1
|
Hordijk I, Poorter L, Liang J, Reich PB, de-Miguel S, Nabuurs GJ, Gamarra JGP, Chen HYH, Zhou M, Wiser SK, Pretzsch H, Paquette A, Picard N, Hérault B, Bastin JF, Alberti G, Abegg M, Adou Yao YC, Almeyda Zambrano AM, Alvarado BV, Alvarez-Davila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard C GA, Baker T, Banki O, Barroso J, Bastian ML, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Cazzolla Gatti R, Cesar RG, Cesljar G, Chazdon RL, Chisholm C, Cienciala E, Clark CJ, Clark DB, Colletta G, Coomes D, Cornejo Valverde F, Corral-Rivas JJ, Crim P, Cumming J, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dourdain A, Dolezal J, Engone Obiang NL, Enquist B, Eyre T, Fandohan AB, Fayle TM, Ferreira LV, Feldpausch TR, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris D, Hector A, Hemp A, Herbohn J, Hillers A, Honorio Coronado EN, Hui C, Cho H, Ibanez T, Jung I, Imai N, Jagodzinski AM, Jaroszewicz B, Johannsen V, Joly CA, Jucker T, Karminov V, Kartawinata K, Kearsley E, et alHordijk I, Poorter L, Liang J, Reich PB, de-Miguel S, Nabuurs GJ, Gamarra JGP, Chen HYH, Zhou M, Wiser SK, Pretzsch H, Paquette A, Picard N, Hérault B, Bastin JF, Alberti G, Abegg M, Adou Yao YC, Almeyda Zambrano AM, Alvarado BV, Alvarez-Davila E, Alvarez-Loayza P, Alves LF, Amaral I, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard C GA, Baker T, Banki O, Barroso J, Bastian ML, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brearley FQ, Brienen R, Broadbent EN, Bruelheide H, Cazzolla Gatti R, Cesar RG, Cesljar G, Chazdon RL, Chisholm C, Cienciala E, Clark CJ, Clark DB, Colletta G, Coomes D, Cornejo Valverde F, Corral-Rivas JJ, Crim P, Cumming J, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dourdain A, Dolezal J, Engone Obiang NL, Enquist B, Eyre T, Fandohan AB, Fayle TM, Ferreira LV, Feldpausch TR, Finér L, Fischer M, Fletcher C, Frizzera L, Gianelle D, Glick HB, Harris D, Hector A, Hemp A, Herbohn J, Hillers A, Honorio Coronado EN, Hui C, Cho H, Ibanez T, Jung I, Imai N, Jagodzinski AM, Jaroszewicz B, Johannsen V, Joly CA, Jucker T, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard D, Kepfer-Rojas S, Keppel G, Khan ML, Killeen T, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis S, Lu H, Lukina N, Maitner B, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin E, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Miscicki S, Monteagudo Mendoza A, Moreno V, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner V, Nevenic R, Ngugi M, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Parada-Gutierrez A, Parfenova E, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Piedade MT, Piotto D, Pitman NCA, Pollastrini M, Polo I, Poulsen AD, Poulsen JR, Arevalo FR, Restrepo-Correa Z, Rodeghiero M, Rolim S, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Selvi F, Serra-Diaz JM, Sheil D, Shvidenko A, Silva-Espejo J, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Ter Steege H, Stereńczak K, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Thomas R, Tikhonova E, Umunay P, Usoltsev V, Valencia R, Valladares F, van der Plas F, Van Do T, Van Nuland ME, Vasquez Martinez R, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson J, Werner GDA, Wittmann F, Wortel V, Zagt R, Zawila-Niedzwiecki T, Zhang C, Zhao X, Zhu ZX, Zo-Bi IC, Maynard DS, Crowther TW. Effect of climate on traits of dominant and rare tree species in the world's forests. Nat Commun 2025; 16:4773. [PMID: 40404639 PMCID: PMC12098762 DOI: 10.1038/s41467-025-59754-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 05/02/2025] [Indexed: 05/24/2025] Open
Abstract
Species' traits and environmental conditions determine the abundance of tree species across the globe. The extent to which traits of dominant and rare tree species differ remains untested across a broad environmental range, limiting our understanding of how species traits and the environment shape forest functional composition. We use a global dataset of tree composition of >22,000 forest plots and 11 traits of 1663 tree species to ask how locally dominant and rare species differ in their trait values, and how these differences are driven by climatic gradients in temperature and water availability in forest biomes across the globe. We find three consistent trait differences between locally dominant and rare species across all biomes; dominant species are taller, have softer wood and higher loading on the multivariate stem strategy axis (related to narrow tracheids and thick bark). The difference between traits of dominant and rare species is more strongly driven by temperature compared to water availability, as temperature might affect a larger number of traits. Therefore, climate change driven global temperature rise may have a strong effect on trait differences between dominant and rare tree species and may lead to changes in species abundances and therefore strong community reassembly.
Collapse
Affiliation(s)
- Iris Hordijk
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
- Wageningen University and Research, Wageningen, The Netherlands.
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Sergio de-Miguel
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain
- Forest Science and Technology Centre of Catalonia (CTFC), Solsona, Spain
| | | | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, ON, Canada
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada
| | | | - Bruno Hérault
- CIRAD, Forêts et Sociétés, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | | | - Giorgio Alberti
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research, WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Center for Latin American Studies, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard C
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, D.C., Colombia
| | | | - Olaf Banki
- Naturalis Biodiversity Centre, Leiden, The Netherlands
| | - Jorcely Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory - ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Francis Q Brearley
- Department of Natural Sciences, Manchester Metropolitan University, Manchester, UK
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-, Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | | | - Ricardo G Cesar
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin L Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, QL, Australia
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Emil Cienciala
- IFER - Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie J Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David B Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - Jose J Corral-Rivas
- Facultad de Ciencias Forestales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip Crim
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Jonathan Cumming
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, QC, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | | | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Kourou, French Guiana
| | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, 25243, Průhonice, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | | | - Brian Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, QL, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Kota Kinabalu, Sabah, Malaysia
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brasil
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leena Finér
- Natural Resources Institute Finland (Luke), Joensuu, Finland
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Henry B Glick
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | - John Herbohn
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, QL, Australia
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Thomas Ibanez
- AMAP, Univ Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodzinski
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Viktor Karminov
- Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, SA, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Timothy Killeen
- Museo de Historia natural Noel kempff Mercado, Santa Cruz, Bolivia
| | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Rural Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | - Beatriz Schwantes Marimon
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Ben Hur Marimon-Junior
- Programa de Pós-graduação em Ecologia e Conservação, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew Robert Marshall
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, QL, Australia
- Flamingo Land Ltd, Kirby Misperton, UK
- Department of Environment & Geography, University of York, York, UK
| | - Emanuel Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- All-Russian Institute of Continuous Education in Forestry, Pushkino, Russian Federation
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Stanislaw Miscicki
- Warsaw University of Life Sciences, Department of Forest Management, Dendrometry and Forest Economics, Warsaw, Poland
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Oxapampa, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, QL, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Maria G Nava-Miranda
- Colegio de Ciencias y Humanidades. Universidad Juárez del Estado de Durango, Durango, Mexico
- Escuela Politécnica Superior de Ingeniería. Campus Terra. Universidad de Santiago de Compostela, Lugo, Spain
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, QL, Australia
| | | | - Michael Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, QL, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | - Jacek Oleksyn
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Petr Ontikov
- Bauman Moscow State Technical University, Mytischi, Russian Federation
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | | | - Elena Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Rio Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, NSW, Australia
| | | | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Martina Pollastrini
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Irina Polo
- Jardín Botánico de Medellín, Medellín, Colombia
| | | | - John R Poulsen
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele all'Adige, Italy
| | - Samir Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE - Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoría de Investigación y Postgrado, Universidad de La Frontera, Temuco, Chile
- Departamento de Silvicultura y Conservación de la Naturaleza, Universidad de Chile, Santiago, Chile
| | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | | | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zürich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montréal, QC, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Federico Selvi
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, Inra, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade, Denmark
| | - Douglas Sheil
- Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Shvidenko
- International Institute for Applied Systems Analysis, Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, French Guiana
| | - Plinio Sist
- CIRAD, Forêts et Sociétés, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Gadong, Brunei Darussalam
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Hans Ter Steege
- Naturalis Biodiversity Centre, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Ny Munkegade, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | | | - Peter Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Ekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, P.O. Box 47, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | - Rodolfo Vasquez Martinez
- Warsaw University of Life Sciences, Department of Forest Management, Dendrometry and Forest Economics, Warsaw, Poland
| | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Vila Real, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School of Polytechnic Institute of Viseu, Portugal and Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, Vila Real, Portugal
| | - Alexander C Vibrans
- Global Change Research Institute CAS, Brno, Czech Republic
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau-Santa Catarina, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderick Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie Casimir Zo-Bi
- INP-HB, UMRI Sciences Agronomiques et Procédés de Transformation, Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution and Environment, University College London, London, UK
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| |
Collapse
|
2
|
Souza ML, Andrade FGDE, Fonteles MRDEV, Costa FWR, Saporetti Junior AW, Silva IHCVDA, Maia RC. Leaf trait divergence between Azadirachta indica (exotic) and native species of the northern Brazilian coast. AN ACAD BRAS CIENC 2025; 97:e20240960. [PMID: 40243807 DOI: 10.1590/0001-3765202520240960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/09/2025] [Indexed: 04/18/2025] Open
Abstract
The introduction of exotic plants can pose ecological threats as they may become invasive. We investigated leaf traits potentially linked to competitive advantage and invasiveness in Azadirachta indica, a widely used exotic tree in northeastern Brazil's urban forestry, compared to native species Ouratea fieldingiana and Myrcia multiflora. We tested the limiting similarity hypothesis, evaluating how leaf characteristics influence the ecological responses of these species and A. indica's potential invasiveness. A. indica exhibited larger leaf area, specific leaf area (SLA), and leaf area ratio (LAR) compared to native species, but lower specific petiole length (SPL) and specific internode length (SIL). Additionally, A. indica displayed greater phenotypic variation in these traits. The larger leaf area, SLA, and LAR suggest a strategy in A. indica favoring rapid carbon gain through increased growth. The higher phenotypic variation observed may facilitate adaptation to new habitats, potentially enhancing its competitive ability and invasiveness. These findings highlight distinct functional strategies between exotic and native species, raising concerns regarding the potential invasiveness of A. indica in northeastern Brazil's natural ecosystems.
Collapse
Affiliation(s)
- Matheus L Souza
- Instituto Federal de Educação, Ciência e Tecnologia do Piauí, Grupo de Estudos em Biodiversidade-GEB, Campus Uruçuí, Rodovia PI 247, KM 7, Portal dos Cerrados, 64680-000 Uruçuí, PI, Brazil
| | - Francisca Gilvânia DE Andrade
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Laboratório de Botânica e Ecologia Vegetal - LABEV, Campus Acaraú, Av. Des. Armando de Souza Louzada, s/n, Sítio - Buriti, 62580-000 Acaraú, CE, Brazil
| | - Maria Regina DE V Fonteles
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Laboratório de Botânica e Ecologia Vegetal - LABEV, Campus Acaraú, Av. Des. Armando de Souza Louzada, s/n, Sítio - Buriti, 62580-000 Acaraú, CE, Brazil
| | - Francisca W R Costa
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Laboratório de Botânica e Ecologia Vegetal - LABEV, Campus Acaraú, Av. Des. Armando de Souza Louzada, s/n, Sítio - Buriti, 62580-000 Acaraú, CE, Brazil
| | - Amilcar Walter Saporetti Junior
- Instituto Federal de Educação, Ciência e Tecnologia do Sul de Minas Gerais - IFSULDEMINAS, Laboratório de Biodiversidade, Av. Maria da Conceição Santos, 900, Parque Real, 37550-000 Pouso Alegre, MG, Brazil
| | - Ingrid H C Vaz DA Silva
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Laboratório de Botânica e Ecologia Vegetal - LABEV, Campus Acaraú, Av. Des. Armando de Souza Louzada, s/n, Sítio - Buriti, 62580-000 Acaraú, CE, Brazil
| | - Rafaela C Maia
- Instituto Federal de Educação, Ciência e Tecnologia do Ceará, Laboratório de Ecologia de Manguezais (Ecomangue), Campus Acaraú, Av. Des. Armando de Souza Louzada, s/n, Sítio - Buriti, 62580-000 Acaraú, CE, Brazil
| |
Collapse
|
3
|
Pan Q, Bauters M, Peaucelle M, Ellsworth D, Kattge J, Verbeeck H. Network-informed analysis of a multivariate trait-space reveals optimal trait selection. Commun Biol 2025; 8:569. [PMID: 40188271 PMCID: PMC11972376 DOI: 10.1038/s42003-025-07940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 03/17/2025] [Indexed: 04/07/2025] Open
Abstract
Trait-based analyses have shown great potential to advance our understanding of terrestrial ecosystem processes and functions. However, challenges remain in adequately synthesising a multidimensional and covarying trait space. Reducing the number of studied traits while identifying the most informative ones is increasingly recognized as a priority in functional ecology. Here, we develop a trait reduction procedure based on network analysis of a global dataset comprising 27 traits in three steps. We first construct all possible reduced networks and identify optimal reduced networks that capture the structure of the full 27-trait network. Then we apply the constraints on trait consistency to identified optimal reduced networks and establish consistent network series across ecoregions. We find the best performing networks that capture the three main dimensions of the full network (hydrological safety, leaf economic strategy, and plant reproduction and competition) and the global variance of network metrics. Finally, we find a parsimonious representation of trait covariation strategies is achieved by a 10-trait network which preserves 60% of all the original information while costing only 20.1% of the full suite of traits. Our results show the network reduction approach can improve our understanding on the main plant strategies and facilitate the future trait-based research.
Collapse
Affiliation(s)
- Quan Pan
- Q-ForestLab, Laboratory of Quantitative Forest Ecosystem Science, Department of Environment, Ghent University, Gent, 9000, Belgium.
| | - Marijn Bauters
- Q-ForestLab, Laboratory of Quantitative Forest Ecosystem Science, Department of Environment, Ghent University, Gent, 9000, Belgium
| | - Marc Peaucelle
- Q-ForestLab, Laboratory of Quantitative Forest Ecosystem Science, Department of Environment, Ghent University, Gent, 9000, Belgium
- INRAE, Université de Bordeaux, Villenave-d'Ornon, Bordeaux, 33140, France
| | - David Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, 2751, New South Wales, Australia
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Max Planck Institute for Biogeochemistry, Jena, 07745, Germany
| | - Hans Verbeeck
- Q-ForestLab, Laboratory of Quantitative Forest Ecosystem Science, Department of Environment, Ghent University, Gent, 9000, Belgium
| |
Collapse
|
4
|
Lowe AJ, Royer DL, Wieczynski DJ, Butrim MJ, Reichgelt T, Azevedo-Schmidt L, Peppe DJ, Enquist BJ, Kerkoff AJ, Michaletz ST, Strömberg CAE. Global patterns in community-scale leaf mass per area distributions of extant woody non-monocot angiosperms and their utility in the fossil record. AMERICAN JOURNAL OF BOTANY 2025; 112:e70019. [PMID: 40123060 DOI: 10.1002/ajb2.70019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 01/08/2025] [Accepted: 01/08/2025] [Indexed: 03/25/2025]
Abstract
PREMISE Leaf mass per area (LMA) links leaf economic strategies, community assembly, and climate and can be reconstructed from woody non-monocot angiosperm (WNMA) fossils using the petiole metric (PM; petiole width2/leaf area). Reliable interpretation of LMA reconstructed from the fossil record is limited by an incomplete understanding of how PM and LMA are correlated at the community scale and what climatic parameters drive variation of both measured and reconstructed LMA of WNMAs globally. METHODS A modern, global, community-scale data set of in situ WNMA LMA and PM was compiled to test leading hypotheses for environmental drivers of LMA and quantify LMA-PM relationships. Correlations among PM, LMA, climate (Köppen types and continuous data), and leaf habit were assessed and quantified using several uni- and multivariate methods. RESULTS Community mean LMA increased under warmer and less seasonal temperatures. Drought-prone communities had the highest LMA variance, likely due to disparity between riparian and non-riparian microhabitats. PM and LMA were correlated for community mean and variance, and their correlations with climate were similar. These patterns indicate that climatic correlatives of modern LMA can inform relative trends in reconstructed fossil LMA. In contrast, matching "absolute" LMA distributions between fossil and modern sites does not allow reliable inference of analogous climate types. CONCLUSIONS This study furthers our understanding of processes influencing the assembly of WNMA leaf economic strategies in plant communities, highlighting the importance of temperature seasonality and habitat heterogeneity. We also provide a method to reconstruct, and refine the framework to interpret, community-scale LMA in the fossil record.
Collapse
Affiliation(s)
- Alexander J Lowe
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, D.C., USA
- Department of Biology, University of Washington, Seattle, WA, USA
| | - Dana L Royer
- Department of Earth and Environmental Sciences, Wesleyan University, Middletown, CT, USA
| | | | - Matthew J Butrim
- Department of Geology and Geophysics, Program in Ecology, University of Wyoming, Laramie, WY, USA
| | - Tammo Reichgelt
- Department of Earth Sciences, University of Connecticut, Storrs, CT, USA
| | | | - Daniel J Peppe
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, AZ, USA
- Santa Fe Institute, Santa Fe, NM, USA
| | - Andrew J Kerkoff
- Department of Biology, University of Puget Sound, Tacoma, WA, USA
| | - Sean T Michaletz
- Department of Botany and Biodiversity Research Centre, University of British Columbia, BC, Canada
| | | |
Collapse
|
5
|
Glazier DS. Does death drive the scaling of life? Biol Rev Camb Philos Soc 2025; 100:586-619. [PMID: 39611289 DOI: 10.1111/brv.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 09/28/2024] [Accepted: 10/01/2024] [Indexed: 11/30/2024]
Abstract
The magnitude of many kinds of biological structures and processes scale with organismal size, often in regular ways that can be described by power functions. Traditionally, many of these "biological scaling" relationships have been explained based on internal geometric, physical, and energetic constraints according to universal natural laws, such as the "surface law" and "3/4-power law". However, during the last three decades it has become increasingly apparent that biological scaling relationships vary greatly in response to various external (environmental) factors. In this review, I propose and provide several lines of evidence supporting a new ecological perspective that I call the "mortality theory of ecology" (MorTE). According to this viewpoint, mortality imposes time limits on the growth, development, and reproduction of organisms. Accordingly, small, vulnerable organisms subject to high mortality due to predation and other environmental hazards have evolved faster, shorter lives than larger, more protected organisms. A MorTE also includes various corollary, size-related internal and external causative factors (e.g. intraspecific resource competition, geometric surface area to volume effects on resource supply/transport and the protection of internal tissues from environmental hazards, internal homeostatic regulatory systems, incidence of pathogens and parasites, etc.) that impact the scaling of life. A mortality-centred approach successfully predicts the ranges of body-mass scaling slopes observed for many kinds of biological and ecological traits. Furthermore, I argue that mortality rate should be considered the ultimate (evolutionary) driver of the scaling of life, that is expressed in the context of other proximate (functional) drivers such as information-based biological regulation and spatial (geometric) and energetic (metabolic) constraints.
Collapse
Affiliation(s)
- Douglas S Glazier
- Department of Biology, Juniata College, Huntingdon, Pennsylvania, 16652, USA
| |
Collapse
|
6
|
Lei Y, Feng Z, Zhao Z. Differences and driving factors of leaf functional traits between old tree and mature tree of Pinus tabulaeformis in the Loess Plateau. BMC PLANT BIOLOGY 2025; 25:129. [PMID: 39885414 PMCID: PMC11781004 DOI: 10.1186/s12870-025-06130-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/20/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Study the leaf functional traits is highly important for understanding the survival strategies and climate adaptability of old trees. In this study, the old (over 100 years old) and mature trees (about 50 years old) of Pinus tabulaeformis in the Loess Plateau were studied, and the variation of 18 leaf functional traits (6 economic, 4 anatomical, 2 photosynthetic and 6 physiological traits) was analyzed to understand the differences of survival strategies between old and mature trees. Combined with transcriptome and simple sequence repeats (SSR) techniques, the effects of soil property factors and genetic factors on leaf functional traits and the potential molecular mechanisms of traits differences were studied. RESULTS Compared with mature trees, old trees presented greater economic traits (except leaf phosphorus content), anatomical traits (except the stomatal density), and physiological traits (except superoxide dismutase activity) and lower photosynthetic traits, and their survival strategies were more conservative. The difference was mainly driven by soil property and genetic factors (common explanation rate was 67.89%), and the independent effect of genetic factors (10.09%) was slightly higher than that of soil property factors (2.88%). In addition, by constructing weighted gene co-expression networks analysis WGCNA), this research identified 24 candidate hub genes that regulate leaf functional traits, most of which are related to plant growth and development and the stress response, and can be used for further regulatory mechanism analysis. CONCLUSIONS In conclusion, this study is helpful to understand the ecological adaptability of P. tabuliformis under the background of climate change in the Loess Plateau, and provides a theoretical basis related to leaf functional traits and molecular regulation for the protection of old trees.
Collapse
Affiliation(s)
- Yuting Lei
- Key Comprehensive Laboratory of Forestry, Northwest A&F University, Yangling, Shaanxi Province, 712100, P. R. China
| | - Zimao Feng
- Key Comprehensive Laboratory of Forestry, Northwest A&F University, Yangling, Shaanxi Province, 712100, P. R. China
| | - Zhong Zhao
- Key Comprehensive Laboratory of Forestry, Northwest A&F University, Yangling, Shaanxi Province, 712100, P. R. China.
- Key Laboratory of Silviculture on the Loess Plateau State Forestry Administration, Northwest A&F University, Yangling, 712100, P. R. China.
| |
Collapse
|
7
|
Quaranta L, Di Marzio P, Fortini P. Quercus cerris Leaf Functional Traits to Assess Urban Forest Health Status for Expeditious Analysis in a Mediterranean European Context. PLANTS (BASEL, SWITZERLAND) 2025; 14:285. [PMID: 39861638 PMCID: PMC11768225 DOI: 10.3390/plants14020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025]
Abstract
In the Mediterranean basin, urban forests are widely recognized as essential landscape components, playing a key role in nature-based solutions by enhancing environmental quality and providing a range of ecosystem services. The selection of woody plant species for afforestation and reforestation should prioritize native species that align with the biogeographical and ecological characteristics of the planting sites. Among these, Quercus cerris L. (Turkey oak) is considered a promising candidate for urban reforestation. However, its fitness within urban forest environments remains poorly understood. This study aimed to identify suitable leaf functional traits for assessing the response of Q. cerris in urban forests and to analyze the main climatic variables influencing its performance in urban contexts. We also proposed practical, rapid monitoring tools to compare urban and natural forests across different seasons. The results demonstrated that Q. cerris experiences significant water stress in urban forests due to the combined effects of drought and high temperatures. To find the tools to mitigate this stress, the differences between leaf traits such as specific leaf area, thickness, and the contents of chlorophyll, anthocyanins, and flavonols in urban and natural forests were analyzed. Our findings underscore the high adaptability of Q. cerris to varied climatic and environmental conditions. This study provides a practical method for rapidly assessing the responses of tree species to climate change. In the future, this approach will be tested on other native species that are characteristic of Mediterranean forest ecosystems to help with choosing afforestation and reforestation strategies.
Collapse
Affiliation(s)
- Luca Quaranta
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
| | - Piera Di Marzio
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| | - Paola Fortini
- Department Biosciences and Territory, University of Molise, 86090 Pesche, Italy; (P.D.M.); (P.F.)
- National Biodiversity Future Center (NBFC), 90133 Palermo, Italy
| |
Collapse
|
8
|
Jo I, Bellingham PJ, Richardson SJ, Hawcroft A, Wright EF. Tree demographic drivers across temperate rain forests, after accounting for site-, species-, and stem-level attributes. Ecology 2025; 106:e4471. [PMID: 39587419 DOI: 10.1002/ecy.4471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 05/27/2024] [Accepted: 08/30/2024] [Indexed: 11/27/2024]
Abstract
Diverse drivers such as climate, soil fertility, neighborhood competition, and functional traits all contribute to variation in tree stem demographic rates. However, these demographic drivers operate at different scales, making it difficult to compare the relative importance of each driver on tree demography. Using c. 20,000 stem records from New Zealand's temperate rain forests, we analyzed the growth, recruitment, and mortality rates of 48 tree species and determined the relative importance of demographic drivers in a multilevel modeling approach. Tree species' maximum height emerged as the one most strongly associated with all demographic rates, with a positive association with growth rate and negative associations with recruitment and mortality rates. Climate, soil properties, neighborhood competition, stem size, and other functional traits also played significant roles in shaping demographic rates. Forest structure and functional composition were linked to climate and soil, with warm, dry climates and fertile soil associated with higher growth and recruitment rates. Neighborhood competition affected demographic rates depending on stem size, with smaller stems experiencing stronger negative effects, suggesting asymmetric competition where larger trees exert greater competitive effects on smaller trees. Our study emphasizes the importance of considering multiple drivers of demographic rates to better understand forest tree dynamics.
Collapse
Affiliation(s)
- Insu Jo
- Manaaki Whenua - Landcare Research, Lincoln, New Zealand
| | | | | | - Amy Hawcroft
- Department of Conservation, Hamilton, New Zealand
| | | |
Collapse
|
9
|
Dai D, Yu D, Gao W, Perry GLW, Paterson AM, You C, Zhou S, Xu Z, Huang C, Cao D, Curran TJ, Cui X. Leaf Dry Matter Content Is Phylogenetically Conserved and Related to Environmental Conditions, Especially Wildfire Activity. Ecol Lett 2025; 28:e70056. [PMID: 39755937 DOI: 10.1111/ele.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/04/2024] [Accepted: 12/17/2024] [Indexed: 01/06/2025]
Abstract
Leaf dry matter content (LDMC) is an important determinant of plant flammability. Investigating global patterns of LDMC could provide insights into worldwide plant flammability patterns, informing wildfire management. We characterised global patterns of LDMC across 4074 species from 216 families, revealing that phylogenetic and environmental constraints influence LDMC. LDMC varied across growth forms and taxonomic groups, displaying phylogenetic niche conservatism. Temperature, precipitation, aridity index, soil total nitrogen content and wildfire activity affected LDMC, and the effect of wildfire activity was stronger than other environmental factors across species with postfire regeneration abilities. Such species had higher LDMC, and their LDMC was less phylogenetically conserved and more strongly associated with fire activity. Our results suggest that, although LDMC shows phylogenetic niche conservatism, LDMC is determined by environmental factors, especially wildfire activity. Wildfire has likely acted as a selective pressure towards high LDMC across species that persist through fire using postfire regeneration.
Collapse
Affiliation(s)
- Dachuan Dai
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongli Yu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Wuchao Gao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - George L W Perry
- School of Environment, University of Auckland, Auckland, New Zealand
| | - Adrian M Paterson
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Chengming You
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Shixing Zhou
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| | - Congde Huang
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Dongyu Cao
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
| | - Timothy J Curran
- Department of Pest-Management and Conservation, Lincoln University, Lincoln, New Zealand
| | - Xinglei Cui
- National Forestry and Grassland Administration Engineering Research Centre for Southwest Forest and Grassland Fire Ecological Prevention, College of Forestry, Sichuan Agricultural University, Chengdu, China
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, Chengdu, China
- Sichuan Mt. Emei Forest Ecosystem National Observation and Research Station, Emei, China
| |
Collapse
|
10
|
Fan A, Wang X, Yan X, Chen T, Jiang Q, Jia L, Wang W, Xiong D, Huang J, Chen G. Does a whole plant conservation gradient exist within a subtropical broadleaved evergreen forest? FRONTIERS IN PLANT SCIENCE 2024; 15:1481323. [PMID: 39722876 PMCID: PMC11668598 DOI: 10.3389/fpls.2024.1481323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/25/2024] [Indexed: 12/28/2024]
Abstract
The coordination between leaf and root traits is crucial for plants to synchronize their strategies for acquiring and utilizing above- and belowground resources. Nevertheless, the generality of a whole plant conservation gradient is still controversial. Such testing has been conducted mainly among communities at large spatial scales, and thus evidence is lacking within communities. This is noteworthy because factors that influence leaf and root trait variation differ across scales. Here, we measured pairs of analogous leaf and first-order root traits, including morphological (leaf thickness (LT) and root diameter (RD), leaf mass per unit area (LMA) and specific root length (SRL), and leaf and root tissue density (LTD and RTD)) and chemical traits (carbon (C) and nitrogen (N) concentrations in leaf and root tissues), on the same plants from 60 woody species within a subtropical broad-leaved evergreen forest. The trade-off patterns in and correlations between leaf and root traits were examined using (phylogenetic) principal component analysis and correlation analysis. Our results revealed two dominant dimensions of leaf trait variation, the leaf economics spectrum (LES) and the LT-LTD trade-off axis. Variations in root traits were mainly accounted for by a two-dimensional root economics space (RES) (i.e., root conservation gradient (RTD-RN) and root collaboration gradient (RD-SRL)). The LES and root conservation gradient were correlated and could be integrated into one whole plant conservation gradient, independent of the root collaboration gradient and the leaf LT-LTD trade-off dimension. Leaf and root N concentrations correlated positively, independent of phylogeny, whereas analogous leaf and root morphological traits varied independently of each other. These results support the existence of a whole plant conservation gradient, but also highlight a complex integration of multiple above- and belowground adaptive strategies of plants within a forest community, which offer new insight into ecological trade-offs, species coexistence and community assembly in the forest ecosystem.
Collapse
Affiliation(s)
- Ailian Fan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Xue Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Xiaojun Yan
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Tingting Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Qi Jiang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Linqiao Jia
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Weiwei Wang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Decheng Xiong
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Jinxue Huang
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| | - Guangshui Chen
- Key Laboratory of Humid Subtropical Eco-geographical Process of Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou, China
- Fujian Sanming Forest Ecosystem National Observation and Research Station, Fujian Normal University, Fuzhou, China
| |
Collapse
|
11
|
Alfaro-Lucas JM, Chapman ASA, Tunnicliffe V, Bates AE. High functional vulnerability across the world's deep-sea hydrothermal vent communities. Proc Natl Acad Sci U S A 2024; 121:e2403899121. [PMID: 39467128 PMCID: PMC11551373 DOI: 10.1073/pnas.2403899121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 08/05/2024] [Indexed: 10/30/2024] Open
Abstract
At the nearly pristine hydrothermal vents of the deep sea, highly endemic animals depend upon bacteria nourished by hydrothermal fluids that emerge as outflows from the seafloor. These animals are remarkable in tolerating extreme conditions, including high heat, toxic reduced sulfide, and low oxygen. Here, we test whether the extreme vent environment has selected for functionally similar species across the world's deep ocean, despite well-established global geographic patterns of high phylogenetic distinctness. High functional redundancy in species pools within regions suggests that the extreme environments select for species with specific traits. Yet, some regions emerge as functional hotspots where species pools with distinct functional trait compositions may represent geological idiosyncrasies of the habitats. Moreover, many species are functionally unique, an outcome of low species richness in a system where the species pool is small at all scales. Given the high proportion of functionally unique species, simulated species extinctions indicate that species losses would rapidly translate to the elimination of functionally irreplaceable species and could tip vent systems to functional collapse. Ocean changes and human-induced threats are expected to significantly impact many vent species as human activities expand in the remote deep sea. The opportunity exists now to take precautionary actions to limit the rates of extinction now ubiquitous in more accessible areas of Earth.
Collapse
Affiliation(s)
| | - Abbie S. A. Chapman
- Centre for Biodiversity and Environment Research, Department of Genetics, Evolution and Environment, University College London, LondonWC1H 0NN, United Kingdom
| | - Verena Tunnicliffe
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
- School of Earth & Ocean Sciences, University of Victoria, Victoria, BCV8P 5C2, Canada
| | - Amanda E. Bates
- Department of Biology, University of Victoria, Victoria, BCV8P 5C2, Canada
| |
Collapse
|
12
|
Jiang D, Nie T, He Q, Yan J, Feng E, Ye Q. A Trade-Off Between Leaf Carbon Economics and Plant Size Among Mangrove Species in Dongzhaigang, China. Ecol Evol 2024; 14:e70559. [PMID: 39563707 PMCID: PMC11576130 DOI: 10.1002/ece3.70559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/19/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024] Open
Abstract
Plant size is closely linked to its leaf trait characteristics, which are essential for determining its form and function. These relationships constitute a fundamental component of the global spectrum of plant diversity. Despite this, the size-trait relationships in coastal mangroves have often been overlooked, with a common assumption that they would mirror those found in terrestrial tropical trees. However, recent studies have begun to challenge this assumption, revealing unique adaptations and trait variations in mangroves that are influenced by their specific environmental conditions, such as salinity and nutrient availability. In this research, we investigated the leaf structural traits, plant height, and diameter at breast height or basal height (DBH) of 10 shrub and tree species. This study was carried out along an intertidal gradient within a mangrove forest located in Southeast China. We found that leaf traits differed significantly between shrubs and trees in their response to intertidal gradients, indicating that different species have evolved specific adaptations to thrive in their respective intertidal zones. This insight can help us decipher the selective pressures that have shaped trait evolution. Among all species, leaf carbon (C) economics (leaf dry mass content, leaf mass per area, and leaf density) decreased significantly with increasing plant height and DBH. For each growth form and intertidal zone, the relationships between plant size (height or DBH) and leaf C economics traits were consistent with those in the pooled dataset. Our study reveals that mangrove plants exhibit size-related adjustments in leaf C economic strategies, indicating that plant size potentially acts as a proxy for the "slow-fast" continuum of plant performance. This discovery is pivotal for advancing our understanding of plant functional ecology and for enhancing the precision of global C cycle models, which are highly responsive to perturbations in atmospheric CO2 and climate change.
Collapse
Affiliation(s)
- Dalong Jiang
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Tao Nie
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Qiuyu He
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Jing Yan
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province College of Life Sciences, Hainan Normal University Haikou China
- Hainan Dongzhaigang Mangrove Ecosystem Provincial Observation and Research Station Haikou China
| | - Erhui Feng
- Hainan Dongzhaigang National Nature Reserve Authority Haikou Hainan China
| | - Qing Ye
- Guangdong Provincial Key Laboratory of Applied Botany, and Key Laboratory of National Forestry and Grassland Administration on Plant Conservation and Utilization in Southern China, South China Botanical Garden Chinese Academy of Sciences Guangzhou China
- College of Life Sciences, Gannan Normal University Ganzhou China
| |
Collapse
|
13
|
Bialic-Murphy L, McElderry RM, Esquivel-Muelbert A, van den Hoogen J, Zuidema PA, Phillips OL, de Oliveira EA, Loayza PA, Alvarez-Davila E, Alves LF, Maia VA, Vieira SA, Arantes da Silva LC, Araujo-Murakami A, Arets E, Astigarraga J, Baccaro F, Baker T, Banki O, Barroso J, Blanc L, Bonal D, Bongers F, Bordin KM, Brienen R, de Medeiros MB, Camargo JL, Araújo FC, Castilho CV, Castro W, Moscoso VC, Comiskey J, Costa F, Müller SC, de Almeida EC, Lôla da Costa AC, de Andrade Kamimura V, de Oliveira F, Del Aguila Pasquel J, Derroire G, Dexter K, Di Fiore A, Duchesne L, Emílio T, Farrapo CL, Fauset S, Draper FC, Feldpausch TR, Ramos RF, Martins VF, Simon MF, Reis MG, Manzatto AG, Herault B, Herrera R, Coronado EH, Howe R, Huamantupa-Chuquimaco I, Huasco WH, Zanini KJ, Joly C, Killeen T, Klipel J, Laurance SG, Laurance WF, Fontes MAL, Oviedo WL, Magnusson WE, Dos Santos RM, Peña JLM, de Abreu KMP, Marimon B, Junior BHM, Melgaço K, Melo Cruz OA, Mendoza C, Monteagudo-Mendoza A, Morandi PS, Gianasi FM, Nascimento H, Nascimento M, Neill D, Palacios W, Camacho NCP, Pardo G, Pennington RT, Peñuela-Mora MC, Pitman NCA, Poorter L, Cruz AP, Ramírez-Angulo H, Reis SM, Correa ZR, Rodriguez CR, Lleras AR, Santos FAM, Bergamin RS, Schietti J, Schwartz G, Serrano J, et alBialic-Murphy L, McElderry RM, Esquivel-Muelbert A, van den Hoogen J, Zuidema PA, Phillips OL, de Oliveira EA, Loayza PA, Alvarez-Davila E, Alves LF, Maia VA, Vieira SA, Arantes da Silva LC, Araujo-Murakami A, Arets E, Astigarraga J, Baccaro F, Baker T, Banki O, Barroso J, Blanc L, Bonal D, Bongers F, Bordin KM, Brienen R, de Medeiros MB, Camargo JL, Araújo FC, Castilho CV, Castro W, Moscoso VC, Comiskey J, Costa F, Müller SC, de Almeida EC, Lôla da Costa AC, de Andrade Kamimura V, de Oliveira F, Del Aguila Pasquel J, Derroire G, Dexter K, Di Fiore A, Duchesne L, Emílio T, Farrapo CL, Fauset S, Draper FC, Feldpausch TR, Ramos RF, Martins VF, Simon MF, Reis MG, Manzatto AG, Herault B, Herrera R, Coronado EH, Howe R, Huamantupa-Chuquimaco I, Huasco WH, Zanini KJ, Joly C, Killeen T, Klipel J, Laurance SG, Laurance WF, Fontes MAL, Oviedo WL, Magnusson WE, Dos Santos RM, Peña JLM, de Abreu KMP, Marimon B, Junior BHM, Melgaço K, Melo Cruz OA, Mendoza C, Monteagudo-Mendoza A, Morandi PS, Gianasi FM, Nascimento H, Nascimento M, Neill D, Palacios W, Camacho NCP, Pardo G, Pennington RT, Peñuela-Mora MC, Pitman NCA, Poorter L, Cruz AP, Ramírez-Angulo H, Reis SM, Correa ZR, Rodriguez CR, Lleras AR, Santos FAM, Bergamin RS, Schietti J, Schwartz G, Serrano J, Silva-Sene AM, Silveira M, Stropp J, Ter Steege H, Terborgh J, Tobler MW, Gamarra LV, van der Meer PJ, van der Heijden G, Vasquez R, Vilanova E, Vos VA, Wolf A, Woodall CW, Wortel V, Zwerts JA, Pugh TAM, Crowther TW. The pace of life for forest trees. Science 2024; 386:92-98. [PMID: 39361744 DOI: 10.1126/science.adk9616] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 08/28/2024] [Indexed: 10/05/2024]
Abstract
Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world's forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes.
Collapse
Affiliation(s)
- Lalasia Bialic-Murphy
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Robert M McElderry
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
- Forest Health and Biotic Interactions, Swiss Federal Research Institute WSL, 8903 Birmensdorf, Switzerland
| | | | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| | - Pieter A Zuidema
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Edmar Almeida de Oliveira
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | - Esteban Alvarez-Davila
- Escuela de Ciencias Agrícola, Universidad Nacional Abierta y a Distancia de Colombia, Colombia
| | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California' Los Angeles, Los Angeles, CA 90095, USA
| | | | | | | | - Alejandro Araujo-Murakami
- Museo de Historia Natural Noel Kempff Mercado, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia
| | - Eric Arets
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, Netherlands
| | - Julen Astigarraga
- Universidad de Alcalá, Department of Life Sciences, Forest Ecology and Restoration Group (FORECO), Alcalá de Henares, Spain
| | | | | | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, Netherlands
| | - Jorcely Barroso
- Laboratório de Ciências Florestais, Universidade Federal do Acre, Campus de Cruzeiro do Sul, Acre, Brazil
| | - Lilian Blanc
- Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France
| | - Damien Bonal
- Université de Lorraine, AgroParisTech, INRAE, UMR Silva, 54000 Nancy, France
| | - Frans Bongers
- Department of Environmental Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Kauane Maiara Bordin
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | | | - José Luís Camargo
- Biological Dynamics of Forest Project - National Institute for Amazonian Research (BDFFP-INPA), Manaus, Brazil
| | | | | | - Wendeson Castro
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | | | - James Comiskey
- Inventory and Monitoring Program, National Park Service, Fort Collins, CO 80525, USA
- Smithsonian Institution, Washington, DC 20024, USA
| | - Flávia Costa
- Coordenação de Pesquisas em Biodiversidade, Instituto Nacional de Pesquisas da Amazônia, CEP 69067-375, Manaus, Brazil
| | - Sandra Cristina Müller
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Everton Cristo de Almeida
- Universidade Federal do Oeste do Pará (UFOPA), Instituto de Biodiversidade e Florestas (IBEF), Santarém, Pará, Brazil
| | | | | | | | - Jhon Del Aguila Pasquel
- Instituto de Investigaciones de la Amazonia Peruana, Iquitos, Peru
- Universidad Nacional de la Amazonia Peruana, Iquitos, Peru
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParistech, CNRS, INRAE, Université des Antilles, Université de la Guyane), Campus Agronomique, Kourou, French Guiana
| | - Kyle Dexter
- School of GeoSciences, University of Edinburgh, Royal Botanic Garden Edinburgh, Edinburgh, UK
| | - Anthony Di Fiore
- Primate Molecular Ecology and Evolution Laboratory and Department of Anthropology, The University of Texas at Austin, Austin, TX 78712 USA
- Tiputini Biodiversity Station, College of Biological and Environmental Sciences, Universidad San Francisco de Quito, Cumbay, Ecuador
| | - Louis Duchesne
- Direction de la Recherche Forestière, Ministère des Ressources Naturelles et des Forêts du Québec, Quebec City, QC G1P 3W8, Canada
| | - Thaise Emílio
- Programa Nacional de Pós-Doutorado (PNPD), Programa de Pós-Graduação em Ecologia, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | | | - Sophie Fauset
- School of Geography, Earth and Environmental Sciences, University of Plymouth, Plymouth, UK
| | - Frederick C Draper
- School of Environmental Sciences, University of Liverpool, Liverpool, UK
| | - Ted R Feldpausch
- Geography, Faculty of Science, Environment and Economy, University of Exeter, Exeter, UK
| | - Rafael Flora Ramos
- Biology Institute, University of Campinas, 13083-862, Campinas, SP, Brazil
| | - Valeria Forni Martins
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Department of Natural Sciences, Mathematics, and Education, Centre for Agrarian Sciences, Universidade Federal de São Carlos (UFSCar), Araras, SP, Brazil
| | | | | | | | - Bruno Herault
- Forêts et Sociétés, Université Montpellier, CIRAD, Montpellier, France
| | - Rafael Herrera
- Instituto Venezolano de Investigaciones Científicas (IVIC), Miranda, Venezuela
| | | | - Robert Howe
- Cofrin Center for Biodiversity, University of Wisconsin-Green Bay, Green Bay, WI 54311, USA
| | - Isau Huamantupa-Chuquimaco
- Herbario "Alwyn Gentry" (HAG), Universidad Nacional Amazónica de Madre de Dios (UNAMAD), Puerto Maldonado, Madre de Dios, Perú
| | - Walter Huaraca Huasco
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Katia Janaina Zanini
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Carlos Joly
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | | | - Joice Klipel
- Plant Ecology Lab, Ecology Department, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Susan G Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
| | - William F Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
| | | | | | | | | | - Jose Luis Marcelo Peña
- Universidad Nacional de Jaén, Laboratory of Vascular Plants and ISV Herbarium, San Ignacio, Peru
| | | | - Beatriz Marimon
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | - Ben Hur Marimon Junior
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | | | | | - Abel Monteagudo-Mendoza
- Universidad Nacional de San Antonio Abad del Cusco, Jardin Botanico de Missouri, Cusco, Peru
| | - Paulo S Morandi
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
| | | | - Henrique Nascimento
- Biodiversity Department, Instituto Nacional de Pesquisas da Amazônia, Manaus, Brazil
| | - Marcelo Nascimento
- Laboratório de Ciências Ambientais, CBB, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - David Neill
- Universidad Estatal Amazonica, Puyo, Pastaza, Ecuador
| | | | | | - Guido Pardo
- Facultad de Ciencias Forestales, Universidad Autónoma del Beni José Ballivián, Riberalta, Beni, Bolivia
| | - R Toby Pennington
- Department of Geography, University of Exeter, UK
- Royal Botanic Garden, Edinburgh, UK
| | | | - Nigel C A Pitman
- Collections, Conservation & Research, Field Museum of Natural History, Chicago, IL 60605, USA
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, Wageningen, Netherlands
| | | | - Hirma Ramírez-Angulo
- Universidad de Los Andes, Facultad de Ciencias Forestales y Ambientales, INDEFOR, Merida, Venezuela
| | - Simone Matias Reis
- Universidade do Estado de Mato Grosso (Unemat) - Pós-Graduação em Ecologia e Conservação, Nova Xavantina-MT, Brazil
- Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | | | | | - Agustín Rudas Lleras
- Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Flavio A M Santos
- Plant Biology Department, Biology Institute, University of Campinas, Campinas, SP, Brazil
| | | | | | | | | | | | - Marcos Silveira
- Laboratório de Botânica e Ecologia Vegetal, Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Acre, Brazil
| | - Juliana Stropp
- Biogeography Department, Trier University, 54286 Trier, Germany
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, Netherlands
- Quantitative Biodiversity Dynamics, Department of Biology, Utrecht University, Utrecht, The Netherlands
| | - John Terborgh
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, Australia
- Florida Museum of Natural History, University of Florida-Gainesville, Gainesville, FL 32611, USA
| | | | | | | | | | | | | | - Vincent Antoine Vos
- Instituto de Investigaciones Forestales de la Amazonía, Universidad Autónoma del Beni José Ballivián, Riberalta, Beni, Bolivia
| | - Amy Wolf
- University of Wisconsin-Green Bay, Department of Natural and Applied Sciences, Green Bay, WI 54311, USA
| | - Christopher W Woodall
- US Department of Agriculture, Forest Service, Research and Development, Durham, NH 03824, USA
| | - Verginia Wortel
- Department of Forest Management, Centre for Agricultural Research in Suriname, CELOS, Suriname
| | | | - Thomas A M Pugh
- Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Birmingham, UK
- Department of Physical Geography and Ecosystem Science, Lund University, Sweden
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), 8092 Zurich, Switzerland
| |
Collapse
|
14
|
Augustine SP, McCulloh KA. Physiological trait coordination and variability across and within three Pinus species. THE NEW PHYTOLOGIST 2024; 244:451-463. [PMID: 39205436 DOI: 10.1111/nph.19859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/21/2024] [Indexed: 09/04/2024]
Abstract
Studies have explored how traits separate plants ecologically and the trade-offs that underpin this separation. However, uncertainty remains as to the taxonomic scale at which traits can predictably separate species. We studied how physiological traits separated three Pinus (Pinus banksiana, Pinus resinosa, and Pinus strobus) species across three sites. We collected traits from four common leaf and branch measurements (light-response curves, CO2-response curves, pressure-volume curves, and hydraulic vulnerability curves) across each species and site. While common, these measurements are not typically measured together due to logistical constraints. Few traits varied across species and sites as expected given the ecological preferences of the species and environmental site characteristics. Some trait trade-offs present at broad taxonomic scales were observed across the three species, but most were absent within species. Certain trade-offs contrasted expectations observed at broader scales but followed expectations given the species' ecological preferences. We emphasize the need to both clarify why certain traits are being studied, as variation in unexpected but ecologically meaningful ways often occurs and certain traits might not vary substantially within a given lineage (e.g. hydraulic vulnerability in Pinus), highlighting the role a trait selection in trait ecology.
Collapse
Affiliation(s)
- Steven P Augustine
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
- Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, 55108, USA
| | - Katherine A McCulloh
- Department of Botany, University of Wisconsin - Madison, Madison, WI, 53706, USA
| |
Collapse
|
15
|
Li J, Prentice IC. Global patterns of plant functional traits and their relationships to climate. Commun Biol 2024; 7:1136. [PMID: 39271947 PMCID: PMC11399309 DOI: 10.1038/s42003-024-06777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Plant functional traits (FTs) determine growth, reproduction and survival strategies of plants adapted to their growth environment. Exploring global geographic patterns of FTs, their covariation and their relationships to climate are necessary steps towards better-founded predictions of how global environmental change will affect ecosystem composition. We compile an extensive global dataset for 16 FTs and characterise trait-trait and trait-climate relationships separately within non-woody, woody deciduous and woody evergreen plant groups, using multivariate analysis and generalised additive models (GAMs). Among the six major FTs considered, two dominant trait dimensions-representing plant size and the leaf economics spectrum (LES) respectively-are identified within all three groups. Size traits (plant height, diaspore mass) however are generally higher in warmer climates, while LES traits (leaf mass and nitrogen per area) are higher in drier climates. Larger leaves are associated principally with warmer winters in woody evergreens, but with wetter climates in non-woody plants. GAM-simulated global patterns for all 16 FTs explain up to three-quarters of global trait variation. Global maps obtained by upscaling GAMs are broadly in agreement with iNaturalist citizen-science FT data. This analysis contributes to the foundations for global trait-based ecosystem modelling by demonstrating universal relationships between FTs and climate.
Collapse
Affiliation(s)
- Jiaze Li
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK.
| | - Iain Colin Prentice
- Georgina Mace Centre for the Living Planet, Department of Life Sciences, Imperial College London, Silwood Park Campus, Buckhurst Road, Ascot, SL5 7PY, UK
- Department of Earth System Science, Ministry of Education Key Laboratory for Earth System Modeling, Institute for Global Change Studies, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
16
|
Wang B, Wang Z, Wang C, Wang X, Jia Z, Liu L. Elevated aerosol enhances plant water-use efficiency by increasing carbon uptake while reducing water loss. THE NEW PHYTOLOGIST 2024; 243:567-579. [PMID: 38812270 DOI: 10.1111/nph.19877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Aerosols could significantly influence ecosystem carbon and water fluxes, potentially altering their interconnected dynamics, typically characterized by water-use efficiency (WUE). However, our understanding of the underlying ecophysiological mechanisms remains limited due to insufficient field observations. We conducted 4-yr measurements of leaf photosynthesis and transpiration, as well as 3-yr measurements of stem growth (SG) and sap flow of poplar trees exposed to natural aerosol fluctuation, to elucidate aerosol's impact on plant WUE. We found that aerosol improved sun leaf WUE mainly because a sharp decline in photosynthetically active radiation (PAR) inhibited its transpiration, while photosynthesis was less affected, as the negative effect induced by declined PAR was offset by the positive effect induced by low leaf vapor pressure deficit (VPDleaf). Conversely, diffuse radiation fertilization (DRF) effect stimulated shade leaf photosynthesis with minimal impact on transpiration, leading to an improved WUE. The responses were further verified by a strong DRF on SG and a decrease in sap flow due to the suppresses in total radiation and VPD. Our field observations indicate that, contrary to the commonly assumed coupling response, carbon uptake and water use exhibited dissimilar reactions to aerosol pollution, ultimately enhancing WUE at the leaf and canopy level.
Collapse
Affiliation(s)
- Bin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Zhenhua Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
- The Engineering Technology Research Center of Characteristic Medicinal Plants of Fujian, School of Life Sciences, Ningde Normal University, Ningde, 352101, China
| | - Chengzhang Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Xin Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- China National Botanical Garden, Beijing, 100093, China
| | - Zhou Jia
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Yuquan Road, Beijing, 100049, China
- China National Botanical Garden, Beijing, 100093, China
| |
Collapse
|
17
|
van Breugel M, Bongers F, Norden N, Meave JA, Amissah L, Chanthorn W, Chazdon R, Craven D, Farrior C, Hall JS, Hérault B, Jakovac C, Lebrija-Trejos E, Martínez-Ramos M, Muñoz R, Poorter L, Rüger N, van der Sande M, Dent DH. Feedback loops drive ecological succession: towards a unified conceptual framework. Biol Rev Camb Philos Soc 2024; 99:928-949. [PMID: 38226776 DOI: 10.1111/brv.13051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/17/2024]
Abstract
The core principle shared by most theories and models of succession is that, following a major disturbance, plant-environment feedback dynamics drive a directional change in the plant community. The most commonly studied feedback loops are those in which the regrowth of the plant community causes changes to the abiotic (e.g. soil nutrients) or biotic (e.g. dispersers) environment, which differentially affect species availability or performance. This, in turn, leads to shifts in the species composition of the plant community. However, there are many other PE feedback loops that potentially drive succession, each of which can be considered a model of succession. While plant-environment feedback loops in principle generate predictable successional trajectories, succession is generally observed to be highly variable. Factors contributing to this variability are the stochastic processes involved in feedback dynamics, such as individual mortality and seed dispersal, and extrinsic causes of succession, which are not affected by changes in the plant community but do affect species performance or availability. Both can lead to variation in the identity of dominant species within communities. This, in turn, leads to further contingencies if these species differ in their effect on their environment (priority effects). Predictability and variability are thus intrinsically linked features of ecological succession. We present a new conceptual framework of ecological succession that integrates the propositions discussed above. This framework defines seven general causes: landscape context, disturbance and land-use, biotic factors, abiotic factors, species availability, species performance, and the plant community. When involved in a feedback loop, these general causes drive succession and when not, they are extrinsic causes that create variability in successional trajectories and dynamics. The proposed framework provides a guide for linking these general causes into causal pathways that represent specific models of succession. Our framework represents a systematic approach to identifying the main feedback processes and causes of variation at different successional stages. It can be used for systematic comparisons among study sites and along environmental gradients, to conceptualise studies, and to guide the formulation of research questions and design of field studies. Mapping an extensive field study onto our conceptual framework revealed that the pathways representing the study's empirical outcomes and conceptual model had important differences, underlining the need to move beyond the conceptual models that currently dominate in specific fields and to find ways to examine the importance of and interactions among alternative causal pathways of succession. To further this aim, we argue for integrating long-term studies across environmental and anthropogenic gradients, combined with controlled experiments and dynamic modelling.
Collapse
Affiliation(s)
- Michiel van Breugel
- Department of Geography, National University of Singapore, Arts Link, #03-01 Block AS2, 117570, Singapore
- Yale-NUS College, 16 College Avenue West, Singapore, 138527, Singapore
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Frans Bongers
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Natalia Norden
- Centro de Estudios Socioecológicos y Cambio Global, Instituto de Investigación de Recursos Biológicos Alexander von Humboldt, Avenida Circunvalar #16-20, Bogotá, Colombia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México. Circuito Exterior s/n, Ciudad Universitaria, Coyoacán, Ciudad de México, C.P. 04510, Mexico
| | - Lucy Amissah
- CSIR-Forestry Research Institute of Ghana, UPO Box 63, Kumasi, Ghana
| | - Wirong Chanthorn
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, 50 Ngamwongwan Road, Jatujak District, 10900, Thailand
| | - Robin Chazdon
- Forest Research Institute, University of the Sunshine Coast, 90 Sippy Downs Dr, Sippy Downs, Queensland, 4556, Australia
| | - Dylan Craven
- Center for Genomics, Ecology & Environment, Universidad Mayor, Camino La Piramide 5750, Huechuraba, Santiago, 8580745, Chile
| | - Caroline Farrior
- Department of Integrative Biology, University of Texas at Austin, 2415 Speedway, Stop C0930, Austin, Texas, 78705, USA
| | - Jefferson S Hall
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, F-34398 Montpellier, France & Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Catarina Jakovac
- Departamento de Fitotecnia, Centro de Ciências Agrárias, Universidade Federal de Santa Catarina, Rod. Admar Gonzaga, 1346, 88034-000, Florianópolis, Brazil
| | - Edwin Lebrija-Trejos
- Department of Biology and Environment, University of Haifa-Oranim, Tivon, 36006, Israel
| | - Miguel Martínez-Ramos
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Campus Morelia, Antigua Carretera a Pátzcuaro # 8701, Col. Ex-Hacienda de San José de la Huerta, CP 58190, Morelia, Michoacán, Mexico
| | - Rodrigo Muñoz
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Lourens Poorter
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Nadja Rüger
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstr. 4, 04103, Leipzig, Germany
- Department of Economics, Institute of Empirical Economic Research, University of Leipzig, Grimmaische Str. 12, 04109, Leipzig, Germany
| | - Masha van der Sande
- Forest Ecology and Forest Management Group, Wageningen University & Research, PO Box 47, 6700 AA, Wageningen, The Netherlands
| | - Daisy H Dent
- Smithsonian Tropical Research Institute, Roosevelt Ave. Tupper Building - 401, Panama City, 0843-03092, Panama
- ETH Zürich, Department of Environmental Systems Science, Institute for Integrative Biology, Universitätstrasse 16, 8092, Zürich, Switzerland
- Max Planck Institute for Animal Behavior, Am Obstberg 1, 78315 Radolfzell, Germany
| |
Collapse
|
18
|
Li F, Qian H, Sardans J, Amishev DY, Wang Z, Zhang C, Wu T, Xu X, Tao X, Huang X. Evolutionary history shapes variation of wood density of tree species across the world. PLANT DIVERSITY 2024; 46:283-293. [PMID: 38798729 PMCID: PMC11119544 DOI: 10.1016/j.pld.2024.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 04/01/2024] [Accepted: 04/06/2024] [Indexed: 05/29/2024]
Abstract
The effect of evolutionary history on wood density variation may play an important role in shaping variation in wood density, but this has largely not been tested. Using a comprehensive global dataset including 27,297 measurements of wood density from 2621 tree species worldwide, we test the hypothesis that the legacy of evolutionary history plays an important role in driving the variation of wood density among tree species. We assessed phylogenetic signal in different taxonomic (e.g., angiosperms and gymnosperms) and ecological (e.g., tropical, temperate, and boreal) groups of tree species, explored the biogeographical and phylogenetic patterns of wood density, and quantified the relative importance of current environmental factors (e.g., climatic and soil variables) and evolutionary history (i.e., phylogenetic relatedness among species and lineages) in driving global wood density variation. We found that wood density displayed a significant phylogenetic signal. Wood density differed among different biomes and climatic zones, with higher mean values of wood density in relatively drier regions (highest in subtropical desert). Our study revealed that at a global scale, for angiosperms and gymnosperms combined, phylogeny and species (representing the variance explained by taxonomy and not direct explained by long-term evolution process) explained 84.3% and 7.7% of total wood density variation, respectively, whereas current environment explained 2.7% of total wood density variation when phylogeny and species were taken into account. When angiosperms and gymnosperms were considered separately, the three proportions of explained variation are, respectively, 84.2%, 7.5% and 6.7% for angiosperms, and 45.7%, 21.3% and 18.6% for gymnosperms. Our study shows that evolutionary history outpaced current environmental factors in shaping global variation in wood density.
Collapse
Affiliation(s)
- Fangbing Li
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
| | - Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| | - Jordi Sardans
- CREAF, Cerdanyola del Vallès, Barcelona 08193, Spain
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, Barcelona 08193, Spain
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Applied Meteorology, Nanjing University of Information Science & Technology, 219 Ningliu Road, Nanjing 210044, China
| | - Dzhamal Y. Amishev
- Department of Natural Resources Management, Lakehead University, Thunder Bay, Ontario P7B 5E1, Canada
| | - Zixuan Wang
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Changyue Zhang
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Tonggui Wu
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xiaoniu Xu
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xiao Tao
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Xingzhao Huang
- Anhui Province Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei 230036, China
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| |
Collapse
|
19
|
Bai Z, Ye J, Liu SF, Sun HH, Yuan ZQ, Mao ZK, Fang S, Long SF, Wang XG. Age-Related Conservation in Plant-Soil Feedback Accompanied by Ectomycorrhizal Domination in Temperate Forests in Northeast China. J Fungi (Basel) 2024; 10:310. [PMID: 38786665 PMCID: PMC11122420 DOI: 10.3390/jof10050310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024] Open
Abstract
This study investigates the effects of forest aging on ectomycorrhizal (EcM) fungal community and foraging behavior and their interactions with plant-soil attributes. We explored EcM fungal communities and hyphal exploration types via rDNA sequencing and investigated their associations with plant-soil traits by comparing younger (~120 years) and older (~250 years) temperate forest stands in Northeast China. The results revealed increases in the EcM fungal richness and abundance with forest aging, paralleled by plant-soil feedback shifting from explorative to conservative nutrient use strategies. In the younger stands, Tomentella species were prevalent and showed positive correlations with nutrient availability in both the soil and leaves, alongside rapid increases in woody productivity. However, the older stands were marked by the dominance of the genera Inocybe, Hymenogaster, and Otidea which were significantly and positively correlated with soil nutrient contents and plant structural attributes such as the community-weighted mean height and standing biomass. Notably, the ratios of longer-to-shorter distance EcM fungal exploration types tended to decrease along with forest aging. Our findings underscore the integral role of EcM fungi in the aging processes of temperate forests, highlighting the EcM symbiont-mediated mechanisms adapting to nutrient scarcity and promoting sustainability in plant-soil consortia.
Collapse
Affiliation(s)
- Zhen Bai
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Ji Ye
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shu-Fang Liu
- College of Rural Revitalization, Weifang University, Weifang 261061, China;
| | - Hai-Hong Sun
- Liaoning Provincial Institute of Poplar, Yingkou 115000, China;
| | - Zuo-Qiang Yuan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China;
| | - Zi-Kun Mao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shuai Fang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| | - Shao-Fen Long
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Gao Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; (Z.-K.M.); (S.F.); (S.-F.L.); (X.-G.W.)
| |
Collapse
|
20
|
Zhao X, Qi J, Yu Z, Yuan L, Huang H. Fine-Scale Quantification of Absorbed Photosynthetically Active Radiation (APAR) in Plantation Forests with 3D Radiative Transfer Modeling and LiDAR Data. PLANT PHENOMICS (WASHINGTON, D.C.) 2024; 6:0166. [PMID: 38590393 PMCID: PMC11001482 DOI: 10.34133/plantphenomics.0166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/10/2024] [Indexed: 04/10/2024]
Abstract
Quantifying the relationship between light and stands or individual trees is of great significance in understanding tree competition, improving forest productivity, and comprehending ecological processes. However, accurately depicting the spatiotemporal variability of light under complex forest structural conditions poses a challenge, especially for precise forest management decisions that require a quantitative study of the relationship between fine-scale individual tree structure and light. 3D RTMs (3-dimensional radiative transfer models), which accurately characterize the interaction between solar radiation and detailed forest scenes, provide a reliable means for depicting such relationships. This study employs a 3D RTM and LiDAR (light detection and ranging) data to characterize the light environment of larch plantations at a fine spatiotemporal scale, further investigating the relationship between absorbed photosynthetically active radiation (APAR) and forest structures. The impact of specific tree structural parameters, such as crown diameter, crown area, crown length, crown ratio, crown volume, tree height, leaf area index, and a distance parameter assessing tree competition, on the daily-scale cumulative APAR per tree was investigated using a partial least squares regression (PLSR) model. Furthermore, variable importance in projection (VIP) was also calculated from the PLSR. The results indicate that among the individual tree structure parameters, crown volume is the most important one in explaining individual tree APAR (VIP = 4.19), while the competition from surrounding trees still plays a role in explaining individual tree APAR to some extent (VIP = 0.15), and crown ratio contributes the least (VIP = 0.03). Regarding the spatial distribution of trees, the average cumulative APAR per tree of larch plots does not increase with an increase in canopy gap fraction. Tree density and average cumulative APAR per tree were fitted using a natural exponential equation, with a coefficient of determination (R2 = 0.89), and a small mean absolute percentage error (MAPE = 0.03). This study demonstrates the potential of combining 3D RTM with LiDAR data to quantify fine-scale APAR in plantations, providing insights for optimizing forest structure, enhancing forest quality, and implementing precise forest management practices, such as selective breeding for superior tree species.
Collapse
Affiliation(s)
- Xun Zhao
- Key Laboratory for Silviculture and Conservation of Ministry of Education,
Beijing Forestry University, Beijing 100083, China
| | - Jianbo Qi
- Key Laboratory for Silviculture and Conservation of Ministry of Education,
Beijing Forestry University, Beijing 100083, China
- Innovation Research Center of Satellite Application, Faculty of Geographical Science,
Beijing Normal University, Beijing 100875, China
| | - Zhexiu Yu
- Key Laboratory for Silviculture and Conservation of Ministry of Education,
Beijing Forestry University, Beijing 100083, China
| | - Lijuan Yuan
- Key Laboratory for Silviculture and Conservation of Ministry of Education,
Beijing Forestry University, Beijing 100083, China
| | - Huaguo Huang
- Key Laboratory for Silviculture and Conservation of Ministry of Education,
Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
21
|
Barwise Y, Kumar P, Abhijith KV, Gallagher J, McNabola A, Watts JF. A trait-based investigation into evergreen woody plants for traffic-related air pollution mitigation over time. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169713. [PMID: 38163588 DOI: 10.1016/j.scitotenv.2023.169713] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
This study investigated influences of leaf traits on particulate matter (PM) wash-off and (re)capture (i.e., net removal) over time. Leaf samples were taken before and after three rainfall events from a range of 10 evergreen woody plants (including five different leaf types), which were positioned with an optical particle counter alongside a busy road. Scanning electron microscopy was used to quantify the density (no./mm2), mass (μg/cm2), and elemental composition of deposited particles. To enable leaf area comparison between scale-like leaves and other leaf types, a novel metric (FSA: foliage surface area per unit branch length) was developed, which may be utilised by future research. Vehicle-related particles constituted 15 % of total deposition, and there was a notable 50 % decrease in the proportion of tyre wear particles after rainfall. T. baccata presented the lowest proportion (11.1 %) of vehicle-related particle deposition but the most consistent performance in terms of net PM removal. Only four of the 10 plant specimens (C. japonica, C. lawsoniana, J. chinensis, and T. baccata) presented effective PM wash-off across all particle size fractions and rainfall intensities, with a generally positive relationship observed between rainfall intensity and wash-off. Mass deposition was more significantly determined by particle size than number density. Interestingly, larger particles were also less easily washed off than smaller particles. Some traits typically considered to be advantageous (e.g., greater hairiness) may in fact hinder net removal over time due to retention under rainfall. Small leaf area is one trait that may promote both accumulation and wash-off. However, FSA was found to be the most influential trait, with an inverse relationship between FSA and wash-off efficacy. This finding poses trade-offs and opportunities for green infrastructure design, which are discussed. Finally, numerous areas for future research are recommended, underlining the importance of systems approaches in developing vegetation management frameworks.
Collapse
Affiliation(s)
- Yendle Barwise
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - Prashant Kumar
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Institute for Sustainability, University of Surrey, Guildford, GU2 7XH, Surrey, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland..
| | - K V Abhijith
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom
| | - John Gallagher
- Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - Aonghus McNabola
- Global Centre for Clean Air Research (GCARE), School of Sustainability, Civil and Environmental Engineering, Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, United Kingdom; Department of Civil, Structural & Environmental Engineering, Trinity College Dublin, the University of Dublin, Ireland
| | - John F Watts
- School of Mechanical Engineering Sciences, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| |
Collapse
|
22
|
Chaurasia AN, Parmar RM, Dave MG, Krishnayya NSR. Integrating field- and remote sensing data to perceive species heterogeneity across a climate gradient. Sci Rep 2024; 14:42. [PMID: 38167992 PMCID: PMC10761838 DOI: 10.1038/s41598-023-50812-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
Tropical forests exhibit significant diversity and heterogeneity in species distribution. Some tree species spread abundantly, impacting the functional aspects of communities. Understanding how these facets respond to climate change is crucial. Field data from four protected areas (PAs) were combined with high-resolution Airborne Visible/InfraRed Imaging Spectrometer-Next Generation (AVIRIS-NG) datasets to extract large-scale plot data of abundant species and their functional traits. A supervised component generalized linear regression (SCGLR) model was used to correlate climate components with the distribution of abundant species across PAs. The recorded rainfall gradient influenced the proportion of PA-specific species in the observed species assemblages. Community weighted means (CWMs) of biochemical traits showed better correlation values (0.85-0.87) between observed and predicted values compared to biophysical traits (0.52-0.79). The model-based projection revealed distinct distribution responses of each abundant species to the climate gradient. Functional diversity and functional traits maps highlighted the interplay between species heterogeneity and climate. The appearance dynamics of abundant species in dark diversity across PAs demonstrated their assortment strategy in response to the climate gradient. These observations can significantly aid in the ecological management of PAs exposed to climate dynamics.
Collapse
Affiliation(s)
- Amrita N Chaurasia
- Ecology Laboratory, Department of Botany, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Reshma M Parmar
- Ecology Laboratory, Department of Botany, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - Maulik G Dave
- Ecology Laboratory, Department of Botany, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India
| | - N S R Krishnayya
- Ecology Laboratory, Department of Botany, The Maharaja Sayajirao University of Baroda, Vadodara, Gujarat, 390002, India.
| |
Collapse
|
23
|
Noulèkoun F, Mensah S, Kim H, Jo H, Gouwakinnou GN, Houéhanou TD, Mensah M, Naab J, Son Y, Khamzina A. Tree size diversity is the major driver of aboveground carbon storage in dryland agroforestry parklands. Sci Rep 2023; 13:22210. [PMID: 38097646 PMCID: PMC10721610 DOI: 10.1038/s41598-023-49119-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023] Open
Abstract
Despite the importance of agroforestry parkland systems for ecosystem and livelihood benefits, evidence on determinants of carbon storage in parklands remains scarce. Here, we assessed the direct and indirect influence of human management (selective harvesting of trees), abiotic factors (climate, topography, and soil) and multiple attributes of species diversity (taxonomic, functional, and structural) on aboveground carbon (AGC) stocks in 51 parklands in drylands of Benin. We used linear mixed-effects regressions and structural equation modeling to test the relative effects of these predictors on AGC stocks. We found that structural diversity (tree size diversity, HDBH) had the strongest (effect size β = 0.59, R2 = 54%) relationship with AGC stocks, followed by community-weighted mean of maximum height (CWMMAXH). Taxonomic diversity had no significant direct relationship with AGC stocks but influenced the latter indirectly through its negative effect on CWMMAXH, reflecting the impact of species selection by farmers. Elevation and soil total organic carbon content positively influenced AGC stocks both directly and indirectly via HDBH. No significant association was found between AGC stocks and tree harvesting factor. Our results suggest the mass ratio, niche complementarity and environmental favorability as underlying mechanisms of AGC storage in the parklands. Our findings also highlight the potential role of human-driven filtering of local species pool in regulating the effect of biodiversity on AGC storage in the parklands. We conclude that the promotion of AGC stocks in parklands is dependent on protecting tree regeneration in addition to enhancing tree size diversity and managing tall-stature trees.
Collapse
Affiliation(s)
- Florent Noulèkoun
- Agroforestry Systems and Ecology Laboratory (ASEL), Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Sylvanus Mensah
- Laboratoire de Biomathématiques et d'Estimations Forestières, Faculté des Sciences Agronomiques, Université d'Abomey Calavi, Cotonou, Benin
- Chair of Forest Growth and Dendroecology, Albert-Ludwigs-Universität Freiburg, Freiburg im Breisgau, Germany
| | - HyungSub Kim
- Ecosystem Ecology Laboratory, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Heejae Jo
- Agroforestry Systems and Ecology Laboratory (ASEL), Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
- Ecosystem Ecology Laboratory, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Gérard N Gouwakinnou
- Research Unit of Biodiversity Conservation at the Interface People-Land Use and Climate Changes, Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, BP 125, Parakou, Benin
| | - Thierry D Houéhanou
- Research Unit of Biodiversity Conservation at the Interface People-Land Use and Climate Changes, Laboratory of Ecology, Botany and Plant Biology, Faculty of Agronomy, University of Parakou, BP 125, Parakou, Benin
| | - Michael Mensah
- Department of Business Administration, University of Professional Studies, Accra, Ghana
| | - Jesse Naab
- West African Science Service Center on Climate Change and Adapted Land Use (WASCAL), P.O. Box 9507, Ouagadougou 06, Burkina Faso
| | - Yowhan Son
- Ecosystem Ecology Laboratory, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea
| | - Asia Khamzina
- Agroforestry Systems and Ecology Laboratory (ASEL), Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, South Korea.
| |
Collapse
|
24
|
Silvestro R, Mura C, Alano Bonacini D, de Lafontaine G, Faubert P, Mencuccini M, Rossi S. Local adaptation shapes functional traits and resource allocation in black spruce. Sci Rep 2023; 13:21257. [PMID: 38040772 PMCID: PMC10692160 DOI: 10.1038/s41598-023-48530-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Climate change is rapidly altering weather patterns, resulting in shifts in climatic zones. The survival of trees in specific locations depends on their functional traits. Local populations exhibit trait adaptations that ensure their survival and accomplishment of growth and reproduction processes during the growing season. Studying these traits offers valuable insights into species responses to present and future environmental conditions, aiding the implementation of measures to ensure forest resilience and productivity. This study investigates the variability in functional traits among five black spruce (Picea mariana (Mill.) B.S.P.) provenances originating from a latitudinal gradient along the boreal forest, and planted in a common garden in Quebec, Canada. We examined differences in bud phenology, growth performance, lifetime first reproduction, and the impact of a late-frost event on tree growth and phenological adjustments. The findings revealed that trees from northern sites exhibit earlier budbreak, lower growth increments, and reach reproductive maturity earlier than those from southern sites. Late-frost damage affected growth performance, but no phenological adjustment was observed in the successive year. Local adaptation in the functional traits may lead to maladaptation of black spruce under future climate conditions or serve as a potent evolutionary force promoting rapid adaptation under changing environmental conditions.
Collapse
Affiliation(s)
- R Silvestro
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada.
| | - C Mura
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - D Alano Bonacini
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| | - G de Lafontaine
- Canada Research Chair in Integrative Biology of the Northern Flora, Département de biologie, chimie et Géographie, Centre for Northern Studies, Centre for Forest Research, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - P Faubert
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
- Carbone boréal, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H 2B1, Canada
| | - M Mencuccini
- Centre de Recerca Ecològica i Aplicacions Forestals (CREAF), 08193, Bellaterra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig de Lluis Companys 23, 08010, Barcelona, Spain
| | - S Rossi
- Laboratoire sur les écosystèmes terrestres boréaux, Département des Sciences Fondamentales, Université du Québec à Chicoutimi, 555 Boulevard de l'Université, Chicoutimi, QC, G7H2B1, Canada
| |
Collapse
|
25
|
Duan X. Stoichiometric characteristics of woody plant leaves and responses to climate and soil factors in China. PLoS One 2023; 18:e0291957. [PMID: 37733819 PMCID: PMC10513206 DOI: 10.1371/journal.pone.0291957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/08/2023] [Indexed: 09/23/2023] Open
Abstract
The main research content of the field of ecological stoichiometry is the energy of various chemical elements and the interaction between organisms and the environment throughout ecological processes. Nitrogen and phosphorus are the main elements required for the growth and development of plants and these also form the constituent basis of biological organisms. Both elements interact and jointly regulate the growth and development of plants, and their element ratios are an indication of the nutrient utilization rate and nutrient limitation status of plants. Previous research developed a general biogeography model of the stoichiometric relationship between nitrogen and phosphorus in plant leaves on a global scale. Further, it was shown that the relative rate of nitrogen uptake by leaves was lower than that of phosphorus, and the scaling exponent of nitrogen and phosphorus was 2/3. However, it is not clear how the stoichiometric values of nitrogen and phosphorus, especially their scaling exponents, change in the leaves of Chinese woody plants in response to changing environmental conditions. Therefore, data sets of leaf nitrogen and phosphorus concentrations, and nitrogen to phosphorus ratios in Chinese woody plants were compiled and classified according to different life forms. The overall average concentrations of nitrogen and phosphorus in leaves were 20.77 ± 8.12 mg g-1 and 1.58 ± 1.00 mg g-1, respectively. The contents of nitrogen and phosphorus in leaves of deciduous plants were significantly higher than those of evergreen plants. In leaves, life form is the main driving factor of nitrogen content, and mean annual temperature is the main driving factor of phosphorus content; soil available nitrogen is the main driving factor of the nitrogen to phosphorus ratio. These values can be used for comparison with other studies. In addition, the scale index was found to be significantly different among different life forms. The scaling exponents of N-P of woody plants of different life forms, such as trees, shrubs, evergreen, deciduous, and coniferous plants are 0.67, 0.72, 0.63, 0.72, and 0.66, respectively. The N-P scaling exponent of shrubs was higher than that of trees, and that of deciduous plants was higher than that of evergreen plants. These results suggest that the internal attributes of different life forms, the growth rate related to phosphorus, and the relative nutrient availability of soil are the reasons for the unsteady relationship between nitrogen and phosphorus in leaves.
Collapse
|
26
|
Walker TWN, Schrodt F, Allard PM, Defossez E, Jassey VEJ, Schuman MC, Alexander JM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, van Dam NM, David B, Descombes P, Endara MJ, Fernandez C, Forrister D, Gargallo-Garriga A, Glauser G, Marr S, Neumann S, Pellissier L, Peters K, Rasmann S, Roessner U, Salguero-Gómez R, Sardans J, Weckwerth W, Wolfender JL, Peñuelas J. Leaf metabolic traits reveal hidden dimensions of plant form and function. SCIENCE ADVANCES 2023; 9:eadi4029. [PMID: 37647404 PMCID: PMC10468135 DOI: 10.1126/sciadv.adi4029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The metabolome is the biochemical basis of plant form and function, but we know little about its macroecological variation across the plant kingdom. Here, we used the plant functional trait concept to interpret leaf metabolome variation among 457 tropical and 339 temperate plant species. Distilling metabolite chemistry into five metabolic functional traits reveals that plants vary on two major axes of leaf metabolic specialization-a leaf chemical defense spectrum and an expression of leaf longevity. Axes are similar for tropical and temperate species, with many trait combinations being viable. However, metabolic traits vary orthogonally to life-history strategies described by widely used functional traits. The metabolome thus expands the functional trait concept by providing additional axes of metabolic specialization for examining plant form and function.
Collapse
Affiliation(s)
- Tom W. N. Walker
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Franziska Schrodt
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
| | - Pierre-Marie Allard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Emmanuel Defossez
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Vincent E. J. Jassey
- Laboratoire d’Ecologie Fonctionnelle et Environnement, Université de Toulouse, CNRS, 31062 Toulouse, France
| | - Meredith C. Schuman
- Departments of Geography and Chemistry, University of Zurich, 8057 Zurich, Switzerland
| | - Jake M. Alexander
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
| | - Oliver Baines
- School of Geography, University of Nottingham, Nottingham NG7 2RD, UK
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, 8000 Aarhus, Denmark
| | - Virginie Baldy
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Richard D. Bardgett
- Department of Earth and Environmental Sciences, The University of Manchester, Manchester M13 9PT, UK
| | - Pol Capdevila
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Facultat de Biologia, Universitat de Barcelona (UB), Barcelona 08028, Spain
- Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona 08028, Spain
| | - Phyllis D. Coley
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Nicole M. van Dam
- Leibniz Institute of Vegetable and Ornamental crops (IGZ), 14979 Großbeeren, Germany
- Institute of Biodiversity, Friedrich Schiller University Jena, 07743 Jena, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
| | - Bruno David
- Green Mission Pierre Fabre, Institut de Recherche Pierre Fabre, 31562 Toulouse, France
| | - Patrice Descombes
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
- Musée et Jardins botaniques cantonaux, 1007 Lausanne, Switzerland
| | - María-José Endara
- Medio Ambiente y Salud (BIOMAS), Facultad de Ingenierías y Ciencias Aplicadas, Universidad de Las Américas, 170124 Quito, Ecuador
| | - Catherine Fernandez
- Aix Marseille Université, Avignon Université, CNRS, IRD, IMBE, Marseille, France
| | - Dale Forrister
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - Albert Gargallo-Garriga
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Global Change Research Institute, Czech Academy of Sciences, 603 00 Brno, Czech Republic
| | - Gaëtan Glauser
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Sue Marr
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Steffen Neumann
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
| | - Loïc Pellissier
- Department of Environmental Systems Science, ETH Zürich, 8092 Zürich, Switzerland
- Ecosystems and Landscape Evolution, Swiss Federal Institute for Forest, Snow and Landscape Research (WSL), 8903 Birmensdorf, Switzerland
| | - Kristian Peters
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany
- Leibniz Institute of Plant Biochemistry, Bioinformatics and Scientific Data, 06120 Halle, Germany
- Institute of Biology/Geobotany and Botanical Garden, Martin Luther University Halle Wittenberg, 06108 Halle, Germany
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, 2000 Neuchâtel, Switzerland
| | - Ute Roessner
- Research School of Biology, The Australian National University, 2601 Acton, Australia
| | | | - Jordi Sardans
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Wolfram Weckwerth
- Molecular Systems Biology, Department of Functional and Evolutionary Ecology, 1010 University of Vienna, Vienna, Austria
- Vienna Metabolomics Center, 1010 University of Vienna, Vienna, Austria
| | - Jean-Luc Wolfender
- School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland
| | - Josep Peñuelas
- CSIC, Global Ecology Unit CREAF-CSIC-UAB, 08193 Bellaterra, Catalonia, Spain
- CREAF, 08193 Cerdanyola del Vallès, Catalonia, Spain
| |
Collapse
|
27
|
Delavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, et alDelavaux CS, Crowther TW, Zohner CM, Robmann NM, Lauber T, van den Hoogen J, Kuebbing S, Liang J, de-Miguel S, Nabuurs GJ, Reich PB, Abegg M, Adou Yao YC, Alberti G, Almeyda Zambrano AM, Alvarado BV, Alvarez-Dávila E, Alvarez-Loayza P, Alves LF, Ammer C, Antón-Fernández C, Araujo-Murakami A, Arroyo L, Avitabile V, Aymard GA, Baker TR, Bałazy R, Banki O, Barroso JG, Bastian ML, Bastin JF, Birigazzi L, Birnbaum P, Bitariho R, Boeckx P, Bongers F, Bouriaud O, Brancalion PHS, Brandl S, Brienen R, Broadbent EN, Bruelheide H, Bussotti F, Gatti RC, César RG, Cesljar G, Chazdon R, Chen HYH, Chisholm C, Cho H, Cienciala E, Clark C, Clark D, Colletta GD, Coomes DA, Cornejo Valverde F, Corral-Rivas JJ, Crim PM, Cumming JR, Dayanandan S, de Gasper AL, Decuyper M, Derroire G, DeVries B, Djordjevic I, Dolezal J, Dourdain A, Engone Obiang NL, Enquist BJ, Eyre TJ, Fandohan AB, Fayle TM, Feldpausch TR, Ferreira LV, Fischer M, Fletcher C, Frizzera L, Gamarra JGP, Gianelle D, Glick HB, Harris DJ, Hector A, Hemp A, Hengeveld G, Hérault B, Herbohn JL, Herold M, Hillers A, Honorio Coronado EN, Hui C, Ibanez TT, Amaral I, Imai N, Jagodziński AM, Jaroszewicz B, Johannsen VK, Joly CA, Jucker T, Jung I, Karminov V, Kartawinata K, Kearsley E, Kenfack D, Kennard DK, Kepfer-Rojas S, Keppel G, Khan ML, Killeen TJ, Kim HS, Kitayama K, Köhl M, Korjus H, Kraxner F, Laarmann D, Lang M, Lewis SL, Lu H, Lukina NV, Maitner BS, Malhi Y, Marcon E, Marimon BS, Marimon-Junior BH, Marshall AR, Martin EH, Martynenko O, Meave JA, Melo-Cruz O, Mendoza C, Merow C, Mendoza AM, Moreno VS, Mukul SA, Mundhenk P, Nava-Miranda MG, Neill D, Neldner VJ, Nevenic RV, Ngugi MR, Niklaus PA, Oleksyn J, Ontikov P, Ortiz-Malavasi E, Pan Y, Paquette A, Parada-Gutierrez A, Parfenova EI, Park M, Parren M, Parthasarathy N, Peri PL, Pfautsch S, Phillips OL, Picard N, Piedade MTTF, Piotto D, Pitman NCA, Polo I, Poorter L, Poulsen AD, Pretzsch H, Ramirez Arevalo F, Restrepo-Correa Z, Rodeghiero M, Rolim SG, Roopsind A, Rovero F, Rutishauser E, Saikia P, Salas-Eljatib C, Saner P, Schall P, Schepaschenko D, Scherer-Lorenzen M, Schmid B, Schöngart J, Searle EB, Seben V, Serra-Diaz JM, Sheil D, Shvidenko AZ, Silva-Espejo JE, Silveira M, Singh J, Sist P, Slik F, Sonké B, Souza AF, Miscicki S, Stereńczak KJ, Svenning JC, Svoboda M, Swanepoel B, Targhetta N, Tchebakova N, Ter Steege H, Thomas R, Tikhonova E, Umunay PM, Usoltsev VA, Valencia R, Valladares F, van der Plas F, Do TV, van Nuland ME, Vasquez RM, Verbeeck H, Viana H, Vibrans AC, Vieira S, von Gadow K, Wang HF, Watson JV, Werner GDA, Wiser SK, Wittmann F, Woell H, Wortel V, Zagt R, Zawiła-Niedźwiecki T, Zhang C, Zhao X, Zhou M, Zhu ZX, Zo-Bi IC, Maynard DS. Native diversity buffers against severity of non-native tree invasions. Nature 2023; 621:773-781. [PMID: 37612513 PMCID: PMC10533391 DOI: 10.1038/s41586-023-06440-7] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 07/14/2023] [Indexed: 08/25/2023]
Abstract
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
Collapse
Affiliation(s)
- Camille S Delavaux
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland.
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Constantin M Zohner
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Niamh M Robmann
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Thomas Lauber
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Johan van den Hoogen
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Sara Kuebbing
- The Forest School at The Yale School of the Environment, Yale University, New Haven, CT, USA
| | - Jingjing Liang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Sergio de-Miguel
- Department of Crop and Forest Sciences, University of Lleida, Lleida, Spain
- Joint Research Unit CTFC-AGROTECNIO-CERCA, Solsona, Spain
| | | | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St Paul, MN, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Institute for Global Change Biology, and School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Meinrad Abegg
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Yves C Adou Yao
- UFR Biosciences, University Félix Houphouët-Boigny, Abidjan, Côte d'Ivoire
| | - Giorgio Alberti
- Department of Agricultural, Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Faculty of Science and Technology, Free University of Bolzano, Bolzano, Italy
| | - Angelica M Almeyda Zambrano
- Spatial Ecology and Conservation Laboratory, Department of Tourism, Recreation and Sport Management, University of Florida, Gainesville, FL, USA
| | | | | | | | - Luciana F Alves
- Center for Tropical Research, Institute of the Environment and Sustainability, UCLA, Los Angeles, CA, USA
| | - Christian Ammer
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Clara Antón-Fernández
- Division of Forest and Forest Resources, Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | | | - Luzmila Arroyo
- Museo de Historia Natural Noel kempff Mercado, Santa Cruz, Bolivia
| | | | - Gerardo A Aymard
- UNELLEZ-Guanare, Programa de Ciencias del Agro y el Mar, Herbario Universitario (PORT), Portuguesa, Venezuela
- Compensation International S. A. Ci Progress-GreenLife, Bogotá, Colombia
| | | | - Radomir Bałazy
- Department of Geomatics, Forest Research Institute, Raszyn, Poland
| | - Olaf Banki
- Naturalis Biodiversity Center, Leiden, The Netherlands
| | - Jorcely G Barroso
- Centro Multidisciplinar, Universidade Federal do Acre, Rio Branco, Brazil
| | - Meredith L Bastian
- Proceedings of the National Academy of Sciences, Washington, DC, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Jean-Francois Bastin
- TERRA Teach and Research Centre, Gembloux Agro Bio-Tech, University of Liege, Liege, Belgium
| | - Luca Birigazzi
- United Nation Framework Convention on Climate Change, Bonn, Germany
| | - Philippe Birnbaum
- Institut Agronomique néo-Calédonien (IAC), Nouméa, New Caledonia
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Robert Bitariho
- Institute of Tropical Forest Conservation, Mbarara University of Sciences and Technology, Mbarara, Uganda
| | - Pascal Boeckx
- Isotope Bioscience Laboratory-ISOFYS, Ghent University, Ghent, Belgium
| | - Frans Bongers
- Wageningen University and Research, Wageningen, The Netherlands
| | - Olivier Bouriaud
- Integrated Center for Research, Development and Innovation in Advanced Materials, Nanotechnologies, and Distributed Systems for Fabrication and Control (MANSiD), Stefan cel Mare University of Suceava, Suceava, Romania
| | - Pedro H S Brancalion
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | | | - Roel Brienen
- School of Geography, University of Leeds, Leeds, UK
| | - Eben N Broadbent
- Spatial Ecology and Conservation Laboratory, School of Forest Resources and Conservation, University of Florida, Gainesville, FL, USA
| | - Helge Bruelheide
- Institute of Biology, Geobotany and Botanical Garden, Martin Luther University Halle-Wittenberg, Halle-Wittenberg, Germany
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Filippo Bussotti
- Department of Agriculture, Food, Environment and Forest (DAGRI), University of Firenze, Florence, Italy
| | - Roberto Cazzolla Gatti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Ricardo G César
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Goran Cesljar
- Department of Spatial Regulation, GIS and Forest Policy, Institute of Forestry, Belgrade, Serbia
| | - Robin Chazdon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
| | - Han Y H Chen
- Faculty of Natural Resources Management, Lakehead University, Thunder Bay, Ontario, Canada
| | - Chelsea Chisholm
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
| | - Hyunkook Cho
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Emil Cienciala
- IFER-Institute of Forest Ecosystem Research, Jilove u Prahy, Czech Republic
- Global Change Research Institute CAS, Brno, Czech Republic
| | - Connie Clark
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - David Clark
- Department of Biology, University of Missouri-St Louis, St Louis, MO, USA
| | - Gabriel D Colletta
- Programa de Pós-graduação em Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas, Campinas, Brazil
| | - David A Coomes
- Department of Plant Sciences and Conservation Research Institute, University of Cambridge, Cambridge, UK
| | | | - José J Corral-Rivas
- Facultad de Ciencias Forestales y Ambientales, Universidad Juárez del Estado de Durango, Durango, Mexico
| | - Philip M Crim
- Department of Biology, West Virginia University, Morgantown, WV, USA
- Department of Physical and Biological Sciences, The College of Saint Rose, Albany, NY, USA
| | | | - Selvadurai Dayanandan
- Biology Department, Centre for Structural and Functional Genomics, Concordia University, Montreal, Quebec, Canada
| | - André L de Gasper
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
| | - Mathieu Decuyper
- Wageningen University and Research, Wageningen, The Netherlands
- World Agroforestry (ICRAF), Nairobi, Kenya
| | - Géraldine Derroire
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | - Ben DeVries
- Department of Geographical Sciences, University of Maryland, College Park, MD, USA
| | | | - Jiri Dolezal
- Institute of Botany, The Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Aurélie Dourdain
- Cirad, UMR EcoFoG (AgroParisTech, CNRS, INRAE), Université des Antilles, Université de la Guyane, Campus Agronomique, Kourou, France
| | | | - Brian J Enquist
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Teresa J Eyre
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Tom M Fayle
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Biology Centre of the Czech Academy of Sciences, Institute of Entomology, Ceske Budejovice, Czech Republic
| | - Ted R Feldpausch
- Geography, College of Life and Environmental Sciences, University of Exeter, Exeter, UK
| | - Leandro V Ferreira
- Museu Paraense Emílio Goeldi. Coordenação de Ciências da Terra e Ecologia, Belém, Pará, Brazil
| | - Markus Fischer
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | | | - Lorenzo Frizzera
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | - Javier G P Gamarra
- Forestry Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Damiano Gianelle
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
| | | | | | - Andrew Hector
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Andreas Hemp
- Department of Plant Systematics, University of Bayreuth, Bayreuth, Germany
| | | | - Bruno Hérault
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - John L Herbohn
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Tropical Forests and People Research Centre, University of the Sunshine Coast, Maroochydore, Queensland, Australia
| | - Martin Herold
- Wageningen University and Research, Wageningen, The Netherlands
| | - Annika Hillers
- Centre for Conservation Science, The Royal Society for the Protection of Birds, Sandy, UK
- Wild Chimpanzee Foundation, Liberia Office, Monrovia, Liberia
| | | | - Cang Hui
- Centre for Invasion Biology, Department of Mathematical Sciences, Stellenbosch University, Stellenbosch, South Africa
- Theoretical Ecology Unit, African Institute for Mathematical Sciences, Cape Town, South Africa
| | - Thomas T Ibanez
- AMAP, University of Montpellier, Montpellier, France
- CIRAD, CNRS, INRAE, IRD, Montpellier, France
| | - Iêda Amaral
- National Institute of Amazonian Research, Manaus, Brazil
| | - Nobuo Imai
- Department of Forest Science, Tokyo University of Agriculture, Tokyo, Japan
| | - Andrzej M Jagodziński
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
- Poznań University of Life Sciences, Department of Game Management and Forest Protection, Poznań, Poland
| | - Bogdan Jaroszewicz
- Faculty of Biology, Białowieża Geobotanical Station, University of Warsaw, Białowieża, Poland
| | - Vivian Kvist Johannsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Carlos A Joly
- Department of Plant Biology, Institute of Biology, University of Campinas, UNICAMP, Campinas, Brazil
| | - Tommaso Jucker
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Ilbin Jung
- Division of Forest Resources Information, Korea Forest Promotion Institute, Seoul, South Korea
| | - Viktor Karminov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Elizabeth Kearsley
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - David Kenfack
- CTFS-ForestGEO, Smithsonian Tropical Research Institute, Balboa, Panama
| | - Deborah K Kennard
- Department of Physical and Environmental Sciences, Colorado Mesa University, Grand Junction, CO, USA
| | - Sebastian Kepfer-Rojas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Mohammed Latif Khan
- Department of Botany, Dr Harisingh Gour Vishwavidyalaya (A Central University), Sagar, India
| | | | - Hyun Seok Kim
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
- Interdisciplinary Program in Agricultural and Forest Meteorology, Seoul National University, Seoul, South Korea
- National Center for Agro Meteorology, Seoul, South Korea
- Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
| | | | - Michael Köhl
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - Henn Korjus
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Florian Kraxner
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Diana Laarmann
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Mait Lang
- Institute of Forestry and Engineering, Estonian University of Life Sciences, Tartu, Estonia
| | - Simon L Lewis
- School of Geography, University of Leeds, Leeds, UK
- Department of Geography, University College London, London, UK
| | - Huicui Lu
- Faculty of Forestry, Qingdao Agricultural University, Qingdao, China
| | - Natalia V Lukina
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Brian S Maitner
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Yadvinder Malhi
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Eric Marcon
- AgroParisTech, UMR-AMAP, Cirad, CNRS, INRA, IRD, Université de Montpellier, Montpellier, France
| | | | - Ben Hur Marimon-Junior
- Departamento de Ciências Biológicas, Universidade do Estado de Mato Grosso, Nova Xavantina, Brazil
| | - Andrew R Marshall
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Geography, University of York, York, UK
- Flamingo Land, Malton, UK
| | - Emanuel H Martin
- Department of Wildlife Management, College of African Wildlife Management, Mweka, Tanzania
| | - Olga Martynenko
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | - Jorge A Meave
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Casimiro Mendoza
- Colegio de Profesionales Forestales de Cochabamba, Cochabamba, Bolivia
| | - Cory Merow
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, USA
| | - Abel Monteagudo Mendoza
- Jardín Botánico de Missouri, Pasco, Peru
- Universidad Nacional de San Antonio Abad del Cusco, Cusco, Peru
| | - Vanessa S Moreno
- Department of Forest Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, Piracicaba, Brazil
| | - Sharif A Mukul
- Forest Research Institute, University of the Sunshine Coast, Sippy Downs, Queensland, Australia
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - Philip Mundhenk
- Institute for World Forestry, University of Hamburg, Hamburg, Germany
| | - María Guadalupe Nava-Miranda
- Laboratorio de geomática, Instituto de Silvicultura e Industria de la Madera, Universidad Juárez del Estado de Durango, Durango, Mexico
- Programa de doctorado en Ingeniería para el desarrollo rural y civil, Escuela de Doctorado Internacional de la Universidad de Santiago de Compostela, Santiago de Compostela, Spain
- Department of Environment and Development Studies, United International University, Dhaka, Bangladesh
| | - David Neill
- Universidad Estatal Amazónica, Puyo, Pastaza, Ecuador
| | - Victor J Neldner
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | | | - Michael R Ngugi
- Queensland Herbarium, Department of Environment and Science, Toowong, Queensland, Australia
| | - Pascal A Niklaus
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | - Jacek Oleksyn
- Institute of Dendrology, Polish Academy of Sciences, Kórnik, Poland
| | - Petr Ontikov
- Forestry Faculty, Bauman Moscow State Technical University, Mytischi, Russia
| | | | - Yude Pan
- Climate, Fire, and Carbon Cycle Sciences, USDA Forest Service, Durham, NC, USA
| | - Alain Paquette
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | | | - Elena I Parfenova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Minjee Park
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Department of Agriculture, Forestry and Bioresources, Seoul National University, Seoul, South Korea
| | - Marc Parren
- Forest Ecology and Forest Management Group, Wageningen University and Research, Wageningen, The Netherlands
| | | | - Pablo L Peri
- Instituto Nacional de Tecnología Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Consejo Nacional de Investigaciones Científicas y Tecnicas (CONICET), Río Gallegos, Argentina
| | - Sebastian Pfautsch
- School of Social Sciences (Urban Studies), Western Sydney University, Penrith, New South Wales, Australia
| | | | - Nicolas Picard
- Forestry Department, Food and Agriculture Organization of the United Nations, Rome, Italy
| | | | - Daniel Piotto
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | | | - Irina Polo
- Jardín Botánico de Medellín, Medellin, Colombia
| | - Lourens Poorter
- Wageningen University and Research, Wageningen, The Netherlands
| | | | - Hans Pretzsch
- Chair for Forest Growth and Yield Science, TUM School for Life Sciences, Technical University of Munich, Munich, Germany
| | | | - Zorayda Restrepo-Correa
- Servicios Ecosistémicos y Cambio Climático (SECC), Fundación Con Vida & Corporación COL-TREE, Medellín, Colombia
| | - Mirco Rodeghiero
- Research and Innovation Center, Fondazione Edmund Mach, San Michele All'adige, Italy
- Centro Agricoltura, Alimenti, Ambiente, University of Trento, San Michele All'adige, Italy
| | - Samir G Rolim
- Laboratório de Dendrologia e Silvicultura Tropical, Centro de Formação em Ciências Agroflorestais, Universidade Federal do Sul da Bahia, Itabuna, Brazil
| | - Anand Roopsind
- Department of Biological Sciences, Boise State University, Boise, ID, USA
| | - Francesco Rovero
- Department of Biology, University of Florence, Florence, Italy
- Tropical Biodiversity, MUSE-Museo delle Scienze, Trento, Italy
| | | | - Purabi Saikia
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, India
| | - Christian Salas-Eljatib
- Centro de Modelación y Monitoreo de Ecosistemas, Universidad Mayor, Santiago, Chile
- Vicerrectoria de Investigacion y Postgrado, Universidad de La Frontera, Temuco, Chile
- Depto. de Silvicultura y Conservacion de la Naturaleza, Universidad de Chile, Temuco, Chile
| | | | - Peter Schall
- Silviculture and Forest Ecology of the Temperate Zones, University of Göttingen, Göttingen, Germany
| | - Dmitry Schepaschenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
- Siberian Federal University, Krasnoyarsk Russian Federation, Krasnoyarsk, Russia
| | | | - Bernhard Schmid
- Department of Evolutionary Biology and Environmental Studies, University of Zürich, Zurich, Switzerland
| | | | - Eric B Searle
- Centre for Forest Research, Université du Québec à Montréal, Montreal, Quebec, Canada
| | - Vladimír Seben
- National Forest Centre, Forest Research Institute Zvolen, Zvolen, Slovakia
| | - Josep M Serra-Diaz
- Université de Lorraine, AgroParisTech, INRAE, Silva, Nancy, France
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
| | - Douglas Sheil
- Forest Ecology and Forest Management, Wageningen University and Research, Wageningen, The Netherlands
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Anatoly Z Shvidenko
- Biodiversity and Natural Resources Program, International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | | | - Marcos Silveira
- Centro de Ciências Biológicas e da Natureza, Universidade Federal do Acre, Rio Branco, Acre, Brazil
| | - James Singh
- Guyana Forestry Commission, Georgetown, France
| | - Plinio Sist
- Cirad, UPR Forêts et Sociétés, University of Montpellier, Montpellier, France
| | - Ferry Slik
- Environmental and Life Sciences, Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei
| | - Bonaventure Sonké
- Plant Systematic and Ecology Laboratory, Department of Biology, Higher Teachers' Training College, University of Yaoundé I, Yaoundé, Cameroon
| | - Alexandre F Souza
- Departamento de Ecologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | | | | | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics & Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Miroslav Svoboda
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences, Prague, Czech Republic
| | | | | | - Nadja Tchebakova
- V. N. Sukachev Institute of Forest, FRC KSC, Siberian Branch of the Russian Academy of Sciences, Krasnoyarsk, Russia
| | - Hans Ter Steege
- Naturalis Biodiversity Center, Leiden, The Netherlands
- Quantitative Biodiversity Dynamics, Betafaculty, Utrecht University, Utrecht, The Netherlands
| | - Raquel Thomas
- Iwokrama International Centre for Rainforest Conservation and Development (IIC), Georgetown, Guyana
| | - Elena Tikhonova
- Center for Forest Ecology and Productivity, Russian Academy of Sciences, Moscow, Russia
| | - Peter M Umunay
- School of Forestry and Environmental Studies, Yale University, New Haven, CT, USA
| | - Vladimir A Usoltsev
- Botanical Garden of Ural Branch of Russian Academy of Sciences, Ural State Forest Engineering University, Yekaterinburg, Russia
| | | | | | - Fons van der Plas
- Plant Ecology and Nature Conservation Group, Wageningen University, Wageningen, The Netherlands
| | - Tran Van Do
- Silviculture Research Institute, Vietnamese Academy of Forest Sciences, Hanoi, Vietnam
| | | | | | - Hans Verbeeck
- CAVElab-Computational and Applied Vegetation Ecology, Department of Environment, Ghent University, Ghent, Belgium
| | - Helder Viana
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, University of Trás-os-Montes and Alto Douro, UTAD, Viseu, Portugal
- Department of Ecology and Sustainable Agriculture, Agricultural High School, Polytechnic Institute of Viseu, Viseu, Portugal
| | - Alexander C Vibrans
- Natural Science Department, Universidade Regional de Blumenau, Blumenau, Brazil
- Department of Forest Engineering Universidade Regional de Blumenau, Blumenau, Brazil
| | - Simone Vieira
- Environmental Studies and Research Center, University of Campinas, UNICAMP, Campinas, Brazil
| | - Klaus von Gadow
- Department of Forest and Wood Science, University of Stellenbosch, Stellenbosch, South Africa
| | - Hua-Feng Wang
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - James V Watson
- Division of Forestry and Natural Resources, West Virginia University, Morgantown, WV, USA
| | | | - Susan K Wiser
- Manaaki Whenua-Landcare Research, Lincoln, New Zealand
| | - Florian Wittmann
- Department of Wetland Ecology, Institute for Geography and Geoecology, Karlsruhe Institute for Technology, Karlsruhe, Germany
| | | | - Verginia Wortel
- Centre for Agricultural Research in Suriname (CELOS), Paramaribo, Suriname
| | - Roderik Zagt
- Tropenbos International, Wageningen, The Netherlands
| | | | - Chunyu Zhang
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Xiuhai Zhao
- Research Center of Forest Management Engineering of State Forestry and Grassland Administration, Beijing Forestry University, Beijing, China
| | - Mo Zhou
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Zhi-Xin Zhu
- Key Laboratory of Tropical Biological Resources, Ministry of Education, School of Life and Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Irie C Zo-Bi
- Department of Forestry and Environment, National Polytechnic Institute (INP-HB), Yamoussoukro, Côte d'Ivoire
| | - Daniel S Maynard
- Institute of Integrative Biology, ETH Zurich (Swiss Federal Institute of Technology), Zurich, Switzerland
- Department of Genetics, Evolution, and Environment, University College London, London, UK
| |
Collapse
|
28
|
Lammerant R, Rita A, Borghetti M, Muscarella R. Water-limited environments affect the association between functional diversity and forest productivity. Ecol Evol 2023; 13:e10406. [PMID: 37560182 PMCID: PMC10408253 DOI: 10.1002/ece3.10406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/23/2023] [Indexed: 08/11/2023] Open
Abstract
The link between biodiversity and ecosystem function can depend on environmental conditions. This contingency can impede our ability to predict how biodiversity-ecosystem function (BEF) relationships will respond to future environmental change, causing a clear need to explore the processes underlying shifts in BEF relationships across large spatial scales and broad environmental gradients. We compiled a dataset on five functional traits (maximum height, wood density, specific leaf area [SLA], seed size, and xylem vulnerability to embolism [P50]), covering 78%-90% of the tree species in the National Forest Inventory from Italy, to test (i) how a water limitation gradient shapes the functional composition and diversity of forests, (ii) how functional composition and diversity of trees relate to forest annual increment via mass ratio and complementarity effects, and (iii) how the relationship between functional diversity and annual increment varies between Mediterranean and temperate climate regions. Functional composition varied with water limitation; tree communities tended to have more conservative traits in sites with higher levels of water limitation. The response of functional diversity differed among traits and climatic regions but among temperate forest plots, we found a consistent increase of functional diversity with water limitation. Tree diversity was positively associated with annual increment of Italian forests through a combination of mass ratio and niche complementarity effects, but the relative importance of these effects depended on the trait and range of climate considered. Specifically, niche complementarity effects were more strongly associated with annual increment in the Mediterranean compared to temperate forests. Synthesis: Overall, our results suggest that biodiversity mediates forest annual increment under water-limited conditions by promoting beneficial interactions between species and complementarity in resource use. Our work highlights the importance of conserving functional diversity for future forest management to maintain forest annual increment under the expected increase in intensity and frequency of drought.
Collapse
Affiliation(s)
- Roel Lammerant
- Department of Ecology & GeneticsUppsala UniversityUppsalaSweden
- Present address:
Tvärminne Zoological StationUniversity of HelsinkiHankoFinland
| | - Angelo Rita
- Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPortici (Napoli)Italy
| | - Marco Borghetti
- Scuola di Scienze Agrarie, Forestali, Alimentari ed AmbientaliUniversità degli Studi della BasilicataPotenzaItaly
| | | |
Collapse
|
29
|
Krieg CP, Seeger K, Campany C, Watkins JE, McClearn D, McCulloh KA, Sessa EB. Functional traits and trait coordination change over the life of a leaf in a tropical fern species. AMERICAN JOURNAL OF BOTANY 2023; 110:e16151. [PMID: 36879521 DOI: 10.1002/ajb2.16151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 05/11/2023]
Abstract
PREMISE Plant ecological strategies are often defined by the integration of underlying traits related to resource acquisition, allocation, and growth. Correlations between key traits across diverse plants suggest that variation in plant ecological strategies is largely driven by a fast-slow continuum of plant economics. However, trait correlations may not be constant through the life of a leaf, and it is still poorly understood how trait function varies over time in long-lived leaves. METHODS Here, we compared trait correlations related to resource acquisition and allocation across three different mature frond age cohorts in a tropical fern species, Saccoloma inaequale. RESULTS Fronds exhibited high initial investments of nitrogen and carbon, but with declining return in photosynthetic capacity after the first year. In the youngest fronds, we found water-use efficiency to be significantly lower than in the oldest mature fronds due to increased transpiration rates. Our data suggest that middle-aged fronds are more efficient relative to younger, less water-use efficient fronds and that older fronds exhibit greater nitrogen investments without higher photosynthetic return. In addition, several trait correlations expected under the leaf economics spectrum (LES) do not hold within this species, and some trait correlations only appear in fronds of a specific developmental age. CONCLUSIONS These findings contextualize the relationship between traits and leaf developmental age with those predicted to underlie plant ecological strategy and the LES and are among the first pieces of evidence for when relative physiological trait efficiency is maximized in a tropical fern species.
Collapse
Affiliation(s)
| | - Kate Seeger
- Department of Biology, Macalester College, Saint Paul, MN, 55105, USA
| | - Courtney Campany
- Department of Biology, Shepherd University, Shepherdstown, WV, 25443, USA
| | - James E Watkins
- Department of Biology, Colgate University, Hamilton, NY, 13346, USA
| | | | | | | |
Collapse
|
30
|
Yan P, He N, Yu K, Xu L, Van Meerbeek K. Integrating multiple plant functional traits to predict ecosystem productivity. Commun Biol 2023; 6:239. [PMID: 36869238 PMCID: PMC9984401 DOI: 10.1038/s42003-023-04626-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Quantifying and predicting variation in gross primary productivity (GPP) is important for accurate assessment of the ecosystem carbon budget under global change. Scaling traits to community scales for predicting ecosystem functions (i.e., GPP) remain challenging, while it is promising and well appreciated with the rapid development of trait-based ecology. In this study, we aim to integrate multiple plant traits with the recently developed trait-based productivity (TBP) theory, verify it via Bayesian structural equation modeling (SEM) and complementary independent effect analysis. We further distinguish the relative importance of different traits in explaining the variation in GPP. We apply the TBP theory based on plant community traits to a multi-trait dataset containing more than 13,000 measurements of approximately 2,500 species in Chinese forest and grassland systems. Remarkably, our SEM accurately predicts variation in annual and monthly GPP across China (R2 values of 0.87 and 0.73, respectively). Plant community traits play a key role. This study shows that integrating multiple plant functional traits into the TBP theory strengthens the quantification of ecosystem primary productivity variability and further advances understanding of the trait-productivity relationship. Our findings facilitate integration of the growing plant trait data into future ecological models.
Collapse
Affiliation(s)
- Pu Yan
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Division Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Center for Ecological Research, Northeast Forestry University, Harbin, 150040, China.
| | - Kailiang Yu
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA
- High Meadows Environmental Institute, Princeton University, Princeton, NJ, USA
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- Earth Critical Zone and Flux Research Station of Xing'an Mountains, Chinese Academy of Sciences, Daxing'anling, 165200, China
| | - Koenraad Van Meerbeek
- Division Forest, Nature and Landscape, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium
- KU Leuven Plant Institute, KU Leuven, Leuven, Belgium
| |
Collapse
|
31
|
Huang XZ, Li FB, Wang ZX, Jin Y, Qian H. Are allometric model parameters of aboveground biomass for trees phylogenetically constrained? PLANT DIVERSITY 2023; 45:229-233. [PMID: 37069928 PMCID: PMC10105221 DOI: 10.1016/j.pld.2022.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 06/19/2023]
Abstract
Knowledge of which biological and functional traits have, or lack, phylogenetic signal in a particular group of organisms is important to understanding the formation and functioning of biological communities. Allometric biomass models reflecting tree growth characteristics are commonly used to predict forest biomass. However, few studies have examined whether model parameters are constrained by phylogeny. Here, we use a comprehensive database (including 276 tree species) compiled from 894 allometric biomass models published in 302 articles to examine whether parameters a and b of the model W = a D b (where W stands for aboveground biomass, D is diameter at breast height) exhibit phylogenetic signal for all tree species as a whole and for different groups of tree species. For either model parameter, we relate difference in model parameter between different tree species to phylogenetic distance and to environmental distance between pairwise sites. Our study shows that neither model parameter exhibits phylogenetic signals (Pagel's λ and Blomberg's K both approach zero). This is the case regardless of whether all tree species in our data set were analyzed as a whole or tree species in different taxonomic groups (gymnosperm and angiosperm), leaf duration groups (evergreen and deciduous), or ecological groups (tropical, temperate and boreal) were analyzed separately. Our study also shows that difference in each parameter of the allometric biomass model is not significantly related to phylogenetic and environmental distances between tree species in different sites.
Collapse
Affiliation(s)
- Xing-Zhao Huang
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Fang-Bing Li
- School of Forestry & Landscape of Architecture, Anhui Agricultural University, Hefei 230036, China
| | - Zi-Xuan Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yi Jin
- Key Laboratory of National Forestry and Grassland Administration on Biodiversity Conservation in Karst Mountainous Areas of Southwestern China, Guizhou Normal University, Guiyang 550025, China
| | - Hong Qian
- Research and Collections Center, Illinois State Museum, 1011 East Ash Street, Springfield, IL 62703, USA
| |
Collapse
|
32
|
Giraldo‐Kalil LJ, Campo J, Paz H, Núñez‐Farfán J. Patterns of leaf trait variation underlie ecological differences among sympatric tree species of Damburneya in a tropical rainforest. AMERICAN JOURNAL OF BOTANY 2022; 109:1394-1409. [PMID: 36031775 PMCID: PMC9826457 DOI: 10.1002/ajb2.16056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
PREMISE Although ecological differentiation driven by altitude and soil is hypothesized to promote coexistence of sympatric tree species of Damburneya (Lauraceae), the mechanistic role of leaf functional variation on ecological differentiation among co-occurring species remains unexplored. We aimed to determine whether the patterns of leaf trait variation reflect ecological differences among sympatric Damburneya species. We tested whether trait correlations underlying functional strategies and average species traits vary in response to local soil heterogeneity along an altitudinal gradient, potentially affecting species distributions. METHODS At two contrasting altitudes (100, 1100 m a.s.l.) in a Mexican tropical rainforest, we characterized soil chemical and physical properties and sampled four Damburneya species to quantify five leaf functional traits. We used linear models to analyze paired and multivariate trait correlations, spatial and interspecific effects on trait variation, and trait response to local soil heterogeneity. Relative contributions of intra- and interspecific variation to local trait variability were quantified with an ANOVA. RESULTS Soil nutrient availability was higher at low altitude, but all species had a high leaf N:P ratio across altitudes suggesting a limited P supply for plants. Species distribution differed altitudinally, with some species constrained to low or high altitude, potentially reflecting soil nutrient availability. Leaf traits responded to altitude and local soil properties, suggesting interspecific differences in functional strategies according to the leaf economics spectrum (conservative vs. acquisitive). CONCLUSIONS The interspecific divergence in functional strategies in response to local environmental conditions suggests that trait variation could underlie ecological differentiation among Damburneya sympatric species.
Collapse
Affiliation(s)
- Laura J. Giraldo‐Kalil
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM)Ciudad de MéxicoMéxico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Circuito de Posgrados, Universidad Nacional Autónoma de México (UNAM)Coyoacán, C. P. 04510, Ciudad de MéxicoMéxico
| | - Julio Campo
- Departamento de Ecología Funcional, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM)Ciudad de MéxicoMéxico
| | - Horacio Paz
- Instituto de Investigaciones en Ecosistemas y SustentabilidadUniversidad Nacional Autónoma de México (UNAM)MoreliaMéxico
| | - Juan Núñez‐Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México (UNAM)Ciudad de MéxicoMéxico
| |
Collapse
|