiency enhances neuronal function.
Collapse
Affiliation(s)
- Lvxia Wang
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yong Zhang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Min Huang
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China
| | - Yiling Yuan
- Department of Biosciences, Durham University, Durham, UK
| | - Xuehong Liu
- School of Life and Environmental Sciences, Shaoxing University, Zhejiang, China.
- Department of Histology and Embryology, School of Medicine, Shaoxing University, Zhejiang, China.
| |
Collapse
|
35
|
Shi K, Wang X, Ke Z, Li J. The role of ZBP1 in eccentric exercise-induced skeletal muscle necroptosis. J Muscle Res Cell Motil 2023; 44:311-323. [PMID: 37889396 DOI: 10.1007/s10974-023-09660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023]
Abstract
This study aimed to explore the occurrence of necroptosis in skeletal muscle after eccentric exercise and investigate the role and possible mechanisms of ZBP1 and its related pathway proteins in the process, providing a theoretical basis for the study of exercise-induced skeletal muscle injury and recovery. Forty-eight male adult Sprague-Dawley rats were randomly divided into a control group (C, n = 8) and an exercise group (E, n = 40). The exercise group was further divided into 0 h (E0), 12 h (E12), 24 h (E24), 48 h (E48), and 72 h (E72) after exercise, with 8 rats in each subgroup. At each time point, gastrocnemius muscle was collected under general anesthesia. The expression levels of ZBP1 and its related pathway proteins were assessed using Western blot analysis. The colocalization of pathway proteins was examined using immunofluorescence staining. After 48 h of eccentric exercise, the expression of necroptosis marker protein MLKL reached its peak (P < 0.01), and the protein levels of ZBP1, RIPK3, and HMGB1 also peaked (P < 0.01). At 48 h post high-load eccentric exercise, there was a significant increase in colocalization of ZBP1/RIPK3 pathway proteins, reaching a peak (P < 0.01). (1) Eccentric exercise induced necroptosis in skeletal muscle, with MLKL, p-MLKLS358, and HMGB1 significantly elevated, especially at 48 h after exercise. (2) After eccentric exercise, the ZBP1/RIPK3-related pathway proteins ZBP1, RIPK3, and p-RIPK3S232 were significantly elevated, particularly at 48 h after exercise. (3) Following high-load eccentric exercise, there was a significant increase in the colocalization of ZBP1/RIPK3 pathway proteins, with a particularly pronounced elevation observed at 48 h post-exercise.
Collapse
Affiliation(s)
- Kexin Shi
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Xiaoxue Wang
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Zhifei Ke
- School of Human Sports Science, Beijing Sport University, Beijing, China
| | - Junping Li
- School of Human Sports Science, Beijing Sport University, Beijing, China.
- Key Laboratory of Sports and Physical Health of Ministry of Education, Beijing Sport University, Beijing, China.
- Room 314, Teaching Laboratory Building, Beijing Sport University, Haidian District, No. 48, Xinxi Road, Beijing, China.
| |
Collapse
|
36
|
Cai H, Lv M, Wang T. PANoptosis in cancer, the triangle of cell death. Cancer Med 2023; 12:22206-22223. [PMID: 38069556 PMCID: PMC10757109 DOI: 10.1002/cam4.6803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 12/31/2023] Open
Abstract
BACKGROUND PANoptosis is a novel form of programmed cell death (PCD) found in 2019 that is regulated by the PANoptosome. PANoptosis combines essential features of pyroptosis, apoptosis, and necroptosis, forming a "death triangle" of cells. While apoptosis, pyroptosis, and necroptosis have been extensively studied for their roles in human inflammatory diseases and many other clinical conditions, historically they were considered as independent processes. However, emerging evidence indicates that these PCDs exhibit cross talk and interactions, resulting in the development of the concept of PANoptosis. METHODS In this review, we offer a concise summary of the fundamental mechanisms of apoptosis, pyroptosis, and necroptosis. We subsequently introduce the notion of PANoptosis and detail the assembly mechanism of the PANoptosome complex which is responsible for inducing cell death. We also describe some regulatory networks of PANoptosis. RESULTS PANoptosis now has been associated with various human diseases including cancer. Although the exact function of PANoptosis in each tumor is not fully understood, it represents a prospective avenue for cancer therapy, offering promise for advancements in cancer therapy. CONCLUSIONS In the future, in-depth study of PANoptosis will continue to help us in understanding the fundamental processes underlying cell death and provide scientific support for cancer research.
Collapse
Affiliation(s)
- Hantao Cai
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| | - Mingming Lv
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tingting Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, Division of Immunology, Medical School, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory of Molecular Medicine, Division of Immunology, Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
37
|
Cristaldi M, Buscetta M, Cimino M, La Mensa A, Giuffrè MR, Fiore L, Carcione C, Bucchieri F, Rappa F, Coronnello C, Sciaraffa N, Amato S, Aronica TS, Lo Iacono G, Bertani A, Pace E, Cipollina C. Caspase-8 activation by cigarette smoke induces pro-inflammatory cell death of human macrophages exposed to lipopolysaccharide. Cell Death Dis 2023; 14:773. [PMID: 38007509 PMCID: PMC10676397 DOI: 10.1038/s41419-023-06318-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Cigarette smoking impairs the lung innate immune response making smokers more susceptible to infections and severe symptoms. Dysregulation of cell death is emerging as a key player in chronic inflammatory conditions. We have recently reported that short exposure of human monocyte-derived macrophages (hMDMs) to cigarette smoke extract (CSE) altered the TLR4-dependent response to lipopolysaccharide (LPS). CSE caused inhibition of the MyD88-dependent inflammatory response and activation of TRIF/caspase-8/caspase-1 pathway leading to Gasdermin D (GSDMD) cleavage and increased cell permeability. Herein, we tested the hypothesis that activation of caspase-8 by CSE increased pro-inflammatory cell death of LPS-stimulated macrophages. To this purpose, we measured apoptotic and pyroptotic markers as well as the expression/release of pro-inflammatory mediators in hMDMs exposed to LPS and CSE, alone or in combination, for 6 and 24 h. We show that LPS/CSE-treated hMDMs, but not cells treated with CSE or LPS alone, underwent lytic cell death (LDH release) and displayed apoptotic features (activation of caspase-8 and -3/7, nuclear condensation, and mitochondrial membrane depolarization). Moreover, the negative regulator of caspase-8, coded by CFLAR gene, was downregulated by CSE. Activation of caspase-3 led to Gasdermin E (GSDME) cleavage. Notably, lytic cell death caused the release of the damage-associated molecular patterns (DAMPs) heat shock protein-60 (HSP60) and S100A8/A9. This was accompanied by an impaired inflammatory response resulting in inhibited and delayed release of IL6 and TNF. Of note, increased cleaved caspase-3, higher levels of GSDME and altered expression of cell death-associated genes were found in alveolar macrophages of smoker subjects compared to non-smoking controls. Overall, our findings show that CSE sensitizes human macrophages to cell death by promoting pyroptotic and apoptotic pathways upon encountering LPS. We propose that while the delayed inflammatory response may result in ineffective defenses against infections, the observed cell death associated with DAMP release may contribute to establish chronic inflammation. CS exposure sensitizes human macrophages to pro-inflammatory cell death. Upon exposure to LPS, CS inhibits the TLR4/MyD88 inflammatory response, downregulating the pro-inflammatory genes TNF and IL6 and the anti-apoptotic gene CFLAR, known to counteract caspase-8 activity. CS enhances caspase-8 activation through TLR4/TRIF, with a partial involvement of RIPK1, resulting on the activation of caspase-1/GSDMD axis leading to increased cell permeability and DAMP release through gasdermin pores [19]. At later timepoints caspase-3 becomes strongly activated by caspase-8 triggering apoptotic events which are associated with mitochondrial membrane depolarization, gasdermin E cleavage and secondary necrosis with consequent massive DAMP release.
Collapse
Affiliation(s)
| | - Marco Buscetta
- Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy
| | - Maura Cimino
- Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy
| | - Agnese La Mensa
- Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | | | - Luigi Fiore
- Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy
- Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali, Università di Messina, Piazza Pugliatti, 1, 98122, Messina, Italy
| | | | - Fabio Bucchieri
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Via del Vespro 129, 90127, Palermo, Italy
| | - Francesca Rappa
- Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Via del Vespro 129, 90127, Palermo, Italy
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Via Ugo la Malfa 153, 90146, Palermo, Italy
| | | | | | - Santina Amato
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Piazza Nicola Leotta 4, 90127, Palermo, Italy
| | - Tommaso Silvano Aronica
- Azienda di Rilievo Nazionale ed Alta Specializzazione Ospedali (A.R.N.A.S) "Civico Di Cristina Benfratelli", Piazza Nicola Leotta 4, 90127, Palermo, Italy
| | | | | | - Elisabetta Pace
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Via Ugo la Malfa 153, 90146, Palermo, Italy
| | - Chiara Cipollina
- Fondazione Ri.MED, Via Bandiera 11, 90133, Palermo, Italy.
- Istituto di Farmacologia Traslazionale (IFT)-CNR, Via Ugo la Malfa 153, 90146, Palermo, Italy.
| |
Collapse
|
38
|
Doglio MG, Verboom L, Ruilova Sosoranga E, Frising UC, Asaoka T, Gansemans Y, Van Nieuwerburgh F, van Loo G, Wullaert A. Myeloid OTULIN deficiency couples RIPK3-dependent cell death to Nlrp3 inflammasome activation and IL-1β secretion. Sci Immunol 2023; 8:eadf4404. [PMID: 38000038 DOI: 10.1126/sciimmunol.adf4404] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 09/25/2023] [Indexed: 11/26/2023]
Abstract
Loss-of-function mutations in the deubiquitinase OTULIN result in an inflammatory pathology termed "OTULIN-related autoinflammatory syndrome" (ORAS). Genetic mouse models revealed essential roles for OTULIN in inflammatory and cell death signaling, but the mechanisms by which OTULIN deficiency connects cell death to inflammation remain unclear. Here, we identify OTULIN deficiency as a cellular condition that licenses RIPK3-mediated cell death in murine macrophages, leading to Nlrp3 inflammasome activation and subsequent IL-1β secretion. OTULIN deficiency uncoupled Nlrp3 inflammasome activation from gasdermin D-mediated pyroptosis, instead allowing RIPK3-dependent cell death to act as an Nlrp3 inflammasome activator and mechanism for IL-1β release. Accordingly, elevated serum IL-1β levels in myeloid-specific OTULIN-deficient mice were diminished by deleting either Ripk3 or Nlrp3. These findings identify OTULIN as an inhibitor of RIPK3-mediated IL-1β release in mice.
Collapse
Affiliation(s)
- M Giulia Doglio
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Lien Verboom
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Emily Ruilova Sosoranga
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Ulrika C Frising
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Tomoko Asaoka
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
| | - Yannick Gansemans
- Laboratory of Pharmaceutical Biotechnology, Ghent University, 9000 Ghent, Belgium
| | | | - Geert van Loo
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Andy Wullaert
- Department of Internal Medicine and Paediatrics, Ghent University, 9052 Ghent, Belgium
- VIB-UGent Center for Inflammation Research, VIB, 9052 Ghent, Belgium
- Laboratory of Proteinscience, Proteomics and Epigenetic Signalling (PPES), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
39
|
Pang J, Vince JE. The role of caspase-8 in inflammatory signalling and pyroptotic cell death. Semin Immunol 2023; 70:101832. [PMID: 37625331 DOI: 10.1016/j.smim.2023.101832] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 07/20/2023] [Accepted: 08/16/2023] [Indexed: 08/27/2023]
Abstract
The programmed cell death machinery exhibits surprising flexibility, capable of crosstalk and non-apoptotic roles. Much of this complexity arises from the diverse functions of caspase-8, a cysteine-aspartic acid protease typically associated with activating caspase-3 and - 7 to induce apoptosis. However, recent research has revealed that caspase-8 also plays a role in regulating the lytic gasdermin cell death machinery, contributing to pyroptosis and immune responses in contexts such as infection, autoinflammation, and T-cell signalling. In mice, loss of caspase-8 results in embryonic lethality from unrestrained necroptotic killing, while in humans caspase-8 deficiency can lead to an autoimmune lymphoproliferative syndrome, immunodeficiency, inflammatory bowel disease or, when it can't cleave its substrate RIPK1, early onset periodic fevers. This review focuses on non-canonical caspase-8 signalling that drives immune responses, including its regulation of inflammatory gene transcription, activation within inflammasome complexes, and roles in pyroptotic cell death. Ultimately, a deeper understanding of caspase-8 function will aid in determining whether, and when, targeting caspase-8 pathways could be therapeutically beneficial in human diseases.
Collapse
Affiliation(s)
- Jiyi Pang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - James E Vince
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
40
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
41
|
Zhong Y, Zhong X, Qiao L, Wu H, Liu C, Zhang T. Zα domain proteins mediate the immune response. Front Immunol 2023; 14:1241694. [PMID: 37771585 PMCID: PMC10523160 DOI: 10.3389/fimmu.2023.1241694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 08/23/2023] [Indexed: 09/30/2023] Open
Abstract
The Zα domain has a compact α/β architecture containing a three-helix bundle flanked on one side by a twisted antiparallel β sheet. This domain displays a specific affinity for double-stranded nucleic acids that adopt a left-handed helical conformation. Currently, only three Zα-domain proteins have been identified in eukaryotes, specifically ADAR1, ZBP1, and PKZ. ADAR1 is a double-stranded RNA (dsRNA) binding protein that catalyzes the conversion of adenosine residues to inosine, resulting in changes in RNA structure, function, and expression. In addition to its editing function, ADAR1 has been shown to play a role in antiviral defense, gene regulation, and cellular differentiation. Dysregulation of ADAR1 expression and activity has been associated with various disease states, including cancer, autoimmune disorders, and neurological disorders. As a sensing molecule, ZBP1 exhibits the ability to recognize nucleic acids with a left-handed conformation. ZBP1 harbors a RIP homotypic interaction motif (RHIM), composed of a highly charged surface region and a leucine-rich hydrophobic core, enabling the formation of homotypic interactions between proteins with similar structure. Upon activation, ZBP1 initiates a downstream signaling cascade leading to programmed cell death, a process mediated by RIPK3 via the RHIM motif. PKZ was identified in fish, and contains two Zα domains at the N-terminus. PKZ is essential for normal growth and development and may contribute to the regulation of immune system function in fish. Interestingly, some pathogenic microorganisms also encode Zα domain proteins, such as, Vaccinia virus and Cyprinid Herpesvirus. Zα domain proteins derived from pathogenic microorganisms have been demonstrated to be pivotal contributors in impeding the host immune response and promoting virus replication and spread. This review focuses on the mammalian Zα domain proteins: ADAR1 and ZBP1, and thoroughly elucidates their functions in the immune response.
Collapse
Affiliation(s)
- Yuhan Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Liangjun Qiao
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong Wu
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Chang Liu
- Division of Liver, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Zhang
- Laboratory of Liver Transplantation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
42
|
Maelfait J, Rehwinkel J. The Z-nucleic acid sensor ZBP1 in health and disease. J Exp Med 2023; 220:e20221156. [PMID: 37450010 PMCID: PMC10347765 DOI: 10.1084/jem.20221156] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/28/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Nucleic acid sensing is a central process in the immune system, with far-reaching roles in antiviral defense, autoinflammation, and cancer. Z-DNA binding protein 1 (ZBP1) is a sensor for double-stranded DNA and RNA helices in the unusual left-handed Z conformation termed Z-DNA and Z-RNA. Recent research established ZBP1 as a key upstream regulator of cell death and proinflammatory signaling. Recognition of Z-DNA/RNA by ZBP1 promotes host resistance to viral infection but can also drive detrimental autoinflammation. Additionally, ZBP1 has interesting roles in cancer and other disease settings and is emerging as an attractive target for therapy.
Collapse
Affiliation(s)
- Jonathan Maelfait
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
43
|
Martinez-Osorio V, Abdelwahab Y, Ros U. The Many Faces of MLKL, the Executor of Necroptosis. Int J Mol Sci 2023; 24:10108. [PMID: 37373257 DOI: 10.3390/ijms241210108] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 05/31/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Necroptosis is a recently discovered form of regulated cell death characterized by the disruption of plasma membrane integrity and the release of intracellular content. Mixed lineage kinase domain-like (MLKL) protein is the main player of this cell death pathway as it mediates the final step of plasma membrane permeabilization. Despite the significant progress in our knowledge of the necroptotic pathway and MLKL biology, the precise mechanism of how MLKL functions remain unclear. To understand in what way MLKL executes necroptosis, it is crucial to decipher how the molecular machinery of regulated cell death is activated in response to different stimuli or stressors. It is also indispensable to unveiling the structural elements of MLKL and the cellular players that are required for its regulation. In this review, we discuss the key steps that lead to MLKL activation, possible models that explain how it becomes the death executor in necroptosis, and its emerging alternative functions. We also summarize the current knowledge about the role of MLKL in human disease and provide an overview of existing strategies aimed at developing new inhibitors that target MLKL for necroptosis intervention.
Collapse
Affiliation(s)
- Veronica Martinez-Osorio
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Yasmin Abdelwahab
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Uris Ros
- Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
44
|
Oh S, Lee S. Recent advances in ZBP1-derived PANoptosis against viral infections. Front Immunol 2023; 14:1148727. [PMID: 37261341 PMCID: PMC10228733 DOI: 10.3389/fimmu.2023.1148727] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 05/03/2023] [Indexed: 06/02/2023] Open
Abstract
Innate immunity is an important first line of defense against pathogens, including viruses. These pathogen- and damage-associated molecular patterns (PAMPs and DAMPs, respectively), resulting in the induction of inflammatory cell death, are detected by specific innate immune sensors. Recently, Z-DNA binding protein 1 (ZBP1), also called the DNA-dependent activator of IFN regulatory factor (DAI) or DLM1, is reported to regulate inflammatory cell death as a central mediator during viral infection. ZBP1 is an interferon (IFN)-inducible gene that contains two Z-form nucleic acid-binding domains (Zα1 and Zα2) in the N-terminus and two receptor-interacting protein homotypic interaction motifs (RHIM1 and RHIM2) in the middle, which interact with other proteins with the RHIM domain. By sensing the entry of viral RNA, ZBP1 induces PANoptosis, which protects host cells against viral infections, such as influenza A virus (IAV) and herpes simplex virus (HSV1). However, some viruses, particularly coronaviruses (CoVs), induce PANoptosis to hyperactivate the immune system, leading to cytokine storm, organ failure, tissue damage, and even death. In this review, we discuss the molecular mechanism of ZBP1-derived PANoptosis and pro-inflammatory cytokines that influence the double-edged sword of results in the host cell. Understanding the ZBP1-derived PANoptosis mechanism may be critical for improving therapeutic strategies.
Collapse
|
45
|
Xing Y, Zhang F, Ji P, Wei M, Yin C, Yang A, Yang G, Zhao J. Efficient Delivery of GSDMD-N mRNA by Engineered Extracellular Vesicles Induces Pyroptosis for Enhanced Immunotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2204031. [PMID: 36635060 DOI: 10.1002/smll.202204031] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/12/2022] [Indexed: 05/18/2023]
Abstract
Pyroptosis is a newly discovered inflammatory form of programmed cell death, which promotes systemic immune response in cancer immunotherapy. GSDMD is one of the key molecules executing pyroptosis, while therapeutical delivery of GSDMD to tumor cells is of great challenge. In this study, an extracellular vesicles-based GSDMD-N mRNA delivery system (namely EVTx ) is developed for enhanced cancer immunotherapy, with GSDMD-N mRNA encapsulated inside, Ce6 (Chlorin e6 (Ce6), a hydrophilic sensitizer) incorporated into extracellular vesicular membrane, and HER2 antibody displayed onto the surface. Briefly, GSDMD-N mRNA is translationally repressed in donor cells by optimized puromycin, ensuring the cell viability and facilitating the mRNA encapsulation into extracellular vesicles. When targeted and delivered into HER2+ breast cancer cells by the engineered extracellular vesicles, the translational repression is unleashed in the recipient cells as the puromycin is diluted and additionally inactivated by sonodynamic treatment as the extracellular vesicles are armed with Ce6, allowing GSDMD-N translation and pyroptosis induction. In addition, sonodynamic treatment also induces cell death in the recipient cells. In the SKBR3- and HER2 transfected 4T1- inoculated breast tumor mouse models, the engineered EVTx efficiently induces a powerful tumor immune response and suppressed tumor growth, providing a nanoplatform for cancer immunotherapy.
Collapse
Affiliation(s)
- Yuqi Xing
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Feiyu Zhang
- Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Panpan Ji
- The State Laboratory of Cancer Biology, Department of Gastrointestinal Surgery, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Mengying Wei
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Chunhui Yin
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Angang Yang
- The State Laboratory of Cancer Biology, Department of Immunology, Fourth Military Medical University, No. 169 Changlexi Road, Xi'an, Shaanxi, 710032, China
| | - Guodong Yang
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jing Zhao
- The State Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| |
Collapse
|
46
|
Yadav SK, Gawargi FI, Hasan MH, Tandon R, Upton JW, Mishra PK. Differential effects of CMV infection on the viability of cardiac cells. Cell Death Discov 2023; 9:111. [PMID: 37012234 PMCID: PMC10070260 DOI: 10.1038/s41420-023-01408-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/05/2023] Open
Abstract
Cytomegalovirus (CMV) is a widely prevalent herpesvirus that reaches seroprevalence rates of up to 95% in several parts of the world. The majority of CMV infections are asymptomatic, albeit they have severe detrimental effects on immunocompromised individuals. Congenital CMV infection is a leading cause of developmental abnormalities in the USA. CMV infection is a significant risk factor for cardiovascular diseases in individuals of all ages. Like other herpesviruses, CMV regulates cell death for its replication and establishes and maintains a latent state in the host. Although CMV-mediated regulation of cell death is reported by several groups, it is unknown how CMV infection affects necroptosis and apoptosis in cardiac cells. Here, we infected primary cardiomyocytes, the contractile cells in the heart, and primary cardiac fibroblasts with wild-type and cell-death suppressor deficient mutant CMVs to determine how CMV regulates necroptosis and apoptosis in cardiac cells. Our results reveal that CMV infection prevents TNF-induced necroptosis in cardiomyocytes; however, the opposite phenotype is observed in cardiac fibroblasts. CMV infection also suppresses inflammation, reactive oxygen species (ROS) generation, and apoptosis in cardiomyocytes. Furthermore, CMV infection improves mitochondrial biogenesis and viability in cardiomyocytes. We conclude that CMV infection differentially affects the viability of cardiac cells.
Collapse
Affiliation(s)
- Santosh K Yadav
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Flobater I Gawargi
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Mohammad H Hasan
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
| | - Ritesh Tandon
- Department of Cell and Molecular Biology, Center for Immunology and Microbial Research, University of Mississippi Medical Center, Jackson, MS, USA
- Department of Medicine, University of Mississippi Medical Center, Jackson, MS, USA
| | - Jason W Upton
- Department of Biological Sciences, Auburn University, Alabama, AL, USA
| | - Paras K Mishra
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
47
|
Gong L, Huang D, Shi Y, Liang Z, Bu H. Regulated cell death in cancer: from pathogenesis to treatment. Chin Med J (Engl) 2023; 136:653-665. [PMID: 35950752 PMCID: PMC10129203 DOI: 10.1097/cm9.0000000000002239] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Regulated cell death (RCD), including apoptosis, pyroptosis, necroptosis, and ferroptosis, is regulated by a series of evolutionarily conserved pathways, and is required for development and tissue homeostasis. Based on previous genetic and biochemical explorations of cell death subroutines, the characteristics of each are generally considered distinctive. However, recent in-depth studies noted the presence of crosstalk between the different forms of RCD; hence, the concept of PANoptosis appeared. Cancer, a complex genetic disease, is characterized by stepwise deregulation of cell apoptosis and proliferation, with significant morbidity and mortality globally. At present, studies on the different RCD pathways, as well as the intricate relationships between different cell death subroutines, mainly focus on infectious diseases, and their roles in cancer remain unclear. As cancers are characterized by dysregulated cell death and inflammatory responses, most current treatment strategies aim to selectively induce cell death via different RCD pathways in cancer cells. In this review, we describe five types of RCD pathways in detail with respect to tumorigenesis and cancer progression. The potential value of some of these key effector molecules in tumor diagnosis and therapeutic response has also been raised. We then review and highlight recent progress in cancer treatment based on PANoptosis and ferroptosis induced by small-molecule compounds, immune checkpoint inhibitors, and nanoparticles. Together, these findings may provide meaningful evidence to fill in the gaps between cancer pathogenesis and RCD pathways to develop better cancer therapeutic strategies.
Collapse
Affiliation(s)
- Linjing Gong
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dong Huang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yujun Shi
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Zong’an Liang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hong Bu
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
48
|
Necroptosis of macrophage is a key pathological feature in biliary atresia via GDCA/S1PR2/ZBP1/p-MLKL axis. Cell Death Dis 2023; 14:175. [PMID: 36859525 PMCID: PMC9977961 DOI: 10.1038/s41419-023-05615-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 03/03/2023]
Abstract
Biliary atresia (BA) is a severe inflammatory and fibrosing neonatal cholangiopathy disease characterized by progressive obstruction of extrahepatic bile ducts, resulting in cholestasis and progressive hepatic failure. Cholestasis may play an important role in the inflammatory and fibrotic pathological processes, but its specific mechanism is still unclear. Necroptosis mediated by Z-DNA-binding protein 1 (ZBP1)/phosphorylated-mixed lineage kinase domain-like pseudokinase (p-MLKL) is a prominent pathogenic factor in inflammatory and fibrotic diseases, but its function in BA remains unclear. Here, we aim to determine the effect of macrophage necroptosis in the BA pathology, and to explore the specific molecular mechanism. We found that necroptosis existed in BA livers, which was occurred in liver macrophages. Furthermore, this process was mediated by ZBP1/p-MLKL, and the upregulated expression of ZBP1 in BA livers was correlated with liver fibrosis and prognosis. Similarly, in the bile duct ligation (BDL) induced mouse cholestatic liver injury model, macrophage necroptosis mediated by ZBP1/p-MLKL was also observed. In vitro, conjugated bile acid-glycodeoxycholate (GDCA) upregulated ZBP1 expression in mouse bone marrow-derived monocyte/macrophages (BMDMs) through sphingosine 1-phosphate receptor 2 (S1PR2), and the induction of ZBP1 was a prerequisite for the enhanced necroptosis. Finally, after selectively knocking down of macrophage S1pr2 in vivo, ZBP1/p-MLKL-mediated necroptosis was decreased, and further collagen deposition was markedly attenuated in BDL mice. Furthermore, macrophage Zbp1 or Mlkl specific knockdown also alleviated BDL-induced liver injury/fibrosis. In conclusion, GDCA/S1PR2/ZBP1/p-MLKL mediated macrophage necroptosis plays vital role in the pathogenesis of BA liver fibrosis, and targeting this process may represent a potential therapeutic strategy for BA.
Collapse
|
49
|
Abstract
Heatstroke, which is associated with circulatory failure and multiple organ dysfunction, is a heat stress-induced life-threatening condition characterized by a raised core body temperature and central nervous system dysfunction. As global warming continues to worsen, heatstroke is expected to become the leading cause of death globally. Despite the severity of this condition, the detailed mechanisms that underlie the pathogenesis of heatstroke still remain largely unknown. Z-DNA-binding protein 1 (ZBP1), also referred to as DNA-dependent activator of IFN-regulatory factors (DAI) and DLM-1, was initially identified as a tumor-associated and interferon (IFN)-inducible protein, but has recently been reported to be a Z-nucleic acid sensor that regulates cell death and inflammation; however, its biological function is not yet fully understood. In the present study, a brief review of the main regulators is presented, in which the Z-nucleic acid sensor ZBP1 was identified to be a significant factor in regulating the pathological characteristics of heatstroke through ZBP1-dependent signaling. Thus, the lethal mechanism of heatstroke is revealed, in addition to a second function of ZBP1 other than as a nucleic acid sensor.
Collapse
Affiliation(s)
- Fanglin Li
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- Department of Critical Care Medicine and Hematology, The 3rd Xiangya Hospital, Central South University, Changsha, China
| | - Jiayi Deng
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qiuli He
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yanjun Zhong
- Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
50
|
Chen KW, Brodsky IE. Yersinia interactions with regulated cell death pathways. Curr Opin Microbiol 2023; 71:102256. [PMID: 36584489 DOI: 10.1016/j.mib.2022.102256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/18/2022] [Accepted: 11/30/2022] [Indexed: 12/29/2022]
Abstract
Cell death in response to infection is conserved across all kingdoms of life. In metazoans, cell death upon bacterial infection is primarily carried out by the cysteine and aspartate protease and receptor-interacting serine/threonine protein kinase families. The Gram-negative bacterial genus Yersinia includes pathogens that cause disease in humans and other animals ranging from plague to gastrointestinal infections. Pathogenic Yersiniae express a type-III secretion system (T3SS), which translocates effectors that disrupt phagocytosis and innate immune signaling to evade immune defenses and replicate extracellularly in infected tissues. Blockade of innate immune signaling, disruption of the actin cytoskeleton, and the membrane-disrupting activity of the T3SS translocon pore, are all sensed by innate immune cells. Here, we discuss recent advances in understanding the pathways that regulate Yersinia-induced cell death, and how manipulation of these cell death pathways over the course of infection promotes bacterial dissemination or host defense.
Collapse
Affiliation(s)
- Kaiwen W Chen
- Immunology Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore; Immunology Programme, Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, United States; Department of Microbiology, University of Pennsylvania Perelman School of Medicine, United States.
| |
Collapse
|