1
|
Agrawal R, Ragauskas AJ. Sustainable recovery of Rare Earth Elements (REEs) from coal and coal ash through urban mining: A Nature Based Solution (NBS) for circular economy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 384:125411. [PMID: 40318620 DOI: 10.1016/j.jenvman.2025.125411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/02/2025] [Accepted: 04/14/2025] [Indexed: 05/07/2025]
Abstract
The demand for rare earth elements (REEs) has surged in recent years, driven by their crucial role in various industrial applications and their uneven geological distribution. As a result, urban mining from secondary resources, particularly coal and coal ash, has gained traction as a sustainable solution within a circular economy framework. This study highlights the significant presence of REEs in coal and coal ash, revealing that certain samples contain REE concentrations that rival traditional ores. Notably, coal ash has the potential to yield approximately 312,000 tons of REEs annually, far exceeding global demand. The research delves into advanced techniques for analyzing REEs, including elemental, isotopic, and mineralogical studies. Additionally, it explores innovative extraction methods such as the use of green solvents, nature-based solutions, and bioleaching and biosorption. By leveraging coal and its byproducts as secondary resources, this study underscores the opportunity to reduce dependence on conventional mining, enhancing the sustainability of REE recovery. A comprehensive literature review was conducted to highlight technological advancements and emerging opportunities that can address current challenges in this field.
Collapse
Affiliation(s)
- Ruchi Agrawal
- TERI-Deakin Nanobiotechnology Centre, Sustainable Agriculture Division, TERI Gram, The Energy and Resources Institute, Gwal Pahari, Gurugram, Haryana, 122103, India.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, 1512 Middle Dr, Knoxville, TN, 37996, USA; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, The University of Tennessee Institution of Agriculture, 2506 Jacob Dr, Knoxville, TN, 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, 37831, USA
| |
Collapse
|
2
|
Schmitz AM, Pian B, Marecos S, Wu M, Holycross M, Gazel E, Reid MC, Barstow B. High efficiency rare earth element bioleaching with systems biology guided engineering of Gluconobacter oxydans. Commun Biol 2025; 8:815. [PMID: 40425722 PMCID: PMC12117071 DOI: 10.1038/s42003-025-08109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 04/21/2025] [Indexed: 05/29/2025] Open
Abstract
Biological methods are a promising route for the environmentally-friendly production of rare earth elements (REE), which are essential for sustainable energy and defense technologies. In earlier work we identified the key genetic mechanisms contributing to the REE-bioleaching capability of Gluconobacter oxydans B58. Here we have targeted two of these mechanisms to generate a high-efficiency bioleaching strain of G. oxydans. Disruption of the phosphate-specific transport system through a clean deletion of pstS constitutively turns on the phosphate starvation response, yielding a much more acidic biolixiviant, and increasing bioleaching by up to 30%. Coupling knockout of pstS with the over-expression of the mgdh membrane-bound glucose dehydrogenase gene using the P112 promoter (strain G. oxydans ΔpstS, P112:mgdh) reduces biolixiviant pH by 0.39 units; increases REE-bioleaching by 53% at a pulp density of 10% and increases it by 73% at a pulp density of 1%.
Collapse
Affiliation(s)
- Alexa M Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Ithaca, NY, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Sabrina Marecos
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
3
|
Anderson C, Medin S, Adair JL, Demopoulos B, Elmelech L, Eneli E, Kuelbs C, Lee JJ, Sheppard TJ, Sinar D, Thurston Z, Xu M, Zhang K, Barstow B. Constraints on lanthanide separation by selective biosorption. iScience 2025; 28:112095. [PMID: 40276747 PMCID: PMC12020885 DOI: 10.1016/j.isci.2025.112095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/14/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
Lanthanides, key components of sustainable energy technologies, can be separated using microorganisms with selective biosorption capabilities that sometimes rival traditional solvent extraction methods. Recent discoveries show that single genetic mutations in Shewanella oneidensis can improve lanthanide biosorption selectivity, while larger genomic modifications in Vibrio natriegens yield greater improvements. To evaluate whether these enhancements are sufficient for industrial implementation, we developed three theoretical models of lanthanide separation by biosorption and desorption. Model 1 suggests that single-locus genetic changes could reduce separation time by 25%, while multi-locus modifications could achieve up to 90% reduction. Model 2 indicates that with multiple binding sites, larger genetic modifications would be necessary for high-purity separation. Model 3 proposes an alternative approach using multiple microbes with modest selectivity improvements: initial microbes enrich the target lanthanide, while subsequent ones remove contaminants.
Collapse
Affiliation(s)
- Carter Anderson
- Department of Physics, Williams College, Williamstown, MA 01267, USA
| | - Sean Medin
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - James L. Adair
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Bryce Demopoulos
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Liad Elmelech
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Emeka Eneli
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Chloe Kuelbs
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Joseph J. Lee
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Timothy J. Sheppard
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Deniz Sinar
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Zacharia Thurston
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Mingyang Xu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Kang Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
4
|
Zhao Y, Zou K, Meng X, Shen L, Qiu G, Wang Y, Zhao H. Study on bioleaching methods and microbial-mineral interaction of ion-adsorption type rare earth ore. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 382:125422. [PMID: 40252422 DOI: 10.1016/j.jenvman.2025.125422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/31/2025] [Accepted: 04/15/2025] [Indexed: 04/21/2025]
Abstract
Rare earth elements (REEs) are non-renewable strategic resources that are highly important for national security and development. However, the efficient and environmentally friendly mining and utilization of REEs face major challenges. Bioleaching is a clean process with the potential to replace environmentally hazardous chemical extraction methods. The present study investigated the effects of three bioleaching methods by Aspergillus niger on the extraction of ion-adsorption rare earth ore. In addition, the interaction between strain and minerals was explored by combining various characterization methods (XRD, FT-IR, Raman and SEM-EDS) and untargeted metabolomics. These findings indicated that the three-step bioleaching method was the most effective. Aspergillus niger leaches REEs through both direct action of the strain and indirect action of metabolites without destroying the mineral structure. Direct leaching (one-step and two-step methods) has been demonstrated to affect the cell morphology and structure of Aspergillus niger. Furthermore, Aspergillus niger had a certain adsorption capacity for REEs. Metabolomics analysis revealed that Aspergillus niger exhibited a regulatory response to environmental stresses during direct bioleaching, modulating tryptophan metabolism (one-step method) and the biosynthesis of secondary metabolites (two-step method). Bioleaching enables the recovery of REEs through environmentally friendly (readily biodegradable and non-toxic) metabolites produced by microbial growth, providing a green pathway for the sustainable mining of ion-adsorption rare earth ores.
Collapse
Affiliation(s)
- Yu Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Kui Zou
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Xiaoyu Meng
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Li Shen
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Guanzhou Qiu
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Yunyan Wang
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| |
Collapse
|
5
|
Marecos S, Pian B, Medin SA, Schmitz A, Andrade M, Wu M, Balta JB, Gazel E, Holycross M, Reid MC, Barstow B. Direct genome-scale screening of Gluconobacter oxydans B58 for rare earth element bioleaching. Commun Biol 2025; 8:682. [PMID: 40301604 PMCID: PMC12041372 DOI: 10.1038/s42003-025-08061-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 04/08/2025] [Indexed: 05/01/2025] Open
Abstract
The transition to a sustainable energy economy will require an enormous increase in the supply of rare earth elements (REEs). Bioleaching offers a promising alternative to conventional hydrometallurgical methods for REE extraction from low-grade ores. However, exploiting this potential remains challenging due to large gaps in our understanding of the genetics involved, and inadequate biological tools to address them. We generated a highly non-redundant whole-genome knockout collection for the bioleaching microbe Gluconobacter oxydans B58, reducing redundancy by 85% compared to the previous best collection. This new collection was directly screened for bioleaching neodymium from a synthetic monazite powder, identifying 89 genes important for bioleaching, 68 of which have not previously been associated with this mechanism. We conducted bench-scale experiments to validate the extraction efficiency of promising strains: 8 demonstrated significant increases in extraction by up to 111% (δGO_1598, disruption of the gene encoding the orotate phosphoribosyltransferase enzyme PyrE), and one strain significantly reduced it by 97% (δGO_1096, disruption of the gene encoding the GTP-binding protein TypA). Notable changes in pH were only observed for 3 strains, suggesting an important role for non-acid mechanisms in bioleaching. These findings provide valuable insights into further enhancing REE-bioleaching by G. oxydans through genetic engineering.
Collapse
Affiliation(s)
- Sabrina Marecos
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Sean A Medin
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Alexa Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
- REEgen Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, USA
| | - Melinna Andrade
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - J Brian Balta
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
6
|
Lee JJ, Plante L, Pian B, Marecos S, Medin SA, Klug JD, Reid MC, Gadikota G, Gazel E, Barstow B. Bio-accelerated weathering of ultramafic minerals with Gluconobacter oxydans. Sci Rep 2025; 15:15134. [PMID: 40307501 PMCID: PMC12043915 DOI: 10.1038/s41598-025-99655-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/22/2025] [Indexed: 05/02/2025] Open
Abstract
Ultramafic rocks are an abundant source of cations for CO2 mineralization (e.g., Mg) and elements for sustainability technologies (e.g., Ni, Cr, Mn, Co, Al). However, there is no industrially useful process for dissolving ultramafic materials to release cations for CO2 sequestration or mining them for energy-critical elements. Weathering of ultramafic rocks by rainwater, release of metal cations, and subsequent CO2 mineralization already naturally sequesters CO2 from the atmosphere, but this natural process will take thousands to hundreds of thousands of years to remove excess anthropogenic CO2, far too late to deal with global warming that will happen over the next century. Mechanical acceleration of weathering by grinding can accelerate cation release but is prohibitively expensive. In this article we show that gluconic acid-based lixiviants produced by the mineral-dissolving microbe Gluconobacter oxydans accelerate leaching of Mg2+ by 20× over deionized water, and that leaching of Mg, Mn, Fe, Co, and Ni further improves by 73% from 24 to 96 h. At low pulp density (1%) the G. oxydans biolixiviant is only 6% more effective than gluconic acid. But, at 60% pulp density the G. oxydans biolixiviant is 3.2× more effective than just gluconic acid. We demonstrate that biolixiviants made with cellulosic hydrolysate are not significantly worse than biolixiviants made with glucose, dramatically improving the feedstock available for bioleaching. Finally, we demonstrate that we can reduce the number of carbon atoms in the biolixiviant feedstock (e.g., glucose or cellulosic hydrolysate) needed to release one Mg2+ ion and mineralize one atom of carbon from CO2 from 525 to 1.
Collapse
Affiliation(s)
- Joseph J Lee
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Luke Plante
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- REEgen, Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, 14853, USA
| | - Sabrina Marecos
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sean A Medin
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
- REEgen, Inc., Praxis Center for Venture Development, Cornell University, Ithaca, NY, 14853, USA
| | - Jacob D Klug
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Greeshma Gadikota
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA.
- Cornell University, 4164 Snee Hall, Ithaca, NY, 14853, USA.
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA.
- Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
7
|
Yang W, Wu K, Chen H, Huang J, Yu Z. Emerging role of rare earth elements in biomolecular functions. THE ISME JOURNAL 2025; 19:wrae241. [PMID: 39657633 PMCID: PMC11845868 DOI: 10.1093/ismejo/wrae241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/27/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
The importance of rare earth elements is increasingly recognized due to the increased demand for their mining and separation. This demand is driving research on the biology of rare earth elements. Biomolecules associated with rare earth elements include rare earth element-dependent enzymes (methanol dehydrogenase XoxF, ethanol dehydrogenase ExaF/PedH), rare earth element-binding proteins, and the relevant metallophores. Traditional (chemical) separation methods for rare earth elements harvesting and separation are typically inefficient, while causing environmental problems, whereas bioharvesting, potentially, offers more efficient, more green platforms. Here, we review the current state of research on the biological functions of rare earth element-dependent biomolecules, and the characteristics of the relevant proteins, including the specific amino acids involved in rare earth metal binding. We also provide an outlook at strategies for further understanding of biological processes and the potential applications of rare earth element-dependent enzymes and other biomolecules.
Collapse
Affiliation(s)
- Wenyu Yang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Kaijuan Wu
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Hao Chen
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Jing Huang
- Human Microbiome and Health Group, Department of Parasitology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Zheng Yu
- Human Microbiome and Health Group, Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| |
Collapse
|
8
|
Wang Y, Wu J, Hartzell EJ, Hu W, Mahle R, Li X, Chen Y, Sahoo JK, Chan C, Longo BN, Jacobus CS, Li C, Kaplan DL. Living plastics from plasticizer-assisted thermal molding of silk protein. Nat Commun 2025; 16:52. [PMID: 39746939 PMCID: PMC11697307 DOI: 10.1038/s41467-024-55097-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
The pursuit of materials, particularly plastics, with a minimal ecological footprint throughout their circular lifecycle, is crucial for advancing sustainable materials development. Living materials composed of embedded yet active organisms can leverage endogenous biotic resources to achieve functional materials that align with sustainability goals. However, current living material systems face challenges such as weak mechanical properties, limited environmental adaptability, and restricted cellular functionality. In this study, we propose an approach to sustainable living materials by incorporating active organisms into silk-based plastics through a plasticizer-assisted thermal molding process. We investigate the mechanism of structure formation in these materials, correlating manufacturing performance to the resulting secondary structure. These silk-based plastics provide a protective matrix for probiotics, ensuring their survival through the harsh gastrointestinal tract and enhancing intestinal delivery. Similarly, soil rhizobacteria encapsulated within the plastics exhibit long-term protease activity, accelerating plastic degradation upon soil exposure. This work demonstrates the potential of sustainable plastics as a form of living materials, where active organisms are processed, entrapped, retain metabolic functions, and are protected in harsh environments.
Collapse
Affiliation(s)
- Yushu Wang
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Junqi Wu
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Emily J Hartzell
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Weiguo Hu
- Department of Polymer Science & Engineering, University of Massachusetts, Amherst, MA, 01003, USA
| | - Reddhy Mahle
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Xinxin Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Ying Chen
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Jugal Kishore Sahoo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Cameron Chan
- Department of Bioengineering, Northeastern University, Boston, MA, 02115, USA
| | - Brooke N Longo
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Charlotte S Jacobus
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA
| | - Chunmei Li
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
9
|
Golzar-Ahmadi M, Bahaloo-Horeh N, Pourhossein F, Norouzi F, Schoenberger N, Hintersatz C, Chakankar M, Holuszko M, Kaksonen AH. Pathway to industrial application of heterotrophic organisms in critical metals recycling from e-waste. Biotechnol Adv 2024; 77:108438. [PMID: 39218325 DOI: 10.1016/j.biotechadv.2024.108438] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/30/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The transition to renewable energies and electric vehicles has triggered an unprecedented demand for metals. Sustainable development of these technologies relies on effectively managing the lifecycle of critical raw materials, including their responsible sourcing, efficient use, and recycling. Metal recycling from electronic waste (e-waste) is of paramount importance owing to ore-exceeding amounts of critical elements and high toxicity of heavy metals and organic pollutants in e-waste to the natural ecosystem and human body. Heterotrophic microbes secrete numerous metal-binding biomolecules such as organic acids, amino acids, cyanide, siderophores, peptides, and biosurfactants which can be utilized for eco-friendly and profitable metal recycling. In this review paper, we presented a critical review of heterotrophic organisms in biomining, and current barriers hampering the industrial application of organic acid bioleaching and biocyanide leaching. We also discussed how these challenges can be surmounted with simple methods (e.g., culture media optimization, separation of microbial growth and metal extraction process) and state-of-the-art biological approaches (e.g., artificial microbial community, synthetic biology, metabolic engineering, advanced fermentation strategies, and biofilm engineering). Lastly, we showcased emerging technologies (e.g., artificially synthesized peptides, siderophores, and biosurfactants) derived from heterotrophs with the potential for inexpensive, low-impact, selective and advanced metal recovery from bioleaching solutions.
Collapse
Affiliation(s)
- Mehdi Golzar-Ahmadi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | | | - Fatemeh Pourhossein
- Research Centre for Health & Life Sciences, Coventry University, Coventry, UK
| | - Forough Norouzi
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada
| | - Nora Schoenberger
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Christian Hintersatz
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Mital Chakankar
- Helmholtz Institute Freiberg for Resource Technology, Bautzner Landstrasse 400, Dresden, Germany
| | - Maria Holuszko
- Norman B. Keevil Institute of Mining Engineering, University of British Columbia, Vancouver, Canada.
| | - Anna H Kaksonen
- Commonwealth Scientific and Industrial Research Organization (CSIRO) Environment, Western Australia, Australia.
| |
Collapse
|
10
|
Chen Z, Han Z, Gao B, Zhao H, Qiu G, Shen L. Bioleaching of rare earth elements from ores and waste materials: Current status, economic viability and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123217. [PMID: 39500151 DOI: 10.1016/j.jenvman.2024.123217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024]
Abstract
Rare earth elements (REEs) are critical components of numerous products widely used in many areas, and the demand for REEs is increasing dramatically in recent years. Physical-chemical leaching is commonly adopted for the recovery of REEs from ores and solid wastes, but concerns over the generation of hazards, operation safety, and environmental pollution have urged the transition to greener and more sustainable leaching methods. Bioleaching is considered an excellent alternative for the recovery of REEs. This review provided an overview on the REEs recovery from primary and secondary resources via different bioleaching strategies. The techno-economics of bioleaching for REEs recovery were highlighted, and key factors affecting the economic viability of bioleaching were identified. Finally, strategies including the utilization of low-cost substrates as feedstocks, non-sterile bioleaching, recycling and reutilization of biolixiviants, and development of robust bioleaching strains were proposed to improve the economic competitiveness of bioleaching. It is expected that this review could serve as a useful guideline on the design of more economically competitive bioleaching processes for the recovery REEs from different resources.
Collapse
Affiliation(s)
- Zhu Chen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China.
| | - Zebin Han
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Binyuan Gao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, PR China; Key Laboratory of Biometallurgy of Ministry of Education, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
11
|
van Wyk N, Fischer D, Wilbers D, Harrison STL, Kotsiopoulos A, Dopson M. Toward the bioleaching of bauxite residue by Gluconobacter oxydans. J Appl Microbiol 2024; 135:lxae279. [PMID: 39501498 DOI: 10.1093/jambio/lxae279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/23/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024]
Abstract
AIM This project evaluated a biologically mediated strategy to solubilize several rare earth elements and critical raw materials, including scandium, from bauxite residue. This work seeks to expand on previous research on contact leaching with bauxite. METHODS AND RESULTS In this study, Gluconobacter oxydans was shown to secrete mixed organic acids, including gluconic acid, which was superior to pure gluconic acid in the dissolution of bauxite residue, even at low molarities. In situ contact leaching with G. oxydans significantly promoted the dissolution yield (recovery of metal present in the ore) of yttrium, aluminum, calcium, and titanium (41.18%, 67.79%, 80.16%, and 59.41%, respectively) but allowed for only marginal dissolution yield of scandium, lanthanum, cerium, and neodymium (13.40%, 14.74%, 24.41%, and 10.67%, respectively) at relatively low pulp densities. In addition, the dissolution yields of rare earth elements were reduced further with time, presumably as the oxides of these elements fell out of solution. CONCLUSION This work builds on previous research that seeks to extract rare earth elements and critical raw materials from bauxite residue through contact leaching with organic acids. Some elements such as yttrium, aluminum, calcium, and titanium could be effectively solubilized; however some elements showed reduced solubility, possibly due to tight association with the iron phase of the residue. However, the relative ease and speed of leaching, and improved solubilization, suggest that this could be a viable method for securing critical raw material supplies.
Collapse
Affiliation(s)
- Nathan van Wyk
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, Kalmar, Sweden
| | - Dorte Fischer
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, Kalmar, Sweden
| | - Derik Wilbers
- Centre for Bioprocess Engineering Research (CeBER), Chemical Engineering Building, South Lane, Upper Campus, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Susan T L Harrison
- Centre for Bioprocess Engineering Research (CeBER), Chemical Engineering Building, South Lane, Upper Campus, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Athanasios Kotsiopoulos
- Centre for Bioprocess Engineering Research (CeBER), Chemical Engineering Building, South Lane, Upper Campus, University of Cape Town, Rondebosch, Cape Town, South Africa
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Stuvaregatan 4, Kalmar, Sweden
| |
Collapse
|
12
|
Ariano K, Schweiger P. Determining the functional role of the Gluconobacter oxydans GOX1969 protein as a BamB homolog. Microbiol Spectr 2024; 12:e0106024. [PMID: 38916353 PMCID: PMC11302035 DOI: 10.1128/spectrum.01060-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024] Open
Abstract
Acetic acid bacteria are used in many industrial processes such as the production of vinegar, vitamin C, the antidiabetic drug miglitol, and various artificial flavorings. These industrially important reactions are primarily carried out by an arsenal of periplasmic-facing membrane-bound dehydrogenases that incompletely oxidize their substrates and shuttle electrons directly into the respiratory chain. Among these dehydrogenases, GOX1969 in Gluconobacter oxydans was predicted to be a pyrroloquinoline quinone-dependent dehydrogenase of unknown function. However, after multiple analysis by a number of labs, no dehydrogenase activity has been detected. Reanalysis of GOX1969 sequence and structure reveals similarities to Escherichia coli BamB, which functions as a subunit of the β-barrel assembly machinery complex that is responsible for the assembly of β-barrel outer membrane proteins in Gram-negative bacteria. To test if the physiological function of GOX1969 is similar to BamB in E. coli, we introduced the gox1969 gene into an E. coli ∆bamB mutant. Growth deficiencies in the ∆bamB mutant were restored when gox1969 was expressed on the plasmid pGox1969. Furthermore, increased membrane permeability conferred by bamB deletion was restored upon gox1969 expression, which suggests a direct link between GOX1969 and a role in maintaining outer membrane stability. Together, this evidence strongly suggests that GOX1969 is functionally acting as a BamB in G. oxydans. As such, functional information on uncharacterized genes will provide new insights that will allow for more accurate modeling of acetic acid bacterial metabolism and further efforts to design rational strains for industrial use.IMPORTANCEGluconobacter oxydans is an industrially important member of the acetic acid bacteria. Experimental characterization of putative genes is necessary to identify targets for further engineering of rational acetic acid bacteria strains that can be used in the production of vitamin C, antidiabetic compounds, artificial flavorings, or novel compounds. In this study, we have identified an undefined dehydrogenase GOX1969 with no known substrate and defined structural similarities to outer membrane biogenesis protein BamB in E. coli K12. Furthermore, we demonstrate that GOX1969 is capable of complementing bamB knockout phenotypes in E. coli K12. Taken together, these findings enhance our understanding of G. oxydans physiology and expand the list of potential targets for future industrial strain design.
Collapse
Affiliation(s)
- Ky Ariano
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| | - Paul Schweiger
- Department of Microbiology, University of Wisconsin–La Crosse, La Crosse, Wisconsin, USA
| |
Collapse
|
13
|
Li G, Wang X, Zeng W, Qin Z, Li J, Chen J, Zhou J. Engineering Gluconbacter oxydans with efficient co-utilization of glucose and sorbitol for one-step biosynthesis of 2-keto-L-gulonic. BIORESOURCE TECHNOLOGY 2024; 406:131098. [PMID: 38986886 DOI: 10.1016/j.biortech.2024.131098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 07/03/2024] [Accepted: 07/07/2024] [Indexed: 07/12/2024]
Abstract
As the highest-demand vitamin, the development of a one-step vitamin C synthesis process has been slow for a long time. In previous research, a Gluconobacter oxydans strain (GKLG9) was constructed that can directly synthesize 2-keto-L-gulonic acid (2-KLG) from glucose, but carbon source utilization remained low. Therefore, this study first identified the gene 4kas (4-keto-D-arabate synthase) to reduce the loss of extracellular carbon and inhibit the browning of fermentation broth. Then, promoter engineering was conducted to enhance the intracellular glucose transport pathway and concentrate intracellular glucose metabolism on the pentose phosphate pathway to provide more reducing power. Finally, by introducing the D-sorbitol pathway, the titer of 2-KLG was increased to 38.6 g/L within 60 h in a 5-L bioreactor, with a glucose-to-2-KLG conversion rate of about 46 %. This study is an important step in the development of single-bacterial one-step fermentation to produce 2-KLG.
Collapse
Affiliation(s)
- Guang Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuyang Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Jones EM, Marken JP, Silver PA. Synthetic microbiology in sustainability applications. Nat Rev Microbiol 2024; 22:345-359. [PMID: 38253793 DOI: 10.1038/s41579-023-01007-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/12/2023] [Indexed: 01/24/2024]
Abstract
Microorganisms are a promising means to address many societal sustainability challenges owing to their ability to thrive in diverse environments and interface with the microscale chemical world via diverse metabolic capacities. Synthetic biology can engineer microorganisms by rewiring their regulatory networks or introducing new functionalities, enhancing their utility for target applications. In this Review, we provide a broad, high-level overview of various research efforts addressing sustainability challenges through synthetic biology, emphasizing foundational microbiological research questions that can accelerate the development of these efforts. We introduce an organizational framework that categorizes these efforts along three domains - factory, farm and field - that are defined by the extent to which the engineered microorganisms interface with the natural external environment. Different application areas within the same domain share many fundamental challenges, highlighting productive opportunities for cross-disciplinary collaborations between researchers working in historically disparate fields.
Collapse
Affiliation(s)
- Ethan M Jones
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - John P Marken
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
- Resnick Sustainability Institute, California Institute of Technology, Pasadena, CA, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
15
|
Qian X, Ma C, Zhang H, Liu K. Bioseparation of rare earth elements and high value-added biomaterials applications. Bioorg Chem 2024; 143:107040. [PMID: 38141331 DOI: 10.1016/j.bioorg.2023.107040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/24/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Rare earth elements (REEs) are a group of critical minerals and extensively employed in new material manufacturing. However, separation of lanthanides is difficult because of their similar chemical natures. Current lanthanide leaching and separation methods require hazardous compounds, resulting in severe environmental concerns. Bioprocessing of lanthanides offers an emerging class of tools for REE separation due to mild leaching conditions and highly selective separation scenarios. In the course of biopreparation, engineered microbes not only dissolve REEs from ores but also allow for selective separation of the lanthanides. In this review, we present an overview of recent advances in microbes and proteins used for the biomanufacturing of lanthanides and discuss high value-added applications of REE-derived biomaterials. We begin by introducing the fundamental interactions between natural microbes and REEs. Then we discuss the rational design of chassis microbes for bioleaching and biosorption. We also highlight the investigations on REE binding proteins and their applications in the synthesis of high value-added biomaterials. Finally, future opportunities and challenges for the development of next generation lanthanide-binding biological systems are discussed.
Collapse
Affiliation(s)
- Xining Qian
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Chao Ma
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China.
| | - Hongjie Zhang
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| | - Kai Liu
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, China; Xiangfu Laboratory, Building 5, No.828 Zhongxing Road, Xitang Town, Jiashan, Jiaxing, Zhejiang 314102, China
| |
Collapse
|
16
|
Vo PHN, Danaee S, Hai HTN, Huy LN, Nguyen TAH, Nguyen HTM, Kuzhiumparambil U, Kim M, Nghiem LD, Ralph PJ. Biomining for sustainable recovery of rare earth elements from mining waste: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168210. [PMID: 37924876 DOI: 10.1016/j.scitotenv.2023.168210] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/23/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023]
Abstract
Rare earth elements (REEs) are essential for advanced manufacturing (e.g., renewable energy, military equipment, electric vehicles); hence, the recovery of REEs from low-grade resources has become increasingly important to address their growing demand. Depending on specific mining sites, its geological conditions, and sociodemographic backgrounds, mining waste has been identified as a source of REEs in various concentrations and abundance. Yttrium, cerium, and neodymium are the most common REEs in mining waste streams (50 to 300 μg/L). Biomining has emerged as a viable option for REEs recovery due to its reduced environmental impact, along with reduced capital investment compared to traditional recovery methods. This paper aims to review (i) the characteristics of mining waste as a low-grade REEs resource, (ii) the key operating principles of biomining technologies for REEs recovery, (iii) the effects of operating conditions and matrix on REEs recovery, and (iv) the sustainability of REEs recovery through biomining technologies. Six types of biomining will be examined in this review: bioleaching, bioweathering, biosorption, bioaccumulation, bioprecipitation and bioflotation. Based on a SWOT analyses and techno-economic assessments (TEA), biomining technologies have been found to be effective and efficient in recovering REEs from low-grade sources. Through TEA, coal ash has been shown to return the highest profit amongst mining waste streams.
Collapse
Affiliation(s)
- Phong H N Vo
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia.
| | - Soroosh Danaee
- Biotechnology Department, Iranian Research Organization for Science and Technology, Tehran 3353-5111, Iran
| | - Ho Truong Nam Hai
- Faculty of Environment, University of Science, 227 Nguyen Van Cu Street, District 5, Ho Chi Minh City 700000, Viet Nam
| | - Lai Nguyen Huy
- Environmental Engineering and Management, Asian Institute of Technology, Klongluang, Pathumthani, Thailand
| | - Tuan A H Nguyen
- Sustainable Minerals Institute, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hong T M Nguyen
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Queensland 4102, Australia
| | - Unnikrishnan Kuzhiumparambil
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Mikael Kim
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster, Faculty of Science, University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| |
Collapse
|
17
|
Good N, Kang-Yun CS, Su MZ, Zytnick AM, Barber CC, Vu HN, Grace JM, Nguyen HH, Zhang W, Skovran E, Fan M, Park DM, Martinez-Gomez NC. Scalable and Consolidated Microbial Platform for Rare Earth Element Leaching and Recovery from Waste Sources. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:570-579. [PMID: 38150661 PMCID: PMC10785750 DOI: 10.1021/acs.est.3c06775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 12/29/2023]
Abstract
Chemical methods for the extraction and refinement of technologically critical rare earth elements (REEs) are energy-intensive, hazardous, and environmentally destructive. Current biobased extraction systems rely on extremophilic organisms and generate many of the same detrimental effects as chemical methodologies. The mesophilic methylotrophic bacterium Methylobacterium extorquens AM1 was previously shown to grow using electronic waste by naturally acquiring REEs to power methanol metabolism. Here we show that growth using electronic waste as a sole REE source is scalable up to 10 L with consistent metal yields without the use of harsh acids or high temperatures. The addition of organic acids increases REE leaching in a nonspecific manner. REE-specific bioleaching can be engineered through the overproduction of REE-binding ligands (called lanthanophores) and pyrroloquinoline quinone. REE bioaccumulation increases with the leachate concentration and is highly specific. REEs are stored intracellularly in polyphosphate granules, and genetic engineering to eliminate exopolyphosphatase activity increases metal accumulation, confirming the link between phosphate metabolism and biological REE use. Finally, we report the innate ability of M. extorquens to grow using other complex REE sources, including pulverized smartphones, demonstrating the flexibility and potential for use as a recovery platform for these critical metals.
Collapse
Affiliation(s)
- Nathan
M. Good
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Christina S. Kang-Yun
- Physical
and Life Sciences Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Morgan Z. Su
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Alexa M. Zytnick
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Colin C. Barber
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| | - Huong N. Vu
- Department
of Biological Sciences, San José
State University, San José, California 95192, United States
| | - Joseph M. Grace
- Department
of Biological Sciences, San José
State University, San José, California 95192, United States
| | - Hoang H. Nguyen
- Department
of Biological Sciences, San José
State University, San José, California 95192, United States
| | - Wenjun Zhang
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Elizabeth Skovran
- Department
of Biological Sciences, San José
State University, San José, California 95192, United States
| | - Maohong Fan
- Department
of Chemical and Biomedical Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Dan M. Park
- Physical
and Life Sciences Directorate, Lawrence
Livermore National Laboratory, Livermore, California 94550, United States
| | - Norma Cecilia Martinez-Gomez
- Department
of Plant and Microbial Biology, University
of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
18
|
Li X, Liu H, Lin Z, Richardson JJ, Xie W, Chen F, Lin W, Caruso F, Zhou J, Liu B. Cytoprotective Metal-Phenolic Network Sporulation to Modulate Microalgal Mobility and Division. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308026. [PMID: 38014599 PMCID: PMC10797472 DOI: 10.1002/advs.202308026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Indexed: 11/29/2023]
Abstract
Synthetic cell exoskeletons created from abiotic materials have attracted interest in materials science and biotechnology, as they can regulate cell behavior and create new functionalities. Here, a facile strategy is reported to mimic microalgal sporulation with on-demand germination and locomotion via responsive metal-phenolic networks (MPNs). Specifically, MPNs with tunable thickness and composition are deposited on the surface of microalgae cells via one-step coordination, without any loss of cell viability or intrinsic cell photosynthetic properties. The MPN coating keeps the cells in a dormant state, but can be disassembled on-demand in response to environmental pH or chemical stimulus, thereby reviving the microalgae within 1 min. Moreover, the artificial sporulation of microalgae resulted in resistance to environmental stresses (e.g., metal ions and antibiotics) akin to the function of natural sporulation. This strategy can regulate the life cycle of complex cells, providing a synthetic strategy for designing hybrid microorganisms.
Collapse
Affiliation(s)
- Xiaojie Li
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Hai Liu
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Zhixing Lin
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Joseph J. Richardson
- Department of Chemical and Environmental EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Weiying Xie
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Feng Chen
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| | - Wei Lin
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Frank Caruso
- Department of Chemical EngineeringThe University of MelbourneParkvilleVictoria3010Australia
| | - Jiajing Zhou
- College of Biomass Science and EngineeringKey Laboratory of Leather Chemistry and Engineering of Ministry of EducationNational Engineering Laboratory for Clean Technology of Leather ManufactureSichuan UniversityChengdu610065China
| | - Bin Liu
- Shenzhen Key Laboratory of Marine Microbiome EngineeringShenzhen Key Laboratory of Food Nutrition and HealthInstitute for Advanced StudyCollege of Chemistry and Environmental EngineeringShenzhen UniversityShenzhen518060China
| |
Collapse
|
19
|
Alamán-Zárate MG, Rady BJ, Evans CA, Pian B, Greetham D, Marecos-Ortiz S, Dickman MJ, Lidbury IDEA, Lovering AL, Barstow BM, Mesnage S. Unusual 1-3 peptidoglycan cross-links in Acetobacteraceae are made by L,D-transpeptidases with a catalytic domain distantly related to YkuD domains. J Biol Chem 2024; 300:105494. [PMID: 38006948 PMCID: PMC10727944 DOI: 10.1016/j.jbc.2023.105494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 11/20/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope that contains glycan chains substituted by short peptide stems. Peptide stems are polymerized by D,D-transpeptidases, which make bonds between the amino acid in position four of a donor stem and the third residue of an acceptor stem (4-3 cross-links). Some bacterial peptidoglycans also contain 3-3 cross-links that are formed by another class of enzymes called L,D-transpeptidases which contain a YkuD catalytic domain. In this work, we investigate the formation of unusual bacterial 1-3 peptidoglycan cross-links. We describe a version of the PGFinder software that can identify 1-3 cross-links and report the high-resolution peptidoglycan structure of Gluconobacter oxydans (a model organism within the Acetobacteraceae family). We reveal that G. oxydans peptidoglycan contains peptide stems made of a single alanine as well as several dipeptide stems with unusual amino acids at their C-terminus. Using a bioinformatics approach, we identified a G. oxydans mutant from a transposon library with a drastic reduction in 1-3 cross-links. Through complementation experiments in G. oxydans and recombinant protein production in a heterologous host, we identify an L,D-transpeptidase enzyme with a domain distantly related to the YkuD domain responsible for these non-canonical reactions. This work revisits the enzymatic capabilities of L,D-transpeptidases, a versatile family of enzymes that play a key role in bacterial peptidoglycan remodelling.
Collapse
Affiliation(s)
- Marcel G Alamán-Zárate
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Brooks J Rady
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Darren Greetham
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Sabrina Marecos-Ortiz
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Ian D E A Lidbury
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Buz M Barstow
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, USA
| | - Stéphane Mesnage
- Molecular Microbiology, Biochemistry to Disease, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
20
|
|
21
|
Medin S, Schmitz AM, Pian B, Mini K, Reid MC, Holycross M, Gazel E, Wu M, Barstow B. Genomic characterization of rare earth binding by Shewanella oneidensis. Sci Rep 2023; 13:15975. [PMID: 37749198 PMCID: PMC10520059 DOI: 10.1038/s41598-023-42742-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 09/14/2023] [Indexed: 09/27/2023] Open
Abstract
Rare earth elements (REE) are essential ingredients of sustainable energy technologies, but separation of individual REE is one of the hardest problems in chemistry today. Biosorption, where molecules adsorb to the surface of biological materials, offers a sustainable alternative to environmentally harmful solvent extractions currently used for separation of rare earth elements (REE). The REE-biosorption capability of some microorganisms allows for REE separations that, under specialized conditions, are already competitive with solvent extractions, suggesting that genetic engineering could allow it to leapfrog existing technologies. To identify targets for genomic improvement we screened 3,373 mutants from the whole genome knockout collection of the known REE-biosorbing microorganism Shewanella oneidensis MR-1. We found 130 genes that increased biosorption of the middle REE europium, and 112 that reduced it. We verified biosorption changes from the screen for a mixed solution of three REE (La, Eu, Yb) using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) in solution conditions with a range of ionic strengths and REE concentrations. We identified 18 gene ontologies and 13 gene operons that make up key systems that affect biosorption. We found, among other things, that disruptions of a key regulatory component of the arc system (hptA), which regulates cellular response to anoxic environments and polysaccharide biosynthesis related genes (wbpQ, wbnJ, SO_3183) consistently increase biosorption across all our solution conditions. Our largest total biosorption change comes from our SO_4685, a capsular polysaccharide (CPS) synthesis gene, disruption of which results in an up to 79% increase in biosorption; and nusA, a transcriptional termination/anti-termination protein, disruption of which results in an up to 35% decrease in biosorption. Knockouts of glnA, pyrD, and SO_3183 produce small but significant increases (≈ 1%) in relative biosorption affinity for ytterbium over lanthanum in multiple solution conditions tested, while many other genes we explored have more complex binding affinity changes. Modeling suggests that while these changes to lanthanide biosorption selectivity are small, they could already reduce the length of repeated enrichment process by up to 27%. This broad exploratory study begins to elucidate how genetics affect REE-biosorption by S. oneidensis, suggests new areas of investigation for better mechanistic understanding of the membrane chemistry involved in REE binding, and offer potential targets for improving biosorption and separation of REE by genetic engineering.
Collapse
Affiliation(s)
- Sean Medin
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Alexa M Schmitz
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Brooke Pian
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Kuunemuebari Mini
- Department of Sciences and Technology Studies, Cornell University, Ithaca, NY, 14853, USA
| | - Matthew C Reid
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Megan Holycross
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Esteban Gazel
- Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Mingming Wu
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA
| | - Buz Barstow
- Department of Biological and Environmental Engineering, Cornell University, Cornell University, 228 Riley-Robb Hall, Ithaca, NY, 14853, USA.
| |
Collapse
|
22
|
Li G, Li D, Zeng W, Qin Z, Chen J, Zhou J. Efficient production of 2-keto-L-gulonic acid from D-glucose in Gluconobacter oxydans ATCC9937 by mining key enzyme and transporter. BIORESOURCE TECHNOLOGY 2023:129316. [PMID: 37315626 DOI: 10.1016/j.biortech.2023.129316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/08/2023] [Accepted: 06/10/2023] [Indexed: 06/16/2023]
Abstract
Direct production of 2-keto-L-gulonic acid (2-KLG, the precursor of vitamin C) from D-glucose through 2,5-diketo-D-gluconic acid (2,5-DKG) is a promising alternative route. To explore the pathway of producing 2-KLG from D-glucose, Gluconobacter oxydans ATCC9937 was selected as a chassis strain. It was found that the chassis strain naturally has the ability to synthesize 2-KLG from D-glucose, and a new 2,5-DKG reductase (DKGR) was found on its genome. Several major issues limiting production were identified, including the insufficient catalytic capacity of DKGR, poor transmembrane movement of 2,5-DKG and imbalanced D-glucose consumption flux inside and outside of the host strain cells. By identifying novel DKGR and 2,5-DKG transporter, the whole 2-KLG biosynthesis pathway was systematically enhanced by balancing intracellular and extracellular D-glucose metabolic flux. The engineered strain produced 30.5 g/L 2-KLG with a conversion ratio of 39.0%. The results pave the way for a more economical large-scale fermentation process for vitamin C.
Collapse
Affiliation(s)
- Guang Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Dong Li
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
23
|
Meng X, Zhao H, Zhao Y, Shen L, Gu G, Qiu G. Effective recovery of rare earth from (bio)leaching solution through precipitation of rare earth-citrate complex. WATER RESEARCH 2023; 233:119752. [PMID: 36812814 DOI: 10.1016/j.watres.2023.119752] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Bioleaching is considered an alternative to traditional rare earth extraction technology. However, since rare earth elements exist as complexes in bioleaching lixivium, they cannot be directly precipitated by normal precipitants, which restricts their further development. This structurally stable complex is also a common challenge in various types of industrial wastewater treatment. In this work, a new method called a three-step precipitation process is first proposed to efficiently recover rare earth-citrate (RE-Cit) complexes from (bio)leaching lixivium. It consists of coordinate bond activation (carboxylation by pH adjustment), structure transformation (Ca2+ addition) and carbonate precipitation (soluble CO32- addition). The optimization conditions are determined to adjust the lixivium pH to around 2.0, then add calcium carbonate until the n(Ca2+): n(Cit3-) is more than 1.4:1 and lastly add sodium carbonate until n(CO32-): n(RE3+) is more than 4:1. The results of precipitation experiments using imitated lixivium show that the rare earth yield is more than 96% and the impurity aluminum yield is less than 20%. Subsequently, pilot tests (1000 L) using real lixivium were successfully conducted. The precipitation mechanism is briefly discussed and proposed by thermogravimetric analysis, Fourier infrared spectroscopy, Raman spectroscopy and UV spectroscopy. This technology is promising in the industrial application of rare earth (bio)hydrometallurgy and wastewater treatment due to its advantages of high efficiency, low cost, environmental friendliness and simple operation.
Collapse
Affiliation(s)
- Xiaoyu Meng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Hongbo Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Yu Zhao
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Li Shen
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| | - Guohua Gu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China.
| | - Guanzhou Qiu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, Hunan, China; Key Lab of Biohydrometallurgy of Ministry of Education, Changsha, Hunan, China
| |
Collapse
|
24
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
25
|
Kołodyńska D, Burdzy K, Hunger S, Aurich A, Ju Y. Green Extractants in Assisting Recovery of REEs: A Case Study. Molecules 2023; 28:965. [PMID: 36770630 PMCID: PMC9920984 DOI: 10.3390/molecules28030965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/08/2023] [Indexed: 01/21/2023] Open
Abstract
The recycling of REEs from the end of life (EoL) products, such as nickel metal hydride batteries (NiMH), offers great opportunities for their supply in Europe. In the presented paper, the application of 'green' extractants such as citric (CA), metatartaric (TA), and ethylenediaminedisuccinic acid (EDDS) (also with H2O2 addition) for the recovery of REEs was studied. The studies were conducted considering the effects of the phase contact time, the initial concentration of CA, TA, and EDDS, as well as H2O2, pH, and temperature. It was found that the addition of TA to the CA solution meant that higher rates of metal ion binding and, thus, leaching was observed. The optimal conditions were obtained in the system: CA-TA and H2O2 for the concentration 0.6M-0.3 M-2%.
Collapse
Affiliation(s)
- Dorota Kołodyńska
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Katarzyna Burdzy
- Department of Inorganic Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Skłodowska University, Maria Curie-Skłodowska Sq. 2, 20-031 Lublin, Poland
| | - Steffi Hunger
- Department Centre for Environmental Biotechnology (UBZ), Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Andreas Aurich
- Department Centre for Environmental Biotechnology (UBZ), Helmholtz-Centre for Environmental Research-UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Yongming Ju
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Nanjing 210042, China
- The Key Laboratory of Water and Air Pollution Control of Guangdong Province, South China Subcenter of State Environmental Dioxin Monitoring Center, South China Institute of Environmental Sciences, Ministry of Ecology and Environment (MEE), Guangzhou 510655, China
| |
Collapse
|
26
|
Hua X, Han J, Zhou X, Xu Y. Gas pressure intensifying oxygen transfer to significantly improving the bio‐oxidation productivity of whole‐cell catalysis. AIChE J 2022. [DOI: 10.1002/aic.18005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Xia Hua
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education Nanjing People's Republic of China
- Jiangsu Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Chemical Engineering, Nanjing Forestry University Nanjing People's Republic of China
- Jiangsu Province Key Laboratory of Green Biomass‐based Fuels and Chemicals Nanjing People's Republic of China
| |
Collapse
|
27
|
Metabolic flux modeling of Gluconobacter oxydans enables improved production of bioleaching organic acids. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Microwave Plasma Torch Mass Spectrometry for some Rare Earth Elements. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Chen J, Liu Y, Diep P, Mahadevan R. Harnessing synthetic biology for sustainable biomining with Fe/S-oxidizing microbes. Front Bioeng Biotechnol 2022; 10:920639. [PMID: 36131722 PMCID: PMC9483119 DOI: 10.3389/fbioe.2022.920639] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Biomining is a biotechnological approach where microorganisms are used to recover metals from ores and waste materials. While biomining applications are motivated by critical issues related to the climate crisis (e.g., habitat destruction due to mine effluent pollution, metal supply chains, increasing demands for cleantech-critical metals), its drawbacks hinder its widespread commercial applications: lengthy processing times, low recovery, and metal selectivity. Advances in synthetic biology provide an opportunity to engineer iron/sulfur-oxidizing microbes to address these limitations. In this forum, we review recent progress in synthetic biology-enhanced biomining with iron/sulfur-oxidizing microbes and delineate future research avenues.
Collapse
Affiliation(s)
- Jinjin Chen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Yilan Liu
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Patrick Diep
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
30
|
Li G, Shan X, Zeng W, Yu S, Zhang G, Chen J, Zhou J. Efficient Production of 2,5-Diketo-D-gluconic Acid by Reducing Browning Levels During Gluconobacter oxydans ATCC 9937 Fermentation. Front Bioeng Biotechnol 2022; 10:918277. [PMID: 35875491 PMCID: PMC9304662 DOI: 10.3389/fbioe.2022.918277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/20/2022] [Indexed: 11/13/2022] Open
Abstract
D-Glucose directly generates 2-keto-L-gulonic acid (2-KLG, precursor of vitamin C) through the 2,5-diketo-D-gluconic acid (2,5-DKG) pathway. 2,5-DKG is the main rate-limiting factor of the reaction, and there are few relevant studies on it. In this study, a more accurate quantitative method of 2,5-DKG was developed and used to screen G. oxydans ATCC9937 as the chassis strain for the production of 2,5-DKG. Combining the metabolite profile analysis and knockout and overexpression of production strain, the non-enzymatic browning of 2,5-DKG was identified as the main factor leading to low yield of the target compound. By optimizing the fermentation process, the fermentation time was reduced to 48 h, and 2,5-DKG production peaked at 50.9 g/L, which was 139.02% higher than in the control group. Effectively eliminating browning and reducing the degradation of 2,5-DKG will help increase the conversion of 2,5-DKG to 2-KLG, and finally, establish a one-step D-glucose to 2-KLG fermentation pathway.
Collapse
Affiliation(s)
- Guang Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Guoqiang Zhang
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
31
|
Marecos S, Brigham R, Dressel A, Gaul L, Li L, Satish K, Tjokorda I, Zheng J, Schmitz AM, Barstow B. Practical and Thermodynamic Constraints on Electromicrobially-Accelerated CO2 Mineralization. iScience 2022; 25:104769. [PMID: 35992063 PMCID: PMC9385556 DOI: 10.1016/j.isci.2022.104769] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 05/19/2022] [Accepted: 07/11/2022] [Indexed: 10/30/2022] Open
Abstract
By the end of the century, tens of gigatonnes of CO2 will need to be removed from the atmosphere every year to maintain global temperatures. Natural weathering of ultramafic rocks and subsequent mineralization reactions can convert CO2 into ultra-stable carbonates. Although this will draw down all excess CO2, it will take thousands of years. CO2 mineralization could be accelerated by weathering ultramafic rocks with biodegradable lixiviants. We show that if these lixiviants come from cellulosic biomass, this demand could monopolize the world’s biomass supply. We demonstrate that electromicrobial production technologies (EMP) that combine renewable electricity and microbial metabolism could produce lixiviants for as little as $200 to $400 per tonne at solar electricity prices achievable within the decade. We demonstrate that EMP could make enough lixiviants to sequester a tonne of CO2 for less than $100. This work highlights the potential of this approach and the need for extensive R&D. Bio-production of acids to sequester 20 GtCO2 yr−1 could monopolize global agriculture Electromicrobial production could produce acids for as little as $200 to $400 per tonne Electromicrobial production could make acids to sequester 1 tonne CO2 for under $100
Collapse
|
32
|
Abstract
Granulated blast furnace slag (GGBFS) is a potential resource of rare earth elements (REEs), and due to the complex mineralogy, extraction by conventional hydrometallurgical process makes it an acid-consuming method. Bioleaching is thus investigated using a chemo-organotrophic bacterium Gluconobacter oxydans (DSMZ 46616) for REE extraction from GGBFS containing 157 ppm Ce, 90 ppm La, 71 ppm Nd and 40 ppm Er, hosted in a Ca-Al-Si matrix. The gluconic acid generation by G. oxydans was assessed for its role in REE extraction from GGBFS. With 5% (w/v) GGBFS using a mixture of a non-adapted and a GGBFS-adapted culture, a maximum solubilization of 67% and 88% Nd was observed after 12 and 40 days of incubation, respectively. The total amount of gluconic acid excreted by the bacteria increased with leaching duration, which contributed to a rise in metal extraction. Scanning electron microscope-energy dispersive analysis (SEM-EDAX) analysis of the solid residue showed bacterial cells in corrosion pits, and thereby assisting in metal solubilization.
Collapse
|