1
|
Kohda H, Tanaka M, Shichino S, Arakawa S, Komori T, Ito A, Wada E, Ochi K, Yuan X, Takeda T, Saiki A, Tatsuno I, Ikeda K, Miyai Y, Enomoto A, Morikawa Y, Shimizu S, Ueha S, Matsushima K, Ogawa Y, Suganami T. Novel Cell-to-Cell Communications Between Macrophages and Fibroblasts Regulate Obesity-Induced Adipose Tissue Fibrosis. Diabetes 2025; 74:1135-1152. [PMID: 40063503 DOI: 10.2337/db24-0762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/05/2025] [Indexed: 05/16/2025]
Abstract
Recent evidence has shown that adipose tissue eventually develops fibrosis through complex cellular cross talk. Although advances in single-cell transcriptomics have provided new insights into cell diversity during this process, little is known about the interactions among the distinct cell types. In this study, we used single-cell analytical approaches to investigate cell-to-cell communications between macrophages and fibroblasts in the adipose tissue of diet-induced obese mice. Spatial transcriptomics was used to understand local cellular interaction within crown-like structures (CLS), a characteristic histological feature of adipose tissue in obesity driving inflammation and fibrosis. Macrophages and fibroblasts were divided into several subclusters that appeared to interact more intensely and complexly with the degree of obesity. Besides previously reported lipid-associated macrophages (LAMs), we found a small subcluster expressing macrophage-inducible C-type lectin (Mincle), specifically localizing to CLS. Mincle signaling increased the expression of oncostatin M (Osm), suppressing collagen gene expression in adipose tissue fibroblasts. Consistent with these findings, Osm deficiency in immune cells enhanced obesity-induced adipose tissue fibrosis in vivo. Moreover, OSM expression was positively correlated with MINCLE expression in human adipose tissue during obesity. Our results suggest that Osm secreted by Mincle-expressing macrophages is involved in dynamic adipose tissue remodeling in the proximity of CLS. ARTICLE HIGHLIGHTS Adipose tissue fibrosis is a complex and dynamic process that involves many cell types, such as macrophages and fibroblasts. Crown-like structures, which drive inflammation and fibrosis in obesity, are excellent targets for single-cell and spatial transcriptomics. We found novel cell-to-cell communications between macrophages and fibroblasts in adipose tissue from diet-induced obese mice, particularly during the fibrotic phase. We elucidated the role of the macrophage-inducible C-type lectin-oncostatin M axis in obesity-induced adipose tissue fibrosis.
Collapse
Grants
- Uehara Memorial Foundation
- SEI Group CSR Foundation
- Innovative Research Center for Preventive Medical Nagoya University
- Nagoya University CIBoG WISE program from MEXT Nagoya University
- Quantum-Based Frontier Research Hub for Industry D Nagoya University
- The Hori Science & Art Foundation
- Harmonic Ito Foundation
- 22K19524 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 22K19723 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23H04776 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23K16815 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 23K27377 Ministry of Education, Culture, Sports, Science and Technology of Japan
- 24K10076 Ministry of Education, Culture, Sports, Science and Technology of Japan
- CREST [JP24gm1210009s0106] Japan Agency for Medical Research and Development
- Research Program on Hepatitis [JP24fk0210154s0501] Japan Agency for Medical Research and Development
- Research Program on Rare and Intractable Diseases Japan Agency for Medical Research and Development
- Takeda Science Foundation
- Suzuken Memorial Foundation
- Foundation of Public Interest of Tatematsu
- Secom Science and Technology Foundation
Collapse
Affiliation(s)
- Hiro Kohda
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Miyako Tanaka
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
| | - Shigeyuki Shichino
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Satoko Arakawa
- Research Core, Institute of Research, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Tadasuke Komori
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Ayaka Ito
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Japan
| | - Eri Wada
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Kozue Ochi
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Xunmei Yuan
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takehiko Takeda
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsuhito Saiki
- Center of Diabetes, Endocrine and Metabolism, Toho University Sakura Medical Center, Sakura, Japan
| | - Ichiro Tatsuno
- Chiba Prefectural University of Health Sciences, Chiba, Japan
| | - Kenji Ikeda
- Department of Molecular Endocrinology and Metabolism, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Yuki Miyai
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Atsushi Enomoto
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yoshihiro Morikawa
- Department of Anatomy & Neurobiology, Wakayama Medical University, Wakayama, Japan
| | - Shigeomi Shimizu
- Department of Pathological Cell Biology, TMDU Advanced Research Institute, Tokyo Medical and Dental University (TMDU), Tokyo, Japan
| | - Satoshi Ueha
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Kouji Matsushima
- Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Noda, Japan
| | - Yoshihiro Ogawa
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Takayoshi Suganami
- Department of Molecular Medicine and Metabolism, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Japan
- Department of Immunometabolism, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Nagoya, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya, Japan
| |
Collapse
|
2
|
Brunner M, Meylan-Merlini J, Muriset M, Oreshkov S, Messina A, Messerer M, Daniel R, Hewer E, Brouland JP, Santoni F. Whole genome sequencing and single-cell transcriptomics identify KMT2D inactivation as a potential new driver for pituitary tumors: a case report. BJC REPORTS 2025; 3:43. [PMID: 40523964 DOI: 10.1038/s44276-025-00155-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 05/02/2025] [Accepted: 05/10/2025] [Indexed: 06/19/2025]
Abstract
The pituitary gland is a main component of the endocrine system and a master controller of hormone production and secretion. Unlike neoplastic formation in other organs, Pituitary Neuroendocrine Tumors (PitNETs) are frequent in the population (16%) and, for unknown reasons, almost never metastatic. So far, few genes have been identified as drivers for PitNETs, such as GNAS in somatotroph tumors and USP8 in corticotroph tumors. Using whole genome sequencing, we uncover a potential novel driver, the histone methyltransferase KMT2D, in a patient in his 50s suffering from a mixed somato-lactotroph tumor. Coverage ratio between germline and tumor revealed extensive chromosomal alterations. Single-cell RNA sequencing of the tumor shows up-regulation of known tumorigenic pathways compared to a healthy reference, as well as a different immune infiltration profile compared to other PitNETs, more closely resembling the profile of carcinomas than adenomas. Genome-wide DNA methylation analysis identified 796 differentially methylated regions, including notable hypomethylation in the promoter of SPON2, an immune-related gene. Our results show that tumors considered quiet and non-aggressive can share drivers, features, and epigenetic alterations with metastatic forms of cancer, raising questions about the biological mechanisms controlling their homeostasis.
Collapse
Affiliation(s)
- Maxime Brunner
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Jenny Meylan-Merlini
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Maude Muriset
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
| | - Sergey Oreshkov
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Andrea Messina
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Mahmoud Messerer
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Roy Daniel
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- Department of Neurosurgery, University Hospital of Lausanne, Lausanne, Switzerland
| | - Ekkehard Hewer
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Jean Phillipe Brouland
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
- University Institute of Pathology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Federico Santoni
- Department of Endocrinology, Diabetology and Metabolism, University Hospital of Lausanne, Lausanne, Switzerland.
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
3
|
Ratnasiri K, Mach SN, Blish CA, Khatri P. scMetaIntegrator: a meta-analysis approach to paired single-cell differential expression analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.04.657898. [PMID: 40501846 PMCID: PMC12157664 DOI: 10.1101/2025.06.04.657898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2025]
Abstract
Traditional differential gene expression methods are limited for analysis of single cell RNA-sequencing (scRNA-seq) studies that use paired repeated measures and matched cohort designs. Many existing approaches consider cells as independent samples, leading to high false positive rates while ignoring inherent sampling structures. Although pseudobulk methods address this, they ignore intra-sample expression variability and have higher false negatives rates. We propose a novel meta-analysis approach that accounts for biological replicates and cell variability in paired scRNA-seq data. Using both real and synthetic datasets, we show that our method, single-cell MetaIntegrator (https://github.com/Khatri-Lab/scMetaIntegrator), provides robust effect size estimates and reproducible p-values.
Collapse
Affiliation(s)
- Kalani Ratnasiri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Epidemiology and Population Health, Stanford University, Stanford, CA, USA
| | - Sara N. Mach
- Department of Biology, Seattle Pacific University, Seattle, WA, 98119 USA
| | - Catherine A. Blish
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Purvesh Khatri
- Stanford Immunology Program, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Center for Biomedical Informatics Research, Department of Medicine, Stanford University, Stanford, CA, USA
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
4
|
Liang Y, Koche R, Chalamalasetty RB, Stephen DN, Kennedy MW, Lao Z, Pang Y, Kuo YY, Lee M, Lobo FP, Huang X, Anna-Katerina H, Yamaguchi TP, Anderson KV, Joyner AL. Transcription factors SP5 and SP8 drive primary cilia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.06.03.657415. [PMID: 40501818 PMCID: PMC12157413 DOI: 10.1101/2025.06.03.657415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/22/2025]
Abstract
While specific transcription factors are known to regulate cell fate decisions, the degree to which they can stimulate formation of specific cell organelles is less clear. We used a multi-omics comparison of the transcriptomes of ciliated and non-ciliated embryonic cells to identify transcription factors upregulated in ciliated cells, and conditional genetics in mouse embryos and stem cells to demonstrate that SP5/8 regulate cilia formation and gene expression. In Sp5/8 mutant embryos primary and motile cilia are shorter than normal and reduced in number across cell types, contributing to situs inversus and hydrocephalus. Moreover, expression of SP8 is sufficient to induce primary cilia in unciliated cells. This work opens new avenues for studying cilia assembly using stem cell models and offers new insights into human ciliopathies.
Collapse
Affiliation(s)
- Yinwen Liang
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Richard Koche
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ravindra B. Chalamalasetty
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD, USA
| | - Daniel N. Stephen
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mark W. Kennedy
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD, USA
| | - Zhimin Lao
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Moonsup Lee
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD, USA
| | - Francisco Pereira Lobo
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD, USA
| | - Xiaofeng Huang
- Division of Regenerative Medicine and Hartman Institute for Therapeutic Organ Regeneration, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Hadjantonakis Anna-Katerina
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| | - Terry P. Yamaguchi
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, NCI-Frederick, NIH, Frederick, MD, USA
| | - Kathryn V. Anderson
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Biochemistry, Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
- Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY, USA
| |
Collapse
|
5
|
Zhu M, Hsu CW, Peralta Ogorek LL, Taylor IW, La Cavera S, Oliveira DM, Verma L, Mehra P, Mijar M, Sadanandom A, Perez-Cota F, Boerjan W, Nolan TM, Bennett MJ, Benfey PN, Pandey BK. Single-cell transcriptomics reveal how root tissues adapt to soil stress. Nature 2025; 642:721-729. [PMID: 40307555 PMCID: PMC12176638 DOI: 10.1038/s41586-025-08941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Land plants thrive in soils showing vastly different properties and environmental stresses1. Root systems can adapt to contrasting soil conditions and stresses, yet how their responses are programmed at the individual cell scale remains unclear. Using single-cell RNA sequencing and spatial transcriptomic approaches, we showed major expression changes in outer root cell types when comparing the single-cell transcriptomes of rice roots grown in gel versus soil conditions. These tissue-specific transcriptional responses are related to nutrient homeostasis, cell wall integrity and defence in response to heterogeneous soil versus homogeneous gel growth conditions. We also demonstrate how the model soil stress, termed compaction, triggers expression changes in cell wall remodelling and barrier formation in outer and inner root tissues, regulated by abscisic acid released from phloem cells. Our study reveals how root tissues communicate and adapt to contrasting soil conditions at single-cell resolution.
Collapse
Affiliation(s)
- Mingyuan Zhu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Che-Wei Hsu
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Lucas L Peralta Ogorek
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Isaiah W Taylor
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Salvatore La Cavera
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Dyoni M Oliveira
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Lokesh Verma
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Poonam Mehra
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK
| | - Medhavinee Mijar
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
| | - Ari Sadanandom
- Department of Biosciences, University of Durham, Durham, UK
| | - Fernando Perez-Cota
- Optics and Photonics Group, Faculty of Engineering, University of Nottingham, Nottingham, UK
| | - Wout Boerjan
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Trevor M Nolan
- Department of Biology, Duke University, Durham, NC, USA
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Malcolm J Bennett
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| | - Philip N Benfey
- Department of Biology, Duke University, Durham, NC, USA.
- Howard Hughes Medical Institute, Duke University, Durham, NC, USA.
| | - Bipin K Pandey
- Plant and Crop Science Department, School of Biosciences, University of Nottingham, Nottingham, UK.
| |
Collapse
|
6
|
Nejo T, Krishna S, Yamamichi A, Lakshmanachetty S, Jimenez C, Lee KY, Baker DL, Young JS, Chen T, Phyu SSS, Phung L, Gallus M, Maldonado GC, Okada K, Ogino H, Watchmaker PB, Diebold D, Choudhury A, Daniel AGS, Cadwell CR, Raleigh DR, Hervey-Jumper SL, Okada H. Glioma-neuronal circuit remodeling induces regional immunosuppression. Nat Commun 2025; 16:4770. [PMID: 40404658 PMCID: PMC12098748 DOI: 10.1038/s41467-025-60074-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 05/12/2025] [Indexed: 05/24/2025] Open
Abstract
Neuronal activity-driven mechanisms influence glioblastoma cell proliferation and invasion, while glioblastoma remodels neuronal circuits. Although a subpopulation of malignant cells enhances neuronal connectivity, their impact on the immune system remains unclear. Here, we show that glioblastoma regions with enhanced neuronal connectivity exhibit regional immunosuppression, characterized by distinct immune cell compositions and the enrichment of anti-inflammatory tumor-associated macrophages (TAMs). In preclinical models, knockout of Thrombospondin-1 (TSP1/Thbs1) in glioblastoma cells suppresses synaptogenesis and glutamatergic neuronal hyperexcitability. Furthermore, TSP1 knockout restores antigen presentation-related genes, promotes the infiltration of pro-inflammatory TAMs and CD8 + T-cells in the tumor, and alleviates TAM-mediated T-cell suppression. Pharmacological inhibition of glutamatergic signaling also shifts TAMs toward a less immunosuppressive state, prolongs survival in mice, and shows the potential to enhance the efficacy of immune cell-based therapy. These findings confirm that glioma-neuronal circuit remodeling is strongly linked with regional immunosuppression and suggest that targeting glioma-neuron-immune crosstalk could provide avenues for immunotherapy.
Collapse
Affiliation(s)
- Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Saritha Krishna
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Christian Jimenez
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Y Lee
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Donovan L Baker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jacob S Young
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tiffany Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Su Su Sabai Phyu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lan Phung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Gabriella C Maldonado
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David Diebold
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Abrar Choudhury
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Andy G S Daniel
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Cathryn R Cadwell
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Weill Neurohub, San Francisco, CA, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco, San Francisco, CA, USA
| | - David R Raleigh
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Weill Neurohub, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
7
|
Ameku T, Laddach A, Beckwith H, Milona A, Rogers LS, Schwayer C, Nye E, Tough IR, Thoumas JL, Gautam UK, Wang YF, Jha S, Castano-Medina A, Amourda C, Vaelli PM, Gevers S, Irvine EE, Meyer L, Andrew I, Choi KL, Patel B, Francis AJ, Studd C, Game L, Young G, Murphy KG, Owen B, Withers DJ, Rodriguez-Colman M, Cox HM, Liberali P, Schwarzer M, Leulier F, Pachnis V, Bellono NW, Miguel-Aliaga I. Growth of the maternal intestine during reproduction. Cell 2025; 188:2738-2756.e22. [PMID: 40112802 DOI: 10.1016/j.cell.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 12/12/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
The organs of many female animals are remodeled by reproduction. Using the mouse intestine, a striking and tractable model of organ resizing, we find that reproductive remodeling is anticipatory and distinct from diet- or microbiota-induced resizing. Reproductive remodeling involves partially irreversible elongation of the small intestine and fully reversible growth of its epithelial villi, associated with an expansion of isthmus progenitors and accelerated enterocyte migration. We identify induction of the SGLT3a transporter in a subset of enterocytes as an early reproductive hallmark. Electrophysiological and genetic interrogations indicate that SGLT3a does not sustain digestive functions or enterocyte health; rather, it detects protons and sodium to extrinsically support the expansion of adjacent Fgfbp1-positive isthmus progenitors, promoting villus growth. Our findings reveal unanticipated specificity to physiological organ remodeling. We suggest that organ- and state-specific growth programs could be leveraged to improve pregnancy outcomes or prevent maladaptive consequences of such growth.
Collapse
Affiliation(s)
- Tomotsune Ameku
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Anna Laddach
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Hannah Beckwith
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Alexandra Milona
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Loranzie S Rogers
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Cornelia Schwayer
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Emma Nye
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Iain R Tough
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Jean-Louis Thoumas
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | - Umesh Kumar Gautam
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - Yi-Fang Wang
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Shreya Jha
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alvaro Castano-Medina
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Patric M Vaelli
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Sira Gevers
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Elaine E Irvine
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Leah Meyer
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Ivan Andrew
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Ka Lok Choi
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Bhavik Patel
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alice J Francis
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Chris Studd
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Laurence Game
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - George Young
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Kevin G Murphy
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Bryn Owen
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Dominic J Withers
- MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| | - Maria Rodriguez-Colman
- Molecular Cancer Research, Center for Molecular Medicine, University Medical Center Utrecht, 3584 CG Utrecht, the Netherlands
| | - Helen M Cox
- King's College London, Wolfson Sensory, Pain and Regeneration Centre, Hodgkin Building, Guy's Campus, London SE1 1UL, UK
| | - Prisca Liberali
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056 Basel, Switzerland; ETH Zürich, Department for Biosystems Science and Engineering (D-BSSE), Basel, Switzerland
| | - Martin Schwarzer
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, 54922 Novy Hradek, Czech Republic
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR5242, UCBL Lyon-1, 69007 Lyon, France
| | | | - Nicholas W Bellono
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Irene Miguel-Aliaga
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; MRC Laboratory of Medical Sciences, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK; Institute of Clinical Sciences, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK.
| |
Collapse
|
8
|
Emili E, Pérez-Posada A, Vanni V, Salamanca-Díaz D, Ródriguez-Fernández D, Christodoulou MD, Solana J. Allometry of cell types in planarians by single-cell transcriptomics. SCIENCE ADVANCES 2025; 11:eadm7042. [PMID: 40333969 PMCID: PMC12057665 DOI: 10.1126/sciadv.adm7042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/02/2025] [Indexed: 05/09/2025]
Abstract
Allometry explores the relationship between an organism's body size and its various components, offering insights into ecology, physiology, metabolism, and disease. The cell is the basic unit of biological systems, and yet the study of cell-type allometry remains relatively unexplored. Single-cell RNA sequencing (scRNA-seq) provides a promising tool for investigating cell-type allometry. Planarians, capable of growing and degrowing following allometric scaling rules, serve as an excellent model for these studies. We used scRNA-seq to examine cell-type allometry in asexual planarians of different sizes, revealing that they consist of the same basic cell types but in varying proportions. Notably, the gut basal cells are the most responsive to changes in size, suggesting a role in energy storage. We capture the regulated gene modules of distinct cell types in response to body size. This research sheds light on the molecular and cellular aspects of cell-type allometry in planarians and underscores the utility of scRNA-seq in these investigations.
Collapse
Affiliation(s)
- Elena Emili
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Alberto Pérez-Posada
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Virginia Vanni
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | - David Salamanca-Díaz
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| | | | | | - Jordi Solana
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Living Systems Institute, University of Exeter, Exeter, UK
- Department of Biosciences, University of Exeter, Exeter, UK
| |
Collapse
|
9
|
Zhu B, Chen P, Aminu M, Li JR, Fujimoto J, Tian Y, Hong L, Chen H, Hu X, Li C, Vokes N, Moreira AL, Gibbons DL, Solis Soto LM, Parra Cuentas ER, Shi O, Diao S, Ye J, Rojas FR, Vilar E, Maitra A, Chen K, Navin N, Nilsson M, Huang B, Heeke S, Zhang J, Haymaker CL, Velcheti V, Sterman DH, Kochat V, Padron WI, Alexandrov LB, Wei Z, Le X, Wang L, Fukuoka J, Lee JJ, Wistuba II, Pass HI, Davis M, Hanash S, Cheng C, Dubinett S, Spira A, Rai K, Lippman SM, Futreal PA, Heymach JV, Reuben A, Wu J, Zhang J. Spatial and multiomics analysis of human and mouse lung adenocarcinoma precursors reveals TIM-3 as a putative target for precancer interception. Cancer Cell 2025:S1535-6108(25)00162-X. [PMID: 40345189 DOI: 10.1016/j.ccell.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/31/2024] [Accepted: 04/08/2025] [Indexed: 05/11/2025]
Abstract
How tumor microenvironment shapes lung adenocarcinoma (LUAD) precancer evolution remains poorly understood. Spatial immune profiling of 114 human LUAD and LUAD precursors reveals a progressive increase of adaptive response and a relative decrease of innate immune response as LUAD precursors progress. The immune evasion features align the immune response patterns at various stages. TIM-3-high features are enriched in LUAD precancers, which decrease in later stages. Furthermore, single-cell RNA sequencing (scRNA-seq) and spatial immune and transcriptomics profiling of LUAD and LUAD precursor specimens from 5 mouse models validate high TIM-3 features in LUAD precancers. In vivo TIM-3 blockade at precancer stage, but not at advanced cancer stage, decreases tumor burden. Anti-TIM-3 treatment is associated with enhanced antigen presentation, T cell activation, and increased M1/M2 macrophage ratio. These results highlight the coordination of innate and adaptive immune response/evasion during LUAD precancer evolution and suggest TIM-3 as a potential target for LUAD precancer interception.
Collapse
Affiliation(s)
- Bo Zhu
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Pingjun Chen
- Institute for Data Science in Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Muhammad Aminu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jian-Rong Li
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Junya Fujimoto
- Clinical Research Center in Hiroshima, Hiroshima University Hospital, Hiroshima, Japan
| | - Yanhua Tian
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lingzhi Hong
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hong Chen
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xin Hu
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Chenyang Li
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Natalie Vokes
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Andre L Moreira
- Department of Pathology, NYU Langone Health, New York, NY, USA
| | - Don L Gibbons
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Luisa M Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Edwin Roger Parra Cuentas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ou Shi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Songhui Diao
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jie Ye
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Frank R Rojas
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Eduardo Vilar
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology and Sheikn Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Nicolas Navin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Monique Nilsson
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Beibei Huang
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Simon Heeke
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianhua Zhang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cara L Haymaker
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vamsidhar Velcheti
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA
| | - Daniel H Sterman
- Department of Medicine, NYU Grossman School of Medicine, New York, NY, USA; Cardiothoracic Surgery, NYU Grossman School of Medicine, New York, NY, USA
| | - Veena Kochat
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - William I Padron
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ludmil B Alexandrov
- Department of Cellular and Molecular Medicine, UC San Diego, La Jolla, CA, USA
| | - Zhubo Wei
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xiuning Le
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Linghua Wang
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Junya Fukuoka
- Department of Pathology Informatics, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - J Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ignacio I Wistuba
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Harvey I Pass
- Department of Cardiothoracic Surgery, NYU Langone Health, New York, NY, USA
| | - Mark Davis
- Institute of Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford, CA, USA
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, CA, USA
| | - Chao Cheng
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Steven Dubinett
- Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Avrum Spira
- Pathology & Laboratory Medicine, and Bioinformatics, Boston University, Boston, MA, USA
| | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - P Andrew Futreal
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John V Heymach
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jia Wu
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-stage CD8 + CAR T-cell differentiation in patients with large B-cell lymphoma. Nat Commun 2025; 16:4205. [PMID: 40328775 PMCID: PMC12055983 DOI: 10.1038/s41467-025-59298-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/16/2025] [Indexed: 05/08/2025] Open
Abstract
Advancements in chimeric antigen receptor (CAR) T-cell therapy for treating diffuse large B-cell lymphoma (DLBCL) have been limited by an incomplete understanding of CAR T-cell differentiation in patients. Here, we show via single-cell, multi-modal, and longitudinal analyses, that CD8+ CAR T cells from DLBCL patients successfully treated with axicabtagene ciloleucel undergo two distinct waves of clonal expansion in vivo. The first wave is dominated by an exhausted-like effector memory phenotype during peak expansion (day 8-14). The second wave is dominated by a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny from the infusion product and are biologically uncoupled. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. We demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Nicholas Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Peter A Riedell
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Michael R Bishop
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Justin P Kline
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL, 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Cancer Biology, University of Chicago, Chicago, IL, 60637, USA.
- Committee on Immunology, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
11
|
Detsika MG, Sakkou M, Triantafyllidou V, Konstantopoulos D, Grigoriou E, Psarra K, Jahaj E, Dimopoulou I, Orfanos SE, Tsirogianni A, Kollias G, Kotanidou A. CD55 upregulation in T cells of COVID-19 patients suppresses type-I interferon responses. Commun Biol 2025; 8:690. [PMID: 40316776 PMCID: PMC12048498 DOI: 10.1038/s42003-025-08066-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 04/09/2025] [Indexed: 05/04/2025] Open
Abstract
Complement overactivation, has been verified in COVID-19 patients. Complement regulatory proteins, including CD55, control complement overactivation thus eliminating complement deposition and cell lysis. We investigated complement regulatory protein expression in COVID-19 for potential deregulated expression patterns driving disease pathogenesis. Single-cell RNA-seq revealed increased PBMCs CD55 expression in severely and critically ill patients. This increase was also detected upon integrated subclustering analysis of monocyte, T cell and B cell populations. FACS analysis confirmed the significant upregulation of CD55 expression in CD4+ and CD8+ T cells and monocyte populations of severely and critically ill COVID-19 patients. This upregulation was associated with decreased expression of type-I IFN-stimulated genes (ISGs) in patients with severe and critical COVID-19, indicating a suppressor effect of CD55. Silencing of CD55 in T cells from COVID-19 severely ill patients in vitro and sensitization with SARS-CoV-2 peptides resulted in significantly augmented expression of ISGs and a reversal of their expression to levels similar to control or higher. The present study uncovers, to the best of our knowledge, a novel regulatory effect of CD55 on type-I IFN responses of severely ill COVID-19 patients, thus indicating its contribution to COVID-19 pathogenesis, and identifies a novel mechanistic pathway in the COVID-19 immune response.
Collapse
Affiliation(s)
- Maria G Detsika
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| | - Maria Sakkou
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | | | - Dimitris Konstantopoulos
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
| | - Eirini Grigoriou
- Department of Immunology and Histocompatibility, 'Evangelismos' General Hospital, Athens, Greece
| | - Katherina Psarra
- Department of Immunology and Histocompatibility, 'Evangelismos' General Hospital, Athens, Greece
| | - Edison Jahaj
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Ioanna Dimopoulou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Stylianos E Orfanos
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Alexandra Tsirogianni
- Department of Immunology and Histocompatibility, 'Evangelismos' General Hospital, Athens, Greece
| | - George Kollias
- Institute for Bioinnovation, Biomedical Sciences Research Center "Alexander Fleming", Vari, Greece
- Center of New Biotechnologies & Precision Medicine, National and Kapodistrian University of Athens Medical School, Athens, Greece
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Anastasia Kotanidou
- 1st Department of Critical Care Medicine & Pulmonary Services, GP Livanos and M Simou Laboratories, Evangelismos Hospital, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
12
|
Zhang L, Li H, Shi L, Geng J, Zhang H, Chen H, Zhao P, Xiao Y, Lu J, Li Z, Pu H, Hou C, Li C, Gao C, Song X, Bao Z, Zhai B, Guo B, Yang B, Lu X, Yu Q. Mechanism and Efficacy of Etanercept in Treating Autoimmune-like Manifestations of Coronavirus Disease 2019 in elderly individuals. Immunobiology 2025; 230:152898. [PMID: 40168796 DOI: 10.1016/j.imbio.2025.152898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025]
Abstract
During the COVID-19 pandemic, extensive research focused on universal treatments, but few studies addressed treatment regimens for elderly patients. This study aimed to evaluate the effects of etanercept, a TNF inhibitor, in elderly individuals with COVID-19 through observational analysis of compassionate use cases. The results showed that after one month of etanercept treatment, clinical indicators such as C-reactive protein, D-dimer, and fibrinogen normalised, whereas the control group receiving conventional treatment did not fully recover. Single-cell sequencing was performed on seven patients treated with etanercept and two uninfected individuals. Based on our data and in conjunction with external data, a comprehensive characterization map involving 400,000 cells was created. Transcriptomic analysis revealed autoimmune-like manifestations in elderly patients, highlighting the importance of immunotherapy. Plasma cells, platelets, and B cells were the most treatment-sensitive cells. Analysis of five drug types, including antiviral, etanercept, glucocorticoids, tocilizumab, and others, showed that tocilizumab was associated with an increased thrombosis risk in elderly patients. Meanwhile, etanercept alleviated autoimmune-like manifestations by inhibiting platelet factor 4 and suppressing TNF-α. Molecular docking showed etanercept's strong affinity (-15.0 kcal/mol) for the spike protein of the SARS-CoV-2 Omicron variant, suggesting it may protect immune-compromised patients. Our findings support etanercept as a potential treatment for elderly COVID-19 patients with autoimmune-like manifestations.
Collapse
Affiliation(s)
- Lizhong Zhang
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Hongyi Li
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Lei Shi
- Senior Department of Infectious Diseases, the Fifth Medical Center of PLA General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, 100853, China
| | - Jie Geng
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Haojun Zhang
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Haoran Chen
- School of Management, Shanxi Medical University, Taiyuan, 030000, China
| | - Peng Zhao
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Yang Xiao
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Jinqi Lu
- Department of Computer Science, Whiting School of Engineering, Johns Hopkins University, 3400 N Charles St, Baltimore, MD 21218, USA
| | - Zhilun Li
- School of basic medicine and clinical pharmacy, China Pharmaceutical University, Nanjing 211100, China
| | - Hongbin Pu
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Chuandong Hou
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Chenghui Li
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Medical School of Chinese PLA, Beijing 100853, China
| | - Chumeng Gao
- Fuxing Road Outpatient Department, Jingnan Medical District, PLA General Hospital, Beijing 100842, China
| | - Xia Song
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Zhuocheng Bao
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China
| | - Bing Zhai
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China
| | - Bo Guo
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China
| | - Bo Yang
- Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China
| | - Xuechun Lu
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China; Department of Hematology, The Second Medical Center of Chinese PLA General Hospital, National Clinical Research Center for Geriatric Disease, Beijing 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Nephrology Institute of the Chinese People's Liberation Army, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Disease Research, Beijing 100853, China.
| | - Qi Yu
- Basic Medicine College, Shanxi Medical University, Taiyuan 030000, China; School of Management, Shanxi Medical University, Taiyuan, 030000, China; Shanxi Key Laboratory of Big Data for Clinical Decision, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
13
|
Loft A, Emont MP, Weinstock A, Divoux A, Ghosh A, Wagner A, Hertzel AV, Maniyadath B, Deplancke B, Liu B, Scheele C, Lumeng C, Ding C, Ma C, Wolfrum C, Strieder-Barboza C, Li C, Truong DD, Bernlohr DA, Stener-Victorin E, Kershaw EE, Yeger-Lotem E, Shamsi F, Hui HX, Camara H, Zhong J, Kalucka J, Ludwig JA, Semon JA, Jalkanen J, Whytock KL, Dumont KD, Sparks LM, Muir LA, Fang L, Massier L, Saraiva LR, Beyer MD, Jeschke MG, Mori MA, Boroni M, Walsh MJ, Patti ME, Lynes MD, Blüher M, Rydén M, Hamda N, Solimini NL, Mejhert N, Gao P, Gupta RK, Murphy R, Pirouzpanah S, Corvera S, Tang S, Das SK, Schmidt SF, Zhang T, Nelson TM, O'Sullivan TE, Efthymiou V, Wang W, Tong Y, Tseng YH, Mandrup S, Rosen ED. Towards a consensus atlas of human and mouse adipose tissue at single-cell resolution. Nat Metab 2025; 7:875-894. [PMID: 40360756 DOI: 10.1038/s42255-025-01296-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025]
Abstract
Adipose tissue (AT) is a complex connective tissue with a high relative proportion of adipocytes, which are specialized cells with the ability to store lipids in large droplets. AT is found in multiple discrete depots throughout the body, where it serves as the primary repository for excess calories. In addition, AT has an important role in functions as diverse as insulation, immunity and regulation of metabolic homeostasis. The Human Cell Atlas Adipose Bionetwork was established to support the generation of single-cell atlases of human AT as well as the development of unified approaches and consensus for cell annotation. Here, we provide a first roadmap from this bionetwork, including our suggested cell annotations for humans and mice, with the aim of describing the state of the field and providing guidelines for the production, analysis, interpretation and presentation of AT single-cell data.
Collapse
Affiliation(s)
- Anne Loft
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Margo P Emont
- Section of Endocrinology, Diabetes and Metabolism, University of Chicago, Chicago, IL, USA.
| | - Ada Weinstock
- Department of Medicine, Section of Genetic Medicine, University of Chicago, Chicago, IL, USA
| | - Adeline Divoux
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Adhideb Ghosh
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Allon Wagner
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ann V Hertzel
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | - Babukrishna Maniyadath
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Bart Deplancke
- Laboratory of Systems Biology and Genetics, Institute of Bioengineering, School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Boxiang Liu
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Cardiovascular-Metabolic Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Carey Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Changhai Ding
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Chenkai Ma
- Human Health, Health and Biosecurity, CSIRO, Canberra, Australian Capital Territory, Australia
| | - Christian Wolfrum
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
| | - Clarissa Strieder-Barboza
- Department of Veterinary Sciences, Texas Tech University, Lubbock, TX, USA
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, USA
| | - Congru Li
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Danh D Truong
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - David A Bernlohr
- Department of Biochemistry, Molecular Biology and Biophysics, Institute on the Biology of Aging and Metabolism, The University of Minnesota-Twin Cities, Minneapolis, MN, USA
| | | | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Esti Yeger-Lotem
- Department of Clinical Biochemistry and Pharmacology, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Farnaz Shamsi
- Department of Molecular Pathobiology, New York University, New York, NY, USA
- Departments of Cell Biology and Medicine, Grossman School of Medicine, New York University, New York, NY, USA
| | - Hannah X Hui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Henrique Camara
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Jiawei Zhong
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Joanna Kalucka
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Steno Diabetes Center Aarhus, Aarhus University Hospital, Aarhus, Denmark
| | - Joseph A Ludwig
- Department of Sarcoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Julie A Semon
- Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO, USA
| | - Jutta Jalkanen
- Department of Medicine Huddinge (H7), Karolinska Institutet, Karolinska University Hospital Huddinge, Huddinge, Sweden
| | - Katie L Whytock
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Kyle D Dumont
- Molecular and Cellular Exercise Physiology, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Lauren M Sparks
- Translational Research Institute, AdventHealth, Orlando, FL, USA
| | - Lindsey A Muir
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Lingzhao Fang
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus, Denmark
| | - Lucas Massier
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
| | - Luis R Saraiva
- Sidra Medicine, Doha, Qatar
- Department of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Marc D Beyer
- Immunogenomics and Neurodegeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Platform for Single Cell Genomics and Epigenomics (PRECISE), German Center for Neurodegenerative Diseases (DZNE) and University of Bonn and West German Genome Center (WGGC), Bonn, Germany
| | - Marc G Jeschke
- Centre for Burn Research, Hamilton Health Sciences Centre, Department of Surgery and Department of Biochemistry, McMaster University, Hamilton, Ontario, Canada
| | - Marcelo A Mori
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
- Obesity and Comorbidities Research Center (OCRC), Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Mariana Boroni
- Laboratory of Bioinformatics and Computational Biology, Division of Experimental and Translational Research, Brazilian National Cancer Institute (INCA), Rio de Janeiro, Brazil
| | - Martin J Walsh
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary-Elizabeth Patti
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Zentrum München at the University of Leipzig and University Hospital Leipzig, Leipzig, Germany
- Department of Medicine - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, Germany
| | - Mikael Rydén
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | | | - Nicole L Solimini
- Department of Medical Oncology, Sarcoma Center, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Niklas Mejhert
- Department of Medicine (H7), Karolinska Institutet, C2-94, Karolinska University Hospital, Stockholm, Sweden
- Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Peng Gao
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Rana K Gupta
- Department of Medicine, Division of Endocrinology, and Duke Molecular Physiology Institute, Duke University Medical Center, Durham, NC, USA
| | - Rinki Murphy
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Saeed Pirouzpanah
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Corvera
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Su'an Tang
- Department of Spinal Surgery, Orthopedic Medical Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Swapan K Das
- Department of Internal Medicine, Section on Endocrinology and Metabolism, Medical Center Boulevard, Wake Forest University Health Sciences, Winston-Salem, NC, USA
| | - Søren F Schmidt
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark
| | - Tao Zhang
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, MI, USA
| | - Theodore M Nelson
- Department of Physiology and Biophysics, Weill Cornell Medicine, Cornell University, New York, NY, USA
| | - Timothy E O'Sullivan
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Vissarion Efthymiou
- Department of Health Sciences and Technology, Institute of Food, Nutrition and Health, ETH Zurich, Schwerzenbach, Switzerland
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Wenjing Wang
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yihan Tong
- Department of Pharmacy and Pharmaceutical Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Susanne Mandrup
- Center for Functional Genomics and Tissue Plasticity (ATLAS), Department of Biochemistry and Molecular Biology, University of Southern Denmark (SDU), Odense, Denmark.
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
14
|
Emont MP, Essene AL, Gulko A, Bozadjieva-Kramer N, Jacobs C, Nagesh S, Seeley RJ, Tsai LT, Rosen ED. Semaglutide and bariatric surgery induce distinct changes in the composition of mouse white adipose tissue. Mol Metab 2025; 95:102126. [PMID: 40139440 PMCID: PMC11999362 DOI: 10.1016/j.molmet.2025.102126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/13/2025] [Accepted: 03/13/2025] [Indexed: 03/29/2025] Open
Abstract
Adipose tissue is a central player in energy balance and glucose homeostasis, expanding in the face of caloric overload in order to store energy safely. If caloric overload continues unabated, however, adipose tissue becomes dysfunctional, leading to systemic metabolic compromise in the form of insulin resistance and type 2 diabetes. Changes in adipose tissue during the development of metabolic disease are varied and complex, made all the more so by the heterogeneity of cell types within the tissue. Here we present detailed comparisons of atlases of murine WAT in the setting of diet-induced obesity, as well as after weight loss induced by either vertical sleeve gastrectomy (VSG) or treatment with the GLP-1 receptor agonist semaglutide. We focus on identifying populations of cells that return to a lean-like phenotype versus those that persist from the obese state, and examine pathways regulated in these cell types across conditions. These data provide a resource for the study of the cell type changes in WAT during weight loss, and paint a clearer picture of the differences between adipose tissue from lean animals that have never been obese, versus those that have.
Collapse
Affiliation(s)
- Margo P Emont
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Adam L Essene
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Anton Gulko
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nadejda Bozadjieva-Kramer
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA; Veterans Affairs Ann Arbor Healthcare System, Research Service, Ann Arbor, MI, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Nagesh
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Randy J Seeley
- Department of Surgery, University of Michigan, Ann Arbor, MI, USA
| | - Linus T Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
15
|
Wang H, Qiu B, Li X, Ying Y, Wang Y, Chen H, Zeng F, Shi J, Huang J, Wu Z, Chen Z, Che X, Li Q, Fan Y, Li B, Wang Q, Huang C, Chen Y, Li T, Mo K, Wang Q, Cui C. Single cell analysis reveals that SPP1 + macrophages enhance tumor progression by triggering fibroblast extracellular vesicles. Transl Oncol 2025; 55:102347. [PMID: 40086324 PMCID: PMC11954126 DOI: 10.1016/j.tranon.2025.102347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 03/03/2025] [Indexed: 03/16/2025] Open
Abstract
Patients with liver metastatic colorectal cancer (mCRC) have a poor prognosis and are the leading cause of death in colorectal cancer (CRC) patients, but the mechanisms associated with CRC metastasis have not been fully elucidated. In this study, we obtained data from the Gene Expression Omnibus database and characterized the single-cell profiles of CRC, mCRC and healthy samples at single-cell resolution, and explored the cells that influence CRC metastasis. We find that AQP1+ CRC identified as highly malignant tumor cells exhibited proliferative and metastatic characteristics. Immunosuppressive properties are present in the tumor microenvironment (TME), while NOTCH3+ Fib is identified to play a facilitating role in the metastatic colonization of CRC. Importantly, we reveal that tumor-associated macrophages (TAM) characterized by SPP1-specific high expression may be involved in TME remodeling through intercellular communication. Specifically, SPP1+ TAM mediates the generation of Fib-derived extracellular vesicle through the APOE-LRP1 axis, which in turn delivers tumor growth-promoting factors in the TME. This study deepens the understanding of the mechanism of TME in mCRC and lays the scientific foundation for the development of therapeutic regimens for mCRC patients.
Collapse
Affiliation(s)
- Haocheng Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Bowen Qiu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Xinyu Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yao Ying
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Yue Wang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Hungchen Chen
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Fanan Zeng
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Junyao Shi
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510515, China
| | - Junpeng Huang
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Ziying Wu
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China
| | - Zequn Chen
- Department of Gastrointestinal Surgery, First Ward of Maoming People's Hospital, Maoming 525000, China
| | - Xiao Che
- Department of Abdominal Hernia Surgery, Maoming People's Hospital, Southern Medical University, Maoming 525000, China
| | - Qingzhong Li
- Guangzhou University of Traditional Chinese Medicine, Maoming 525000, China
| | - Yingming Fan
- Department of General Surgery, Guangning County People's Hospital, Guangdong Medical University, Zhaoqing 526300, China
| | - Bingyao Li
- Department of General Surgery, Guangning People's Hospital, Zhaoqing 526300, China
| | - Qun Wang
- Department of Emergency, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou 510282, China
| | - Chengyu Huang
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Yixuan Chen
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ting Li
- Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China
| | - Ke Mo
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, Hong Kong 999077, China; Systems Biology Research Center, Biology Institute, Guangxi Academy of Sciences, Nanning 530007, Guangxi, China.
| | - Qian Wang
- Department of Gastrointestinal surgery, The Seventh Affiliated Hospital, Southern Medical University, Foshan 528000, China.
| | - Chunhui Cui
- Department of General Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510280, China.
| |
Collapse
|
16
|
Sant C, Mucke L, Corces MR. CHOIR improves significance-based detection of cell types and states from single-cell data. Nat Genet 2025; 57:1309-1319. [PMID: 40195561 DOI: 10.1038/s41588-025-02148-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/03/2025] [Indexed: 04/09/2025]
Abstract
Clustering is a critical step in the analysis of single-cell data, enabling the discovery and characterization of cell types and states. However, most popular clustering tools do not subject results to statistical inference testing, leading to risks of overclustering or underclustering data and often resulting in ineffective identification of cell types with widely differing prevalence. To address these challenges, we present CHOIR (cluster hierarchy optimization by iterative random forests), which applies a framework of random forest classifiers and permutation tests across a hierarchical clustering tree to statistically determine clusters representing distinct populations. We demonstrate the performance of CHOIR through extensive benchmarking against 15 existing clustering methods across 230 simulated and five real single-cell RNA sequencing, assay for transposase-accessible chromatin sequencing, spatial transcriptomic and multi-omic datasets. CHOIR can be applied to any single-cell data type and provides a flexible, scalable and robust solution to the challenge of identifying biologically relevant cell groupings within heterogeneous single-cell data.
Collapse
Affiliation(s)
- Cathrine Sant
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
| | - Lennart Mucke
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - M Ryan Corces
- Gladstone Institute of Neurological Disease, Gladstone Institutes, San Francisco, CA, USA.
- Neuroscience Graduate Program, University of California San Francisco, San Francisco, CA, USA.
- Department of Neurology and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
17
|
Fan Y, Zheng Y, Zhang Y, Xu G, Liu C, Hu J, Ji Q, Zhang S, Fang S, Lei J, Li LZ, Wang X, Xu X, Wang C, Wang S, Ma S, Song M, Jiang W, Zhu J, Feng Y, Wang J, Yang Y, Zhu G, Tian XL, Zhang H, Song W, Yang J, Yao Y, Liu GH, Qu J, Zhang W. ARID5A orchestrates cardiac aging and inflammation through MAVS mRNA stabilization. NATURE CARDIOVASCULAR RESEARCH 2025; 4:602-623. [PMID: 40301689 DOI: 10.1038/s44161-025-00635-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/10/2025] [Indexed: 05/01/2025]
Abstract
Elucidating the regulatory mechanisms of human cardiac aging remains a great challenge. Here, using human heart tissues from 74 individuals ranging from young (≤35 years) to old (≥65 years), we provide an overview of the histological, cellular and molecular alterations underpinning the aging of human hearts. We decoded aging-related gene expression changes at single-cell resolution and identified increased inflammation as the key event, driven by upregulation of ARID5A, an RNA-binding protein. ARID5A epi-transcriptionally regulated Mitochondrial Antiviral Signaling Protein (MAVS) mRNA stability, leading to NF-κB and TBK1 activation, amplifying aging and inflammation phenotypes. The application of gene therapy using lentiviral vectors encoding shRNA targeting ARID5A into the myocardium not only mitigated the inflammatory and aging phenotypes but also bolstered cardiac function in aged mice. Altogether, our study provides a valuable resource and advances our understanding of cardiac aging mechanisms by deciphering the ARID5A-MAVS axis in post-transcriptional regulation.
Collapse
Affiliation(s)
- Yanling Fan
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
| | - Yandong Zheng
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yiyuan Zhang
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Gang Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Chun Liu
- Department of Physiology and Medicine, Cardiovascular Center, Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jianli Hu
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qianzhao Ji
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuo Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuaiqi Fang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jinghui Lei
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Lan-Zhu Li
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xing Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xi Xu
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Cui Wang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Si Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Shuai Ma
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Aging Biomarker Consortium, Beijing, China
| | - Moshi Song
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Wenjian Jiang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Junming Zhu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yijia Feng
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiangang Wang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ying Yang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guodong Zhu
- Institute of Gerontology, Guangzhou Geriatric Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xiao-Li Tian
- Aging and Vascular Diseases, Human Aging Research Institute and School of Life Science, Nanchang University and Jiangxi Key Laboratory of Human Aging, Nanchang, China
| | - Hongjia Zhang
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Weihong Song
- Oujiang Laboratory, Center for Geriatric Medicine and Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Zhejiang Provincial Clinical Research for Mental Disorders, The First-affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiayin Yang
- Liver Transplant Center, Organ Transplant Center, West China Hospital of Sichuan University, Chengdu, China
- Laboratory of Liver Transplantation, Key Laboratory of Transplant Engineering and Immunology, NHC, West China Hospital of Sichuan University, Chengdu, China
| | - Yan Yao
- Department of Cardiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Guang-Hui Liu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Jing Qu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Weiqi Zhang
- China National Center for Bioinformation, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| |
Collapse
|
18
|
Peidli S. Quantifying reproducible multivariate differential expression in genetic perturbation screens. Nat Genet 2025; 57:1066-1067. [PMID: 40307586 DOI: 10.1038/s41588-025-02177-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Affiliation(s)
- Stefan Peidli
- European Molecular Biology Laboratory, Genome Biology, Heidelberg, Germany.
| |
Collapse
|
19
|
Degen PM, Medo M. Replicability of bulk RNA-Seq differential expression and enrichment analysis results for small cohort sizes. PLoS Comput Biol 2025; 21:e1011630. [PMID: 40324149 PMCID: PMC12077797 DOI: 10.1371/journal.pcbi.1011630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 05/14/2025] [Accepted: 04/07/2025] [Indexed: 05/07/2025] Open
Abstract
The high-dimensional and heterogeneous nature of transcriptomics data from RNA sequencing (RNA-Seq) experiments poses a challenge to routine downstream analysis steps, such as differential expression analysis and enrichment analysis. Additionally, due to practical and financial constraints, RNA-Seq experiments are often limited to a small number of biological replicates. In light of recent studies on the low replicability of preclinical cancer research, it is essential to understand how the combination of population heterogeneity and underpowered cohort sizes affects the replicability of RNA-Seq research. Using 18'000 subsampled RNA-Seq experiments based on real gene expression data from 18 different data sets, we find that differential expression and enrichment analysis results from underpowered experiments are unlikely to replicate well. However, low replicability does not necessarily imply low precision of results, as data sets exhibit a wide range of possible outcomes. In fact, 10 out of 18 data sets achieve high median precision despite low recall and replicability for cohorts with more than five replicates. To assist researchers constrained by small cohort sizes in estimating the expected performance regime of their data sets, we provide a simple bootstrapping procedure that correlates strongly with the observed replicability and precision metrics. We conclude with practical recommendations to alleviate problems with underpowered RNA-Seq studies.
Collapse
Affiliation(s)
- Peter Methys Degen
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Matúš Medo
- Department for BioMedical Research, Radiation Oncology, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital Bern University Hospital, Bern, Switzerland
| |
Collapse
|
20
|
Nadig A, Replogle JM, Pogson AN, Murthy M, McCarroll SA, Weissman JS, Robinson EB, O'Connor LJ. Transcriptome-wide analysis of differential expression in perturbation atlases. Nat Genet 2025; 57:1228-1237. [PMID: 40259084 DOI: 10.1038/s41588-025-02169-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 03/17/2025] [Indexed: 04/23/2025]
Abstract
Single-cell CRISPR screens such as Perturb-seq enable transcriptomic profiling of genetic perturbations at scale. However, the data produced by these screens are noisy, and many effects may go undetected. Here we introduce transcriptome-wide analysis of differential expression (TRADE)-a statistical model for the distribution of true differential expression effects that accounts for estimation error appropriately. TRADE estimates the 'transcriptome-wide impact', which quantifies the total effect of a perturbation across the transcriptome. Analyzing several large Perturb-seq datasets, we show that many transcriptional effects remain undetected in standard analyses but emerge in aggregate using TRADE. A typical gene perturbation affects an estimated 45 genes, whereas a typical essential gene affects over 500. We find moderate consistency of perturbation effects across cell types, identify perturbations where transcriptional responses vary qualitatively across dosage levels and clarify the relationship between genetic and transcriptomic correlations across neuropsychiatric disorders.
Collapse
Affiliation(s)
- Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
| | - Joseph M Replogle
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA.
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Angela N Pogson
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mukundh Murthy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Steven A McCarroll
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Jonathan S Weissman
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elise B Robinson
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Luke J O'Connor
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
21
|
Koester A, Witcher DR, Lee M, Demarest SJ, Potter S, Werle K, Bauer S, Ruiz D, Malherbe L, Poorbaugh J, Glasebrook A, Preuss C, Datta G, Wang Z, Knorr J, Manner D, Patel D, Schmitz C, Klekotka P, Nirula A. Ucenprubart is an agonistic antibody to CD200R with the potential to treat inflammatory skin disease: preclinical development and a phase 1 clinical study. Nat Commun 2025; 16:4082. [PMID: 40312358 PMCID: PMC12046042 DOI: 10.1038/s41467-025-59147-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/12/2025] [Indexed: 05/03/2025] Open
Abstract
CD200R is a checkpoint inhibitory receptor central to the pathogenesis of inflammatory skin disease. Here we describe the development and phase 1 clinical study (NCT03750643) of ucenprubart, a CD200R agonist antibody to downregulate immune system inflammation. Preclinical studies find ucenprubart inhibiting Fcγ receptor-induced cytokine secretion from myeloid cells in vitro and demonstrating efficacy in a mouse contact hypersensitivity model. The randomized, placebo-controlled, NCT03750643 trial assesses safety and pharmacokinetics in healthy subjects, and efficacy in atopic dermatitis patients. The primary efficacy outcome is the proportion of patients achieving Validated Investigator's Global Assessment for Atopic Dermatitis (vIGA-AD) 0 or 1 with ≥2-point improvement from baseline at week 12. Secondary outcomes are proportions of patients achieving the primary outcome and mean changes in Eczema Area and Severity Index (EASI) and SCORing Atopic Dermatitis (SCORAD) across weeks 1 through 12, and cutoffs at week 12. Sixty-two healthy participants and 40 patients are enrolled. No serious adverse events or discontinuations due to adverse events is seen with ucenprubart. The primary endpoint is not met; however, overall improvements are observed in EASI-75 and SCORAD through 12 weeks. CD200R may be a promising therapeutic target for treating autoimmune disease, including inflammatory skin diseases.
Collapse
MESH Headings
- Adolescent
- Adult
- Animals
- Female
- Humans
- Male
- Mice
- Middle Aged
- Young Adult
- Antibodies, Monoclonal/administration & dosage
- Antibodies, Monoclonal/adverse effects
- Antibodies, Monoclonal/pharmacokinetics
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antibodies, Monoclonal, Humanized/pharmacokinetics
- Dermatitis, Atopic/drug therapy
- Dermatitis, Atopic/immunology
- Healthy Volunteers
- Orexin Receptors/agonists
- Orexin Receptors/immunology
- Treatment Outcome
- Disease Models, Animal
Collapse
Affiliation(s)
- Anja Koester
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA.
| | - Derrick R Witcher
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Mark Lee
- Progressive Clinical Research, San Antonio, TX, USA
| | - Stephen J Demarest
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Biotechnology, San Diego, CA, USA
- Tentarix Biotherapeutics, San Diego, CA, USA
| | - Scott Potter
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
| | - Katie Werle
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
- Arcturus Therapeutics, San Diego, CA, USA
| | - Scott Bauer
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Diana Ruiz
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Biotechnology, San Diego, CA, USA
| | - Laurent Malherbe
- Lilly Research Laboratories, Eli Lilly and Company, Toxicology, Indianapolis, IN, USA
| | - Josh Poorbaugh
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Andrew Glasebrook
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
- Toralgen, Indianapolis, IN, USA
| | - Christoph Preuss
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Gourab Datta
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Ziqiao Wang
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jack Knorr
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - David Manner
- Lilly Research Laboratories, Eli Lilly and Company, Biotechnology, Indianapolis, IN, USA
| | - Dipak Patel
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
| | - Carsten Schmitz
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
| | - Paul Klekotka
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
| | - Ajay Nirula
- Lilly Biotechnology Center, San Diego, Eli Lilly and Company, Immunology Research, San Diego, CA, USA
- Recludix Pharma, San Diego, CA, USA
| |
Collapse
|
22
|
Liu X, Zhang L, Li X, Chen L, Lu L, Yang Y, Wu Y, Zheng L, Tang J, Wang F, Han Y, Song X, Cao W, Li T. Single-cell multi-omics profiling uncovers the immune heterogeneity in HIV-infected immunological non-responders. EBioMedicine 2025; 115:105667. [PMID: 40184908 PMCID: PMC12002939 DOI: 10.1016/j.ebiom.2025.105667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND Immunological non-responders (INRs) are people living with HIV-1 who fail to achieve full immune reconstitution despite long-term effective antiretroviral therapy (ART). This incomplete recovery of CD4+ T cells increase the risk of opportunistic infections and non-AIDS-related morbidity and mortality. Understanding the mechanisms driving this immune dysfunction is critical for developing targeted therapies. METHODS We performed single-cell RNA sequencing (scRNA-seq) and single-cell VDJ sequencing (scVDJ-seq) on peripheral blood mononuclear cells (PBMCs) from INRs, immune responders (IRs), and healthy controls (HCs). We developed scGeneANOVA, a novel mixed model differential gene analysis tool, to detect differentially expressed genes and pathways. In addition, we developed the Viral Identification and Load Detection Analysis (VILDA) tool to quantify HIV-1 transcripts and investigate their relationship with interferon (IFN) pathway activation. FINDINGS Our analysis revealed that INRs exhibit a dysregulated IFN response, closely associated with CD4+ T cell exhaustion and immune recovery failure. The scGeneANOVA tool identified critical genes and pathways that were missed by traditional analysis methods, while VILDA showed higher levels of HIV-1 transcripts in INRs, which may drive the heightened IFN response. These findings support a potential contribution of IFN signalling in INR-related immune dysfunction. INTERPRETATION Our study provides new insights into the pathogenic mechanisms behind immune recovery failure in INRs, suggesting that IFN signalling might be involved in the development of CD4+ T cell exhaustion. The identification of key genes and pathways offers potential biomarkers and therapeutic targets for improving immune recovery in this vulnerable population. FUNDING This study was supported by the grants from Special Research Fund for the Central High-level Hospitals of Peking Union Medical College Hospital (Grant No. 2022-PUMCH-D-008), Chinese Academy of Medical Sciences (CAMS) Innovation Fund for Medical Sciences (Grant No. 2021-I2M-1-037), National Key Technologies R&D Program for the 13th Five-year Plan (Grant No. 2017ZX10202101-001). The funders played no role in the design, experiment conduction, data analysis and preparation of the manuscript of this work.
Collapse
Affiliation(s)
- Xiaosheng Liu
- School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China; Centre for Life Sciences, Tsinghua University, 100084, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Leidan Zhang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Xiaodi Li
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Ling Chen
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Lianfeng Lu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Yang Yang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Yuanni Wu
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Liyuan Zheng
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Jia Tang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Fada Wang
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Yang Han
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Xiaojing Song
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Wei Cao
- Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, 100730, Beijing, China; Center for AIDS Research, Chinese Academy of Medical Sciences, 100730, Beijing, China
| | - Taisheng Li
- School of Basic Medical Sciences, Tsinghua University, 100084, Beijing, China; Centre for Life Sciences, Tsinghua University, 100084, Beijing, China; Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, 100730, Beijing, China; State Key Laboratory for Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, 100730, Beijing, China; Center for AIDS Research, Chinese Academy of Medical Sciences, 100730, Beijing, China.
| |
Collapse
|
23
|
Su C, Lee D, Jin P, Zhang J. scMultiMap: Cell-type-specific mapping of enhancers and target genes from single-cell multimodal data. Nat Commun 2025; 16:3941. [PMID: 40287418 PMCID: PMC12033308 DOI: 10.1038/s41467-025-59306-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
Mapping enhancers and target genes in disease-related cell types provides critical insights into the functional mechanisms of genome-wide association studies (GWAS) variants. Single-cell multimodal data, which measure gene expression and chromatin accessibility in the same cells, enable the cell-type-specific inference of enhancer-gene pairs. However, this task is challenged by high data sparsity, sequencing depth variation, and the computational burden of analyzing a large number of pairs. We introduce scMultiMap, a statistical method that infers enhancer-gene association from sparse multimodal counts using a joint latent-variable model. It adjusts for technical confounding, permits fast moment-based estimation and provides analytically derived p-values. In blood and brain data, scMultiMap shows appropriate type I error control, high statistical power, and computational efficiency (1% of existing methods). When applied to Alzheimer's disease (AD) data, scMultiMap gives the highest heritability enrichment in microglia and reveals insights into the regulatory mechanisms of AD GWAS variants.
Collapse
Affiliation(s)
- Chang Su
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA.
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dongsoo Lee
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Peng Jin
- Department of Human Genetics, School of Medicine, Emory University, Atlanta, GA, USA
| | - Jingfei Zhang
- Information Systems and Operations Management, Emory University, Atlanta, GA, USA.
| |
Collapse
|
24
|
Henze L, Will N, Lee D, Haas V, Casar C, Meyer J, Stein S, Mangler F, Steinmann S, Poch T, Krause J, Fuss J, Schröder J, Kulle AE, Holterhus PM, Bonn S, Altfeld M, Huber S, Lohse AW, Schwinge D, Schramm C. Testosterone affects female CD4+ T cells in healthy individuals and autoimmune liver diseases. JCI Insight 2025; 10:e184544. [PMID: 40260919 PMCID: PMC12016935 DOI: 10.1172/jci.insight.184544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 03/04/2025] [Indexed: 04/24/2025] Open
Abstract
Autoimmune hepatitis (AIH) and primary biliary cholangitis (PBC) are autoimmune liver diseases with strong female predominance. They are caused by T cell-mediated injury of hepatic parenchymal cells, but the mechanisms underlying this sex bias are unknown. Here, we investigated whether testosterone contributes to T cell activation in women with PBC. Compared with sex- and age-matched healthy controls (n = 23), cisgender (cis) women with PBC (n = 24) demonstrated decreased testosterone serum levels and proinflammatory CD4+ T cell profile in peripheral blood. Testosterone suppressed the expression of TNF and IFN-γ by human CD4+ T cells in vitro. In trans men receiving gender-affirming hormone therapy (GAHT) (n = 25), testosterone affected CD4+ T cell function by inhibiting Th1 and Th17 differentiation and by supporting the differentiation into regulatory Treg. Mechanistically, we provide evidence for a direct effect of testosterone on T cells using mice with T cell-specific deletion of the cytosolic androgen receptor. Supporting a role for testosterone in autoimmune liver disease, we observed an improved disease course and profound changes in T cell states in a trans man with AIH/primary sclerosing cholangitis (PSC) variant syndrome receiving GAHT. We here report a direct effect of testosterone on CD4+ T cells that may contribute to future personalized treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Christian Casar
- 1st Department of Medicine, and
- Bioinformatics Core, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | - Johannes Fuss
- Institute of Forensic Psychiatry and Sex Research, Center for Translational Neuro and Behavioral Sciences, University of Duisburg-Essen, Essen, Germany
| | - Johanna Schröder
- Institute for Clinical Psychology and Psychotherapy, Department for Psychology, Medical School Hamburg, Hamburg, Germany
| | - Alexandra E. Kulle
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Paul-Martin Holterhus
- Division of Pediatric Endocrinology and Diabetes, Department of Children and Adolescent Medicine, University Hospital Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Stefan Bonn
- Institute of Medical Systems Biology and
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Altfeld
- Research Department Virus Immunology, Leibniz Institute of Virology, Hamburg, Germany
| | - Samuel Huber
- 1st Department of Medicine, and
- Hamburg Center for Translational Immunology and
| | - Ansgar W. Lohse
- 1st Department of Medicine, and
- Hamburg Center for Translational Immunology and
| | | | - Christoph Schramm
- 1st Department of Medicine, and
- Hamburg Center for Translational Immunology and
- Martin Zeitz Center for Rare Diseases and, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
25
|
Kock KH, Tan LM, Han KY, Ando Y, Jevapatarakul D, Chatterjee A, Lin QXX, Buyamin EV, Sonthalia R, Rajagopalan D, Tomofuji Y, Sankaran S, Park MS, Abe M, Chantaraamporn J, Furukawa S, Ghosh S, Inoue G, Kojima M, Kouno T, Lim J, Myouzen K, Nguantad S, Oh JM, Rayan NA, Sarkar S, Suzuki A, Thungsatianpun N, Venkatesh PN, Moody J, Nakano M, Chen Z, Tian C, Zhang Y, Tong Y, Tan CTY, Tizazu AM, Loh M, Hwang YY, Ho RC, Larbi A, Ng TP, Won HH, Wright FA, Villani AC, Park JE, Choi M, Liu B, Maitra A, Pithukpakorn M, Suktitipat B, Ishigaki K, Okada Y, Yamamoto K, Carninci P, Chambers JC, Hon CC, Matangkasombut P, Charoensawan V, Majumder PP, Shin JW, Park WY, Prabhakar S. Asian diversity in human immune cells. Cell 2025; 188:2288-2306.e24. [PMID: 40112801 DOI: 10.1016/j.cell.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 06/03/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
The relationships of human diversity with biomedical phenotypes are pervasive yet remain understudied, particularly in a single-cell genomics context. Here, we present the Asian Immune Diversity Atlas (AIDA), a multi-national single-cell RNA sequencing (scRNA-seq) healthy reference atlas of human immune cells. AIDA comprises 1,265,624 circulating immune cells from 619 donors, spanning 7 population groups across 5 Asian countries, and 6 controls. Though population groups are frequently compared at the continental level, we found that sub-continental diversity, age, and sex pervasively impacted cellular and molecular properties of immune cells. These included differential abundance of cell neighborhoods as well as cell populations and genes relevant to disease risk, pathogenesis, and diagnostics. We discovered functional genetic variants influencing cell-type-specific gene expression, which were under-represented in non-Asian populations, and helped contextualize disease-associated variants. AIDA enables analyses of multi-ancestry disease datasets and facilitates the development of precision medicine efforts in Asia and beyond.
Collapse
Affiliation(s)
- Kian Hong Kock
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Le Min Tan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Kyung Yeon Han
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Yoshinari Ando
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Damita Jevapatarakul
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Ankita Chatterjee
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India
| | - Quy Xiao Xuan Lin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Eliora Violain Buyamin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Radhika Sonthalia
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Deepa Rajagopalan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Yoshihiko Tomofuji
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Shvetha Sankaran
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Mi-So Park
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Mai Abe
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Juthamard Chantaraamporn
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Seiko Furukawa
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Supratim Ghosh
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Gyo Inoue
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Miki Kojima
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Tsukasa Kouno
- Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Jinyeong Lim
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Keiko Myouzen
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Sarintip Nguantad
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Jin-Mi Oh
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Nirmala Arul Rayan
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Sumanta Sarkar
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Narita Thungsatianpun
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Prasanna Nori Venkatesh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Jonathan Moody
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Masahiro Nakano
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Ziyue Chen
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore
| | - Chi Tian
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Yuntian Zhang
- Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore
| | - Yihan Tong
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore
| | - Crystal T Y Tan
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Anteneh Mehari Tizazu
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Marie Loh
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - You Yi Hwang
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Roger C Ho
- Department of Psychological Medicine, YLLSoM, NUS, 1E Kent Ridge Road, Singapore 119228, Singapore; Institute for Health Innovation & Technology, NUS, 14 Medical Drive, Singapore 117599, Singapore
| | - Anis Larbi
- Singapore Immunology Network (SIgN), A(∗)STAR, 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| | - Tze Pin Ng
- Department of Geriatric Medicine, Khoo Teck Puat Hospital, Singapore 768828, Singapore; St Luke's Hospital, Singapore 659674, Singapore; Geriatric Education and Research Institute, Singapore 768024, Singapore
| | - Hong-Hee Won
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Fred A Wright
- Department of Biological Sciences, Bioinformatics Research Center, and Department of Statistics, North Carolina State University, Raleigh, NC 27695, USA
| | - Alexandra-Chloé Villani
- Center for Immunology and Inflammatory Diseases, Department of Medicine, and Mass General Cancer Center, Center for Cancer Research, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Jong-Eun Park
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 34051, Republic of Korea
| | - Murim Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul 03080, Republic of Korea
| | - Boxiang Liu
- Department of Pharmacy, Faculty of Science, National University of Singapore (NUS), Singapore 117543, Singapore; Department of Biomedical Informatics, Yong Loo Lin School of Medicine (YLLSoM), NUS, Singapore 119228, Singapore; Precision Medicine Translational Research Programme, NUS Centre for Cancer Research, and Cardiovascular-Metabolic Disease Translational Research Programme, YLLSoM, NUS, Singapore 119228, Singapore
| | - Arindam Maitra
- Biotechnology Research and Innovation Council - National Institute of Biomedical Genomics, Kalyani, West Bengal 741251, India
| | - Manop Pithukpakorn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Bhoom Suktitipat
- Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kazuyoshi Ishigaki
- Laboratory for Human Immunogenetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Yukinori Okada
- Laboratory for Systems Genetics, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Statistical Genetics, Graduate School of Medicine, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan; Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan; Laboratory of Statistical Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan; Premium Research Institute for Human Metaverse Medicine, Osaka University, Suita 565-0871, Japan
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Piero Carninci
- Laboratory for Transcriptome Technology, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Genomics Research Center, Fondazione Human Technopole, Viale Rita Levi-Montalcini, 1 - Area MIND, Milano, Lombardy 20157, Italy
| | - John C Chambers
- Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore
| | - Chung-Chau Hon
- Laboratory for Genome Information Analysis, RIKEN Center for IMS, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-3-2 Kagamiyama, Higashihiroshima, Hiroshima 739-0046, Japan
| | - Ponpan Matangkasombut
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Microbiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
| | - Varodom Charoensawan
- Single-cell omics and Systems Biology of Diseases (scSyBiD) Research Unit, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; Integrative Computational BioScience Center, Mahidol University, Nakhon Pathom 73170, Thailand; Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand; School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Partha P Majumder
- John C. Martin Centre for Liver Research and Innovations, Sonarpur, Kolkata 700150, India; Indian Statistical Institute, 203 B.T. Road, Kolkata 700108, India
| | - Jay W Shin
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Laboratory for Advanced Genomics Circuit, RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan.
| | - Woong-Yang Park
- Samsung Genome Institute, Samsung Medical Center, Seoul 06351, Republic of Korea.
| | - Shyam Prabhakar
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A(∗)STAR), 60 Biopolis Street, Genome, Singapore 138672, Singapore; Nanyang Technological University (NTU), Lee Kong Chian School of Medicine (LKCMedicine), 11 Mandalay Road, Singapore 308232, Singapore; Cancer Science Institute of Singapore, NUS, 14 Medical Drive, Singapore 117599, Singapore.
| |
Collapse
|
26
|
Liao T, Zeng Y, Xu W, Shi X, Shen C, Du Y, Zhang M, Zhang Y, Li L, Ding P, Hu W, Huang Z, Fung MHM, Ji Q, Wang Y, Li S, Wei W. A spatially resolved transcriptome landscape during thyroid cancer progression. Cell Rep Med 2025; 6:102043. [PMID: 40157360 PMCID: PMC12047530 DOI: 10.1016/j.xcrm.2025.102043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/03/2024] [Accepted: 03/05/2025] [Indexed: 04/01/2025]
Abstract
Tumor microenvironment (TME) remodeling plays a pivotal role in thyroid cancer progression, yet its spatial dynamics remain unclear. In this study, we integrate spatial transcriptomics and single-cell RNA sequencing to map the TME architecture across para-tumor thyroid (PT) tissue, papillary thyroid cancer (PTC), locally advanced PTC (LPTC), and anaplastic thyroid carcinoma (ATC). Our integrative analysis reveals extensive molecular and cellular heterogeneity during thyroid cancer progression, enabling the identification of three distinct thyrocyte meta-clusters, including TG+IYG+ subpopulation in PT, HLA-DRB1+HLA-DRA+ subpopulation in early cancerous stages, and APOE+APOC1+ subpopulation in late-stage progression. We reveal stage-specific tumor leading edge remodeling and establish high-confidence cell-cell interactions, such as COL8A1-ITHB1 in PTC, LAMB2-ITGB4 in LPTC, and SERPINE1-PLAUR in ATC. Notably, both SERPINE1 expression level and SERPINE1+ fibroblast abundance correlate with malignant progression and prognosis. These findings provide a spatially resolved framework of TME remodeling, offering insights for thyroid cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Tian Liao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yu Zeng
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; State Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weibo Xu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiao Shi
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Cenkai Shen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Yuxin Du
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Meng Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Yan Zhang
- Department of Pathology, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China; Institute of Pathology, Fudan University, Shanghai 200032, China
| | - Ling Li
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Peipei Ding
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Weiguo Hu
- Fudan University Shanghai Cancer Center and Institute of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai 200032, China
| | - Zhiheng Huang
- Endocrine Surgery Division, The University of HongKong-Shenzhen Hospital, Shenzhen, Guangdong 518053, China
| | - Man Him Matrix Fung
- Division of Endocrine Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine, University of Hong Kong Queen Mary Hospital, Hong Kong SAR 999077, China
| | - Qinghai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Yu Wang
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| | - Shengli Li
- Precision Research Center for Refractory Diseases, Shanghai Jiao Tong University Pioneer Research Institute for Molecular and Cell Therapies, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China; State Key Laboratory of Innovative Immunotherapy, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Wenjun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.
| |
Collapse
|
27
|
Peters F, Höfs W, Lee H, Brodesser S, Kruse K, Drexler HC, Hu J, Raker VK, Lukas D, von Stebut E, Krönke M, Niessen CM, Wickström SA. Sphingolipid metabolism orchestrates establishment of the hair follicle stem cell compartment. J Cell Biol 2025; 224:e202403083. [PMID: 39879198 PMCID: PMC11778283 DOI: 10.1083/jcb.202403083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 11/04/2024] [Accepted: 01/09/2025] [Indexed: 01/31/2025] Open
Abstract
Sphingolipids serve as building blocks of membranes to ensure subcellular compartmentalization and facilitate intercellular communication. How cell type-specific lipid compositions are achieved and what is their functional significance in tissue morphogenesis and maintenance has remained unclear. Here, we identify a stem cell-specific role for ceramide synthase 4 (CerS4) in orchestrating fate decisions in skin epidermis. Deletion of CerS4 prevents the proper development of the adult hair follicle bulge stem cell (HFSC) compartment due to altered differentiation trajectories. Mechanistically, HFSC differentiation defects arise from an imbalance of key ceramides and their derivate sphingolipids, resulting in hyperactivation of noncanonical Wnt signaling. This impaired HFSC compartment establishment leads to disruption of hair follicle architecture and skin barrier function, ultimately triggering a T helper cell 2-dominated immune infiltration resembling human atopic dermatitis. This work uncovers a fundamental role for a cell state-specific sphingolipid profile in stem cell homeostasis and in maintaining an intact skin barrier.
Collapse
Affiliation(s)
- Franziska Peters
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Windie Höfs
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Hunki Lee
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Susanne Brodesser
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
| | - Kai Kruse
- Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | | | - Jiali Hu
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Dermatology, University of Cologne, Cologne, Germany
| | - Verena K. Raker
- Department of Dermatology, University of Münster, Münster, Germany
| | - Dominika Lukas
- Department of Dermatology, University of Cologne, Cologne, Germany
| | | | - Martin Krönke
- Faculty of Medicine and University Hospital of Cologne, Cluster of Excellence on Cellular Stress Responses in Aging Associated Diseases, University of Cologne, Cologne, Germany
- Institute for Medical Microbiology, Immunology and Hygiene, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - Carien M. Niessen
- Department Cell Biology of the Skin, Cologne Excellence Cluster on Cellular Stress Responses in Aging Associated Diseases, Center for Molecular Medicine Cologne, University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sara A. Wickström
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Cell and Tissue Dynamics, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Helsinki Institute of Life Science, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| |
Collapse
|
28
|
Kim J, Park H, Park NY, Hwang SI, Kim YE, Sung SI, Chang YS, Koh A. Functional maturation of preterm intestinal epithelium through CFTR activation. Commun Biol 2025; 8:540. [PMID: 40169914 PMCID: PMC11961738 DOI: 10.1038/s42003-025-07944-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/17/2025] [Indexed: 04/03/2025] Open
Abstract
Preterm birth disrupts intestinal epithelial maturation, impairing digestive and absorptive functions. This study integrates analysis of single-cell RNA sequencing datasets, spanning fetal to adult stages, with human preterm intestinal models derived from the ileal tissue of preterm infants. We investigate the potential of extracellular vesicles (EVs) derived from human Wharton's jelly mesenchymal stem cells to promote intestinal maturation. Distinct enterocyte differentiation trajectories are identified during the transition from immature to mature stages of human intestinal development. EV treatment, particularly with the EV39 line, significantly upregulates maturation-specific gene expression related to enterocyte function. Gene set enrichment analysis reveals an enrichment of TGFβ1 signaling pathways, and proteomic analysis identifies TGFβ1 and FGF2 as key mediators of EV39's effects. These treatments enhance cell proliferation, epithelial barrier integrity, and fatty acid uptake, primarily through CFTR-dependent mechanisms-unique to human preterm models, not observed in mouse intestinal organoids. This highlights the translational potential of EV39 and CFTR activation in promoting the functional maturation of the premature human intestine.
Collapse
Affiliation(s)
- Jihyun Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Hyunji Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Na-Young Park
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Se In Hwang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea
| | - Young Eun Kim
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea
| | - Se In Sung
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Yun Sil Chang
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06351, South Korea.
- Cell and Gene Therapy Institute, Samsung Medical Center, Seoul, 06351, South Korea.
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, South Korea.
| | - Ara Koh
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea.
| |
Collapse
|
29
|
Reese CF, Gooz M, Hajdu Z, Hoffman S. CD45+/ Col I+ Fibrocytes: Major source of collagen in the fibrotic lung, but not in passaged fibroblast cultures. Matrix Biol 2025; 136:87-101. [PMID: 39828137 DOI: 10.1016/j.matbio.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 01/06/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
The role of cells of the hematopoietic lineage in fibrosis is controversial. Here we evaluate the contribution of Col I+/CD45+ cells (fibrocytes) to lung fibrosis. Systemic bleomycin treatment was used to induce fibrosis in a bone marrow transplant and two transgenic mouse models. Lung cells from these mice were analyzed by flow cytometry, both immediately upon release from the tissue or following growth on tissue-culture plastic. Fibrotic and control human lung tissue were also used. Fibroblasts and fibrocytes derived from a transgenic mouse model were compared in terms of their morphology, growth, and adhesion to fibronectin. Single cell RNAseq was performed with the analysis focusing on CD45-/Col I+ "fibroblasts" and CD45+/Col I+ "fibrocytes" in control and fibrotic mouse lung tissue. Finally, we inhibited fibrosis in mice using a novel, water-soluble version of caveolin scaffolding domain (CSD) called WCSD. In both mouse and human lung tissue, we observed by flow cytometry a large increase in fibrocyte number and Col I expression associated with fibrosis. In contrast, fibroblast number was not significantly increased. A large increase (>50-fold) in fibrocyte number associated with fibrosis was also observed by single cell RNAseq. In this case, fibroblasts increased 5-fold. Single cell RNAseq also revealed that myofibroblast markers in fibrotic tissue are associated with a cluster containing a similar number of fibrocytes and fibroblasts, not with a resident fibroblast cluster. Some investigators claim that fibrocytes are not present among primary fibroblasts. However, we found that fibrocytes were the predominant cell type present in these cultures prior to passage. Fewer fibrocytes were present after one passage, and almost none after two passages. Our experiments suggest that fibrocytes are crowded out of cultures during passage because fibroblasts have a larger footprint than fibrocytes, even though fibrocytes bind more efficiently to fibronectin. Finally, we observed by flow cytometry that in mice treated with bleomycin and WCSD compared to bleomycin alone, there was a large decrease in the number of fibrocytes present but not in the number of fibroblasts. In summary, fibrocytes are a major collagen-producing cell type that is increased in number in association with fibrosis as well as a major source of myofibroblasts. The common observation that collagen-producing spindle-shaped cells associated with fibrosis are CD45- may be an artifact of passage in cell culture.
Collapse
Affiliation(s)
- Charles F Reese
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Monika Gooz
- Drug Discovery and Biomedical Sciences, Medical University of South Carolina, Charleston 29425, SC, USA
| | - Zoltan Hajdu
- Department of Anatomical Sciences, Edward Via College of Osteopathic Medicine, 350 Howard Street, Spartanburg 29303, SC, USA
| | - Stanley Hoffman
- Division of Rheumatology/Department of Medicine, Medical University of South Carolina, Charleston 29425, SC, USA.
| |
Collapse
|
30
|
Silswal N, Baumlin N, Haworth S, Montgomery RN, Yoshida M, Dennis JS, Yerrathota S, Kim MD, Salathe M. Therapeutic strategies to reverse cigarette smoke-induced ion channel and mucociliary dysfunction in COPD airway epithelial cells. Am J Physiol Lung Cell Mol Physiol 2025; 328:L571-L585. [PMID: 40095970 DOI: 10.1152/ajplung.00258.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 03/10/2025] [Indexed: 03/19/2025] Open
Abstract
Cigarette smoke (CS) is a leading cause of chronic obstructive pulmonary disease (COPD). Here, we investigated whether the ion channel amplifier nesolicaftor rescues CS-induced mucociliary and ion channel dysfunction. As CS increases the expression of transforming growth factor-beta1 (TGF-β1), human bronchial epithelial cells (HBECs) from healthy donors were used for TGF-β1 and COPD donors (COPD-HBEC) for CS exposure experiments. CS and TGF-β1 induce mucociliary dysfunction by increasing MUC5AC and decreasing ion channel conductance important for mucus hydration. These include cystic fibrosis transmembrane conductance regulator (CFTR) and apical large-conductance, Ca2+-activated K+ (BK) channels. Nesolicaftor rescued CFTR and BK channel dysfunction, restored ciliary beat frequency (CBF), and decreased mucus viscosity and MUC5AC expression in CS-exposed COPD-HBEC. Nesolicaftor further reversed reductions in airway surface liquid (ASL) volumes, CBF, and CFTR and BK conductance, and blocked the increase in extracellular signal-regulated kinase (ERK) signaling in TGF-β1-exposed normal HBECs. Mechanistically, nesolicaftor increased, as expected, not only binding of PCBP1 to CFTR mRNA but also surprisingly to LRRC26 mRNA, which encodes the gamma subunit required for BK function. Similar to nesolicaftor, the angiotensin receptor blocker (ARB) losartan rescued TGF-β1-mediated decreases in PCBP1 binding to LRRC26 mRNA. In addition, the ARB telmisartan restored PCBP1 binding to CFTR and LRRC26 mRNAs to rescue CFTR and BK function in CS-exposed COPD-HBEC. Thus, nesolicaftor and ARBs act on the same target and were therefore neither additive nor synergistic in their actions. These data demonstrate that nesolicaftor and ARBs may provide benefits in COPD by improving ion channel function important for mucus hydration.NEW & NOTEWORTHY Cigarette smoke (CS) increases transforming growth factor-beta1 (TGF-β1) expression that causes mucociliary dysfunction by decreasing ion channel function. In our study, a CFTR amplifier (nesolicaftor) and angiotensin II receptor blockers (losartan and telmisartan) improve CS-induced ion channel dysfunction, by increasing binding of PCBP1 to CFTR and LRRC26 mRNAs. Therefore, nesolicaftor and ARBs, acting on the same target, may provide therapeutic benefits for treating smoking-related diseases.
Collapse
Affiliation(s)
- Neerupma Silswal
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Nathalie Baumlin
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Steven Haworth
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Robert N Montgomery
- Department of Biostatistics and Data Science, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Makoto Yoshida
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - John S Dennis
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Sireesha Yerrathota
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Michael D Kim
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| | - Matthias Salathe
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas, United States
| |
Collapse
|
31
|
Lewinsohn DA, Kain D, Awad W, McElfresh GW, Cansler M, Swarbrick G, Poa K, McNeice C, Boggy G, Rott K, Null M, Lewinsohn D, Rossjohn J, Bimber B. Human Neonatal MR1T Cells Have Diverse TCR Usage, are Less Cytotoxic and are Unable to Respond to Many Common Childhood Pathogens. RESEARCH SQUARE 2025:rs.3.rs-6265058. [PMID: 40235492 PMCID: PMC11998791 DOI: 10.21203/rs.3.rs-6265058/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Neonatal sepsis is a leading cause of childhood mortality. Understanding immune cell development can inform strategies to combat this. MR1-restricted T (MR1T) cells can be defined by their recognition of small molecules derived from microbes, self, and drug and drug-like molecules, presented by the MHC class 1-related molecule (MR1). In healthy adults, the majority of MR1T cells express an invariant α-chain; TRAV1-2/TRAJ33/12/20 and are referred to as mucosal-associated invariant T (MAIT) cells. Neonatal MR1T cells isolated from cord blood (CB) demonstrate more diversity in MR1T TCR usage, with the majority of MR1-5-OP-RU-tetramer(+) cells being TRAV1-2(-). To better understand this diversity, we performed single-cell-RNA-seq/TCR-seq (scRNA-seq/scTCR-seq) on MR1-5-OP-RU-tetramer(+) cells from CB (n=5) and adult participants (n=5). CB-derived MR1T cells demonstrate a less cytotoxic/pro-inflammatory phenotype, and a more diverse TCR repertoire. A panel of CB and adult MAIT and TRAV1-2(-) MR1T cell clones were generated, and CB-derived clones were unable to recognize several common riboflavin-producing childhood pathogens (S. aureus, S. pneumoniae, M. tuberculosis). Biochemical and structural investigation of one CB MAIT TCR (CB964 A2; TRAV1-2/TRBV6-2) showed a reduction in binding affinity toward the canonical MR1-antigen, 5-OP-RU, compared to adult MAIT TCRs that correlated with differences in β-chain contribution in the TCR-MR1 interface. Overall, this data shows that CB MAIT and TRAV1-2(-) MR1T cells, express a diverse TCR repertoire, a more restricted childhood pathogen recognition profile and diminished cytotoxic and pro-inflammatory capacity. Understanding this diversity, along with the functional ability of TRAV1-2(-) MR1T cells, could provide insight into increased neonatal susceptibility to infections.
Collapse
|
32
|
Zhang X, Yang Z, Xie X, Li J, Xiao Q, Xu G, Ma B, Xie X, Liu Y, Zhai L, Tang Y, Fu H, He S, Liu T, Huang D, Zeng C, Zhou Y, Hu R, Guo B, Wang C, Liang S, Luo Q, Lv J, Nan Y, Li J, Li Q, Wang S, Wu Y, Liu Y. The single-cell immune landscape of HIV-associated aggressive B-cell lymphoma. JOURNAL OF THE NATIONAL CANCER CENTER 2025; 5:221-235. [PMID: 40265092 PMCID: PMC12010387 DOI: 10.1016/j.jncc.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 01/27/2025] [Accepted: 02/08/2025] [Indexed: 04/24/2025] Open
Abstract
Background Human immunodeficiency virus (HIV)-associated lymphomas (HAL), mainly aggressive B-cell lymphomas, pose a significant challenge in cancer research due to their multifaceted pathogenesis and aggressive clinical course. Despite the clinical importance, the genomic and immune characteristics of these lymphomas remain poorly elucidated. Methods We employed single-cell RNA sequencing (scRNA-seq) on lymph node samples from aggressive B-cell lymphomas, mainly including 6 cases of diffuse large B-cell lymphoma (DLBCL) and 5 cases of Burkitt lymphoma (BL) from people living with HIV (PLWH), along with 3 DLBCL cases from individuals without HIV for comparison. Results Malignant B cells in HAL consistently exhibited high proliferative and oxidative phosphorylation (OXPHOS)-type metabolic signatures. Moreover, these cells demonstrated loss expression of major histocompatibility complex class I (MHC-I), strategically reducing tumor immunogenicity. HAL harbors special populations of naive and atypical memory B cells that exhibited high metabolic and immune-activated transcriptional profiles. Additionally, HAL exhibited senescence-like dysfunction in T cells, characterized by the reductions in regulatory activity of Treg and cytotoxic activity of CD8+ T cells, as well as decreases expression of IL7R genes and increases expression of FOS and FOSB genes. Our immunofluorescence results showed that the cytotoxic CD8+ T cells in HAL may have a dysfunction of lytic granule polarization. Furthermore, macrophages from HAL exhibited stronger immunosuppressive transcriptional characteristics, and a robust immunosuppressive SPP1-CD44 interaction was predicted between C1QA+ macrophages and T cells. Conclusions Our findings clearly indicate that HAL differs significantly from non-HAL, ranging from malignant B cells to the immune microenvironment. This study provides a comprehensive single-cell atlas of HIV-associated aggressive B-cell lymphomas, offering new insights into aggressiveness and immune evasion observed in HAL.
Collapse
Affiliation(s)
- Xiaomei Zhang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Zailin Yang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Xiaoqing Xie
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jun Li
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qing Xiao
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Guofa Xu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
- Department of Hematology and Medical Oncology, Chongqing University Fuling Hospital, Chongqing, China
| | - Ben Ma
- Department of Integrated, Chongqing University Cancer Hospital, Chongqing, China
| | - Xudong Xie
- Department of Integrated, Chongqing University Cancer Hospital, Chongqing, China
| | - Yi Liu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Liuyue Zhai
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yifeng Tang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Huihui Fu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Sanxiu He
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Tingting Liu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Dehong Huang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Censi Zeng
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yixing Zhou
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Renzhi Hu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Binling Guo
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Chaoyu Wang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shunsi Liang
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qin Luo
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jing Lv
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yingyu Nan
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Jieping Li
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Qiying Li
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shengqiang Wang
- Department of Integrated, Chongqing University Cancer Hospital, Chongqing, China
| | - Yongzhong Wu
- Department of Radiation Oncology, Chongqing University Cancer Hospital, Chongqing, China
| | - Yao Liu
- Department of Hematology and Oncology, Chongqing University Cancer Hospital, Chongqing, China
| |
Collapse
|
33
|
Van der Stede T, Van de Loock A, Turiel G, Hansen C, Tamariz-Ellemann A, Ullrich M, Lievens E, Spaas J, Yigit N, Anckaert J, Nuytens J, De Baere S, Van Thienen R, Weyns A, De Wilde L, Van Eenoo P, Croubels S, Halliwill JR, Mestdagh P, Richter EA, Gliemann L, Hellsten Y, Vandesompele J, De Bock K, Derave W. Cellular deconstruction of the human skeletal muscle microenvironment identifies an exercise-induced histaminergic crosstalk. Cell Metab 2025; 37:842-856.e7. [PMID: 39919738 DOI: 10.1016/j.cmet.2024.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 10/14/2024] [Accepted: 12/18/2024] [Indexed: 02/09/2025]
Abstract
Plasticity of skeletal muscle is induced by transcriptional and translational events in response to exercise, leading to multiple health and performance benefits. The skeletal muscle microenvironment harbors myofibers and mononuclear cells, but the rich cell diversity has been largely ignored in relation to exercise adaptations. Using our workflow of transcriptome profiling of individual myofibers, we observed that their exercise-induced transcriptional response was surprisingly modest compared with the bulk muscle tissue response. Through the integration of single-cell data, we identified a small mast cell population likely responsible for histamine secretion during exercise and for targeting myeloid and vascular cells rather than myofibers. We demonstrated through histamine H1 or H2 receptor blockade in humans that this paracrine histamine signaling cascade drives muscle glycogen resynthesis and coordinates the transcriptional exercise response. Altogether, our cellular deconstruction of the human skeletal muscle microenvironment uncovers a histamine-driven intercellular communication network steering muscle recovery and adaptation to exercise.
Collapse
Affiliation(s)
- Thibaux Van der Stede
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Alexia Van de Loock
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Guillermo Turiel
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Camilla Hansen
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | | | - Max Ullrich
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Jan Spaas
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium; BIOMED Biomedical Research Institute, Faculty of Medicine and Life Sciences, Hasselt University, Diepenbeek, Belgium
| | - Nurten Yigit
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jasper Anckaert
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Justine Nuytens
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - Ruud Van Thienen
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Anneleen Weyns
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laurie De Wilde
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Peter Van Eenoo
- Department of Diagnostic Sciences, Doping Control Laboratory, Ghent University, Ghent, Belgium
| | - Siska Croubels
- Laboratory of Pharmacology and Toxicology, Department of Pathobiology, Pharmacology and Zoological Medicine, Ghent University, Merelbeke, Belgium
| | - John R Halliwill
- Bowerman Sports Science Center, Department of Human Physiology, University of Oregon, Eugene, OR, USA
| | - Pieter Mestdagh
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Erik A Richter
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Gliemann
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Ylva Hellsten
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Copenhagen, Denmark
| | - Jo Vandesompele
- OncoRNALab, Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Katrien De Bock
- Laboratory of Exercise and Health, Department of Health Sciences and Technology, Swiss Federal Institute of Technology (ETH Zürich), Zurich, Switzerland
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| |
Collapse
|
34
|
Qiu Y, Wang Y, Liu J, Liu B, Sun K, Hou Q. Single-cell sequencing uncovers a high ESM1-expression endothelial cell subpopulation associated with bladder cancer progression and the immunosuppressive microenvironment. Sci Rep 2025; 15:10946. [PMID: 40159545 PMCID: PMC11955522 DOI: 10.1038/s41598-025-95731-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Despite remarkable advancements in therapeutic strategies, a considerable proportion of patients with bladder cancer (BC) still experience disease progression and unfavorable prognosis. The heterogeneity and biological functions of tumor endothelial cells (ECs) during BC progression remain poorly understood. We collected scRNA-seq data from BC samples and identified two EC subpopulations through hierarchical clustering analysis. The activity of signaling pathways in distinct EC subpopulations was assessed utilizing AUCell analysis. Gene regulatory networks (GRN) were constructed and analyzed for different EC subpopulations using the pySCENIC algorithm. Additionally, we investigated the association between the abundance of EC subpopulations and both clinical prognosis and immune cell infiltration. The biological effects of ESM1 protein on BC cells were further validated through EdU and Transwell assays. We analyzed 7,519 CD45-negative single cells from BC tissues and discerned two distinct EC subpopulations. The two subpopulations were characterized by high expression of ESM1 (S1 ECs) and CXCL2 (S2 ECs), respectively. In S1 ECs, we observed significant activation of signaling pathways involved in tumor promotion, including angiogenesis and cell proliferation. Additionally, our GRN analysis uncovered notable differences in transcription factor activity between S1 and S2 ECs. Moreover, ESM1 protein promoted proliferation and migration of BC cells. Patients with higher abundance of the S1 EC subpopulation exhibited more unfavorable clinical outcomes and increased infiltration of inhibitory immune cells. Our findings elucidate the transcriptional profiles and biological roles of the high ESM1-expression endothelial cell subpopulation in BC. This subpopulation is associated with poor prognosis and immunosuppressive tumor microenvironment. Accordingly, targeting endothelial cells with high ESM1 expression may offer a novel therapeutic strategy for patients with BC.
Collapse
Affiliation(s)
- Yifeng Qiu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of ShenzhenUniversity, Shenzhen, China
| | - Yuhan Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Jiahe Liu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, National-Regional Key Technology Engineering Laboratory for Medical Ultrasound, School of Biomedical Engineering, Shenzhen University Medical school, Shenzhen, 518060, China
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Baohua Liu
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.
| | - Kai Sun
- Department of Radiology, the Third People's Hospital of Longgang District, Shenzhen Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, 518116, China.
| | - Qi Hou
- Department of Urology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, China.
- Shenzhen Key Laboratory for Systemic Aging and Intervention (SAI), Guangdong Key Laboratory of Genome Stability and Human Disease Prevention, School of Basic Medical Sciences, Marshall Laboratory of Biomedical Engineering, National Engineering Research Center for Biotechnology (Shenzhen), International Cancer Center, Shenzhen University, Shenzhen, Guangdong, China.
- International Cancer Center, Shenzhen Key Laboratory, Hematology Institution of ShenzhenUniversity, Shenzhen, China.
| |
Collapse
|
35
|
Brida KL, Jorgensen ET, Phillips RA, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal neurons, promotes neuronal excitability, and regulates cocaine reward. SCIENCE ADVANCES 2025; 11:eads4441. [PMID: 40138397 PMCID: PMC12076537 DOI: 10.1126/sciadv.ads4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Drugs of abuse activate defined neuronal populations in reward structures such as the nucleus accumbens (NAc), which promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, mechanisms that dictate NAc neuronal recruitment remain unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling and targeted in situ detection to identify Reln (encoding the secreted glycoprotein, Reelin) as a marker of cocaine-activated neuronal populations within the rat NAc. A CRISPR interference approach enabling selective Reln knockdown in the adult NAc altered expression of calcium signaling genes, promoted a transcriptional trajectory consistent with loss of cocaine sensitivity, and decreased MSN excitability. Behaviorally, Reln knockdown prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. These results identify Reelin as a critical mechanistic link between neuronal activation and cocaine-induced behavioral adaptations.
Collapse
Affiliation(s)
- Kasey L. Brida
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily T. Jorgensen
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine E. Newman
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily K. Morring
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center,
University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey D. Montgomery
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neuroscience, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neuroscience, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
- The Kavli Neuroscience Discovery
Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
36
|
Farhat A, Radhouani M, Deckert F, Zahalka S, Pimenov L, Fokina A, Hakobyan A, Oberndorfer F, Brösamlen J, Hladik A, Lakovits K, Meng F, Quattrone F, Boon L, Vesely C, Starkl P, Boucheron N, Menche J, van der Veeken J, Ellmeier W, Gorki AD, Campbell C, Gawish R, Knapp S. An aging bone marrow exacerbates lung fibrosis by fueling profibrotic macrophage persistence. Sci Immunol 2025; 10:eadk5041. [PMID: 40153488 DOI: 10.1126/sciimmunol.adk5041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/27/2024] [Accepted: 02/19/2025] [Indexed: 03/30/2025]
Abstract
Pulmonary fibrosis is an incurable disease that manifests with advanced age. Yet, how hematopoietic aging influences immune responses and fibrosis progression remains unclear. Using heterochronic bone marrow transplant mouse models, we found that an aged bone marrow exacerbates lung fibrosis irrespective of lung tissue age. Upon lung injury, there was an increased accumulation of monocyte-derived alveolar macrophages (Mo-AMs) driven by cell-intrinsic hematopoietic aging. These Mo-AMs exhibited an enhanced profibrotic profile and stalled maturation into a homeostatic, tissue-resident phenotype. This delay was shaped by cell-extrinsic environmental signals such as reduced pulmonary interleukin-10 (IL-10), perpetuating a profibrotic macrophage state. We identified regulatory T cells (Tregs) as critical providers of IL-10 upon lung injury that promote Mo-AM maturation and attenuate fibrosis progression. Our study highlights the impact of an aging bone marrow on lung immune regulation and identifies Treg-mediated IL-10 signaling as a promising target to mitigate fibrosis and promote tissue repair.
Collapse
Affiliation(s)
- Asma Farhat
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | - Mariem Radhouani
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | - Florian Deckert
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | - Sophie Zahalka
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | - Lisabeth Pimenov
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Alina Fokina
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anna Hakobyan
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
| | | | - Jessica Brösamlen
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Anastasiya Hladik
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Karin Lakovits
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Fanzhe Meng
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Federica Quattrone
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | | | - Cornelia Vesely
- Center for Anatomy and Cell Biology, Medical University of Vienna, Vienna, Austria
| | - Philipp Starkl
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Nicole Boucheron
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Jörg Menche
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Vienna, Austria
- Department of Structural and Computational Biology, University of Vienna, Vienna, Austria
- Faculty of Mathematics, University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Vienna, Austria
| | | | - Wilfried Ellmeier
- Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Anna-Dorothea Gorki
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Clarissa Campbell
- Research Center for Molecular Medicine of the Austrian Academy of Sciences, CeMM, Vienna, Austria
| | - Riem Gawish
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Sylvia Knapp
- Research Division of Infection Biology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
- Ignaz Semmelweis Institute, Interuniversity Institute for Infection Research, Vienna, Austria
| |
Collapse
|
37
|
Li J, Yang C, Zhang Y, Hong X, Jiang M, Zhu Z, Li J. Leveraging miRNA-mediated expression profiles to predict prognosis and identify distinct molecular subtypes in ovarian cancer: a multi-cohort study. Int Immunopharmacol 2025; 150:114303. [PMID: 39961214 DOI: 10.1016/j.intimp.2025.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 03/03/2025]
Abstract
Ovarian cancer (OV) remains the deadliest gynecological malignancy, with non-coding RNA-mediated transcriptomic deregulation significantly influencing its prognosis and heterogeneous progression. In this study, we prioritized miRNA-mediated gene expression profiles by identifying key negative correlations between miRNA-mRNA pairs. We developed a machine learning-based non-coding index (NCI), incorporating a four-gene signature (GAS1, GFPT2, ZFHX4, and KCNA1) to predict patient prognosis and therapeutic response. Validation across multiple datasets revealed that OV patients with higher NCI scores had significantly poorer survival outcomes and resistance to immunotherapy. Additionally, we established a four-class subtyping taxonomy through unsupervised clustering, validated in four independent datasets. The S1 and S3 subtypes were characterized by high NCI scores, abundant stromal and immune infiltration, with the S3 subtype exhibiting the worst survival. Conversely, the S2 subtype showed downregulation of immune response genes, while the S4 subtype displayed epithelial differentiation and favourable prognosis. Integrative analyses of bulk and single-cell transcriptomic data revealed that the S3 subtype had a significantly higher fibroblast proportion compared to other subtypes, whereas the S1 subtype was marked by high T cell content. Through ridge regression-based drug sensitivity analyses, we prioritized candidate therapeutics for each subtype. Notably, the S3 subtype demonstrated sensitivity to dasatinib but resistance to methotrexate. Finally, we developed a user-friendly Shiny-based website to facilitate the application of our prognostic and subtype classification models (https://jli-bioinfo.shinyapps.io/NCI_online/). This study establishes a critical prognostic marker and proposes a novel molecular classification framework grounded in miRNA-regulated gene expression profiles, advancing our understanding of the non-coding mechanisms driving OV heterogeneity.
Collapse
Affiliation(s)
- Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Chuanlai Yang
- Department of Science and Technology, The Second Affiliated Hospital of Soochow University, Soochow, China
| | - Yunxiao Zhang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China; Department of Andrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaoning Hong
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Mingye Jiang
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Zhongxu Zhu
- Biomics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, China.
| | - Jiang Li
- Clinical Big Data Research Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China; Shenzhen Key Laboratory of Chinese Medicine Active Substance Screening and Translational Research, Guangdong, Shenzhen, China.
| |
Collapse
|
38
|
Pan S, Tang H, Yao B, Tian G, Sun B, Hu Y, Chen Y, Li J, Xu X, Zhang C, Ying S. Decoding the ontogeny of myeloid lineage diversity by cross-species and developmental analyses of hematopoietic progenitor atlases. Cell Rep 2025; 44:115406. [PMID: 40057952 DOI: 10.1016/j.celrep.2025.115406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 12/23/2024] [Accepted: 02/15/2025] [Indexed: 03/29/2025] Open
Abstract
Myeloid cells play vital roles in homeostasis and immune responses in vertebrates, but the developmental pathway underlying their lineage diversity remains elusive. Here, we construct a single-cell transcriptional map of myeloid progenitors from mouse bone marrow and conduct cross-species and developmental analyses across human, monkey, mouse, and zebrafish. We uncover a conserved specification program separating the eosinophil-basophil-mast cell (EBM) lineage and neutrophil-monocyte (NM) lineage, reclassifying myeloid cells beyond the conventional granulocytic and monocytic framework. By generating Ikzf2-EGFP reporter mice, we identify IKZF2 as a priming marker for EBM lineage specification. Ikzf2-EGFP+ and Ikzf2-EGFP- granulocyte-monocyte progenitors (GMPs) exhibit distinct potential to generate EBM and NM lineages, and Ikzf2-EGFP expression robustly distinguishes their progenies. Additionally, we demonstrate that lineage specification emerges early during myelopoiesis. These findings provide a redefined perspective on myeloid lineage ontogeny, highlighting the conservation of lineage specification and offering insights into the understanding and therapeutic development of myelopoiesis.
Collapse
Affiliation(s)
- Sheng Pan
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Haoyu Tang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Bingpeng Yao
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China
| | - Guoxiong Tian
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China
| | - Beibei Sun
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Yangmingzi Hu
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China
| | - Yan Chen
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China
| | - Jiaqian Li
- Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Chao Zhang
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China; Department of Anatomy, Zhejiang University School of Medicine, Hangzhou 310058, China.
| | - Songmin Ying
- Department of Pharmacy, Center for Regeneration and Aging Medicine, the Fourth Affiliated Hospital of School of Medicine, and International School of Medicine, International Institutes of Medicine, Zhejiang University, Zhejiang-Denmark Joint Laboratory of Regeneration and Aging Medicine, Yiwu 322000, China; Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China; Department of Pharmacology, Zhejiang University School of Medicine, Hangzhou 310058, China.
| |
Collapse
|
39
|
Malpetti D, Mangili F, Bolis M, Rinaldi A, Legouis D, Ruinelli L, Cippà P, Azzimonti L. Protocol for interpretable and context-specific single-cell-informed deconvolution of bulk RNA-seq data. STAR Protoc 2025; 6:103670. [PMID: 40042970 PMCID: PMC11926695 DOI: 10.1016/j.xpro.2025.103670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/01/2024] [Accepted: 02/12/2025] [Indexed: 03/24/2025] Open
Abstract
Single-cell sequencing provides rich information; however, its clinical use is limited due to high costs and complex data output. Here, we present a protocol for extracting single-cell-related information from bulk RNA-sequencing (RNA-seq) data using the pathway-level information extractor (PLIER) algorithm. We describe the steps for extracting single-cell signatures from literature, training a PLIER model based on single-cell signatures (named CLIER), and applying it to a new dataset. This produces latent variables that are interpretable in the context of specific single-cell biology. For complete details on the use and execution of this protocol, please refer to Legouis et al.,1 where this approach is used within the renal context.
Collapse
Affiliation(s)
- Daniele Malpetti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), SUPSI, 6900 Lugano, Switzerland.
| | - Francesca Mangili
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), SUPSI, 6900 Lugano, Switzerland
| | - Marco Bolis
- Institute of Oncology Research, Università della Svizzera Italiana, Bellinzona, Switzerland; Laboratory of Computational Oncology, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Anna Rinaldi
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland.
| | - David Legouis
- Division of Intensive Care, Department of Acute Medicine, University Hospital of Geneva, 1205 Geneva, Switzerland; Laboratory of Nephrology, Department of Physiology and Cell Metabolism, University of Geneva, 1205 Geneva, Switzerland
| | | | - Pietro Cippà
- Laboratories for Translational Research, Ente Ospedaliero Cantonale, Bellinzona, Switzerland; Division of Nephrology, Department of Medicine, Ente Ospedaliero Cantonale, 6900 Lugano, Switzerland; Faculty of Biomedical Sciences, Università della Svizzera Italiana, 6900 Lugano, Switzerland
| | - Laura Azzimonti
- Istituto Dalle Molle di Studi sull'Intelligenza Artificiale (IDSIA), SUPSI, 6900 Lugano, Switzerland
| |
Collapse
|
40
|
Gatlin V, Gupta S, Romero S, Chapkin RS, Cai JJ. Exploring cell-to-cell variability and functional insights through differentially variable gene analysis. NPJ Syst Biol Appl 2025; 11:29. [PMID: 40113778 PMCID: PMC11926233 DOI: 10.1038/s41540-025-00507-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 02/26/2025] [Indexed: 03/22/2025] Open
Abstract
Single-cell RNA sequencing (scRNA-seq) has revolutionized our understanding of cellular variability by capturing gene expression profiles of individual cells. The importance of cell-to-cell variability in determining and shaping cell function has been widely appreciated. Nevertheless, differential expression (DE) analysis remains a cornerstone method in analytical practice. Current computational analyses overlook the rich information encoded by variability within the single-cell gene expression data by focusing exclusively on mean expression. To offer a deeper understanding of cellular systems, there is a need for approaches to assess data variability rather than just the mean. Here we present spline-DV, a statistical framework for differential variability (DV) analysis using scRNA-seq data. The spline-DV method identifies genes exhibiting significantly increased or decreased expression variability among cells derived from two experimental conditions. Case studies show that DV genes identified using spline-DV are representative and functionally relevant to tested cellular conditions, including obesity, fibrosis, and cancer.
Collapse
Affiliation(s)
- Victoria Gatlin
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, 77843, USA
| | - Shreyan Gupta
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, 77843, USA
| | - Selim Romero
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - Robert S Chapkin
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, 77843, USA
- Department of Nutrition, Texas A&M University, College Station, TX, 77843, USA
| | - James J Cai
- Department of Veterinary Integrative Biosciences, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA.
- CPRIT Single Cell Data Science Core, Texas A&M University, College Station, TX, 77843, USA.
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
41
|
Wang N, Zhang S, Langfelder P, Ramanathan L, Gao F, Plascencia M, Vaca R, Gu X, Deng L, Dionisio LE, Vu H, Maciejewski E, Ernst J, Prasad BC, Vogt TF, Horvath S, Aaronson JS, Rosinski J, Yang XW. Distinct mismatch-repair complex genes set neuronal CAG-repeat expansion rate to drive selective pathogenesis in HD mice. Cell 2025; 188:1524-1544.e22. [PMID: 39938516 PMCID: PMC11972609 DOI: 10.1016/j.cell.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/09/2025] [Accepted: 01/21/2025] [Indexed: 02/14/2025]
Abstract
Huntington's disease (HD) modifiers include mismatch-repair (MMR) genes, but their connections to neuronal pathogenesis remain unclear. Here, we genetically tested 9 HD genome-wide association study (GWAS)/MMR genes in mutant Huntingtin (mHtt) mice with 140 inherited CAG repeats (Q140). Knockout (KO) of genes encoding a distinct MMR complex either strongly (Msh3 and Pms1) or moderately (Msh2 and Mlh1) rescues phenotypes with early onset in striatal medium-spiny neurons (MSNs) and late onset in the cortical neurons: somatic CAG-repeat expansion, transcriptionopathy, and mHtt aggregation. Msh3 deficiency ameliorates open-chromatin dysregulation in Q140 neurons. Mechanistically, the fast linear rate of mHtt modal-CAG-repeat expansion in MSNs (8.8 repeats/month) is drastically reduced or stopped by MMR mutants. Msh3 or Pms1 deficiency prevents mHtt aggregation by keeping somatic MSN CAG length below 150. Importantly, Msh3 deficiency corrects synaptic, astrocytic, and locomotor defects in HD mice. Thus, Msh3 and Pms1 drive fast somatic mHtt CAG-expansion rates in HD-vulnerable neurons to elicit repeat-length/threshold-dependent, selective, and progressive pathogenesis in vivo.
Collapse
Affiliation(s)
- Nan Wang
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shasha Zhang
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peter Langfelder
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lalini Ramanathan
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fuying Gao
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Mary Plascencia
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Raymond Vaca
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xiaofeng Gu
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Linna Deng
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Leonardo E Dionisio
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ha Vu
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Emily Maciejewski
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jason Ernst
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Altos Labs, Cambridge, UK
| | | | | | - X William Yang
- Center for Neurobehavioral Genetics, The Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
42
|
Kavran AJ, Bai Y, Rabe B, Kreshock A, Fisher A, Cheng Y, Lewin A, Dai C, Meyer MJ, Mavrakis KJ, Lyubetskaya A, Drokhlyansky E. Spatial genomics reveals cholesterol metabolism as a key factor in colorectal cancer immunotherapy resistance. Front Oncol 2025; 15:1549237. [PMID: 40171265 PMCID: PMC11959564 DOI: 10.3389/fonc.2025.1549237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 02/24/2025] [Indexed: 04/03/2025] Open
Abstract
Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape across multiple cancer types achieving durable responses for a significant number of patients. Despite their success, many patients still fail to respond to ICIs or develop resistance soon after treatment. We sought to identify early treatment features associated with ICI outcome. We leveraged the MC38 syngeneic tumor model because it has variable response to ICI therapy driven by tumor intrinsic heterogeneity. ICI response was assessed based on the level of immune cell infiltration into the tumor - a well-established clinical hallmark of ICI response. We generated a spatial atlas of 48,636 transcriptome-wide spots across 16 tumors using spatial transcriptomics; given the tumors were difficult to profile, we developed an enhanced transcriptome capture protocol yielding high quality spatial data. In total, we identified 8 tumor cell subsets (e.g., proliferative, inflamed, and vascularized) and 4 stroma subsets (e.g., immune and fibroblast). Each tumor had orthogonal histology and bulk-RNA sequencing data, which served to validate and benchmark observations from the spatial data. Our spatial atlas revealed that increased tumor cell cholesterol regulation, synthesis, and transport were associated with a lack of ICI response. Conversely, inflammation and T cell infiltration were associated with response. We further leveraged spatially aware gene expression analysis, to demonstrate that high cholesterol synthesis by tumor cells was associated with cytotoxic CD8 T cell exclusion. Finally, we demonstrate that bulk RNA-sequencing was able to detect immune correlates of response but lacked the sensitivity to detect cholesterol synthesis as a feature of resistance.
Collapse
Affiliation(s)
- Andrew J. Kavran
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Yulong Bai
- Informatics and Predictive Sciences, Bristol Myers Squibb, Cambridge, MA, United States
| | - Brian Rabe
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Anna Kreshock
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Andrew Fisher
- Informatics and Predictive Sciences, Bristol Myers Squibb, Cambridge, MA, United States
| | - Yelena Cheng
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Anne Lewin
- Translational Medicine, Bristol Myers Squibb, Cambridge, MA, United States
| | - Chao Dai
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Matthew J. Meyer
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Konstantinos J. Mavrakis
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Anna Lyubetskaya
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| | - Eugene Drokhlyansky
- Mechanisms of Cancer Resistance Thematic Research Center (TRC), Bristol Myers Squibb, Cambridge, MA, United States
| |
Collapse
|
43
|
Kain D, Awad W, McElfresh GW, Cansler M, Swarbrick GM, Poa KCY, McNeice C, Boggy G, Rott K, Null MD, Lewinsohn DM, Rossjohn J, Bimber BN, Lewinsohn DA. Human Neonatal MR1T Cells Have Diverse TCR Usage, are Less Cytotoxic and are Unable to Respond to Many Common Childhood Pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643805. [PMID: 40166301 PMCID: PMC11956999 DOI: 10.1101/2025.03.17.643805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Neonatal sepsis is a leading cause of childhood mortality. Understanding immune cell development can inform strategies to combat this. MR1-restricted T (MR1T) cells can be defined by their recognition of small molecules derived from microbes, self, and drug and drug-like molecules, presented by the MHC class 1-related molecule (MR1). In healthy adults, the majority of MR1T cells express an invariant α-chain; TRAV1-2/TRAJ33/12/20 and are referred to as mucosal-associated invariant T (MAIT) cells. Neonatal MR1T cells isolated from cord blood (CB) demonstrate more diversity in MR1T TCR usage, with the majority of MR1-5-OP-RU-tetramer(+) cells being TRAV1-2(-). To better understand this diversity, we performed single-cell-RNA-seq/TCR-seq (scRNA-seq/scTCR-seq) on MR1-5-OP-RU-tetramer(+) cells from CB (n=5) and adult participants (n=5). CB-derived MR1T cells demonstrate a less cytotoxic/pro-inflammatory phenotype, and a more diverse TCR repertoire. A panel of CB and adult MAIT and TRAV1-2(-) MR1T cell clones were generated, and CB-derived clones were unable to recognize several common riboflavin-producing childhood pathogens (S. aureus, S. pneumoniae, M. tuberculosis). Biochemical and structural investigation of one CB MAIT TCR (CB964 A2; TRAV1-2/TRBV6-2) showed a reduction in binding affinity toward the canonical MR1-antigen, 5-OP-RU, compared to adult MAIT TCRs that correlated with differences in β-chain contribution in the TCR-MR1 interface. Overall, this data shows that CB MAIT and TRAV1-2(-) MR1T cells, express a diverse TCR repertoire, a more restricted childhood pathogen recognition profile and diminished cytotoxic and pro-inflammatory capacity. Understanding this diversity, along with the functional ability of TRAV1-2(-) MR1T cells, could provide insight into increased neonatal susceptibility to infections.
Collapse
Affiliation(s)
- Dylan Kain
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
- Division of Infectious Diseases,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - G W McElfresh
- Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Meghan Cansler
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Gwendolyn M Swarbrick
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Kean Chan Yew Poa
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Conor McNeice
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Gregory Boggy
- Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
| | - Katherine Rott
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - Megan D Null
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| | - David M Lewinsohn
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Jamie Rossjohn
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University, School of Medicine, Heath Park, Cardiff, UK
| | - Benjamin N Bimber
- Oregon National Primate Research Center, OHSU, Beaverton, OR, USA
- Vaccine and Gene Therapy Institute, OHSU, Beaverton, OR, USA
| | - Deborah A Lewinsohn
- Division of Infectious Diseases, Department of Pediatrics, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
44
|
Wu CH, Zhou X, Chen M. Exploring and mitigating shortcomings in single-cell differential expression analysis with a new statistical paradigm. Genome Biol 2025; 26:58. [PMID: 40098192 PMCID: PMC11912664 DOI: 10.1186/s13059-025-03525-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
BACKGROUND Differential expression analysis is pivotal in single-cell transcriptomics for unraveling cell-type-specific responses to stimuli. While numerous methods are available to identify differentially expressed genes in single-cell data, recent evaluations of both single-cell-specific methods and methods adapted from bulk studies have revealed significant shortcomings in performance. In this paper, we dissect the four major challenges in single-cell differential expression analysis: excessive zeros, normalization, donor effects, and cumulative biases. These "curses" underscore the limitations and conceptual pitfalls in existing workflows. RESULTS To address the limitations of current single-cell differential expression analysis methods, we propose GLIMES, a statistical framework that leverages UMI counts and zero proportions within a generalized Poisson/Binomial mixed-effects model to account for batch effects and within-sample variation. We rigorously benchmarked GLIMES against six existing differential expression methods using three case studies and simulations across different experimental scenarios, including comparisons across cell types, tissue regions, and cell states. Our results demonstrate that GLIMES is more adaptable to diverse experimental designs in single-cell studies and effectively mitigates key shortcomings of current approaches, particularly those related to normalization procedures. By preserving biologically meaningful signals, GLIMES offers improved performance in detecting differentially expressed genes. CONCLUSIONS By using absolute RNA expression rather than relative abundance, GLIMES improves sensitivity, reduces false discoveries, and enhances biological interpretability. This paradigm shift challenges existing workflows and highlights the need for careful consideration of normalization strategies, ultimately paving the way for more accurate and robust single-cell transcriptomic analyses.
Collapse
Affiliation(s)
- Chih-Hsuan Wu
- Department of Statistics, University of Chicago, Chicago, USA
| | - Xiang Zhou
- Department of Biostatistics, University of Michigan, Ann Arbor, USA
| | - Mengjie Chen
- Department of Human Genetics and Department of Medicine, University of Chicago, Chicago, USA.
| |
Collapse
|
45
|
Cao G, Hu Y, Pan T, Tang E, Asby N, Althaus T, Wan J, Riedell PA, Bishop MR, Kline JP, Huang J. Two-Stage CD8 + CAR T-Cell Differentiation in Patients with Large B-Cell Lymphoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.05.641715. [PMID: 40161759 PMCID: PMC11952315 DOI: 10.1101/2025.03.05.641715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has expanded therapeutic options for patients with diffuse large B-cell lymphoma (DLBCL). However, progress in improving clinical outcomes has been limited by an incomplete understanding of CAR T-cell differentiation in patients. To comprehensively investigate CAR T-cell differentiation in vivo, we performed single-cell, multimodal, and longitudinal analyses of CD28-costimulated CAR T cells from infusion product and peripheral blood (day 8-28) of patients with DLBCL who were successfully treated with axicabtagene ciloleucel. Here, we show that CD8+ CAR T cells undergo two distinct waves of clonal expansion. The first wave is dominated by CAR T cells with an exhausted-like effector memory phenotype during the peak expansion period (day 8-14). The second wave is dominated by CAR T cells with a terminal effector phenotype during the post-peak persistence period (day 21-28). Importantly, the two waves have distinct ontogeny and are biologically uncoupled. Furthermore, lineage tracing analysis via each CAR T cell's endogenous TCR clonotype demonstrates that the two waves originate from different effector precursors in the infusion product. Precursors of the first wave exhibit more effector-like signatures, whereas precursors of the second wave exhibit more stem-like signatures. These findings suggest that pre-infusion heterogeneity mediates the two waves of in vivo clonal expansion. Our findings provide evidence against the intuitive idea that the post-peak contraction in CAR abundance is solely apoptosis or extravasation of short-lived CAR T cells from peak expansion. Rather, our findings demonstrate that CAR T-cell expansion and persistence are mediated by clonally, phenotypically, and ontogenically distinct CAR T-cell populations that serve complementary clinical purposes.
Collapse
Affiliation(s)
- Guoshuai Cao
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Yifei Hu
- Pritzker School of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Tony Pan
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Erting Tang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Nick Asby
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Thomas Althaus
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Wan
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Peter A. Riedell
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Michael R. Bishop
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Justin P. Kline
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
- The David and Etta Jonas Center for Cellular Therapy, University of Chicago, Chicago, IL 60637, USA
| | - Jun Huang
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
- Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
- Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
46
|
Wen X, Hu AK, Presnell SR, Ford ES, Koelle DM, Kwok WW. Longitudinal single cell profiling of epitope specific memory CD4+ T cell responses to recombinant zoster vaccine. Nat Commun 2025; 16:2332. [PMID: 40057520 PMCID: PMC11890790 DOI: 10.1038/s41467-025-57562-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 02/25/2025] [Indexed: 05/13/2025] Open
Abstract
Vaccination leads to rapid expansion of antigen-specific T cells within in the first few days. However, understanding of transcriptomic changes and fates of antigen-specific T cells upon vaccination remains limited. Here, we investigate the fate of memory CD4+ T cells upon reactivation to recombinant zoster vaccine for shingles at cellular and transcriptional levels. We show that glycoprotein E-specific memory CD4+ T cells respond strongly, their frequencies remain high, and they retain markers of cell activation one year following vaccination. Memory T cells with the most dominant TCR clonotype pre-vaccination remain prevalent at year one post-vaccination. These data implicate a major role for pre-existing memory T cells in perpetuating immune repertoires upon re-encountering cognate antigens. Differential gene expression indicates that cells post-vaccination are distinct from cells at baseline, suggesting committed memory T cells display transcriptional changes upon vaccination that could alter their responses against cognate immunogens.
Collapse
Affiliation(s)
- Xiaomin Wen
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- AstraZeneca Pharmaceuticals, Gaithersburg, MD, USA
| | - Alex K Hu
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Scott R Presnell
- Center for Systems Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
| | - Emily S Ford
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - David M Koelle
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Fred Hutchinson Cancer Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
| | - William W Kwok
- Center for Translational Immunology, Benaroya Research Institute at Virginia Mason, Seattle, WA, USA.
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
47
|
Wang L, Zhang H, Yi B, Xie W, Yu K, Li W, Li K, Zhao D. FactVAE: a factorized variational autoencoder for single-cell multi-omics data integration analysis. Brief Bioinform 2025; 26:bbaf157. [PMID: 40211981 PMCID: PMC11986350 DOI: 10.1093/bib/bbaf157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 03/02/2025] [Accepted: 03/21/2025] [Indexed: 04/14/2025] Open
Abstract
Single-cell multi-omics technologies have revolutionized the study of cell states and functions by simultaneously profiling multiple molecular layers within individual cells. However, existing methods for integrating these data struggle to preserve critical feature information and fail to exploit known regulatory knowledge, which is essential for understanding cell functions. This limitation hinders their ability to provide comprehensive and accurate insights into cells. Here, we propose FactVAE, an innovative factorized variational autoencoder designed for the robust and accurate understanding of single-cell multi-omics data. FactVAE integrates the factorization principle into the variational autoencoder framework, ensuring the preservation of feature information while leveraging the non-linear capture of sample information by neural networks. Additionally, known regulatory knowledge is incorporated during model training, and a knowledge transfer strategy is employed for cell embedding optimization and data augmentation. Comparative analyses of single-cell multi-omics datasets from different protocols and the spatial multi-omics dataset demonstrate that FactVAE not only outperforms benchmark methods in clustering performance but also generates augmented data that reveals the clearest cell-type-specific motif expression. Moreover, the feature embeddings captured by FactVAE enable the inference of potential and reliable gene regulatory relationships. Overall, FactVAE's superior performance and strong scalability make it a promising new solution for single-cell multi-omics data analysis.
Collapse
Affiliation(s)
- Linjie Wang
- School of Computer Science and Engineering, Northeastern University, 110819, Shenyang, China
| | - Huixia Zhang
- School of Computer Science and Engineering, Northeastern University, 110819, Shenyang, China
| | - Bo Yi
- School of Computer Science and Engineering, Northeastern University, 110819, Shenyang, China
| | - Weidong Xie
- School of Computer Science and Engineering, Northeastern University, 110819, Shenyang, China
| | - Kun Yu
- College of Medicine and Bioinformation Engineering, Northeastern University, 110819, Shenyang, China
| | - Wei Li
- Key Laboratory of Intelligent Computing in Medical Image (MIIC), Northeastern University, 110000, Shenyang, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Northeastern University, 110819, Shenyang, China
| | - Keqin Li
- Department of Computer Science, State University of New York, Albany, NY 12561, United States
| | - Dazhe Zhao
- School of Computer Science and Engineering, Northeastern University, 110819, Shenyang, China
| |
Collapse
|
48
|
Chen J, Mohamed A, Bhuva DD, Davis MJ, Tan CW. mastR: an R package for automated identification of tissue-specific gene signatures in multi-group differential expression analysis. Bioinformatics 2025; 41:btaf114. [PMID: 40098239 PMCID: PMC11937977 DOI: 10.1093/bioinformatics/btaf114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 03/07/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025] Open
Abstract
MOTIVATION Biomarker discovery is important and offers insight into potential underlying mechanisms of disease. While existing biomarker identification methods primarily focus on single cell RNA sequencing (scRNA-seq) data, there remains a need for automated methods designed for labeled bulk RNA-seq data from sorted cell populations or experiments. Current methods require curation of results or statistical thresholds and may not account for tissue background expression. Here we bridge these limitations with an automated marker identification method for labeled bulk RNA-seq data that explicitly considers background expressions. RESULTS We developed mastR, a novel tool for accurate marker identification using transcriptomic data. It leverages robust statistical pipelines like edgeR and limma to perform pairwise comparisons between groups, and aggregates results using rank-product-based permutation test. A signal-to-noise ratio approach is implemented to minimize background signals. We assessed the performance of mastR-derived NK cell signatures against published curated signatures and found that the mastR-derived signature performs as well, if not better than the published signatures. We further demonstrated the utility of mastR on simulated scRNA-seq data and in comparison with Seurat in terms of marker selection performance. AVAILABILITY AND IMPLEMENTATION mastR is freely available from https://bioconductor.org/packages/release/bioc/html/mastR.html. A vignette and guide are available at https://davislaboratory.github.io/mastR. All statistical analyses were carried out using R (version ≥4.3.0) and Bioconductor (version ≥3.17).
Collapse
Affiliation(s)
- Jinjin Chen
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Ahmed Mohamed
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Dharmesh D Bhuva
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
| | - Melissa J Davis
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- South Australian immunoGENomics Cancer Institute (SAiGENCI), Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
- Department of Clinical Pathology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Chin Wee Tan
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC 3052, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville, VIC 3010, Australia
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4102, Australia
| |
Collapse
|
49
|
Pétremand R, Chiffelle J, Bobisse S, Perez MAS, Schmidt J, Arnaud M, Barras D, Lozano-Rabella M, Genolet R, Sauvage C, Saugy D, Michel A, Huguenin-Bergenat AL, Capt C, Moore JS, De Vito C, Labidi-Galy SI, Kandalaft LE, Dangaj Laniti D, Bassani-Sternberg M, Oliveira G, Wu CJ, Coukos G, Zoete V, Harari A. Identification of clinically relevant T cell receptors for personalized T cell therapy using combinatorial algorithms. Nat Biotechnol 2025; 43:323-328. [PMID: 38714897 PMCID: PMC11919687 DOI: 10.1038/s41587-024-02232-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 04/02/2024] [Indexed: 06/27/2024]
Abstract
A central challenge in developing personalized cancer cell immunotherapy is the identification of tumor-reactive T cell receptors (TCRs). By exploiting the distinct transcriptomic profile of tumor-reactive T cells relative to bystander cells, we build and benchmark TRTpred, an antigen-agnostic in silico predictor of tumor-reactive TCRs. We integrate TRTpred with an avidity predictor to derive a combinatorial algorithm of clinically relevant TCRs for personalized T cell therapy and benchmark it in patient-derived xenografts.
Collapse
Affiliation(s)
- Rémy Pétremand
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Marta A S Perez
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Molecular Modelling Group, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Center of Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Maria Lozano-Rabella
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Christophe Sauvage
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Damien Saugy
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Anne-Laure Huguenin-Bergenat
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Charlotte Capt
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Jonathan S Moore
- Department of Medicine and Center of Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
| | - Claudio De Vito
- Division of Clinical Pathology, Department of Diagnostics, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - S Intidhar Labidi-Galy
- Department of Medicine and Center of Translational Research in Onco-Hematology, Faculty of Medicine, University of Geneva, Swiss Cancer Center Leman, Geneva, Switzerland
- Department of Oncology, Hôpitaux Universitaires de Genève, Geneva, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Center of Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Center of Experimental Therapeutics, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Giacomo Oliveira
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Catherine J Wu
- Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland
- Immuno-oncology Service, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Molecular Modelling Group, Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne Branch, Department of Oncology, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland.
- Center for Cell Therapy, CHUV-Ludwig Institute, Lausanne, Switzerland.
| |
Collapse
|
50
|
Jiang L, Dalgarno C, Papalexi E, Mascio I, Wessels HH, Yun H, Iremadze N, Lithwick-Yanai G, Lipson D, Satija R. Systematic reconstruction of molecular pathway signatures using scalable single-cell perturbation screens. Nat Cell Biol 2025; 27:505-517. [PMID: 40011560 PMCID: PMC12083445 DOI: 10.1038/s41556-025-01622-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/21/2025] [Indexed: 02/28/2025]
Abstract
Recent advancements in functional genomics have provided an unprecedented ability to measure diverse molecular modalities, but predicting causal regulatory relationships from observational data remains challenging. Here, we leverage pooled genetic screens and single-cell sequencing (Perturb-seq) to systematically identify the targets of signalling regulators in diverse biological contexts. We demonstrate how Perturb-seq is compatible with recent and commercially available advances in combinatorial indexing and next-generation sequencing, and perform more than 1,500 perturbations split across six cell lines and five biological signalling contexts. We introduce an improved computational framework (Mixscale) to address cellular variation in perturbation efficiency, alongside optimized statistical methods to learn differentially expressed gene lists and conserved molecular signatures. Finally, we demonstrate how our Perturb-seq derived gene lists can be used to precisely infer changes in signalling pathway activation for in vivo and in situ samples. Our work enhances our understanding of signalling regulators and their targets, and lays a computational framework towards the data-driven inference of an 'atlas' of perturbation signatures.
Collapse
Affiliation(s)
| | | | - Efthymia Papalexi
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Isabella Mascio
- New York Genome Center, New York, NY, USA
- Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | | | | | | | | | | - Rahul Satija
- New York Genome Center, New York, NY, USA.
- Center for Genomics and Systems Biology, New York University, New York, NY, USA.
| |
Collapse
|