1
|
Liu L, Liu W, Deng W. Amylin inhibits gastric cancer progression by targeting CCN1 and affecting the PI3K/AKT signalling pathway. Ann Med 2025; 57:2480754. [PMID: 40165038 DOI: 10.1080/07853890.2025.2480754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 02/22/2025] [Accepted: 03/10/2025] [Indexed: 04/02/2025] Open
Abstract
METHODS This study used a combination of in vitro and in vivo experiments to investigate the role of amylin in the progression of GC. The expression of amylin in GC and its clinical correlation were evaluated using 38 pairs of GC and healthy human clinical samples. In vitro studies, human GC cell lines were treated with amylin to evaluate the effects of amylin on the proliferation, apoptosis and migration of GC cells. In in vivo studies, xenograft mouse models were established by subcutaneous injection of GC cells into nude mice, followed by treatment with amylin to assess tumor growth. Finally, Next-Generation Sequencing Technology (RNA-seq) was used to explore the potential mechanism of amylin on GC. RESULTS We found that amylin expression was reduced in GC compared to adjacent normal gastric tissues and that elevated amylin expression was negatively correlated with adverse pathological factors (p < 0.05). Additionally, we demonstrated that amylin impeded the growth, invasion, migration, and colony formation of GC cells and suppressed the epithelial-to-mesenchymal transformation of these cells (p < 0.05). Tumour xenograft model experiments confirmed the tumour-suppressive effect of amylin in subcutaneous tumours in nude mice (p < 0.05). Transcriptome sequencing (RNA-seq) revealed that amylin significantly down-regulated CCN1 gene expression in GC cells (p < 0.001). Further intervention targeting CCN1 verified its significance as a target of amylin's anti-carcinogenic function in GC. Additionally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis revealed that amylin exerted its oncogenic effects by inhibiting the PI3K/Akt signalling pathway (p < 0.05). CONCLUSIONS Our findings demonstrate that amylin plays a crucial role in suppressing gastric cancer progression by targeting CCN1 and inhibiting the PI3K/Akt signalling pathway. These results suggest that amylin could serve as a potential therapeutic agent for GC treatment.
Collapse
Affiliation(s)
- Li Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenxuan Liu
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenhong Deng
- Department of General Surgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
2
|
Jahandar-Lashaki S, Farajnia S, Faraji-Barhagh A, Hosseini Z, Bakhtiyari N, Rahbarnia L. Phage Display as a Medium for Target Therapy Based Drug Discovery, Review and Update. Mol Biotechnol 2025; 67:2161-2184. [PMID: 38822912 DOI: 10.1007/s12033-024-01195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 05/07/2024] [Indexed: 06/03/2024]
Abstract
Phage libraries are now amongst the most prominent approaches for the identification of high-affinity antibodies/peptides from billions of displayed phages in a specific library through the biopanning process. Due to its ability to discover potential therapeutic candidates that bind specifically to targets, phage display has gained considerable attention in targeted therapy. Using this approach, peptides with high-affinity and specificity can be identified for potential therapeutic or diagnostic use. Furthermore, phage libraries can be used to rapidly screen and identify novel antibodies to develop immunotherapeutics. The Food and Drug Administration (FDA) has approved several phage display-derived peptides and antibodies for the treatment of different diseases. In the current review, we provided a comprehensive insight into the role of phage display-derived peptides and antibodies in the treatment of different diseases including cancers, infectious diseases and neurological disorders. We also explored the applications of phage display in targeted drug delivery, gene therapy, and CAR T-cell.
Collapse
Affiliation(s)
- Samaneh Jahandar-Lashaki
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Safar Farajnia
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Aref Faraji-Barhagh
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zahra Hosseini
- Department of Microbiology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Nasim Bakhtiyari
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
3
|
Xu S, Sun X, Gu Y, Liu T, Liu S, Weng Y, Zhang W, Wang L, Zhou M, Lu G, Tang M, Wang H, Li J. ECM characterization and 3D bioprinted models of NSCLC for investigating stiffness-dependent tumor behavior and drug response. Mater Today Bio 2025; 32:101823. [PMID: 40416783 PMCID: PMC12098162 DOI: 10.1016/j.mtbio.2025.101823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/02/2025] [Accepted: 04/30/2025] [Indexed: 05/27/2025] Open
Abstract
The heterogeneity and complex extracellular matrix (ECM) characteristics of non-small cell lung cancer (NSCLC) present significant challenges for understanding its pathological mechanisms and advancing precise treatment strategies. This study characterized the physicochemical properties of native NSCLC ECM to inform the biomimetic design of 3D models utilizing biomaterials and light-based 3D bioprinting technologies. A tunable 3D model was constructed that replicates the interfacial structures and matrix stiffness of both lung cancer tissue and adjacent normal tissue. This model elucidates the impact of matrix stiffness on cellular behaviors, including proliferation, invasion, and drug sensitivity, and delineates the role of the CCN1 gene under different mechanical conditions. Specifically, it demonstrates that a reduction in CCN1 expression within soft matrices can attenuate the migratory and proliferative capabilities of tumor cells. Furthermore, primary NSCLC patient-derived bioprinted tissues validated the model fidelity to clinical samples and its predictive potential for responses to combined chemotherapy and immunotherapy. This study establishes a versatile platform for NSCLC modeling and research, advancing biomaterial and bioprinting strategies to replicate the tumor microenvironment and optimize therapeutic approaches.
Collapse
Affiliation(s)
- Shiwei Xu
- Department of Thoracic Surgery, Afflicated Hospital of Jiangnan University, Wuxi, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Xin Sun
- Jiangsu Hansoh Pharmaceutical, Shanghai, 200120, China
| | - Yexin Gu
- Cyberiad Biotechnology, Shanghai, 201112, China
| | - Tong Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Shiyin Liu
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Yuan Weng
- Department of Thoracic Surgery, Afflicated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Weimin Zhang
- Department of Thoracic Surgery, Afflicated Hospital of Jiangnan University, Wuxi, 214122, China
| | - Leisheng Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| | - Mengzhen Zhou
- School of Medicine, Southeast University, Nanjing, 210009, China
| | - Guye Lu
- Department of Pulmonary Medicine, Wuxi People's Hospital, Wuxi, 214023, China
| | - Min Tang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Haifeng Wang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Shanghai, 200433, China
| | - Jinyou Li
- Department of Thoracic Surgery, Afflicated Hospital of Jiangnan University, Wuxi, 214122, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214000, China
| |
Collapse
|
4
|
Wu F, Liu Y, Zhang M, Yuan X, Jin Y, Li Y, Wang R, Hao Y, Fang B. Effects of 1,3-Dioleoyl-2-palmitoylglycerol on Intestine Structural and Functional Development in Early Life. Mol Nutr Food Res 2025; 69:e70051. [PMID: 40129020 DOI: 10.1002/mnfr.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 03/26/2025]
Abstract
1,3-Dioleoyl-2-palmitoyl-glycerol (OPO) is a specific triglyceride in human breast milk, and it has been added to infant formula to mimic human breast milk fat. Existing studies only focused on its effects on fatty acid and calcium absorption, as well as the intestinal microbial composition; however, effects of OPO on the early-life development of intestine were still unclear. Our study explored the effects of OPO on intestinal epithelial structure and barrier construction in neonatal mice and the involvement of intestinal microorganisms. OPO supplementation significantly increased the number of intestinal stem cells, which in turn promoted villus and crypt, and promoted goblet cell and Paneth cell differentiation. OPO also promotes epithelial barrier integrity by increasing the expression of mucin 2, lysozyme 1, and tight junction proteins. Furthermore, the benefits of OPO were associated with the higher abundance of beneficial bacteria (unclassified_f_Muribaculaceae, Akkermansia, Bifidobacterium, and Blautia) and elevated butyrate levels. This study demonstrates the efficacy of OPO on intestinal health in neonatal mice beyond defecation, expands the understanding of the biological functions of OPO, and expands its application in intestinal health products targeting special populations, such as the elderly or individuals with intestinal fragility or injury.
Collapse
Affiliation(s)
- Fang Wu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yaqiong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ming Zhang
- School of Food Science and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Xinlei Yuan
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
- College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yutong Jin
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yixuan Li
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Ran Wang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Yanling Hao
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| | - Bing Fang
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing, China
| |
Collapse
|
5
|
Won JH, Sitnikov D, Hong J. Protective effects of carotenoids against blue light induced-cellular damage in human retinal pigment epithelium. Food Sci Biotechnol 2025; 34:1713-1723. [PMID: 40151609 PMCID: PMC11936865 DOI: 10.1007/s10068-024-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 03/29/2025] Open
Abstract
The retinal pigmented epithelium (RPE) is constantly exposed to visible light, including blue light (BL) that creates reactive oxygen species (ROS), which are harmful to DNA and induce cellular senescence. Carotenoids are recognized for their antioxidant properties, but their protective effect on DNA repair and cellular senescence under BL induced oxidative stress has not been evaluated. After BL irradiation, the positive senescence-associated-β-galactosidase (SA-β-gal) staining, and gene expression of p16 INK4a and p21 Waf/Cip1 were upregulated in ARPE-19 cells. Pretreatment with carotenoids reduced ROS, p-H2A.X nuclear foci, and SA-β-gal positive cells induced by BL irradiation. Furthermore, pretreatment with carotenoids reduced the secretion of IL-6 and VEGF triggered by BL. Since increased senescent cells and secretion of IL-6 and VEGF are involved in age-related macular degeneration pathogenesis, our results support that carotenoid supplementation has a potential role in protecting the eyes from the deleterious effects of excessive BL exposure. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01757-z.
Collapse
Affiliation(s)
- Jong Hoon Won
- Amway Corporation, Amway I&S, 7575 Fulton St E, Ada, MI 49355 USA
| | - Dmitri Sitnikov
- Amway Corporation, Amway I&S, 7575 Fulton St E, Ada, MI 49355 USA
| | - Jina Hong
- Nutrilite Health Institute, Amway I&S, 5600 Beach Blvd, Buena Park, CA 90621 USA
| |
Collapse
|
6
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
7
|
Du H, Li K, Guo W, Na M, Zhang J, Na R. Maternal Roughage Sources Influence the Gastrointestinal Development of Goat Kids by Modulating the Colonization of Gastrointestinal Microbiota. Animals (Basel) 2025; 15:393. [PMID: 39943163 PMCID: PMC11815875 DOI: 10.3390/ani15030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
During pregnancy and lactation, maternal nutrition is linked to the full development of offspring and may have long-term or lifelong effects. However, the influence of the doe's diet on the gastrointestinal (GI) tract of young kids remains largely unexplored. Therefore, we investigated the effects of doe roughage sources (alfalfa hay, AH, or corn straw, CS) during pregnancy and lactation on kid growth, GI morphology, barrier function, metabolism, immunity, and microbiome composition. The results indicate that, compared with the CS group, does fed an AH diet had significantly higher feed intake (p < 0.01). However, CS-fed does exhibited higher neutral detergent fiber (NDF) digestibility (p < 0.05). There were no significant differences in animal (doe or kid) weight among the groups (p > 0.05). In the rumen of goat kids, the AH group exhibited a higher papillae width and increased levels of interleukin-10 (IL-10) compared with the CS group (p < 0.05). In the jejunum of goat kids, the AH group showed a higher villus-height-to-crypt-depth (VH/CD) ratio, as well as elevated levels of secretory immunoglobulin A (SIgA), immunoglobulin G (IgG), IL-10, acetate, and total volatile fatty acids (TVFAs), when compared with the CS group (p < 0.05). Transcriptome analysis revealed that the source of roughage in does was associated with changes in the GI transcriptome of the kids. Differentially expressed genes (DEGs) in the rumen were mainly associated with tissue development and immune regulation, while the DEGs in the jejunum were mainly associated with the regulation of transferase activity. Spearman correlation analyses indicated significant associations between GI DEGs and phenotypic indicators related to GI development, immunity, and metabolism. LEfSe analysis identified 14 rumen microbial biomarkers and 6 jejunum microbial biomarkers. Notably, these microorganisms were also enriched in the rumen or day 28 milk of the does. Further microbial composition analysis revealed significant correlations between the rumen and milk microbiomes of does and the rumen or jejunum microbiomes of kids. Association analyses indicated that microbial biomarkers interact with host genes, thereby affecting the development and function of the GI system. Additionally, correlation analyses revealed significant association between milk metabolites and the rumen and jejunum microbiomes of kids. This study demonstrated that maternal diet significantly influences the development of microbial ecosystems in offspring by modulating microbial communities and metabolite composition. The early colonization of GI microorganisms is crucial for the structural development, barrier function, immune capacity, and microbial metabolic activity of the GI system.
Collapse
Affiliation(s)
- Haidong Du
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Kenan Li
- Grassland Research Institute of Chinese Academy of Agricultural Sciences, Hohhot 010010, China;
| | - Wenliang Guo
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Meila Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Jing Zhang
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| | - Renhua Na
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China; (H.D.); (W.G.); (M.N.); (J.Z.)
| |
Collapse
|
8
|
Yang F, Wang Y, Yang D, Zheng X, Xie X, Feng K, Cheng G, Hu Q, Chai C, Zhang Q. Topography immune-responsive silk films for skin regeneration. Int J Biol Macromol 2025; 287:138543. [PMID: 39653216 DOI: 10.1016/j.ijbiomac.2024.138543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 12/17/2024]
Abstract
Scar formation and chronic refractory wounds pose a significant threat to public health, with abnormal immune regulation as a key characteristic. However, topography, a crucial factor influencing immune responses, has not been adequately considered in the design of wound dressings. In this study, we constructed a hierarchical structure on silk fibroin (SF) films by combining soft lithography and femtosecond laser ablation, without altering the intrinsic properties of SF. The discontinuity in the hierarchical structure induced a transformation in the morphology of macrophage RAW264.7 cells from round to spindle or pancake-like shapes, leading to phenotypic polarization toward M2 or M1. The timely transition from M1 to M2 polarization and the balance between these states promoted fibroblast L929 cells to express mRNA for FN, coll-I, TGF-β1, and α-SMA. The hierarchical structure of SF films facilitates full-thickness wound repair in vivo by regulating inflammation and promoting neovascularization and collagen deposition. Thus, hierarchical topography presents a promising strategy for the design of immunomodulatory wound dressings.
Collapse
Affiliation(s)
- Futing Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Yonglong Wang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Daiying Yang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xi Zheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Xiaofan Xie
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Kun Feng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Guotao Cheng
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Hu
- School of Material Science and Engineering, Jingdezhen Ceramic University, Jingdezhen 333001, China
| | - Chunli Chai
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
| | - Qing Zhang
- College of Sericulture, Textile and Biomass Sciences, State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Xue H, Li P, Guo J, Chen T, Li S, Zhang L. Phillygenin ameliorates tight junction proteins reduction, fibrosis, and apoptosis in mice with chronic colitis via TGR5-mediated PERK-eIF2α-Ca 2+ pathway. J Pharm Anal 2025; 15:101042. [PMID: 39902458 PMCID: PMC11788720 DOI: 10.1016/j.jpha.2024.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 02/05/2025] Open
Abstract
Ulcerative colitis (UC) is an idiopathic, relapsing, and etiologically complicated chronic inflammatory bowel disease. Despite substantial progress in the management of UC, the outcomes of mucosal barrier repair are unsatisfactory. In this study, phillygenin (PHI) treatment alleviated the symptoms of chronic colitis in mice, including body weight loss, severe disease activity index scores, colon shortening, splenomegaly, oxidative stress, and inflammatory response. In particular, PHI treatment ameliorated the tight junction proteins (TJs) reduction, fibrosis, apoptosis, and intestinal stem cell activity, indicating that PHI exerted beneficial effects on the intestinal mucosal barrier in mice with chronic colitis. In the NCM460 cells damage model, dextran sulfate sodium triggered the sequential induction of TJs reduction, fibrosis, and apoptosis. Takeda G protein-coupled receptor-5 (TGR5) dysfunction mediated NCM460 cell injury. Moreover, PHI treatment enhanced TJs and suppressed fibrosis and apoptosis to maintain NCM460 cell function, depending on TGR5 activation. PHI promoted TGR5 activation and elevated intracellular cyclic adenosine monophosphate levels in HEK 293T cells transfected with TGR5 expression plasmids. Cellular thermal shift assay and molecular docking studies confirmed that PHI directly binds to TGR5, indicating that PHI is an agonist of TGR5. The process of PERK-eIF2α pathway-mediated endoplasmic reticulum Ca2+ release was involved in NCM460 cell injury as well, which was associated with TGR5 dysfunction. When NCM460 cells were pretreated with PHI, the PERK-eIF2α pathway and elevated Ca2+ levels were blocked. In conclusion, our study demonstrated a novel mechanism that PHI inhibited the PERK-eIF2α-Ca2+ pathway through TGR5 activation to against DSS-induced TJs reduction, fibrosis, and apoptosis.
Collapse
Affiliation(s)
- Huanhuan Xue
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Peijie Li
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
- Modern Research Center for Traditional Chinese Medicine, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Jing Guo
- School of Ethnic-Minority Medicine, Guizhou Minzu University, Guiyang, 550025, China
| | - Tinggui Chen
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Shifei Li
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| | - Liwei Zhang
- Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University, Taiyuan, 030006, China
| |
Collapse
|
10
|
Guo X, Guo S, Tian F, Gao Z, Fan Y, Wang C, Xu S. CCN1 Promotes Mesenchymal Phenotype Transition Through Activating NF-κB Signaling Pathway Regulated by S100A8 in Glioma Stem Cells. CNS Neurosci Ther 2024; 30:e70128. [PMID: 39659236 PMCID: PMC11632201 DOI: 10.1111/cns.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 12/12/2024] Open
Abstract
BACKGROUND The presence of glioma stem cells (GSCs) and the occurrence of mesenchymal phenotype transition contribute to the miserable prognosis of glioblastoma (GBM). Cellular communication network factor 1 (CCN1) is upregulated within various malignancies and associated with cancer development and progression, while the implications of CCN1 in the phenotype transition and tumorigenicity of GSCs remain unclear. METHODS Data for bioinformatic analysis were obtained from The Cancer Genome Atlas (TCGA) and Chinese Glioma Genome Atlas (CGGA) databases. A range of primary GBM and GSC cell models were then used to demonstrate the regulatory role of CCN1 via the phenotype validation, tumor sphere formation assays, extreme limiting dilution assays (ELDA), and transwell assays. To screen out the downstream signaling pathway, we employed high-throughput RNA-seq. Intracranial xenograft GSC mouse models were used to investigate the role of CCN1 in vivo. RESULTS Among the CCN family members, CCN1 was highly expressed in MES-GBM/GSCs and was correlated with a poor prognosis. Both in vitro and in vivo assays indicated that knockdown of CCN1 in MES-GSCs reduced the tumor stemness, proliferation, invasion, and tumorigenicity, whereas CCN1 overexpression in PN-GSCs exhibited the opposite effects. Mechanistically, CCN1 triggered the FAK/STAT3 signaling in autocrine and paracrine manners to upregulate the expression of S100A8. Knockdown of S100A8 inactivated NF-κB/p65 pathway and significantly suppressed the tumorigenesis of MES-GSCs. CONCLUSION Our findings reveal that CCN1 may be an important factor in the enhanced invasiveness and MES phenotype transition of GSCs and highlight the potential to target CCN1 for treating GBM.
Collapse
Affiliation(s)
- Xing Guo
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Shuhua Guo
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Feng Tian
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Zijie Gao
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| | - Yang Fan
- Department of NeurosurgeryThe First Affiliated Hospital of Shandong First Medical University &Shandong Provincial Qianfoshan HospitalJinanShandongChina
| | - Chuanxin Wang
- Department of Clinical LaboratoryThe Second Hospital of Shandong UniversityJinanShandongChina
| | - Shuo Xu
- Department of NeurosurgeryQilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain‐Inspired Science, Shandong UniversityJinanShandongChina
| |
Collapse
|
11
|
Yu Y, Zhang K, Zhang D, Feng R, Chen K, Zhou X, Nie S, Xie MY. Highland Barley β-Glucan Relieves Symptoms of Colitis via PPARα-Mediated Intestinal Stem Cell Proliferation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24359-24373. [PMID: 39084686 DOI: 10.1021/acs.jafc.3c09535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Intestinal stem cells (ISCs) are necessary to maintain intestinal renewal. Here, we found that the highland barley β-glucan (HBG) alleviated pathological symptoms and promoted the proliferation of intestinal stem cells in colitis mice. Notably, metabolomics studies showed that docosahexaenoic acid (DHA) was significantly increased by the HBG treatment. DHA is a ligand for peroxisome proliferator-activated receptor α (PPARα), which can promote ISC proliferation. Expectedly, HBG facilitated the expression of intestinal PPARα and the proliferation of ISCs in colitis mice. Further experiments verified that DHA significantly facilitated the expression of PPARα and the proliferation of ISCs in intestinal organoids. Intriguingly, the effect of DHA on ISC proliferation was reversed by the PPARα inhibitor. Together, our data indicate that HBG might accelerate PPARα-mediated ISC proliferation through DHA. This provides new insights into the effective application of polysaccharides in maintaining intestinal homeostasis.
Collapse
Affiliation(s)
- Yongkang Yu
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ke Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Duoduo Zhang
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ruting Feng
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Kunying Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Xingtao Zhou
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| | - Ming-Yong Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Nanchang University, 235 Nanjing East Road, Nanchang 330047, Jiangxi, China
| |
Collapse
|
12
|
Westfall AK, Gopalan SS, Kay JC, Tippetts TS, Cervantes MB, Lackey K, Chowdhury SM, Pellegrino MW, Castoe TA. Single-cell resolution of intestinal regeneration in pythons without crypts illuminates conserved vertebrate regenerative mechanisms. Proc Natl Acad Sci U S A 2024; 121:e2405463121. [PMID: 39423244 PMCID: PMC11513969 DOI: 10.1073/pnas.2405463121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/09/2024] [Indexed: 10/21/2024] Open
Abstract
Canonical models of intestinal regeneration emphasize the critical role of the crypt stem cell niche to generate enterocytes that migrate to villus ends. Burmese pythons possess extreme intestinal regenerative capacity yet lack crypts, thus providing opportunities to identify noncanonical but potentially conserved mechanisms that expand our understanding of regenerative capacity in vertebrates, including humans. Here, we leverage single-nucleus RNA sequencing of fasted and postprandial python small intestine to identify the signaling pathways and cell-cell interactions underlying the python's regenerative response. We find that python intestinal regeneration entails the activation of multiple conserved mechanisms of growth and stress response, including core lipid metabolism pathways and the unfolded protein response in intestinal enterocytes. Our single-cell resolution highlights extensive heterogeneity in mesenchymal cell population signaling and intercellular communication that directs major tissue restructuring and the shift out of a dormant fasted state by activating both embryonic developmental and wound healing pathways. We also identify distinct roles of BEST4+ enterocytes in coordinating key regenerative transitions via NOTCH signaling. Python intestinal regeneration shares key signaling features and molecules with mammalian gastric bypass, indicating that conserved regenerative programs are common to both. Our findings provide different insights into cooperative and conserved regenerative programs and intercellular interactions in vertebrates independent of crypts which have been otherwise obscured in model species where temporal phases of generative growth are limited to embryonic development or recovery from injury.
Collapse
Affiliation(s)
- Aundrea K. Westfall
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | | | - Jarren C. Kay
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Trevor S. Tippetts
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Margaret B. Cervantes
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX75235
| | - Kimberly Lackey
- Department of Biological Sciences, University of Alabama, Tuscaloosa, AL35401
| | - Saiful M. Chowdhury
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX76019
| | - Mark W. Pellegrino
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX76019
| |
Collapse
|
13
|
Zhu L, Chen C, Wu S, Guo H, Li L, Wang L, Liu D, Zhan Y, Du X, Liu J, Tan J, Huang Y, Mo K, Lan X, Ouyang H, Yuan J, Chen X, Ji J. PAX6-WNK2 Axis Governs Corneal Epithelial Homeostasis. Invest Ophthalmol Vis Sci 2024; 65:40. [PMID: 39453672 PMCID: PMC11512568 DOI: 10.1167/iovs.65.12.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 08/21/2024] [Indexed: 10/26/2024] Open
Abstract
Purpose Limbal stem/progenitor cells (LSCs) continuously proliferate and differentiate to replenish the corneal epithelium and play a vital role in corneal function and normal vision. A previous study revealed that paired box 6 (PAX6) is a master transcription factor involved in determining the fate of corneal epithelial cells (CECs). However, the molecular events downstream of PAX6 remain largely unknown. In this study, we aimed to clarify the regulation network of PAX6 in driving CEC differentiation. Methods An air-liquid culture system was used to differentiate LSCs into mature CECs. Specific targeting PAX6 short-hairpin RNAs were used to knock down PAX6 in LSC. RNA sequencing (RNA-seq) was used to analyze shPAX6-transfected CECs and CEC differentiation-associated genes to identify the potential downstream targets of PAX6. RNA-seq analysis, quantitative real-time PCR, and immunofluorescence staining were performed to clarify the function of WNK lysine deficient protein kinase 2 (WNK2), a downstream target of PAX6, and its relationship with corneal diseases. Results WNK2 expression increased during CEC differentiation and decreased upon PAX6 depletion. The distribution of WNK2 was specifically limited to the central corneal epithelium and suprabasal layer of the limbus. Knockdown of WNK2 impaired the expression of CEC-specific markers (KRT12, ALDH3A1, and CLU), disrupted the corneal differentiation process, and activated the terms of keratinization, inflammation, and cell proliferation, consistent with PAX6-depleted CEC and published microbial keratitis. Thus, aberrant expression of WNK2 was linked to corneal ulcers. Conclusions As a downstream target of PAX6, WNK2 plays an essential role in corneal epithelial cell differentiation and maintenance of corneal homeostasis.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Siqi Wu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Lingyu Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Yu Zhan
- Department of Experimental Research, Bioinformatics Platform, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Xinyue Du
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, China
| |
Collapse
|
14
|
Zeng X, Tang J, Zhang Q, Wang C, Qi J, Wei Y, Xu J, Yang K, Zhou Z, Wu H, Luo J, Jiang Y, Song Z, Wu J, Wu J. CircHIPK2 Contributes Cell Growth in Intestinal Epithelial of Colitis and Colorectal Cancer through Promoting TAZ Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401588. [PMID: 38981023 PMCID: PMC11425914 DOI: 10.1002/advs.202401588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 06/13/2024] [Indexed: 07/11/2024]
Abstract
Colorectal cancer (CRC) and inflammatory bowel disease (IBD) are escalating global health concerns. Despite their distinct clinical presentations, both disorders share intricate genetic and molecular interactions. The Hippo signaling pathway plays a crucial role in regulating cell processes and is implicated in the pathogenesis of IBD and CRC. Circular RNAs (circRNAs) have gained attention for their roles in various diseases, including IBD and CRC. However, a comprehensive understanding of specific circRNAs involved in both IBD and CRC, and their functional roles is lacking. Here, it is found that circHIPK2 (hsa_circRNA_104507) is a bona fide circRNA consistently upregulated in both IBD and CRC suggesting its potential as a biomarker. Furthermore, silencing of circHIPK2 suppressed the growth of CRC cells in vitro and in vivo. Interestingly, decreased circHipk2 potentiated dextran sulfate sodium (DSS)-induced colitis but alleviated colitis-associated tumorigenesis. Most significantly, mechanistic investigations further unveil that circHIPK2, mediated by FUS, interacting with EIF4A3 to promote the translation of TAZ, ultimately increasing the transcription of downstream target genes CCN1 and CCN2. Taken together, circHIPK2 emerges as a key player in the shared mechanisms of IBD and CRC, modulating the Hippo signaling pathway. CircHIPK2-EIF4A3 axis contributes to cell growth in intestinal epithelial of colitis and CRC by enhancing TAZ translation.
Collapse
Affiliation(s)
- Xixi Zeng
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- The Joint Innovation Center for Health and Medicine, Quzhou People's Hospital, The Quzhou Affiliated Hospital of Wenzhou Medical University, Zhejiang, 324000, China
| | - Jielin Tang
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Qian Zhang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Chenxing Wang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Ji Qi
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yusi Wei
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiali Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Kaiyuan Yang
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Zuolin Zhou
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Hao Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jiarong Luo
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
| | - Yi Jiang
- Department of Gastroenterology, The Second Affiliated Hospital and Yuying Children of Wenzhou Medical University, Zhejiang, 325003, China
| | - Zengqiang Song
- Chemical Biology Research Center at School of Pharmaceutical Sciences, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jinyu Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
| | - Jianmin Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Institute of Genomic Medicine, School of Laboratory Medicine and Life Science, Wenzhou Medical University, Zhejiang, 325035, China
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, First Affiliated Hospital, Wenzhou Medical University, Zhejiang, 325035, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, 315302, China
| |
Collapse
|
15
|
Faizo NL. The intestinal stem cell as a target: A review. Medicine (Baltimore) 2024; 103:e39456. [PMID: 39183418 PMCID: PMC11346866 DOI: 10.1097/md.0000000000039456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Human intestinal epithelium handles several events that may affect health. It is composed of villi and crypts, which contain different types of cells. Each cell type plays an essential role in intestinal functions, including absorption, defense, self-renewal, and regeneration. Intestinal stem cells (ISCs), located at the base of intestinal crypts, play an important role in intestinal homeostasis and renewal. Any disruption in intestinal homeostasis, in which ISCs alter their function, may result in tumor growth. As Wnt and Notch signaling pathways are essential for ISCs homeostasis and for maintaining self-renewal, any defects in these pathways could increase the risk of developing colorectal cancer (CRC). Lgr5+ cells have been identified as intestinal stem cells expressing a leucine-rich repeat-containing G-protein-coupled receptor 5 (LGR5), which is involved in the regulation of Wnt signaling. Several studies have reported upregulated expression of LGR5 in CRC. Hence, in this review, we discuss the relationship between LGR5, Wnt signaling, and Notch signaling and the development of CRC, as well as recent therapeutic strategies targeting LGR5, cancer stem cells (CSCs), and the aforementioned signaling pathways.
Collapse
Affiliation(s)
- Nisreen Lutfi Faizo
- Department of Clinical Anatomy, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Kuri PR, Goswami P. Reverse vaccinology-based multi-epitope vaccine design against Indian group A rotavirus targeting VP7, VP4, and VP6 proteins. Microb Pathog 2024; 193:106775. [PMID: 38960216 DOI: 10.1016/j.micpath.2024.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
Rotavirus, a primary contributor to severe cases of infantile gastroenteritis on a global scale, results in significant morbidity and mortality in the under-five population, particularly in middle to low-income countries, including India. WHO-approved live-attenuated vaccines are linked to a heightened susceptibility to intussusception and exhibit low efficacy, primarily attributed to the high genetic diversity of rotavirus, varying over time and across different geographic regions. Herein, molecular data on Indian rotavirus A (RVA) has been reviewed through phylogenetic analysis, revealing G1P[8] to be the prevalent strain of RVA in India. The conserved capsid protein sequences of VP7, VP4 and VP6 were used to examine helper T lymphocyte, cytotoxic T lymphocyte and linear B-cell epitopes. Twenty epitopes were identified after evaluation of factors such as antigenicity, non-allergenicity, non-toxicity, and stability. These epitopes were then interconnected using suitable linkers and an N-terminal beta defensin adjuvant. The in silico designed vaccine exhibited structural stability and interactions with integrins (αvβ3 and αIIbβ3) and toll-like receptors (TLR2 and TLR4) indicated by docking and normal mode analyses. The immune simulation profile of the designed RVA multiepitope vaccine exhibited its potential to trigger humoral as well as cell-mediated immunity, indicating that it is a promising immunogen. These computational findings indicate potential efficacy of the designed vaccine against rotavirus infection.
Collapse
Affiliation(s)
- Pooja Rani Kuri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Pranab Goswami
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
17
|
He L, Zhu C, Zhou XF, Zeng SE, Zhang L, Li K. Gut microbiota modulating intestinal stem cell differentiation. World J Stem Cells 2024; 16:619-622. [PMID: 38948097 PMCID: PMC11212547 DOI: 10.4252/wjsc.v16.i6.619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/06/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Proliferation and differentiation of intestinal stem cell (ISC) to replace damaged gut mucosal epithelial cells in inflammatory states is a critical step in ameliorating gut inflammation. However, when this disordered proliferation continues, it induces the ISC to enter a cancerous state. The gut microbiota on the free surface of the gut mucosal barrier is able to interact with ISC on a sustained basis. Microbiota metabolites are able to regulate the proliferation of gut stem and progenitor cells through transcription factors, while in steady state, differentiated colonocytes are able to break down such metabolites, thereby protecting stem cells at the gut crypt. In the future, the gut flora and its metabolites mediating the regulation of ISC differentiation will be a potential treatment for enteropathies.
Collapse
Affiliation(s)
- Lin He
- Department of Alcohol and Drug Dependence Treatment, The Mental Hospital of Yunnan Province, Kunming 650224, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming 650500, Yunnan Province, China
| | - Xiang-Feng Zhou
- Department of Alcohol and Drug Dependence Treatment, The Mental Hospital of Yunnan Province, Kunming 650224, Yunnan Province, China
| | - Shu-E Zeng
- Department of Geriatric Psychiatry, The Mental Hospital of Yunnan Province, Kunming 650224, Yunnan Province, China
| | - Le Zhang
- Sleep Medicine Center, The Mental Hospital of Yunnan Province, Kunming 650224, Yunnan Province, China
| | - Kuan Li
- Department of Alcohol and Drug Dependence Treatment, The Mental Hospital of Yunnan Province, Kunming 650224, Yunnan Province, China.
| |
Collapse
|
18
|
Yang D, Peng M, Fu F, Zhao W, Zhang B. Diosmetin ameliorates psoriasis-associated inflammation and keratinocyte hyperproliferation by modulation of PGC-1α / YAP signaling pathway. Int Immunopharmacol 2024; 134:112248. [PMID: 38749332 DOI: 10.1016/j.intimp.2024.112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
Psoriasis, characterized by aberrant epidermal keratinocyte proliferation and differentiation, is a chronic inflammatory immune-related skin disease. Diosmetin (Dios), derived from citrus fruits, exhibits anti-inflammatory and anti-proliferative properties. In this study, IL-17A-induced HaCaT cell model and Imiquimod (IMQ)-induced mouse model were utilized to investigate the effects of Dios against psoriasis. The morphology and biomarkers of psoriasis were regarded as the preliminary evaluation including PASI score, skin thickness, H&E staining, EdU staining and inflammatory factors. Transcriptomics analysis revealed PGC-1α as a key target for Dios in ameliorating psoriasis. Specifically, Dios, through PGC-1α, suppressed YAP-mediated proliferation and inflammatory responses in psoriatic keratinocytes. In conclusion, Dios shows promise in psoriasis treatment and holds potential for development as targeted medications for application in psoriasis.
Collapse
Affiliation(s)
- Dailin Yang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Mingwei Peng
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Fengping Fu
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Wenjuan Zhao
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China
| | - Baoshun Zhang
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400716, PR China.
| |
Collapse
|
19
|
Zan GX, Wang XF, Yan SK, Qin YC, Yao LQ, Gao CQ, Yan HC, Zhou JY, Wang XQ. Matrine reduced intestinal stem cell damage in eimeria necatrix-infected chicks via blocking hyperactivation of Wnt signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155363. [PMID: 38493715 DOI: 10.1016/j.phymed.2024.155363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/17/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND Coccidiosis is a rapidly spreading and acute parasitic disease that seriously threatening the intestinal health of poultry. Matrine from leguminous plants has anthelmintic and anti-inflammatory properties. PURPOSE This assay was conducted to explore the protective effects of Matrine and the AntiC (a Matrine compound) on Eimeria necatrix (EN)-infected chick small intestines and to provide a nutritional intervention strategy for EN injury. STUDY DESIGN The in vivo (chick) experiment: A total of 392 one-day-old yellow-feathered broilers were randomly assigned to six groups in a 21-day study: control group, 350 mg/kg Matrine group, 500 mg/kg AntiC group, EN group, and EN + 350 mg/kg Matrine group, EN + 500 mg/kg AntiC group. The in vitro (chick intestinal organoids, IOs): The IOs were treated with PBS, Matrine, AntiC, 3 μM CHIR99021, EN (15,000 EN sporozoites), EN + Matrine, EN + AntiC, EN + Matrine + CHIR99021, EN + AntiC + CHIR99021. METHODS The structural integrity of chicks jejunal crypt-villus axis was evaluated by hematoxylin and eosin (H&E) staining and transmission electron microscopy (TEM). And the activity of intestinal stem cells (ISCs) located in crypts was assessed by in vitro expansion advantages of a primary in IOs model. Then, the changes of Wnt/β-catenin signaling in jejunal tissues and IOs were detected by Real-Time qPCR,Western blotting and immunohistochemistry. RESULTS The results showed that dietary supplementation with Matrine or AntiC rescued the jejunal injury caused by EN, as indicated by increased villus height, reduced crypt hyperplasia, and enhanced expression of tight junction proteins. Moreover, there was less budding efficiency of the IOs expanded from jejunal crypts of chicks in the EN group than that in the Matrine and AntiC group, respectively. Further investigation showed that AntiC and Matrine inhibited EN-stimulated Wnt/β-catenin signaling. The fact that Wnt/β-catenin activation via CHIR99021 led to the failure of Matrine and AntiC to rescue damaged ISCs confirmed the dominance of this signaling. CONCLUSION Our results suggest that Matrine and AntiC inhibit ISC proliferation and promote ISC differentiation into absorptive cells by preventing the hyperactivation of Wnt/β-catenin signaling, thereby standardizing the function of ISC proliferation and differentiation, which provides new insights into mitigating EN injury by Matrine and AntiC.
Collapse
Affiliation(s)
- Geng-Xiu Zan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiao-Fan Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Shao-Kang Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Ying-Chao Qin
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Lang-Qun Yao
- Institute of Feed Research of Chinese Academy of Agriculture Science, Beijing 100081, China
| | - Chun-Qi Gao
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Hui-Chao Yan
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Jia-Yi Zhou
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China
| | - Xiu-Qi Wang
- College of Animal Science, South China Agricultural University/State Key Laboratory of Swine and Poultry Breeding Industry/Guangdong Laboratory for Lingnan Modern Agriculture/Guangdong Provincial Key Laboratory of Animal Nutrition Control/State Key Laboratory of Swine and Poultry Breeding Industry, Guangzhou 510642, China.
| |
Collapse
|
20
|
Kloc M, Halasa M, Ghobrial RM. Macrophage niche imprinting as a determinant of macrophage identity and function. Cell Immunol 2024; 399-400:104825. [PMID: 38648700 DOI: 10.1016/j.cellimm.2024.104825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/22/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Macrophage niches are the anatomical locations within organs or tissues consisting of various cells, intercellular and extracellular matrix, transcription factors, and signaling molecules that interact to influence macrophage self-maintenance, phenotype, and behavior. The niche, besides physically supporting macrophages, imposes a tissue- and organ-specific identity on the residing and infiltrating monocytes and macrophages. In this review, we give examples of macrophage niches and the modes of communication between macrophages and surrounding cells. We also describe how macrophages, acting against their immune defensive nature, can create a hospitable niche for pathogens and cancer cells.
Collapse
Affiliation(s)
- Malgorzata Kloc
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA; University of Texas, MD Anderson Cancer Center, Department of Genetics, Houston, TX, USA.
| | - Marta Halasa
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| | - Rafik M Ghobrial
- Houston Methodist Research Institute, Transplant Immunology, Houston, TX, USA; Houston Methodist Hospital, Department of Surgery, Houston, TX, USA
| |
Collapse
|
21
|
Ding F, Zhou N, Luo Y, Wang T, Li W, Qiao F, Du Z, Zhang M. Probiotic Pediococcus pentosaceus restored gossypol-induced intestinal barrier injury by increasing propionate content in Nile tilapia. J Anim Sci Biotechnol 2024; 15:54. [PMID: 38582865 PMCID: PMC10999087 DOI: 10.1186/s40104-024-01011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 04/08/2024] Open
Abstract
BACKGROUND Intestinal barrier is a dynamic interface between the body and the ingested food components, however, dietary components or xenobiotics could compromise intestinal integrity, causing health risks to the host. Gossypol, a toxic component in cottonseed meal (CSM), caused intestinal injury in fish or other monogastric animals. It has been demonstrated that probiotics administration benefits the intestinal barrier integrity, but the efficacy of probiotics in maintaining intestinal health when the host is exposed to gossypol remains unclear. Here, a strain (YC) affiliated to Pediococcus pentosaceus was isolated from the gut of Nile tilapia (Oreochromis niloticus) and its potential to repair gossypol-induced intestinal damage was evaluated. RESULTS A total of 270 Nile tilapia (2.20 ± 0.02 g) were allotted in 3 groups with 3 tanks each and fed with 3 diets including CON (control diet), GOS (control diet containing 300 mg/kg gossypol) and GP (control diet containing 300 mg/kg gossypol and 108 colony-forming unit (CFU)/g P. pentosaceus YC), respectively. After 10 weeks, addition of P. pentosaceus YC restored growth retardation and intestinal injury induced by gossypol in Nile tilapia. Transcriptome analysis and siRNA interference experiments demonstrated that NOD-like receptors (NLR) family caspase recruitment domain (CARD) domain containing 3 (Nlrc3) inhibition might promote intestinal stem cell (ISC) proliferation, as well as maintaining gut barrier integrity. 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS) revealed that addition of P. pentosaceus YC altered the composition of gut microbiota and increased the content of propionate in fish gut. In vitro studies on propionate's function demonstrated that it suppressed nlrc3 expression and promoted wound healing in Caco-2 cell model. CONCLUSIONS The present study reveals that P. pentosaceus YC has the capacity to ameliorate intestinal barrier injury by modulating gut microbiota composition and elevating propionate level. This finding offers a promising strategy for the feed industry to incorporate cottonseed meal into fish feed formulations.
Collapse
Affiliation(s)
- Feifei Ding
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Nannan Zhou
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yuan Luo
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Tong Wang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Weijie Li
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Fang Qiao
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Zhenyu Du
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Meiling Zhang
- Laboratory of Aquaculture Nutrition and Environmental Health (LANEH), School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
22
|
Sun Z, Huang S, Yan X, Zhang X, Hao Y, Jiang L, Dai Z. Living, Heat-Killed Limosilactobacillus mucosae and Its Cell-Free Supernatant Differentially Regulate Colonic Serotonin Receptors and Immune Response in Experimental Colitis. Nutrients 2024; 16:468. [PMID: 38398793 PMCID: PMC10893098 DOI: 10.3390/nu16040468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Lactobacillus species have been shown to alleviate gut inflammation and oxidative stress. However, the effect of different lactobacilli components on gut inflammation has not been well studied. This study aims to identify the differences in the effect and mechanisms of different forms and components of Limosilactobacillus mucosae (LM) treatment in the alleviation of gut inflammation using a colitis mouse model that is induced by dextran sodium sulfate (DSS). Seventy-two C57BL/6 mice were divided into six groups: control, DSS, live LM+DSS (LM+DSS), heat-killed LM+DSS (HKLM+DSS), LM cell-free supernatant + DSS (LMCS+DSS), and MRS medium + DSS (MRS+DSS). The mice were treated with different forms and components of LM for two weeks before DSS treatment. After that, the mice were sacrificed for an assessment of their levels of inflammatory cytokines, serotonin (5-HT) receptors (HTRs), and tryptophan metabolites. The results showed that, compared to other treatments, LMCS was more effective (p < 0.05) in the alleviation of DSS-induced body weight loss and led to an increase in the disease activity index score. All three forms and components of LM increased (p < 0.05) the levels of indole-3-acetic acid but reduced (p < 0.05) the levels of 5-HT in the colon. HKLM or LMCS reduced (p < 0.05) the percentages of CD3+CD8+ cytotoxic T cells but increased (p < 0.05) the percentages of CD3+CD4+ T helper cells in the spleen. LM or HKLM increased (p < 0.05) abundances of CD4+Foxp3+ regulatory T cells in the spleen. The LM and LMCS treatments reduced (p < 0.05) the expression of the pro-inflammatory cytokines Il6 and Il17a. The mice in the HKLM+DSS group had higher (p < 0.05) mRNA levels of the anti-inflammatory cytokine Il10, the cell differentiation and proliferation markers Lgr5 and Ki67, the 5-HT degradation enzyme Maoa, and HTRs (Htr1a, Htr2a, and Htr2b) in the colon. All three forms and components of LM reduced the phosphorylation of STAT3. The above findings can help to optimize the functionality of probiotics and develop new dietary strategies that aid in the maintenance of a healthy gut.
Collapse
Affiliation(s)
- Zhiyuan Sun
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Siqi Huang
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China;
| | - Xing Yan
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Xiuwen Zhang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Youling Hao
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Lili Jiang
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition and Feeding, China Agricultural University, Beijing 100193, China; (Z.S.); (X.Y.); (X.Z.); (Y.H.); (L.J.)
| |
Collapse
|
23
|
Zhou QM, Zheng L. Research progress on the relationship between Paneth cells-susceptibility genes, intestinal microecology and inflammatory bowel disease. World J Clin Cases 2023; 11:8111-8125. [PMID: 38130785 PMCID: PMC10731169 DOI: 10.12998/wjcc.v11.i34.8111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/26/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a disorder of the immune system and intestinal microecosystem caused by environmental factors in genetically susceptible people. Paneth cells (PCs) play a central role in IBD pathogenesis, especially in Crohn's disease development, and their morphology, number and function are regulated by susceptibility genes. In the intestine, PCs participate in the formation of the stem cell microenvironment by secreting antibacterial particles and play a role in helping maintain the intestinal microecology and intestinal mucosal homeostasis. Moreover, PC proliferation and maturation depend on symbiotic flora in the intestine. This paper describes the interactions among susceptibility genes, PCs and intestinal microecology and their effects on IBD occurrence and development.
Collapse
Affiliation(s)
- Qi-Ming Zhou
- Department of Nephrology, Lanxi Hospital of Traditional Chinese Medicine, Lanxi 321100, Zhejiang Province, China
| | - Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an 710003, Shaanxi Province, China
| |
Collapse
|
24
|
Zhu S, Xu K, Li S, Yu X, Liu Y, Zhang Q, Zeng L, Xu K, Fu C. Assessment of intestinal status in MPL W515L mutant myeloproliferative neoplasms mice model. Int Immunopharmacol 2023; 125:111091. [PMID: 37883814 DOI: 10.1016/j.intimp.2023.111091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/27/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
The MPLW515L mutation is a prevalent genetic mutation in patients with myeloproliferative neoplasms (MPN), and utilizing this mutation in mice model can provide important insights into the disease. However, the relationship between intestinal homeostasis and MPN mice model remains elusive. In this study, we utilized a retroviral vector to transfect hematopoietic stem cells with the MPLW515L mutation, creating mutated MPN mice model to investigate their intestinal status. Our results revealed that the MPLW515L in MPN mice model aggravated inflammation in the intestines, decreased the levels of tight junction proteins and receptors for bacteria metabolites. Additionally, there was increased activation of the caspase1/IL-1β signaling pathway and a significant reduction in phos-p38 levels in the intestinal tissue in MPN mice. The MPLW515L mutation also led to up-expression of anti-microbial genes in the intestinal tract. Though the mutation had no impact on the alpha diversity and dominant bacterial taxa, it did influence the rare bacterial taxa/sub-communities and consequently impacted intestinal homeostasis. Our findings demonstrate the significance of MPLW515L mice model for studying MPN disease and highlight the mutation's influence on intestinal homeostasis, including inflammation, activation of the IL-1β signaling pathway, and the composition of gut microbial communities.
Collapse
Affiliation(s)
- Shengyun Zhu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kairen Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shuyao Li
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Xiangru Yu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yahui Liu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qigang Zhang
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Lingyu Zeng
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Kailin Xu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chunling Fu
- Institute of Blood Diseases, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Hematology, Affliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China; Key Laboratory of Bone Marrow Stem Cells, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
25
|
Xie W, Wang X, Cai J, Bai H, Shao Y, Li Z, Cai L, Zhang S, Li J, Cui W, Jiang Y, Tang L. Optimum Fermentation Conditions for Bovine Lactoferricin-Lactoferrampin-Encoding LimosiLactobacillus reuteri and Regulation of Intestinal Inflammation. Foods 2023; 12:4068. [PMID: 38002126 PMCID: PMC10670345 DOI: 10.3390/foods12224068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/02/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
The multifunctional antibacterial peptide lactoferricin-lactoferrampin (LFCA) is derived from bovine lactoferrin. Optimization of the fermentation process should be studied since different microorganisms have their own favorable conditions and processes for growth and the production of metabolites. In this study, the culture conditions of a recombinant strain, pPG-LFCA-E/LR-CO21 (LR-LFCA), expressing LFCA was optimized, utilizing the high-density fermentation process to augment the biomass of LimosiLactobacillus reuteri and the expression of LFCA. Furthermore, an assessment of the protective effect of LR-LFCA on intestinal inflammation induced by lipopolysaccharide (LPS) was conducted to evaluate the impact of LR-LFCA on the disease resistance of piglets. The findings of this study indicate that LR-LFCA fermentation conditions optimally include 2% inoculation volume, 36.5 °C fermentation temperature, 9% dissolved oxygen concentration, 200 revolutions/minute stirring speed, pH 6, 10 mL/h glucose flow, and 50% glucose concentration. The inclusion of fermented LR-LFCA in the diet resulted in an elevation of immunoglobulin levels, significant upregulation of tight junction proteins ZO-1 and occludin, reinforcement of the intestinal barrier function, and significant amelioration of the aberrant alterations in blood physiological parameters induced by LPS. These results offer a theoretical framework for the implementation of this micro-ecological preparation in the field of piglet production to enhance intestinal well-being.
Collapse
Affiliation(s)
- Weichun Xie
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Xueying Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiyao Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Huitao Bai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yilan Shao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Zhuoran Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Limeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Senhao Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Jiaxuan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Wen Cui
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Yanping Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
| | - Lijie Tang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; (W.X.); (X.W.); (J.C.); (H.B.); (Y.S.); (Z.L.); (L.C.); (S.Z.); (J.L.); (W.C.)
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
26
|
Rasool S, Ismaeel QAL, Arif SH. CYR61 promotes colorectal carcinoma progression via activating epithelial-mesenchymal transition. Am J Cancer Res 2023; 13:4872-4887. [PMID: 37970355 PMCID: PMC10636662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/26/2023] [Indexed: 11/17/2023] Open
Abstract
Colorectal carcinoma is the third most common type of cancer. Although the role of matricellular proteins and their association with tumor progression is well documented, limited data are available concerning their involvement in colorectal cancer. The current study investigated the expression pattern of matricellular proteins SPARC and CYR61 with epithelial-mesenchymal transition proteins in human CRC tissues and unleashed their association with colorectal cancer progression. The expression of these proteins was associated with advancement in tumor staging, nodal metastasis, and vascular invasion. Elevated CYR61 protein levels were also consistent with higher mesenchymal markers ZEB1 and Vimentin in collected biopsies and CRC cells. Moreover, expression of CYR61 promoted CRC cell migration, invasion, proliferation, and apoptosis. Our findings conclusively revealed the significant involvement of CYR61 in CRC progression through activating epithelial-mesenchymal transition. This discovery holds great promise for advancing therapeutic approaches in the treatment of CRC.
Collapse
Affiliation(s)
- Shelan Rasool
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Qais AL Ismaeel
- Department of Anatomy, Biology and Histology, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| | - Sardar H Arif
- Department of Surgery, College of Medicine, University of DuhokDuhok 42001, Kurdistan Region of Iraq
| |
Collapse
|
27
|
Sun M, Tan Z, Lin K, Li X, Zhu J, Zhan L, Zheng H. Advanced Progression for the Heterogeneity and Homeostasis of Intestinal Stem Cells. Stem Cell Rev Rep 2023; 19:2109-2119. [PMID: 37351833 DOI: 10.1007/s12015-023-10578-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Current understanding of the leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5) in intestinal stem cells (ISCs) is well established, however, the implications of ISC heterogeneity and homeostasis are poorly understood. Prior studies have provided important evidence for the association between heterogeneity of ISC pools with pathogenesis and therapeutic response of malignant disease. Leveraging the advantages of organoids and single cell RNA sequencing (scRNA-seq), glandular development has been simulated and cell heterogeneity has been clarified. Based on this research, several potential ISCs were identified, such as LGR5 + p27 + quiescent ISCs, LGR5 + Mex3a + slowly proliferating stem cells, and CLU + reverse stem cells. We also illustrated major factors responsible for ISC homeostasis including metabolism-related (LKB1, TGR5, HMGCS2), inflammation-related (IFB-b, IFN2, TNF), and Wnt signaling-related (CREPT, Mex3a, MTG16) factors. ISCs play complex roles in intestinal tumorigenesis, chemoresistance and occasional relapse of colon cancer, which bear discussion. In this review, we focus on novel technical challenges in ISCs fate drawing upon recent research with the goals of clarifying our understanding of complex ISCs, elucidating the integrated intestinal crypt niche, and creating new opportunities for therapeutic development.
Collapse
Affiliation(s)
- Minqiong Sun
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Zhenya Tan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Keqiong Lin
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Xiaofei Li
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Jicheng Zhu
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Li Zhan
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China
| | - Hong Zheng
- Department of Pathophysiology, Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
28
|
Mooring M, Yeung GA, Luukkonen P, Liu S, Akbar MW, Zhang GJ, Balogun O, Yu X, Mo R, Nejak-Bowen K, Poyurovsky MV, Booth CJ, Konnikova L, Shulman GI, Yimlamai D. Hepatocyte CYR61 polarizes profibrotic macrophages to orchestrate NASH fibrosis. Sci Transl Med 2023; 15:eade3157. [PMID: 37756381 PMCID: PMC10874639 DOI: 10.1126/scitranslmed.ade3157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 08/18/2023] [Indexed: 09/29/2023]
Abstract
Obesity is increasing worldwide and leads to a multitude of metabolic diseases, including cardiovascular disease, type 2 diabetes, nonalcoholic fatty liver disease, and nonalcoholic steatohepatitis (NASH). Cysteine-rich angiogenic inducer 61 (CYR61) is associated with the progression of NASH, but it has been described to have anti- and proinflammatory properties. We sought to examine the role of liver CYR61 in NASH progression. CYR61 liver-specific knockout mice on a NASH diet showed improved glucose tolerance, decreased liver inflammation, and reduced fibrosis. CYR61 polarized infiltrating monocytes promoting a proinflammatory/profibrotic phenotype through an IRAK4/SYK/NF-κB signaling cascade. In vitro, CYR61 activated a profibrotic program, including PDGFa/PDGFb expression in macrophages, in an IRAK4/SYK/NF-κB-dependent manner. Furthermore, targeted-antibody blockade reduced CYR61-driven signaling in macrophages in vitro and in vivo, reducing fibrotic development. This study demonstrates that CYR61 is a key driver of liver inflammation and fibrosis in NASH.
Collapse
Affiliation(s)
- Meghan Mooring
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Grace A. Yeung
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- These authors contributed equally to this work
| | - Panu Luukkonen
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Silvia Liu
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Muhammad Waqas Akbar
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gary J. Zhang
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Oluwashanu Balogun
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
| | - Xuemei Yu
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Rigen Mo
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Kari Nejak-Bowen
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Department of Pathology, School of Medicine, University of Pittsburgh
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
| | - Masha V. Poyurovsky
- Kadmon Corporation, LLC; 450 East 29th Street, New York, New York 10016, USA
| | - Carmen J. Booth
- Department of Comparative Medicine; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Liza Konnikova
- Section of Neonatology; Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Gerald I. Shulman
- Department of Internal Medicine, Yale School of Medicine; New Haven, Connecticut 06514, USA
- Department of Cellular & Molecular Physiology, Yale School of Medicine; New Haven, Connecticut 06514, USA
| | - Dean Yimlamai
- Department of Cellular and Molecular Pathology, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- Section of Pediatric Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics; Yale School of Medicine; New Haven, Connecticut 06514, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, School of Medicine; Pittsburgh, Pennsylvania 15261, USA
- The Yale Liver Center, Yale School of Medicine; New Haven, Connecticut 06514, USA
| |
Collapse
|
29
|
Zhu L, Wang L, Liu D, Chen C, Mo K, Lan X, Liu J, Huang Y, Guo D, Huang H, Li M, Guo H, Tan J, Zhang K, Ji J, Yuan J, Ouyang H. Single-cell transcriptomics implicates the FEZ1-DKK1 axis in the regulation of corneal epithelial cell proliferation and senescence. Cell Prolif 2023; 56:e13433. [PMID: 36851859 PMCID: PMC10472519 DOI: 10.1111/cpr.13433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
Limbal stem/progenitor cells (LSC) represent the source of corneal epithelium renewal. LSC proliferation and differentiation are essential for corneal homeostasis, however, the regulatory mechanism remains largely unexplored. Here, we performed single-cell RNA sequencing and discovered proliferation heterogeneity as well as spontaneously differentiated and senescent cell subgroups in multiply passaged primary LSC. Fasciculation and elongation protein zeta 1 (FEZ1) and Dickkopf-1 (DKK1) were identified as two significant regulators of LSC proliferation and senescence. These two factors were mainly expressed in undifferentiated corneal epithelial cells (CECs). Knocking down the expression of either FEZ1 or DKK1 reduced cell division and caused cell cycle arrest. We observed that DKK1 acted as a downstream target of FEZ1 in LSC and that exogenous DKK1 protein partially prevented growth arrest and senescence upon FEZ1 suppression in vitro. In a mouse model of corneal injury, DKK1 also rescued the corneal epithelium after recovery was inhibited by FEZ1 suppression. Hence, the FEZ1-DKK1 axis was required for CEC proliferation and the juvenile state and can potentially be targeted as a therapeutic strategy for promoting recovery after corneal injury.
Collapse
Affiliation(s)
- Liqiong Zhu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Li Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Dongmei Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Chaoqun Chen
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Kunlun Mo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Xihong Lan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Jiafeng Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Ying Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Dianlei Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Huaxing Huang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Mingsen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Huizhen Guo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Jieying Tan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Kang Zhang
- Center for Biomedicine and Innovations, Faculty of MedicineMacau University of Science and TechnologyChina
| | - Jianping Ji
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| | - Hong Ouyang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic CenterSun Yat‐sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science|GuangzhouChina
| |
Collapse
|
30
|
Wang Z, Qu YJ, Cui M. Modulation of stem cell fate in intestinal homeostasis, injury and repair. World J Stem Cells 2023; 15:354-368. [PMID: 37342221 PMCID: PMC10277971 DOI: 10.4252/wjsc.v15.i5.354] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/31/2023] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
The mammalian intestinal epithelium constitutes the largest barrier against the external environment and makes flexible responses to various types of stimuli. Epithelial cells are fast-renewed to counteract constant damage and disrupted barrier function to maintain their integrity. The homeostatic repair and regeneration of the intestinal epithelium are governed by the Lgr5+ intestinal stem cells (ISCs) located at the base of crypts, which fuel rapid renewal and give rise to the different epithelial cell types. Protracted biological and physicochemical stress may challenge epithelial integrity and the function of ISCs. The field of ISCs is thus of interest for complete mucosal healing, given its relevance to diseases of intestinal injury and inflammation such as inflammatory bowel diseases. Here, we review the current understanding of the signals and mechanisms that control homeostasis and regeneration of the intestinal epithelium. We focus on recent insights into the intrinsic and extrinsic elements involved in the process of intestinal homeostasis, injury, and repair, which fine-tune the balance between self-renewal and cell fate specification in ISCs. Deciphering the regulatory machinery that modulates stem cell fate would aid in the development of novel therapeutics that facilitate mucosal healing and restore epithelial barrier function.
Collapse
Affiliation(s)
- Zhe Wang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Yan-Ji Qu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| | - Min Cui
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, Hubei Province, China
| |
Collapse
|
31
|
Wang Z, Tan C, Duan C, Wu J, Zhou D, Hou L, Qian W, Han C, Hou X. FUT2-dependent fucosylation of HYOU1 protects intestinal stem cells against inflammatory injury by regulating unfolded protein response. Redox Biol 2023; 60:102618. [PMID: 36724577 PMCID: PMC9923227 DOI: 10.1016/j.redox.2023.102618] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/16/2023] [Accepted: 01/24/2023] [Indexed: 01/30/2023] Open
Abstract
The intestinal epithelial repair after injury is coordinated by intestinal stem cells (ISCs). Fucosylation catalyzed by fucosyltransferase 2 (FUT2) of the intestinal epithelium is beneficial to mucosal healing but poorly defined is the influence on ISCs. The dextran sulfate sodium (DSS) and lipopolysaccharide (LPS) model were used to assess the role of FUT2 on ISCs after injury. The apoptosis, function, and stemness of ISCs were analyzed using intestinal organoids from WT and Fut2ΔISC (ISC-specific Fut2 knockout) mice incubated with LPS and fucose. N-glycoproteomics, UEA-1 chromatography, and site-directed mutagenesis were monitored to dissect the regulatory mechanism, identify the target fucosylated protein and the corresponding modification site. Fucose could alleviate intestinal epithelial damage via upregulating FUT2 and α-1,2-fucosylation of ISCs. Oxidative stress, mitochondrial dysfunction, and cell apoptosis were impeded by fucose. Meanwhile, fucose sustained the growth and proliferation capacity of intestinal organoids treated with LPS. Contrarily, FUT2 depletion in ISCs aggravated the epithelial damage and disrupted the growth and proliferation capacity of ISCs via escalating LPS-induced endoplasmic reticulum (ER) stress and initiating the IRE1/TRAF2/ASK1/JNK branch of unfolded protein response (UPR). Fucosylation of the chaperone protein HYOU1 at the N-glycosylation site of asparagine (Asn) 862 mediated by FUT2 was identified to facilitate ISCs survival and self-renewal, and improve ISCs resistance to ER stress and inflammatory injury. Our study highlights a fucosylation-dependent protective mechanism of ISCs against inflammation, which may provide a fascinating strategy for treating intestinal injury disorders.
Collapse
Affiliation(s)
- Zhe Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chen Tan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Caihan Duan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Junhao Wu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Dan Zhou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lingzhi Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
32
|
Tan C, Hong G, Wang Z, Duan C, Hou L, Wu J, Qian W, Han C, Hou X. Promoting Effect of L-Fucose on the Regeneration of Intestinal Stem Cells through AHR/IL-22 Pathway of Intestinal Lamina Propria Monocytes. Nutrients 2022; 14:4789. [PMID: 36432480 PMCID: PMC9695883 DOI: 10.3390/nu14224789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022] Open
Abstract
The recovery of the intestinal epithelial barrier is the goal for curing various intestinal injurious diseases, especially IBD. However, there are limited therapeutics for restoring intestinal epithelial barrier function in IBD. The stemness of intestinal stem cells (ISCs) can differentiate into various mature intestinal epithelial cells, thus playing a key role in the rapid regeneration of the intestinal epithelium. IL-22 secreted by CD4+ T cells and ILC3 cells was reported to maintain the stemness of ISCs. Our previous study found that L-fucose significantly ameliorated DSS-induced colonic inflammation and intestinal epithelial injury. In this study, we discovered enhanced ISC regeneration and increased intestinal IL-22 secretion and its related transcription factor AHR in colitis mice after L-fucose treatment. Further studies showed that L-fucose promoted IL-22 release from CD4+ T cells and intestinal lamina propria monocytes (LPMCs) via activation of nuclear AHR. The coculture system of LPMCs and intestinal organoids demonstrated that L-fucose stimulated the proliferation of ISCs through an indirect manner of IL-22 from LPMCs via the IL-22R-p-STAT3 pathway, and restored TNF-α-induced organoid damage via IL-22-IL-22R signaling. These results revealed that L-fucose helped to heal the epithelial barrier by accelerating ISC proliferation, probably through the AHR/IL-22 pathway of LPMCs, which provides a novel therapy for IBD in the clinic.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chaoqun Han
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
33
|
Zheng L, Duan SL, Wen XL, Dai YC. Molecular regulation after mucosal injury and regeneration in ulcerative colitis. Front Mol Biosci 2022; 9:996057. [PMID: 36310594 PMCID: PMC9606627 DOI: 10.3389/fmolb.2022.996057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 09/26/2022] [Indexed: 12/02/2022] Open
Abstract
Ulcerative colitis (UC) is a chronic nonspecific inflammatory disease with a complex etiology. Intestinal mucosal injury is an important pathological change in individuals with UC. Leucine-rich repeat-containing G protein-coupled receptor 5 (LGR5+) intestinal stem cells (ISCs) exhibit self-renewal and high differentiation potential and play important roles in the repair of intestinal mucosal injury. Moreover, LGR5+ ISCs are intricately regulated by both the Wnt/β-catenin and Notch signaling pathways, which jointly maintain the function of LGR5+ ISCs. Combination therapy targeting multiple signaling pathways and transplantation of LGR5+ ISCs may lead to the development of new clinical therapies for UC.
Collapse
Affiliation(s)
- Lie Zheng
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Sheng-Lei Duan
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Xin-Li Wen
- Department of Gastroenterology, Shaanxi Hospital of Traditional Chinese Medicine, Xi’an, Shaanxi Province, China
| | - Yan-Cheng Dai
- Department of Gastroenterology, Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|