1
|
Gardner M, Shinohara RT, Bethlehem RAI, Romero‐Garcia R, Warrier V, Dorfschmidt L, Lifespan Brain Chart Consortium, Shanmugan S, Thompson P, Seidlitz J, Alexander‐Bloch AF, Chen AA. ComBatLS: A Location- and Scale-Preserving Method for Multi-Site Image Harmonization. Hum Brain Mapp 2025; 46:e70197. [PMID: 40497521 PMCID: PMC12152769 DOI: 10.1002/hbm.70197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/14/2025] [Accepted: 03/10/2025] [Indexed: 06/18/2025] Open
Abstract
Recent study has leveraged massive datasets and advanced harmonization methods to construct normative models of neuroanatomical features and benchmark individuals' morphology. However, current harmonization tools do not preserve the effects of biological covariates including sex and age on features' variances; this failure may induce error in normative scores, particularly when such factors are distributed unequally across sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that preserves biological variance in features' locations and scales. We use UK Biobank data to show that ComBatLS robustly replicates individuals' normative scores better than other ComBat methods when subjects are assigned to sex-imbalanced synthetic "sites." Additionally, we demonstrate that ComBatLS significantly reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is available at https://github.com/andy1764/ComBatFamily.
Collapse
Affiliation(s)
- Margaret Gardner
- Brain‐Gene‐Development LabThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Neuroscience Graduate GroupPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Center for Biomedical Imaging Computing and AnalyticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaUSA
| | | | - Rafael Romero‐Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto de Fisiología Médica y BiofísicaBarcelonaSpain
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Varun Warrier
- Department of PsychologyUniversity of CambridgeCambridgeUK
- Department of PsychiatryUniversity of CambridgeCambridgeUK
| | - Lena Dorfschmidt
- Brain‐Gene‐Development LabThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Sheila Shanmugan
- Lifespan Brain InstituteThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Penn Lifespan Informatics and Neuroimaging CenterUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Paul Thompson
- Imaging Genetics CenterStevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Jakob Seidlitz
- Brain‐Gene‐Development LabThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Child and Adolescent Psychiatry and Behavioral ScienceThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Aaron F. Alexander‐Bloch
- Brain‐Gene‐Development LabThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteThe Children's Hospital of Philadelphia and Penn MedicinePhiladelphiaPennsylvaniaUSA
- Department of PsychiatryUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Child and Adolescent Psychiatry and Behavioral ScienceThe Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Andrew A. Chen
- Department of Public Health SciencesMedical University of South CarolinaCharlestonSouth CarolinaUSA
| |
Collapse
|
2
|
Anderson KJ, Thorolfsdottir ET, Nodelman IM, Halldorsdottir ST, Benonisdottir S, Alghamdi M, Almontashiri N, Barry BJ, Begemann M, Britton JF, Burke S, Cogne B, Cohen AS, de Diego Boguñá C, Eichler EE, Engle EC, Fahrner JA, Faivre L, Fradin M, Fuhrmann N, Gao CW, Garg G, Grečmalová D, Grippa M, Harris JR, Hoekzema K, Hershkovitz T, Hubbard S, Janssens K, Jurgens JA, Kmoch S, Knopp C, Koptagel MA, Ladha FA, Lapunzina P, Lindau T, Meuwissen M, Minicucci A, Neuhaus E, Nizon M, Nosková L, Park K, Patel C, Pfundt R, Prasun P, Rahner N, Robin NH, Ronspies C, Roohi J, Rosenfeld J, Saenz M, Saunders C, Stark Z, Thiffault I, Thull S, Velasco D, Velmans C, Verseput J, Vitobello A, Wang T, Weiss K, Wentzensen IM, Pilarowski G, Eysteinsson T, Gillentine M, Stefánsson K, Helgason A, Bowman GD, Bjornsson HT. Androgens mediate sexual dimorphism in Pilarowski-Bjornsson Syndrome. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.05.06.25326635. [PMID: 40385454 PMCID: PMC12083630 DOI: 10.1101/2025.05.06.25326635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Sex-specific penetrance in autosomal dominant Mendelian conditions is largely understudied. The neurodevelopmental disorder Pilarowski-Bjornsson syndrome (PILBOS) was initially described in females. Here, we describe the clinical and genetic characteristics of the largest PILBOS cohort to date, showing that both sexes can exhibit PILBOS features, although males are overrepresented. A mouse model carrying a human-derived Chd1 missense variant (Chd1 R616Q/+) displays female-restricted phenotypes, including growth deficiency, anxiety and hypotonia. Orchiectomy unmasks a growth deficiency phenotype in male Chd1 R616Q/+ mice, while testosterone rescues the phenotype in females, implicating androgens in phenotype modulation. In the gnomAD and UK Biobank databases, rare missense variants in CHD1 are overrepresented in males, supporting a male protective effect. We identify 33 additional highly constrained autosomal genes with missense variant overrepresentation in males. Our results support androgen-regulated sexual dimorphism in PILBOS and open novel avenues to understand the mechanistic basis of sexual dimorphism in other autosomal Mendelian disorders.
Collapse
Affiliation(s)
- Kimberley Jade Anderson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Ilana M. Nodelman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Sara Tholl Halldorsdottir
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Stefania Benonisdottir
- Institute of Physical Sciences, University of Iceland, Reykjavik, Iceland
- Leverhulme Centre for Demographic Science, Nuffield Department of Population Health, University of Oxford and Nuffield College, Oxford, UK
| | - Malak Alghamdi
- Medical Genetics Division, Pediatric Department, College of Medicine, King Saud University Medical City, King Saud University, Riyadh, Saudi Arabia
| | - Naif Almontashiri
- College of Applied Medical Sciences and Center for Genetics and Inherited Diseases, Taibah University, Madinah, Kingdom of Saudi Arabia
- Research Department, King Khaled Eye Specialist Hospital, Riyadh, Saudi Arabia
| | - Brenda J. Barry
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Matthias Begemann
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Jacquelyn F. Britton
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sarah Burke
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Benjamin Cogne
- Nantes Université, CHU de Nantes, CNRS, INSERM, l’institut du thorax, F-44000 Nantes, France
- Nantes Université, CHU de Nantes, Service de Génétique médicale, F-44000 Nantes, France
| | - Ana S.A. Cohen
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | | | - Evan E. Eichler
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Elizabeth C. Engle
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Ophthalmology, Boston Children’s Hospital, Boston, MA, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Jill A. Fahrner
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laurence Faivre
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
- Centre de Génétique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, de l’Interrégion Est, Centre Hospitalier Universitaire Dijon, 21079 Dijon, France
| | - Mélanie Fradin
- Service de Genetique Medicale, Centre Labellisé Anomalies du Développement de l’Ouest, CHU Rennes, Rennes, France
| | - Nico Fuhrmann
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christine W. Gao
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gunjan Garg
- Department of Clinical Genetics, Liverpool Hospital, Sydney, New South Wales, Australia
- Hunter Genetics, Waratah, New South Wales, Australia
- School of Women’s and Children’s Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Dagmar Grečmalová
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Czech Republic
| | - Mina Grippa
- SSD Medical Genetics, Maternal and Child Department, AOU Policlinico Modena, Modena, Italy
| | - Jacqueline R. Harris
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kennedy Krieger Institute, Department of Neurology, Baltimore, Maryland, USA
| | - Kendra Hoekzema
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Sydney Hubbard
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Katrien Janssens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Julie A. Jurgens
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Boston Children’s Hospital, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Stanislav Kmoch
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Cordula Knopp
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Meral Aktas Koptagel
- Institute for Human Genetics and Genomic Medicine, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Farah A. Ladha
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
| | - Pablo Lapunzina
- INGEMM-Institute of Medical and Molecular Genetics, IdiPAZ- CIBERER- Hospital Universitario La Paz, Madrid, Spain and ERNITHACA, Madrid, Spain
| | - Tobias Lindau
- Department of Pediatrics, Gemeinschaftsklinikum Mittelrhein Kemperhof, Koblenzer Straße 115-155, 56073 Koblenz, Germany
| | - Marije Meuwissen
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Andreina Minicucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, U.O. Genetica Medica, 40138 Bologna, Italy
| | - Emily Neuhaus
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington, USA
| | - Mathilde Nizon
- Service de Génétique Médicale, Unité de Génétique Clinique, Nantes, France
| | - Lenka Nosková
- Research Unit for Rare Diseases, Department of Pediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kristen Park
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Chirag Patel
- Genetic Health Queensland, Royal Brisbane & Women’s Hospital Campus, Herston, Brisbane, Australia
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pankaj Prasun
- Division of Genetics, Department of Pediatrics West Virginia School of Medicine, Morgantown, USA
| | - Nils Rahner
- MVZ Institute for Clinical Genetics and Tumor Genetics, Bonn, Germany
| | - Nathaniel H. Robin
- Department of Genetics, UAB Heersink School of Medicine, Birmingham AL, USA
| | - Carey Ronspies
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jasmin Roohi
- Department of Genetics, Mid-Atlantic Permanente Medical Group, Washington, DC, USA
| | - Jill Rosenfeld
- Baylor College of Medicine, Department of Molecular and Human Genetics, Houston, TX, USA
- Baylor Genetics, Houston, TX, USA
| | - Margarita Saenz
- Departments of Pediatrics and Neurology, University of Colorado School of Medicine and Children’s Hospital Colorado, Aurora, CO, USA
| | - Carol Saunders
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Zornitza Stark
- Victorian Clinical Genetics Services, Murdoch Children’s Research Institute, Flemington Road, Parkville, Victoria, Australia
| | - Isabelle Thiffault
- Department of Pathology and Laboratory Medicine, Genomic Medicine Center, Children’s Mercy-Kansas City, Kansas City, MO, USA
- The University of Missouri-Kansas City, School of Medicine, Kansas City, MO, USA
| | - Sarah Thull
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Danita Velasco
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Clara Velmans
- Institute of Human Genetics, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jolijn Verseput
- Human Genetics Department, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Antonio Vitobello
- INSERM UMR1231, GAD team, Univeristé de Bourgogne Europe, Dijon, France
| | - Tianyun Wang
- Department of Medical Genetics, Center for Medical Genetics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
- Neuroscience Research Institute, Peking University; Key Laboratory for Neuroscience, Ministry of Education of China & National Health Commission of China, Beijing 100191, China
- Autism Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Karin Weiss
- The Genetics Institute Rambam Health Care Campus Haifa Israel
| | | | | | - Thor Eysteinsson
- Department of Physiology, Faculty of Medicine, University of Iceland
- Department of Ophthalmology, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Kári Stefánsson
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Reykjavik, Iceland
| | - Gregory D. Bowman
- T.C. Jenkins Department of Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Hans Tomas Bjornsson
- Department of Genetics and Molecular Medicine, Landspitali University Hospital, Reykjavik, Iceland
- The Louma G. Laboratory of Epigenetic Research, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Perović M, Mack ML. Menstrual cycle and perceived stress predict performance on the mnemonic similarity task. PLoS One 2025; 20:e0322652. [PMID: 40315205 PMCID: PMC12047775 DOI: 10.1371/journal.pone.0322652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Accepted: 03/25/2025] [Indexed: 05/04/2025] Open
Abstract
A growing body of literature demonstrates strong effects of ovarian hormones on the hippocampus and adjacent structures. However, resulting impacts on human cognition remain unclear. Addressing this gap, we examine pattern separation ability, a core hippocampal process, across the menstrual cycle using the mnemonic similarity task as a behavioral index (N = 183). We find a non-linear effect of the menstrual cycle, with pattern separation performance peaking in the high-estradiol, late follicular phase and reaching its lowest point during the mid-luteal phase, which is characterized by moderate estradiol and high progesterone levels. Additionally, we find that perceived stress may facilitate pattern separation performance. These results point to the importance of ovarian hormones for human cognition, reveal novel effects of perceived stress on mnemonic similarity task performance, and provide preliminary evidence of possible effects of menstrual cycle phase on neural pathways involved in pattern separation.
Collapse
Affiliation(s)
- Mateja Perović
- Department of Psychology, University of Toronto, Toronto, Canada
| | - Michael L. Mack
- Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
4
|
Gervais NJ, Barth C, Lacreuse A. Consequences of menopause for brain health. Horm Behav 2025; 171:105727. [PMID: 40221326 DOI: 10.1016/j.yhbeh.2025.105727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025]
Affiliation(s)
- Nicole J Gervais
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9747, AG, the Netherlands.
| | - Claudia Barth
- Division for Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Agnès Lacreuse
- Department of Psychological and Brain Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| |
Collapse
|
5
|
Witte AV, Sacher J. Unraveling neural underpinnings of eating disorders in the female brain: insights from high-field magnetic resonance imaging. Am J Clin Nutr 2025; 121:943-944. [PMID: 40118694 DOI: 10.1016/j.ajcnut.2025.02.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025] Open
Affiliation(s)
- A Veronica Witte
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Julia Sacher
- Cognitive Neurology, University of Leipzig Medical Center, Leipzig, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Center for Integrative Women's Health and Gender Medicine, Medical Faculty and University of Leipzig Medical Center, Leipzig, Germany; Max Planck School of Cognition, Leipzig, Germany; Department of Endocrinology, Nephrology, Rheumatology, Division of Endocrinology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
6
|
Karp NA. Navigating the paradigm shift of sex inclusive preclinical research and lessons learnt. Commun Biol 2025; 8:681. [PMID: 40301592 PMCID: PMC12041288 DOI: 10.1038/s42003-025-08118-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 04/22/2025] [Indexed: 05/01/2025] Open
Abstract
As progress is made in sex-inclusive preclinical research, the author highlights areas of research practice where significant development has been achieved & where more change is needed towards community accepted standards in equitable research
Collapse
Affiliation(s)
- Natasha A Karp
- Data Sciences & Quantitative Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK.
| |
Collapse
|
7
|
Lee BH, Eid RS, Hodges TE, Barth C, Galea LAM. Leveraging research into sex differences and steroid hormones to improve brain health. Nat Rev Endocrinol 2025; 21:214-229. [PMID: 39587332 DOI: 10.1038/s41574-024-01061-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 11/27/2024]
Abstract
Sex differences, driven in part by steroid hormones, shape the structure and function of the brain throughout the lifespan and manifest across brain health and disease. The influence of steroid hormones on neuroplasticity, particularly in the adult hippocampus, differs between the sexes, which has important implications for disorders and diseases that compromise hippocampus integrity, such as depression and Alzheimer disease. This Review outlines the intricate relationship between steroid hormones and hippocampal neuroplasticity across the adult lifespan and explores how the unique physiology of male and female individuals can affect health and disease. Despite calls to include sex and gender in research, only 5% of neuroscience studies published in 2019 directly investigated the influence of sex. Drawing on insights from depression, Alzheimer disease and relevant hippocampal plasticity, this Review underscores the importance of considering sex and steroid hormones to achieve a comprehensive understanding of disease susceptibility and mechanisms. Such consideration will enable the discovery of personalized treatments, ultimately leading to improved health outcomes for all.
Collapse
Affiliation(s)
- Bonnie H Lee
- Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia, Canada
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Rand S Eid
- Department of Psychology, McGill University, Montreal, Quebec, Canada
| | - Travis E Hodges
- Department of Psychology and Education, Mount Holyoke College, South Hadley, MA, USA
| | - Claudia Barth
- Division for Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
| | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
8
|
Lenz B, Derntl B. Sex-sensitive and gender-sensitive care for patients with mental disorders. Lancet Psychiatry 2025; 12:244-246. [PMID: 39491878 DOI: 10.1016/s2215-0366(24)00330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 11/05/2024]
Affiliation(s)
- Bernd Lenz
- German Center for Mental Health, Mannheim-Heidelberg-Ulm site, Mannheim, Germany; Department of Addictive Behavior and Addiction Medicine, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, J 5, 68159 Mannheim, Germany.
| | - Birgit Derntl
- German Center for Mental Health, Tübingen site, Germany and Women's Mental Health & Brain Function, Department of Psychiatry and Psychotherapy, University of Tübingen, Germany
| |
Collapse
|
9
|
Yoon HJ, Doyle MA, Altemus ME, Bethi R, Lago SH, Winder DG, Calipari ES. Operant ethanol self-administration behaviors do not predict sex differences in continuous access home cage drinking. Alcohol 2025; 123:87-99. [PMID: 39218047 PMCID: PMC12034132 DOI: 10.1016/j.alcohol.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 07/03/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Understanding sex differences in disease prevalence is critical to public health, particularly in the context of alcohol use disorder (AUD). The goal of this study was to understand sex differences in ethanol drinking behavior and define the precise conditions under which sex differences emerge. Consistent with prior work, C57BL/6J females drank more than males under continuous access two-bottle choice conditions. However, using ethanol self-administration - where an operant response results in access to an ethanol sipper for a fixed time period - we found no sex differences in operant response rates or ethanol consumption (volume per body weight consumed, as well as lick behavior). This remained true across a wide range of parameters including acquisition, when the ethanol sipper access period was manipulated, and when the concentration of the ethanol available was scaled. The only sex differences observed were in total ethanol consumption, which was explained by differences in body weight between males and females, rather than by sex differences in motivation to drink. Using dimensionality reduction approaches, we found that drinking behavior in the operant context did not cluster by sex, but rather clustered by high and low drinking phenotypes. Interestingly, these high and low drinking phenotypes in the operant context showed no correlation with those same categorizations in the home cage context within the same animals. These data underscore the complexity of sex differences in ethanol consumption, highlighting the important role that drinking conditions/context plays in the expression of these differences.
Collapse
Affiliation(s)
- Hye Jean Yoon
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Marie A Doyle
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Megan E Altemus
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA
| | - Rishik Bethi
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Sofia H Lago
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA
| | - Danny G Winder
- Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Neurobiology, UMass Chan Medical School, Worcester, MA, USA
| | - Erin S Calipari
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA; Vanderbilt Center for Addiction Research, Vanderbilt University, Nashville, TN, USA; Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
10
|
Witt KM, Harper DN, Ellenbroek BA. The role of the dopamine D1 receptor in anticipatory pleasure and social play. Neuropharmacology 2025; 264:110225. [PMID: 39566573 DOI: 10.1016/j.neuropharm.2024.110225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024]
Abstract
Social play is a highly rewarding activity seen across mammalian species that is vital for neurobehavioural development. Dysfunctions in social play are seen across psychiatric and neurodevelopmental disorders positing the importance of understanding the neurobiological mechanisms underlying social play. A multitude of neurotransmitter systems have been implicated in social play, with the present study focused on the role of dopamine, specifically the dopamine D1 receptor. Pharmacological manipulations of dopamine and the D1 receptor reveal mixed findings. Given the limited selectivity of pharmacological tools, we explored the role of the dopamine D1 receptor in social play using dopamine D1 mutant (DAD1-/-) rats which have a genetic reduction in functional D1 receptors. Aligning with the rewarding properties of social play, the present study also examined anticipatory behaviour for the opportunity to engage in social play. Contrary to our predictions, DAD1-/- mutants initiated and engaged in social play similarly to wildtype controls with only subtle differences in specific elements of play behaviour. Subjects did not differ in 50 kHz vocalisations emitted during play, suggesting similar levels of consummatory pleasure. Although subjects initiated and engaged in play similarly, as predicted, DAD1-/- mutants displayed deficits in anticipatory behaviour and pleasure for the opportunity to engage in social play. These findings support a prominent role of the D1 receptor in anticipatory behaviour, with further research needed to elucidate its role in social play.
Collapse
Affiliation(s)
- Kate M Witt
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| | - David N Harper
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Bart A Ellenbroek
- Behavioural Neurogenetics Group, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| |
Collapse
|
11
|
Doornweerd AM, Gerritsen L. 28 days later: A prospective daily study on psychological well-being across the menstrual cycle and the effects of hormones and oral contraceptives. Psychol Med 2025; 55:e19. [PMID: 39917827 PMCID: PMC12017372 DOI: 10.1017/s003329172400357x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 04/25/2025]
Abstract
BACKGROUND We aimed to study how hormonal status (oral contraceptive [OC] users vs naturally cycling [NC]) affects different dimensions and variability of psychological well-being, and how they relate to sex hormone levels (estradiol, progesterone, and testosterone). METHODS Twenty-two NC participants and 18 OC users reported daily affective and physical symptoms and collected daily salivary samples across 28 days. Groups were compared using psychological well-being averages (linear mixed models), day-to-day variability (Levene's test), and network models. Within NC participants, cycle phase effects and time-varying associations between hormones and psychological well-being were assessed using both person-centered mean and change (subtracting mean from daily score) scores. RESULTS Lowered variability was found for OC users' agitation, risk-taking, attractiveness, and energy levels. They showed lower overall ratings of happiness, attractiveness, risk-taking, and energy levels (range R2m = .004: .019) but also reported more relaxation, sexual desire, and better sleep quality (range R2m = .005; .01) compared to the NC group. The impact of sex hormones on psychological well-being varied significantly across cycle phases, with the largest effects for progesterone levels. CONCLUSIONS Our results confirm that hormonal status is associated with a range of psychological well-being domains beyond mood and sexual desire, including energy levels, feelings of attractiveness, risk taking, and agitation. Lowered variability in OC users versus NC participants fit with 'emotional blunting' as a possible mechanism behind OC's side effects. Our findings that show the menstrual cycle and sex hormones differentially influenced markers of psychological well-being emphasize the need to adequately account for the menstrual cycle.
Collapse
Affiliation(s)
| | - Lotte Gerritsen
- Department of Clinical Psychology, Utrecht University, The Netherlands
| |
Collapse
|
12
|
Dhamala E, Ricard JA, Uddin LQ, Galea LAM, Jacobs EG, Yip SW, Yeo BTT, Chakravarty MM, Holmes AJ. Considering the interconnected nature of social identities in neuroimaging research. Nat Neurosci 2025; 28:222-233. [PMID: 39730766 DOI: 10.1038/s41593-024-01832-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 10/24/2024] [Indexed: 12/29/2024]
Abstract
Considerable heterogeneity exists in the expression of complex human behaviors across the cognitive, personality and mental health domains. It is increasingly evident that individual variability in behavioral expression is substantially affected by sociodemographic factors that often interact with life experiences. Here, we formally address the urgent need to incorporate intersectional identities in neuroimaging studies of behavior, with a focus on research in mental health. We highlight how diverse sociodemographic factors influence the study of psychiatric conditions, focusing on how interactions between those factors might contribute to brain biology and illness expression, including prevalence, symptom burden, help seeking, treatment response and tolerance, and relapse and remission. We conclude with a discussion of the considerations and actionable items related to participant recruitment, data acquisition and data analysis to facilitate the inclusion and incorporation of diverse intersectional identities in neuroimaging.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Feinstein Institutes for Medical Research, Manhasset, NY, USA.
| | | | - Lucina Q Uddin
- University of California, Los Angeles, Los Angeles, CA, USA
| | - Liisa A M Galea
- Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Emily G Jacobs
- University of California, Santa Barbara, Santa Barbara, CA, USA
| | | | | | - M Mallar Chakravarty
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Cerebral Imaging Centre, Douglas Research Centre, Montreal, Quebec, Canada
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
13
|
Islas-Preciado D, Ramos-Lira L, Estrada-Camarena E. Unveiling the burden of premenstrual dysphoric disorder: a narrative review to call for gender perspective and intersectional approaches. Front Psychiatry 2025; 15:1458114. [PMID: 39906677 PMCID: PMC11790554 DOI: 10.3389/fpsyt.2024.1458114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
The present narrative review discusses the burden of Premenstrual Dysphoric Disorder (PMDD) and highlights the lack of awareness by analyzing the following key points: -Prevalence and Diagnosis: PMDD affects a significant portion of women during their reproductive years, but diagnosis is often delayed due to limited understanding and awareness. -Mental Health Burden: PMDD increases the risk of suicide attempts and negatively impacts quality of life. There are also economic costs associated with absenteeism and healthcare use. -Cultural and Gender Perspectives: Societal stigma surrounding menstruation and mental health likely contributes to underdiagnosis. -Lack of Sex and Gender Perspective in the Healthcare System: Research bias towards male subjects and historical neglect of women's health issues contribute to limited knowledge about PMDD. -Non-Intersectional Approaches: Disparities in access to healthcare and the unique experiences of women further complicate PMDD diagnosis and treatment. -Vicious Cycle: The lack of research and awareness creates a vicious cycle where PMDD remains misunderstood and inaccurately treated. Finally, it emphasizes the need for increased awareness, education, and research on PMDD, particularly with a gendered and intersectional optic. The situation in Latin America is presented as a particular concern due to a lack of recent data and potentially higher prevalence due to socioeconomic factors.
Collapse
Affiliation(s)
- Dannia Islas-Preciado
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Mexico City, Mexico
- Laboratorio de Neuromodulación, Subdirección de Investigaciones Clínicas, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Mexico City, Mexico
| | - Luciana Ramos-Lira
- Dirección de Investigaciones Epidemiológicas y Psicosociales, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Mexico City, Mexico
| | - Erika Estrada-Camarena
- Laboratorio de Neuropsicofarmacología, Dirección de Investigaciones en Neurociencias, Instituto Nacional de Psiquiatría “Ramón de la Fuente Muñíz”, Mexico City, Mexico
| |
Collapse
|
14
|
Sullens DG, Gilley K, Moraglia LE, Dison S, Hoffman JT, Wiffler MB, Barnes RC, Ginty AT, Sekeres MJ. Sex in aging matters: exercise and chronic stress differentially impact females and males across the lifespan. Front Aging Neurosci 2025; 16:1508801. [PMID: 39881679 PMCID: PMC11774976 DOI: 10.3389/fnagi.2024.1508801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Assessing sex as a biological variable is critical to determining the influence of environmental and lifestyle risks and protective factors mediating behavior and neuroplasticity across the lifespan. We investigated sex differences in affective behavior, memory, and hippocampal neurogenesis following short- or long-term exposure to exercise or chronic mild stress in young and aged mice. Male and female mice were assigned control, running, or chronic stress rearing conditions for 1 month (young) or for 15 months (aged), then underwent a behavioral test battery to assess activity, affective behavior, and memory. Stress exposure into late-adulthood increased hyperactivity in both sexes, and enhanced anxiety-like and depressive-like behavior in aged female, but not male, mice. One month of stress or running had no differential effects on behavior in young males and females. Running increased survival of BrdU-labelled hippocampal cells in both young and aged mice, and enhanced spatial memory in aged mice. These findings highlight the importance of considering sex when determining how aging is differently impacted by modifiable lifestyle factors across the lifespan.
Collapse
Affiliation(s)
- D. Gregory Sullens
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Kayla Gilley
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Biology and Chemistry, Liberty University, Lynchburg, VA, United States
| | - Luke E. Moraglia
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Psychology, The University of Texas at Dallas, Richardson, TX, United States
| | - Sarah Dison
- Department of Biology, Baylor University, Waco, TX, United States
| | - Jessica T. Hoffman
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Madison B. Wiffler
- Department of Biology, Baylor University, Waco, TX, United States
- Department of Neurobiology, University of Utah, Salt Lake City, UT, United States
| | - Robert C. Barnes
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Annie T. Ginty
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
| | - Melanie J. Sekeres
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, United States
- School of Psychology, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
15
|
Doornweerd AM, Gerritsen L, Montoya ER, Engelhard IM, Baas JMP. Contraceptives and conditioning: Different profiles of fear and expectancy ratings during fear conditioning and extinction according to menstrual cycle phase and hormonal contraceptive use. Biol Psychol 2025; 194:108964. [PMID: 39667429 DOI: 10.1016/j.biopsycho.2024.108964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 12/04/2024] [Accepted: 12/08/2024] [Indexed: 12/14/2024]
Abstract
Hormonal contraceptives (HC) such as the oral contraceptive pill (OC) and the hormonal intrauterine device (IUD) have been associated with depressed mood, but research on their role in anxiety is scarce and inconsistent. In a fear acquisition and extinction paradigm, self-report fear, expectancy, and skin conductance responses (SCR) were assessed, along with sex hormone levels. Naturally cycling (NC) participants were measured during the mid-follicular and mid-luteal phases (within subjects, n = 26) and compared with OC (n = 36) and IUD (n = 25) users. IUD users and -participants in the luteal phase showed overall reduced self-reported CS+ vs CS- differentiation compared to the follicular phase and OC use (which both reflect relatively low levels of endogenous gonadal hormones). This overall reduced differentiation in self-reported fear in the luteal phase was attributed to a generalization of fear from CS+ to CS-. NC-individuals with high premenstrual syndrome (PMS) ratings had higher overall fear ratings regardless of cycle phase. For SCR, hormonal status effects were restricted to specific experimental phases during acquisition. SCR to the CS+ was higher at the end of acquisition in the luteal phase compared to the follicular phase, and in OC users during early acquisition (compared to the follicular phase) and mid acquisition (compared to the IUD group). There were no direct associations with sex hormone levels. These findings demonstrate the impact of menstrual cycle and HC use on fear learning and highlight the need for further research that considers different outcome measures across a wide array of menstrual cycle and HC-related characteristics.
Collapse
Affiliation(s)
- Anne Marieke Doornweerd
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands; Department of Clinical Psychology, Utrecht University, the Netherlands
| | - Lotte Gerritsen
- Department of Clinical Psychology, Utrecht University, the Netherlands
| | - Estrella R Montoya
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands
| | - Iris M Engelhard
- Department of Clinical Psychology, Utrecht University, the Netherlands
| | - Joke M P Baas
- Department of Experimental Psychology and Helmholtz Institute, Utrecht University, the Netherlands.
| |
Collapse
|
16
|
Canals-Gispert L, Cañas-Martínez A, Huesa G, Suárez-Calvet Alomà M, Milà-Alomà M, Arenaza-Urquijo E, Cirillo D, Dimech AS, Iulita MF, Martinkova JN, Tartaglia MC, Quevenco FC, Chadha AS, Sánchez-Benavides G, Minguillón C, Ferretti MT, Fauria K, Brugulat-Serrat A. Impact of gender on the willingness to participate in clinical trials and undergo related procedures in individuals from an Alzheimer's prevention research cohort. Alzheimers Res Ther 2024; 16:263. [PMID: 39702338 DOI: 10.1186/s13195-024-01626-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 11/16/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Although there is growing evidence of the association between gender and early diagnosis of preclinical Alzheimer's disease, little attention has been given to the enrolment ratio of men and women in clinical trials and data reporting. METHODS This study aims to analyze gender differences in sociodemographic factors associated with the willingness to participate in clinical trials and undergo specific procedures in the context of an Alzheimer's disease prevention research cohort. 2544 cognitively unimpaired participants from the ALFA parent cohort (age 45-75 years) of the Barcelonaβeta Brain Research Center were contacted through a structured phone call to determine their willingness to participate in Alzheimer's disease clinical trials and undergo trial-related procedures (magnetic resonance imaging, lumbar puncture, positron emission tomography, and cognitive assessment). Sociodemographic data on education, occupational attainment, civil and caregiver status were gathered. Stepwise logistic regression models were performed in order to study the interaction between gender and sociodemographic factors in the willingness to participate in clinical trials and to undergo clinical trial-related procedures. RESULTS 1,606 out of the 2,544 participants were women (63.1%). Women were significantly younger and had lower educational attainment compared with men. In addition, women were more likely to be caregivers, single and unemployed. Women showed a significantly lower willingness than men to participate in a clinical trial (p = 0.003) and to undergo a lumbar puncture (p < 0.001). Single women were less willing to participate in clinical trials than single men (p = 0.041). Regarding clinical trial-related procedures, women with higher years of education were significantly less willing to undergo a lumbar puncture (p = 0.031). CONCLUSION We found gender differences regarding the sociodemographic factors that predict the willingness to participate in clinical trials and to undergo clinical trial-related procedures. Our results highlight the urgent need to design recruitment strategies accounting for gender-related factors, particularly those related to marital status and education.
Collapse
Affiliation(s)
- Lidia Canals-Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Alba Cañas-Martínez
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Gema Huesa
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Marc Suárez-Calvet Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
- Neurology Department, Hospital del Mar, Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Eider Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Davide Cirillo
- Barcelona Supercomputing Center, Life Sciences Department and Bioinfo4Women, Barcelona, Spain
- Women's Brain Project & Foundation, Eptingerstrasee 14, Basel, Switzerland
| | - Annemarie Schumacher Dimech
- Women's Brain Project & Foundation, Eptingerstrasee 14, Basel, Switzerland
- Department of Health Sciences and Medicine, University of Lucerne, Lucerne, Switzerland
| | | | - Julie Novakova Martinkova
- Women's Brain Project & Foundation, Eptingerstrasee 14, Basel, Switzerland
- Department of Neurology, Second Faculty of Medicine, Memory Clinic, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
- Krembil Brain Institute, Memory Clinic, University Health Network, Toronto, ON, Canada
| | | | - Antonella Santuccione Chadha
- Women's Brain Project & Foundation, Eptingerstrasee 14, Basel, Switzerland
- Altoida Inc. Washington DC, Washington DC, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Maria Teresa Ferretti
- Center of Alzheimer's Research, Karolinska Institutet, Gävlegatan 16, 8th Floor, 113 30, Stockholm, Sweden
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain.
- IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain.
- Global Brain Health Institute, San Francisco, CA, USA.
| |
Collapse
|
17
|
Witt A, Norton R, Woodward M, Womersley K. Scientific consideration of sex and gender is the responsibility of the many, not the few. Lancet 2024; 404:2140-2142. [PMID: 39541996 DOI: 10.1016/s0140-6736(24)02469-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/05/2024] [Indexed: 11/17/2024]
Affiliation(s)
- Alice Witt
- The George Institute for Global Health, London W12 7RZ, UK.
| | - Robyn Norton
- The George Institute for Global Health, London W12 7RZ, UK; Imperial College London, London, UK; UNSW Sydney, Sydney, NSW, Australia
| | - Mark Woodward
- The George Institute for Global Health, London W12 7RZ, UK; Imperial College London, London, UK; UNSW Sydney, Sydney, NSW, Australia
| | - Kate Womersley
- The George Institute for Global Health, London W12 7RZ, UK; Imperial College London, London, UK
| |
Collapse
|
18
|
Brosch K, Dhamala E. Influences of sex and gender on the associations between risk and protective factors, brain, and behavior. Biol Sex Differ 2024; 15:97. [PMID: 39593154 PMCID: PMC11590223 DOI: 10.1186/s13293-024-00674-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Risk and protective factors for psychiatric illnesses are linked to distinct structural and functional changes in the brain. Further, the prevalence of these factors varies across sexes and genders, yet the distinct and joint effects of sex and gender in this context have not been extensively characterized. This suggests that risk and protective factors may map onto the brain and uniquely influence individuals across sexes and genders. Here, we review how specific risk (childhood maltreatment, the COVID-19 pandemic, experiences of racism), and protective factors (social support and psychological resilience) distinctly influence the brain across sexes and genders. We also discuss the role of sex and gender in the compounding effects of risk factors and in the interdependent influences of risk and protective factors. As such, we call on researchers to consider sex and gender when researching risk and protective factors for psychiatric illnesses, and we provide concrete recommendations on how to account for them in future research. Considering protective factors alongside risk factors in research and acknowledging sex and gender differences will enable us to establish sex- and gender-specific brain-behavior relationships. This will subsequently inform the development of targeted prevention and intervention strategies for psychiatric illnesses, which have been lacking. To achieve sex and gender equality in mental health, acknowledging and researching potential differences will lead to a better understanding of men and women, males and females, and the factors that make them more vulnerable or resilient to psychopathology.
Collapse
Affiliation(s)
- Katharina Brosch
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.
| | - Elvisha Dhamala
- Institute of Behavioral Science, Feinstein Institutes for Medical Research, Manhasset, NY, USA.
- Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Uniondale, NY, USA.
| |
Collapse
|
19
|
Wu D, Li Y, Zhang S, Chen Q, Fang J, Cho J, Wang Y, Yan S, Zhu W, Lin J, Wang Z, Zhang Y. Trajectories and sex differences of brain structure, oxygenation and perfusion functions in normal aging. Neuroimage 2024; 302:120903. [PMID: 39461605 DOI: 10.1016/j.neuroimage.2024.120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/07/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Brain structure, oxygenation and perfusion are important factors in aging. Coupling between regional cerebral oxygen consumption and perfusion also reflects functions of neurovascular unit (NVU). Their trajectories and sex differences during normal aging important for clinical interpretation are still not well defined. In this study, we aim to investigate the relationship between brain structure, functions and age, and exam the sex disparities. METHOD A total of 137 healthy subjects between 20∼69 years old were enrolled with conventional MRI, structural three-dimensional T1-weighted imaging (3D-T1WI), 3D multi-echo gradient echo sequence (3D-mGRE), and 3D pseudo-continuous arterial spin labeling (3D-pCASL). Oxygen extraction fraction (OEF) and cerebral blood flow (CBF) were respectively reconstructed from 3D-mGRE and 3D-pCASL images. Cerebral metabolic rate of oxygen (CMRO2) were calculated as follows: CMRO2=CBF·OEF·[H]a, [H]a=7.377 μmol/mL. Brains were segmented into global gray matter (GM), global white matter (WM), and 148 cortical subregions. OEF, CBF, CMRO2, and volumes of GM/WM relative to intracranial volumes (rel_GM/rel_WM) were compared between males and females. Generalized additive models were used to evaluate the aging trajectories of brain structure and functions. The coupling between OEF and CBF was analyzed by correlation analysis. P or PFDR < 0.05 was considered statistically significant. RESULTS Females had larger rel_GM, higher CMRO2 and CBF of GM/WM than males (P < 0.05). With control of sex, CBF of GM significantly declined between 20 and 32 years, CMRO2 of GM declined subsequently from 33 to 41 years and rel_GM decreased significantly at all ages (R2 = 0.27, P < 0.001; R2 = 0.17, P < 0.001; R2 = 0.52, P < 0.001). In subregion analysis, CBF declined dispersedly while CMRO2 declined widely across most subregions of the cortex during aging. Robust negative coupling between OEF and CBF was found in most of the subregions (r range = -0.12∼-0.48, PFDR < 0.05). CONCLUSION The sex disparities, age trajectories of brain structure and functions as well as the coupling of NVU in healthy individuals provide insights into normal aging which are potential targets for study of pathological conditions.
Collapse
Affiliation(s)
- Di Wu
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Yuanhao Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Chen
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Jiayu Fang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Junghun Cho
- Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| | - Yi Wang
- Department of Radiology, Weill Cornell Medicine, New York, NY, USA; Department of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Su Yan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Junyu Lin
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China
| | - Zhenxiong Wang
- Department of Radiology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, China.
| | - Yaqin Zhang
- Department of Radiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong 519000, China.
| |
Collapse
|
20
|
Calabro FJ, Parr AC. Can Neuromelanin-Sensitive MRI Provide Insight Into the Dopaminergic Pathways Contributing to Substance Use? Am J Psychiatry 2024; 181:949-951. [PMID: 39482949 DOI: 10.1176/appi.ajp.20240853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| | - Ashley C Parr
- Department of Psychiatry (Calabro and Parr) and Department of Bioengineering (Calabro), University of Pittsburgh, Pittsburgh, PA
| |
Collapse
|
21
|
Perše M. Animal Models of Human Pathology: Revision, Relevance and Refinements. Biomedicines 2024; 12:2418. [PMID: 39594985 PMCID: PMC11592039 DOI: 10.3390/biomedicines12112418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
Animal Models of Human Pathology [...].
Collapse
Affiliation(s)
- Martina Perše
- Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
22
|
Baumbach JL, Leonetti AM, Martin LJ. Inflammatory injury induces pain sensitization that is expressed beyond the site of injury in male (and not in female) mice. Behav Brain Res 2024; 475:115215. [PMID: 39191370 DOI: 10.1016/j.bbr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
Pain is a crucial protective mechanism for the body. It alerts us to potential tissue damage or injury and promotes the avoidance of harmful stimuli. Injury-induced inflammation and tissue damage lead to pain sensitization, which amplifies responses to subsequent noxious stimuli even after an initial primary injury has recovered. This phenomenon, commonly referred to as hyperalgesic priming, was investigated in male and female mice to determine whether it is specific to the site of previous injury. We used 10μl of 50 % Freund's complete adjuvant (CFA) administered to the left hind paw as a model of peripheral injury. Both male and female mice exhibited robust site-specific mechanical hypersensitivity after CFA, which resolved within one-week post-injection. After injury resolution, only male CFA-primed mice showed enhanced and prolonged mechanical sensitivity in response to a chemical challenge or a single 0.5 mA electric footshock. Among CFA-primed male mice, shock-induced mechanical hypersensitivity was expressed in both the left (previously injured) and the right (uninjured) hind paws, suggesting a pivotal role for altered centralized processes in the expression of pain sensitization. These findings indicate that pain history regulates sensory responses to subsequent mechanical and chemical pain stimuli in a sex-specific manner-foot-shock-induced hyperalgesic priming expression among male mice generalized beyond the initial injury site.
Collapse
Affiliation(s)
| | | | - Loren J Martin
- Department of Psychology, University of Toronto, Canada; Cell and Systems Biology, University of Toronto, Canada.
| |
Collapse
|
23
|
Becegato M, Silva RH. Female rodents in behavioral neuroscience: Narrative review on the methodological pitfalls. Physiol Behav 2024; 284:114645. [PMID: 39047942 DOI: 10.1016/j.physbeh.2024.114645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
Since the NIH 'Sex as biological variable' policy, the percentage of studies including female subjects have increased largely. Nonetheless, many researchers fail to adequate their protocols to include females. In this narrative review, we aim to discuss the methodological pitfalls of the inclusion of female rodents in behavioral neuroscience. We address three points to consider in studies: the manipulations conducted only in female animals (such as estrous cycle monitoring, ovariectomy, and hormone replacement), the consideration of males as the standard, and biases related to interpretation and publication of the results. In addition, we suggest guidelines and perspectives for the inclusion of females in preclinical research.
Collapse
Affiliation(s)
- Marcela Becegato
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil; MaternaCiência, Federal University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
24
|
Mundorf A, Deneke L, Ocklenburg S. Hemispheric asymmetries in borderline personality disorder: a systematic review. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01888-8. [PMID: 39261314 DOI: 10.1007/s00406-024-01888-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 08/23/2024] [Indexed: 09/13/2024]
Abstract
Borderline personality disorder (BPD) is characterized by increased mood reactivity and affective instability. Since core structures involved in emotion processing, such as the amygdala, demonstrate strong lateralization, BPD is an interesting target for laterality research. So far, a systematic integration of findings on lateralization in BPD is missing. Therefore, we systematically reviewed studies published until February 2024 in PubMed, Web of Science, and PsycInfo databases that measured hemispheric asymmetries and behavioral lateralization in patients with BPD. Inclusion criteria were (a) diagnosis of BPD and (b) results on hemispheric or behavioral asymmetries. Specifically for neuroimaging studies, hemispheres need to be assessed separately. Review articles and studies with disorders other than BPD were excluded. Risk of bias was assessed with the Newcastle Ottawa Scale for non-randomized, non-comparative intervention studies. A total of 21 studies met the inclusion criteria. Thirteen studies investigated structural hemispheric asymmetries, five functional hemispheric asymmetries, two examined handedness, and one studied hemispheric asymmetry in visuospatial attention. Overall, studies examining structural asymmetries in BPD report bilateral volume reduction in the amygdala and hippocampus but a right-sided reduction in the orbitofrontal cortex. For functional lateralization, asymmetrical de/activation patterns in the default mode network in BPD and reduced right-frontal asymmetry were evident. Also, studies indicate a trend towards increased non-right-handedness in BPD. Risk factors for BPD, such as childhood abuse, may play a crucial role in the development of structural and functional alterations. However, the generalization of results may be limited by small sample sizes and varying study designs.
Collapse
Affiliation(s)
- Annakarina Mundorf
- ISM Institute for Systems Medicine, Department of Human Medicine, MSH Medical School Hamburg, Am Kaiserkai 1, Hamburg, 20457, Germany.
- Department of Neurology, Division of Cognitive Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Lisa Deneke
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
| | - Sebastian Ocklenburg
- Department of Psychology, Medical School Hamburg, Hamburg, Germany
- ICAN Institute for Cognitive and Affective Neuroscience, Medical School Hamburg, Hamburg, Germany
- Institute of Cognitive Neuroscience, Biopsychology, Faculty of Psychology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
25
|
Shansky RM. Behavioral neuroscience's inevitable SABV growing pains. Trends Neurosci 2024; 47:669-676. [PMID: 39034262 DOI: 10.1016/j.tins.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/23/2024]
Abstract
The field of rodent behavioral neuroscience is undergoing two major sea changes: an ever-growing technological revolution, and worldwide calls to consider sex as a biological variable (SABV) in experimental design. Both have enormous potential to improve the precision and rigor with which the brain can be studied, but the convergence of these shifts in scientific practice has exposed critical limitations in classic and widely used behavioral paradigms. While our tools have advanced, our behavioral metrics - mostly developed in males and often allowing for only binary outcomes - have not. This opinion article explores how this disconnect has presented challenges for the accurate depiction and interpretation of sex differences in brain function, arguing for the expansion of current behavioral constructs to better account for behavioral diversity.
Collapse
|
26
|
Ketor CE, Benneh CK, Sarkodie E, Anaglo JA, Mensah A, Somuah SO, Akakpo S, Woode E. Analysis of Spontaneously Reported Adverse Drug Events: Towards Developing Systems for Preventability. BIOMED RESEARCH INTERNATIONAL 2024; 2024:1906797. [PMID: 39246850 PMCID: PMC11379512 DOI: 10.1155/2024/1906797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 07/27/2024] [Accepted: 08/03/2024] [Indexed: 09/10/2024]
Abstract
Background: Analysing data on adverse drug reactions (ADRs) in health facilities is an essential step to help develop effective strategies to reduce their incidence. The objective was to analyse spontaneous ADR reports sent to the Ghanaian Food and Drugs Authority (FDA) by two reporting health facilities over 5 years. Methods: Data from duplicate spontaneous ADR reports sent to the FDA (Ghana) from 2014 to 2018 were extracted. The relationship between independent variables such as age, sex, and source of drugs and ADR outcomes was assessed with either chi-square or a Cramer's V test for association where appropriate. Results: Type A reactions (65.2%) were the most prevalent of the ADRs, followed by Type B (34.1%), with the majority (80%) of patients affected recovering fully. The majority of Type A reactions (54.1%) occurred in the clinic, while the majority of Type B reactions (43.5%) occurred in the hospital. The skin and central nervous system (CNS) were the most affected (70.8%) organs. A higher incidence of CNS and skin-related ADRs was recorded in patients older than 30 (RR = 1.28 (1.07-1.53)). Also, females were more likely to experience a CNS-related ADR. The seriousness of the ADR was found to be significantly associated with the (1) type of prescriber, (2) whether the drug was prescribed, or (3) whether the drug regimen prescribed was appropriate. Even though, in 86% of cases, the offending drug was withdrawn within the first 5 days, it exceeded 20 days in about 6% of cases. The record of allergy status in a patient's folder and the source of the drug were significantly associated with the chance that the offending drug was withdrawn. However, recording ADRs did not influence whether the offending drug was stopped. Conclusion: Most of the ADRs experienced by patients could be avoided if the current systems are improved to prevent the rechallenge of offending drugs. Efforts to improve and update patient medication records and steps to ensure continuity of care are essential in preventing these adverse drug events.
Collapse
Affiliation(s)
- Courage Edem Ketor
- Pharmacy Department Jasikan District Hospital Ghana Health Service, Jasikan, Ghana
| | - Charles Kwaku Benneh
- Department of Clinical Pharmacy and Pharmacy Practice School of Pharmacy and Pharmaceutical Sciences Ulster University, Coleraine, UK
| | - Emmanuel Sarkodie
- University Hospital Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | | | - Adelaide Mensah
- Department of Pharmaceutics School of Pharmacy University of Health and Allied Sciences, Ho, Ghana
| | - Samuel Owusu Somuah
- Department of Pharmacy Practice School of Pharmacy University of Health and Allied Sciences, Ho, Ghana
| | | | - Eric Woode
- Department of Pharmacology and Toxicology School of Pharmacy University of Health and Allied Sciences, Ho, Ghana
| |
Collapse
|
27
|
Kirby ED, Andrushko JW, Boyd LA, Koschutnig K, D'Arcy RCN. Sex differences in patterns of white matter neuroplasticity after balance training in young adults. Front Hum Neurosci 2024; 18:1432830. [PMID: 39257696 PMCID: PMC11383771 DOI: 10.3389/fnhum.2024.1432830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/08/2024] [Indexed: 09/12/2024] Open
Abstract
Introduction In past work we demonstrated different patterns of white matter (WM) plasticity in females versus males associated with learning a lab-based unilateral motor skill. However, this work was completed in neurologically intact older adults. The current manuscript sought to replicate and expand upon these WM findings in two ways: (1) we investigated biological sex differences in neurologically intact young adults, and (2) participants learned a dynamic full-body balance task. Methods 24 participants (14 female, 10 male) participated in the balance training intervention, and 28 were matched controls (16 female, 12 male). Correlational tractography was used to analyze changes in WM from pre- to post-training. Results Both females and males demonstrated skill acquisition, yet there were significant differences in measures of WM between females and males. These data support a growing body of evidence suggesting that females exhibit increased WM neuroplasticity changes relative to males despite comparable changes in motor behavior (e.g., balance). Discussion The biological sex differences reported here may represent an important factor to consider in both basic research (e.g., collapsing across females and males) as well as future clinical studies of neuroplasticity associated with motor function (e.g., tailored rehabilitation approaches).
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, Tyne and Wear, United Kingdom
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Lara A Boyd
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Brain Behavior Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Karl Koschutnig
- Institute of Psychology, BioTechMed Graz, University of Graz, Graz, Austria
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Surrey, BC, Canada
- Djavad Mowafaghian Center for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
28
|
Doucette MM, Kwan H, Premji Z, Duchesne A, Gawryluk JR, Garcia-Barrera MA. Integration of sex/gender and utilization of ecological Momentary assessment of cognition in clinical populations: A scoping review. Clin Neuropsychol 2024; 38:1409-1440. [PMID: 38533627 DOI: 10.1080/13854046.2024.2333579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 03/15/2024] [Indexed: 03/28/2024]
Abstract
Objectives: We aimed to describe the methods of smartphone-based cognitive ecological momentary assessment designs in clinical populations, with an intention to evaluate how the role of sex and/or gender has been considered in the design and analyses, particularly including female-specific physiology. Methods: This scoping review was conducted based on JBI scoping review methodology. On March 2nd, 2023, we searched for literature across four databases. Screening of the results and data extraction were conducted in duplicate according to the a priori methods in the pre-registered protocol. Results: 31 articles were included in this review. Participants ranged in age from 15-85 years old with various clinical disorders. Prompts were given between 1-7 times per day for 7-84 days. Executive function was the most frequently assessed cognitive domain. Over half the studies (n = 17, 55%) did not investigate the effects of sex and/or gender, and only one study considered the impact of hormonal therapy. Many studies (n = 14, 45%) used sex and gender interchangeably or incorrectly. Conclusions: Studies varied in design, with heterogeneity in the reporting of methodological information. The lack of attention to sex/gender on neuropsychological outcomes can lead to confusion and contradiction regarding its potential impact on cognition in clinical populations. This may hinder the identification of effective interventions for those assigned female at birth who have been overlooked or considered indistinguishable from their male counterparts. Given the well-documented impact of sex/gender on cognition, it is essential that future neuropsychological research, especially EMA-based studies, prioritize investigating sex/gender to ensure better outcomes for all.
Collapse
Affiliation(s)
| | - Heather Kwan
- Department of Psychology, University of Victoria, British Columbia, Canada
- Institute on Aging & Lifelong Health, University of Victoria, British Columbia, Canada
| | - Zahra Premji
- Libraries, University of Victoria, British Columbia, Canada
| | - Annie Duchesne
- Department of Psychology, University of Northern British Columbia, British Columbia, Canada
- Department of Psychology, Université du Québec à Trois-Rivières, Quebec, Canada
| | - Jodie R Gawryluk
- Department of Psychology, University of Victoria, British Columbia, Canada
- Institute on Aging & Lifelong Health, University of Victoria, British Columbia, Canada
- Division of Medical Sciences, University of Victoria, British Columbia, Canada
| | - Mauricio A Garcia-Barrera
- Department of Psychology, University of Victoria, British Columbia, Canada
- Institute on Aging & Lifelong Health, University of Victoria, British Columbia, Canada
| |
Collapse
|
29
|
Haering S, Seligowski AV, Linnstaedt SD, Michopoulos V, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Gentile NT, Hudak LA, Pascual JL, Seamon MJ, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O'Neil BJ, Sanchez LD, Bruce SE, Harte SE, McLean SA, Kessler RC, Koenen KC, Stevens JS, Powers A. Sex-dependent differences in vulnerability to early risk factors for posttraumatic stress disorder: results from the AURORA study. Psychol Med 2024; 54:2876-2886. [PMID: 38775091 PMCID: PMC11736691 DOI: 10.1017/s0033291724000941] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
BACKGROUND Knowledge of sex differences in risk factors for posttraumatic stress disorder (PTSD) can contribute to the development of refined preventive interventions. Therefore, the aim of this study was to examine if women and men differ in their vulnerability to risk factors for PTSD. METHODS As part of the longitudinal AURORA study, 2924 patients seeking emergency department (ED) treatment in the acute aftermath of trauma provided self-report assessments of pre- peri- and post-traumatic risk factors, as well as 3-month PTSD severity. We systematically examined sex-dependent effects of 16 risk factors that have previously been hypothesized to show different associations with PTSD severity in women and men. RESULTS Women reported higher PTSD severity at 3-months post-trauma. Z-score comparisons indicated that for five of the 16 examined risk factors the association with 3-month PTSD severity was stronger in men than in women. In multivariable models, interaction effects with sex were observed for pre-traumatic anxiety symptoms, and acute dissociative symptoms; both showed stronger associations with PTSD in men than in women. Subgroup analyses suggested trauma type-conditional effects. CONCLUSIONS Our findings indicate mechanisms to which men might be particularly vulnerable, demonstrating that known PTSD risk factors might behave differently in women and men. Analyses did not identify any risk factors to which women were more vulnerable than men, pointing toward further mechanisms to explain women's higher PTSD risk. Our study illustrates the need for a more systematic examination of sex differences in contributors to PTSD severity after trauma, which may inform refined preventive interventions.
Collapse
Affiliation(s)
- Stephanie Haering
- Department of Education and Psychology, Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
- Charité Center for Health and Human Sciences, Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacey L. House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C. Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
- Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Laura T. Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John P. Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B. Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I. Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W. Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E. Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A. Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Nina T. Gentile
- Department of Emergency Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lauren A. Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L. Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J. Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A. Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C. Merchant
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Robert M. Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K. Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J. O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Leon D. Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E. Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samuel A. McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
30
|
Gardner M, Shinohara RT, Bethlehem RAI, Romero-Garcia R, Warrier V, Dorfschmidt L, Lifespan Brain Chart Consortium, Shanmugan S, Thompson P, Seidlitz J, Alexander-Bloch AF, Chen AA. ComBatLS: A location- and scale-preserving method for multi-site image harmonization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.599875. [PMID: 39131292 PMCID: PMC11312440 DOI: 10.1101/2024.06.21.599875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Recent work has leveraged massive datasets and advanced harmonization methods to construct normative models of neuroanatomical features and benchmark individuals' morphology. However, current harmonization tools do not preserve the effects of biological covariates including sex and age on features' variances; this failure may induce error in normative scores, particularly when such factors are distributed unequally across sites. Here, we introduce a new extension of the popular ComBat harmonization method, ComBatLS, that preserves biological variance in features' locations and scales. We use UK Biobank data to show that ComBatLS robustly replicates individuals' normative scores better than other ComBat methods when subjects are assigned to sex-imbalanced synthetic "sites". Additionally, we demonstrate that ComBatLS significantly reduces sex biases in normative scores compared to traditional methods. Finally, we show that ComBatLS successfully harmonizes consortium data collected across over 50 studies. R implementation of ComBatLS is available at https://github.com/andy1764/ComBatFamily.
Collapse
Affiliation(s)
- Margaret Gardner
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Neuroscience Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Imaging Computing and Analytics, University of Pennsylvania, Perelman School of Medicine, Philadelphia, USA
| | | | - Rafael Romero-Garcia
- Instituto de Biomedicina de Sevilla (IBiS) HUVR/CSIC/Universidad de Sevilla/CIBERSAM, ISCIII, Dpto. de Fisiología Médica y Biofísica, Seville, ES
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Varun Warrier
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Lena Dorfschmidt
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Sheila Shanmugan
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA
| | - Paul Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jakob Seidlitz
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Aaron F Alexander-Bloch
- Brain-Gene-Development Lab, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Lifespan Brain Institute, The Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Andrew A Chen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
31
|
Oo TT, Pratchayasakul W, Chattipakorn K, Siri-Angkul N, Choovuthayakorn J, Charumporn T, Ongnok B, Arunsak B, Chunchai T, Kongkaew A, Songtrai S, Kaewsuwan S, Chattipakorn N, Chattipakorn S. Cyclosorus Terminans Extract Alleviates Neuroinflammation in Insulin Resistant Rats. Mol Neurobiol 2024; 61:4879-4890. [PMID: 38148371 DOI: 10.1007/s12035-023-03883-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 12/12/2023] [Indexed: 12/28/2023]
Abstract
High-fat diet consumption for an extended period causes obesity, systemic metabolic disturbance, and brain insulin resistance, resulting in neuroinflammation. Although the beneficial effect of Cyclosorus terminans extract on obesity-related insulin resistance has been demonstrated, little is known about how it affects neuroinflammation and brain insulin resistance in obese rats. Male Wistar rats were given either a normal diet (ND, n = 6) or a high-fat diet (HFD, n = 24) for a total of 14 weeks. At the beginning of the week, 13 rats in the ND group were given vehicle orally for 2 weeks, while rats on HFD diets were randomized to one of four groups and given either vehicle, 100 mg/kg/day of Cyclosorus terminans extract, 200 mg/kg/day of Cyclosorus terminans extract, or 20 mg/kg/day of pioglitazone orally for 2 weeks. After the experimental period, blood and brain samples were taken to assess metabolic and brain parameters. HFD-fed rats had obesity, systemic and brain insulin resistance, brain inflammation, microglial and astrocyte hyperactivity, and brain necroptosis. Treatment with 200 mg/kg/day of Cyclosorus terminans extract and pioglitazone equally attenuated obesity, insulin resistance, brain insulin dysfunction, and neuroinflammation in insulin resistant rats. Our findings suggest that Cyclosorus terminans extract may hold promise as a therapeutic agent for insulin resistance and neuroinflammation in obese conditions.
Collapse
Affiliation(s)
- Thura Tun Oo
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Wasana Pratchayasakul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Kenneth Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natthapat Siri-Angkul
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jirachaya Choovuthayakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thanapat Charumporn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Benjamin Ongnok
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sujinda Songtrai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Sireewan Kaewsuwan
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
- Phytomedicine and Pharmaceutical Biotechnology Excellence Center, Faculty of Pharmaceutical Sciences, Prince of Songkla University, Songkhla, Thailand
| | - Nipon Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
- Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn Chattipakorn
- Neurophysiology Unit, Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.
- Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
- Department of Oral Biology and Diagnostic Science, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
32
|
Guido G, Bonato A, Bonomi S, Franceschini S, Morris JC. Handedness in Alzheimer Disease: A Systematic Review. Alzheimer Dis Assoc Disord 2024; 38:298-304. [PMID: 39177174 DOI: 10.1097/wad.0000000000000640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/09/2024] [Indexed: 08/24/2024]
Abstract
Handedness has been a topic of scientific interest for many years. However, false and misleading ideas have dominated this field with a still limited amount of research into the association with clinical disorders like Alzheimer disease (AD). In accordance with PRISMA guidelines, PubMed, Embase, and Cochrane Library were searched for studies regarding the association of handedness and AD. Twelve articles were included. Case-control studies show that left-handedness is not a risk factor for late-onset AD (LOAD). However, nonright handedness was found to be more prevalent in patients with early-onset AD (EOAD). Moreover, handedness does not seem to affect neuropsychological performance. We also show that collapsing versus separating mixed and left-handedness may yield different results. Future research on the relation between handedness and AD may provide new insight into disease pathogenesis, improve rehabilitation, and help identify patients who will progress, aiding the design of prevention trials.
Collapse
Affiliation(s)
- Giorgio Guido
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania
| | - Alberto Bonato
- Department of Medicine, University of Padua, Padova, Italy
| | - Samuele Bonomi
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Simone Franceschini
- Department of Medicine and Aging Sciences, University of Chieti, Chieti, Italy
| | - John C Morris
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
33
|
Christian-Hinman CA. The Promise and Practicality of Addressing Sex as a Biological Variable and the Ovarian Cycle in Preclinical Epilepsy Research. Epilepsy Curr 2024; 24:274-279. [PMID: 39309055 PMCID: PMC11412390 DOI: 10.1177/15357597241261463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
Seizures and epilepsy affect people of all sexes and genders. In the last several years, funding agency initiatives such as the U.S. National Institutes of Health policy on sex as a biological variable (SABV) have intended to encourage researchers to study both males and females from cell to tissue to organism and analyze and report the resulting data with sex as a factor. Preclinical epilepsy research, however, continues to be plagued by confusion regarding both the SABV policy and its implementation, reflecting similar beliefs in the larger neuroscience research community. This article aims to address some common misconceptions and provide practical tools and suggestions for preclinical epilepsy researchers in implementing SABV and analysis of the female ovarian cycle (estrous cycle in rodents) in their research programs, with a focus on studies using rodent models. Examples of recent publications in preclinical epilepsy research highlighting the value of incorporating SABV and information on the estrous cycle are included. The specifics of how best to address SABV and the estrous cycle can vary depending on the needs and goals of a particular research program, but an embrace of these physiological factors by the preclinical epilepsy research community promises to yield more rigorous research and improved treatment strategies for all people with epilepsy.
Collapse
Affiliation(s)
- Catherine A. Christian-Hinman
- Department of Molecular and Integrative Physiology, Neuroscience Program, Beckman Institute of Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
34
|
Huibregtse ME, Cooper JJ, Ross DA. Hieroglyphs and Head Injuries: Sex Differences in Traumatic Brain Injury. Biol Psychiatry 2024; 95:e25-e27. [PMID: 38811076 DOI: 10.1016/j.biopsych.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/31/2024]
Affiliation(s)
- Megan E Huibregtse
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| | - Joseph J Cooper
- Department of Psychiatry, University of Illinois at Chicago, Chicago, Illinois
| | - David A Ross
- Department of Psychiatry, University of Alberta Faculty of Medicine and Dentistry, Edmonton, Alberta, Canada
| |
Collapse
|
35
|
Guglielmi V, Dalle Grave R, Leonetti F, Solini A. Female obesity: clinical and psychological assessment toward the best treatment. Front Endocrinol (Lausanne) 2024; 15:1349794. [PMID: 38765954 PMCID: PMC11099266 DOI: 10.3389/fendo.2024.1349794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/19/2024] [Indexed: 05/22/2024] Open
Abstract
Obesity is a heterogeneous condition which results from complex interactions among sex/gender, sociocultural, environmental, and biological factors. Obesity is more prevalent in women in most developed countries, and several clinical and psychological obesity complications show sex-specific patterns. Females differ regarding fat distribution, with males tending to store more visceral fat, which is highly correlated to increased cardiovascular risk. Although women are more likely to be diagnosed with obesity and appear more motivated to lose weight, as confirmed by their greater representation in clinical trials, males show better outcomes in terms of body weight and intra-abdominal fat loss and improvements in the metabolic risk profile. However, only a few relatively recent studies have investigated gender differences in obesity, and sex/gender is rarely considered in the assessment and management of the disease. This review summarizes the evidence of gender differences in obesity prevalence, contributing factors, clinical complications, and psychological challenges. In addition, we explored gender differences in response to obesity treatments in the specific context of new anti-obesity drugs.
Collapse
Affiliation(s)
- Valeria Guglielmi
- Unit of Internal Medicine and Obesity Center, Department of Systems Medicine, Policlinico Tor Vergata, University of Rome Tor Vergata, Rome, Italy
| | - Riccardo Dalle Grave
- Department of Eating and Weight Disorders, Villa Garda Hospital, Garda, VR, Italy
| | - Frida Leonetti
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Anna Solini
- Department of Surgical, Medical, Molecular and Critical Area Pathology, University of Pisa, Pisa, Italy
| |
Collapse
|
36
|
Kropp DR, Rainville JR, Glover ME, Tsyglakova M, Samanta R, Hage TR, Carlson AE, Clinton SM, Hodes GE. Chronic variable stress leads to sex specific gut microbiome alterations in mice. Brain Behav Immun Health 2024; 37:100755. [PMID: 38618010 PMCID: PMC11010943 DOI: 10.1016/j.bbih.2024.100755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 04/16/2024] Open
Abstract
Stress has been implicated in the incidence and severity of psychiatric and gastrointestinal disorders. The immune system is capable of modulating the activity and composition of the gut following stress and vice versa. In this study we sought to examine the sequential relationship between immune signaling and microbiome composition occurring in male and female mice over time using a variable stress paradigm. Tissue was collected prior to, during, and after the stress paradigm from the same mice. Cytokines from plasma and brain were quantified using a multiplexed cytokine assay. Fecal samples were collected at the same timepoints and 16S rRNA amplicon sequencing was performed to determine the relative abundance of microbiota residing in the guts of stressed and control mice. We found sex differences in the response of the gut microbiota to stress following 28 days of chronic variable stress but not 6 days of sub-chronic variable stress. Immune activation was quantified in the nucleus accumbens immediately following Sub-chronic variable when alterations of gut composition had not yet occurred. In both sexes, 28 days of stress induced significant changes in the proportion of Erysipelotrichaceae and Lactobacillaceae, but in opposite directions for male and female mice. Alterations to the gut microbiome in both sexes were associated with changes in cytokines related to eosinophilic immune activity. Our use of an animal stress model reveals the immune mechanisms that may underly changes in gut microbiome composition during and after stress. This study reveals potential drug targets and microbiota of interest for the intervention of stress related conditions.
Collapse
Affiliation(s)
- Dawson R. Kropp
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Jennifer R. Rainville
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Matthew E. Glover
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Mariya Tsyglakova
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Rupabali Samanta
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Tamer R. Hage
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Audrey E. Carlson
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Sarah M. Clinton
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Georgia E. Hodes
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
37
|
Haering S, Seligowski AV, Linnstaedt SD, Michopoulos V, House SL, Beaudoin FL, An X, Neylan TC, Clifford GD, Germine LT, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Swor RA, Gentile NT, Hudak LA, Pascual JL, Seamon MJ, Pearson C, Peak DA, Merchant RC, Domeier RM, Rathlev NK, O’Neil BJ, Sanchez LD, Bruce SE, Harte SE, McLean SA, Kessler RC, Koenen KC, Powers A, Stevens JS. Disentangling sex differences in PTSD risk factors. NATURE. MENTAL HEALTH 2024; 2:605-615. [PMID: 39534178 PMCID: PMC11556219 DOI: 10.1038/s44220-024-00236-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 03/14/2024] [Indexed: 11/16/2024]
Abstract
Despite extensive research on sex/gender differences in posttraumatic stress disorder (PTSD), underlying mechanisms are still not fully understood. Here we present a systematic overview of three sex/gender-related risk pathways. We assessed 16 risk factors as well as 3-month PTSD severity in a prospective cohort study (n=2924) of acutely traumatized individuals and investigated potential mediators in the pathway between sex assigned at birth and PTSD severity using multiple mediation analysis with regularization. Six risk factors were more prevalent/severe in women, and none were more pronounced in men. Analyses showed that acute stress disorder, neuroticism, lifetime sexual assault exposure, anxiety sensitivity, and pre-trauma anxiety symptoms fully mediated and uniquely contributed to the relationship between sex assigned at birth and PTSD severity. Our results demonstrate different risk mechanisms for women and men. Such knowledge can inform targeted interventions. Our systematic approach to differential risk pathways can be transferred to other mental disorders to guide sex- and gender-sensitive mental health research.
Collapse
Affiliation(s)
- Stephanie Haering
- Department of Education and Psychology, Clinical Psychological Intervention, Freie Universität Berlin, Berlin, Germany
- Charité Center for Health and Human Sciences, Gender in Medicine, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Sarah D. Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vasiliki Michopoulos
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Stacey L. House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Francesca L. Beaudoin
- Department of Epidemiology, Brown University, Providence, RI, USA
- Department of Emergency Medicine, Brown University, Providence, RI, USA
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Thomas C. Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gari D. Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, USA
| | - Laura T. Germine
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- The Many Brains Project, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Scott L. Rauch
- Department of Psychiatry, McLean Hospital, Belmont, MA, USA
- Institute for Technology in Psychiatry, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John P. Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alan B. Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Paul I. Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Phyllis L. Hendry
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine -Jacksonville, Jacksonville, FL, USA
| | - Christopher W. Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, NJ, USA
| | - Brittany E. Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, OH, USA
- Ohio State University College of Nursing, Columbus, OH, USA
| | - Robert A. Swor
- Department of Emergency Medicine, Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Nina T. Gentile
- Department of Emergency Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, USA
| | - Lauren A. Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Jose L. Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, PA, USA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mark J. Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, PA, USA
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, MI, USA
| | - David A. Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Roland C. Merchant
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, USA
| | - Robert M. Domeier
- Department of Emergency Medicine, Trinity Health-Ann Arbor, Ypsilanti, MI, USA
| | - Niels K. Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, MA, USA
| | - Brian J. O’Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, MI, USA
| | - Leon D. Sanchez
- Department of Emergency Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Emergency Medicine, Harvard Medical School, Boston, MA, USA
| | - Steven E. Bruce
- Department of Psychological Sciences, University of Missouri - St. Louis, St. Louis, MO, USA
| | - Steven E. Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Samuel A. McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ronald C. Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, MA, USA
| | - Karestan C. Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA, USA
| | - Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Jennifer S. Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
38
|
Gompers A, Olivier MT, Maney DL. Training in the implementation of sex and gender research policies: an evaluation of publicly available online courses. Biol Sex Differ 2024; 15:32. [PMID: 38570790 PMCID: PMC10988906 DOI: 10.1186/s13293-024-00610-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
BACKGROUND Recently implemented research policies requiring the inclusion of females and males have created an urgent need for effective training in how to account for sex, and in some cases gender, in biomedical studies. METHODS Here, we evaluated three sets of publicly available online training materials on this topic: (1) Integrating Sex & Gender in Health Research from the Canadian Institutes of Health Research (CIHR); (2) Sex as a Biological Variable: A Primer from the United States National Institutes of Health (NIH); and (3) The Sex and Gender Dimension in Biomedical Research, developed as part of "Leading Innovative measures to reach gender Balance in Research Activities" (LIBRA) from the European Commission. We reviewed each course with respect to their coverage of (1) What is required by the policy; (2) Rationale for the policy; (3) Handling of the concepts "sex" and "gender;" (4) Research design and analysis; and (5) Interpreting and reporting data. RESULTS All three courses discussed the importance of including males and females to better generalize results, discover potential sex differences, and tailor treatments to men and women. The entangled nature of sex and gender, operationalization of sex, and potential downsides of focusing on sex more than other sources of variation were minimally discussed. Notably, all three courses explicitly endorsed invalid analytical approaches that produce bias toward false positive discoveries of difference. CONCLUSIONS Our analysis suggests a need for revised or new training materials that incorporate four major topics: precise operationalization of sex, potential risks of over-emphasis on sex as a category, recognition of gender and sex as complex and entangled, and rigorous study design and data analysis.
Collapse
Affiliation(s)
- Annika Gompers
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Department of Psychology, Emory University, Atlanta, GA, USA
| | | | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA.
- Harvard-Radcliffe Institute, Cambridge, MA, USA.
| |
Collapse
|
39
|
Wang X, Xia Y, Yan R, Sun H, Huang Y, Xia Q, Sheng J, You W, Hua L, Tang H, Yao Z, Lu Q. Sex differences in anhedonia in bipolar depression: a resting-state fMRI study. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01765-4. [PMID: 38558145 DOI: 10.1007/s00406-024-01765-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/13/2024] [Indexed: 04/04/2024]
Abstract
Previous studies about anhedonia symptoms in bipolar depression (BD) ignored the unique role of gender on brain function. This study aims to explore the regional brain neuroimaging features of BD with anhedonia and the sex differences in these patients. The resting-fMRI by applying fractional amplitude of low-frequency fluctuation (fALFF) method was estimated in 263 patients with BD (174 high anhedonia [HA], 89 low anhedonia [LA]) and 213 healthy controls. The effects of two different factors in patients with BD were analyzed using a 3 (group: HA, LA, HC) × 2 (sex: male, female) ANOVA. The fALFF values were higher in the HA group than in the LA group in the right medial cingulate gyrus and supplementary motor area. For the sex-by-group interaction, the fALFF values of the right hippocampus, left medial occipital gyrus, right insula, and bilateral medial cingulate gyrus were significantly higher in HA males than in LA males but not females. These results suggested that the pattern of high activation could be a marker of anhedonia symptoms in BD males, and the sex differences should be considered in future studies of BD with anhedonia symptoms.
Collapse
Affiliation(s)
- Xiaoqin Wang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Yi Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Rui Yan
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Hao Sun
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Yinghong Huang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China
| | - Qiudong Xia
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Junling Sheng
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Wei You
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Lingling Hua
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Hao Tang
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China
| | - Zhijian Yao
- The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing, 210029, China.
- Nanjing Brain Hospital, Medical School of Nanjing University, 22 Hankou Road, Nanjing, 210093, China.
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing, 210096, China.
| | - Qing Lu
- School of Biological Sciences and Medical Engineering, Southeast University, 2 sipailou, Nanjing, 210096, China.
- Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, 210096, China.
| |
Collapse
|
40
|
Sanchis-Segura C, Wilcox RR. From means to meaning in the study of sex/gender differences and similarities. Front Neuroendocrinol 2024; 73:101133. [PMID: 38604552 DOI: 10.1016/j.yfrne.2024.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/12/2024] [Accepted: 04/07/2024] [Indexed: 04/13/2024]
Abstract
The incorporation of sex and gender (S/G) related factors is commonly acknowledged as a necessary step to advance towards more personalized diagnoses and treatments for somatic, psychiatric, and neurological diseases. Until now, most attempts to integrate S/G-related factors have been reduced to identifying average differences between females and males in behavioral/ biological variables. The present commentary questions this traditional approach by highlighting three main sets of limitations: 1) Issues stemming from the use of classic parametric methods to compare means; 2) challenges related to the ability of means to accurately represent the data within groups and differences between groups; 3) mean comparisons impose a results' binarization and a binary theoretical framework that precludes advancing towards precision medicine. Alternative methods free of these limitations are also discussed. We hope these arguments will contribute to reflecting on how research on S/G factors is conducted and could be improved.
Collapse
Affiliation(s)
- Carla Sanchis-Segura
- Departament de Psicologia bàsica, Clinica i Psicobiologia, Universitat Jaume I, Castelló, Spain.
| | - Rand R Wilcox
- Department of Psychology, University of Southern California, Los Angeles, USA
| |
Collapse
|
41
|
Thränhardt P, Veselaj A, Friedli C, Wagner F, Marti S, Diem L, Hammer H, Radojewski P, Wiest R, Chan A, Hoepner R, Salmen A. Sex differences in multiple sclerosis relapse presentation and outcome: a retrospective, monocentric study of 134 relapse events. Ther Adv Neurol Disord 2024; 17:17562864241237853. [PMID: 38532803 PMCID: PMC10964455 DOI: 10.1177/17562864241237853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/07/2024] [Indexed: 03/28/2024] Open
Abstract
Background Reporting of sex-specific analyses in multiple sclerosis (MS) is sparse. Disability accrual results from relapses (relapse-associated worsening) and independent thereof (progression independent of relapses). Objectives A population of MS patients during relapse treated per standard of care was analyzed for sex differences and short-term relapse outcome (3-6 months) as measured by Expanded Disability Status Scale (EDSS) change. Design Single-center retrospective study. Methods We analyzed 134 MS relapses between March 2016 and August 2020. All events required relapse treatment (steroids and/or plasma exchange). Demographic, disease, and paraclinical characteristics [cerebrospinal fluid (CSF) and magnetic resonance imaging (MRI)] were displayed separated by sex. Multivariable linear regression was run to identify factors associated with short-term EDSS change. Results Mean age at relapse was 38.4 years (95% confidence interval: 36.3-40.4) with a proportion of 71.6% women in our cohort. Smoking was more than twice as prevalent in men (65.8%) than women (32.3%). In- and after-relapse EDSSs were higher in men [men: 3.3 (2.8-3.9), women: 2.7 (2.4-3.0); men: 3.0 (1.3-3.6); women: 1.8 (1.5-2.1)] despite similar relapse intervention. Paraclinical parameters revealed no sex differences. Our primary model identified female sex, younger age, and higher EDSS at relapse to be associated with EDSS improvement. A higher immunoglobulin G (IgG) quotient (CSF/serum) was associated with poorer short-term outcome [mean days between first relapse treatment and last EDSS assessment 130.2 (79.3-181.0)]. Conclusion Sex and gender differences are important in outcome analyses of MS relapses. Effective treatment regimens need to respect putative markers for a worse outcome to modify long-term prognosis such as clinical and demographic variables, complemented by intrathecal IgG synthesis. Prospective trials should be designed to address these differences and confirm our results.
Collapse
Affiliation(s)
- Pauline Thränhardt
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Admirim Veselaj
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Christoph Friedli
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Neurology, Waikato Hospital, Hamilton, New Zealand
| | - Franca Wagner
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Stefanie Marti
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Lara Diem
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Helly Hammer
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Piotr Radojewski
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Roland Wiest
- University Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Translational Imaging Center, Swiss Institute for Translational and Entrepreneurial Medicine, Bern, Switzerland
| | - Andrew Chan
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Robert Hoepner
- Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Anke Salmen
- Department of Neurology, St Josef-Hospital Bochum, Ruhr-University Bochum, Gudrunstrasse 56, Bochum 44791, GermanyDepartment of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
42
|
Pape M, Miyagi M, Ritz SA, Boulicault M, Richardson SS, Maney DL. Sex contextualism in laboratory research: Enhancing rigor and precision in the study of sex-related variables. Cell 2024; 187:1316-1326. [PMID: 38490173 PMCID: PMC11219044 DOI: 10.1016/j.cell.2024.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/21/2023] [Accepted: 02/08/2024] [Indexed: 03/17/2024]
Abstract
Understanding sex-related variation in health and illness requires rigorous and precise approaches to revealing underlying mechanisms. A first step is to recognize that sex is not in and of itself a causal mechanism; rather, it is a classification system comprising a set of categories, usually assigned according to a range of varying traits. Moving beyond sex as a system of classification to working with concrete and measurable sex-related variables is necessary for precision. Whether and how these sex-related variables matter-and what patterns of difference they contribute to-will vary in context-specific ways. Second, when researchers incorporate these sex-related variables into research designs, rigorous analytical methods are needed to allow strongly supported conclusions. Third, the interpretation and reporting of sex-related variation require care to ensure that basic and preclinical research advance health equity for all.
Collapse
Affiliation(s)
- Madeleine Pape
- Institute of Social Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Miriam Miyagi
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Stacey A Ritz
- Department of Pathology & Molecular Medicine, Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Marion Boulicault
- Department of Philosophy, University of Edinburgh, Edinburgh, Scotland
| | - Sarah S Richardson
- Department of the History of Science, Harvard University, Cambridge, MA, USA; Committee on Degrees in Studies of Women, Gender, and Sexuality, Harvard University, Cambridge, MA, USA
| | - Donna L Maney
- Department of Psychology, Emory University, Atlanta, GA, USA; Harvard-Radcliffe Institute, Harvard University, Cambridge, MA, USA
| |
Collapse
|
43
|
Raimondi GM, Eng AK, Kenny MP, Britting MA, Ostroff LE. Track-by-Day: A standardized approach to estrous cycle monitoring in biobehavioral research. Behav Brain Res 2024; 461:114860. [PMID: 38216058 DOI: 10.1016/j.bbr.2024.114860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/14/2024]
Abstract
Despite known sex differences in brain function, female subjects are underrepresented in preclinical neuroscience research. This is driven in part by concerns about variability arising from estrous cycle-related hormone fluctuations, especially in fear- and anxiety-related research where there are conflicting reports as to whether and how the cycle influences behavior. The inconsistency may arise from a lack of common standards for tracking and reporting the cycle as opposed to inherent unpredictability in the cycle itself. The rat estrous cycle is conventionally tracked by assigning vaginal cytology smears to one of four qualitatively-defined stages. Although the cytology stages are of unequal length, the stage names are often, but not always, used to refer to the four cycle days. Subjective staging criteria and inconsistent use of terminology are not necessarily a problem in research on the cycle itself, but can lead to irreproducibility in neuroscience studies that treat the stages as independent grouping factors. We propose the explicit use of cycle days as independent variables, which we term Track-by-Day to differentiate it from traditional stage-based tracking, and that days be indexed to the only cytology feature that is a direct and rapid consequence of a hormonal event: a cornified cell layer formed in response to the pre-ovulatory 17β-estradiol peak. Here we demonstrate that cycle length is robustly regular with this method, and that the method outperforms traditional staging in detecting estrous cycle effects on Pavlovian fear conditioning and on a separate proxy for hormonal changes, uterine histology.
Collapse
Affiliation(s)
- Gianna M Raimondi
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA
| | - Ashley K Eng
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Murphy P Kenny
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Madison A Britting
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA
| | - Linnaea E Ostroff
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT, USA; Connecticut Institute for the Brain and Cognitive Science, University of Connecticut, Storrs, CT, USA; Institute of Materials Science, University of Connecticut, Storrs, CT, USA.
| |
Collapse
|
44
|
Kirby ED, Andrushko JW, Rinat S, D'Arcy RCN, Boyd LA. Investigating female versus male differences in white matter neuroplasticity associated with complex visuo-motor learning. Sci Rep 2024; 14:5951. [PMID: 38467763 PMCID: PMC10928090 DOI: 10.1038/s41598-024-56453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024] Open
Abstract
Magnetic resonance imaging (MRI) has increasingly been used to characterize structure-function relationships during white matter neuroplasticity. Biological sex differences may be an important factor that affects patterns of neuroplasticity, and therefore impacts learning and rehabilitation. The current study examined a participant cohort before and after visuo-motor training to characterize sex differences in microstructural measures. The participants (N = 27) completed a 10-session (4 week) complex visuo-motor training task with their non-dominant hand. All participants significantly improved movement speed and their movement speed variability over the training period. White matter neuroplasticity in females and males was examined using fractional anisotropy (FA) and myelin water fraction (MWF) along the cortico-spinal tract (CST) and the corpus callosum (CC). FA values showed significant differences in the middle portion of the CST tract (nodes 38-51) across the training period. MWF showed a similar cluster in the inferior portion of the tract (nodes 18-29) but did not reach significance. Additionally, at baseline, males showed significantly higher levels of MWF measures in the middle body of the CC. Combining data from females and males would have resulted in reduced sensitivity, making it harder to detect differences in neuroplasticity. These findings offer initial insights into possible female versus male differences in white matter neuroplasticity during motor learning. This warrants investigations into specific patterns of white matter neuroplasticity for females versus males across the lifespan. Understanding biological sex-specific differences in white matter neuroplasticity may have significant implications for the interpretation of change associated with learning or rehabilitation.
Collapse
Affiliation(s)
- Eric D Kirby
- BrainNet, Health and Technology District, Vancouver, BC, Canada
- Faculty of Individualized Interdisciplinary Studies, Simon Fraser University, Burnaby, BC, Canada
- Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Justin W Andrushko
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle Upon Tyne, UK
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Shie Rinat
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada
| | - Ryan C N D'Arcy
- BrainNet, Health and Technology District, Vancouver, BC, Canada.
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Faculty of Applied Sciences, Simon Fraser University, Burnaby, BC, Canada.
| | - Lara A Boyd
- DM Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
- Brain Behaviour Laboratory, Department of Physical Therapy, Faculty of Medicine, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
45
|
Wierenga LM, Ruigrok A, Aksnes ER, Barth C, Beck D, Burke S, Crestol A, van Drunen L, Ferrara M, Galea LAM, Goddings AL, Hausmann M, Homanen I, Klinge I, de Lange AM, Geelhoed-Ouwerkerk L, van der Miesen A, Proppert R, Rieble C, Tamnes CK, Bos MGN. Recommendations for a Better Understanding of Sex and Gender in the Neuroscience of Mental Health. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100283. [PMID: 38312851 PMCID: PMC10837069 DOI: 10.1016/j.bpsgos.2023.100283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 02/06/2024] Open
Abstract
There are prominent sex/gender differences in the prevalence, expression, and life span course of mental health and neurodiverse conditions. However, the underlying sex- and gender-related mechanisms and their interactions are still not fully understood. This lack of knowledge has harmful consequences for those with mental health problems. Therefore, we set up a cocreation session in a 1-week workshop with a multidisciplinary team of 25 researchers, clinicians, and policy makers to identify the main barriers in sex and gender research in the neuroscience of mental health. Based on this work, here we provide recommendations for methodologies, translational research, and stakeholder involvement. These include guidelines for recording, reporting, analysis beyond binary groups, and open science. Improved understanding of sex- and gender-related mechanisms in neuroscience may benefit public health because this is an important step toward precision medicine and may function as an archetype for studying diversity.
Collapse
Affiliation(s)
- Lara Marise Wierenga
- Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Amber Ruigrok
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Eira Ranheim Aksnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Claudia Barth
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Dani Beck
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Sarah Burke
- Interdisciplinary Center for Psychopathology and Emotion regulation, Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arielle Crestol
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Lina van Drunen
- Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Maria Ferrara
- Department of Neuroscience and Rehabilitation, Institute of Psychiatry, University of Ferrara, Ferrara, Italy
- University Hospital Psychiatry Unit, Integrated Department of Mental Health and Addictive Behavior, University S. Anna Hospital and Health Trust, Ferrara, Italy
| | - Liisa Ann Margaret Galea
- Centre for Addiction and Mental Health, Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Anne-Lise Goddings
- University College London Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Markus Hausmann
- Department of Psychology, Durham University, Durham, United Kingdom
| | - Inka Homanen
- Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Ineke Klinge
- Dutch Society for Gender & Health, the Netherlands
- Gendered Innovations at European Commission, Brussels, Belgium
| | - Ann-Marie de Lange
- Laboratory for Research in Neuroimaging, Centre for Research in Neurosciences, Department of Clinical Neurosciences, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
- Department of Psychology, University of Oslo, Oslo, Norway
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Lineke Geelhoed-Ouwerkerk
- Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| | - Anna van der Miesen
- Department of Child and Adolescent Psychiatry, Center of Expertise on Gender Dysphoria, Amsterdam University Medical Center, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Ricarda Proppert
- Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Carlotta Rieble
- Department of Clinical Psychology, Leiden University, Leiden, the Netherlands
| | - Christian Krog Tamnes
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Marieke Geerte Nynke Bos
- Institute of Psychology, Leiden University, Leiden, the Netherlands
- Leiden Institute for Brain and Cognition, Leiden University, Leiden, the Netherlands
| |
Collapse
|
46
|
Cherian CM, Reeves HR, De Silva D, Tsao S, Marshall KE, Rideout EJ. Consideration of sex as a biological variable in diabetes research across twenty years. Biol Sex Differ 2024; 15:19. [PMID: 38409052 PMCID: PMC10895746 DOI: 10.1186/s13293-024-00595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/16/2024] [Indexed: 02/28/2024] Open
Abstract
BACKGROUND Sex differences exist in the risk of developing type 1 and type 2 diabetes, and in the risk of developing diabetes-associated complications. Sex differences in glucose homeostasis, islet and β cell biology, and peripheral insulin sensitivity have also been reported. Yet, we lack detailed information on the mechanisms underlying these differences, preventing the development of sex-informed therapeutic strategies for persons living with diabetes. To chart a path toward greater inclusion of biological sex as a variable in diabetes research, we first need a detailed assessment of common practices in the field. METHODS We developed a scoring system to evaluate the inclusion of biological sex in manuscripts published in Diabetes, a journal published by the American Diabetes Association. We chose Diabetes as this journal focuses solely on diabetes and diabetes-related research, and includes manuscripts that use both clinical and biomedical approaches. We scored papers published across 3 years within a 20-year period (1999, 2009, 2019), a timeframe that spans the introduction of funding agency and journal policies designed to improve the consideration of biological sex as a variable. RESULTS Our analysis showed fewer than 15% of papers used sex-based analysis in even one figure across all study years, a trend that was reproduced across journal-defined categories of diabetes research (e.g., islet studies, signal transduction). Single-sex studies accounted for approximately 40% of all manuscripts, of which > 87% used male subjects only. While we observed a modest increase in the overall inclusion of sex as a biological variable during our study period, our data highlight significant opportunities for improvement in diabetes research practices. We also present data supporting a positive role for journal policies in promoting better consideration of biological sex in diabetes research. CONCLUSIONS Our analysis provides significant insight into common practices in diabetes research related to the consideration of biological sex as a variable. Based on our analysis we recommend ways that diabetes researchers can improve inclusion of biological sex as a variable. In the long term, improved practices will reveal sex-specific mechanisms underlying diabetes risk and complications, generating knowledge to enable the development of sex-informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Celena M Cherian
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
| | - Hayley R Reeves
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- School of Molecular Biosciences, University of Glasgow, Glasgow, UK
| | - Duneesha De Silva
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Orthopaedics, The University of British Columbia, Vancouver, Canada
| | - Serena Tsao
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Montréal, Canada
| | - Katie E Marshall
- Department of Zoology, The University of British Columbia, Vancouver, Canada
| | - Elizabeth J Rideout
- Department of Cellular and Physiological Sciences, Life Sciences Institute, The University of British Columbia, Vancouver, Canada.
- Life Sciences Center, 2350 Health Sciences Mall (RM3308), Vancouver, BC, V6T 1Z3, Canada.
| |
Collapse
|
47
|
Heffernan M, Woodward M, De Silva DA, Chen C, Anderson CS, Kremer C, Harris K, Sandset EC, Ferretti MT, Caso V, Carcel C. Sex and Gender Publications in Brain Health: A Mapping Review of the Asia-Pacific Region. Cerebrovasc Dis 2024; 54:89-95. [PMID: 38402856 DOI: 10.1159/000537946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 02/14/2024] [Indexed: 02/27/2024] Open
Abstract
INTRODUCTION Reporting of sex and gender analysis in medical research has been shown to improve quality of the science and ensure findings are applicable to women and men. There is conflicting evidence on whether efforts by funding agencies and medical journals to encourage reporting of sex and gender analysis have resulted in tangible improvements. This study mapped the inclusion of sex and gender analysis in stroke and dementia research conducted in the Asia-Pacific region. METHODS A systematic search for Asia-Pacific stroke and dementia research was conducted in PubMed and papers included from the period 2012 to 2022. Eligible studies were reviewed for inclusion of a primary sex or gender focus and categorized by type of sex and gender analysis. Author gender was determined using an algorithm and its associations with inclusion of sex and gender analysis were examined. RESULTS Total Asia-Pacific publications increased from 109 in 2012 to 313 in 2022, but the rate of studies with a primary sex or gender focus did not increase significantly (R2 = 0.06, F(1, 9) = 0.59, p = 0.46). Australia, China, India, Japan, and South Korea produced the most publications over the study period and were the only countries with at least 50 publications. The impact of author gender was mixed, with female first authorship associated with inclusion of sex or gender analysis and last female authorship associated with studies having a primary sex or gender focus. CONCLUSIONS In the Asia-Pacific, brain health research is currently centred around high-income countries, and efforts are needed to ensure research findings are applicable throughout the region. While there was a general increase in brain health publications over the last decade, the rate of sex and gender analysis was unchanged. This demonstrates that even with efforts in some countries in place, there is currently a lack of progress in the Asia-Pacific region to produce more research focussing on sex and gender analysis.
Collapse
Affiliation(s)
- Megan Heffernan
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Mark Woodward
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
- The George Institute for Global Health, School of Public Health, Imperial College London, London, UK
| | - Deidre Anne De Silva
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital Campus, Singapore, Singapore
| | - Christopher Chen
- Departments of Pharmacology and Psychological Medicine, Memory Aging and Cognition Centre, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Craig S Anderson
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Christine Kremer
- Neurology Department, Skåne University Hospital Malmö, Malmo, Sweden
- Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Katie Harris
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| | - Else Charlotte Sandset
- Department of Neurology, Oslo University Hospital, Oslo, Norway
- Department of Research and Development, The Norwegian Air Ambulance Foundation, Oslo, Norway
| | - Maria Teresa Ferretti
- Division for Clinical Geriatrics, Karolinska Institutet, Center of Alzheimer Research (CAR), Stockholm, Sweden
| | - Valeria Caso
- Santa Maria della Misericordia University of Perugia Stroke Unit, Perugia, Italy
| | - Cheryl Carcel
- The George Institute for Global Health, Faculty of Medicine, University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
48
|
Melbourne JK, Wooden JI, Carlson ER, Anasooya Shaji C, Nixon K. Neuroimmune Activation and Microglia Reactivity in Female Rats Following Alcohol Dependence. Int J Mol Sci 2024; 25:1603. [PMID: 38338883 PMCID: PMC10855949 DOI: 10.3390/ijms25031603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/12/2024] [Accepted: 01/13/2024] [Indexed: 02/12/2024] Open
Abstract
The rates of alcohol use disorder among women are growing, yet little is known about how the female brain is affected by alcohol. The neuroimmune system, and specifically microglia, have been implicated in mediating alcohol neurotoxicity, but most preclinical studies have focused on males. Further, few studies have considered changes to the microglial phenotype when examining the effects of ethanol on brain structure and function. Therefore, we quantified microglial reactivity in female rats using a binge model of alcohol dependence, assessed through morphological and phenotypic marker expression, coupled with regional cytokine levels. In a time- and region-dependent manner, alcohol altered the microglial number and morphology, including the soma and process area, and the overall complexity within the corticolimbic regions examined, but no significant increases in the proinflammatory markers MHCII or CD68 were observed. The majority of cytokine and growth factor levels examined were similarly unchanged. However, the expression of the proinflammatory cytokine TNFα was increased, and the anti-inflammatory IL-10, decreased. Thus, female rats showed subtle differences in neuroimmune reactivity compared to past work in males, consistent with reports of enhanced neuroimmune responses in females across the literature. These data suggest that specific neuroimmune reactions in females may impact their susceptibility to alcohol neurotoxicity and other neurodegenerative events with microglial contributions.
Collapse
Affiliation(s)
| | | | | | | | - Kimberly Nixon
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; (J.K.M.)
| |
Collapse
|
49
|
Saha P, Weigle IQ, Slimmon N, Poli PB, Patel P, Zhang X, Cao Y, Michalkiewicz J, Gomm A, Zhang C, Tanzi RE, Dylla N, Al-Hendy A, Sisodia SS. Early modulation of the gut microbiome by female sex hormones alters amyloid pathology and microglial function. Sci Rep 2024; 14:1827. [PMID: 38246956 PMCID: PMC10800351 DOI: 10.1038/s41598-024-52246-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
It is well-established that women are disproportionately affected by Alzheimer's disease. The mechanisms underlying this sex-specific disparity are not fully understood, but several factors that are often associated-including interactions of sex hormones, genetic factors, and the gut microbiome-likely contribute to the disease's etiology. Here, we have examined the role of sex hormones and the gut microbiome in mediating Aβ amyloidosis and neuroinflammation in APPPS1-21 mice. We report that postnatal gut microbiome perturbation in female APPPS1-21 mice leads to an elevation in levels of circulating estradiol. Early stage ovariectomy (OVX) leads to a reduction of plasma estradiol that is correlated with a significant alteration of gut microbiome composition and reduction in Aβ pathology. On the other hand, supplementation of OVX-treated animals with estradiol restores Aβ burden and influences gut microbiome composition. The reduction of Aβ pathology with OVX is paralleled by diminished levels of plaque-associated microglia that acquire a neurodegenerative phenotype (MGnD-type) while estradiol supplementation of OVX-treated animals leads to a restoration of activated microglia around plaques. In summary, our investigation elucidates the complex interplay between sex-specific hormonal modulations, gut microbiome dynamics, metabolic perturbations, and microglial functionality in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Piyali Saha
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Ian Q Weigle
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Nicholas Slimmon
- School of Biomedical Sciences, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pedro Blauth Poli
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Priyam Patel
- Center for Genetic Medicine, Northwestern University, Chicago, IL, USA
| | - Xiaoqiong Zhang
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA
| | - Yajun Cao
- Genomic Facility, The University of Chicago, Chicago, IL, USA
| | - Julia Michalkiewicz
- Department of Physiology and Biophysics, The University of Illinois, Chicago, IL, USA
| | - Ashley Gomm
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Can Zhang
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Rudolph E Tanzi
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nicholas Dylla
- Duchossois Family Institute, The University of Chicago, Chicago, IL, USA
| | - Ayman Al-Hendy
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL, USA
| | - Sangram S Sisodia
- Department of Neurobiology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
50
|
Thornton HF, LaHue SC, Bove R, Waters J, O'Neal MA, Bui E. Emerging Subspecialties in Neurology: Women's Neurology. Neurology 2024; 102:e208009. [PMID: 38165380 PMCID: PMC10834140 DOI: 10.1212/wnl.0000000000208009] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/27/2023] [Indexed: 01/03/2024] Open
Abstract
The influence of sex and gender on neurologic disease has become increasingly recognized in science and medicine. This is evident across a woman's lifespan especially during periods of hormonal transitions. Leaders in neurology have advocated for the importance of sex and gender-enriched clinical care, education, and research. The scope of women's neurology spans across a woman's life including puberty, adolescence, peripartum care, menopause, and aging. Women's neurology is a new subspecialty that aligns with a specific patient population and intersects with established neurology subspecialties and other specialties such as obstetrics, maternal fetal medicine, endocrinology, and psychiatry. Its establishment and collaboration with existing and emerging fields enables a more comprehensive approach to neurologic illness through the lens of sex and gender. Women's neurology is rapidly evolving through increased focus at academic centers, including expanded women's neurology curricula, dedicated women's neurology fellowship programs, improved understanding of sex and gender issues in neurosciences, and expansion of therapeutic options. Herein, we describe the history of the women's neurology field, emerging need for women's neurology specialists, information about training and career opportunities, and future directions.
Collapse
Affiliation(s)
- Hayley F Thornton
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| | - Sara C LaHue
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| | - Riley Bove
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| | - Janet Waters
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| | - Mary A O'Neal
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| | - Esther Bui
- From the Department of Clinical Neurosciences (H.F.T.), Cumming School of Medicine, University of Calgary, Alberta, Canada; Department of Neurology (S.C.L., R.B.), and UCSF Weill Institute for Neurosciences (S.C.L., R.B.), Department of Neurology, University of California, San Francisco; Buck Institute for Research on Aging (S.C.L.), Novato, CA; Department of Neurology (J.W.), University of Pittsburgh Medical Center, PA; Department of Neurology (M.A.O.N.), Brigham and Women's Hospital, Boston, MA; Division of Neurology (E.B.), Department of Medicine, University of Toronto; and Krembil Brain Institute (E.B.), University Health Network, Toronto, Ontario, Canada
| |
Collapse
|