1
|
Bobrovska S, Newcomer E, Gottlieb M, McSorley VE, Kittner A, Hayden MK, Green S, Barbian HJ. Hospital air sampling enables surveillance of respiratory virus infections and genomes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 977:179346. [PMID: 40222255 DOI: 10.1016/j.scitotenv.2025.179346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/15/2025]
Abstract
There is an urgent need for early detection and comprehensive surveillance of respiratory pathogens. Environmental surveillance may be key to timely responses for newly emerging pathogens and infections that are unreported or underreported. Here, we employed air sampling in a large urban hospital. Air samples (n = 358) were collected weekly at five locations, including two in the emergency department, two in hospital common areas and one in a storage room, for two respiratory virus seasons (November 2022 to June 2024). Air samples were tested for eight respiratory pathogens by qPCR, including RNA and DNA viruses and a bacterium. Air samples had an average of four detected pathogens per sample and 97 % samples contained SARS-CoV-2. Air sample pathogen positivity and quantity were strongly correlated with clinical surveillance for four seasonal respiratory pathogens: influenza A and B, respiratory syncytial virus, and human metapneumovirus. Targeted amplicon sequencing of SARS-CoV-2 showed that lineages detected in air samples reflected those in contemporaneous regional clinical specimens. Metagenomic sequencing with viral capture enrichment detected myriad human pathogens, including respiratory-associated viruses with recovery of full viral genomes. Detection of viral pathogens correlated well between virus capture sequencing and qPCR. Overall, this suggests air sampling can be an agile and effective tool for pathogen early warning, surveillance and genome characterization.
Collapse
Affiliation(s)
- Sofiya Bobrovska
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, United States of America
| | - Erin Newcomer
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, United States of America
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, IL, United States of America
| | - V Eloesa McSorley
- Disease Control Bureau, Chicago Department of Public Health, Chicago, IL, United States of America
| | - Alyse Kittner
- Disease Control Bureau, Chicago Department of Public Health, Chicago, IL, United States of America
| | - Mary K Hayden
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, United States of America
| | - Stefan Green
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, United States of America
| | - Hannah J Barbian
- Department of Internal Medicine, Division of Infectious Diseases, Rush University Medical Center, Chicago, IL, United States of America.
| |
Collapse
|
2
|
Yoshinaga T, Ando Y, Sato Y, Kishida T, Kitajima M. Development of COPMAN-Air method for high-sensitivity detection of SARS-CoV-2 in air. Sci Rep 2025; 15:14340. [PMID: 40275056 PMCID: PMC12022069 DOI: 10.1038/s41598-025-99365-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 04/18/2025] [Indexed: 04/26/2025] Open
Abstract
Several studies have successfully detected SARS-CoV-2 in air samples. However, most of these studies focused on validating the air collection method, and there was no report on the development of a virus detection method. In this study, to detect viruses in air samples with greater sensitively than conventional detection methods, we utilized COPMAN, a highly sensitive virus detection method originally used for wastewater samples. We applied COPMAN to air samples, thereby developing COPMAN-Air. Briefly, this method efficiently detects the extremely low levels of viral RNA in air samples via three reaction steps: RT, preamplification, and qPCR, as it is performed with COPMAN. We evaluated COPMAN-Air using samples from a fever clinic for COVID-19 patients. COPMAN-Air demonstrated a higher detection rate of viral RNA compared with conventional methods, detecting the virus in 22 out of 23 samples (95.7%) vs. 14 out of 23 samples (60.9%). Additionally, a positive correlation (r = 0.70) was detected between the amount of viral RNA detected by COPMAN-Air and the number of confirmed COVID-19 cases, suggesting that COPMAN-Air could estimate the number of SARS-CoV-2-positive individuals in a given space based on the quantitative values of SARS-CoV-2 RNA in air samples. Surveillance systems for airborne pathogens using COPMAN-Air are expected to be valuable for estimating the number of infected individuals and for guiding the implementation of public health measures.
Collapse
Affiliation(s)
| | | | | | | | - Masaaki Kitajima
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Nemoto M, Kawanishi N, Kambayashi Y, Bannai H, Yamanaka T, Tsujimura K. Detection of equine influenza virus gene in the air around infected horses. Vet Microbiol 2025; 302:110388. [PMID: 39823717 DOI: 10.1016/j.vetmic.2025.110388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/20/2025]
Abstract
Equine influenza virus (EIV) can be transmitted by inhalation of aerosolized droplets, direct contact, and contaminated fomites. However, to our knowledge, there are no reports of the recovery of EIV from the air surrounding infected horses. Here, we evaluated whether EIV can be recovered from the air in the stalls of experimentally infected horses by using an air sampler. Furthermore, we examined whether rapid molecular test kits with reaction times of less than 30 min can detect EIV from air samples for potential field application. Two horses kept in individual stalls were experimentally infected with EIV. Air samples were collected daily by using an air sampler until 13 days post-inoculation (dpi). Viral genes were detected in 26 out of 28 air samples from both horses at 1-13 dpi by real-time RT-PCR. A rapid molecular test kit based on real-time RT-PCR detected viral genes in 23 air samples from one horse at 1-9 and 12 dpi, and from the other at 1-13 dpi. These findings confirm that horses infected with EIV shed the virus into the air. Air sampling is safe for humans and horses and avoids the potential for injury when nasopharyngeal swabs need to be collected from untrained or aggressive horses. EIV RNA was detected in the air samples by using real-time RT-PCR or the rapid molecular test kit before the horses showed clinical signs. Thus, air samplers can detect EIV RNA as early as possible through routine testing in locations such as quarantine facilities.
Collapse
Affiliation(s)
- Manabu Nemoto
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan.
| | - Nanako Kawanishi
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | | | - Hiroshi Bannai
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Takashi Yamanaka
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| | - Koji Tsujimura
- Equine Research Institute, Japan Racing Association, Shimotsuke, Tochigi, Japan
| |
Collapse
|
4
|
Geenen C, Traets S, Gorissen S, Happaerts M, Beuselinck K, Laenen L, Swinnen J, Ombelet S, Raymenants J, Keyaerts E, André E. Interpretation of indoor air surveillance for respiratory infections: a prospective longitudinal observational study in a childcare setting. EBioMedicine 2025; 112:105512. [PMID: 39884186 PMCID: PMC11830284 DOI: 10.1016/j.ebiom.2024.105512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/28/2024] [Accepted: 12/06/2024] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Sampling the air in indoor congregate settings, where respiratory pathogens are ubiquitous, may constitute a valuable yet underutilised data source for community-wide surveillance of respiratory infections. However, there is a lack of research comparing air sampling and individual sampling of attendees. Therefore, it remains unclear how air sampling results should be interpreted for the purpose of surveillance. METHODS In this prospective observational study, we compared the presence and concentration of several respiratory pathogens in the air with the number of attendees with infections and the pathogen load in their nasal mucus. Weekly for 22 consecutive weeks, we sampled the air in a single childcare setting in Belgium. Concurrently, we collected the paper tissues used to wipe the noses of 23 regular attendees: children aged zero to three and childcare workers. All samples were tested for 29 respiratory pathogens using PCR. FINDINGS Air sampling sensitively detected most respiratory pathogens found in nasal mucus. Some pathogens (SARS-CoV-2, Pneumocystis jirovecii) were found repeatedly in the air, but rarely in nasal mucus, whilst the opposite was true for others (Human coronavirus NL63). All three pathogens with a clear outbreak pattern (Human coronavirus HKU-1, human parainfluenza virus 3 and 4) were found in the air one week before or concurrent with the first detection in paper tissue samples. The presence and concentration of pathogens in the air was best predicted by the pathogen load of the most infectious case. However, air pathogen concentrations also correlated with the number of attendees with infections. Detection and concentration in the air were associated with CO2 concentration, a marker of ventilation and occupancy. INTERPRETATION Our results suggest that air sampling could provide sensitive, responsive epidemiological indicators for the surveillance of respiratory pathogens. Using air CO2 concentrations to normalise such signals emerges as a promising approach. FUNDING KU Leuven; DURABLE project, under the EU4Health Programme of the European Commission; Thermo Fisher Scientific.
Collapse
Affiliation(s)
- Caspar Geenen
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium.
| | - Steven Traets
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium
| | - Sarah Gorissen
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium
| | - Michiel Happaerts
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, General Internal Medicine, Herestraat 49, Leuven 3000, Belgium
| | - Kurt Beuselinck
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium
| | - Lies Laenen
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium
| | - Jens Swinnen
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium
| | - Sien Ombelet
- University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium
| | - Joren Raymenants
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, General Internal Medicine, Herestraat 49, Leuven 3000, Belgium
| | - Els Keyaerts
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium
| | - Emmanuel André
- KU Leuven, Dept. of Microbiology, Immunology and Transplantation, Laboratory of Clinical Microbiology, Herestraat 49, Leuven 3000, Belgium; University Hospitals Leuven, Department of Laboratory Medicine and National Reference Centre for Respiratory Pathogens, Herestraat 49, Leuven 3000, Belgium
| |
Collapse
|
5
|
Li B, Lin B, Wang Y, Shi Y, Zeng W, Zhao Y, Gu Y, Liu C, Gao H, Cheng H, Zheng X, Xiang G, Wang G, Liu P. Multi-scenario surveillance of respiratory viruses in aerosols with sub-single-copy spatial resolution. Nat Commun 2024; 15:8770. [PMID: 39384836 PMCID: PMC11464689 DOI: 10.1038/s41467-024-53059-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/26/2024] [Indexed: 10/11/2024] Open
Abstract
Highly sensitive airborne virus monitoring is critical for preventing and containing epidemics. However, the detection of airborne viruses at ultra-low concentrations remains challenging due to the lack of ultra-sensitive methods and easy-to-deployment equipment. Here, we present an integrated microfluidic cartridge that can accurately detect SARS-COV-2, Influenza A, B, and respiratory syncytial virus with a sensitivity of 10 copies/mL. When integrated with a high-flow aerosol sampler, our microdevice can achieve a sub-single-copy spatial resolution of 0.83 copies/m3 for airborne virus surveillance with an air flow rate of 400 L/min and a sampling time of 30 minutes. We then designed a series of virus-in-aerosols monitoring systems (RIAMs), including versions of a multi-site sampling RIAMs (M-RIAMs), a stationary real-time RIAMs (S-RIAMs), and a roaming real-time RIAMs (R-RIAMs) for different application scenarios. Using M-RIAMs, we performed a comprehensive evaluation of 210 environmental samples from COVID-19 patient wards, including 30 aerosol samples. The highest positive detection rate of aerosol samples (60%) proved the aerosol-based SARS-CoV-2 monitoring represents an effective method for spatial risk assessment. The detection of 78 aerosol samples in real-world settings via S-RIAMs confirmed its reliability for ultra-sensitive and continuous airborne virus monitoring. Therefore, RIAMs shows the potential as an effective solution for mitigating the risk of airborne virus transmission.
Collapse
Affiliation(s)
- Bao Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | - Baobao Lin
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yan Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Ye Shi
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Wu Zeng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
- Changping Laboratory, Beijing, China
| | | | - Yin Gu
- State Key Laboratory of Space Medicine, China Astronaut Research and Training Center, Beijing, China
| | - Chang Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Hui Gao
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Hao Cheng
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Xiaoqun Zheng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China
| | - Guangxin Xiang
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Zhejiang, China.
| | - Guiqiang Wang
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China.
- Department of Infectious Diseases, Peking University International Hospital, Beijing, China.
- Beijing Key Laboratory of Hepatitis C and Immunotherapy for Liver Diseases, Beijing, China.
| | - Peng Liu
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Changping Laboratory, Beijing, China.
| |
Collapse
|
6
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid intra-host diversification and evolution of SARS-CoV-2 in advanced HIV infection. Nat Commun 2024; 15:7240. [PMID: 39174553 PMCID: PMC11341811 DOI: 10.1038/s41467-024-51539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions, but the processes responsible for these observations are incompletely understood. Here we use high-throughput, single-genome amplification and sequencing (HT-SGS) to sequence SARS-CoV-2 spike genes from people with HIV (PWH, n = 22) and people without HIV (PWOH, n = 25). In PWOH and PWH with CD4 T cell counts (i.e., CD4 counts) ≥ 200 cells/μL, we find that most SARS-CoV-2 genomes sampled in each person share one spike sequence. By contrast, in people with advanced HIV infection (i.e., CD4 counts < 200 cells/μL), HT-SGS reveals a median of 46 distinct linked groupings of spike mutations per person. Elevated intra-host spike diversity in people with advanced HIV infection is detected immediately after COVID-19 symptom onset, and early intra-host spike diversity predicts SARS-CoV-2 shedding duration among PWH. Analysis of longitudinal timepoints reveals rapid fluctuations in spike sequence populations, replacement of founder sequences by groups of new haplotypes, and positive selection at functionally important residues. These findings demonstrate remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern.
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jinal N Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
7
|
Wang W, Kan X. Multiquenching-Based Aggregation-Induced Electrochemiluminescence Sensing for Highly Sensitive Detection of the SARS-CoV-2 N Protein. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16484-16491. [PMID: 39046807 DOI: 10.1021/acs.langmuir.4c01849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The rapid epidemic around the world of coronavirus disease 2019 (COVID-19), caused by the SARS-CoV-2 virus, proves the need and stimulates efforts to explore efficient diagnostic tests for the sensitive detection of the SARS-CoV-2 virus. An aggregation-induced electrochemiluminescence (AIECL) sensor was developed for the ultrasensitive detection of the SARS-CoV-2 nucleocapsid (N) protein in this work. Tetraphenylethylene doped in zeolite imidazole backbone-90 (TPE-ZIF-90) showed highly efficient aggregation-induced emission (AIE) to endow TPE-ZIF-90 with high ECL intensity. Upon the capture of the SARS-CoV-2 N protein by immune recognition, an alkaline phosphatase (ALP)-modified gold nanoparticle (AuNP)-decorated zinc oxide (ZnO) nanoflower (ALP/Au-ZnO) composite was introduced on the sensing platform, which catalyzed L-ascorbate-2-phosphate trisodium salt (AA2P) to produce PO43- and ascorbic acid (AA). Based on a multiquenching of the ECL signal strategy, including resonance energy transfer (RET) between TPE-ZIF-90 and Au-ZnO, disassembly of TPE-ZIF-90 triggered by the strong coordination between PO43- and Zn2+, and RET between TPE-ZIF-90 and AuNPs produced in situ by the AA reductive reaction, the constructed AIECL sensor achieved highly sensitive detection of the SARS-CoV-2 N protein with a low limit of detection of 0.52 fg/mL. With the merits of high specificity, good stability, and proven application ability, the present RET- and enzyme-triggered multiquenching AIECL sensor may become a powerful tool in the field of SARS-CoV-2 virus diagnosis.
Collapse
Affiliation(s)
- Wanlu Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Xianwen Kan
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, Anhui Province Key Laboratory of Biomedical Materials and Chemical Measurement, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
8
|
Eren ZB, Vatansever C, Kabadayı B, Haykar B, Kuloğlu ZE, Ay S, Nurlybayeva K, Eyikudamacı G, Barlas T, Palaoğlu E, Beşli Y, Kuşkucu MA, Ergönül Ö, Can F. Surveillance of respiratory viruses by aerosol screening in indoor air as an early warning system for epidemics. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13303. [PMID: 38982659 PMCID: PMC11233404 DOI: 10.1111/1758-2229.13303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
The development of effective methods for the surveillance of seasonal respiratory viruses is required for the timely management of outbreaks. We aimed to survey Influenza-A, Influenza-B, RSV-A, Rhinovirus and SARS-CoV-2 surveillance in a tertiary hospital and a campus over 5 months. The effectiveness of air screening as an early warning system for respiratory viruses was evaluated in correlation with respiratory tract panel test results. The overall viral positivity was higher on the campus than in the hospital (55.0% vs. 38.0%). Influenza A was the most prevalent pathogen in both locations. There were two influenza peaks (42nd and 49th weeks) in the hospital air, and a delayed peak was detected on campus in the 1st-week of January. Panel tests indicated a high rate of Influenza A in late December. RSV-A-positivity was higher on the campus than the hospital (21.6% vs. 7.4%). Moreover, we detected two RSV-A peaks in the campus air (48th and 51st weeks) but only one peak in the hospital and panel tests (week 49). Although rhinovirus was the most common pathogen in panel tests, rhinovirus positivity was low in air samples. The air screening for Influenza-B and SARS-Cov-2 revealed comparable positivity rates with panel tests. Air screening can be integrated into surveillance programs to support infection control programs for potential epidemics of respiratory virus infections except for rhinoviruses.
Collapse
Affiliation(s)
| | - Cansel Vatansever
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
| | | | | | - Zeynep Ece Kuloğlu
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Koç UniversityGraduate School of Health SciencesIstanbulTurkey
| | - Sedat Ay
- Koç University School of MedicineIstanbulTurkey
| | | | - Gül Eyikudamacı
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Koç UniversityGraduate School of Health SciencesIstanbulTurkey
| | - Tayfun Barlas
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
| | - Erhan Palaoğlu
- Department of Clinical LaboratoryAmerican HospitalIstanbulTurkey
| | - Yeşim Beşli
- Department of Clinical LaboratoryAmerican HospitalIstanbulTurkey
| | - Mert Ahmet Kuşkucu
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Medical MicrobiologyKoç University School of MedicineIstanbulTurkey
| | - Önder Ergönül
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Infectious Disease and Clinical MicrobiologyKoç University School of MedicineIstanbulTurkey
| | - Fusun Can
- Koç University İşBank Center for Infectious Diseases (KUISCID)IstanbulTurkey
- Department of Medical MicrobiologyKoç University School of MedicineIstanbulTurkey
| |
Collapse
|
9
|
Petros BA. Identifying changes in viral fitness using population genetic structure. Proc Natl Acad Sci U S A 2024; 121:e2410274121. [PMID: 38935582 PMCID: PMC11252975 DOI: 10.1073/pnas.2410274121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Affiliation(s)
- Brittany A. Petros
- Genomic Center for Infectious Diseases, Broad Institute of MIT and Harvard, Cambridge, MA02142
- Health Sciences and Technology, Harvard Medical School and Massachusetts Institute of Technology, Cambridge, MA02139
- Harvard/MIT MD-PhD Program, Harvard Medical School, Boston, MA02115
- Department of Systems Biology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
10
|
Godin R, Hejazi S, Reuel NF. Advancements in Airborne Viral Nucleic Acid Detection with Wearable Devices. ADVANCED SENSOR RESEARCH 2024; 3:2300061. [PMID: 38764891 PMCID: PMC11101210 DOI: 10.1002/adsr.202300061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Indexed: 05/21/2024]
Abstract
Wearable health sensors for an expanding range of physiological parameters have experienced rapid development in recent years and are poised to disrupt the way healthcare is tracked and administered. The monitoring of environmental contaminants with wearable technologies is an additional layer of personal and public healthcare and is also receiving increased focus. Wearable sensors that detect exposure to airborne viruses could alert wearers of viral exposure and prompt proactive testing and minimization of viral spread, benefitting their own health and decreasing community risk. With the high levels of asymptomatic spread of COVID-19 observed during the pandemic, such devices could dramatically enhance our pandemic response capabilities in the future. To facilitate advancements in this area, this review summarizes recent research on airborne viral detection using wearable sensing devices as well as technologies suitable for wearables. Since the low concentration of viral particles in the air poses significant challenges to detection, methods for airborne viral particle collection and viral sensing are discussed in detail. A special focus is placed on nucleic acid-based viral sensing mechanisms due to their enhanced ability to discriminate between viral subtypes. Important considerations for integrating airborne viral collection and sensing on a single wearable device are also discussed.
Collapse
Affiliation(s)
- Ryan Godin
- Department of Chemical and Biological Engineering, Iowa State University
| | - Sepehr Hejazi
- Department of Chemical and Biological Engineering, Iowa State University
| | - Nigel F. Reuel
- Department of Chemical and Biological Engineering, Iowa State University
| |
Collapse
|
11
|
Aguayo-Acosta A, Oyervides-Muñoz MA, Rodriguez-Aguillón KO, Ovalle-Carcaño A, Romero-Castillo KD, Robles-Zamora A, Johnson M, Parra-Saldívar R, Sosa-Hernández JE. Omicron and Delta variant prevalence detection and identification during the fourth COVID-19 wave in Mexico using wastewater-based epidemiology. IJID REGIONS 2024; 10:44-51. [PMID: 38149263 PMCID: PMC10750064 DOI: 10.1016/j.ijregi.2023.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/06/2023] [Indexed: 12/28/2023]
Abstract
Objectives To identify the SARS-CoV-2 variants Delta and Omicron during the fourth wave of the COVID-19 pandemic in Mexico using samples taken from 19 locations in 18 out of the 32 states. Methods The genetic material concentration was done with PEG/NaCl precipitation, SARS-CoV-2 presence was confirmed by reverse transcriptase-quantitative polymerase chain reaction assay, the variant detection was carried out using a commercial mutation detection panel kit, and variant/mutation confirmation was done by amplicon sequencing of receptor-binding domain target region. The study used 41 samples. Results The Delta variant was confirmed in two samples during August 2021 (Querétaro and CDMX) and in three samples during November 2021 (Aguascalientes, Ciudad Juárez campuses, and Nuevo Leon). In December 2021, another sample with the Delta variant was confirmed in Nuevo Leon. Between January to March 2022 only the presence of Omicron was confirmed, (variant BA.1). Additionally, in this period six samples were identified with the status "Variant Not Determined". Conclusion To our knowledge, this study is one of the first to identify Omicron and Delta variants with polymerase chain reaction in Mexico and Latin America and its distribution across the country with 56% Mexican states making it a viable alternative for variant detection without conducting a large quantity of sequencing of clinical tests.
Collapse
Affiliation(s)
- Alberto Aguayo-Acosta
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Mariel Araceli Oyervides-Muñoz
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Kassandra O. Rodriguez-Aguillón
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Antonio Ovalle-Carcaño
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | | | | | - Marc Johnson
- Department of Molecular Microbiology and Immunology, University of Missouri School of Medicine, Columbia, USA
| | - Roberto Parra-Saldívar
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Juan Eduardo Sosa-Hernández
- Tecnologico de Monterrey, Institute of Advanced Materials for Sustainable Manufacturing, Monterrey, Mexico
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| |
Collapse
|
12
|
Ali S, Cella E, Johnston C, Rojas AC, Brown AN, Deichen M, Azarian T. Environmental surface monitoring as a noninvasive method for SARS-CoV-2 surveillance in community settings: Lessons from a university campus study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169456. [PMID: 38123097 DOI: 10.1016/j.scitotenv.2023.169456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 11/22/2023] [Accepted: 12/15/2023] [Indexed: 12/23/2023]
Abstract
Environmental testing of high-touch objects is a potential noninvasive approach for monitoring population-level trends of SARS-CoV-2 and other respiratory viruses within a defined setting. We aimed to determine the association between SARS-CoV-2 contamination on high-touch environmental surfaces, community level case incidence, and university student health data. Environmental swabs were collected from January 2022 to November 2022 from high-touch objects and surfaces from five locations on a large university campus in Florida, USA. RT-qPCR was used to detect and quantify viral RNA, and a subset of positive samples was analyzed by viral genome sequencing to identify circulating lineages. During the study period, we detected SARS-CoV-2 viral RNA on 90.7 % of 162 tested samples. Levels of environmental viral RNA correlated with trends in community-level activity and case reports from the student health center. A significant positive correlation was observed between the estimated viral gene copy number in environmental samples and the weekly confirmed cases at the university. Viral sequencing data from environmental samples identified lineages concurrently circulating in the local community and state based on genomic surveillance data. Further, we detected emerging variants in environmental samples prior to their identification by clinical genomic surveillance. Our results demonstrate the utility of viral monitoring on high-touch environmental surfaces for SARS-CoV-2 surveillance at a community level. In communities with delayed or limited testing facilities, immediate environmental surface testing may considerably inform epidemic dynamics.
Collapse
Affiliation(s)
- Sobur Ali
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Eleonora Cella
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Catherine Johnston
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Ana C Rojas
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Ashley N Brown
- Institute for Therapeutic Innovation, Department of Medicine, College of Medicine, University of Florida, Orlando, FL 32827, USA
| | - Michael Deichen
- Student Health Services, University of Central Florida, Orlando, FL, USA
| | - Taj Azarian
- Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA.
| |
Collapse
|
13
|
Zhang Y, Shankar SN, Vass WB, Lednicky JA, Fan ZH, Agdas D, Makuch R, Wu CY. Air Change Rate and SARS-CoV-2 Exposure in Hospitals and Residences: A Meta-Analysis. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2024; 58:217-243. [PMID: 38764553 PMCID: PMC11101186 DOI: 10.1080/02786826.2024.2312178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 01/16/2024] [Indexed: 05/21/2024]
Abstract
As SARS-CoV-2 swept across the globe, increased ventilation and implementation of air cleaning were emphasized by the US CDC and WHO as important strategies to reduce the risk of inhalation exposure to the virus. To assess whether higher ventilation and air cleaning rates lead to lower exposure risk to SARS-CoV-2, 1274 manuscripts published between April 2020 and September 2022 were screened using key words "airborne SARS-CoV-2 or "SARS-CoV-2 aerosol". Ninety-three studies involved air sampling at locations with known sources (hospitals and residences) were selected and associated data were compiled. Two metrics were used to assess exposure risk: SARS-CoV-2 concentration and SARS-CoV-2 detection rate in air samples. Locations were categorized by type (hospital or residence) and proximity to the sampling location housing the isolated/quarantined patient (primary or secondary). The results showed that hospital wards had lower airborne virus concentrations than residential isolation rooms. A negative correlation was found between airborne virus concentrations in primary-occupancy areas and air changes per hour (ACH). In hospital settings, sample positivity rates were significantly reduced in secondary-occupancy areas compared to primary-occupancy areas, but they were similar across sampling locations in residential settings. ACH and sample positivity rates were negatively correlated, though the effect was diminished when ACH values exceeded 8. While limitations associated with diverse sampling protocols exist, data considered by this meta-analysis support the notion that higher ACH may reduce exposure risks to the virus in ambient air.
Collapse
Affiliation(s)
- Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Mechanical Engineering, University of British Columbia, Vancouver, British Columnia, Canada
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Environmental & Public Health Sciences, University of Cincinnati, Cincinnati, Ohio, USA
| | - William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Mechanical and Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | - Duzgun Agdas
- Engineering School of Sustainable Infrastructure & Environment, University of Florida, Gainesville, Florida, USA
| | - Robert Makuch
- Department of Biostatistics, Yale University School of Public Health, New Haven, Connecticut, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
14
|
Ko SH, Radecki P, Belinky F, Bhiman JN, Meiring S, Kleynhans J, Amoako D, Guerra Canedo V, Lucas M, Kekana D, Martinson N, Lebina L, Everatt J, Tempia S, Bylund T, Rawi R, Kwong PD, Wolter N, von Gottberg A, Cohen C, Boritz EA. Rapid Emergence and Evolution of SARS-CoV-2 Variants in Advanced HIV Infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.05.574420. [PMID: 38313289 PMCID: PMC10836083 DOI: 10.1101/2024.01.05.574420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
Previous studies have linked the evolution of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) genetic variants to persistent infections in people with immunocompromising conditions1-4, but the evolutionary processes underlying these observations are incompletely understood. Here we used high-throughput, single-genome amplification and sequencing (HT-SGS) to obtain up to ~103 SARS-CoV-2 spike gene sequences in each of 184 respiratory samples from 22 people with HIV (PWH) and 25 people without HIV (PWOH). Twelve of 22 PWH had advanced HIV infection, defined by peripheral blood CD4 T cell counts (i.e., CD4 counts) <200 cells/μL. In PWOH and PWH with CD4 counts ≥200 cells/μL, most single-genome spike sequences in each person matched one haplotype that predominated throughout the infection. By contrast, people with advanced HIV showed elevated intra-host spike diversity with a median of 46 haplotypes per person (IQR 14-114). Higher intra-host spike diversity immediately after COVID-19 symptom onset predicted longer SARS-CoV-2 RNA shedding among PWH, and intra-host spike diversity at this timepoint was significantly higher in people with advanced HIV than in PWOH. Composition of spike sequence populations in people with advanced HIV fluctuated rapidly over time, with founder sequences often replaced by groups of new haplotypes. These population-level changes were associated with a high total burden of intra-host mutations and positive selection at functionally important residues. In several cases, delayed emergence of detectable serum binding to spike was associated with positive selection for presumptive antibody-escape mutations. Taken together, our findings show remarkable intra-host genetic diversity of SARS-CoV-2 in advanced HIV infection and suggest that adaptive intra-host SARS-CoV-2 evolution in this setting may contribute to the emergence of new variants of concern (VOCs).
Collapse
Affiliation(s)
- Sung Hee Ko
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Pierce Radecki
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Frida Belinky
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jinal N. Bhiman
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- SAMRC Antibody Immunity Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Susan Meiring
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Jackie Kleynhans
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Amoako
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- Department of Integrative Biology and Bioinformatics, College of Biological Sciences, University of Guelph, Ontario, Canada
| | - Vanessa Guerra Canedo
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Margaret Lucas
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dikeledi Kekana
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Neil Martinson
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
- Johns Hopkins University, Center for TB Research, Baltimore, MD 21218, USA
| | - Limakatso Lebina
- Perinatal HIV Research Unit, University of the Witwatersrand, Johannesburg, South Africa
| | - Josie Everatt
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
| | - Stefano Tempia
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Reda Rawi
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Peter D. Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nicole Wolter
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne von Gottberg
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- National Institute for Communicable Diseases, a division of the National Health Laboratory Service, Johannesburg, South Africa
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Eli A. Boritz
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Wang J, Li L, Xu C, Jiang H, Xie QX, Yang XY, Li JC, Xu H, Chen Y, Yi W, Hong XJ, Lan YQ. Hot-Pressing Metal Covalent Organic Frameworks as Personal Protection Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2311519. [PMID: 38127976 DOI: 10.1002/adma.202311519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/16/2023] [Indexed: 12/23/2023]
Abstract
Effective personal protection is crucial for controlling infectious disease spread. However, commonly used personal protective materials such as disposable masks lack antibacterial/antiviral function and may lead to cross infection. Herein, a polyethylene glycol-assisted solvent-free strategy is proposed to rapidly synthesize a series of the donor-acceptor metal-covalent organic frameworks (MCOFs) (i.e., GZHMU-2, JNM-1, and JNM-2) under air atmosphere and henceforth extend it via in situ hot-pressing process to prepare MCOFs based films with photocatalytic disinfect ability. Best of them, the newly designed GZHMU-2 has a wide absorption spectrum (200 to 1500 nm) and can efficiently produce reactive oxygen species under sunlight irradiation, achieving excellent photocatalytic disinfection performance. After in situ hot-pressing as a film material, the obtained GZHMU-2/NMF can effectively kill E. coli (99.99%), S. aureus (99%), and H1N1 (92.5%), meanwhile possessing good reusability. Noteworthy, the long-term use of a GZHMU-2/NWF-based mask has verified no damage to the living body by measuring the expression of mouse blood routine, lung tissue, and inflammatory factors at the in-vivo level.
Collapse
Affiliation(s)
- Jiajia Wang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Li Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Chuanshan Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Hong Jiang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Qin-Xie Xie
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xin-Yi Yang
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ji-Cheng Li
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Huiying Xu
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Yifa Chen
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| | - Wei Yi
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Xu-Jia Hong
- The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, School of Public Health, Guangzhou Medical University, Guangzhou, 511436, China
| | - Ya-Qian Lan
- National and Local Joint Engineering Research Center of MPTES in High Energy and Safety LIBs, Engineering Research Center of MTEES (Ministry of Education), Key Lab. of ETESPG(GHEI), School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China
| |
Collapse
|
16
|
Pronyk PM, de Alwis R, Rockett R, Basile K, Boucher YF, Pang V, Sessions O, Getchell M, Golubchik T, Lam C, Lin R, Mak TM, Marais B, Twee-Hee Ong R, Clapham HE, Wang L, Cahyorini Y, Polotan FGM, Rukminiati Y, Sim E, Suster C, Smith GJD, Sintchenko V. Advancing pathogen genomics in resource-limited settings. CELL GENOMICS 2023; 3:100443. [PMID: 38116115 PMCID: PMC10726422 DOI: 10.1016/j.xgen.2023.100443] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Genomic sequencing has emerged as a powerful tool to enhance early pathogen detection and characterization with implications for public health and clinical decision making. Although widely available in developed countries, the application of pathogen genomics among low-resource, high-disease burden settings remains at an early stage. In these contexts, tailored approaches for integrating pathogen genomics within infectious disease control programs will be essential to optimize cost efficiency and public health impact. We propose a framework for embedding pathogen genomics within national surveillance plans across a spectrum of surveillance and laboratory capacities. We adopt a public health approach to genomics and examine its application to high-priority diseases relevant in resource-limited settings. For each grouping, we assess the value proposition for genomics to inform public health and clinical decision-making, alongside its contribution toward research and development of novel diagnostics, therapeutics, and vaccines.
Collapse
Affiliation(s)
- Paul Michael Pronyk
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore.
| | - Ruklanthi de Alwis
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore; Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Rebecca Rockett
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Kerri Basile
- Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| | - Yann Felix Boucher
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore; Infectious Diseases Translational Research Programme, Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore and National University Health System, Singapore 117549, Singapore; Singapore Centre for Environmental Life Sciences Engineering, National University of Singapore, Singapore 117549, Singapore; Nanyang Technological University, Singapore 639798, Singapore
| | - Vincent Pang
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - October Sessions
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Marya Getchell
- Centre for Outbreak Preparedness, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Tanya Golubchik
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Big Data Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7LF, UK
| | - Connie Lam
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Raymond Lin
- National Public Health Laboratory, National Centre for Infectious Diseases, Singapore 308442, Singapore
| | - Tze-Minn Mak
- Bioinformatics Institute, Agency for Science, Technology and Research, Singapore 138671, Singapore
| | - Ben Marais
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia
| | - Rick Twee-Hee Ong
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Hannah Eleanor Clapham
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore 117549, Singapore
| | - Linfa Wang
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore; Programme for Research in Epidemic Preparedness and Response (PREPARE), Ministry of Health, Singapore 169854, Singapore
| | - Yorin Cahyorini
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Francisco Gerardo M Polotan
- Molecular Biology Laboratory, Research Institute for Tropical Medicine, Muntinlupa 1781, Metro Manila, Philippines
| | - Yuni Rukminiati
- Center for Health Resilience and Resource Policy, Ministry of Health, Jakarta 12950, Indonesia
| | - Eby Sim
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Carl Suster
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia
| | - Gavin J D Smith
- Emerging Infectious Diseases Programme, Duke-NUS Medical School, Singapore 169857, Singapore
| | - Vitali Sintchenko
- Sydney Infectious Diseases Institute, The University of Sydney, Camperdown, NSW 2006, Australia; Centre for Infectious Diseases and Microbiology - Public Health, Westmead Hospital, Westmead, NSW 2145, Australia; Centre for Infectious Diseases and Microbiology Laboratory Services, NSW Health Pathology - Institute of Clinical Pathology and Medical Research, Westmead, NSW 2145, Australia
| |
Collapse
|
17
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O'Connor SL, O'Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. Sci Rep 2023; 13:21398. [PMID: 38049453 PMCID: PMC10696062 DOI: 10.1038/s41598-023-48352-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/25/2023] [Indexed: 12/06/2023] Open
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater andair sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Olivia E Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Savannah F Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - William C Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Max J Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Jenna R Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | | | - Matthew T Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA
| | - David H O'Connor
- Wisconsin National Primate Research Center, Madison, WI, USA.
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, 555 Science Drive, Madison, WI, 53711, USA.
| |
Collapse
|
18
|
Temte J, Goss M, Barlow S, O’Connor DH, O’Connor SL, Ramuta MD, Uzicanin A. Four Methods for Monitoring SARS-CoV-2 and Influenza A Virus Activity in Schools. JAMA Netw Open 2023; 6:e2346329. [PMID: 38051533 PMCID: PMC10698613 DOI: 10.1001/jamanetworkopen.2023.46329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/24/2023] [Indexed: 12/07/2023] Open
Abstract
This cross-sectional study describes 4 parallel approaches used simultaneously to monitor influenza A virus and SARS-CoV-2 activity within a Wisconsin school district during the Fall 2022 semester and briefly following winter break.
Collapse
Affiliation(s)
- Jonathan Temte
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison
| | - Maureen Goss
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison
| | - Shari Barlow
- Department of Family Medicine and Community Health, University of Wisconsin School of Medicine and Public Health, Madison
| | - David H. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison
| | - Amra Uzicanin
- Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
19
|
Minor NR, Ramuta MD, Stauss MR, Harwood OE, Brakefield SF, Alberts A, Vuyk WC, Bobholz MJ, Rosinski JR, Wolf S, Lund M, Mussa M, Beversdorf LJ, Aliota MT, O’Connor SL, O’Connor DH. Metagenomic sequencing detects human respiratory and enteric viruses in air samples collected from congregate settings. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.28.23290648. [PMID: 37398492 PMCID: PMC10312882 DOI: 10.1101/2023.05.28.23290648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Innovative methods for evaluating virus risk and spread, independent of test-seeking behavior, are needed to improve routine public health surveillance, outbreak response, and pandemic preparedness. Throughout the COVID-19 pandemic, environmental surveillance strategies, including wastewater and air sampling, have been used alongside widespread individual-based SARS-CoV-2 testing programs to provide population-level data. These environmental surveillance strategies have predominantly relied on pathogen-specific detection methods to monitor viruses through space and time. However, this provides a limited picture of the virome present in an environmental sample, leaving us blind to most circulating viruses. In this study, we explore whether pathogen-agnostic deep sequencing can expand the utility of air sampling to detect many human viruses. We show that sequence-independent single-primer amplification sequencing of nucleic acids from air samples can detect common and unexpected human respiratory and enteric viruses, including influenza virus type A and C, respiratory syncytial virus, human coronaviruses, rhinovirus, SARS-CoV-2, rotavirus, mamastrovirus, and astrovirus.
Collapse
Affiliation(s)
| | - Mitchell D. Ramuta
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Olivia E. Harwood
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Savannah F. Brakefield
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Alexandra Alberts
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - William C. Vuyk
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Max J. Bobholz
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Jenna R. Rosinski
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Sydney Wolf
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madelyn Lund
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Madison Mussa
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Matthew T. Aliota
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - Shelby L. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - David H. O’Connor
- Wisconsin National Primate Research Center, Madison, WI USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
20
|
Vass WB, Shankar SN, Lednicky JA, Yang Y, Manzanas C, Zhang Y, Boyette J, Chen J, Chen Y, Shirkhani A, Washeem M, Fan ZH, Eiguren-Fernandez A, Jutla A, Wu CY. Detection and isolation of infectious SARS-CoV-2 omicron subvariants collected from residential settings. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2023; 57:1142-1153. [PMID: 38143528 PMCID: PMC10735208 DOI: 10.1080/02786826.2023.2251537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/17/2023] [Indexed: 12/26/2023]
Abstract
Airborne transmission of infectious (viable) SARS-CoV-2 is increasingly accepted as the primary manner by which the virus is spread from person to person. Risk of exposure to airborne virus is higher in enclosed and poorly ventilated spaces. We present a study focused on air sampling within residences occupied by individuals with COVID-19. Air samplers (BioSpot-VIVAS, VIVAS, and BC-251) were positioned in primary- and secondary-occupancy regions in seven homes. Swab samples were collected from high-touch surfaces. Isolation of SARS-CoV-2 was attempted for samples with virus detectable by RT-qPCR. Viable virus was quantified by plaque assay, and complete virus genome sequences were obtained for selected samples from each sampling day. SARS-CoV-2 was detected in 24 of 125 samples (19.2%) by RT-qPCR and isolated from 14 (11.2%) in cell cultures. It was detected in 80.9% (17/21) and cultured from 61.9% (13/21) of air samples collected using water condensation samplers, compared to swab samples which had a RT-qPCR detection rate of 10.5% (4/38) and virus isolation rate of 2.63% (1/38). No statistically significant differences existed in the likelihood of virus detection by RT-qPCR or amount of infectious virus in the air between areas of primary and secondary occupancy within residences. Our work provides information about the presence of SARS-CoV-2 in the air within homes of individuals with COVID-19. Information herein can help individuals make informed decisions about personal exposure risks when sharing indoor spaces with infected individuals isolating at home and further inform health departments and the public about SARS-CoV-2 exposure risks within residences.
Collapse
Affiliation(s)
- William B. Vass
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Sripriya Nannu Shankar
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - John A. Lednicky
- Department of Environmental and Global Health, University of Florida, Gainesville, Florida, USA
- Emerging Pathogens Institute, University of Florida, Gainesville, Florida, USA
| | - Yang Yang
- Department of Statistics, University of Georgia, Athens, Georgia, USA
| | - Carlos Manzanas
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
| | - Yuetong Zhang
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Jessica Boyette
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Jiayi Chen
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Yuqiao Chen
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Amin Shirkhani
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Mo Washeem
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Z. Hugh Fan
- Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, Florida, USA
- Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, Florida, USA
| | | | - Antarpreet Jutla
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Chang-Yu Wu
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
- Department of Chemical, Environmental, and Materials Engineering, University of Miami, Coral Gables, Florida, USA
| |
Collapse
|
21
|
Raymenants J, Van Gestel L, Coppens J, De Block T, Bangwen E, Rutgers J, Hens M, De Vos E, Coppens S, Keyaerts E, André E, Rezende AM, Van Esbroeck M, Vercauteren K, Liesenborghs L. Detection of mpox virus in ambient air in a sexual health clinic. Arch Virol 2023; 168:210. [PMID: 37486383 PMCID: PMC10366007 DOI: 10.1007/s00705-023-05837-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 06/09/2023] [Indexed: 07/25/2023]
Abstract
Although transmitted mainly through direct (sexual) contact, mpox virus (MPXV) can be detected in ambient air. We explored the use of air sampling for diagnosis or (genomic) surveillance of mpox in a sexual health clinic. For six out of six patients who were infected with MPXV, all four of our ambient air PCR tests were positive. For 14 uninfected patients, PCR was positive in three ambient air samples, albeit with higher cycle threshold (Ct) values. Genomic sequencing of samples from two positive patients showed matching sequences between air and clinical samples.
Collapse
Affiliation(s)
- Joren Raymenants
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Liesbeth Van Gestel
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Jasmine Coppens
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Tessa De Block
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eugene Bangwen
- Outbreak Research Team, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Jojanneke Rutgers
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Matilde Hens
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Elise De Vos
- Outbreak Research Team, Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Sandra Coppens
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Els Keyaerts
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Department of Laboratory Medicine, National reference centre of Respiratory pathogens, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Emmanuel André
- Laboratory of Clinical Microbiology, Department of Microbiology, Immunology and Transplantation, KU Leuven, Herestraat 49, Leuven, 3000, Belgium
- Department of Laboratory Medicine, National reference centre of Respiratory pathogens, University Hospitals Leuven, Herestraat 49, Leuven, 3000, Belgium
| | - Antonio Mauro Rezende
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Marjan Van Esbroeck
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium
| | - Koen Vercauteren
- Clinical Virology Unit, Department of Clinical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Laurens Liesenborghs
- Department of Clinical Sciences, Institute of Tropical Medicine, Nationalestraat 155, Antwerp, 2000, Belgium.
| |
Collapse
|
22
|
Brüssow H. Viral infections at the animal-human interface-Learning lessons from the SARS-CoV-2 pandemic. Microb Biotechnol 2023; 16:1397-1411. [PMID: 37338856 DOI: 10.1111/1751-7915.14269] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 06/21/2023] Open
Abstract
This Lilliput explores the current epidemiological and virological arguments for a zoonotic origin of the COVID-19 pandemic. While the role of bats, pangolins and racoon dogs as viral reservoirs has not yet been proven, a spill-over of a coronavirus infection from animals into humans at the Huanan food market in Wuhan has a much greater plausibility than alternative hypotheses such as a laboratory virus escape, deliberate genetic engineering or introduction by cold chain food products. This Lilliput highlights the dynamic nature of the animal-human interface for viral cross-infections from humans into feral white tail deer or farmed minks (reverse zoonosis). Surveillance of viral infections at the animal-human interface is an urgent task since live animal markets are not the only risks for future viral spill-overs. Climate change will induce animal migration which leads to viral exchanges between animal species that have not met in the past. Environmental change and deforestation will also increase contact between animals and humans. Developing an early warning system for emerging viral infections becomes thus a societal necessity not only for human but also for animal and environmental health (One Health concept). Microbiologists have developed tools ranging from virome analysis in key suspects such as viral reservoirs (bats, wild game animals, bushmeat) and in humans exposed to wild animals, to wastewater analysis to detect known and unknown viruses circulating in the human population and sentinel studies in animal-exposed patients with fever. Criteria need to be developed to assess the virulence and transmissibility of zoonotic viruses. An early virus warning system is costly and will need political lobbying. The accelerating number of viral infections with pandemic potential over the last decades should provide the public pressure to extend pandemic preparedness for the inclusion of early viral alert systems.
Collapse
Affiliation(s)
- Harald Brüssow
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
MPXV and SARS-CoV-2 in the air of nightclubs in Spain. THE LANCET. MICROBE 2023:S2666-5247(23)00104-0. [PMID: 36972725 PMCID: PMC10038664 DOI: 10.1016/s2666-5247(23)00104-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/26/2023]
|
24
|
Raymenants J, Geenen C, Budts L, Thibaut J, Thijssen M, De Mulder H, Gorissen S, Craessaerts B, Laenen L, Beuselinck K, Ombelet S, Keyaerts E, André E. Indoor air surveillance and factors associated with respiratory pathogen detection in community settings in Belgium. Nat Commun 2023; 14:1332. [PMID: 36898982 PMCID: PMC10005919 DOI: 10.1038/s41467-023-36986-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Currently, the real-life impact of indoor climate, human behaviour, ventilation and air filtration on respiratory pathogen detection and concentration are poorly understood. This hinders the interpretability of bioaerosol quantification in indoor air to surveil respiratory pathogens and transmission risk. We tested 341 indoor air samples from 21 community settings in Belgium for 29 respiratory pathogens using qPCR. On average, 3.9 pathogens were positive per sample and 85.3% of samples tested positive for at least one. Pathogen detection and concentration varied significantly by pathogen, month, and age group in generalised linear (mixed) models and generalised estimating equations. High CO2 and low natural ventilation were independent risk factors for detection. The odds ratio for detection was 1.09 (95% CI 1.03-1.15) per 100 parts per million (ppm) increase in CO2, and 0.88 (95% CI 0.80-0.97) per stepwise increase in natural ventilation (on a Likert scale). CO2 concentration and portable air filtration were independently associated with pathogen concentration. Each 100ppm increase in CO2 was associated with a qPCR Ct value decrease of 0.08 (95% CI -0.12 to -0.04), and portable air filtration with a 0.58 (95% CI 0.25-0.91) increase. The effects of occupancy, sampling duration, mask wearing, vocalisation, temperature, humidity and mechanical ventilation were not significant. Our results support the importance of ventilation and air filtration to reduce transmission.
Collapse
Affiliation(s)
- Joren Raymenants
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium.
- Department of General Internal Medicine, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium.
| | - Caspar Geenen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lore Budts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Jonathan Thibaut
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Marijn Thijssen
- Laboratory of Clinical and Epidemiological Virology (Rega Institute), KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Hannelore De Mulder
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sarah Gorissen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Bastiaan Craessaerts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Lies Laenen
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Kurt Beuselinck
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Sien Ombelet
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Els Keyaerts
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| | - Emmanuel André
- Laboratory of Clinical Microbiology, KU Leuven, Herestraat 49, 3000, Leuven, Belgium
- Department of Laboratory Medicine, National Reference Center of Respiratory Pathogens, University Hospitals Leuven, Herestraat 49, 3000, Leuven, Belgium
| |
Collapse
|
25
|
Tan KS, Ang AXY, Tay DJW, Somani J, Ng AJY, Peng LL, Chu JJH, Tambyah PA, Allen DM. Detection of hospital environmental contamination during SARS-CoV-2 Omicron predominance using a highly sensitive air sampling device. Front Public Health 2023; 10:1067575. [PMID: 36703815 PMCID: PMC9873263 DOI: 10.3389/fpubh.2022.1067575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/23/2022] [Indexed: 01/11/2023] Open
Abstract
Background and objectives The high transmissibility of SARS-CoV-2 has exposed weaknesses in our infection control and detection measures, particularly in healthcare settings. Aerial sampling has evolved from passive impact filters to active sampling using negative pressure to expose culture substrate for virus detection. We evaluated the effectiveness of an active air sampling device as a potential surveillance system in detecting hospital pathogens, for augmenting containment measures to prevent nosocomial transmission, using SARS-CoV-2 as a surrogate. Methods We conducted air sampling in a hospital environment using the AerosolSenseTM air sampling device and compared it with surface swabs for their capacity to detect SARS-CoV-2. Results When combined with RT-qPCR detection, we found the device provided consistent SARS-CoV-2 detection, compared to surface sampling, in as little as 2 h of sampling time. The device also showed that it can identify minute quantities of SARS-CoV-2 in designated "clean areas" and through a N95 mask, indicating good surveillance capacity and sensitivity of the device in hospital settings. Conclusion Active air sampling was shown to be a sensitive surveillance system in healthcare settings. Findings from this study can also be applied in an organism agnostic manner for surveillance in the hospital, improving our ability to contain and prevent nosocomial outbreaks.
Collapse
Affiliation(s)
- Kai Sen Tan
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,*Correspondence: Kai Sen Tan ✉
| | - Alicia Xin Yu Ang
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Douglas Jie Wen Tay
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jyoti Somani
- Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - Alexander Jet Yue Ng
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
| | - Li Lee Peng
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
| | - Justin Jang Hann Chu
- Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Collaborative and Translation Unit for Hand, Foot and Mouth Disease (HFMD), Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore, Singapore
| | - Paul Anantharajah Tambyah
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore
| | - David Michael Allen
- Infectious Disease Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore,Department of Medicine, Division of Infectious Diseases, National University Hospital, Singapore, Singapore,David Michael Allen ✉
| |
Collapse
|