1
|
Tian Z, Dong X, Sun Y, Shi Q. De novo design and discovery of broad-spectrum affinity peptide ligands for influenza A vaccines. J Chromatogr A 2025; 1750:465937. [PMID: 40194500 DOI: 10.1016/j.chroma.2025.465937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/26/2025] [Accepted: 04/01/2025] [Indexed: 04/09/2025]
Abstract
Seasonal Influenza viruses, owing to their continued evolution and high level of contagion, present a significant threat to public health around world each year. Vaccination remains the most effective strategy for preventing complications of influenza virus infection, particularly for vulnerable populations such as elderly individuals, children, and individuals with underlying health conditions. In this study, we described the de novo design for the discovery of affinity ligands targeting the conserved receptor binding site (RBS) of the influenza virus hemagglutinin (HA). Based on three-round of molecular docking, three candidate peptides, pep1, pep3 and pep4, with top-rankings were identified. Molecular dynamic simulation and per-residue decomposition further revealed the different binding mechanisms of the three peptides with HA and the key residue's contribution to the binding. The result of microscale thermophoresis indicated that the three peptides had broad-spectrum affinity for various influenza A strains and, among them, pep1 had the highest binding affinity for HA (Kd = 0.58-0.73 μmol/L). By coupling pep1 onto Sepharose gels, the affinity gel was applied to the evaluation of the chromatographic performance in the purification of HA and influenza A vaccine from mimic egg- and mammalian-based feedstocks. A recovery of 68.3 %-72.2 % at the purity of 95.9 %-97.2 % was obtained in vaccine purification, demonstrating the excellent feature of the peptide ligand. This work provided new insight into the rational design of broad-spectrum affinity peptide targeting HA and the result has potential application in the production of influenza vaccines.
Collapse
Affiliation(s)
- Zengquan Tian
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
| | - Xiaoyan Dong
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China
| | - Yan Sun
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China..
| | - Qinghong Shi
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China; State Key Laboratory of Synthetic Biology (Tianjin University), Tianjin 300350, China.; Frontier Science Center for Synthetic Biology, Tianjin University, Tianjin 300350, China.; Key Laboratory of Systems Bioengineering (MOE), Tianjin University, Tianjin 300350, China..
| |
Collapse
|
2
|
Alrubayyi A, Huang H, Gaiha GD. Severe Acute Respiratory Syndrome Coronavirus 2 Immunology and Coronavirus Disease 2019 Clinical Outcomes. Infect Dis Clin North Am 2025; 39:221-232. [PMID: 40089444 DOI: 10.1016/j.idc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
The humoral and cellular immune response are the key players in preventing viral infection and limiting disease severity, particular in the context of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and coronavirus disease 2019. In this review, we discuss how immune responses generated by prior infection and vaccination influence the outcomes of SARS-CoV-2 infection. We aim to provide an overview of the role of humoral and cellular immunity, with a particular focus on CD8+ T cell responses, to delineate how different immune compartments contribute to the control of infection and modulation of disease outcomes.
Collapse
Affiliation(s)
| | - Hsinyen Huang
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139
| | - Gaurav D Gaiha
- Ragon Institute of MGB, MIT and Harvard, 600 Main Street, Cambridge, MA 02139; Division of Gastroenterology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02115.
| |
Collapse
|
3
|
Schendel SL, Yu X, Halfmann PJ, Mahita J, Ha B, Hastie KM, Li H, Bedinger D, Troup C, Li K, Kuzmina N, Torrelles JB, Munt JE, Maddocks M, Osei-Twum M, Callaway HM, Reece S, Palser A, Kellam P, Dennison SM, Huntwork RHC, Horn GQ, Abraha M, Feeney E, Martinez-Sobrido L, Pino PA, Hicks A, Ye C, Park JG, Maingot B, Periasamy S, Mallory M, Scobey T, Lepage MN, St-Amant N, Khan S, Gambiez A, Baric RS, Bukreyev A, Gagnon L, Germann T, Kawaoka Y, Tomaras GD, Peters B, Saphire EO. A global collaboration for systematic analysis of broad-ranging antibodies against the SARS-CoV-2 spike protein. Cell Rep 2025; 44:115499. [PMID: 40184253 PMCID: PMC12014896 DOI: 10.1016/j.celrep.2025.115499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/31/2025] [Accepted: 03/11/2025] [Indexed: 04/06/2025] Open
Abstract
The Coronavirus Immunotherapeutic Consortium (CoVIC) conducted side-by-side comparisons of over 400 anti-SARS-CoV-2 spike therapeutic antibody candidates contributed by large and small companies as well as academic groups on multiple continents. Nine reference labs analyzed antibody features, including in vivo protection in a mouse model of infection, spike protein affinity, high-resolution epitope binning, ACE-2 binding blockage, structures, and neutralization of pseudovirus and authentic virus infection, to build a publicly accessible dataset in the database CoVIC-DB. High-throughput, high-resolution binning of CoVIC antibodies defines a broad and predictive landscape of antibody epitopes on the SARS-CoV-2 spike protein and identifies features associated with durable potency against multiple SARS-CoV-2 variants of concern and high in vivo efficacy. Results of the CoVIC studies provide a guide for selecting effective and durable antibody therapeutics and for immunogen design as well as providing a framework for rapid response to future viral disease outbreaks.
Collapse
Affiliation(s)
- Sharon L Schendel
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Xiaoying Yu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Peter J Halfmann
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA
| | - Jarjapu Mahita
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Brendan Ha
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Kathryn M Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Haoyang Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | | | | | - Kan Li
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Natalia Kuzmina
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Jordi B Torrelles
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jennifer E Munt
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Melissa Maddocks
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Mary Osei-Twum
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Heather M Callaway
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Stephen Reece
- Kymab, a Sanofi Company, Babraham Research Campus, Cambridge CB22 3AT, UK
| | | | - Paul Kellam
- RQ Biotechnology Ltd., London W12 7RZ, UK; Department of Infectious Diseases, Faculty of Medicine, Imperial College, London SW7 2AZ, UK
| | - S Moses Dennison
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Richard H C Huntwork
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Gillian Q Horn
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Milite Abraha
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Elizabeth Feeney
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Luis Martinez-Sobrido
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Paula A Pino
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Amberlee Hicks
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Chengjin Ye
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Jun-Gyu Park
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Billie Maingot
- Disease Intervention and Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Sivakumar Periasamy
- Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA
| | - Michael Mallory
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Trevor Scobey
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27516, USA
| | - Marie-Noelle Lepage
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Natalie St-Amant
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Sarwat Khan
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | - Anaïs Gambiez
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ralph S Baric
- Population Health Program, International Center for the Advancement of Research & Education (I-CARE), Texas Biomedical Research Institute, San Antonio, TX 78227, USA; Department of Microbiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555, USA; Galveston National Laboratory, 301 University Boulevard, Galveston, TX 77550, USA; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Luc Gagnon
- Nexelis, a Q2 Solutions Company, 525 Boulevard Cartier Ouest, Laval, QC H7V 3S8, Canada
| | | | - Yoshihiro Kawaoka
- Influenza Research Institute, Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53711, USA; Division of Virology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan; The Research Center for Global Viral Diseases, National Center for Global Health and Medicine Research Institute, Tokyo 162-8655, Japan; Pandemic Preparedness, Infection and Advanced Research Center (UTOPIA), University of Tokyo, Tokyo 162-8655, Japan
| | - Georgia D Tomaras
- Center for Human Systems Immunology, Departments of Surgery and Integrative Immunobiology, Duke University, Durham, NC 27701, USA
| | - Bjoern Peters
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, CA 92037, USA; Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
4
|
Liu Y, Li C, Wu Z, Zhao Y, Yin T, Liu X, Hui J, Wang Q, Pan Y, Shan Y, Qu X. Self-assembled epitope-based nanoparticles targeting the SARS-CoV-2 spike protein enhanced the immune response and induced potential broad neutralizing activity. Front Cell Infect Microbiol 2025; 15:1560330. [PMID: 40270771 PMCID: PMC12014594 DOI: 10.3389/fcimb.2025.1560330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/20/2025] [Indexed: 04/25/2025] Open
Abstract
Introduction The ongoing COVID-19 has caused a global pandemic, resulting in millions of infections and deaths. While current vaccines target the SARS-CoV-2 spike (S) protein, its high mutation rate significantly compromises vaccine efficacy. We aimed to evaluate the potential of epitope-based nanoparticles (NPs) to induce broad cross-protection and durable immune responses against SARS-CoV-2. Methods Four conserved epitopes derived from the receptor-binding domain (RBD) and S2 subunit of the spike protein were integrated into Helicobacter pylori ferritin to create epitope-based NPs named S18-F, RBM-F, UH-F, and HR2-F. The immunogenicity of the epitope-based NPs was evaluated through animal experiments to measure epitope-specific antibody titers and assess neutralizing activity against SARS-CoV-2 pseudovirus. To characterize cellular immune responses, splenic lymphocyte proliferation following epitope stimulation was measured, and cytokine secretion profiles including IFN-γ, IL-2, IL-4, and IL-10 were analyzed to determine Th1/Th2 immune polarization. Antibody-dependent cellular cytotoxicity (ADCC) assays were performed to evaluate NP-enhanced recognition and elimination of infected target cells. Results These NPs induced high titers of epitope-specific antibodies lasting three months post-immunization. Sera from the RBM-F, UH-F, and HR2-F groups exhibited neutralizing activity against the SARS-CoV-2 pseudovirus WH-1 in vitro. Splenic lymphocytes from the S18-F, RBM-F, and UH-F groups showed significantly increased proliferation. Lymphocytes from the RBM-F group demonstrated increased secretion of IFN-γ, IL-2, IL-4, and IL-10 cytokines, indicating a balanced Th1 and Th2 immune response. Immune sera from the S18-F and mixed-immunized groups exhibited antibody-dependent cellular cytotoxicity. Discussion The results indicate that these NPs induce robust humoral and cellular immune responses, potentially offering a promising strategy for effective vaccine development against SARS-CoV-2.
Collapse
Affiliation(s)
- Yue Liu
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, China
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Chenxi Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Zirui Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yu Zhao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tieyan Yin
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Xiaopan Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaru Hui
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Qingyu Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yi Pan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yaming Shan
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Key Laboratory for Molecular Enzymology and Engineering, The Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
| | - Xinglong Qu
- Department of Respiratory, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Letscher H, Guilligay D, Effantin G, Amen A, Sulbaran G, Burger JA, Bossevot L, Junges L, Leonec M, Morin J, Van Tilbeurgh M, Hérate C, Gallouët AS, Relouzat F, van der Werf S, Cavarelli M, Dereuddre-Bosquet N, van Gils MJ, Sanders RW, Poignard P, Le Grand R, Weissenhorn W. RBD-depleted SARS-CoV-2 spike generates protective immunity in cynomolgus macaques. NPJ Vaccines 2025; 10:63. [PMID: 40159504 PMCID: PMC11955555 DOI: 10.1038/s41541-025-01113-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/17/2025] [Indexed: 04/02/2025] Open
Abstract
The SARS-CoV-2 pandemic revealed the rapid evolution of circulating strains. This led to new variants carrying mostly mutations within the receptor binding domain, which is immunodominant upon immunization and infection. In order to steer the immune response away from RBD epitopes to more conserved domains, we generated S glycoprotein trimers without RBD and stabilized them by formaldehyde cross-linking. The cryoEM structure demonstrated that SΔRBD folds into the native prefusion conformation, stabilized by one specific cross-link between S2 protomers. SΔRBD was coated onto lipid vesicles, to produce synthetic virus-like particles, SΔRBD-LV, which were utilized in a heterologous prime-boost strategy. Immunization of cynomolgus macaques either three times with the mRNA Comirnaty vaccine or two times followed by SΔRBD-LV showed that the SΔRBD-LV boost induced similar antibody titers and neutralization of different variants, including omicron. Upon challenge with omicron XBB.3, both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes conferred similar overall protection from infection for both the Comirnaty only and Comirnaty/SΔRBD-LV vaccination schemes. However, the SΔRBD-LV boost indicated better protection against lung infection than the Comirnaty strategy alone. Together our findings indicate that SΔRBD is highly immunogenic and provides improved protection compared to a third mRNA boost indicative of superior antibody-based protection.
Collapse
Affiliation(s)
- Hélène Letscher
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Delphine Guilligay
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Gregory Effantin
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Axelle Amen
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Guidenn Sulbaran
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Judith A Burger
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Laetitia Bossevot
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Laura Junges
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marco Leonec
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Julie Morin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Matthieu Van Tilbeurgh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Cécile Hérate
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Anne-Sophie Gallouët
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Sylvie van der Werf
- Institut Pasteur, Molecular Genetics of RNA Viruses, Department of Virology, CNRS UMR 3569, Université de Paris, Paris, France
- Institut Pasteur, National Reference Center for Respiratory Viruses, Paris, France
| | - Mariangela Cavarelli
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France
| | - Marit J van Gils
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
| | - Rogier W Sanders
- University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Amsterdam University Medical Centers, Location AMC, Amsterdam, The Netherlands
- Weill Medical College of Cornell University, Department of Microbiology and Immunology, New York, NY, USA
| | - Pascal Poignard
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
- CHU Grenoble Alpes, Grenoble, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial diseases (IMVA-HB/IDMIT/UMR-S 1184), Fontenay-aux-Roses & Le Kremlin-Bicêtre, Paris, France.
| | - Winfried Weissenhorn
- Univ. Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
6
|
Roederer AL, Cao Y, Li CJ, Lim E, Canaday DH, Gravenstein S, Balazs AB. SARS-CoV-2 Fusion Peptide-Directed Antibodies Elicited by Natural Infection Mediate Broad Sarbecovirus Neutralization. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.01.25323010. [PMID: 40093263 PMCID: PMC11908342 DOI: 10.1101/2025.03.01.25323010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Studies have demonstrated that repeated mRNA vaccination enhances the breadth of neutralization against diverse SARS-CoV-2 variants. However, the development of antibodies capable of neutralizing across the Coronavirinae subfamily is poorly understood. In this study, we analyze serum samples to determine their neutralization breadth and potency and identify their antigenic targets. Using a cohort of older individuals and healthcare workers, we track correlates of broad neutralizing responses, including fusion peptide (FP) antibody elicitation. We find that although broadly neutralizing responses are often a result of RBD-specific antibodies, a rare subset of donors produce FP-specific broadly neutralizing responses. Interestingly, FP-specific antibodies are not observed in COVID-naive individuals irrespective of vaccination regimen, but rather, they occur following natural infection or vaccine breakthrough. This study highlights the epitope targets underpinning broadly neutralizing antibody responses to coronaviruses and suggests that existing vaccines are insufficient to promote the elicitation of FP-directed broadly neutralizing coronavirus antibodies.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Eunice Lim
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island
| | | |
Collapse
|
7
|
Akıl C, Xu J, Shen J, Zhang P. Unveiling the Complete Spectrum of SARS-CoV-2 Fusion Stages by In Situ Cryo-ET. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.25.640151. [PMID: 40060467 PMCID: PMC11888396 DOI: 10.1101/2025.02.25.640151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
SARS-CoV-2 entry into host cells is mediated by the spike protein, which drives membrane fusion. While cryo-EM has revealed stable prefusion and postfusion conformations of the spike, the transient intermediate states during the fusion process have remained poorly understood. Here, we designed a near-native viral fusion system that recapitulates SARS-CoV-2 entry and used cryo-electron tomography (cryo-ET) to capture fusion intermediates leading to complete fusion. The spike protein undergoes extensive structural rearrangements, progressing through extended, partially folded, and fully folded intermediates prior to fusion-pore formation, a process that is dependent on protease cleavage and inhibited by the WS6 S2 antibody. Upon interaction with ACE2 receptor dimer, spikes cluster at membrane interfaces and following S2' cleavage concurrently transition to postfusion conformations encircling the hemifusion and pre-fusion pores in a distinct conical arrangement. Subtomogram averaging revealed that the WS6 S2 antibody binds to the spike's stem-helix, crosslinks and clusters prefusion spikes and inhibits refolding of fusion intermediates. These findings elucidate the complete process of spike-mediated fusion and SARS-CoV-2 entry, highlighting the neutralizing mechanism of S2-targeting antibodies.
Collapse
Affiliation(s)
- Caner Akıl
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Jialu Xu
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Juan Shen
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
| | - Peijun Zhang
- Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, OX3 7BN, UK
- Division of Structural Biology, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7BN, UK
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| |
Collapse
|
8
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore IN, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. PLoS Pathog 2025; 21:e1012456. [PMID: 39847599 PMCID: PMC11793774 DOI: 10.1371/journal.ppat.1012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/04/2025] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n = 6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Sarah E. Scheuermann
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
9
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, McGowan J, Simmons B, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. Cell Rep 2024; 43:115036. [PMID: 39644492 DOI: 10.1016/j.celrep.2024.115036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 10/07/2024] [Accepted: 11/14/2024] [Indexed: 12/09/2024] Open
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a betacoronavirus that causes severe respiratory illness in humans. There are no licensed vaccines against MERS-CoV and only a few candidates in phase I clinical trials. Here, we develop MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Two-component nanoparticles displaying spike (S)-derived antigens induce neutralizing responses and protect mice against challenge with mouse-adapted MERS-CoV. Epitope mapping reveals the dominant responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle elicits antibodies targeting multiple non-overlapping epitopes in the RBD. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jackson McGowan
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Boston Simmons
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle WA 98109, USA; Department of Global Health, University of Washington, Seattle, WA 98195, USA; Department of Laboratory Medicine and Pathology, University of Washington, Seattle WA 98115, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA; Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
10
|
Pinto PBA, Timis J, Chuensirikulchai K, Li QH, Lu HH, Maule E, Nguyen M, Alves RPDS, Verma SK, Ana-Sosa-Batiz F, Valentine K, Landeras-Bueno S, Kim K, Hastie K, Saphire EO, Alves A, Elong Ngono A, Shresta S. Co-immunization with spike and nucleocapsid based DNA vaccines for long-term protective immunity against SARS-CoV-2 Omicron. NPJ Vaccines 2024; 9:252. [PMID: 39702529 PMCID: PMC11659323 DOI: 10.1038/s41541-024-01043-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 12/01/2024] [Indexed: 12/21/2024] Open
Abstract
The continuing evolution of SARS-CoV-2 variants challenges the durability of existing spike (S)-based COVID-19 vaccines. We hypothesized that vaccines composed of both S and nucleocapsid (N) antigens would increase the durability of protection by strengthening and broadening cellular immunity compared with S-based vaccines. To test this, we examined the immunogenicity and efficacy of wild-type SARS-CoV-2 S- and N-based DNA vaccines administered individually or together to K18-hACE2 mice. S, N, and S + N vaccines all elicited polyfunctional CD4+ and CD8+ T cell responses and provided short-term cross-protection against Beta and Omicron BA.2 variants, but only co-immunization with S + N vaccines provided long-term protection against Omicron BA.2. Depletion of CD4+ and CD8+ T cells reduced the long-term efficacy, demonstrating a crucial role for T cells in the durability of protection. These findings underscore the potential to enhance long-lived protection against SARS-CoV-2 variants by combining S and N antigens in next-generation COVID-19 vaccines.
Collapse
Affiliation(s)
- Paolla Beatriz Almeida Pinto
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Julia Timis
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kantinan Chuensirikulchai
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Qin Hui Li
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Hsueh Han Lu
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erin Maule
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Michael Nguyen
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | | | | | | | - Kristen Valentine
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Sara Landeras-Bueno
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- University Cardenal Herrera-CEU, CEU Universities, Valencia, 46113, Spain
| | - Kenneth Kim
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Microscopy and Histology Core Facility, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Kathryn Hastie
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
| | - Erica Ollmann Saphire
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA
- Department of Medicine, Division of Infectious Diseases and Global Public Health, University of California San Diego, La Jolla, 92093, USA
| | - Ada Alves
- Laboratory of Biotechnology and Physiology of Viral Infections, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, 21040-900, Brazil
| | - Annie Elong Ngono
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
| | - Sujan Shresta
- Center for Vaccine Innovation, La Jolla Institute for Immunology, La Jolla, 92037, USA.
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, University of California San Diego, La Jolla, 92093, USA.
| |
Collapse
|
11
|
Roederer AL, Cao Y, St Denis K, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. Cell Rep Med 2024; 5:101850. [PMID: 39657661 PMCID: PMC11722104 DOI: 10.1016/j.xcrm.2024.101850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/24/2024] [Accepted: 11/12/2024] [Indexed: 12/12/2024]
Abstract
With the onset of the COVID-19 pandemic 4 years ago, viral sequencing continues to document numerous individual mutations in the viral spike protein across many variants. To determine the ability of vaccine-mediated humoral immunity to combat continued SARS-CoV-2 evolution, we construct a comprehensive panel of pseudoviruses harboring each individual mutation spanning 4 years of the pandemic to understand the fitness cost and resistance benefits of each. These efforts identify numerous mutations that escape from vaccine-induced humoral immunity. Across 50 variants and 131 mutants we construct, we observe progressive loss of neutralization across variants, irrespective of vaccine doses, as well as increasing infectivity and ACE2 binding. Importantly, the recent XBB.1.5 booster significantly increases titers against most variants but not JN.1, KP.2, or KP.3. These findings demonstrate that variants continue to evade updated mRNA vaccines, highlighting the need for different approaches to control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Kerri St Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Maegan L Sheehan
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - Evan C Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| | - David J Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA 02129, USA; Massachusetts General Hospital Cancer Center, Boston, MA 02114, USA
| | - A John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, RI, USA; Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, RI, USA; Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, RI, USA
| | - Wilfredo F Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA; Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA
| | | |
Collapse
|
12
|
Qing E, Salgado J, Wilcox A, Gallagher T. SARS-CoV-2 Omicron variations reveal mechanisms controlling cell entry dynamics and antibody neutralization. PLoS Pathog 2024; 20:e1012757. [PMID: 39621785 PMCID: PMC11637440 DOI: 10.1371/journal.ppat.1012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Julisa Salgado
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alexandria Wilcox
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
13
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson SI, Manamela NP, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and characterization of a pan-betacoronavirus S2-binding antibody. Structure 2024; 32:1893-1909.e11. [PMID: 39326419 PMCID: PMC11560675 DOI: 10.1016/j.str.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/12/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024]
Abstract
The continued emergence of deadly human coronaviruses from animal reservoirs highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using linking B cell receptor to antigen specificity through sequencing (LIBRA-seq), we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryoelectron microscopy (cryo-EM) structure of 54043-5 bound to the prefusion S2 subunit of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses in vitro, including antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular phagocytosis (ADCP). In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
MESH Headings
- Humans
- SARS-CoV-2/immunology
- SARS-CoV-2/metabolism
- SARS-CoV-2/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Spike Glycoprotein, Coronavirus/metabolism
- Animals
- Antibodies, Viral/immunology
- Antibodies, Viral/metabolism
- Antibodies, Viral/chemistry
- Mice
- COVID-19/immunology
- COVID-19/virology
- Cryoelectron Microscopy
- Antibodies, Neutralizing/immunology
- Antibodies, Neutralizing/chemistry
- Antibodies, Neutralizing/metabolism
- Models, Molecular
- Protein Binding
- Epitopes/immunology
- Epitopes/chemistry
- Antibody-Dependent Cell Cytotoxicity
Collapse
Affiliation(s)
- Nicole V Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kevin J Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Clinton M Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Program in Chemical and Physical Biology, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone I Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Nelia P Manamela
- National Institute for Communicable Diseases of the National Health Laboratory Service, 2131 Johannesburg, South Africa; South African MRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Kelsey A Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Rachel S Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Rachel E Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Alexandria A Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA; Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - James E Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., 53100 Siena, Italy; VisMederi S.r.l, 53100 Siena, Italy; Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, 53100 Siena, Italy; Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA; Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA; Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA; Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA.
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Ivelin S Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN 73232, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Department of Computer Science, Vanderbilt University, Nashville, TN 37232, USA; Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA; Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
14
|
Cui W, Duan Y, Gao Y, Wang W, Yang H. Structural review of SARS-CoV-2 antiviral targets. Structure 2024; 32:1301-1321. [PMID: 39241763 DOI: 10.1016/j.str.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/25/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
The coronavirus disease 2019 (COVID-19), the disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents the most disastrous infectious disease pandemic of the past century. As a member of the Betacoronavirus genus, the SARS-CoV-2 genome encodes a total of 29 proteins. The spike protein, RNA-dependent RNA polymerase, and proteases play crucial roles in the virus replication process and are promising targets for drug development. In recent years, structural studies of these viral proteins and of their complexes with antibodies and inhibitors have provided valuable insights into their functions and laid a solid foundation for drug development. In this review, we summarize the structural features of these proteins and discuss recent progress in research regarding therapeutic development, highlighting mechanistically representative molecules and those that have already been approved or are under clinical investigation.
Collapse
Affiliation(s)
- Wen Cui
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China
| | - Yinkai Duan
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yan Gao
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China
| | - Wei Wang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, China.
| | - Haitao Yang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201203, China.
| |
Collapse
|
15
|
Zhong Q, Lin QM, Long HB, Liao CX, Sun XX, Yang MD, Zhang ZH, Huang YH, Wang SM, Yang ZS. Bacterial pneumonia patients with elevated globulin levels did not get infected with SARS-CoV-2: two case reports. Front Immunol 2024; 15:1404542. [PMID: 39267743 PMCID: PMC11390513 DOI: 10.3389/fimmu.2024.1404542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Background COVID-19 began in December 2019, rapidly spreading worldwide. China implemented a dynamic zero-COVID strategy and strict control measures after the outbreak. However, Guangzhou city ended closed-off management by the end of November 2022, leading to exposure to SARS-CoV-2. Despite most hospitalized patients being infected or co-infected with SARS-CoV-2, some remained uninfected. We report two cases of bacterial pneumonia with elevated globulin levels not infected with SARS-CoV-2, aiming to identify protection factors of SARS-CoV-2 infection and provide a scientific basis for SARS-CoV-2 prevention. Case presentation Case 1, a 92-year-old male, admitted on October 21, 2022, developed worsening cough and sputum after aspiration, diagnosed with bacterial pneumonia with Pseudomonas aeruginosa, Escherichia coli (CRE) and carbapenem-resistant Acinetobacter baumannii (CRAB) infections. He was treated with imipenem anti-infective therapy and mechanical ventilation, then switched to a combination of meropenem, voriconazole and amikacin anti-infective therapy due to recurrent infections and septic shock, and died of sepsis on 8 January 2023. Case 2 is an 82-year-old male admitted on 30 September 2022, with recurrent cough, sputum, and shortness of breath, diagnosed with bacterial pneumonia with carbapenem-resistant Klebsiella pneumoniae (CRKP) and Mycobacterium pneumoniae infections. He was treated with ventilator-assisted ventilation, meropenem, amikacin, tigecycline and mucomycin nebulization and discharged with improvement on 26 October. He was readmitted on 21 November 2022 and diagnosed with bacterial pneumonia. He was treated with cefoperazone sulbactam, amikacin, meropenem and fluconazole and discharged on 31 December. Neither patient was infected with SARS-CoV-2 during hospitalization. Notably, their globulin levels were elevated before SARS-CoV-2 exposure, gradually decreasing afterward. Conclusions Patients with bacterial pneumonia with high globulin levels likely have large amounts of immunoglobulin, and that immunoglobulin cross-reactivity causes this protein to be involved in clearing SARS-CoV-2 and preventing infection. Therefore, bacterial pneumonia patients with high globulin levels included in this study were not infected with SARS-CoV-2. After exposure to SARS-CoV-2, the amount of globulin in the patient's body was reduced because it was used to clear SARS-CoV-2. The results of this study are expected to provide a theoretical basis for the study of the mechanism of prevention and treatment of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Qi Zhong
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Qiu-Mei Lin
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Hong-Bin Long
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Cai-Xia Liao
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Xiao-Xiao Sun
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Miao-du Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Zhi-Hao Zhang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Yi-Hua Huang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| | - Shi-Min Wang
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Zhao-Shou Yang
- The First Affiliated Hospital/The First School of Clinical Medicine of Guangdong Pharmaceutical University, Guangdong Pharmaceutical University, Guangzhou, Guangdong, China
| |
Collapse
|
16
|
Nuqui X, Casalino L, Zhou L, Shehata M, Wang A, Tse AL, Ojha AA, Kearns FL, Rosenfeld MA, Miller EH, Acreman CM, Ahn SH, Chandran K, McLellan JS, Amaro RE. Simulation-driven design of stabilized SARS-CoV-2 spike S2 immunogens. Nat Commun 2024; 15:7370. [PMID: 39191724 PMCID: PMC11350062 DOI: 10.1038/s41467-024-50976-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
The full-length prefusion-stabilized SARS-CoV-2 spike (S) is the principal antigen of COVID-19 vaccines. Vaccine efficacy has been impacted by emerging variants of concern that accumulate most of the sequence modifications in the immunodominant S1 subunit. S2, in contrast, is the most evolutionarily conserved region of the spike and can elicit broadly neutralizing and protective antibodies. Yet, S2's usage as an alternative vaccine strategy is hampered by its general instability. Here, we use a simulation-driven approach to design S2-only immunogens stabilized in a closed prefusion conformation. Molecular simulations provide a mechanistic characterization of the S2 trimer's opening, informing the design of tryptophan substitutions that impart kinetic and thermodynamic stabilization. Structural characterization via cryo-EM shows the molecular basis of S2 stabilization in the closed prefusion conformation. Informed by molecular simulations and corroborated by experiments, we report an engineered S2 immunogen that exhibits increased protein expression, superior thermostability, and preserved immunogenicity against sarbecoviruses.
Collapse
Affiliation(s)
- Xandra Nuqui
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Lorenzo Casalino
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Mohamed Shehata
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anupam A Ojha
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
| | - Fiona L Kearns
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA
| | - Mia A Rosenfeld
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Medicine, Division of Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Cory M Acreman
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Surl-Hee Ahn
- Department of Chemical Engineering, University of California Davis, Davis, CA, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Rommie E Amaro
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
17
|
Weskamm LM, Tarnow P, Harms C, Huchon M, Raadsen MP, Friedrich M, Rübenacker L, Grüttner C, Garcia MG, Koch T, Becker S, Sutter G, Lhomme E, Haagmans BL, Fathi A, Blois SM, Dahlke C, Richert L, Addo MM. Dissecting humoral immune responses to an MVA-vectored MERS-CoV vaccine in humans using a systems serology approach. iScience 2024; 27:110470. [PMID: 39148710 PMCID: PMC11325358 DOI: 10.1016/j.isci.2024.110470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 06/11/2024] [Accepted: 07/03/2024] [Indexed: 08/17/2024] Open
Abstract
Besides neutralizing antibodies, which are considered an important measure for vaccine immunogenicity, Fc-mediated antibody functions can contribute to antibody-mediated protection. They are strongly influenced by structural antibody properties such as subclass and Fc glycan composition. We here applied a systems serology approach to dissect humoral immune responses induced by MVA-MERS-S, an MVA-vectored vaccine against the Middle East respiratory syndrome coronavirus (MERS-CoV). Building on preceding studies reporting the safety and immunogenicity of MVA-MERS-S, our study highlights the potential of a late boost, administered one year after prime, to enhance both neutralizing and Fc-mediated antibody functionality compared to the primary vaccination series. Distinct characteristics were observed for antibodies specific to the MERS-CoV spike protein S1 and S2 subunits, regarding subclass and glycan compositions as well as Fc functionality. These findings highlight the benefit of a late homologous booster vaccination with MVA-MERS-S and may be of interest for the design of future coronavirus vaccines.
Collapse
Affiliation(s)
- Leonie M Weskamm
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Paulina Tarnow
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Charlotte Harms
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Melanie Huchon
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
| | - Matthijs P Raadsen
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Monika Friedrich
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Rübenacker
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Cordula Grüttner
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Mariana G Garcia
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Till Koch
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Antibiotic Stewardship Team, Pharmacy of the University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stephan Becker
- Institute of Virology, Philipps University Marburg, Marburg, Germany
- German Center for Infection Research, Partner Site Gießen-Marburg-Langen, Marburg, Germany
| | - Gerd Sutter
- Division of Virology, Department of Veterinary Sciences, Ludwig Maximilian University Munich, Munich, Germany
- German Center for Infection Research, Partner Site München, Munich, Germany
| | - Edouard Lhomme
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Bart L Haagmans
- Department of Viroscience, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Anahita Fathi
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Division of Infectious Diseases, 1st Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sandra M Blois
- Department of Obstetrics and Fetal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Glyco-HAM, a Cooperation of Universität Hamburg, Technology Platform Mass Spectrometry and University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christine Dahlke
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| | - Laura Richert
- University of Bordeaux, INSERM, INRIA, BPH, U1219, Sistm, Bordeaux, France
- Vaccine Research Institute, Creteil, France
- CHU de Bordeaux, Service d'Information Médicale, Bordeaux, France
| | - Marylyn M Addo
- Institute for Infection Research and Vaccine Development (IIRVD), Center for Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department for Clinical Immunology of Infectious Diseases, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
| |
Collapse
|
18
|
Guenthoer J, Garrett ME, Lilly M, Depierreux DM, Ruiz F, Chi M, Stoddard CI, Chohan V, Yaffe ZA, Sung K, Ralph D, Chu HY, Matsen FA, Overbaugh J. The S2 subunit of spike encodes diverse targets for functional antibody responses to SARS-CoV-2. PLoS Pathog 2024; 20:e1012383. [PMID: 39093891 PMCID: PMC11324185 DOI: 10.1371/journal.ppat.1012383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/14/2024] [Accepted: 07/01/2024] [Indexed: 08/04/2024] Open
Abstract
The SARS-CoV-2 virus responsible for the COVID-19 global pandemic has exhibited a striking capacity for viral evolution that drives continued evasion from vaccine and infection-induced immune responses. Mutations in the receptor binding domain of the S1 subunit of the spike glycoprotein have led to considerable escape from antibody responses, reducing the efficacy of vaccines and monoclonal antibody (mAb) therapies. Therefore, there is a need to interrogate more constrained regions of spike, such as the S2 subdomain. Here, we present a collection of S2 mAbs from two SARS-CoV-2 convalescent individuals that target multiple regions in S2, including regions outside of those commonly reported. One of the S2 mAbs, C20.119, which bound to a highly conserved epitope in the fusion peptide, was able to broadly neutralize across SARS-CoV-2 variants, SARS-CoV-1, and closely related zoonotic sarbecoviruses. The majority of the mAbs were non-neutralizing; however, many of them could mediate antibody-dependent cellular cytotoxicity (ADCC) at levels similar to the S1-targeting mAb S309 that was previously authorized for treatment of SARS-CoV-2 infections. Several of the mAbs with ADCC function also bound to spike trimers from other human coronaviruses (HCoVs), such as MERS-CoV and HCoV-HKU1. Our findings suggest S2 mAbs can target diverse epitopes in S2, including functional mAbs with HCoV and sarbecovirus breadth that likely target functionally constrained regions of spike. These mAbs could be developed for potential future pandemics, while also providing insight into ideal epitopes for eliciting a broad HCoV response.
Collapse
Affiliation(s)
- Jamie Guenthoer
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Meghan E. Garrett
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Michelle Lilly
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Delphine M. Depierreux
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Felicitas Ruiz
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Margaret Chi
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Caitlin I. Stoddard
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Vrasha Chohan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Zak A. Yaffe
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Kevin Sung
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Duncan Ralph
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, United States of America
| | - Frederick A. Matsen
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Howard Hughes Medical Institute, Seattle, Washington, United States of America
| | - Julie Overbaugh
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
- Public Health Sciences Division, Fred Hutchinson Cancer Center, Seattle, Washington, United States of America
| |
Collapse
|
19
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore I, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605768. [PMID: 39109178 PMCID: PMC11302620 DOI: 10.1101/2024.07.30.605768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, Minnesota 55356, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ian Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
20
|
Liang L, Wang B, Zhang Q, Zhang S, Zhang S. Antibody drugs targeting SARS-CoV-2: Time for a rethink? Biomed Pharmacother 2024; 176:116900. [PMID: 38861858 DOI: 10.1016/j.biopha.2024.116900] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/20/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) heavily burdens human health. Multiple neutralizing antibodies (nAbs) have been issued for emergency use or tested for treating infected patients in the clinic. However, SARS-CoV-2 variants of concern (VOC) carrying mutations reduce the effectiveness of nAbs by preventing neutralization. Uncoding the mutation profile and immune evasion mechanism of SARS-CoV-2 can improve the outcome of Ab-mediated therapies. In this review, we first outline the development status of anti-SARS-CoV-2 Ab drugs and provide an overview of SARS-CoV-2 variants and their prevalence. We next focus on the failure causes of anti-SARS-CoV-2 Ab drugs and rethink the design strategy for developing new Ab drugs against COVID-19. This review provides updated information for the development of therapeutic Ab drugs against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Likeng Liang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Bo Wang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qing Zhang
- Department of Laboratory Medicine, Tianjin Medical University Cancer Institute and Hospital, Tianjin 300060, China
| | - Shiwu Zhang
- Department of Pathology, Tianjin Union Medical Center, Nankai University, Tianjin 300121, China
| | - Sihe Zhang
- Department of Cell Biology, School of Medicine, Nankai University, Tianjin 300071, China.
| |
Collapse
|
21
|
Lee J, Stewart C, Schäfer A, Leaf EM, Park YJ, Asarnow D, Powers JM, Treichel C, Sprouse KR, Corti D, Baric R, King NP, Veesler D. A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines. Nat Commun 2024; 15:5496. [PMID: 38944664 PMCID: PMC11214633 DOI: 10.1038/s41467-024-49656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/13/2024] [Indexed: 07/01/2024] Open
Abstract
Evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. We describe a strategy for prefusion-stabilization and high yield recombinant production of SARS-CoV-2 S2 trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 subunits. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer elicits broadly reactive sarbecovirus antibodies and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Elizabeth M Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, Bellinzona, Switzerland
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Neil P King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
| |
Collapse
|
22
|
Adair A, Tan LL, Feng J, Girkin J, Bryant N, Wang M, Mordant F, Chan LJ, Bartlett NW, Subbarao K, Pymm P, Tham WH. Human coronavirus OC43 nanobody neutralizes virus and protects mice from infection. J Virol 2024; 98:e0053124. [PMID: 38709106 PMCID: PMC11237593 DOI: 10.1128/jvi.00531-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 05/07/2024] Open
Abstract
Human coronavirus (hCoV) OC43 is endemic to global populations and usually causes asymptomatic or mild upper respiratory tract illness. Here, we demonstrate the neutralization efficacy of isolated nanobodies from alpacas immunized with the S1B and S1C domain of the hCoV-OC43 spike glycoprotein. A total of 40 nanobodies bound to recombinant OC43 protein with affinities ranging from 1 to 149 nM. Two nanobodies WNb 293 and WNb 294 neutralized virus at 0.21 and 1.79 nM, respectively. Intranasal and intraperitoneal delivery of WNb 293 fused to an Fc domain significantly reduced nasal viral load in a mouse model of hCoV-OC43 infection. Using X-ray crystallography, we observed that WNb 293 bound to an epitope on the OC43 S1B domain, distal from the sialoglycan-binding site involved in host cell entry. This result suggests that neutralization mechanism of this nanobody does not involve disruption of glycan binding. Our work provides characterization of nanobodies against hCoV-OC43 that blocks virus entry and reduces viral loads in vivo and may contribute to future nanobody-based therapies for hCoV-OC43 infections. IMPORTANCE The pandemic potential presented by coronaviruses has been demonstrated by the ongoing COVID-19 pandemic and previous epidemics caused by severe acute respiratory syndrome coronavirus and Middle East respiratory syndrome coronavirus. Outside of these major pathogenic coronaviruses, there are four endemic coronaviruses that infect humans: hCoV-OC43, hCoV-229E, hCoV-HKU1, and hCoV-NL63. We identified a collection of nanobodies against human coronavirus OC43 (hCoV-OC43) and found that two high-affinity nanobodies potently neutralized hCoV-OC43 at low nanomolar concentrations. Prophylactic administration of one neutralizing nanobody reduced viral loads in mice infected with hCoV-OC43, showing the potential for nanobody-based therapies for hCoV-OC43 infections.
Collapse
Affiliation(s)
- Amy Adair
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Li Lynn Tan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jackson Feng
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Jason Girkin
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Nathan Bryant
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Mingyang Wang
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Francesca Mordant
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Li-Jin Chan
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nathan W. Bartlett
- />College of Health, Medicine and Wellbeing, University of Newcastle, Callaghan, New South Wales, Australia
- Infection Research Program, Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Kanta Subbarao
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- WHO Collaborating Centre for Reference and Research on Influenza, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Phillip Pymm
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Wai-Hong Tham
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
23
|
Tan TJC, Verma AK, Odle A, Lei R, Meyerholz DK, Matreyek KA, Perlman S, Wong LYR, Wu NC. Evidence of antigenic drift in the fusion machinery core of SARS-CoV-2 spike. Proc Natl Acad Sci U S A 2024; 121:e2317222121. [PMID: 38557175 PMCID: PMC11009667 DOI: 10.1073/pnas.2317222121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/23/2024] [Indexed: 04/04/2024] Open
Abstract
Antigenic drift of SARS-CoV-2 is typically defined by mutations in the N-terminal domain and receptor binding domain of spike protein. In contrast, whether antigenic drift occurs in the S2 domain remains largely elusive. Here, we perform a deep mutational scanning experiment to identify S2 mutations that affect binding of SARS-CoV-2 spike to three S2 apex public antibodies. Our results indicate that spatially diverse mutations, including D950N and Q954H, which are observed in Delta and Omicron variants, respectively, weaken the binding of spike to these antibodies. Although S2 apex antibodies are known to be nonneutralizing, we show that they confer protection in vivo through Fc-mediated effector functions. Overall, this study indicates that the S2 domain of SARS-CoV-2 spike can undergo antigenic drift, which represents a potential challenge for the development of more universal coronavirus vaccines.
Collapse
Affiliation(s)
- Timothy J. C. Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
| | - Abhishek K. Verma
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Abby Odle
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
| | | | - Kenneth A. Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH44106
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Department of Pediatrics, University of Iowa, Iowa City, IA52242
| | - Lok-Yin Roy Wong
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA52242
- Center for Virus-Host-Innate Immunity, Rutgers New Jersey Medical School, Newark, NJ07103
- Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers New Jersey Medical School, Newark, NJ07103
| | - Nicholas C. Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL61801
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL61801
| |
Collapse
|
24
|
Chao CW, Sprouse KR, Miranda MC, Catanzaro NJ, Hubbard ML, Addetia A, Stewart C, Brown JT, Dosey A, Valdez A, Ravichandran R, Hendricks GG, Ahlrichs M, Dobbins C, Hand A, Treichel C, Willoughby I, Walls AC, McGuire AT, Leaf EM, Baric RS, Schäfer A, Veesler D, King NP. Protein nanoparticle vaccines induce potent neutralizing antibody responses against MERS-CoV. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584735. [PMID: 38558973 PMCID: PMC10979991 DOI: 10.1101/2024.03.13.584735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Middle East respiratory syndrome coronavirus (MERS-CoV) is a zoonotic betacoronavirus that causes severe and often lethal respiratory illness in humans. The MERS-CoV spike (S) protein is the viral fusogen and the target of neutralizing antibodies, and has therefore been the focus of vaccine design efforts. Currently there are no licensed vaccines against MERS-CoV and only a few candidates have advanced to Phase I clinical trials. Here we developed MERS-CoV vaccines utilizing a computationally designed protein nanoparticle platform that has generated safe and immunogenic vaccines against various enveloped viruses, including a licensed vaccine for SARS-CoV-2. Two-component protein nanoparticles displaying MERS-CoV S-derived antigens induced robust neutralizing antibody responses and protected mice against challenge with mouse-adapted MERS-CoV. Electron microscopy polyclonal epitope mapping and serum competition assays revealed the specificities of the dominant antibody responses elicited by immunogens displaying the prefusion-stabilized S-2P trimer, receptor binding domain (RBD), or N-terminal domain (NTD). An RBD nanoparticle vaccine elicited antibodies targeting multiple non-overlapping epitopes in the RBD, whereas anti-NTD antibodies elicited by the S-2P- and NTD-based immunogens converged on a single antigenic site. Our findings demonstrate the potential of two-component nanoparticle vaccine candidates for MERS-CoV and suggest that this platform technology could be broadly applicable to betacoronavirus vaccine development.
Collapse
Affiliation(s)
- Cara W Chao
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Graduate Program in Molecular and Cellular Biology, University of Washington, Seattle, WA 98195, USA
| | - Kaitlin R Sprouse
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Marcos C Miranda
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Nicholas J Catanzaro
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Miranda L Hubbard
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Amin Addetia
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jack T Brown
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Annie Dosey
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Adian Valdez
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Rashmi Ravichandran
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Grace G Hendricks
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Maggie Ahlrichs
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexis Hand
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Catherine Treichel
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Isabelle Willoughby
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Alexandra C Walls
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Andrew T McGuire
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Elizabeth M Leaf
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Neil P King
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
25
|
Roederer AL, Cao Y, Denis KS, Sheehan ML, Li CJ, Lam EC, Gregory DJ, Poznansky MC, Iafrate AJ, Canaday DH, Gravenstein S, Garcia-Beltran WF, Balazs AB. Ongoing evolution of SARS-CoV-2 drives escape from mRNA vaccine-induced humoral immunity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.05.24303815. [PMID: 38496628 PMCID: PMC10942518 DOI: 10.1101/2024.03.05.24303815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Since the COVID-19 pandemic began in 2020, viral sequencing has documented 131 individual mutations in the viral spike protein across 48 named variants. To determine the ability of vaccine-mediated humoral immunity to keep pace with continued SARS-CoV-2 evolution, we assessed the neutralization potency of sera from 76 vaccine recipients collected after 2 to 6 immunizations against a comprehensive panel of mutations observed during the pandemic. Remarkably, while many individual mutations that emerged between 2020 and 2022 exhibit escape from sera following primary vaccination, few escape boosted sera. However, progressive loss of neutralization was observed across newer variants, irrespective of vaccine doses. Importantly, an updated XBB.1.5 booster significantly increased titers against newer variants but not JN.1. These findings demonstrate that seasonal boosters improve titers against contemporaneous strains, but novel variants continue to evade updated mRNA vaccines, demonstrating the need for novel approaches to adequately control SARS-CoV-2 transmission.
Collapse
Affiliation(s)
- Alex L. Roederer
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Yi Cao
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Kerri St. Denis
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | | | - Chia Jung Li
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - Evan C. Lam
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - David J. Gregory
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Pediatric Infectious Disease, Massachusetts General Hospital for Children, Boston, MA 02114, USA
| | - Mark C. Poznansky
- Vaccine and Immunotherapy Center, Massachusetts General Hospital, Boston, MA, 02129, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, 02114, USA
| | - A. John Iafrate
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | - David H. Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH
- Geriatric Research Education and Clinical Center, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, Ohio
| | - Stefan Gravenstein
- Center of Innovation in Long-Term Services and Supports, Veterans Administration Medical Center, Providence, Rhode Island
- Division of Geriatrics and Palliative Medicine, Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Brown University School of Public Health Center for Gerontology and Healthcare Research, Providence, Rhode Island
| | - Wilfredo F. Garcia-Beltran
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02114, USA
| | | |
Collapse
|
26
|
Hsieh CL, Leist SR, Miller EH, Zhou L, Powers JM, Tse AL, Wang A, West A, Zweigart MR, Schisler JC, Jangra RK, Chandran K, Baric RS, McLellan JS. Prefusion-stabilized SARS-CoV-2 S2-only antigen provides protection against SARS-CoV-2 challenge. Nat Commun 2024; 15:1553. [PMID: 38378768 PMCID: PMC10879192 DOI: 10.1038/s41467-024-45404-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Ever-evolving SARS-CoV-2 variants of concern (VOCs) have diminished the effectiveness of therapeutic antibodies and vaccines. Developing a coronavirus vaccine that offers a greater breadth of protection against current and future VOCs would eliminate the need to reformulate COVID-19 vaccines. Here, we rationally engineer the sequence-conserved S2 subunit of the SARS-CoV-2 spike protein and characterize the resulting S2-only antigens. Structural studies demonstrate that the introduction of interprotomer disulfide bonds can lock S2 in prefusion trimers, although the apex samples a continuum of conformations between open and closed states. Immunization with prefusion-stabilized S2 constructs elicits broadly neutralizing responses against several sarbecoviruses and protects female BALB/c mice from mouse-adapted SARS-CoV-2 lethal challenge and partially protects female BALB/c mice from mouse-adapted SARS-CoV lethal challenge. These engineering and immunogenicity results should inform the development of next-generation pan-coronavirus therapeutics and vaccines.
Collapse
Affiliation(s)
- Ching-Lin Hsieh
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Emily Happy Miller
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine-Infectious Diseases, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ling Zhou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Alexandra L Tse
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Albert Wang
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mark R Zweigart
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jonathan C Schisler
- McAllister Heart Institute and Department of Pharmacology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Rohit K Jangra
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Louisiana State University Health Sciences Center-Shreveport, Shreveport, LA, 71103, USA
| | - Kartik Chandran
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ralph S Baric
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jason S McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
27
|
Johnson NV, Wall SC, Kramer KJ, Holt CM, Periasamy S, Richardson S, Suryadevara N, Andreano E, Paciello I, Pierleoni G, Piccini G, Huang Y, Ge P, Allen JD, Uno N, Shiakolas AR, Pilewski KA, Nargi RS, Sutton RE, Abu-Shmais AA, Parks R, Haynes BF, Carnahan RH, Crowe JE, Montomoli E, Rappuoli R, Bukreyev A, Ross TM, Sautto GA, McLellan JS, Georgiev IS. Discovery and Characterization of a Pan-betacoronavirus S2-binding antibody. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575741. [PMID: 38293237 PMCID: PMC10827111 DOI: 10.1101/2024.01.15.575741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Three coronaviruses have spilled over from animal reservoirs into the human population and caused deadly epidemics or pandemics. The continued emergence of coronaviruses highlights the need for pan-coronavirus interventions for effective pandemic preparedness. Here, using LIBRA-seq, we report a panel of 50 coronavirus antibodies isolated from human B cells. Of these antibodies, 54043-5 was shown to bind the S2 subunit of spike proteins from alpha-, beta-, and deltacoronaviruses. A cryo-EM structure of 54043-5 bound to the pre-fusion S2 subunit of the SARS-CoV-2 spike defined an epitope at the apex of S2 that is highly conserved among betacoronaviruses. Although non-neutralizing, 54043-5 induced Fc-dependent antiviral responses, including ADCC and ADCP. In murine SARS-CoV-2 challenge studies, protection against disease was observed after introduction of Leu234Ala, Leu235Ala, and Pro329Gly (LALA-PG) substitutions in the Fc region of 54043-5. Together, these data provide new insights into the protective mechanisms of non-neutralizing antibodies and define a broadly conserved epitope within the S2 subunit.
Collapse
Affiliation(s)
- Nicole V. Johnson
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Steven C. Wall
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kevin J. Kramer
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Clinton M. Holt
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Program in Chemical and Physical Biology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Simone Richardson
- National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg 2131, South Africa
- Faculty of Health Sciences, University of the Witwatersrand, Johannesburg 2000, South Africa
| | | | - Emanuele Andreano
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Ida Paciello
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | - Giulio Pierleoni
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
| | | | - Ying Huang
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Pan Ge
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - James D. Allen
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Naoko Uno
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
| | - Andrea R. Shiakolas
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Kelsey A. Pilewski
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Rachel S. Nargi
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Rachel E. Sutton
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Alexandria A. Abu-Shmais
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
| | - Robert Parks
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
| | - Barton F. Haynes
- Duke Human Vaccine Institute, Duke University, Durham, NC 27710, USA
- Departments of Medicine and Immunology, Duke University, Durham, NC 27710, USA
| | - Robert H. Carnahan
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - James E. Crowe
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Department of Pediatrics, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| | - Emanuele Montomoli
- VisMederi Research S.r.l., Siena 53100, Italy
- VisMederi S.r.l, Siena 53100, Italy
- Department of Molecular and Developmental Medicine, University of Siena, Siena 53100, Italy
| | - Rino Rappuoli
- Monoclonal Antibody Discovery (MAD) Lab, Fondazione Toscana Life Sciences, Siena 53100, Italy
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Siena 53100, Italy
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
- Galveston National Laboratory, University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| | - Ted M. Ross
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
- Department of Infection Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44196, USA
- Center for Vaccines and Immunology, University of Georgia, Athens, GA 30602, USA
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Giuseppe A. Sautto
- Florida Research and Innovation Center, Cleveland Clinic, Port Saint Lucie, FL 34987, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Ivelin S. Georgiev
- Vanderbilt Vaccine Center, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center; Nashville, TN 73232, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center; Nashville, TN 37232, USA
- Department of Computer Science, Vanderbilt University; Nashville, TN 37232, USA
- Center for Structural Biology, Vanderbilt University; Nashville, TN 37232, USA
- Program in Computational Microbiology and Immunology, Vanderbilt University Medical Center; Nashville, TN 37232, USA
| |
Collapse
|
28
|
Yamamoto Y, Inoue T. Current Status and Perspectives of Therapeutic Antibodies Targeting the Spike Protein S2 Subunit against SARS-CoV-2. Biol Pharm Bull 2024; 47:917-923. [PMID: 38692869 DOI: 10.1248/bpb.b23-00639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
The global coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has devastated public health and the global economy. New variants are continually emerging because of amino acid mutations within the SARS-CoV-2 spike protein. Existing neutralizing antibodies (nAbs) that target the receptor-binding domain (RBD) within the spike protein have been shown to have reduced neutralizing activity against these variants. In particular, the recently expanding omicron subvariants BQ 1.1 and XBB are resistant to nAbs approved for emergency use by the United States Food and Drug Administration. Therefore, it is essential to develop broad nAbs to combat emerging variants. In contrast to the massive accumulation of mutations within the RBD, the S2 subunit remains highly conserved among variants. Therefore, nAbs targeting the S2 region may provide effective cross-protection against novel SARS-CoV-2 variants. Here, we provide a detailed summary of nAbs targeting the S2 subunit: the fusion peptide, stem helix, and heptad repeats 1 and 2. In addition, we provide prospects to solve problems such as the weak neutralizing potency of nAbs targeting the S2 subunit.
Collapse
Affiliation(s)
- Yuichiro Yamamoto
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| | - Tetsuya Inoue
- Laboratory of Molecular Targeted Therapy, Faculty of Pharmaceutical Sciences, Tokyo University of Science
| |
Collapse
|
29
|
Quezada A, Annapareddy A, Javanmardi K, Cooper J, Finkelstein IJ. Mammalian Antigen Display for Pandemic Countermeasures. Methods Mol Biol 2024; 2762:191-216. [PMID: 38315367 DOI: 10.1007/978-1-0716-3666-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Pandemic countermeasures require the rapid design of antigens for vaccines, profiling patient antibody responses, assessing antigen structure-function landscapes, and the surveillance of emerging viral lineages. Cell surface display of a viral antigen or its subdomains can facilitate these goals by coupling the phenotypes of protein variants to their DNA sequence. Screening surface-displayed proteins via flow cytometry also eliminates time-consuming protein purification steps. Prior approaches have primarily relied on yeast as a display chassis. However, yeast often cannot express large viral glycoproteins, requiring their truncation into subdomains. Here, we describe a method to design and express antigens on the surface of mammalian HEK293T cells. We discuss three use cases, including screening of stabilizing mutations, deep mutational scanning, and epitope mapping. The mammalian antigen display platform described herein will accelerate ongoing and future pandemic countermeasures.
Collapse
Affiliation(s)
- Andrea Quezada
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ankur Annapareddy
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - John Cooper
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA
| | - Ilya J Finkelstein
- Department of Molecular BioSciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
30
|
Tan S, Zhao J, Hu X, Li Y, Wu Z, Lu G, Yu Z, Du B, Liu Y, Li L, Chen Y, Li Y, Yao Y, Zhang X, Rao J, Gao G, Peng Y, Liu H, Yuan Z, Liu J, Wang Q, Hu H, Gao X, Zhou H, Yu H, Xu Y, Yu W, Feng L, Wang M, Shan C, Lu J, Lin J. Preclinical evaluation of RQ3013, a broad-spectrum mRNA vaccine against SARS-CoV-2 variants. Sci Bull (Beijing) 2023; 68:3192-3206. [PMID: 37993332 DOI: 10.1016/j.scib.2023.11.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/19/2023] [Accepted: 11/02/2023] [Indexed: 11/24/2023]
Abstract
The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs. Here we characterized the expressed S immunogen and evaluated the immunogenicity, efficacy, and safety of RQ3013 in various animal models. RQ3013 elicited robust immune responses in mice, hamsters, and nonhuman primates (NHP). It can induce high titers of antibodies with broad cross-neutralizing ability against the wild-type, B.1.1.7, B.1.351, B.1.617.2, and the newly emerging Omicron variants. In mice and NHP, two doses of RQ3013 protected the upper and lower respiratory tract against infection by SARS-CoV-2 and its variants. Furthermore, our safety assessment of RQ3013 in NHP showed no observable adverse effects. These results provide strong support for the evaluation of RQ3013 in clinical trials and suggest that it may be a promising candidate for broad protection against COVID-19 and its variants.
Collapse
Affiliation(s)
- Shudan Tan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Jinghua Zhao
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Xue Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yufeng Li
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zihan Wu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Guoliang Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Zhaoli Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Binhe Du
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yan Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Li Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yuchen Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Ye Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China
| | - Yanfeng Yao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaoyu Zhang
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Juhong Rao
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Ge Gao
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yun Peng
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hang Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhiming Yuan
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jia Liu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Qianran Wang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Hengrui Hu
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Xiaobo Gao
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Hui Zhou
- Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China; Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Hang Yu
- Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China
| | - Yingjie Xu
- Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wei Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China.
| | - Lin Feng
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou 510060, China.
| | - Manli Wang
- Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Chao Shan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China.
| | - Jing Lu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China; Shanghai RNACure Biopharma Co., Ltd., Shanghai 200438, China.
| | - Jinzhong Lin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai 200438, China; Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai 200438, China; Zhangjiang mRNA Innovation and Translation Center, Fudan University, Shanghai 200438, China.
| |
Collapse
|
31
|
Lee J, Stewart C, Schaefer A, Leaf EM, Park YJ, Asarnow D, Powers JM, Treichel C, Corti D, Baric R, King NP, Veesler D. A broadly generalizable stabilization strategy for sarbecovirus fusion machinery vaccines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.12.571160. [PMID: 38168207 PMCID: PMC10760017 DOI: 10.1101/2023.12.12.571160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Continuous evolution of SARS-CoV-2 alters the antigenicity of the immunodominant spike (S) receptor-binding domain and N-terminal domain, undermining the efficacy of vaccines and monoclonal antibody therapies. To overcome this challenge, we set out to develop a vaccine focusing antibody responses on the highly conserved but metastable S2 subunit, which folds as a spring-loaded fusion machinery. Here, we describe a protein design strategy enabling prefusion-stabilization of the SARS-CoV-2 S2 subunit and high yield recombinant expression of trimers with native structure and antigenicity. We demonstrate that our design strategy is broadly generalizable to all sarbecoviruses, as exemplified with the SARS-CoV-1 (clade 1a) and PRD-0038 (clade 3) S2 fusion machineries. Immunization of mice with a prefusion-stabilized SARS-CoV-2 S2 trimer vaccine elicits broadly reactive sarbecovirus antibody responses and neutralizing antibody titers of comparable magnitude against Wuhan-Hu-1 and the immune evasive XBB.1.5 variant. Vaccinated mice were protected from weight loss and disease upon challenge with SARS-CoV-2 XBB.1.5, providing proof-of-principle for fusion machinery sarbecovirus vaccines motivating future development.
Collapse
Affiliation(s)
- Jimin Lee
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Cameron Stewart
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Alexandra Schaefer
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elizabeth M. Leaf
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Young-Jun Park
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Daniel Asarnow
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | | | - Catherine Treichel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - Davide Corti
- Humabs Biomed SA, a subsidiary of Vir Biotechnology, 6500 Bellinzona, Switzerland
| | - Ralph Baric
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Neil P. King
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98195, USA
| | - David Veesler
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Heo CK, Lim WH, Yang J, Son S, Kim SJ, Kim DJ, Poo H, Cho EW. Novel S2 subunit-specific antibody with broad neutralizing activity against SARS-CoV-2 variants of concern. Front Immunol 2023; 14:1307693. [PMID: 38143750 PMCID: PMC10749193 DOI: 10.3389/fimmu.2023.1307693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), had a major impact on both the global health and economy. Numerous virus-neutralizing antibodies were developed against the S1 subunit of SARS-CoV-2 spike (S) protein to block viral binding to host cells and were authorized for control of the COVID-19 pandemic. However, frequent mutations in the S1 subunit of SARS-CoV-2 enabled the emergence of immune evasive variants. To address these challenges, broadly neutralizing antibodies targeting the relatively conserved S2 subunit and its epitopes have been investigated as antibody therapeutics and universal vaccines. Methods We initiated this study by immunizing BALB/c mice with β-propiolactone-inactivated SARS-CoV-2 (IAV) to generate B-cell hybridomas. These hybridomas were subsequently screened using HEK293T cells expressing the S2-ECD domain. Hybridomas that produced anti-S2 antibodies were selected, and we conducted a comprehensive evaluation of the potential of these anti-S2 antibodies as antiviral agents and versatile tools for research and diagnostics. Results In this study, we present a novel S2-specific antibody, 4A5, isolated from BALB/c mice immunized with inactivated SARS-CoV-2. 4A5 exhibited specific affinity to SARS-CoV-2 S2 subunits compared with those of other β-CoVs. 4A5 bound to epitope segment F1109-V1133 between the heptad-repeat1 (HR1) and the stem-helix (SH) region. The 4A5 epitope is highly conserved in SARS-CoV-2 variants, with a significant conformational feature in both pre- and postfusion S proteins. Notably, 4A5 exhibited broad neutralizing activity against variants and triggered Fc-enhanced antibody-dependent cellular phagocytosis. Discussion These findings offer a promising avenue for novel antibody therapeutics and insights for next-generation vaccine design. The identification of 4A5, with its unique binding properties and broad neutralizing capacity, offers a potential solution to the challenge posed by SARS-CoV-2 variants and highlights the importance of targeting the conserved S2 subunit in combating the COVID-19.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihyun Yang
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sumin Son
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Doo-Jin Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Haryoung Poo
- Department of Biomedical Science and Engineering, Konkuk University, Seoul, Republic of Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
33
|
Balinsky CA, Jiang L, Jani V, Cheng Y, Zhang Z, Belinskaya T, Qiu Q, Long TK, Schilling MA, Jenkins SA, Corson KS, Martin NJ, Letizia AG, Hontz RD, Sun P. Antibodies to S2 domain of SARS-CoV-2 spike protein in Moderna mRNA vaccinated subjects sustain antibody-dependent NK cell-mediated cell cytotoxicity against Omicron BA.1. Front Immunol 2023; 14:1266829. [PMID: 38077368 PMCID: PMC10702584 DOI: 10.3389/fimmu.2023.1266829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Vaccination with the primary two-dose series of SARS-CoV-2 mRNA protects against infection with the ancestral strain, and limits the presentation of severe disease after re-infection by multiple variants of concern (VOC), including Omicron, despite the lack of a strong neutralizing response to these variants. We compared antibody responses in serum samples collected from mRNA-1273 (Moderna) vaccinated subjects to identify mechanisms of immune escape and cross-protection. Using pseudovirus constructs containing domain-specific amino acid changes representative of Omicron BA.1, combined with domain competition and RBD-antibody depletion, we showed that RBD antibodies were primarily responsible for virus neutralization and variant escape. Antibodies to NTD played a less significant role in antibody neutralization but acted along with RBD to enhance neutralization. S2 of Omicron BA.1 had no impact on neutralization escape, suggesting it is a less critical domain for antibody neutralization; however, it was as capable as S1 at eliciting IgG3 responses and NK-cell mediated, antibody-dependent cell cytotoxicity (ADCC). Antibody neutralization and ADCC activities to RBD, NTD, and S1 were all prone to BA.1 escape. In contrast, ADCC activities to S2 resisted BA.1 escape. In conclusion, S2 antibodies showed potent ADCC function and resisted Omicron BA.1 escape, suggesting that S2 contributes to cross-protection against Omicron BA.1. In line with its conserved nature, S2 may hold promise as a vaccine target against future variants of SARS-CoV-2.
Collapse
Affiliation(s)
- Corey A. Balinsky
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Le Jiang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Vihasi Jani
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Zhiwen Zhang
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Tatyana Belinskaya
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Qi Qiu
- Henry Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | | | - Megan A. Schilling
- Virology and Emerging Infectious Department, U.S. Naval Medical Research Unit SOUTH, Lima, Peru
| | - Sarah A. Jenkins
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| | - Karen S. Corson
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | | | | | - Robert D. Hontz
- US Naval Medical Research Unit-INDO PACIFIC, Singapore, Singapore
| | - Peifang Sun
- Diagnostics and Surveillance Department, Naval Medical Research Command, Silver Spring, MD, United States
| |
Collapse
|
34
|
Chmielewski D, Wilson EA, Pintilie G, Zhao P, Chen M, Schmid MF, Simmons G, Wells L, Jin J, Singharoy A, Chiu W. Structural insights into the modulation of coronavirus spike tilting and infectivity by hinge glycans. Nat Commun 2023; 14:7175. [PMID: 37935678 PMCID: PMC10630519 DOI: 10.1038/s41467-023-42836-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023] Open
Abstract
Coronavirus spike glycoproteins presented on the virion surface mediate receptor binding, and membrane fusion during virus entry and constitute the primary target for vaccine and drug development. How the structure dynamics of the full-length spikes incorporated in viral lipid envelope correlates with the virus infectivity remains poorly understood. Here we present structures and distributions of native spike conformations on vitrified human coronavirus NL63 (HCoV-NL63) virions without chemical fixation by cryogenic electron tomography (cryoET) and subtomogram averaging, along with site-specific glycan composition and occupancy determined by mass spectrometry. The higher oligomannose glycan shield on HCoV-NL63 spikes than on SARS-CoV-2 spikes correlates with stronger immune evasion of HCoV-NL63. Incorporation of cryoET-derived native spike conformations into all-atom molecular dynamic simulations elucidate the conformational landscape of the glycosylated, full-length spike that reveals a role of hinge glycans in modulating spike bending. We show that glycosylation at N1242 at the upper portion of the stalk is responsible for the extensive orientational freedom of the spike crown. Subsequent infectivity assays implicated involvement of N1242-glyan in virus entry. Our results suggest a potential therapeutic target site for HCoV-NL63.
Collapse
Affiliation(s)
- David Chmielewski
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA
| | - Eric A Wilson
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Grigore Pintilie
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA
| | - Peng Zhao
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Muyuan Chen
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Michael F Schmid
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA
| | - Graham Simmons
- Vitalant Research Institute, San Francisco, CA, 94118, USA
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lance Wells
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA
| | - Jing Jin
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Vitalant Research Institute, San Francisco, CA, 94118, USA.
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, 94143, USA.
| | - Abhishek Singharoy
- School of Molecular Sciences, Biodesign Institute, Arizona State University, Tempe, AZ, USA.
| | - Wah Chiu
- Biophysics Graduate Program, Stanford University, Stanford, CA, 94305, USA.
- Department of Bioengineering, and of Microbiology and Immunology, Stanford University, Stanford, CA, 94305, USA.
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, 94025, USA.
| |
Collapse
|
35
|
Le K, Kannappan S, Kim T, Lee JH, Lee HR, Kim KK. Structural understanding of SARS-CoV-2 virus entry to host cells. Front Mol Biosci 2023; 10:1288686. [PMID: 38033388 PMCID: PMC10683510 DOI: 10.3389/fmolb.2023.1288686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 10/16/2023] [Indexed: 12/02/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a major global health concern associated with millions of fatalities worldwide. Mutant variants of the virus have further exacerbated COVID-19 mortality and infection rates, emphasizing the urgent need for effective preventive strategies. Understanding the viral infection mechanism is crucial for developing therapeutics and vaccines. The entry of SARS-CoV-2 into host cells is a key step in the infection pathway and has been targeted for drug development. Despite numerous reviews of COVID-19 and the virus, there is a lack of comprehensive reviews focusing on the structural aspects of viral entry. In this review, we analyze structural changes in Spike proteins during the entry process, dividing the entry process into prebinding, receptor binding, proteolytic cleavage, and membrane fusion steps. By understanding the atomic-scale details of viral entry, we can better target the entry step for intervention strategies. We also examine the impacts of mutations in Spike proteins, including the Omicron variant, on viral entry. Structural information provides insights into the effects of mutations and can guide the development of therapeutics and vaccines. Finally, we discuss available structure-based approaches for the development of therapeutics and vaccines. Overall, this review provides a detailed analysis of the structural aspects of SARS-CoV-2 viral entry, highlighting its significance in the development of therapeutics and vaccines against COVID-19. Therefore, our review emphasizes the importance of structural information in combating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Kim Le
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Shrute Kannappan
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
| | - Truc Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| | - Jung Heon Lee
- Research Center for Advanced Materials Technology Core Research Institute, Suwon, Republic of Korea
- School of Advanced Materials and Science Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Hye-Ra Lee
- Department of Biotechnology and Bioinformatics, College of Science and Technology, Korea University, Sejong, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Sungkyunkwan University School of Medicine, Institute of Antibacterial Resistance Research and Therapeutics, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
36
|
Boix-Besora A, Gòdia F, Cervera L. Gag Virus-like Particles Functionalized with SARS-CoV-2 Variants: Generation, Characterization and Recognition by COVID-19 Convalescent Patients' Sera. Vaccines (Basel) 2023; 11:1641. [PMID: 38005972 PMCID: PMC10675557 DOI: 10.3390/vaccines11111641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023] Open
Abstract
The robustness, safety, versatility, and high immunogenicity of virus-like particles (VLPs) make them a promising approach for the generation of vaccines against a broad range of pathogens. VLPs are recombinant macromolecular structures that closely mimic the native conformation of viruses without carrying viral genetic material. Particularly, HIV-1 Gag-based VLPs are a suitable platform for the presentation of the SARS-CoV-2 Spike (S) protein on their surface. In this context, this work studies the effect of different rationally engineered mutations of the S protein to improve some of its characteristics. The studied variants harbored mutations such as proline substitutions for S stabilization, D614G from the early dominant pandemic form, the elimination of the S1/S2 furin cleavage site to improve S homogeneity, the suppression of a retention motif to favor its membrane localization, and cysteine substitutions to increase its immunogenicity and avoid potential undesired antibody-dependent enhancement (ADE) effects. The influence of the mutations on VLP expression was studied, as well as their immunogenic potential, by testing the recognition of the generated VLP variants by COVID-19 convalescent patients' sera. The results of this work are conceived to give insights on the selection of S protein candidates for their use as immunogens and to showcase the potential of VLPs as carriers for antigen presentation.
Collapse
Affiliation(s)
- Arnau Boix-Besora
- Grup d’Enginyeria de Bioprocessos i Biocatàlisi Aplicada ENG4BIO, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | | | | |
Collapse
|
37
|
Chakraborty S, Saha C. A multi-tier computational screening framework to effectively search the mutational space of SARS-CoV-2 receptor binding motif to identify mutants with enhanced ACE2 binding abilities. Mol Inform 2023; 42:e2300055. [PMID: 37590498 DOI: 10.1002/minf.202300055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 08/09/2023] [Accepted: 08/13/2023] [Indexed: 08/19/2023]
Abstract
SARS-CoV-2 gained crucial mutations at the receptor binding domain (RBD) that often changed the course of the pandemic leading to new waves with increased case fatality. Variants are observed with enhanced transmission and immune invasion abilities. Thus, predicting future variants with enhanced transmission ability is a problem of utmost research interest. Here, we have developed a multi-tier exhaustive SARS-CoV-2 mutation screening platform combining MM/GBSA, extensive molecular dynamics simulations, and steered molecular dynamics to identify RBD mutants with enhanced ACE2 binding capability. We have identified four RBM mutations (F490K, S494K, G504F, and the P499L) with significantly higher ACE2 binding abilities than wild-type RBD. Compared to wild-type RBD, they all form stable complexes with more hydrogen bonds and salt-bridge interactions with ACE2. Our simulation data suggest that these mutations allosterically alter the packing of the RBM interface of the RBD-ACE2 complex. As a result, the rupture force required to break the RBD-ACE2 contacts is significantly higher for these mutants.
Collapse
Affiliation(s)
- Sandipan Chakraborty
- Center for Innovation in Molecular and Pharmaceutical Sciences (CIMPS), Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Gachibowli, Hyderabad, 500046, India
| | - Chiranjeet Saha
- Amity Institute of Biotechnology, Amity University, Kolkata, 700135, India
| |
Collapse
|
38
|
McNamara RP, Maron JS, Boucau J, Roy V, Webb NE, Bertera HL, Barczak AK, Positives Study Staff T, Franko N, Logue JK, Kemp M, Li JZ, Zhou L, Hsieh CL, McLellan JS, Siedner MJ, Seaman MS, Lemieux JE, Chu HY, Alter G. Anamnestic humoral correlates of immunity across SARS-CoV-2 variants of concern. mBio 2023; 14:e0090223. [PMID: 37535402 PMCID: PMC10470538 DOI: 10.1128/mbio.00902-23] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/22/2023] [Indexed: 08/04/2023] Open
Abstract
While immune correlates against SARS-CoV-2 are typically defined at peak immunogenicity following vaccination, immunologic responses that expand selectively during the anamnestic response following infection can provide mechanistic and detailed insights into the immune mechanisms of protection. Moreover, whether anamnestic correlates are conserved across variants of concern (VOC), including the Delta and more distant Omicron VOC, remains unclear. To define the anamnestic correlates of immunity, across VOCs, we deeply profiled the humoral immune response in individuals infected with sequence-confirmed Delta or Omicron VOC after completing the vaccination series. While limited acute N-terminal domain and receptor-binding domain (RBD)-specific immune expansion was observed following breakthrough infection, a significant immunodominant expansion of opsonophagocytic Spike-specific antibody responses focused largely on the conserved S2-domain of SARS-CoV-2 was observed. This S2-specific functional humoral response continued to evolve over 2-3 weeks following Delta or Omicron breakthrough, targeting multiple VOCs and common coronaviruses. Strong responses were observed on the fusion peptide (FP) region and the heptad repeat 1 (HR1) region adjacent to the RBD. Notably, the FP is highly conserved across SARS-related coronaviruses and even non-SARS-related betacoronavirus. Taken together, our results point to a critical role of highly conserved, functional S2-specific responses in the anamnestic antibody response to SARS-CoV-2 infection across VOCs. These humoral responses linked to virus clearance can guide next-generation vaccine-boosting approaches to confer broad protection against future SARS-related coronaviruses. IMPORTANCE The Spike protein of SARS-CoV-2 is the primary target of antibody-based recognition. Selective pressures, be it the adaption to human-to-human transmission or evasion of previously acquired immunity, have spurred the emergence of variants of the virus such as the Delta and Omicron lineages. Therefore, understanding how antibody responses are expanded in breakthrough cases of previously vaccinated individuals can provide insights into key correlates of protection against current and future variants. Here, we show that vaccinated individuals who had documented COVID-19 breakthrough showed anamnestic antibody expansions targeting the conserved S2 subdomain of Spike, particularly within the fusion peptide region. These S2-directed antibodies were highly leveraged for non-neutralizing, phagocytic functions and were similarly expanded independent of the variant. We propose that through deep profiling of anamnestic antibody responses in breakthrough cases, we can identify antigen targets susceptible to novel monoclonal antibody therapy or vaccination-boosting strategies.
Collapse
Affiliation(s)
- Ryan P. McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Jenny S. Maron
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Julie Boucau
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Vicky Roy
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Nicholas E. Webb
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Harry L. Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| | - Amy K. Barczak
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - The Positives Study Staff
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Nicholas Franko
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jennifer K. Logue
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Megan Kemp
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Jonathan Z. Li
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Medicine, Brigham and Women’s Hospital, Boston, Massachusetts, USA
| | - Ling Zhou
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Ching-Lin Hsieh
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Jason S. McLellan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Mark J. Siedner
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Michael S. Seaman
- Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Jacob E. Lemieux
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| | - Helen Y. Chu
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, Massachusetts, USA
| |
Collapse
|
39
|
Hollingsworth SA, Noland CL, Vroom K, Saha A, Sam M, Gao Q, Zhou H, Grandy DU, Singh S, Wen Z, Warren C, Ma XS, Malashock D, Galli J, Go G, Eddins M, Mayhood T, Sathiyamoorthy K, Fridman A, Raoufi F, Gomez-Llorente Y, Patridge A, Tang Y, Chen SJ, Bailly M, Ji C, Kingsley LJ, Cheng AC, Geierstanger BH, Gorman DM, Zhang L, Pande K. Discovery and multimerization of cross-reactive single-domain antibodies against SARS-like viruses to enhance potency and address emerging SARS-CoV-2 variants. Sci Rep 2023; 13:13668. [PMID: 37608223 PMCID: PMC10444775 DOI: 10.1038/s41598-023-40919-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/18/2023] [Indexed: 08/24/2023] Open
Abstract
Coronaviruses have been the causative agent of three epidemics and pandemics in the past two decades, including the ongoing COVID-19 pandemic. A broadly-neutralizing coronavirus therapeutic is desirable not only to prevent and treat COVID-19, but also to provide protection for high-risk populations against future emergent coronaviruses. As all coronaviruses use spike proteins on the viral surface to enter the host cells, and these spike proteins share sequence and structural homology, we set out to discover cross-reactive biologic agents targeting the spike protein to block viral entry. Through llama immunization campaigns, we have identified single domain antibodies (VHHs) that are cross-reactive against multiple emergent coronaviruses (SARS-CoV, SARS-CoV-2, and MERS). Importantly, a number of these antibodies show sub-nanomolar potency towards all SARS-like viruses including emergent CoV-2 variants. We identified nine distinct epitopes on the spike protein targeted by these VHHs. Further, by engineering VHHs targeting distinct, conserved epitopes into multi-valent formats, we significantly enhanced their neutralization potencies compared to the corresponding VHH cocktails. We believe this approach is ideally suited to address both emerging SARS-CoV-2 variants during the current pandemic as well as potential future pandemics caused by SARS-like coronaviruses.
Collapse
Affiliation(s)
- Scott A Hollingsworth
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Molecular Structure and Design, Bristol-Myers Squibb Research and Development, 700 Bay Road, Redwood City, CA, 94063, USA
| | - Cameron L Noland
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karin Vroom
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Anasuya Saha
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Miranda Sam
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Qinshan Gao
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Haihong Zhou
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - David U Grandy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Sujata Singh
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Zhiyun Wen
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Christopher Warren
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Xiaohong Shirley Ma
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel Malashock
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Jennifer Galli
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Gwenny Go
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA
| | - Michael Eddins
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Todd Mayhood
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Karthik Sathiyamoorthy
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Arthur Fridman
- Data Science and Informatics, Merck & Co., Inc., 126 E. Lincoln Ave., Rahway, NJ, 07065, USA
| | - Fahimeh Raoufi
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yacob Gomez-Llorente
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Andrea Patridge
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Yinyan Tang
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Shi-Juan Chen
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Marc Bailly
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Chengjie Ji
- NovaBioAssays, LLC, 52 Dragon Ct, Woburn, MA, 01801, USA
| | - Laura J Kingsley
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
- Boehringer Ingelheim, 900 Ridgebury Rd, Ridgefield, CT, 06877, USA
| | - Alan C Cheng
- Computational and Structural Chemistry, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Bernhard H Geierstanger
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Daniel M Gorman
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA
| | - Lan Zhang
- Infectious Disease and Vaccine Discovery, Merck & Co., Inc., 770 Sumneytown Pike, West Point, PA, 19486, USA.
| | - Kalyan Pande
- Discovery Biologics, Merck & Co., Inc., 213 East Grand Ave., South San Francisco, CA, 94080, USA.
| |
Collapse
|
40
|
Tong X, McNamara RP, Avendaño MJ, Serrano EF, García-Salum T, Pardo-Roa C, Bertera HL, Chicz TM, Levican J, Poblete E, Salinas E, Muñoz A, Riquelme A, Alter G, Medina RA. Waning and boosting of antibody Fc-effector functions upon SARS-CoV-2 vaccination. Nat Commun 2023; 14:4174. [PMID: 37443074 PMCID: PMC10345146 DOI: 10.1038/s41467-023-39189-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 06/01/2023] [Indexed: 07/15/2023] Open
Abstract
Since the emergence of SARS-CoV-2, vaccines targeting COVID-19 have been developed with unprecedented speed and efficiency. CoronaVac, utilising an inactivated form of the COVID-19 virus and the mRNA26 based Pfizer/BNT162b2 vaccines are widely distributed. Beyond the ability of vaccines to induce production of neutralizing antibodies, they might lead to the generation of antibodies attenuating the disease by recruiting cytotoxic and opsonophagocytic functions. However, the Fc-effector functions of vaccine induced antibodies are much less studied than virus neutralization. Here, using systems serology, we follow the longitudinal Fc-effector profiles induced by CoronaVac and BNT162b2 up until five months following the two-dose vaccine regimen. Compared to BNT162b2, CoronaVac responses wane more slowly, albeit the levels remain lower than that of BNT162b2 recipients throughout the entire observation period. However, mRNA vaccine boosting of CoronaVac responses, including response to the Omicron variant, induce significantly higher peak of antibody functional responses with increased humoral breadth. In summary, we show that vaccine platform-induced humoral responses are not limited to virus neutralization but rather utilise antibody dependent effector functions. We demonstrate that this functionality wanes with different kinetics and can be rescued and expanded via boosting with subsequent homologous and heterologous vaccination.
Collapse
Affiliation(s)
- X Tong
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - R P McNamara
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - M J Avendaño
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E F Serrano
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - T García-Salum
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA
| | - C Pardo-Roa
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - H L Bertera
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - T M Chicz
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA
| | - J Levican
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Poblete
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - E Salinas
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Muñoz
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
| | - A Riquelme
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile
- Department of Gastroenterology, School of Medicine, Pontificia Universidad Catolica de Chile, Santiago, 8331150, Chile
| | - G Alter
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, 02139, USA.
| | - R A Medina
- Department of Pediatric Infectious Diseases and Immunology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Advanced Interdisciplinary Rehabilitation Register (AIRR) - COVID-19 Working Group, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8331150, Chile.
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, GA, 30322, USA.
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| |
Collapse
|
41
|
Deshpande A, Schormann N, Piepenbrink MS, Sobrido LM, Kobie JJ, Walter MR. Structure and epitope of a neutralizing monoclonal antibody that targets the stem helix of β coronaviruses. FEBS J 2023; 290:3422-3435. [PMID: 37014961 PMCID: PMC10330828 DOI: 10.1111/febs.16777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 04/06/2023]
Abstract
Monoclonal antibodies that retain neutralizing activity against multiple coronavirus (CoV) lineages and variants of concern (VoC) must be developed to protect against future pandemics. These broadly neutralizing MAbs (BNMAbs) may be used as therapeutics and/or to assist in the rational design of vaccines that induce BNMAbs. 1249A8 is a BNMAb that targets the stem helix (SH) region of CoV spike (S) protein and neutralizes Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) original strain, delta, and omicron VoC, Severe Acute Respiratory Syndrome CoV (SARS-CoV), and Middle East Respiratory Syndrome CoV (MERS-CoV). To understand its mechanism of action, the crystal structure of 1249A8 bound to a MERS-CoV SH peptide was determined at 2.1 Å resolution. BNMAb 1249A8 mimics the SARS-CoV-2 S loop residues 743-749, which interacts with the N-terminal end of the SH helix in the S post-fusion conformation. The conformation of 1249A8-bound SH is distinct from the SH conformation observed in the post-fusion SARS-CoV-2 S structure, suggesting 1249A8 disrupts the secondary structure and refolding events required for CoV post-fusion S to initiate membrane fusion and ultimately infection. This study provides novel insights into the neutralization mechanisms of SH-targeting CoV BNMAbs that may inform vaccine development and the design of optimal BNMAb therapeutics.
Collapse
Affiliation(s)
- Ashlesha Deshpande
- Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| | - Nobert Schormann
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| | - Mike S. Piepenbrink
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Luis Martinez Sobrido
- Disease Intervention & Prevention Program, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - James J. Kobie
- Department of Medicine, Division of Infectious Diseases, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mark R. Walter
- Department of Microbiology, University of Alabama at Birmingham, Birmingham Alabama, AL, USA
| |
Collapse
|
42
|
Su R, Zeng J, Marcink TC, Porotto M, Moscona A, O’Shaughnessy B. Host Cell Membrane Capture by the SARS-CoV-2 Spike Protein Fusion Intermediate. ACS CENTRAL SCIENCE 2023; 9:1213-1228. [PMID: 37396856 PMCID: PMC10255576 DOI: 10.1021/acscentsci.3c00158] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Indexed: 07/04/2023]
Abstract
Cell entry by SARS-CoV-2 is accomplished by the S2 subunit of the spike S protein on the virion surface by capture of the host cell membrane and fusion with the viral envelope. Capture and fusion require the prefusion S2 to transit to its potent fusogenic form, the fusion intermediate (FI). However, the FI structure is unknown, detailed computational models of the FI are unavailable, and the mechanisms and timing of membrane capture and fusion are not established. Here, we constructed a full-length model of the SARS-CoV-2 FI by extrapolating from known SARS-CoV-2 pre- and postfusion structures. In atomistic and coarse-grained molecular dynamics simulations the FI was remarkably flexible and executed giant bending and extensional fluctuations due to three hinges in the C-terminal base. The simulated configurations and their giant fluctuations are quantitatively consistent with SARS-CoV-2 FI configurations measured recently using cryo-electron tomography. Simulations suggested a host cell membrane capture time of ∼2 ms. Isolated fusion peptide simulations identified an N-terminal helix that directed and maintained binding to the membrane but grossly underestimated the binding time, showing that the fusion peptide environment is radically altered when attached to its host fusion protein. The large configurational fluctuations of the FI generated a substantial exploration volume that aided capture of the target membrane, and may set the waiting time for fluctuation-triggered refolding of the FI that draws the viral envelope and host cell membrane together for fusion. These results describe the FI as machinery that uses massive configurational fluctuations for efficient membrane capture and suggest novel potential drug targets.
Collapse
Affiliation(s)
- Rui Su
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Jin Zeng
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Tara C. Marcink
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
| | - Matteo Porotto
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Experimental Medicine, University of
Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Anne Moscona
- Department
of Pediatrics, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
- Center
for Host−Pathogen Interaction, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Microbiology & Immunology, Columbia
University Vagelos College of Physicians & Surgeons, New York, New York 10032, United States
- Department
of Physiology, Columbia University Vagelos
College of Physicians & Surgeons, New York, New York 10032, United States
| | - Ben O’Shaughnessy
- Department
of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
43
|
Brand M, Keşmir C. Evolution of SARS-CoV-2-specific CD4 + T cell epitopes. Immunogenetics 2023; 75:283-293. [PMID: 36719467 PMCID: PMC9887569 DOI: 10.1007/s00251-023-01295-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 01/10/2023] [Indexed: 02/01/2023]
Abstract
Vaccination clearly decreases coronavirus disease 2019 (COVID-19) mortality; however, they also impose selection pressure on the virus, which promotes the evolution of immune escape variants. For example, despite the high vaccination level in especially Western countries, the Omicron variant caused millions of breakthrough infections, suggesting that the highly mutated spike protein in the Omicron variant can escape antibody immunity much more efficiently than the other variants of concern (VOCs). In this study, we investigated the resistance/susceptibility of T helper cell responses that are necessary for generating efficient long-lasting antibody immunity, in several VOCs. By predicting T helper cell epitopes on the spike protein for most common HLA-DRB1 alleles worldwide, we found that although most of high frequency HLA-DRB1 alleles have several potential T helper cell epitopes, few alleles like HLA-DRB1 13:01 and 11:01 are not predicted to have any significant T helper cell responses after vaccination. Using these predictions, a population based on realistic human leukocyte antigen-II (HLA-II) frequencies were simulated to visualize the T helper cell immunity on the population level. While a small fraction of this population had alarmingly little predicted CD4 T cell epitopes, the majority had several epitopes that should be enough to generate efficient B cell responses. Moreover, we show that VOC spike mutations hardly affect T helper epitopes and mainly occur in other residues of the spike protein. These results suggest that lack of long-lasting antibody responses is not likely due to loss of T helper cell epitopes in new VOCs.
Collapse
Affiliation(s)
- Marina Brand
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands
| | - Can Keşmir
- Theoretical Biology & Bioinformatics, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
44
|
Halma MTJ, Plothe C, Marik P, Lawrie TA. Strategies for the Management of Spike Protein-Related Pathology. Microorganisms 2023; 11:1308. [PMID: 37317282 PMCID: PMC10222799 DOI: 10.3390/microorganisms11051308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 05/04/2023] [Accepted: 05/10/2023] [Indexed: 06/16/2023] Open
Abstract
In the wake of the COVID-19 crisis, a need has arisen to prevent and treat two related conditions, COVID-19 vaccine injury and long COVID-19, both of which can trace at least part of their aetiology to the spike protein, which can cause harm through several mechanisms. One significant mechanism of harm is vascular, and it is mediated by the spike protein, a common element of the COVID-19 illness, and it is related to receiving a COVID-19 vaccine. Given the significant number of people experiencing these two related conditions, it is imperative to develop treatment protocols, as well as to consider the diversity of people experiencing long COVID-19 and vaccine injury. This review summarizes the known treatment options for long COVID-19 and vaccine injury, their mechanisms, and their evidentiary basis.
Collapse
Affiliation(s)
| | - Christof Plothe
- Center for Biophysical Osteopathy, Am Wegweiser 27, 55232 Alzey, Germany
| | - Paul Marik
- Front Line COVID-19 Critical Care Alliance (FLCCC), 2001 L St. NW Suite 500, Washington, DC 20036, USA;
| | | |
Collapse
|
45
|
Devaux CA, Fantini J. Unravelling Antigenic Cross-Reactions toward the World of Coronaviruses: Extent of the Stability of Shared Epitopes and SARS-CoV-2 Anti-Spike Cross-Neutralizing Antibodies. Pathogens 2023; 12:713. [PMID: 37242383 PMCID: PMC10220573 DOI: 10.3390/pathogens12050713] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023] Open
Abstract
The human immune repertoire retains the molecular memory of a very great diversity of target antigens (epitopes) and can recall this upon a second encounter with epitopes against which it has previously been primed. Although genetically diverse, proteins of coronaviruses exhibit sufficient conservation to lead to antigenic cross-reactions. In this review, our goal is to question whether pre-existing immunity against seasonal human coronaviruses (HCoVs) or exposure to animal CoVs has influenced the susceptibility of human populations to SARS-CoV-2 and/or had an impact upon the physiopathological outcome of COVID-19. With the hindsight that we now have regarding COVID-19, we conclude that although antigenic cross-reactions between different coronaviruses exist, cross-reactive antibody levels (titers) do not necessarily reflect on memory B cell frequencies and are not always directed against epitopes which confer cross-protection against SARS-CoV-2. Moreover, the immunological memory of these infections is short-term and occurs in only a small percentage of the population. Thus, in contrast to what might be observed in terms of cross-protection at the level of a single individual recently exposed to circulating coronaviruses, a pre-existing immunity against HCoVs or other CoVs can only have a very minor impact on SARS-CoV-2 circulation at the level of human populations.
Collapse
Affiliation(s)
- Christian A. Devaux
- Laboratory Microbes Evolution Phylogeny and Infection (MEPHI), Aix-Marseille Université, IRD, APHM Institut Hospitalo-Universitaire—Méditerranée Infection, 13005 Marseille, France
- Centre National de la Recherche Scientifique (CNRS-SNC5039), 13009 Marseille, France
| | - Jacques Fantini
- Aix-Marseille Université, INSERM UMR_S 1072, 13015 Marseille, France
| |
Collapse
|
46
|
Guo L, Lin S, Chen Z, Cao Y, He B, Lu G. Targetable elements in SARS-CoV-2 S2 subunit for the design of pan-coronavirus fusion inhibitors and vaccines. Signal Transduct Target Ther 2023; 8:197. [PMID: 37164987 PMCID: PMC10170451 DOI: 10.1038/s41392-023-01472-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/04/2023] [Accepted: 04/23/2023] [Indexed: 05/12/2023] Open
Abstract
The ongoing global pandemic of coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused devastating impacts on the public health and the global economy. Rapid viral antigenic evolution has led to the continual generation of new variants. Of special note is the recently expanding Omicron subvariants that are capable of immune evasion from most of the existing neutralizing antibodies (nAbs). This has posed new challenges for the prevention and treatment of COVID-19. Therefore, exploring broad-spectrum antiviral agents to combat the emerging variants is imperative. In sharp contrast to the massive accumulation of mutations within the SARS-CoV-2 receptor-binding domain (RBD), the S2 fusion subunit has remained highly conserved among variants. Hence, S2-based therapeutics may provide effective cross-protection against new SARS-CoV-2 variants. Here, we summarize the most recently developed broad-spectrum fusion inhibitors (e.g., nAbs, peptides, proteins, and small-molecule compounds) and candidate vaccines targeting the conserved elements in SARS-CoV-2 S2 subunit. The main focus includes all the targetable S2 elements, namely, the fusion peptide, stem helix, and heptad repeats 1 and 2 (HR1-HR2) bundle. Moreover, we provide a detailed summary of the characteristics and action-mechanisms for each class of cross-reactive fusion inhibitors, which should guide and promote future design of S2-based inhibitors and vaccines against new coronaviruses.
Collapse
Affiliation(s)
- Liyan Guo
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Sheng Lin
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Zimin Chen
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yu Cao
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Disaster Medicine Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Bin He
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Guangwen Lu
- Department of Emergency Medicine, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
47
|
Adams LE, Leist SR, Dinnon KH, West A, Gully KL, Anderson EJ, Loome JF, Madden EA, Powers JM, Schäfer A, Sarkar S, Castillo IN, Maron JS, McNamara RP, Bertera HL, Zweigert MR, Higgins JS, Hampton BK, Premkumar L, Alter G, Montgomery SA, Baxter VK, Heise MT, Baric RS. Fc-mediated pan-sarbecovirus protection after alphavirus vector vaccination. Cell Rep 2023; 42:112326. [PMID: 37000623 PMCID: PMC10063157 DOI: 10.1016/j.celrep.2023.112326] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/01/2023] Open
Abstract
Group 2B β-coronaviruses (sarbecoviruses) have caused regional and global epidemics in modern history. Here, we evaluate the mechanisms of cross-sarbecovirus protective immunity, currently less clear yet important for pan-sarbecovirus vaccine development, using a panel of alphavirus-vectored vaccines covering bat to human strains. While vaccination does not prevent virus replication, it protects against lethal heterologous disease outcomes in both severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and clade 2 bat sarbecovirus challenge models. The spike vaccines tested primarily elicit a highly S1-specific homologous neutralizing antibody response with no detectable cross-virus neutralization. Rather, non-neutralizing antibody functions, mechanistically linked to FcgR4 and spike S2, mediate cross-protection in wild-type mice. Protection is lost in FcR knockout mice, further supporting a model for non-neutralizing, protective antibodies. These data highlight the importance of FcR-mediated cross-protective immune responses in universal pan-sarbecovirus vaccine designs.
Collapse
Affiliation(s)
- Lily E Adams
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sarah R Leist
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kenneth H Dinnon
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ande West
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kendra L Gully
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Elizabeth J Anderson
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jennifer F Loome
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Emily A Madden
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John M Powers
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Alexandra Schäfer
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sanjay Sarkar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Izabella N Castillo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jenny S Maron
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Ryan P McNamara
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Harry L Bertera
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Mark R Zweigert
- Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jaclyn S Higgins
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Brea K Hampton
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Lakshmanane Premkumar
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT, and Harvard University, Cambridge, MA, USA
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Dallas Tissue Research, Dallas, TX, USA
| | - Victoria K Baxter
- Division of Comparative Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark T Heise
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Ralph S Baric
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Department of Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Rapidly Emerging Antiviral Drug Discovery Initiative, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
48
|
Allen JD, Ivory DP, Song SG, He WT, Capozzola T, Yong P, Burton DR, Andrabi R, Crispin M. The diversity of the glycan shield of sarbecoviruses related to SARS-CoV-2. Cell Rep 2023; 42:112307. [PMID: 36972173 PMCID: PMC10015101 DOI: 10.1016/j.celrep.2023.112307] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/16/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023] Open
Abstract
Animal reservoirs of sarbecoviruses represent a significant risk of emergent pandemics, as evidenced by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. Vaccines remain successful at limiting severe disease and death, but the potential for further coronavirus zoonosis motivates the search for pan-coronavirus vaccines. This necessitates a better understanding of the glycan shields of coronaviruses, which can occlude potential antibody epitopes on spike glycoproteins. Here, we compare the structure of 12 sarbecovirus glycan shields. Of the 22 N-linked glycan attachment sites present on SARS-CoV-2, 15 are shared by all 12 sarbecoviruses. However, there are significant differences in the processing state at glycan sites in the N-terminal domain, such as N165. Conversely, glycosylation sites in the S2 domain are highly conserved and contain a low abundance of oligomannose-type glycans, suggesting a low glycan shield density. The S2 domain may therefore provide a more attractive target for immunogen design efforts aiming to generate a pan-coronavirus antibody response.
Collapse
Affiliation(s)
- Joel D Allen
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Dylan P Ivory
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Sophie Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wan-Ting He
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Tazio Capozzola
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Peter Yong
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Dennis R Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA; Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 13 92037, USA; IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA; Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Max Crispin
- School of Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| |
Collapse
|
49
|
Tan TJC, Mou Z, Lei R, Ouyang WO, Yuan M, Song G, Andrabi R, Wilson IA, Kieffer C, Dai X, Matreyek KA, Wu NC. High-throughput identification of prefusion-stabilizing mutations in SARS-CoV-2 spike. Nat Commun 2023; 14:2003. [PMID: 37037866 PMCID: PMC10086000 DOI: 10.1038/s41467-023-37786-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 03/31/2023] [Indexed: 04/12/2023] Open
Abstract
Designing prefusion-stabilized SARS-CoV-2 spike is critical for the effectiveness of COVID-19 vaccines. All COVID-19 vaccines in the US encode spike with K986P/V987P mutations to stabilize its prefusion conformation. However, contemporary methods on engineering prefusion-stabilized spike immunogens involve tedious experimental work and heavily rely on structural information. Here, we establish a systematic and unbiased method of identifying mutations that concomitantly improve expression and stabilize the prefusion conformation of the SARS-CoV-2 spike. Our method integrates a fluorescence-based fusion assay, mammalian cell display technology, and deep mutational scanning. As a proof-of-concept, we apply this method to a region in the S2 domain that includes the first heptad repeat and central helix. Our results reveal that besides K986P and V987P, several mutations simultaneously improve expression and significantly lower the fusogenicity of the spike. As prefusion stabilization is a common challenge for viral immunogen design, this work will help accelerate vaccine development against different viruses.
Collapse
Affiliation(s)
- Timothy J C Tan
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zongjun Mou
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Ruipeng Lei
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Wenhao O Ouyang
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Meng Yuan
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ge Song
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA, 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA, 92037, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Collin Kieffer
- Department of Microbiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Xinghong Dai
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Kenneth A Matreyek
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA
| | - Nicholas C Wu
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
- Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
50
|
Amanat F, Clark J, Carreño JM, Strohmeier S, Yellin T, Meade PS, Bhavsar D, Muramatsu H, Sun W, Coughlan L, Pardi N, Krammer F. Immunity to Seasonal Coronavirus Spike Proteins Does Not Protect from SARS-CoV-2 Challenge in a Mouse Model but Has No Detrimental Effect on Protection Mediated by COVID-19 mRNA Vaccination. J Virol 2023; 97:e0166422. [PMID: 36779758 PMCID: PMC10062180 DOI: 10.1128/jvi.01664-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/14/2023] [Indexed: 02/14/2023] Open
Abstract
Seasonal coronaviruses have been circulating widely in the human population for many years. With increasing age, humans are more likely to have been exposed to these viruses and to have developed immunity against them. It has been hypothesized that this immunity to seasonal coronaviruses may provide partial protection against infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and it has also been shown that coronavirus disease 2019 (COVID-19) vaccination induces a back-boosting effects against the spike proteins of seasonal betacoronaviruses. In this study, we tested if immunity to the seasonal coronavirus spikes from OC43, HKU1, 229E, or NL63 would confer protection against SARS-CoV-2 challenge in a mouse model, and whether pre-existing immunity against these spikes would weaken the protection afforded by mRNA COVID-19 vaccination. We found that mice vaccinated with the seasonal coronavirus spike proteins had no increased protection compared to the negative controls. While a negligible back-boosting effect against betacoronavirus spike proteins was observed after SARS-CoV-2 infection, there was no negative original antigenic sin-like effect on the immune response and protection induced by SARS-CoV-2 mRNA vaccination in animals with pre-existing immunity to seasonal coronavirus spike proteins. IMPORTANCE The impact that immunity against seasonal coronaviruses has on both susceptibility to SARS-CoV-2 infection as well as on COVID-19 vaccination is unclear. This study provides insights into both questions in a mouse model of SARS-CoV-2.
Collapse
Affiliation(s)
- Fatima Amanat
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jordan Clark
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Juan Manuel Carreño
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shirin Strohmeier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Temima Yellin
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Philip S. Meade
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Disha Bhavsar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Hiromi Muramatsu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Weina Sun
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lynda Coughlan
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Vaccine Development and Global Health (CVD), University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Norbert Pardi
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Florian Krammer
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Center for Vaccine Research and Pandemic Preparedness (C-VaRPP), Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|