1
|
Ventura LHA, Torres L, Camatta GC, Zamame J, Coelho MM, Ramalho-Pinto CH, Gervazio J, Caixeta F, Nascimento L, Oliveira MA, Martins VD, Oliveira MF, Costa MS, Sato HI, Guimarães HC, Barbuto RC, Veiga APR, Ataíde N, Caetano GP, Rangon S, Júnior MLO, Fortes FC, Zuccherato L, Speziali E, Martins-Filho OA, Coelho V, Avritchir R, Souza R, Ayupe M, Loureiro C, Passos ME, Neves ACM, Leite P, Teixeira SMR, Tupinambás U, Felicori LF, Silveira-Nunes G, Maioli TU, Fonseca DM, Teixeira-Carvalho A, Faria AMC. Immunosenescence Profile Is Associated With Increased Susceptibility to Severe COVID-19. Aging Cell 2025:e70077. [PMID: 40388115 DOI: 10.1111/acel.70077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/20/2025] [Accepted: 03/31/2025] [Indexed: 05/20/2025] Open
Abstract
In this study, we tested the hypothesis that the immunosenescence profile could account for the disproportional susceptibility of the elderly to severe forms of COVID-19. The immunological profiles of volunteers residing in endemic and non-endemic areas for chronic infectious diseases were analyzed at the early stage of SARS-CoV-2 infection. A unique signature of inflammatory plasma mediators was identified in COVID-19 volunteers when compared to individuals with other flu-like syndromes. COVID-19 severity correlated with high levels of inflammatory mediators; among them, CXCL9, a serum marker of aging. Patients who progressed to hospitalization displayed high frequencies of CD8+ and CD4+ T cells expressing exhaustion and senescence markers and showed reduced and more mature B cell repertoires, which are typical of senescence. They also had an acceleration of epigenetic age measured by DNA methylation. Therefore, severe COVID-19 correlated with phenotypic, functional, and epigenetic features of accelerated immunosenescence at the onset of infection.
Collapse
Affiliation(s)
- Lucas Haniel A Ventura
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Giovanna Caliman Camatta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Jofer Zamame
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cecília Horta Ramalho-Pinto
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - João Gervazio
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Felipe Caixeta
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Leandro Nascimento
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariana Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Vinícius Dantas Martins
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Felipe Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Murilo Soares Costa
- Departamento de Clínica Médica, Faculdade de Medicina e Programa de Pós-graduação em Infectologia e Doenças Tropicais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Hugo Itaru Sato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Najara Ataíde
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | | | - Sarah Rangon
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | | | - Fernanda Calvo Fortes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Luciana Zuccherato
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Elaine Speziali
- Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
- Universidade Edson Antônio Velano, Fundação de Ensino e Tecnologia de Alfenas, Belo Horizonte, Brazil
| | | | - Verônica Coelho
- Instituto Do Coração, Universidade de São Paulo, São Paulo, Brazil
| | | | - Rafael Souza
- Instituto de Infectologia Emílio Ribas, São Paulo, Brazil
| | - Marina Ayupe
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Caio Loureiro
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Maria Eduarda Passos
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Ana Clara Mota Neves
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Pauline Leite
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Santuza Maria Ribeiro Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Unaí Tupinambás
- Departamento de Clínica Médica, Faculdade de Medicina e Programa de Pós-graduação em Infectologia e Doenças Tropicais, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Liza Figueiredo Felicori
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Gabriela Silveira-Nunes
- Departamento de Medicina, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Denise Morais Fonseca
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Maria Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Dai Z, Liu X, Jing S, Wang H, Huang Y, Fu J, Wu Y, Zhang L, Han B, Su X. Development and internal validation of a depressive symptoms prediction model among the patients with cardiovascular disease who have recovered from SARS-CoV-2 infection in Wuhan, China: a cross-sectional study. BMC Psychiatry 2025; 25:492. [PMID: 40375188 PMCID: PMC12082991 DOI: 10.1186/s12888-025-06886-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/18/2025] [Indexed: 05/18/2025] Open
Abstract
BACKGROUND Middle-aged and elderly patients with cardiovascular disease (CVD) who have recovered from SARS-CoV-2 infection may experience depressive symptoms due to the physical and psychological impact of the pandemic. OBJECTIVE To investigate the prevalence and predictors of depressive symptoms among the middle-aged and elderly with CVD who have recovered from SARS-CoV-2 infection in Wuhan, China, and to develop a prediction model for depressive symptoms. METHODS A cross-sectional study was conducted among 462 former SARS-CoV-2 middle-aged and elderly patients with CVD in Jianghan District, Wuhan, China from June 10 to July 25, 2021. Depressive symptoms were assessed by the Patient Health Questionnaire-9 (PHQ-9). Potential predictors of depressive symptoms were selected by the least absolute shrinkage and selection operator (LASSO) regression. A prediction model was developed by random forest (RF) and logistic regression models and compared by the area under the receiver operating characteristic curve (AUROC). The discrimination, calibration, and practical utility of the prediction model were evaluated by the receiver operating characteristic (ROC) curve, calibration curve, and decision curve analysis (DCA). Bootstrap sampling was used for internal validation. RESULTS The prevalence of depressive symptoms among the participants was 35.93%. The prediction model included age, stethalgia after recovery, insomnia after recovery, post-traumatic stress disorder (PTSD), anxiety, fatigue, and perceived social support as predictors. The AUROC of the logistic regression model was 0.909 (95%CI: 0.879 ~ 0.939), indicating good discrimination. The calibration curve showed good calibration. The DCA showed that the prediction model had a net benefit for a wide range of risk thresholds. The internal validation confirmed the stability of the prediction model. CONCLUSION Depressive symptoms are common among middle-aged and elderly CVD patients who have recovered from SARS-CoV-2 infection in Wuhan, China. A prediction model with satisfactory performance was developed to estimate the risk of depressive symptoms among this population. Interventions targeting long COVID symptoms and social support should be considered to prevent depressive symptoms in CVD patients.
Collapse
Affiliation(s)
- Zhenwei Dai
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Xin Liu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Shu Jing
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Hao Wang
- Outpatients Department, Peking University First Hospital, Beijing, China
| | - Yiman Huang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jiaqi Fu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yijin Wu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Ling Zhang
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Bicheng Han
- Zhejiang Qiangnao Technology Co., Ltd., Zhejiang, China
| | - Xiaoyou Su
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
3
|
Gao X, Li SJ, Cai JP. Human Peripheral Blood Leukocyte Transcriptome-Based Aging Clock Reveals Acceleration of Aging by Bacterial or Viral Infections. J Gerontol A Biol Sci Med Sci 2025; 80:glaf054. [PMID: 40089807 DOI: 10.1093/gerona/glaf054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Indexed: 03/17/2025] Open
Abstract
The aging of the population is a global concern. In the post-coronavirus disease 2019 (COVID-19) pandemic era, there are no effective methods to identify aging acceleration due to infection. In this study, we conducted whole-transcriptome sequencing on peripheral blood samples from 35 healthy individuals (22-88 years old). By analyzing the changes in mRNA, lncRNA, and miRNA expression, we investigated the characteristics of transcriptome alterations during the aging process. ceRNA networks were constructed, and 10 genes (CD248, PHGDH, SFXN2, MXRA8, NOG, TTC24, PHYKPL, CACHD1, BPGM, and TWF1) were identified as potential aging markers and used to construct an aging clock. Moreover, our aging clock categorized individuals into slow-, average-, and quick-aging groups, highlighting a link between accelerated aging and infection-related clinical parameters. Pseudotime analysis further revealed 2 distinct aging trajectories, corroborating the variations in the aging rate identified by the aging clock. Furthermore, we validated the results using the OEP001041 data set (277 healthy individuals aged 17-75), and data sets comprising patients with infectious diseases (n = 1 558). Our study revealed that infection accelerates aging via increased inflammation and oxidative stress in infectious disease patients. Besides, the aging clock exhibited alterations after infection, highlighting its potential for assessing the aging rate after patient recovery. In conclusion, our study introduces a novel aging clock to assess the aging rate in healthy individuals and those with infections, revealing a strong link between accelerated aging and infections through inflammation and oxidative stress. These findings offer valuable insights into aging mechanisms and potential strategies for healthy aging.
Collapse
Affiliation(s)
- Xin Gao
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Clinical Laboratory, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Si-Jia Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
- Department of Laboratory Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jian-Ping Cai
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
4
|
Lage SL, Bricker-Holt K, Rocco JM, Rupert A, Donovan FX, Abramzon YA, Chandrasekharappa SC, McNinch C, Cook L, Amaral EP, Rosenfeld G, Dalhuisen T, Eun A, Hoh R, Fehrman E, Martin JN, Deeks SG, Henrich TJ, Peluso MJ, Sereti I. Persistent immune dysregulation and metabolic alterations following SARS-CoV-2 infection. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.04.16.25325949. [PMID: 40321289 PMCID: PMC12047922 DOI: 10.1101/2025.04.16.25325949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
SARS-CoV-2 can cause a variety of post-acute sequelae including Long COVID19 (LC), a complex, multisystem disease characterized by a broad range of symptoms including fatigue, cognitive impairment, and post-exertional malaise. The pathogenesis of LC is incompletely understood. In this study, we performed comprehensive cellular and transcriptional immunometabolic profiling within a cohort that included SARS-CoV-2-naïve controls (NC, N=30) and individuals with prior COVID-19 (~4-months) who fully recovered (RC, N=38) or went on to experience Long COVID symptoms (N=58). Compared to the naïve controls, those with prior COVID-19 demonstrated profound metabolic and immune alterations at the proteomic, cellular, and epigenetic level. Specifically, there was an enrichment in immature monocytes with sustained inflammasome activation and oxidative stress, elevated arachidonic acid levels, decreased tryptophan, and variation in the frequency and phenotype of peripheral T-cells. Those with LC had increased CD8 T-cell senescence and a distinct transcriptional profile within CD4 and CD8 T-cells and monocytes by single cell RNA sequencing. Our findings support a profound and persistent immunometabolic dysfunction that follows SARS-CoV-2 which may form the pathophysiologic substrate for LC. Our findings suggest that trials of therapeutics that help restore immune and metabolic homeostasis may be warranted to prevent, reduce, or resolve LC symptoms.
Collapse
Affiliation(s)
- Silvia Lucena Lage
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Katherine Bricker-Holt
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Joseph M. Rocco
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Adam Rupert
- AIDS Monitoring Laboratory, Frederick National Laboratory for Cancer Research; Frederick, USA
| | - Frank X. Donovan
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | - Yevgeniya A. Abramzon
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute; Bethesda, USA
| | | | - Colton McNinch
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Logan Cook
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Eduardo Pinheiro Amaral
- Inflammation and Innate Immunity Unit, Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| | - Gabriel Rosenfeld
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, USA
| | - Thomas Dalhuisen
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Avery Eun
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Rebecca Hoh
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Emily Fehrman
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Jeffrey N. Martin
- Department of Epidemiology and Biostatistics, University of California, San Francisco; San Francisco, USA
| | - Steven G. Deeks
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Timothy J. Henrich
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Michael J. Peluso
- Department of Medicine, University of California, San Francisco; San Francisco, USA
| | - Irini Sereti
- Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health; Bethesda, USA
| |
Collapse
|
5
|
Farkas G, Mahdaouy ZE, Babszky G, Jokai M, Torma F, Gu Y, Pinho R, Miklossy I, Gordevicius J, Benczúr A, Kerepesi C, Radak Z. Associations of epigenetic aging and COVID- 19: A 3-year longitudinal study. GeroScience 2025:10.1007/s11357-025-01635-4. [PMID: 40210827 DOI: 10.1007/s11357-025-01635-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 03/24/2025] [Indexed: 04/12/2025] Open
Abstract
Aging and COVID- 19 are known to influence DNA methylation, potentially affecting the rate of aging and the risk of disease. The physiological functions of 54 volunteers-including maximal oxygen uptake (VO₂ max), grip strength, and vertical jump-were assessed just before the COVID- 19 pandemic and again 3 years later. Of these volunteers, 27 had contracted COVID- 19. Eight epigenetic clocks were used to assess the rate of aging during the 3-year period: DNAmAge showed accelerated aging, and five clocks showed slowed aging (DNAmAgeSkinBlood, DNAmAgeHannum, DNAmFitAge, PhenoAge, and DNAmTL). When we considered only females, we observed a stronger effect in the increase of DNAmAge acceleration, while we observed slowed aging in the case of SkinBloodClock, and DNAmTL. The methylation of the promoter region of the H1 FNT genes, which encodes testis-specific histone H1 family member N (H1fnt) and plays a crucial role in spermatogenesis decreased the most significantly. In contrast, the promoter of CSTL1, which encodes Cystatin-like 1, showed the most significant increase. We found that having COVID- 19 during the 3-year study period significantly increased the progress of aging assessed by DNAmGrimAge, DNAmGrimAge2, and DNAmFitAge (p = 0.024, 0.047, 0.032, respectively, after we adjusted the analysis for baseline variables). The data suggest that COVID- 19 may have a mild long-term effect on epigenetic aging.
Collapse
Affiliation(s)
- Gabor Farkas
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Zahira El Mahdaouy
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Gergely Babszky
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Matyas Jokai
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Ferenc Torma
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary
| | - Yaodong Gu
- Faculty of Sport Science, Ningbo University, Ningbo, 315211, China
| | - Ricardo Pinho
- Laboratório de Bioquímica do Exercício em Saúde, Programa de Pós-Graduação em Ciências da Saúde, Escola de Medicina e Ciências da Vida, Pontifícia Universidade Católica Do Paraná, Curitiba, PR, Brazil
| | - Ildiko Miklossy
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piata 26 Libertatii, 530104, Miercurea Ciuc, Romania
| | | | - András Benczúr
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary
| | - Zsolt Radak
- Research Institute of Sport Science, Hungarian University of Sport Science, Budapest, Hungary.
- Department of Bioengineering, Sapientia Hungarian University of Transylvania, Piata 26 Libertatii, 530104, Miercurea Ciuc, Romania.
- Faculty of Sport Sciences, Waseda University, Tokorozawa, Japan.
- Institute of Sport Sciences and Physical Education, Faculty of Sciences, University of Pécs, 247624, Pécs, Hungary.
| |
Collapse
|
6
|
Li W, Zhang Z, Kumar S, Botey-Bataller J, Zoodsma M, Ehsani A, Zhan Q, Alaswad A, Zhou L, Grondman I, Koeken V, Yang J, Wang G, Volland S, Crişan TO, Joosten LAB, Illig T, Xu CJ, Netea MG, Li Y. Single-cell immune aging clocks reveal inter-individual heterogeneity during infection and vaccination. NATURE AGING 2025; 5:607-621. [PMID: 40044970 PMCID: PMC12003178 DOI: 10.1038/s43587-025-00819-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 01/24/2025] [Indexed: 04/18/2025]
Abstract
Aging affects human immune system functionality, increasing susceptibility to immune-mediated diseases. While gene expression programs accurately reflect immune function, their relationship with biological immune aging and health status remains unclear. Here we developed robust, cell-type-specific aging clocks (sc-ImmuAging) for the myeloid and lymphoid immune cell populations in circulation within peripheral blood mononuclear cells, using single-cell RNA-sequencing data from 1,081 healthy individuals aged from 18 to 97 years. Application of sc-ImmuAging to transcriptome data of patients with COVID-19 revealed notable age acceleration in monocytes, which decreased during recovery. Furthermore, inter-individual variations in immune aging induced by vaccination were identified, with individuals exhibiting elevated baseline interferon response genes showing age rejuvenation in CD8+ T cells after BCG vaccination. sc-ImmuAging provides a powerful tool for decoding immune aging dynamics, offering insights into age-related immune alterations and potential interventions to promote healthy aging.
Collapse
Affiliation(s)
- Wenchao Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Zhenhua Zhang
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Saumya Kumar
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Javier Botey-Bataller
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Martijn Zoodsma
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ali Ehsani
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Qiuyao Zhan
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Ahmed Alaswad
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Liang Zhou
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Inge Grondman
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Valerie Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Research Centre Innovations in Care, Rotterdam University of Applied Sciences, Rotterdam, The Netherlands
| | - Jian Yang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Gang Wang
- The National Clinical Research Center for Mental Disorders and Beijing Key Laboratory of Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
| | - Sonja Volland
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
| | - Tania O Crişan
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Haţieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Thomas Illig
- Hannover Unified Biobank, Hannover Medical School, Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hannover, Germany
- Lower Saxony center for artificial intelligence and causal methods in medicine (CAIMed), Hannover, Germany
| | - Cheng-Jian Xu
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
- Department for Immunology and Metabolism, Life and Medical Sciences Institute (LIMES), University of Bonn, Bonn, Germany
| | - Yang Li
- Department of Computational Biology of Individualised Medicine, Centre for Individualised Infection Medicine (CiiM), a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture Between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany.
- Department of Internal Medicine and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
- Cluster of Excellence RESIST (EXC 2155), Hanover Medical School, Hannover, Germany.
- Lower Saxony center for artificial intelligence and causal methods in medicine (CAIMed), Hannover, Germany.
| |
Collapse
|
7
|
Qiu S, Liu J, Guo J, Zhang Z, Guo Y, Hu Y. COVID-19 infection and longevity: an observational and mendelian randomization study. J Transl Med 2025; 23:283. [PMID: 40050903 PMCID: PMC11887240 DOI: 10.1186/s12967-024-05932-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 11/30/2024] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Studies have indicated that COVID-19 infection may accelerate the aging process in organisms. However, it remains unknown whether contracting COVID-19 affects life expectancy. Furthermore, the underlying biological mechanisms behind these findings are still unclear. METHODS We conducted a prospective cohort study on 56,504 participants of European ancestry from the UK Biobank who reported the time and number of COVID-19 infection between January 2020 and September 2023. The parental average longevity was used as a proxy for their own longevity. Linear regression was used to assess the relationship between COVID-19 infection and longevity. Furthermore, we investigated the shared genetic basis between COVID-19 and longevity using large-scale genome-wide association studies (GWAS) for COVID-19 (122,616 cases and 2,475,240 controls) and longevity (3,484 cases and 25,483 controls). Mendelian randomization (MR) and mediation analysis were utilized to assess causal relationships and potential mediators between COVID-19 susceptibility and longevity. Shared genetic loci between the two phenotypes were identified using conjunctional false discovery rate (conjFDR) statistical frameworks. RESULTS After controlling for relevant covariates, COVID-19 infection might not be significantly correlated with longevity. In all MR methods, generalized summary-data-based Mendelian randomization (GSMR) analysis revealed a significant decrease in longevity due to severe COVID-19 infection (OR = 0.91, 95%CI: 0.84-0.98, P = 0.015). Mediation analysis identified stroke and myocardial infarction as potential mediators between COVID-19 susceptibility and reduced longevity. At conjFDR < 0.05, we identified rs62062323 (KANSL1) and rs9530111 (PIBF1) as shared loci between COVID-19 and longevity. CONCLUSION Together, our findings provided preliminary evidence for the shared genetic basics between COVID-19 and aging. This discovery may have implications for personalized medicine and preventive strategies, helping identify individuals who may be more vulnerable to severe outcomes from COVID-19 due to their genetic makeup.
Collapse
Affiliation(s)
- Shizheng Qiu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Jianhua Liu
- Beidahuang Industry Group General Hospital, Harbin, 150088, China
| | - Jiahe Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Zhishuai Zhang
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yu Guo
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China
| | - Yang Hu
- School of Computer Science and Technology, Harbin Institute of Technology, 92 Xidazhi Street, Nangang District, Harbin, 150001, China.
| |
Collapse
|
8
|
Polli A, Godderis L, Martens DS, Patil MS, Hendrix J, Wyns A, Van Campenhout J, Richter E, Fanning L, Vandekerckhove O, Claeys E, Janssens W, Lorent N. Exploring DNA methylation, telomere length, mitochondrial DNA, and immune function in patients with Long-COVID. BMC Med 2025; 23:60. [PMID: 39901177 PMCID: PMC11792217 DOI: 10.1186/s12916-025-03881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 01/16/2025] [Indexed: 02/05/2025] Open
Abstract
BACKGROUND Long-COVID is defined as the persistency or development of new symptoms 3 months after the initial SARS-CoV-2 infection, with these symptoms lasting for at least 2 months with no other explanation. Common persistent symptoms are fatigue, sleep disturbances, post-exertional malaise (PEM), pain, and cognitive problems. Long-COVID is estimated to be present in about 65 million people. We aimed to explore clinical and biological factors that might contribute to Long-COVID. METHODS Prospective longitudinal cohort study including patients infected with SARS-CoV-2 between March 2020 and March 2022. Patients were assessed between 4 and 12 months after infection at the COVID follow-up clinic at UZ Leuven. We performed a comprehensive clinical assessment (including questionnaires and the 6-min walking test) and biological measures (global DNA methylation, telomere length, mitochondrial DNA copy number, inflammatory cytokines, and serological markers such as C-reactive protein, D-dimer, troponin T). RESULTS Of the 358 participants, 328 were hospitalised, of which 130 had severe symptoms requiring intensive care admission; 30 patients were ambulatory referrals. Based on their clinical presentation, we could identify 6 main clusters. One-hundred and twenty-seven patients (35.4%) belonged to at least one cluster. The bigger cluster included PEM, fatigue, sleep disturbances, and pain (n = 57). Troponin T and telomere shortening were the two main markers predicting Long-COVID and PEM-fatigue symptoms. CONCLUSIONS Long-COVID is not just one entity. Different clinical presentations can be identified. Cardiac involvement (as measured by troponin T levels) and telomere shortening might be a relevant risk factor for developing PEM-fatigue symptoms and deserve further exploring.
Collapse
Affiliation(s)
- Andrea Polli
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium.
- Pain in Motion (PiM) International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium.
- Flanders Research Foundation - FWO, Brussels, Belgium.
| | - Lode Godderis
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium
- External Service for Prevention and Protection at Work, IDEWE, Heverlee, Belgium
| | - Dries S Martens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Madhura Shekhar Patil
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium
| | - Jolien Hendrix
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium
- Pain in Motion (PiM) International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Flanders Research Foundation - FWO, Brussels, Belgium
| | - Arne Wyns
- Pain in Motion (PiM) International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Jente Van Campenhout
- Pain in Motion (PiM) International Research Group, Department of Physiotherapy, Human Physiology and Anatomy, Faculty of Rehabilitation Sciences & Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
| | - Emma Richter
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium
| | - Lara Fanning
- Department of Public Health and Primary Care, Centre for Environment & Health, KU Leuven, O&N5 Herestraat 49, Leuven, Belgium
| | | | - Eveline Claeys
- Department of Respiratory Diseases, University Hospital Leuven, Leuven, Belgium
| | - Wim Janssens
- Department of Respiratory Diseases, University Hospital Leuven, Leuven, Belgium
- Department of Chronic Diseases, Metabolism and Aging (CHROMETA)-BREATHE Laboratory, KU Leuven, Leuven, Belgium
| | - Natalie Lorent
- Department of Respiratory Diseases, University Hospital Leuven, Leuven, Belgium
- Department of Chronic Diseases, Metabolism and Aging (CHROMETA)-BREATHE Laboratory, KU Leuven, Leuven, Belgium
| |
Collapse
|
9
|
Andonian BJ, Hippensteel JA, Abuabara K, Boyle EM, Colbert JF, Devinney MJ, Faye AS, Kochar B, Lee J, Litke R, Nair D, Sattui SE, Sheshadri A, Sherman AN, Singh N, Zhang Y, LaHue SC. Inflammation and aging-related disease: A transdisciplinary inflammaging framework. GeroScience 2025; 47:515-542. [PMID: 39352664 PMCID: PMC11872841 DOI: 10.1007/s11357-024-01364-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024] Open
Abstract
Inflammaging, a state of chronic, progressive low-grade inflammation during aging, is associated with several adverse clinical outcomes, including frailty, disability, and death. Chronic inflammation is a hallmark of aging and is linked to the pathogenesis of many aging-related diseases. Anti-inflammatory therapies are also increasingly being studied as potential anti-aging treatments, and clinical trials have shown benefits in selected aging-related diseases. Despite promising advances, significant gaps remain in defining, measuring, treating, and integrating inflammaging into clinical geroscience research. The Clin-STAR Inflammation Research Interest Group was formed by a group of transdisciplinary clinician-scientists with the goal of advancing inflammaging-related clinical research and improving patient-centered care for older adults. Here, we integrate insights from nine medical subspecialties to illustrate the widespread impact of inflammaging on diseases linked to aging, highlighting the extensive opportunities for targeted interventions. We then propose a transdisciplinary approach to enhance understanding and treatment of inflammaging that aims to improve comprehensive care for our aging patients.
Collapse
Affiliation(s)
- Brian J Andonian
- Division of Rheumatology and Immunology, Duke University School of Medicine, Durham, NC, USA.
| | - Joseph A Hippensteel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Katrina Abuabara
- Department of Dermatology, University of California San Francisco, San Francisco, CA, USA
| | - Eileen M Boyle
- Department of Haematology, University College London Cancer Institute, London, UK
| | - James F Colbert
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Michael J Devinney
- Division of Critical Care, Department of Anesthesiology, Duke University School of Medicine, Durham, NC, USA
| | - Adam S Faye
- Division of Gastroenterology, Department of Population Health, NYU Langone Medical Center, New York, NY, USA
| | - Bharati Kochar
- Division of Gastroenterology, Massachusetts General Hospital, Boston, MA, USA
| | - Jiha Lee
- Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rachel Litke
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Devika Nair
- Department of Medicine, Division of Nephrology and Hypertension, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sebastian E Sattui
- Division of Rheumatology and Clinical Immunology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anoop Sheshadri
- Division of Nephrology, Department of Medicine, University of California, San Francisco, Nephrology Section, San Francisco Veterans Affairs Medical Center, San Francisco, CA, USA
| | | | - Namrata Singh
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Yinan Zhang
- Department of Neurology, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Sara C LaHue
- Department of Neurology, School of Medicine, and the UCSF Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
10
|
Gaetano C, Atlante S, Gottardi Zamperla M, Barbi V, Gentilini D, Illi B, Malavolta M, Martelli F, Farsetti A. The COVID-19 legacy: consequences for the human DNA methylome and therapeutic perspectives. GeroScience 2025; 47:483-501. [PMID: 39497009 PMCID: PMC11872859 DOI: 10.1007/s11357-024-01406-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/18/2024] [Indexed: 11/06/2024] Open
Abstract
The COVID-19 pandemic has left a lasting legacy on human health, extending beyond the acute phase of infection. This article explores the evidence suggesting that SARS-CoV-2 infection can induce persistent epigenetic modifications, particularly in DNA methylation patterns, with potential long-term consequences for individuals' health and aging trajectories. The review discusses the potential of DNA methylation-based biomarkers, such as epigenetic clocks, to identify individuals at risk for accelerated aging and tailor personalized interventions. Integrating epigenetic clock analysis into clinical management could mark a new era of personalized treatment for COVID-19, possibly helping clinicians to understand patient susceptibility to severe outcomes and establish preventive strategies. Several valuable reviews address the role of epigenetics in infectious diseases, including the Sars-CoV-2 infection. However, this article provides an original overview of the current understanding of the epigenetic dimensions of COVID-19, offering insights into the long-term health implications of the pandemic. While acknowledging the limitations of current data, we emphasize the need for future research to unravel the precise mechanisms underlying COVID-19-induced epigenetic changes and to explore potential approaches to target these modifications.
Collapse
Affiliation(s)
- Carlo Gaetano
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy.
| | - Sandra Atlante
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy
| | | | - Veronica Barbi
- Laboratory of Epigenetics, Istituti Clinici Scientifici Maugeri IRCCS, 27100, Pavia, Italy
| | - Davide Gentilini
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, 20095, Cusano Milanino, Italy
| | - Barbara Illi
- Institute of Molecular Biology and Pathology, National Research Council (CNR), c/o Sapienza University of Rome, 00185, Rome, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research and Geriatric Mouse Clinic, IRCCS INRCA, 60121, Ancona, Italy
| | - Fabio Martelli
- Laboratory of Molecular Cardiology, IRCCS Policlinico San Donato, 20097, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science, National Research Council (CNR)-IASI, 00185, Rome, Italy.
| |
Collapse
|
11
|
Nagy B, Protzner AB, Czigler B, Gaál ZA. Resting-state neural dynamics changes in older adults with post-COVID syndrome and the modulatory effect of cognitive training and sex. GeroScience 2025; 47:1277-1301. [PMID: 39210163 PMCID: PMC11872858 DOI: 10.1007/s11357-024-01324-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Post-COVID syndrome manifests with numerous neurological and cognitive symptoms, the precise origins of which are still not fully understood. As females and older adults are more susceptible to developing this condition, our study aimed to investigate how post-COVID syndrome alters intrinsic brain dynamics in older adults and whether biological sex and cognitive training might modulate these effects, with a specific focus on older females. The participants, aged between 60 and 75 years, were divided into three experimental groups: healthy old female, post-COVID old female and post-COVID old male. They underwent an adaptive task-switching training protocol. We analysed multiscale entropy and spectral power density of resting-state EEG data collected before and after the training to assess neural signal complexity and oscillatory power, respectively. We found no difference between post-COVID females and males before training, indicating that post-COVID similarly affected both sexes. However, cognitive training was effective only in post-COVID females and not in males, by modulating local neural processing capacity. This improvement was further evidenced by comparing healthy and post-COVID females, wherein the latter group showed increased finer timescale entropy (1-30 ms) and higher frequency band power (11-40 Hz) before training, but these differences disappeared following cognitive training. Our results suggest that in older adults with post-COVID syndrome, there is a pronounced shift from more global to local neural processing, potentially contributing to accelerated neural aging in this condition. However, cognitive training seems to offer a promising intervention method for modulating these changes in brain dynamics, especially among females.
Collapse
Affiliation(s)
- Boglárka Nagy
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary.
| | - Andrea B Protzner
- Department of Psychology, University of Calgary, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
- Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | | | - Zsófia Anna Gaál
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, Budapest, Hungary
| |
Collapse
|
12
|
Ewing AG, Salamon S, Pretorius E, Joffe D, Fox G, Bilodeau S, Bar-Yam Y. Review of organ damage from COVID and Long COVID: a disease with a spectrum of pathology. MEDICAL REVIEW (2021) 2025; 5:66-75. [PMID: 39974559 PMCID: PMC11834749 DOI: 10.1515/mr-2024-0030] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 02/21/2025]
Abstract
Long COVID, as currently defined by the World Health Organization (WHO) and other authorities, is a symptomatic condition that has been shown to affect an estimated 10 %-30 % of non-hospitalized patients after one infection. However, COVID-19 can also cause organ damage in individuals without symptoms, who would not fall under the current definition of Long COVID. This organ damage, whether symptomatic or not, can lead to various health impacts such as heart attacks and strokes. Given these observations, it is necessary to either expand the definition of Long COVID to include organ damage or recognize COVID-19-induced organ damage as a distinct condition affecting many symptomatic and asymptomatic individuals after COVID-19 infections. It is important to consider that many known adverse health outcomes, including heart conditions and cancers, can be asymptomatic until harm thresholds are reached. Many more medical conditions can be identified by testing than those that are recognized through reported symptoms. It is therefore important to similarly recognize that while Long COVID symptoms are associated with organ damage, there are many individuals that have organ damage without displaying recognized symptoms and to include this harm in the characterization of COVID-19 and in the monitoring of individuals after COVID-19 infections.
Collapse
Affiliation(s)
- Andrew G. Ewing
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
- World Health Network, Cambridge, MA, USA
| | | | - Etheresia Pretorius
- World Health Network, Cambridge, MA, USA
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, WC, South Africa
- Department of Biochemistry, Cell and Systems Biology, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, University of Liverpool, Liverpool, UK
| | - David Joffe
- World Health Network, Cambridge, MA, USA
- Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Greta Fox
- World Health Network, Cambridge, MA, USA
| | - Stephane Bilodeau
- World Health Network, Cambridge, MA, USA
- Department of Bioengineering, McGill University, Montreal, QC, Canada
| | - Yaneer Bar-Yam
- World Health Network, Cambridge, MA, USA
- New England Complex Systems Institute, Cambridge, MA, USA
| |
Collapse
|
13
|
Liu B, Xie Y, Zhang Y, Tang G, Lin J, Yuan Z, Liu X, Wang X, Huang M, Luo Y, Yu H. Spatial deconvolution from bulk DNA methylation profiles determines intratumoral epigenetic heterogeneity. Cell Biosci 2025; 15:7. [PMID: 39844296 PMCID: PMC11756021 DOI: 10.1186/s13578-024-01337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 12/09/2024] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Intratumoral heterogeneity emerges from accumulating genetic and epigenetic changes during tumorigenesis, which may contribute to therapeutic failure and drug resistance. However, the lack of a quick and convenient approach to determine the intratumoral epigenetic heterogeneity (eITH) limit the application of eITH in clinical settings. Here, we aimed to develop a tool that can evaluate the eITH using the DNA methylation profiles from bulk tumors. METHODS Genomic DNA of three laser micro-dissected tumor regions, including digestive tract surface, central bulk, and invasive front, was extracted from formalin-fixed paraffin-embedded sections of colorectal cancer patients. The genome-wide methylation profiles were generated with methylation array. The most variable methylated probes were selected to construct a DNA methylation-based heterogeneity (MeHEG) estimation tool that can deconvolve the proportion of each reference tumor region with the support vector machine model-based method. A PCR-based assay for quantitative analysis of DNA methylation (QASM) was developed to specifically determine the methylation status of each CpG in MeHEG assay at single-base resolution to realize fast evaluation of epigenetic heterogeneity. RESULTS In the discovery set with 79 patients, the differentially methylated CpGs among the three tumor regions were found. The 7 most representative CpGs were identified and subsequently selected to develop the MeHEG algorithm. We validated its performance of deconvolution of tumor regions in an independent cohort. In addition, we showed the significant association of MeHEG-based epigenetic heterogeneity with the genomic heterogeneity in mutation and copy number variation in our in-house and TCGA cohorts. Besides, we found that the patients with higher MeHEG score had worse disease-free and overall survival outcomes. Finally, we found dynamic change of epigenetic heterogeneity based on MeHEG score in cancer cells under the treatment of therapeutic drugs. CONCLUSION By developing a 7-loci panel using a machine learning approach combined with the QASM assay for PCR-based application, we present a valuable method for evaluating intratumoral heterogeneity. The MeHEG algorithm offers novel insights into tumor heterogeneity from an epigenetic perspective, potentially enriching current knowledge of tumor complexity and providing a new tool for clinical and research applications in cancer biology.
Collapse
Affiliation(s)
- Binbin Liu
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yumo Xie
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Yu Zhang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Guannan Tang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Jinxin Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
| | - Ze Yuan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
| | - Xiaoxia Liu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiaolin Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, 510655, Guangdong, China.
- Guangdong Institute of Gastroenterology, Guangzhou, 510655, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, Guangdong, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Guangzhou, Guangdong, China.
- Innovation Center of the Sixth Affiliated Hospital, School of Life Sciences, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
14
|
Cheishvili D, Do Carmo S, Caraci F, Grasso M, Cuello AC, Szyf M. EpiAge: a next-generation sequencing-based ELOVL2 epigenetic clock for biological age assessment in saliva and blood across health and disease. Aging (Albany NY) 2025; 17:131-160. [PMID: 39853302 PMCID: PMC11810066 DOI: 10.18632/aging.206188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/06/2025] [Indexed: 01/26/2025]
Abstract
This study introduces EpiAgePublic, a new method to estimate biological age using only three specific sites on the gene ELOVL2, known for its connection to aging. Unlike traditional methods that require complex and extensive data, our model uses a simpler approach that is well-suited for next-generation sequencing technology, which is a more advanced method of analyzing DNA methylation. This new model overcomes some of the common challenges found in older methods, such as errors due to sample quality and processing variations. We tested EpiAgePublic with a large and varied group of over 4,600 people to ensure its accuracy. It performed on par with, and sometimes better than, more complicated models that use much more data for age estimation. We examined its effectiveness in understanding how factors like HIV infection and stress affect aging, confirming its usefulness in real-world clinical settings. Our results prove that our simple yet effective model, EpiAgePublic, can capture the subtle signs of aging with high accuracy. We also used this model in a study involving patients with Alzheimer's Disease, demonstrating the practical benefits of next-generation sequencing in making precise age-related assessments. This study lays the groundwork for future research on aging mechanisms and assessing how different interventions might impact the aging process using this clock.
Collapse
Affiliation(s)
- David Cheishvili
- EpiMedTech Global, Singapore 409051, Singapore
- HKG Epitherapeutics Ltd., Hong Kong SAR, China
- Gerald Bronfman Department of Oncology, McGill University, Montreal H4A 3T2, Canada
| | - Sonia Do Carmo
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - Margherita Grasso
- Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy
| | - A Claudio Cuello
- Department of Pharmacology & Therapeutics, McGill University, Montreal H3G 1Y6, Canada
- Visiting Professor, Department of Pharmacology, Oxford University, Oxford OX13QT, UK
| | - Moshe Szyf
- EpiMedTech Global, Singapore 409051, Singapore
- HKG Epitherapeutics Ltd., Hong Kong SAR, China
| |
Collapse
|
15
|
Goeminne LJE, Vladimirova A, Eames A, Tyshkovskiy A, Argentieri MA, Ying K, Moqri M, Gladyshev VN. Plasma protein-based organ-specific aging and mortality models unveil diseases as accelerated aging of organismal systems. Cell Metab 2025; 37:205-222.e6. [PMID: 39488213 DOI: 10.1016/j.cmet.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/04/2024] [Accepted: 10/04/2024] [Indexed: 11/04/2024]
Abstract
Aging is a complex process manifesting at molecular, cellular, organ, and organismal levels. It leads to functional decline, disease, and ultimately death, but the relationship between these fundamental biomedical features remains elusive. By applying elastic net regularization to plasma proteome data of over 50,000 human subjects in the UK Biobank and other cohorts, we report interpretable organ-specific and conventional aging models trained on chronological age, mortality, and longitudinal proteome data. These models predict organ/system-specific disease and indicate that men age faster than women in most organs. Accelerated organ aging leads to diseases in these organs, and specific diets, lifestyles, professions, and medications influence organ aging rates. We then identify proteins driving these associations with organ-specific aging. Our analyses reveal that age-related chronic diseases epitomize accelerated organ- and system-specific aging, modifiable through environmental factors, advocating for both universal whole-organism and personalized organ/system-specific anti-aging interventions.
Collapse
Affiliation(s)
- Ludger J E Goeminne
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Anastasiya Vladimirova
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alec Eames
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Tyshkovskiy
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - M Austin Argentieri
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Kejun Ying
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mahdi Moqri
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
16
|
Tang Z, Chen Y, Ouyang Y, Peng Y, Man X. COVID-19 related epigenetic changes and atopic dermatitis: An exploratory analysis. World Allergy Organ J 2025; 18:101022. [PMID: 39867872 PMCID: PMC11758953 DOI: 10.1016/j.waojou.2024.101022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/13/2024] [Accepted: 12/06/2024] [Indexed: 01/28/2025] Open
Abstract
Background While epidemiological data suggest a connection between atopic dermatitis (AD) and COVID-19, the molecular mechanisms underlying this relationship remain unclear. Objective To investigate whether COVID-19-related CpGs may contribute to AD development and whether this association is mediated through the regulation of specific genes' expression. Methods We combined Mendelian randomization and transcriptome analysis for data-driven explorations. Results Among the 172 CpGs -associated with COVID-19 infection, merely 3 of them exhibited significant impacts on the risk of AD, including cg04543273, cg11916609, and cg10636246. In the following analysis of the causal effects of CpGs and their related gene expression, cg04543273 inhibited LMAN2 expression. However, there was not a significant impact of cg11916609 and cg10636246 on the expression of their corresponding genes. Besides, transcriptome analysis suggested that LMAN2 expression was significantly upregulated among the COVID-19-infected population, and LMAN2 expression was obviously correlated with Type 2 helper cells across different post-infection time points. Conclusion Overall, this study provides new insights of the COVID-19-related onset and exacerbation of AD-COVID-19-related epigenetic changes and their regulatory impact on transcription. A novel role of LMAN2 was proposed in the relationship between viral infection and AD. More studies are warranted to further explore the mechanism of LMAN2-related immunopathology.
Collapse
Affiliation(s)
- Zhenwei Tang
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yu Chen
- Clinical Medicine Eight-year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yuzhen Ouyang
- Clinical Medicine Eight-year Program, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Peng
- Department of Rheumatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyong Man
- Department of Dermatology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
17
|
Song S, Gan J, Long Q, Gao Z, Zheng Y. Decoding NAD+ Metabolism in COVID-19: Implications for Immune Modulation and Therapy. Vaccines (Basel) 2024; 13:1. [PMID: 39852780 PMCID: PMC11768799 DOI: 10.3390/vaccines13010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/26/2025] Open
Abstract
The persistent threat of COVID-19, particularly with the emergence of new variants, underscores the urgency for innovative therapeutic strategies beyond conventional antiviral treatments. Current immunotherapies, including IL-6/IL-6R monoclonal antibodies and JAK inhibitors, exhibit suboptimal efficacy, necessitating alternative approaches. Our review delves into the significance of NAD+ metabolism in COVID-19 pathology, marked by decreased NAD+ levels and upregulated NAD+-consuming enzymes such as CD38 and poly (ADP-ribose) polymerases (PARPs). Recognizing NAD+'s pivotal role in energy metabolism and immune modulation, we propose modulating NAD+ homeostasis could bolster the host's defensive capabilities against the virus. The article reviews the scientific rationale behind targeting NAD+ pathways for therapeutic benefit, utilizing strategies such as NAD+ precursor supplementation and enzyme inhibition to modulate immune function. While preliminary data are encouraging, the challenge lies in optimizing these interventions for clinical use. Future research should aim to unravel the intricate roles of key metabolites and enzymes in NAD+ metabolism and to elucidate their specific mechanisms of action. This will be essential for developing targeted NAD+ therapies, potentially transforming the management of COVID-19 and setting a precedent for addressing other infectious diseases.
Collapse
Affiliation(s)
- Shixu Song
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Jialing Gan
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Qiuyue Long
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| | - Zhancheng Gao
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
- Department of Respiratory and Critical Care Medicine, Peking University People’s Hospital, Beijing 100044, China
| | - Yali Zheng
- Department of Respiratory, Critical Care and Sleep Medicine, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361101, China
- Institute of Chest and Lung Diseases, Xiang’an Hospital of Xiamen University, Xiamen 361101, China
| |
Collapse
|
18
|
Liang R, Tang Q, Chen J, Zhu L. Epigenetic Clocks: Beyond Biological Age, Using the Past to Predict the Present and Future. Aging Dis 2024:AD.2024.1495. [PMID: 39751861 DOI: 10.14336/ad.2024.1495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Predicting health trajectories and accurately measuring aging processes across the human lifespan remain profound scientific challenges. Assessing the effectiveness and impact of interventions targeting aging is even more elusive, largely due to the intricate, multidimensional nature of aging-a process that defies simple quantification. Traditional biomarkers offer only partial perspectives, capturing limited aspects of the aging landscape. Yet, over the past decade, groundbreaking advancements have emerged. Epigenetic clocks, derived from DNA methylation patterns, have established themselves as powerful aging biomarkers, capable of estimating biological age and assessing aging rates across diverse tissues with remarkable precision. These clocks provide predictive insights into mortality and age-related disease risks, effectively distinguishing biological age from chronological age and illuminating enduring questions in gerontology. Despite significant progress in epigenetic clock development, substantial challenges remain, underscoring the need for continued investigation to fully unlock their potential in the science of aging.
Collapse
Affiliation(s)
- Runyu Liang
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Qiang Tang
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| | - Jia Chen
- Heilongjiang University of Chinese Medicine, Harbin, China
| | - Luwen Zhu
- Second Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
19
|
Wu Z, Qu J, Liu GH. Roles of chromatin and genome instability in cellular senescence and their relevance to ageing and related diseases. Nat Rev Mol Cell Biol 2024; 25:979-1000. [PMID: 39363000 DOI: 10.1038/s41580-024-00775-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2024] [Indexed: 10/05/2024]
Abstract
Ageing is a complex biological process in which a gradual decline in physiological fitness increases susceptibility to diseases such as neurodegenerative disorders and cancer. Cellular senescence, a state of irreversible cell-growth arrest accompanied by functional deterioration, has emerged as a pivotal driver of ageing. In this Review, we discuss how heterochromatin loss, telomere attrition and DNA damage contribute to cellular senescence, ageing and age-related diseases by eliciting genome instability, innate immunity and inflammation. We also discuss how emerging therapeutic strategies could restore heterochromatin stability, maintain telomere integrity and boost the DNA repair capacity, and thus counteract cellular senescence and ageing-associated pathologies. Finally, we outline current research challenges and future directions aimed at better comprehending and delaying ageing.
Collapse
Affiliation(s)
- Zeming Wu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
| | - Jing Qu
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute of Heart Lung and Blood Vessel Diseases, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
| | - Guang-Hui Liu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Aging Biomarker Consortium, Beijing, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
20
|
Shi F, Peng J, Li H, Liu D, Han L, Wang Y, Liu Q, Liu Q. Probiotics as a targeted intervention in anti-ageing: a review. Biomarkers 2024; 29:577-585. [PMID: 39484861 DOI: 10.1080/1354750x.2024.2424388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/21/2024] [Indexed: 11/03/2024]
Abstract
CONTEXT The age-induced disruption of gut flora, termed gut dysbiosis, is intimately tied to compromised immune function, augmented oxidative stress and a spectrum of age-linked disorders. OBJECTIVE This review examines the fundamental mechanisms employed by probiotic strains to modulate gut microbiota composition and metabolic profiles, mitigate cognitive decline via the gut-brain axis (GBA), modulate gene transcription and alleviate inflammatory responses and oxidative stress. CONCLUSION We elucidate the capacity of probiotics as a precision intervention to restore gut microbiome homeostasis and alleviate age-related conditions, thereby offering a theoretical framework for probiotics to decelerate ageing, manage age-related diseases, and elevate quality of life.
Collapse
Affiliation(s)
- Fengcui Shi
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Jingwen Peng
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Haojin Li
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Denghai Liu
- Yuncheng County People's Hospital, Heze City, Shandong, China
| | - Li Han
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Ying Wang
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qingli Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| | - Qian Liu
- College of Biological and Chemical Engineering, Qilu Institute of Technology, Jinan, PR China
| |
Collapse
|
21
|
Calvani R, Giampaoli O, Marini F, Del Chierico F, De Rosa M, Conta G, Sciubba F, Tosato M, Picca A, Ciciarello F, Galluzzo V, Gervasoni J, Di Mario C, Santoro L, Tolusso B, Spagnoli M, Tomassini A, Aureli W, Toto F, Pane S, Putignani L, Miccheli A, Marzetti E, Landi F. Beetroot juice intake positively influenced gut microbiota and inflammation but failed to improve functional outcomes in adults with long COVID: A pilot randomized controlled trial. Clin Nutr 2024; 43:344-358. [PMID: 39571342 DOI: 10.1016/j.clnu.2024.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/11/2024] [Accepted: 11/10/2024] [Indexed: 12/02/2024]
Abstract
BACKGROUND & AIMS Long-term effects of coronavirus disease 2019 (long COVID) develop in a substantial number of people following an acute COVID-19 episode. Red beetroot juice may have positive effects on multiple pathways involved in long COVID. The aim of this pilot study was to explore the impact of beetroot juice supplementation on physical function, gut microbiota, and systemic inflammation in adults with long COVID. METHODS A single-center, double-blind, placebo-controlled randomized trial was conducted to test the effects of 14 days of beetroot juice supplementation, rich in nitrates and betalains, on functional and biological outcomes in adults aged between 20 and 60 years with long COVID. Participants were randomized 1:1 to receive either daily oral supplementation with 200 mL beetroot juice (∼600 mg nitrate) or placebo (∼60 mg nitrate) for 14 days. The primary endpoint was the change from baseline to day 14 in a fatigue resistance test. Secondary outcomes included the distance walked on the 6-min walk test, handgrip strength, and flow-mediated dilation. Secondary endpoints also included changes from baseline in circulating inflammatory mediators and metagenomic and fecal water metabolomic profiles. Partial least squares discriminant analysis (PLS-DA) models were built to evaluate the differences in biological variables associated with the interventions. RESULTS Thirty-one participants were randomized in the study. Twenty-five of them (median (interquartile range) age 40 (10), 14 [56 %] women), received either beetroot juice (15) or placebo (10) and completed the study. At 14 days, fatigue resistance significantly improved from baseline (mean difference [standard error]: +21.8 [3.7] s; p < 0.001) with no significant differences between intervention groups. A significant increase from baseline in the distance walked on the 6-min walk test was observed (mean difference [standard error]: +30.0 [9.4] m; p = 0.03), which was not different between groups. Flow-mediated dilation did not differ between participants who received beetroot juice and those on placebo. PLS-DA models allowed correct classification of participants with 92.2 ± 4.4 % accuracy. Those who ingested red beetroot juice had a greater abundance of bacteria with well-known beneficial effects, including Akkermansia, Oscillospira, Prevotella, Roseburia, Ruminococcaceae, and Turicibacter, compared with placebo. Participants allocated to beetroot juice supplementation were also characterized by significantly higher levels of fecal nicotinate, trimethylamine, and markers of beetroot juice intake (e.g., 5,6-dihydroxyindole). Finally, higher levels of interferon gamma and macrophage inflammatory protein-1β were found in participants who consumed beetroot juice. CONCLUSION Beetroot juice supplementation for two weeks did not to induce significant improvements in functional outcomes in adults with long COVID compared with placebo. Beneficial effects were observed in both gut microbiota composition (i.e., increase in probiotic species) and inflammatory mediators. TRIAL REGISTRATION Trial was registered under ClinicalTrials.gov. Identifier no. NCT06535165.
Collapse
Affiliation(s)
- Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Ottavia Giampaoli
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Federico Marini
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy; Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Federica Del Chierico
- Unit of Microbiome, Bambino Gesù Children's Hospital IRCCS, Piazza di Sant'Onofrio 4, 00165 Rome, Italy.
| | - Michele De Rosa
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Giorgia Conta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.
| | - Fabio Sciubba
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Matteo Tosato
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Anna Picca
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy; Department of Medicine and Surgery, LUM University, SS100 km 18, 70010 Casamassima, Italy.
| | - Francesca Ciciarello
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Vincenzo Galluzzo
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Jacopo Gervasoni
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Clara Di Mario
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Luca Santoro
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Barbara Tolusso
- Immunology Core Facility, GSTEP, Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Mariangela Spagnoli
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL, Via Fontana Candida 1, 00078 Monte Porzio Catone, Italy.
| | - Alberta Tomassini
- R&D, Aureli Mario S.S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, L'Aquila, Italy.
| | - Walter Aureli
- R&D, Aureli Mario S.S. Agricola, Via Mario Aureli 7, 67050 Ortucchio, L'Aquila, Italy.
| | - Francesca Toto
- Unit of Microbiome, Bambino Gesù Children's Hospital IRCCS, Piazza di Sant'Onofrio 4, 00165 Rome, Italy.
| | - Stefania Pane
- Unit of Microbiomics, Bambino Gesù Children's Hospital IRCCS, Piazza di Sant'Onofrio 4, 00165 Rome, Italy.
| | - Lorenza Putignani
- Unit of Microbiomics and Unit of Microbiome, Bambino Gesù Children's Hospital IRCCS, Piazza di Sant'Onofrio 4, 00165 Rome, Italy.
| | - Alfredo Miccheli
- NMR-Based Metabolomics Laboratory (NMLab), Sapienza University of Rome, Rome, Italy.
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| | - Francesco Landi
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00618 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, L.go A. Gemelli 8, 00168 Rome, Italy.
| |
Collapse
|
22
|
Wan EYF, Lee SF, Zhou J, Yan VKC, Lai FTT, Chui CSL, Li X, Wong CKH, Chan EWY, Wong ICK. Post-acute sequelae of COVID-19 in cancer patients: Two cohorts in UK and Hong Kong. Cancer Med 2024; 13:e70134. [PMID: 39644256 PMCID: PMC11624603 DOI: 10.1002/cam4.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 07/24/2024] [Accepted: 08/09/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Limited research exists on the risks and spectrum of complications in post-acute phase of COVID-19 in cancer patients. This study aimed to evaluate the post-acute effects of COVID-19 on different types of morbidities among cancer patients across two regions with different healthcare systems and dominant variants of COVID-19. MATERIALS AND METHODS Cancer patients with COVID-19 from the UK Biobank (UKB, n = 2230; March 16, 2020 to May 31, 2021; pre-Omicron-variants dominant) and electronic medical records in Hong Kong (HK cohort, n = 22,335; April 1, 2020 to October 31, 2022; Omicron-variant dominant) were included. Each COVID-19 case was randomly matched with up to 10 non-COVID-19 cancer patients based on age and sex. Follow-up lasted until 31 August 2021 for UKB and 23 January 2023 for HK. Inverse probability treatment weighting balanced cohort characteristics. Cox regression evaluated the association of COVID-19 with morbidities occurred 30 days post-infection. RESULTS Cancer patients with COVID-19 consistently showed significantly higher risk of major cardiovascular diseases (CVDs) [UKB: hazard ratio [HR] 1.8 (95% CI 1.3, 2.5); HK: HR 1.4 (95% CI 1.1, 1.8)], CVD death [UKB: HR 4.3 (95% CI 2.9, 6.2); HK: HR 1.7 (95% CI 1.3, 2.4)], and all-cause mortality [UKB: HR 4.7 (95% CI 4.0, 5.5); HK: HR 1.6 (95% CI 1.5, 1.7)] in both cohorts despite the difference in dominant variants. Cancer patients at advanced ages or severely infected had higher all-cause mortality risk. However, associations between COVID-19 and CVDs became insignificant for fully vaccinated patients. CONCLUSION COVID-19 infection is associated with increased risks of CVDs and mortality in cancer patients. Fully vaccination may reduce the post-acute effects of COVID-19 on CVDs. This information may guide effective pre-emptive measures to reduce COVID-19-related morbidities and mortality in cancer patients.
Collapse
Affiliation(s)
- Eric Yuk Fai Wan
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Shing Fung Lee
- Department of Radiation OncologyNational University Cancer Institute, National University HospitalSingaporeSingapore
- Department of Clinical Oncology, Tuen Mun HospitalNew Territories West Cluster, Hospital AuthorityTuen MunHong Kong
| | - Jiayi Zhou
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Vincent Ka Chun Yan
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Francisco Tsz Tsun Lai
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
| | - Celine Sze Ling Chui
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- School of Nursing, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- School of Public Health, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Xue Li
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Carlos King Ho Wong
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- Department of Family Medicine and Primary Care, School of Clinical Medicine, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
| | - Esther Wai Yin Chan
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- Department of PharmacyThe University of Hong Kong‐Shenzhen HospitalShenzhenChina
- The University of Hong Kong Shenzhen Institute of Research and InnovationShenzhenChina
| | - Ian Chi Kei Wong
- Centre for Safe Medication Practice and research, Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of MedicineThe University of Hong KongHong KongChina
- Laboratory of Data Discovery for Health (D24H)Hong Kong Science and Technology ParkHong KongChina
- Aston Pharmacy SchoolAston UniversityBirminghamUK
| |
Collapse
|
23
|
Wang L, Zhang J, Liu F, Shi Q, Gao F, Li J, Liu Y, Kong F, Xu D. Maternal infection of SARS-CoV-2 during the first and second trimesters leads to newborn telomere shortening. J Transl Med 2024; 22:1049. [PMID: 39574146 PMCID: PMC11580642 DOI: 10.1186/s12967-024-05879-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/13/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND Initial telomere length (TL) in newborns is the major determinant for TL in later life while TL in newborn/early-life predicts long-term health and lifespan. It is important to identify key factors that affect telomere homeostasis throughout embryonic development for precision interventions to maintain optimal TL in fetus/prenatal infants. SARS-CoV-2 has caused a widespread global pandemic of COVID-19, but it remains unclear whether maternal SARS-CoV-2 infection impairs prenatal telomere homeostasis. METHODS We recruited 413 normally delivered newborns whose mothers were either non-infected or infected with SARS-CoV-2 during different trimesters of pregnancy (otherwise healthy). Telomere length (TL) in cord blood (CB) was assessed using qPCR. CB and maternal blood were analyzed for cytokine levels. Placental senescence was determined using senescence-associated β-galactosidase staining. RESULTS Control (non-infected maternal) newborn TL was significantly longer than that from maternal infection (1.568 ± 0.340 vs 1.390 ± 0.350, P = 0.005). Such shorter TL was observed only if maternal infection of SARS-CoV-2 occurred in the first and second trimesters of pregnancy (1.261 ± 0.340 and 1.346 ± 0.353, P < 0.0001 and 0.001, respectively). There were no differences in TL between controls and infection at the third trimester (1.568 ± 0.340 vs 1.565 ± 0.329, P > 0.05). Across the first trimester, there was a positive correlation between newborn TL and gestational weeks with maternal infection, suggesting that the earlier maternal infection occurs, the worse effect is taken on fetal telomere homeostasis. Placental senescence coupled with the downregulated expression of telomerase reverse transcriptase was significantly more frequent from the maternal infection at the first trimester. There were no differences in IL-6, C reactive protein and other cytokine levels in CB and maternal serum or placentas. CONCLUSIONS Maternal SARS-CoV-2 infection at the first and second trimesters leads to significantly shorter TL and earlier infection causes much more severe TL damage. The infection-mediated cell senescence and other histopathological abnormalities result in defective placental function through which fetal telomere homeostasis is impaired. Thus, vaccination against COVID-19 should be done in advance for women who plan pregnancy.
Collapse
Affiliation(s)
- Lina Wang
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Junfeng Zhang
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Fangfei Liu
- Central Research Laboratory, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Qixiang Shi
- Jinan Seventh People's Hospital, Jinan, China
| | - Fengchun Gao
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Junmin Li
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Yanhua Liu
- Jinan Maternity and Child Health Care Hospital, Jinan, China
| | - Feng Kong
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
- Engineering Laboratory of Urinary Organ and Functional Reconstruction of Shandong Province, Jinan, China.
| | - Dawei Xu
- Department of Medicine, Division of Hematology, Bioclinicum, Karolinska Institutet, Karolinska University Hospital Solna, Stockholm, Sweden.
| |
Collapse
|
24
|
Perlmutter A, Bland JS, Chandra A, Malani SS, Smith R, Mendez TL, Dwaraka VB. The impact of a polyphenol-rich supplement on epigenetic and cellular markers of immune age: a pilot clinical study. Front Nutr 2024; 11:1474597. [PMID: 39628466 PMCID: PMC11612904 DOI: 10.3389/fnut.2024.1474597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/15/2024] [Indexed: 12/06/2024] Open
Abstract
Age-related alterations in immune function are believed to increase risk for a host of age-related diseases leading to premature death and disability. Programming of the immune system by diet, lifestyle, and environmental factors occurs across the lifespan and influences both makeup and function of the immune system, including immunometabolism. This programming is believed to act in large part through epigenetic modification. Among dietary components that affect this process, polyphenols may play an outsized role. Polyphenols are a widely distributed group of plant nutrients consumed by humans. Certain foods possess distinctive and relatively higher levels of these compounds. One such food is Tartary buckwheat (fagopyrum tataricum), an ancient seed historically prized for its health benefits. It is suggested that the specific composition of polyphenols found in foods like Tartary buckwheat may lead to a unique impact on immunometabolic physiological pathways that could be interrogated through epigenetic analyses. The objective of this study was to investigate the epigenetic effects on peripheral immune cells in healthy individuals of a standardized polyphenol concentrate based on naturally occurring nutrients in Tartary buckwheat. This pilot clinical trial tested the effects of consuming 90 days of this concentrate in 50 healthy male (40%) and female (60%) participants aged 18-85 years using epigenetic age clocks and deconvolution methods. Analysis revealed significant intervention-related changes in multiple epigenetic age clocks and immune markers as well as population-wide alterations in gene ontology (GO) pathways related to longevity and immunity. This study provides previously unidentified insights into the immune, longevity and epigenetic effects of consumption of polyphenol-rich plants and generates additional support for health interventions built around historically consumed plants like Tartary buckwheat while offering compelling opportunities for additional research. Clinical trial registration ClinicalTrials.gov, Identifier: NCT05234203.
Collapse
Affiliation(s)
| | | | - Arti Chandra
- Big Bold Health PBC, Bainbridge Island, WA, United States
| | | | - Ryan Smith
- TruDiagnostic Inc., Lexington, KY, United States
| | | | | |
Collapse
|
25
|
Zucchelli A, Parigi M, Giliani S, Vetrano DL, Lucente D, Marzetti E, Calvani R, Bellelli G, Marengoni A. Older patients affected by COVID-19: investigating the existence of biological phenotypes. BMC Geriatr 2024; 24:923. [PMID: 39511501 PMCID: PMC11542346 DOI: 10.1186/s12877-024-05473-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024] Open
Abstract
INTRODUCTION COVID-19 provides an opportunity to examine biological phenotypes (observable morphological, functional and biological characteristics) in individuals who experience the same acute condition, potentially revealing differences in response to acute external stressors. The aim our study was to investigate biological phenotypes in older patients hospitalized for COVID-19, exploiting a panel of aging biomarkers. METHODS Data were gathered from the FRACOVID Project, an observational multicenter study, aimed to evaluate the impact of frailty on health-related outcomes in patients 60 + with COVID-19 in Northern Italy. A hierarchical cluster analysis was run using log-transformed and scaled values of TNF-a, IL-1 beta, IL-6, PAI-1, GDF-15, NT-proBNP, and Cystatin C evaluated at admission. RESULTS Eighty-one participants (mean age 75.3 years; 60.5% male) were evaluated. Frailty was identified in 42% of the sample and 27.2% were unable to ambulate outdoors. The mean hospital stay was 24.7 days, with an in-hospital mortality rate of 18.5%. Three biological phenotypes were found: (1) 'inflammatory', with high inflammatory biomarkers; (2) 'organ dysfunction', characterized by elevated cystatin C and NT-proBNP, and lower inflammatory markers; and (3) 'unspecific', with lower NT-proBNP and GDF-15 levels, and intermediate concentrations of other biomarkers. The 'organ dysfunction' phenotype showed the highest mean age and prevalence of frailty, disability, and chronic diseases. The 'inflammatory' phenotype showed the highest burden of respiratory and systemic signs and symptoms of infection. CONCLUSION Biological phenotypes might be used to identify different clinical and functional phenotypes in individuals affected by COVID-19.
Collapse
Affiliation(s)
- Alberto Zucchelli
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden.
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy.
| | - Marta Parigi
- A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Silvia Giliani
- A. Nocivelli Institute for Molecular Medicine, ASST Spedali Civili, Brescia, Italy
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Davide Liborio Vetrano
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden
- Stockholm Gerontology Research Center, Stockholm, Sweden
| | - Daniela Lucente
- Fondazione "Ospedale e Casa di Riposo Nobile Paolo Richiedei", Brescia, Italy
| | - Emanuele Marzetti
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Riccardo Calvani
- Department of Geriatrics, Orthopedics and Rheumatology, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCCS, Rome, Italy
| | - Giuseppe Bellelli
- School of Medicine and Surgery, Milano-Bicocca University, Monza, Italy
- Acute Geriatric Unit, IRCCS San Gerardo Foundation, Monza, Italy
| | - Alessandra Marengoni
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, 171 77, Sweden
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| |
Collapse
|
26
|
Zakar-Polyák E, Csordas A, Pálovics R, Kerepesi C. Profiling the transcriptomic age of single-cells in humans. Commun Biol 2024; 7:1397. [PMID: 39462118 PMCID: PMC11513945 DOI: 10.1038/s42003-024-07094-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
Although aging clocks predicting the age of individual organisms have been extensively studied, the age of individual cells remained largely unexplored. Most recently single-cell omics clocks were developed for the mouse, however, extensive profiling the age of human cells is still lacking. To fill this gap, here we use available scRNA-seq data of 1,058,909 blood cells of 508 healthy, human donors (between 19 and 75 years), for developing single-cell transcriptomic clocks and predicting the age of human blood cells. By the application of the proposed cell-type-specific single-cell clocks, our main observations are that (i) transcriptomic age is associated with cellular senescence; (ii) the transcriptomic age of classical monocytes as well as naive B and T cells is decreased in moderate COVID-19 followed by an increase for some cell types in severe COVID-19; and (iii) the human embryo cells transcriptomically rejuvenated at the morulae and blastocyst stages. In summary, here we demonstrate that single-cell transcriptomic clocks are useful tools to investigate aging and rejuvenation at the single-cell level.
Collapse
Affiliation(s)
- Enikő Zakar-Polyák
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary.
- Doctoral School of Informatics, Eötvös Loránd University, Budapest, Hungary.
| | - Attila Csordas
- AgeCurve Limited, Cambridge, UK
- Doctoral School of Clinical Medicine, University of Szeged, Szeged, Hungary
| | - Róbert Pálovics
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| | - Csaba Kerepesi
- Institute for Computer Science and Control (SZTAKI), Hungarian Research Network (HUN-REN), Budapest, Hungary.
| |
Collapse
|
27
|
Flores-González J, Monroy-Rodríguez Z, Falfán-Valencia R, Buendía-Roldán I, Fricke-Galindo I, Hernández-Zenteno R, Herrera-Sicairos R, Chávez-Galán L, Pérez-Rubio G. Variants rs3804099 and rs3804100 in the TLR2 Gene Induce Different Profiles of TLR-2 Expression and Cytokines in Response to Spike of SARS-CoV-2. Int J Mol Sci 2024; 25:11063. [PMID: 39456843 PMCID: PMC11507191 DOI: 10.3390/ijms252011063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 10/28/2024] Open
Abstract
The present study aimed to identify in patients with severe COVID-19 and acute respiratory distress syndrome (ARDS) the association between rs3804099 and rs3804100 (TLR2) and evaluate the expression of TLR-2 on the cell surface of innate and adaptive cells of patients' carriers of C allele in at least one genetic variant. We genotyped 1018 patients with COVID-19 and ARDS. According to genotype, a subgroup of 12 patients was selected to stimulate peripheral blood mononuclear cells (PBMCs) with spike and LPS + spike. We evaluated soluble molecules in cell culture supernatants. The C allele in TLR2 (rs3804099, rs3804100) is not associated with a risk of severe COVID-19; however, the presence of the C allele (rs3804099 or rs3804100) affects the TLR-2 ability to respond to a spike of SARS-CoV-2 correctly. The reference group (genotype TT) downregulated the frequency of non-switched TLR-2+ B cells in response to spike stimulus; however, the allele's C carriers group is unable to induce this regulation, but they produce high levels of IL-10, IL-6, and TNF-α by an independent pathway of TLR-2. Findings showed that TT genotypes (rs3804099 and rs3804100) affect the non-switched TLR-2+ B cell distribution. Genotype TT (rs3804099 and rs3804100) affects the TLR-2's ability to respond to a spike of SARS-CoV-2. However, the C allele had increased IL-10, IL-6, and TNF-α by stimulation with spike and LPS.
Collapse
Affiliation(s)
- Julio Flores-González
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (R.H.-S.)
| | - Zurisadai Monroy-Rodríguez
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (Z.M.-R.); (R.F.-V.); (I.F.-G.)
| | - Ramcés Falfán-Valencia
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (Z.M.-R.); (R.F.-V.); (I.F.-G.)
| | - Ivette Buendía-Roldán
- Translational Research Laboratory on Aging and Pulmonary Fibrosis, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Ingrid Fricke-Galindo
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (Z.M.-R.); (R.F.-V.); (I.F.-G.)
| | - Rafael Hernández-Zenteno
- COPD Clinic, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico;
| | - Ricardo Herrera-Sicairos
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (R.H.-S.)
| | - Leslie Chávez-Galán
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Mexico City 14080, Mexico; (J.F.-G.); (R.H.-S.)
| | - Gloria Pérez-Rubio
- HLA Laboratory, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City 14080, Mexico; (Z.M.-R.); (R.F.-V.); (I.F.-G.)
| |
Collapse
|
28
|
Qi CH, Wang GL, Wang FF, Wang J, Wang XP, Zou MJ, Ma F, Madigan MT, Kimura Y, Wang-Otomo ZY, Yu LJ. Structural insights into the unusual core photocomplex from a triply extremophilic purple bacterium, Halorhodospira halochloris. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2262-2272. [PMID: 38411333 DOI: 10.1111/jipb.13628] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/17/2024] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
Halorhodospira (Hlr.) halochloris is a triply extremophilic phototrophic purple sulfur bacterium, as it is thermophilic, alkaliphilic, and extremely halophilic. The light-harvesting-reaction center (LH1-RC) core complex of this bacterium displays an LH1-Qy transition at 1,016 nm, which is the lowest-energy wavelength absorption among all known phototrophs. Here we report the cryo-EM structure of the LH1-RC at 2.42 Å resolution. The LH1 complex forms a tricyclic ring structure composed of 16 αβγ-polypeptides and one αβ-heterodimer around the RC. From the cryo-EM density map, two previously unrecognized integral membrane proteins, referred to as protein G and protein Q, were identified. Both of these proteins are single transmembrane-spanning helices located between the LH1 ring and the RC L-subunit and are absent from the LH1-RC complexes of all other purple bacteria of which the structures have been determined so far. Besides bacteriochlorophyll b molecules (B1020) located on the periplasmic side of the Hlr. halochloris membrane, there are also two arrays of bacteriochlorophyll b molecules (B800 and B820) located on the cytoplasmic side. Only a single copy of a carotenoid (lycopene) was resolved in the Hlr. halochloris LH1-α3β3 and this was positioned within the complex. The potential quinone channel should be the space between the LH1-α3β3 that accommodates the single lycopene but does not contain a γ-polypeptide, B800 and B820. Our results provide a structural explanation for the unusual Qy red shift and carotenoid absorption in the Hlr. halochloris spectrum and reveal new insights into photosynthetic mechanisms employed by a species that thrives under the harshest conditions of any phototrophic microorganism known.
Collapse
Affiliation(s)
- Chen-Hui Qi
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guang-Lei Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fang-Fang Wang
- Zhangjiang Lab, National Facility for Protein Science in Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Jie Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Ping Wang
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mei-Juan Zou
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Fei Ma
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Michael T Madigan
- Department of Microbiology, School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| | - Yukihiro Kimura
- Department of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, 657-8501, Japan
| | | | - Long-Jiang Yu
- Key Laboratory of Photobiology, Photosynthesis Research Center, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| |
Collapse
|
29
|
Chachlaki K, Duc KL, Storme L, Prévot V. Novel insights into minipuberty and GnRH: Implications on neurodevelopment, cognition, and COVID-19 therapeutics. J Neuroendocrinol 2024; 36:e13387. [PMID: 38565500 PMCID: PMC7616535 DOI: 10.1111/jne.13387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/18/2024] [Accepted: 03/18/2024] [Indexed: 04/04/2024]
Abstract
In humans, the first 1000 days of life are pivotal for brain and organism development. Shortly after birth, gonadotropin-releasing hormone (GnRH) neurons in the hypothalamus are activated, a phenomenon known as minipuberty. This phenomenon, observed in all mammals studied, influences the postnatal development of the hypothalamic-pituitary-gonadal (HPG) axis and reproductive function. This review will put into perspective the results of recent studies showing that the impact of minipuberty extends beyond reproductive function, influencing sensory and cognitive maturation. Studies in mice have revealed the role of nitric oxide (NO) in regulating minipuberty amplitude, with NO deficiency linked to cognitive and olfactory deficits. Additionally, findings indicate that cognitive and sensory defects in adulthood in a mouse model of Down syndrome are associated with an age-dependent decline of GnRH production, whose origin can be traced back to minipuberty, and point to the potential therapeutic role of pulsatile GnRH administration in cognitive disorders. Furthermore, this review delves into the repercussions of COVID-19 on GnRH production, emphasizing potential consequences for neurodevelopment and cognitive function in infected individuals. Notably, GnRH neurons appear susceptible to SARS-CoV-2 infection, raising concerns about potential long-term effects on brain development and function. In conclusion, the intricate interplay between GnRH neurons, GnRH release, and the activity of various extrahypothalamic brain circuits reveals an unexpected role for these neuroendocrine neurons in the development and maintenance of sensory and cognitive functions, supplementing their established function in reproduction. Therapeutic interventions targeting the HPG axis, such as inhaled NO therapy in infancy and pulsatile GnRH administration in adults, emerge as promising approaches for addressing neurodevelopmental cognitive disorders and pathological aging.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| | - Kevin Le Duc
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Laurent Storme
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
- CHU Lille, Neonatology Department, Jeanne de Flandres Hospital, Lille, France
| | - Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
- Univ. Lille, Inserm, CHU Lille, Hospital-University Federation (FHU) 1000 first days of Life, Lille, France
| |
Collapse
|
30
|
Kanai SM, Garcia CR, Augustus MR, Sharafeldeen SA, Brooks EP, Sucharov J, Lencer ES, Nichols JT, Clouthier DE. The Gq/11 family of Gα subunits is necessary and sufficient for lower jaw development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.611698. [PMID: 39345358 PMCID: PMC11430119 DOI: 10.1101/2024.09.17.611698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Vertebrate jaw development is coordinated by highly conserved ligand-receptor systems such as the peptide ligand Endothelin 1 (Edn1) and Endothelin receptor type A (Ednra), which are required for patterning of lower jaw structures. The Edn1/Ednra signaling pathway establishes the identity of lower jaw progenitor cells by regulating expression of numerous patterning genes, but the intracellular signaling mechanisms linking receptor activation to gene regulation remain poorly understood. As a first step towards elucidating this mechanism, we examined the function of the Gq/11 family of Gα subunits in zebrafish using pharmacological inhibition and genetic ablation of Gq/11 activity and transgenic induction of a constitutively active Gq protein in edn1 -/- embryos. Genetic loss of Gq/11 activity fully recapitulated the edn1 -/- phenotype, with genes encoding G11 being most essential. Furthermore, inducing Gq activity in edn1 -/- embryos not only restored Edn1/Ednra-dependent jaw structures and gene expression signatures but also caused homeosis of the upper jaw structure into a lower jaw-like structure. These results indicate that Gq/11 is necessary and sufficient to mediate the lower jaw patterning mechanism for Ednra in zebrafish.
Collapse
Affiliation(s)
- Stanley M. Kanai
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Chloe R. Garcia
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - MaCalia R. Augustus
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Shujan A. Sharafeldeen
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Elliott P. Brooks
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Juliana Sucharov
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Ezra S. Lencer
- Department of Biology, Lafayette College, Easton, PA USA
| | - James T. Nichols
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - David E. Clouthier
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| |
Collapse
|
31
|
Pérez-López FR, Fernández-Alonso AM, Ulloque-Badaracco JR, Benites-Zapata VA, Varikasuvu SR. Telomere length in subjects with and without SARS-CoV-2 infection: a systematic review and meta-analysis. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2024; 70:e20240387. [PMID: 39292074 PMCID: PMC11404998 DOI: 10.1590/1806-9282.20240387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 04/29/2024] [Indexed: 09/19/2024]
Affiliation(s)
| | | | | | - Vicente Aleixandre Benites-Zapata
- Universidad San Ignacio de Loyola, Research Unit for the Generation and Synthesis of Health Evidence, Vice-rector for Research – Lima, Peru
| | | |
Collapse
|
32
|
Gorelov R, Weiner A, Huebner A, Yagi M, Haghani A, Brooke R, Horvath S, Hochedlinger K. Dissecting the impact of differentiation stage, replicative history, and cell type composition on epigenetic clocks. Stem Cell Reports 2024; 19:1242-1254. [PMID: 39178844 PMCID: PMC11411293 DOI: 10.1016/j.stemcr.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 08/26/2024] Open
Abstract
Epigenetic clocks, built on DNA methylation patterns of bulk tissues, are powerful age predictors, but their biological basis remains incompletely understood. Here, we conducted a comparative analysis of epigenetic age in murine muscle, epithelial, and blood cell types across lifespan. Strikingly, our results show that cellular subpopulations within these tissues, including adult stem and progenitor cells as well as their differentiated progeny, exhibit different epigenetic ages. Accordingly, we experimentally demonstrate that clocks can be skewed by age-associated changes in tissue composition. Mechanistically, we provide evidence that the observed variation in epigenetic age among adult stem cells correlates with their proliferative state, and, fittingly, forced proliferation of stem cells leads to increases in epigenetic age. Collectively, our analyses elucidate the impact of cell type composition, differentiation state, and replicative potential on epigenetic age, which has implications for the interpretation of existing clocks and should inform the development of more sensitive clocks.
Collapse
Affiliation(s)
- Rebecca Gorelov
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Weiner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Aaron Huebner
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Masaki Yagi
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA
| | - Robert Brooke
- Epigenetic Clock Development Foundation, Torrance, CA 90502, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA; Altos Labs, San Diego, CA 92121, USA; Epigenetic Clock Development Foundation, Torrance, CA 90502, USA; Department of Biostatistics, School of Public Health, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Konrad Hochedlinger
- Massachusetts General Hospital Department of Molecular Biology, Boston, MA 02114, USA; Massachusetts General Hospital Cancer Center and Center for Regenerative Medicine, Boston, MA 02114, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02139, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
33
|
Zhuang Z, Lin J, Wan Z, Weng J, Yuan Z, Xie Y, Liu Z, Xie P, Mao S, Wang Z, Wang X, Huang M, Luo Y, Yu H. Radiogenomic profiling of global DNA methylation associated with molecular phenotypes and immune features in glioma. BMC Med 2024; 22:352. [PMID: 39218882 PMCID: PMC11367996 DOI: 10.1186/s12916-024-03573-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND The radiogenomic analysis has provided valuable imaging biomarkers with biological insights for gliomas. The radiogenomic markers for molecular profile such as DNA methylation remain to be uncovered to assist the molecular diagnosis and tumor treatment. METHODS We apply the machine learning approaches to identify the magnetic resonance imaging (MRI) features that are associated with molecular profiles in 146 patients with gliomas, and the fitting models for each molecular feature (MoRad) are developed and validated. To provide radiological annotations for the molecular profiles, we devise two novel approaches called radiomic oncology (RO) and radiomic set enrichment analysis (RSEA). RESULTS The generated MoRad models perform well for profiling each molecular feature with radiomic features, including mutational, methylation, transcriptional, and protein profiles. Among them, the MoRad models have a remarkable performance in quantitatively mapping global DNA methylation. With RO and RSEA approaches, we find that global DNA methylation could be reflected by the heterogeneity in volumetric and textural features of enhanced regions in T2-weighted MRI. Finally, we demonstrate the associations of global DNA methylation with clinicopathological, molecular, and immunological features, including histological grade, mutations of IDH and ATRX, MGMT methylation, multiple methylation-high subtypes, tumor-infiltrating lymphocytes, and long-term survival outcomes. CONCLUSIONS Global DNA methylation is highly associated with radiological profiles in glioma. Radiogenomic global methylation is an imaging-based quantitative molecular biomarker that is associated with specific consensus molecular subtypes and immune features.
Collapse
Affiliation(s)
- Zhuokai Zhuang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jinxin Lin
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Zixiao Wan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Jingrong Weng
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Ze Yuan
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yumo Xie
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Zongchao Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Cancer Epidemiology, Peking University Cancer Institute, Beijing, 100142, China
| | - Peiyi Xie
- Department of Radiology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
| | - Siyue Mao
- Image and Minimally Invasive Intervention Center, Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, and Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Zongming Wang
- Department of Neurosurgery and Pituitary Tumor Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Wang
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Meijin Huang
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Yanxin Luo
- Department of General Surgery (Colorectal Surgery), The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China
| | - Huichuan Yu
- Guangdong Institute of Gastroenterology, Guangzhou, Guangdong, China.
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China.
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, 510655, China.
- Ministry of Education, Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-Sen University), Guangzhou, Guangdong, China.
| |
Collapse
|
34
|
Demongeot J, Magal P. Data-driven mathematical modeling approaches for COVID-19: A survey. Phys Life Rev 2024; 50:166-208. [PMID: 39142261 DOI: 10.1016/j.plrev.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
In this review, we successively present the methods for phenomenological modeling of the evolution of reported and unreported cases of COVID-19, both in the exponential phase of growth and then in a complete epidemic wave. After the case of an isolated wave, we present the modeling of several successive waves separated by endemic stationary periods. Then, we treat the case of multi-compartmental models without or with age structure. Eventually, we review the literature, based on 260 articles selected in 11 sections, ranging from the medical survey of hospital cases to forecasting the dynamics of new cases in the general population. This review favors the phenomenological approach over the mechanistic approach in the choice of references and provides simulations of the evolution of the number of observed cases of COVID-19 for 10 states (California, China, France, India, Israel, Japan, New York, Peru, Spain and United Kingdom).
Collapse
Affiliation(s)
- Jacques Demongeot
- Université Grenoble Alpes, AGEIS EA7407, La Tronche, F-38700, France.
| | - Pierre Magal
- Department of Mathematics, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, China; Univ. Bordeaux, IMB, UMR 5251, Talence, F-33400, France; CNRS, IMB, UMR 5251, Talence, F-33400, France
| |
Collapse
|
35
|
Haoyu W, Meiqin L, Jiaoyang S, Guangliang H, Haofeng L, Pan C, Xiongzhi Q, Kaixin W, Mingli H, Xuejie Y, Lämmermann I, Grillari J, Zhengli S, Jiekai C, Guangming W. Premature aging effects on COVID-19 pathogenesis: new insights from mouse models. Sci Rep 2024; 14:19703. [PMID: 39181932 PMCID: PMC11344828 DOI: 10.1038/s41598-024-70612-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Aging is identified as a significant risk factor for severe coronavirus disease-2019 (COVID-19), often resulting in profound lung damage and mortality. Yet, the biological relationship between aging, aging-related comorbidities, and COVID-19 remains incompletely understood. This study aimed to elucidate the age-related COVID19 pathogenesis using an Hutchinson-Gilford progeria syndrome (HGPS) mouse model, a premature aging disease model, with humanized ACE2 receptors. Pathological features were compared between young, aged, and HGPS hACE2 mice following SARS-CoV-2 challenge. We demonstrated that young mice display robust interferon response and antiviral activity, whereas this response is attenuated in aged mice. Viral infection in aged mice results in severe respiratory tract hemorrhage, likely contributing a higher mortality rate. In contrast, HGPS hACE2 mice exhibit milder disease manifestations characterized by minor immune cell infiltration and dysregulation of multiple metabolic processes. Comprehensive transcriptome analysis revealed both shared and unique gene expression dynamics among different mouse groups. Collectively, our studies evaluated the impact of SARS-CoV-2 infection on progeroid syndromes using a HGPS hACE2 mouse model, which holds promise as a useful tool for investigating COVID-19 pathogenesis in individuals with premature aging.
Collapse
Affiliation(s)
- Wu Haoyu
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
| | - Liu Meiqin
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Laboratory Clinical Base, Guangzhou Medical University, Guangzhou, China
| | - Sun Jiaoyang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Hong Guangliang
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China
| | - Lin Haofeng
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Pan
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Quan Xiongzhi
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Wu Kaixin
- Center for Cell Lineage and Atlas (CCLA), Bioland Laboratory, Guangzhou, China
| | - Hu Mingli
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Yang Xuejie
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | | | - Johannes Grillari
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Austria
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, 1200, Vienna, Austria
| | - Shi Zhengli
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Chen Jiekai
- Center for Cell Lineage Atlas, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science and Innovation, Chinese Academy of Sciences, Kowloon, 999077, Hong Kong SAR, China.
| | - Wu Guangming
- Division of Basic Research, Guangzhou National Laboratory, Guangzhou, 510005, China.
- The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510150, China.
| |
Collapse
|
36
|
Calzari L, Dragani DF, Zanotti L, Inglese E, Danesi R, Cavagnola R, Brusati A, Ranucci F, Di Blasio AM, Persani L, Campi I, De Martino S, Farsetti A, Barbi V, Gottardi Zamperla M, Baldrighi GN, Gaetano C, Parati G, Gentilini D. Epigenetic patterns, accelerated biological aging, and enhanced epigenetic drift detected 6 months following COVID-19 infection: insights from a genome-wide DNA methylation study. Clin Epigenetics 2024; 16:112. [PMID: 39164752 PMCID: PMC11337605 DOI: 10.1186/s13148-024-01724-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/08/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND The epigenetic status of patients 6-month post-COVID-19 infection remains largely unexplored. The existence of long-COVID, or post-acute sequelae of SARS-CoV-2 infection (PASC), suggests potential long-term changes. Long-COVID includes symptoms like fatigue, neurological issues, and organ-related problems, regardless of initial infection severity. The mechanisms behind long-COVID are unclear, but virus-induced epigenetic changes could play a role. METHODS AND RESULTS Our study explores the lasting epigenetic impacts of SARS-CoV-2 infection. We analyzed genome-wide DNA methylation patterns in an Italian cohort of 96 patients 6 months after COVID-19 exposure, comparing them to 191 healthy controls. We identified 42 CpG sites with significant methylation differences (FDR < 0.05), primarily within CpG islands and gene promoters. Dysregulated genes highlighted potential links to glutamate/glutamine metabolism, which may be relevant to PASC symptoms. Key genes with potential significance to COVID-19 infection and long-term effects include GLUD1, ATP1A3, and ARRB2. Furthermore, Horvath's epigenetic clock showed a slight but significant age acceleration in post-COVID-19 patients. We also observed a substantial increase in stochastic epigenetic mutations (SEMs) in the post-COVID-19 group, implying potential epigenetic drift. SEM analysis identified 790 affected genes, indicating dysregulation in pathways related to insulin resistance, VEGF signaling, apoptosis, hypoxia response, T-cell activation, and endothelin signaling. CONCLUSIONS Our study provides valuable insights into the epigenetic consequences of COVID-19. Results suggest possible associations with accelerated aging, epigenetic drift, and the disruption of critical biological pathways linked to insulin resistance, immune response, and vascular health. Understanding these epigenetic changes could be crucial for elucidating the complex mechanisms behind long-COVID and developing targeted therapeutic interventions.
Collapse
Affiliation(s)
- Luciano Calzari
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Davide Fernando Dragani
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Lucia Zanotti
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
| | - Elvira Inglese
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Romano Danesi
- Clinical Chemistry Unit, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Rebecca Cavagnola
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Francesco Ranucci
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Anna Maria Di Blasio
- Molecular Biology Laboratory, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy
| | - Luca Persani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Irene Campi
- Department of Endocrine and Metabolic Diseases, Lab of Endocrine and Metabolic Research, San Luca Hospital, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Sara De Martino
- Consiglio Nazionale delle Ricerche (CNR) - IASI, Rome, Italy
| | | | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Michela Gottardi Zamperla
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Giulia Nicole Baldrighi
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100, Pavia, Italy
| | - Gianfranco Parati
- Department of Cardiology, S. Luca Hospital, IRCCS, Istituto Auxologico Italiano, Milan, Italy
- Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy
| | - Davide Gentilini
- Bioinformatics and Statistical Genomics Unit, IRCCS Istituto Auxologico Italiano, Cusano Milanino, Milan, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, Pavia, Italy.
| |
Collapse
|
37
|
Tomusiak A, Floro A, Tiwari R, Riley R, Matsui H, Andrews N, Kasler HG, Verdin E. Development of an epigenetic clock resistant to changes in immune cell composition. Commun Biol 2024; 7:934. [PMID: 39095531 PMCID: PMC11297166 DOI: 10.1038/s42003-024-06609-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/14/2024] [Indexed: 08/04/2024] Open
Abstract
Epigenetic clocks are age predictors that use machine-learning models trained on DNA CpG methylation values to predict chronological or biological age. Increases in predicted epigenetic age relative to chronological age (epigenetic age acceleration) are connected to aging-associated pathologies, and changes in epigenetic age are linked to canonical aging hallmarks. However, epigenetic clocks rely on training data from bulk tissues whose cellular composition changes with age. Here, we found that human naive CD8+ T cells, which decrease in frequency during aging, exhibit an epigenetic age 15-20 years younger than effector memory CD8+ T cells from the same individual. Importantly, homogenous naive T cells isolated from individuals of different ages show a progressive increase in epigenetic age, indicating that current epigenetic clocks measure two independent variables, aging and immune cell composition. To isolate the age-associated cell intrinsic changes, we created an epigenetic clock, the IntrinClock, that did not change among 10 immune cell types tested. IntrinClock shows a robust predicted epigenetic age increase in a model of replicative senescence in vitro and age reversal during OSKM-mediated reprogramming.
Collapse
Affiliation(s)
- Alan Tomusiak
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ariel Floro
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
- Department of Gerontology, University of Southern California, 3715 McClintock Ave, Los Angeles, 90089, CA, USA
| | - Ritesh Tiwari
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Rebeccah Riley
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Hiroyuki Matsui
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Nicolas Andrews
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Herbert G Kasler
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA
| | - Eric Verdin
- Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, 94945, CA, USA.
| |
Collapse
|
38
|
Shafqat A, Masters MC, Tripathi U, Tchkonia T, Kirkland JL, Hashmi SK. Long COVID as a disease of accelerated biological aging: An opportunity to translate geroscience interventions. Ageing Res Rev 2024; 99:102400. [PMID: 38945306 DOI: 10.1016/j.arr.2024.102400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
It has been four years since long COVID-the protracted consequences that survivors of COVID-19 face-was first described. Yet, this entity continues to devastate the quality of life of an increasing number of COVID-19 survivors without any approved therapy and a paucity of clinical trials addressing its biological root causes. Notably, many of the symptoms of long COVID are typically seen with advancing age. Leveraging this similarity, we posit that Geroscience-which aims to target the biological drivers of aging to prevent age-associated conditions as a group-could offer promising therapeutic avenues for long COVID. Bearing this in mind, this review presents a translational framework for studying long COVID as a state of effectively accelerated biological aging, identifying research gaps and offering recommendations for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Areez Shafqat
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.
| | - Mary Clare Masters
- Division of Infectious Diseases, Northwestern University, Chicago, IL, USA
| | - Utkarsh Tripathi
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA
| | - Tamara Tchkonia
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - James L Kirkland
- Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA; Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Shahrukh K Hashmi
- Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA; Research and Innovation Center, Department of Health, Abu Dhabi, UAE; College of Medicine and Health Sciences, Khalifa University, Abu Dhabi, United Arab Emirates
| |
Collapse
|
39
|
Campisi M, Cannella L, Bordin A, Moretto A, Scapellato ML, Mason P, Liviero F, Pavanello S, on behalf of Occupational Medicine Working Group. Revealing the Hidden Impacts: Insights into Biological Aging and Long-Term Effects in Pauci- and Asymptomatic COVID-19 Healthcare Workers. Int J Mol Sci 2024; 25:8056. [PMID: 39125624 PMCID: PMC11311509 DOI: 10.3390/ijms25158056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the role of inflammation and oxidative stress, hallmarks of COVID-19, in accelerating cellular biological aging. We investigated early molecular markers-DNA methylation age (DNAmAge) and telomere length (TL)-in blood leukocytes, nasal cells (NCs), and induced sputum (IS) one year post-infection in pauci- and asymptomatic healthcare workers (HCWs) infected during the first pandemic wave (February-May 2020), compared to COPD patients, model for "aged lung". Data from questionnaires, Work Ability Index (WAI), blood analyses, autonomic cardiac balance assessments, heart rate variability (HRV), and pulmonary function tests were collected. Elevated leukocyte DNAmAge significantly correlated with advancing age, male sex, daytime work, and an aged phenotype characterized by chronic diseases, elevated LDL and glycemia levels, medications affecting HRV, and declines in lung function, WAI, lymphocyte count, hemoglobin levels, and HRV (p < 0.05). Increasing age, LDL levels, job positions involving intensive patient contact, and higher leukocyte counts collectively contributed to shortened leukocyte TL (p < 0.05). Notably, HCWs exhibited accelerated biological aging in IS cells compared to both blood leukocytes (p ≤ 0.05) and NCs (p < 0.001) and were biologically older than COPD patients (p < 0.05). These findings suggest the need to monitor aging in pauci- and asymptomatic COVID-19 survivors, who represent the majority of the general population.
Collapse
Affiliation(s)
- Manuela Campisi
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Luana Cannella
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
| | - Anna Bordin
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Angelo Moretto
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Maria Luisa Scapellato
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Paola Mason
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Filippo Liviero
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | - Sofia Pavanello
- Department of Cardiac-, -Thoracic-, Vascular Sciences and Public Health, University of Padua, 35128 Padua, Italy; (M.C.); (L.C.); (A.B.); (A.M.); (M.L.S.); (P.M.); (F.L.)
- Occupational Medicine, University Hospital of Padua, 35128 Padua, Italy
| | | |
Collapse
|
40
|
Arutyunov A, Durán-Laforet V, Ai S, Ferrari L, Murphy R, Schafer DP, Klein RS. West Nile Virus-Induced Expression of Senescent Gene Lgals3bp Regulates Microglial Phenotype within Cerebral Cortex. Biomolecules 2024; 14:808. [PMID: 39062523 PMCID: PMC11274721 DOI: 10.3390/biom14070808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Microglia, the resident macrophages of the central nervous system, exhibit altered gene expression in response to various neurological conditions. This study investigates the relationship between West Nile Virus infection and microglial senescence, focusing on the role of LGALS3BP, a protein implicated in both antiviral responses and aging. Using spatial transcriptomics, RNA sequencing and flow cytometry, we characterized changes in microglial gene signatures in adult and aged mice following recovery from WNV encephalitis. Additionally, we analyzed Lgals3bp expression and generated Lgals3bp-deficient mice to assess the impact on neuroinflammation and microglial phenotypes. Our results show that WNV-activated microglia share transcriptional signatures with aged microglia, including upregulation of genes involved in interferon response and inflammation. Lgals3bp was broadly expressed in the CNS and robustly upregulated during WNV infection and aging. Lgals3bp-deficient mice exhibited reduced neuroinflammation, increased homeostatic microglial numbers, and altered T cell populations without differences in virologic control or survival. These data indicate that LGALS3BP has a role in regulating neuroinflammation and microglial activation and suggest that targeting LGALS3BP might provide a potential route for mitigating neuroinflammation-related cognitive decline in aging and post-viral infections.
Collapse
Affiliation(s)
- Artem Arutyunov
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Violeta Durán-Laforet
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Shenjian Ai
- Center for Neuroimmunology & Neuroinfectious Diseases, St. Louis, MO 63110, USA; (A.A.); (S.A.)
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Loris Ferrari
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robert Murphy
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (V.D.-L.); (L.F.); (R.M.); (D.P.S.)
| | - Robyn S. Klein
- Department of Microbiology & Immunology, Western Institute of Neuroscience, Schulich School of Medicine & Dentistry, University of Western Ontario, 100 Perth Dr, London, ON N6A 5K8, Canada
| |
Collapse
|
41
|
Humaira Amanullah F, Alam T, El Hajj N, Bejaoui Y. The impact of COVID-19 on "biological aging". Front Immunol 2024; 15:1399676. [PMID: 38919619 PMCID: PMC11197383 DOI: 10.3389/fimmu.2024.1399676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The global impact of the SARS-CoV-2 pandemic has been unprecedented, posing a significant public health challenge. Chronological age has been identified as a key determinant for severe outcomes associated with SARS-CoV-2 infection. Epigenetic age acceleration has previously been observed in various diseases including human immunodeficiency virus (HIV), Cytomegalovirus (CMV), cardiovascular diseases, and cancer. However, a comprehensive review of this topic is still missing in the field. In this review, we explore and summarize the research work focusing on biological aging markers, i.e., epigenetic age and telomere attrition in COVID-19 patients. From the reviewed articles, we identified a consistent pattern of epigenetic age dysregulation and shortened telomere length, revealing the impact of COVID-19 on epigenetic aging and telomere attrition.
Collapse
Affiliation(s)
| | - Tanvir Alam
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Nady El Hajj
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| | - Yosra Bejaoui
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha, Qatar
| |
Collapse
|
42
|
Li D, Jiang H, Sun Y, Chi X, Zhang X, Li H. The relationship between comprehensive geriatric assessment on the pneumonia prognosis of older adults: a cross-sectional study. BMC Pulm Med 2024; 24:276. [PMID: 38858647 PMCID: PMC11165758 DOI: 10.1186/s12890-024-03089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/04/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND The mortality of pneumonia in older adults surpasses that of other populations, especially with the prevalence of coronavirus disease 2019 (COVID-19). Under the influence of multiple factors, a series of geriatric syndromes brought on by age is one of the main reasons for the poor prognosis of pneumonia. This study attempts to analyze the impact of geriatric syndrome on the prognosis of pneumonia. METHODS This is a prospective cross-sectional study. Patients over 65 years old with COVID-19 and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-negative community-acquired pneumonia (SN-CAP) were included in the research. General characteristics, laboratory tests, length of stay (LOS), and comprehensive geriatric assessment (CGA) were collected. Multivariate regression analysis to determine the independent predictors of the severity, mortality, and LOS of COVID-19. At the same time, the enrolled subjects were divided into three categories by clustering analysis of 10 CGA indicators, and their clinical characteristics and prognoses were analyzed. RESULTS A total of 792 subjects were included in the study, including 204 subjects of SN-CAP (25.8%) and 588 subjects (74.2%) of COVID-19. There was no significant difference between non-severe COVID-19 and SN-CAP regarding mortality, LOS, and CGA (P > 0.05), while severe COVID-19 is significantly higher than both (P < 0.05). The Barthel Index used to assess the activities of daily living was an independent risk factor for the severity and mortality of COVID-19 and linearly correlated with the LOS (P < 0.05). The cluster analysis based on the CGA indicators divided the geriatric pneumonia patients into three groups: Cluster 1 (n = 276), named low ability group, with the worst CGA, laboratory tests, severity, mortality, and LOS; Cluster 3 (n = 228), called high ability group with the best above indicators; Cluster 2 (n = 288), named medium ability group, falls between the two. CONCLUSION The Barthel Index indicates that decreased activities of daily living are an independent risk factor for the severity, mortality, and LOS of geriatric COVID-19. Geriatric syndrome can help judge the prognosis of pneumonia in older adults.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China
| | - Hongjuan Jiang
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China
| | - Yanhong Sun
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China
| | - Xiangyu Chi
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China
| | - Xuan Zhang
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China
| | - Hongwen Li
- Department of Geriatric Respiratory Disease, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jingwu Weiqi Road, Huaiyin District, Jinan, Shandong Province, China.
| |
Collapse
|
43
|
Shokhirev MN, Torosin NS, Kramer DJ, Johnson AA, Cuellar TL. CheekAge: a next-generation buccal epigenetic aging clock associated with lifestyle and health. GeroScience 2024; 46:3429-3443. [PMID: 38441802 PMCID: PMC11009193 DOI: 10.1007/s11357-024-01094-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/05/2024] [Indexed: 04/13/2024] Open
Abstract
Epigenetic aging clocks are computational models that predict age using DNA methylation information. Initially, first-generation clocks were developed to make predictions using CpGs that change with age. Over time, next-generation clocks were created using CpGs that relate to both age and health. Since existing next-generation clocks were constructed in blood, we sought to develop a next-generation clock optimized for prediction in cheek swabs, which are non-invasive and easy to collect. To do this, we collected MethylationEPIC data as well as lifestyle and health information from 8045 diverse adults. Using a novel simulated annealing approach that allowed us to incorporate lifestyle and health factors into training as well as a combination of CpG filtering, CpG clustering, and clock ensembling, we constructed CheekAge, an epigenetic aging clock that has a strong correlation with age, displays high test-retest reproducibility across replicates, and significantly associates with a plethora of lifestyle and health factors, such as BMI, smoking status, and alcohol intake. We validated CheekAge in an internal dataset and multiple publicly available datasets, including samples from patients with progeria or meningioma. In addition to exploring the underlying biology of the data and clock, we provide a free online tool that allows users to mine our methylomic data and predict epigenetic age.
Collapse
|
44
|
Huang J, Fang Z, Wu X, Xia L, Liu Y, Wang J, Su Y, Xu D, Zhang K, Xie Q, Chen J, Liu P, Wu Q, Tan J, Kuang H, Tian L. Transcriptomic responses of cumulus granulosa cells to SARS-CoV-2 infection during controlled ovarian stimulation. Apoptosis 2024; 29:649-662. [PMID: 38409352 DOI: 10.1007/s10495-024-01942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2024] [Indexed: 02/28/2024]
Abstract
Cumulus granulosa cells (CGCs) play a crucial role in follicular development, but so far, no research has explored the impact of SARS-CoV-2 infection on ovarian function from the perspective of CGCs. In the present study, we compared the cycle outcomes between infected and uninfected female patients undergoing controlled ovarian stimulation, performed bulk RNA-sequencing of collected CGCs, and used bioinformatic methods to explore transcriptomic changes. The results showed that women with SARS-CoV-2 infection during stimulation had significantly lower number of oocytes retrieved and follicle-oocyte index, while subsequent fertilization and embryo development were similar. CGCs were not directly infected by SARS-CoV-2, but exhibited dramatic differences in gene expression (156 up-regulated and 65 down-regulated). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses demonstrated a high enrichment in antiviral, immune and inflammatory responses with necroptosis. In addition, the pathways related to telomere organization and double strand break repair were significantly affected by infection in gene set enrichment analysis. Further weighted gene co-expression network analysis identified a key module associated with ovarian response traits, which was mainly enriched as a decrease of leukocyte chemotaxis and migration in CGCs. For the first time, our study describes how SARS-CoV-2 infection indirectly affects CGCs at the transcriptional level, which may impair oocyte-CGC crosstalk and consequently lead to poor ovarian response during fertility treatment.
Collapse
Affiliation(s)
- Jialyu Huang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Zheng Fang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Tangdu Hospital, Air Force Medical University, Xi'an, China
| | - Xingwu Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Leizhen Xia
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Yuxin Liu
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Jiawei Wang
- Reproductive and Genetic Hospital, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, China
| | - Yufang Su
- Department of Oncology, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, Nanchang, China
| | - Dingfei Xu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Ke Zhang
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiqi Xie
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jia Chen
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Peipei Liu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Qiongfang Wu
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China
| | - Jun Tan
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| | - Haibin Kuang
- Department of Physiology, Jiangxi Provincial Key Laboratory of Reproductive Physiology and Pathology, School of Basic Medical Sciences, Nanchang University, 461 Bayi Avenue, Nanchang, China.
| | - Lifeng Tian
- Center for Reproductive Medicine, Jiangxi Branch of National Clinical Research Center for Obstetrics and Gynecology, Jiangxi Maternal and Child Health Hospital, Nanchang Medical College, 318 Bayi Avenue, Nanchang, 330006, China.
| |
Collapse
|
45
|
Tong H, Dwaraka VB, Chen Q, Luo Q, Lasky-Su JA, Smith R, Teschendorff AE. Quantifying the stochastic component of epigenetic aging. NATURE AGING 2024; 4:886-901. [PMID: 38724732 PMCID: PMC11186785 DOI: 10.1038/s43587-024-00600-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/21/2024] [Indexed: 05/15/2024]
Abstract
DNA methylation clocks can accurately estimate chronological age and, to some extent, also biological age, yet the process by which age-associated DNA methylation (DNAm) changes are acquired appears to be quasi-stochastic, raising a fundamental question: how much of an epigenetic clock's predictive accuracy could be explained by a stochastic process of DNAm change? Here, using DNAm data from sorted immune cells, we build realistic simulation models, subsequently demonstrating in over 22,770 sorted and whole-blood samples from 25 independent cohorts that approximately 66-75% of the accuracy underpinning Horvath's clock could be driven by a stochastic process. This fraction increases to 90% for the more accurate Zhang's clock, but is lower (63%) for the PhenoAge clock, suggesting that biological aging is reflected by nonstochastic processes. Confirming this, we demonstrate that Horvath's age acceleration in males and PhenoAge's age acceleration in severe coronavirus disease 2019 cases and smokers are not driven by an increased rate of stochastic change but by nonstochastic processes. These results significantly deepen our understanding and interpretation of epigenetic clocks.
Collapse
Affiliation(s)
- Huige Tong
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Qingwen Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Qi Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jessica A Lasky-Su
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Andrew E Teschendorff
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
46
|
Nguyen CT, Nakayama M, Ishigaki H, Kitagawa Y, Kakino A, Ohno M, Shingai M, Suzuki Y, Sawamura T, Kida H, Itoh Y. Increased expression of CD38 on endothelial cells in SARS-CoV-2 infection in cynomolgus macaques. Virology 2024; 594:110052. [PMID: 38507920 DOI: 10.1016/j.virol.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 03/06/2024] [Indexed: 03/22/2024]
Abstract
SARS-CoV-2 infection causes activation of endothelial cells (ECs), leading to dysmorphology and dysfunction. To study the pathogenesis of endotheliopathy, the activation of ECs in lungs of cynomolgus macaques after SARS-CoV-2 infection and changes in nicotinamide adenine dinucleotide (NAD) metabolism in ECs were investigated, with a focus on the CD38 molecule, which degrades NAD in inflammatory responses after SARS-CoV-2 infection. Activation of ECs was seen from day 3 after SARS-CoV-2 infection in macaques, with increases of intravascular fibrin and NAD metabolism-associated enzymes including CD38. In vitro, upregulation of CD38 mRNA in human ECs was detected after interleukin 6 (IL-6) trans-signaling induction, which was increased in the infection. In the presence of IL-6 trans-signaling stimulation, however, CD38 mRNA silencing induced significant IL-6 mRNA upregulation in ECs and promoted EC apoptosis after stimulation. These results suggest that upregulation of CD38 in patients with COVID-19 has a protective role against IL-6 trans-signaling stimulation induced by SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Cong Thanh Nguyen
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Hirohito Ishigaki
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshinori Kitagawa
- Division of Microbiology and Infectious Diseases, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Akemi Kakino
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Marumi Ohno
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; One Health Research Center, Hokkaido University, Sapporo, Japan
| | - Masashi Shingai
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasuhiko Suzuki
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan; Institute for Vaccine Research and Development, Hokkaido University, Sapporo, Japan
| | - Tatsuya Sawamura
- Department of Molecular Pathophysiology, School of Medicine, Shinshu University, Matsumoto, Japan
| | - Hiroshi Kida
- International Institute for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Yasushi Itoh
- Division of Pathogenesis and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan; Central Research Laboratory, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
47
|
Lu H, Guo J, Li Y, Zhang X, Liu W. Network analysis to explore the anti-senescence mechanism of Jinchan Yishen Tongluo Formula (JCYSTLF) in diabetic kidneys. Heliyon 2024; 10:e29364. [PMID: 38720731 PMCID: PMC11076649 DOI: 10.1016/j.heliyon.2024.e29364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 05/12/2024] Open
Abstract
Background The Jinchan Yishen Tongluo Formula (JCYSTLF) has the effect of delaying senescence in diabetic kidneys. However, the mechanism is not clear. Purpose Combination methods to investigate the anti-senescence mechanism of JCYSTLF in diabetic kidneys. Methods The main compounds of JCYSTLF were characterized by LC-MS/MS, and the anti-senescence targets of JCYSTLF were screened via network analysis. Then, we performed in vivo and in vitro experiments to validate the results. Results The target profiles of compounds were obtained by LC-MS/MS to characterize the primary function of JCYSTLF. Senescence was identified as a key biological functional module of JCYSTLF in the treatment of DN via constructing compounds-target-biological network analysis. Further analysis of senescence-related targets recognized the HIF-1α/autophagy pathway as the core anti-senescence mechanism of JCYSTLF in diabetic kidneys. Animal experiments showed, in comparison with valsartan, JCYSTLF showed an improvement in urinary albumin and renal pathological damage. JCYSTLF enhanced the ability of diabetic kidneys to clear senescence-related proteins via regulating autophagy confirmed by autophagy inhibitor CQ. However, HIF-1α inhibitor 2-ME weakened the role of JCYSLTF in regulating autophagy in diabetic kidneys. Meanwhile, over-expressed HIF-1α in HK-2 cells decreased the levels of SA-β-gal, p21 and p53 induced by AGEs. Upregulated HIF-1α could reverse the blocking of autophagy induced by AGEs in HK-2 cells evaluated by ptfLC3. Conclusion We provided in vitro and in vivo evidence for the anti-senescence role of JCYSTLF in regulating the HIF-1α/autophagy pathway.
Collapse
Affiliation(s)
- Hongmei Lu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Jing Guo
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Clinical Basic Research Institute of the China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Yachun Li
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
| | - Xueqin Zhang
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Hebei University of Chinese Medicine, Shijiazhuang, 050091, China
| | - Weijing Liu
- Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100700, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Beijing, 100700, China
- Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| |
Collapse
|
48
|
Castagnola MJ, Medina-Paz F, Zapico SC. Uncovering Forensic Evidence: A Path to Age Estimation through DNA Methylation. Int J Mol Sci 2024; 25:4917. [PMID: 38732129 PMCID: PMC11084977 DOI: 10.3390/ijms25094917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Age estimation is a critical aspect of reconstructing a biological profile in forensic sciences. Diverse biochemical processes have been studied in their correlation with age, and the results have driven DNA methylation to the forefront as a promising biomarker. DNA methylation, an epigenetic modification, has been extensively studied in recent years for developing age estimation models in criminalistics and forensic anthropology. Epigenetic clocks, which analyze DNA sites undergoing hypermethylation or hypomethylation as individuals age, have paved the way for improved prediction models. A wide range of biomarkers and methods for DNA methylation analysis have been proposed, achieving different accuracies across samples and cell types. This review extensively explores literature from the past 5 years, showing scientific efforts toward the ultimate goal: applying age prediction models to assist in human identification.
Collapse
Affiliation(s)
- María Josefina Castagnola
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Francisco Medina-Paz
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
| | - Sara C. Zapico
- Department of Chemistry and Environmental Sciences, New Jersey Institute of Technology, Tiernan Hall 365, Newark, NJ 07102, USA; (M.J.C.); (F.M.-P.)
- Department of Anthropology and Laboratories of Analytical Biology, National Museum of Natural History, MRC 112, Smithsonian Institution, Washington, DC 20560, USA
| |
Collapse
|
49
|
Li H, Zhao J, Xing Y, Chen J, Wen Z, Ma R, Han F, Huang B, Wang H, Li C, Chen Y, Ning X. Identification of Age-Related Characteristic Genes Involved in Severe COVID-19 Infection Among Elderly Patients Using Machine Learning and Immune Cell Infiltration Analysis. Biochem Genet 2024:10.1007/s10528-024-10802-9. [PMID: 38656671 DOI: 10.1007/s10528-024-10802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 04/05/2024] [Indexed: 04/26/2024]
Abstract
Elderly patients infected with severe acute respiratory syndrome coronavirus 2 are at higher risk of severe clinical manifestation, extended hospitalization, and increased mortality. Those patients are more likely to experience persistent symptoms and exacerbate the condition of basic diseases with long COVID-19 syndrome. However, the molecular mechanisms underlying severe COVID-19 in the elderly patients remain unclear. Our study aims to investigate the function of the interaction between disease-characteristic genes and immune cell infiltration in patients with severe COVID-19 infection. COVID-19 datasets (GSE164805 and GSE180594) and aging dataset (GSE69832) were obtained from the Gene Expression Omnibus database. The combined different expression genes (DEGs) were subjected to Gene Ontology (GO) functional enrichment analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway and Diseases Ontology functional enrichment analysis, Gene Set Enrichment Analysis, machine learning, and immune cell infiltration analysis. GO and KEGG enrichment analyses revealed that the eight DEGs (IL23A, PTGER4, PLCB1, IL1B, CXCR1, C1QB, MX2, ALOX12) were mainly involved in inflammatory mediator regulation of TRP channels, coronavirus disease-COVID-19, and cytokine activity signaling pathways. Three-degree algorithm (LASSO, SVM-RFE, KNN) and correlation analysis showed that the five DEGs up-regulated the immune cells of macrophages M0/M1, memory B cells, gamma delta T cell, dendritic cell resting, and master cell resisting. Our study identified five hallmark genes that can serve as disease-characteristic genes and target immune cells infiltrated in severe COVID-19 patients among the elderly population, which may contribute to the study of pathogenesis and the evaluation of diagnosis and prognosis in aging patients infected with severe COVID-19.
Collapse
Affiliation(s)
- Huan Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, The Second People's Hospital of Shaan xi Province, Xi'an, China
| | - Jin Zhao
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Xing
- Department of Nephrology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Jia Chen
- Xi'an Medical University, Xi'an, China
| | | | - Rui Ma
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Fengxia Han
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Boyong Huang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Hao Wang
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Cui Li
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Yang Chen
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China
| | - Xiaoxuan Ning
- Department of Geriatrics, Xijing Hospital, Fourth Military Medical University, No. 127 Chang le West Road, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
50
|
Yehia A, Abulseoud OA. Melatonin: a ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol Neurodegener 2024; 19:36. [PMID: 38641847 PMCID: PMC11031980 DOI: 10.1186/s13024-024-00728-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
The unprecedented pandemic of COVID-19 swept millions of lives in a short period, yet its menace continues among its survivors in the form of post-COVID syndrome. An exponentially growing number of COVID-19 survivors suffer from cognitive impairment, with compelling evidence of a trajectory of accelerated aging and neurodegeneration. The novel and enigmatic nature of this yet-to-unfold pathology demands extensive research seeking answers for both the molecular underpinnings and potential therapeutic targets. Ferroptosis, an iron-dependent cell death, is a strongly proposed underlying mechanism in post-COVID-19 aging and neurodegeneration discourse. COVID-19 incites neuroinflammation, iron dysregulation, reactive oxygen species (ROS) accumulation, antioxidant system repression, renin-angiotensin system (RAS) disruption, and clock gene alteration. These events pave the way for ferroptosis, which shows its signature in COVID-19, premature aging, and neurodegenerative disorders. In the search for a treatment, melatonin shines as a promising ferroptosis inhibitor with its repeatedly reported safety and tolerability. According to various studies, melatonin has proven efficacy in attenuating the severity of certain COVID-19 manifestations, validating its reputation as an anti-viral compound. Melatonin has well-documented anti-aging properties and combating neurodegenerative-related pathologies. Melatonin can block the leading events of ferroptosis since it is an efficient anti-inflammatory, iron chelator, antioxidant, angiotensin II antagonist, and clock gene regulator. Therefore, we propose ferroptosis as the culprit behind the post-COVID-19 trajectory of aging and neurodegeneration and melatonin, a well-fitting ferroptosis inhibitor, as a potential treatment.
Collapse
Affiliation(s)
- Asmaa Yehia
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA
- Department of Medical Physiology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Osama A Abulseoud
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, 58054, USA.
- Department of Psychiatry and Psychology, Mayo Clinic Arizona, 5777 E Mayo Blvd, Phoenix, AZ, 85054, USA.
| |
Collapse
|