1
|
Xu J, Liu S, Jin Y, Wang L, Gao J. MicroRNAs and lysosomal membrane proteins: Critical interactions in tumor progression and therapy. Biochim Biophys Acta Rev Cancer 2025; 1880:189303. [PMID: 40132693 DOI: 10.1016/j.bbcan.2025.189303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/18/2025] [Accepted: 03/19/2025] [Indexed: 03/27/2025]
Abstract
Cancer development is influenced by genetic and epigenetic variations, with the interactions between microRNAs (miRNAs) and lysosomal membrane proteins (LMPs) representing key regulatory mechanisms with potential as therapeutic targets. This review focuses on the complex regulatory mechanisms of miRNAs and LMPs in tumor progression, specifically highlighting their roles in tumor suppression, tumor promotion, tumor therapy, and drug resistance and their future application in treatment strategies. Overall, the interactions of LMPs with miRNAs have critical roles in tumor regulation, and studies of these interactions will further highlight their molecular contributions to cancer development.
Collapse
Affiliation(s)
- Jiahao Xu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; School of Clinical Medicine, Wannan Medical College, Wuhu, China
| | - Shiqiang Liu
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China
| | - Yujie Jin
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China
| | - Lizhuo Wang
- Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China; Department of Biochemistry and Molecular Biology, Wannan Medical Collage, Wuhu, Anhui, China.
| | - Jialin Gao
- Department of Endocrinology and Genetic Metabolism, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, China; Anhui Province Key Laboratory of Basic Research and Transformation of Age-related Diseases, Wannan Medical College, Wuhu, Anhui, China.
| |
Collapse
|
2
|
Song C, Dong Q, Yao Y, Cui Y, Zhang C, Lin L, Zhu L, Hu Y, Liu H, Jin Y, Li P, Liu X, Cao C. Nonreceptor tyrosine kinase ABL1 regulates lysosomal acidification by phosphorylating the ATP6V1B2 subunit of the vacuolar-type H +-ATPase. Autophagy 2025; 21:1192-1211. [PMID: 39757940 PMCID: PMC12087662 DOI: 10.1080/15548627.2024.2448913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/23/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025] Open
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is a proton pump responsible for controlling the intracellular and extracellular pH of cells. Its activity and assembly are tightly controlled by multiple pathways, of which phosphorylation-mediated regulation is poorly understood. In this report, we show that in response to starvation stimuli, the nonreceptor tyrosine kinase ABL1 directly interacts with ATP6V1B2, a subunit of the V1 domain of the V-ATPase, and phosphorylates ATP6V1B2 at Y68. Y68 phosphorylation in ATP6V1B2 facilitates the recruitment of the ATP6V1D subunit into the V1 subcomplex of V-ATPase, therefore potentiating the assembly of the V1 subcomplex with the membrane-embedded V0 subcomplex to form the integrated functional V-ATPase. ABL1 inhibition or depletion impairs V-ATPase assembly and lysosomal acidification, resulting in an increased lysosomal pH, a decreased lysosomal hydrolase activity, and consequently, the suppressed degradation of lumenal cargo during macroautophagy/autophagy. Consistently, the efficient removal of damaged mitochondrial residues during mitophagy is also impeded by ABL1 deficiency. Our findings suggest that ABL1 is a crucial autophagy regulator that maintains the adequate lysosomal acidification required for both physiological conditions and stress responses.Abbreviation: ANOVA: analysis of variance; Baf A1: bafilomycin A1; CCCP: carbonyl cyanide 3-chlorophenylhydrazone; CRK: CRK proto-oncogene, adaptor protein; CTSD: cathepsin D; DMSO: dimethylsulfoxide; EBSS: Earle's balanced salt solution; FITC: fluorescein isothiocyanate; GFP: green fluorescent protein; GST: glutathione S-transferase; LAMP2: lysosomal associated membrane protein 2; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MTORC1: mechanistic target of rapamycin kinase complex 1; PD: Parkinson disease; PLA: proximity ligation assay; RFP: red fluorescent protein; WT: wild-type.
Collapse
Affiliation(s)
- Caiwei Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Qincai Dong
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yi Yao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yan Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Chunmei Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Lijun Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yong Hu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Hainan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Yanwen Jin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Ping Li
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Xuan Liu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| | - Cheng Cao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Biotechnology, Beijing, China
| |
Collapse
|
3
|
Umar I, Gulzar SEJ, Sundaramurthy V. M. tuberculosis surface sulfoglycolipid SL-1 activates the mechanosensitive channel TRPV4 to enhance lysosomal biogenesis and exocytosis in macrophages. Mol Biol Cell 2025; 36:ar76. [PMID: 40305098 DOI: 10.1091/mbc.e24-12-0560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
Intracellular pathogens manipulate host cellular pathways to ensure their survival. Mycobacterium tuberculosis (Mtb) disrupts phagosomal trafficking to prevent fusion with lysosomes. Beyond this localized effect, Mtb globally remodels the host lysosomal system, predominantly through its virulence-associated surface lipid, sulfolipid-1 (SL-1). SL-1 enhances lysosomal biogenesis via the mTORC1-TFEB axis; however, the upstream mediators remain unknown. Here, we show that SL-1 induces calcium influx into macrophages and identify the mechanosensitive calcium channel transient receptor potential vanilloid subtype 4 (TRPV4) as a crucial upstream mediator of SL-1-induced lysosomal remodeling. TRPV4 influences multiple aspects of lysosomal function, including biogenesis, acidification, enzymatic activity, phagosome maturation, and lysosomal exocytosis. These effects are recapitulated during Mtb infection, underscoring the relevance of SL-1- and TRPV4-dependent lysosomal remodeling in an infection context. TRPV4 expression is upregulated during Mtb infection and partially localizes to both lysosomes and the Mtb-containing vacuole. Remarkably, TRPV4 activation, independent of SL-1, is sufficient to enhance lysosomal biogenesis, identifying TRPV4 as a key regulator of lysosomal homeostasis. Together, these findings uncover a novel mechanism of lysosomal remodeling driven by a pathogen lipid virulence factor and reveal a previously unrecognized role for TRPV4 in modulating lysosomal homeostasis in macrophages.
Collapse
Affiliation(s)
- Ibrahim Umar
- National Center for Biological Sciences, Bangalore 560065, India
- SASTRA University Thanjavur 613401, India
| | - Shah-E-Jahan Gulzar
- National Center for Biological Sciences, Bangalore 560065, India
- SASTRA University Thanjavur 613401, India
| | | |
Collapse
|
4
|
Zhang R, Vooijs MA, Keulers TG. Key Mechanisms in Lysosome Stability, Degradation and Repair. Mol Cell Biol 2025; 45:212-224. [PMID: 40340648 DOI: 10.1080/10985549.2025.2494762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 04/10/2025] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Lysosomes are organelles that play pivotal roles in macromolecule digestion, signal transduction, autophagy, and cellular homeostasis. Lysosome instability, including the inhibition of lysosomal intracellular activity and the leakage of their contents, is associated with various pathologies, including cancer, neurodegenerative diseases, inflammatory diseases and infections. These lysosomal-related pathologies highlight the significance of factors contributing to lysosomal dysfunction. The vulnerability of the lysosomal membrane and its components to internal and external stimuli make lysosomes particularly susceptible to damage. Cells are equipped with mechanisms to repair or degrade damaged lysosomes to prevent cell death. Understanding the factors influencing lysosome stabilization and damage repair is essential for developing effective therapeutic interventions for diseases. This review explores the factors affecting lysosome acidification, membrane integrity, and functional homeostasis and examines the underlying mechanisms of lysosomal damage repair. In addition, we summarize how various risk factors impact lysosomal activity and cell fate.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Marc A Vooijs
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Tom Gh Keulers
- Department of Radiation Oncology (MAASTRO)/GROW Research Institute for Oncology and Reproduction, Maastricht University Medical Center, Maastricht, The Netherlands
| |
Collapse
|
5
|
Hao B, Lin S, Liu H, Xu J, Chen L, Zheng T, Zhang W, Dang Y, Reiter RJ, Li C, Zhai H, Xia Q, Fan L. Baicalein tethers CD274/PD-L1 for autophagic degradation to boost antitumor immunity. Autophagy 2025; 21:917-933. [PMID: 39710370 PMCID: PMC12013432 DOI: 10.1080/15548627.2024.2439657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Immune checkpoint inhibitors, especially those targeting CD274/PD-L1yield powerful clinical therapeutic efficacy. Thoughmuch progress has been made in the development of antibody-basedCD274 drugs, chemical compounds applied for CD274degradation remain largely unavailable. Herein,baicalein, a monomer of traditional Chinese medicine, isscreened and validated to target CD274 and induces itsmacroautophagic/autophagic degradation. Moreover, we demonstrate thatCD274 directly interacts with MAP1LC3B (microtubule associatedprotein 1 light chain 3 beta). Intriguingly, baicalein potentiatesCD274-LC3 interaction to facilitate autophagic-lysosomal degradationof CD274. Importantly, targeted CD274. degradation via baicaleininhibits tumor development by boosting T-cell-mediated antitumorimmunity. Thus, we elucidate a critical role of autophagy-lysosomalpathway in mediating CD274 degradation, and conceptually demonstratethat the design of a molecular "glue" that tethers the CD274-LC3interaction is an appealing strategy to develop CD274 inhibitors incancer therapy.Abbreviations: ATTECs: autophagy-tethering compounds; AUTACs: AUtophagy-TArgeting Chimeras; AUTOTACs: AUTOphagy-TArgeting Chimeras; AMPK: adenosine 5'-monophosphate (AMP)-activated protein kinase; BiFC: bimolecular fluorescence complementation; BafA1: bafilomycin A1; CD274/PD-L1/B7-H1: CD274 molecule; CQ: chloroquine; CGAS: cyclic GMP-AMP synthase; DAPI: 4'6-diamino-2-phenylindole; FITC: fluorescein isothiocyanate isomer; GFP: green fluorescent protein; GZMB: granzyme B; IHC: immunohistochemistry; ICB: immune checkpoint blockade; KO: knockout; KD: equilibrium dissociation constant; LYTAC: LYsosome-TArgeting Chimera; LIR: LC3-interacting region; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MST: microscale thermophoresis; NFAT: nuclear factor of activated T cells; NFKB/NF-kB: nuclear factor kappa B; NSCLC: non-small-cell lung cancer; PDCD1: programmed cell death 1; PROTACs: PROteolysis TArgeting Chimeras; PRF1: perforin 1; PE: phosphatidylethanolamine; PHA: phytohemagglutinin; PMA: phorbol 12-myristate 13-acetate; STAT: signal transducer and activator of transcription; SPR: surface plasmon resonance; TILs: tumor-infiltrating lymphocyte; TME: tumor microenvironment.
Collapse
Affiliation(s)
- Bingjie Hao
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shumeng Lin
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Haipeng Liu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Junfang Xu
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Chen
- Clinical Translational Research Center, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tiansheng Zheng
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen Zhang
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yifang Dang
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Chaoqun Li
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong Zhai
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qing Xia
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lihong Fan
- Institute of Energy Metabolism and Health, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai, China
- Department of Respiratory Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
6
|
Zhou N, Chen J, Hu M, Wen N, Cai W, Li P, Zhao L, Meng Y, Zhao D, Yang X, Liu S, Huang F, Zhao C, Feng X, Jiang Z, Xie E, Pan H, Cen Z, Chen X, Luo W, Tang B, Min J, Wang F, Yang J, Xu H. SLC7A11 is an unconventional H + transporter in lysosomes. Cell 2025:S0092-8674(25)00406-4. [PMID: 40280132 DOI: 10.1016/j.cell.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 01/22/2025] [Accepted: 04/02/2025] [Indexed: 04/29/2025]
Abstract
Lysosomes maintain an acidic pH of 4.5-5.0, optimal for macromolecular degradation. Whereas proton influx is produced by a V-type H+ ATPase, proton efflux is mediated by a fast H+ leak through TMEM175 channels, as well as an unidentified slow pathway. A candidate screen on an orphan lysosome membrane protein (OLMP) library enabled us to discover that SLC7A11, the protein target of the ferroptosis-inducing compound erastin, mediates a slow lysosomal H+ leak through downward flux of cystine and glutamate, two H+ equivalents with uniquely large but opposite concentration gradients across lysosomal membranes. SLC7A11 deficiency or inhibition caused lysosomal over-acidification, reduced degradation, accumulation of storage materials, and ferroptosis, as well as facilitated α-synuclein aggregation in neurons. Correction of abnormal lysosomal acidity restored lysosome homeostasis and prevented ferroptosis. These studies have revealed an unconventional H+ transport conduit that is integral to lysosomal flux of protonatable metabolites to regulate lysosome function, ferroptosis, and Parkinson's disease (PD) pathology.
Collapse
Affiliation(s)
- Nan Zhou
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Jingzhi Chen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Meiqin Hu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China.
| | - Na Wen
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Weijie Cai
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Ping Li
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Liding Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Department of Cardiology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yaping Meng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Dongdong Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xiaotong Yang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Siyu Liu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Fangqian Huang
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Cheng Zhao
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Xinghua Feng
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Zikai Jiang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Enjun Xie
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Hongxu Pan
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhidong Cen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinhui Chen
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Luo
- Department of Neurology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Beisha Tang
- Department of Neurology & National Clinical Research Centre for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junxia Min
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Fudi Wang
- The Second Affiliated Hospital & the First Affiliated Hospital, Institute of Translational Medicine, School of Public Health, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou, China
| | - Junsheng Yang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, China
| | - Haoxing Xu
- New Cornerstone Science Laboratory and Liangzhu Laboratory, the Second Affiliated Hospital and School of Basic Medical Sciences, Zhejiang University, Hangzhou, China; Institute of Fundamental and Transdisciplinary Research and The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China; Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
7
|
Dravecka M, Mikkola I, Johansen T, Seternes OM, Mejlvang J. Low extracellular pH protects cancer cells from ammonia toxicity. Cell Death Discov 2025; 11:137. [PMID: 40180899 PMCID: PMC11968834 DOI: 10.1038/s41420-025-02440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/12/2025] [Accepted: 03/25/2025] [Indexed: 04/05/2025] Open
Abstract
Ammonia is a natural waste product of cellular metabolism which, through its lysosomotropic ability, can have detrimental effects on various cellular functions. Increased levels of ammonia were recently detected in the interstitial fluid of various tumours, substantiating that high ammonia concentrations are a pathophysiological condition in the tumour microenvironment, alongside hypoxia and acidosis. Since little is known about how cancer cells respond to elevated levels of ammonia in the tumour microenvironment, we investigated how a panel of cancer cell lines derived from solid tumours behaved when exposed to increasing concentrations of ammonia. We found that ammonia represses cell growth, induces genome instability, and inhibits lysosome-mediated proteolysis in a dose-dependent manner. Unexpectedly, we also found that small fluctuations in the pH of the extracellular environment, had a significant impact on the cytotoxic effects of ammonia. In summary, our data show that the balance of pH and ammonia within the interstitial fluids of cancerous tumours significantly impacts the behaviour and fate of cells residing in the tumour microenvironment.
Collapse
Affiliation(s)
- Maria Dravecka
- Cell Signalling and Targeted therapy, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ingvild Mikkola
- Cell Signalling and Targeted therapy, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Johansen
- Autophagy Research Group, Department of Medical Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ole Morten Seternes
- Cell Signalling and Targeted therapy, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jakob Mejlvang
- Cell Signalling and Targeted therapy, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
8
|
Chen YY, Liu CX, Liu HX, Wen SY. The Emerging Roles of Vacuolar-Type ATPase-Dependent Lysosomal Acidification in Cardiovascular Disease. Biomolecules 2025; 15:525. [PMID: 40305271 PMCID: PMC12024769 DOI: 10.3390/biom15040525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/27/2025] [Accepted: 04/01/2025] [Indexed: 05/02/2025] Open
Abstract
The vacuolar-type ATPase (V-ATPase) is a multi-subunit enzyme complex that maintains lysosomal acidification, a critical process for cellular homeostasis. By controlling the pH within lysosomes, V-ATPase contributes to overall cellular homeostasis, helping to maintain a balance between the degradation and synthesis of cellular components. Dysfunction of V-ATPase impairs lysosomal acidification, leading to the accumulation of undigested materials and contributing to various diseases, including cardiovascular diseases (CVDs) like atherosclerosis and myocardial disease. Furthermore, V-ATPase's role in lysosomal function suggests potential therapeutic strategies targeting this enzyme complex to mitigate cardiovascular disease progression. Understanding the mechanisms by which V-ATPase influences cardiovascular pathology is essential for developing novel treatments aimed at improving outcomes in patients with heart and vascular diseases.
Collapse
Affiliation(s)
- Yan-Yan Chen
- School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Cai-Xia Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Hai-Xin Liu
- College of Traditional Chinese Medicine and Food Engineering, Shanxi University of Chinese Medicine, Taiyuan 030024, China; (C.-X.L.); (H.-X.L.)
| | - Shi-Yuan Wen
- College of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
9
|
Chung CY, Singh K, Sheshadri P, Valdebenito GE, Chacko AR, Costa Besada MA, Liang XF, Kabir L, Pitceathly RDS, Szabadkai G, Duchen MR. Inhibition of the PI3K-AKT-MTORC1 axis reduces the burden of the m.3243A>G mtDNA mutation by promoting mitophagy and improving mitochondrial function. Autophagy 2025; 21:881-896. [PMID: 39667405 PMCID: PMC11925111 DOI: 10.1080/15548627.2024.2437908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 11/20/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024] Open
Abstract
Mitochondrial DNA (mtDNA) encodes genes essential for oxidative phosphorylation. The m.3243A>G mutation causes severe disease, including myopathy, lactic acidosis and stroke-like episodes (MELAS) and is the most common pathogenic mtDNA mutation in humans. We have previously shown that the mutation is associated with constitutive activation of the PI3K-AKT-MTORC1 axis. Inhibition of this pathway in patient fibroblasts reduced the mutant load, rescued mitochondrial bioenergetic function and reduced glucose dependence. We have now investigated the mechanisms that select against the mutant mtDNA under these conditions. Basal macroautophagy/autophagy and lysosomal degradation of mitochondria were suppressed in the mutant cells. Pharmacological inhibition of any step of the PI3K-AKT-MTORC1 pathway activated mitophagy and progressively reduced m.3243A>G mutant load over weeks. Inhibition of autophagy with bafilomycin A1 or chloroquine prevented the reduction in mutant load, suggesting that mitophagy was necessary to remove the mutant mtDNA. Inhibition of the pathway was associated with metabolic remodeling - mitochondrial membrane potential and respiratory rate improved even before a measurable fall in mutant load and proved crucial for mitophagy. Thus, maladaptive activation of the PI3K-AKT-MTORC1 axis and impaired autophagy play a major role in shaping the presentation and progression of disease caused by the m.3243A>G mutation. Our findings highlight a potential therapeutic target for this otherwise intractable disease.Abbreviation: ΔΨm: mitochondrial membrane potential; 2DG: 2-deoxy-D-glucose; ANOVA: analysis of variance; ARMS-qPCR: amplification-refractory mutation system quantitative polymerase chain reaction; Baf A1: bafilomycin A1; BSA: bovine serum albumin; CQ: chloroquine; Cybrid: cytoplasmic hybrid; CYCS: cytochrome c, somatic; DCA: dichloroacetic acid; DMEM: Dulbecco's modified Eagle's medium; DMSO: dimethylsulfoxide; EGFP: enhanced green fluorescent protein; LC3B-I: carboxy terminus cleaved microtubule-associated protein 1 light chain 3 beta; LC3B-II: lipidated microtubule-associated protein 1 light chain 3 beta; LY: LY290042; MAP1LC3B/LC3B: microtubule associated protein 1 light chain 3 beta; MELAS: mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes; MFC: mitochondrial fragmentation count; mt-Keima: mitochondrial-targeted mKeima; mtDNA: mitochondrial DNA/mitochondrial genome; MTOR: mechanistic target of rapamycin kinase; MTORC1: MTOR complex 1; OA: oligomycin+antimycin A; OxPhos: oxidative phosphorylation; DPBS: Dulbecco's phosphate-buffered saline; PPARGC1A/PGC-1α: PPARG coactivator 1 alpha; PPARGC1B/PGC-1β: PPARG coactivator 1 beta; PI3K: phosphoinositide 3-kinase; PINK1: PTEN induced kinase 1; qPCR: quantitative polymerase chain reaction; RNA-seq: RNA sequencing; RP: rapamycin; SQSTM1/p62: sequestosome 1; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Chih-Yao Chung
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Kritarth Singh
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Preethi Sheshadri
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Gabriel E Valdebenito
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Anitta R. Chacko
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - María Alicia Costa Besada
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
- Cellular and Molecular Neurobiology of Parkinson’s Disease, Research Center for Molecular Medicine and Chronic Diseases (CIMUS), University of Santiago de Compostela, Spain
| | - Xiao Fei Liang
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Lida Kabir
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| | - Robert D. S. Pitceathly
- Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Queen Square Centre for Neuromuscular Diseases, The National Hospital for Neurology and Neurosurgery, London, UK
| | - Gyorgy Szabadkai
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
- Department of Biomedical Sciences, University of Padua, Padua, Italy
- The Francis Crick Institute, London, UK
| | - Michael R. Duchen
- Department of Cell and Developmental Biology and Consortium for Mitochondrial Research, UCL, London, UK
| |
Collapse
|
10
|
Xu G, Zhang Q, Cheng R, Qu J, Li W. Survival strategies of cancer cells: the role of macropinocytosis in nutrient acquisition, metabolic reprogramming, and therapeutic targeting. Autophagy 2025; 21:693-718. [PMID: 39817564 PMCID: PMC11925119 DOI: 10.1080/15548627.2025.2452149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/27/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
Macropinocytosis is a nonselective form of endocytosis that allows cancer cells to largely take up the extracellular fluid and its contents, including nutrients, growth factors, etc. We first elaborate meticulously on the process of macropinocytosis. Only by thoroughly understanding this entire process can we devise targeted strategies against it. We then focus on the central role of the MTOR (mechanistic target of rapamycin kinase) complex 1 (MTORC1) in regulating macropinocytosis, highlighting its significance as a key signaling hub where various pathways converge to control nutrient uptake and metabolic processes. The article covers a comprehensive analysis of the literature on the molecular mechanisms governing macropinocytosis, including the initiation, maturation, and recycling of macropinosomes, with an emphasis on how these processes are hijacked by cancer cells to sustain their growth. Key discussions include the potential therapeutic strategies targeting macropinocytosis, such as enhancing drug delivery via this pathway, inhibiting macropinocytosis to starve cancer cells, blocking the degradation and recycling of macropinosomes, and inducing methuosis - a form of cell death triggered by excessive macropinocytosis. Targeting macropinocytosis represents a novel and innovative approach that could significantly advance the treatment of cancers that rely on this pathway for survival. Through continuous research and innovation, we look forward to developing more effective and safer anti-cancer therapies that will bring new hope to patients.Abbreviation: AMPK: AMP-activated protein kinase; ASOs: antisense oligonucleotides; CAD: carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase; DC: dendritic cell; EGF: epidermal growth factor; EGFR: epidermal growth factor receptor; ERBB2: erb-b2 receptor tyrosine kinase 2; ESCRT: endosomal sorting complex required for transport; GAP: GTPase-activating protein; GEF: guanine nucleotide exchange factor; GRB2: growth factor receptor bound protein 2; LPP: lipopolyplex; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; NSCLC: non-small cell lung cancer; PADC: pancreatic ductal adenocarcinoma; PDPK1: 3-phosphoinositide dependent protein kinase 1; PI3K: phosphoinositide 3-kinase; PIK3C3: phosphatidylinositol 3-kinase catalytic subunit type 3; PtdIns(3,4,5)P3: phosphatidylinositol-(3,4,5)-trisphosphate; PtdIns(4,5)P2: phosphatidylinositol-(4,5)-bisphosphate; PTT: photothermal therapies; RAC1: Rac family small GTPase 1; RPS6: ribosomal protein S6; RPS6KB1: ribosomal protein S6 kinase B1; RTKs: receptor tyrosine kinases; SREBF: sterol regulatory element binding transcription factor; TFEB: transcription factor EB; TNBC: triple-negative breast cancer; TSC2: TSC complex subunit 2; ULK1: unc-51 like autophagy activating kinase 1; UPS: ubiquitin-proteasome system.
Collapse
Affiliation(s)
- Guoshuai Xu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Qinghong Zhang
- Emergency Department, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Renjia Cheng
- Department of Intensive Care Medicine, The General Hospital of the Northern Theater Command of the People’s Liberation Army of China, Shenyang, Liaoning, China
| | - Jun Qu
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| | - Wenqiang Li
- Department of General Surgery, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
11
|
Winkley SR, Kane PM. The ROGDI protein mutated in Kohlschutter-Tonz syndrome is a novel subunit of the Rabconnectin-3 complex implicated in V-ATPase assembly. J Biol Chem 2025; 301:108381. [PMID: 40049412 PMCID: PMC11997317 DOI: 10.1016/j.jbc.2025.108381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 02/11/2025] [Accepted: 03/01/2025] [Indexed: 04/01/2025] Open
Abstract
V-ATPases are highly conserved ATP-driven rotary proton pumps found widely among eukaryotes that are composed of two subcomplexes: V1 and V0. V-ATPase activity is regulated in part through reversible disassembly, during which V1 physically separates from V0 and both subcomplexes become inactive. Reassociation of V1 to V0 reactivates the complex for ATP-driven proton pumping and organelle acidification. V-ATPase reassembly in Saccharomyces cerevisiae requires the RAVE complex (Rav1, Rav2, and Skp1), and higher eukaryotes, including humans, utilize the Rabconnectin-3 complex. Mammalian Rabconnectin-3 has two subunits: Rabconnectin-3α and Rabconnectin-3β. Rabconnectin-3α isoforms are homologous to Rav1, but there is no known Rav2 homolog, and the molecular basis of the interaction between the Rabconnectin-3α and β subunits is unknown. We identified ROGDI as a Rav2 homolog and novel Rabconnectin-3 subunit. ROGDI mutations cause Kohlschutter-Tonz syndrome, an epileptic encephalopathy with amelogenesis imperfecta that has parallels to V-ATPase-related disease. ROGDI shares extensive structural homology with yeast Rav2 and can functionally replace Rav2 in yeast. ROGDI binds to the N-terminal domains of both Rabconnectin-3 α and β, similar to Rav2 binding to Rav1. Molecular modeling suggests that ROGDI may bridge the two Rabconnectin-3 subunits. ROGDI coimmunoprecipitates with Rabconnectin-3 subunits from detergent-solubilized lysates and is present with them in immunopurified lysosomes of mammalian cells. In immunofluorescence microscopy, ROGDI partially localizes with Rabconnectin-3α in acidic perinuclear lysosomes. The discovery of ROGDI as a novel Rabconnectin-3 interactor sheds new light on both Kohlschutter-Tonz syndrome and the mechanisms behind mammalian V-ATPase regulation.
Collapse
Affiliation(s)
- Samuel R Winkley
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
12
|
Das S, Murumulla L, Ghosh P, Challa S. Heavy metal-induced disruption of the autophagy-lysosomal pathway: implications for aging and neurodegenerative disorders. Biometals 2025; 38:371-417. [PMID: 39960543 DOI: 10.1007/s10534-025-00665-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 01/19/2025] [Indexed: 04/03/2025]
Abstract
Heavy metals such as lead, mercury, cadmium, magnesium, manganese, arsenic, copper pose considerable threats to neuronal health and are increasingly recognized as factors contributing to aging-related neurodegeneration. Exposure to these environmental toxins disrupts cellular homeostasis, resulting in oxidative stress and compromising critical cellular processes, particularly the autophagy-lysosomal pathway. This pathway is vital for preserving cellular integrity by breaking down damaged proteins and organelles; however, toxicity from heavy metals can hinder this function, leading to the buildup of harmful substances, inflammation, and increased neuronal injury. As individuals age, the consequences of neurodegeneration become more significant, raising the likelihood of developing disorders like Alzheimer's and Parkinson's disease. This review explores the intricate relationship between heavy metal exposure, dysfunction of the autophagy-lysosomal pathway, and aging-related neurodegeneration, emphasizing the urgent need for a comprehensive understanding of these mechanisms. The insights gained from this analysis are crucial for creating targeted therapeutic approaches aimed at alleviating the harmful effects of heavy metals on neuronal health and improving cellular resilience in aging populations.
Collapse
Affiliation(s)
- Shrabani Das
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Lokesh Murumulla
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Pritha Ghosh
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India
| | - Suresh Challa
- Cell Biology Division, National Institute of Nutrition, Indian Council of Medical Research (ICMR), Hyderabad, Hyderabad, Telangana, 500007, India.
| |
Collapse
|
13
|
Mao S, Yang M, Liu H, Wang S, Liu M, Hu S, Liu B, Ju H, Liu Z, Huang M, He S, Cheng M, Wu G. Serinc2 antagonizes pressure overload-induced cardiac hypertrophy via regulating the amino acid/mTORC1 signaling pathway. Biochim Biophys Acta Mol Basis Dis 2025; 1871:167650. [PMID: 39756712 DOI: 10.1016/j.bbadis.2024.167650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 12/04/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND Cardiac hypertrophy is characterized by the upregulation of fetal genes, increased protein synthesis, and enlargement of cardiac myocytes. The mechanistic target of rapamycin complex 1 (mTORC1), which responds to fluctuations in cellular nutrient and energy levels, plays a pivotal role in regulating protein synthesis and cellular growth. While attempts to inhibit mTORC1 activity, such as through the application of rapamycin and its analogs, have demonstrated limited efficacy, further investigation is warranted. METHODS AND RESULTS Here, we show that Serinc2 expression is downregulated in the transverse aortic constriction (TAC)-induced hypertrophic myocardium. Both in vivo and in vitro, the reduction of Serinc2 expression results in pathological hypertrophic growth, whereas Serinc2 overexpression exhibits a protective effect. RNA sequencing analysis following Serinc2 knockdown reveals a transcriptomic shift toward a pro-hypertrophic profile and suggests a significant interplay between Serinc2, amino acid, mTOR, and the lysosome, a hub for mTOR activation. Moreover, we show that Serinc2 localizes to lysosomes and hinders mTORC1 recruitment to the lysosomal membrane in response to amino acid stimulation, playing a critical role in regulating amino acid signaling pathway involved in the activation of p70S6K, S6, and 4EBP1 in Hela cells. And its deficiency exacerbates mTORC1 activity and mTORC1-dependent subsequent protein synthesis, which can be abrogated by rapamycin. In line with our in vitro findings, Serinc2 knockout mice subjected to TAC surgery exhibit elevated phosphorylation of p70S6K and 4EBP1, while inhibition of mTORC1 signaling through amino acid deprivation prevents this activation and impedes the progression to pathological cardiac remodeling. CONCLUSIONS We have illustrated that Serinc2 localizes to the lysosomal membrane and modulates amino acid /mTORC1 signaling in cardiomyocytes. Serinc2 therefore presents a potential therapeutic target for mitigating excessive protein synthesis and improving heart failure under hemodynamic stress.
Collapse
Affiliation(s)
- Shuai Mao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Manqi Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Huimin Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Shun Wang
- Department of Cardiology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430060, China; Institute of Myocardial injury and Repair, Wuhan University, Wuhan, Hubei 430060, China
| | - Man Liu
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Shan Hu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Beilei Liu
- Department of Cardiology, Hubei Provincial Hospital of Traditional Chinese Medicine, Affiliated Hospital of Hubei University of Traditional Chinese Medicine, Wuhan, Hubei 430060, China
| | - Hao Ju
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Zheyu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Min Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Shuijing He
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China
| | - Mian Cheng
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China.
| | - Gang Wu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute, Wuhan University, Wuhan 430060, China; Hubei Key Laboratory of Cardiology, Wuhan 430060, China.
| |
Collapse
|
14
|
Li B, Tan Y, Lei JH, Deng M, Yu X, Wang X, Lei LM, He L, Deng C, Dai Y. Alkaline Adjuvant Regulates Proteolytic Activity of Macrophages for Antigen Cross-Presentation and Potentiates Radioimmunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416690. [PMID: 39935046 PMCID: PMC11938008 DOI: 10.1002/adma.202416690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 01/20/2025] [Indexed: 02/13/2025]
Abstract
Failures of radiotherapy (RT) in adaptive antitumor immunomodulation often associate with recruited tissue-repairing macrophages. Although training these macrophages to phagocytose post-RT cancer cells reverses their protumoral performance, engulfed tumor antigens are severely underrated. In fact, regulating the processing and presentation of tumor antigens, a key determinant of tumor immunogenicity, can fundamentally affect adaptive immune responses. Here it is reported that a simple Alum-like adjuvant (MgAl-based hydrotalcite, bLDH) improves radioimmunotherapy via inducing antigen cross-presentation by macrophages, independent of phenotypes. It is identified that cytidine monophosphate guanosine oligodeoxynucleotide engenders macrophages to phagocytose irradiated cancer cells. However, as semiprofessional antigen-presenting cells, macrophages possess powerful proteolytic function that is detrimental to antigen presentation. The administration of alkaline bLDH intriguingly relieves the activity of phagolysosomal proteases with acidic pH optima by preventing phagosomal acidification resulting from the vacuolar-type ATPase proton pump. The adjuvant-modulated phagolysosomes thus limit antigen degradation and enhance tumor antigen cross-presentation over tenfold. To examine from an in vivo breast tumor model, trained macrophages successfully cross-prime antigen-specific CD8+ T cells and curb RT-associated metastasis. The findings propose to pay close attention to the effect of adjuvants on precision immunotherapy and highlight the positive contribution of cross-presenting macrophages in radioimmunotherapy.
Collapse
Affiliation(s)
- Bei Li
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yan Tan
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Josh Haipeng Lei
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Min Deng
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Xinwang Yu
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Xinyi Wang
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Lek Man Lei
- Department of Electromechanical EngineeringFaculty of Science and TechnologyUniversity of MacauMacau SAR999078China
| | - Lin He
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Chu‐Xia Deng
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| | - Yunlu Dai
- Cancer Centre and Institute of Translational MedicineFaculty of Health SciencesUniversity of MacauMacau SAR999078China
- MoE Frontiers Science Center for Precision OncologyUniversity of MacauMacau SAR999078China
| |
Collapse
|
15
|
Huang Y, Lu H, Liu Y, Wang J, Xia Q, Shi X, Jin Y, Liang X, Wang W, Ma X, Wang Y, Gong M, Li C, Cang C, Cui Q, Chen C, Shen T, Liu L, Wang X. Micropeptide hSPAR regulates glutamine levels and suppresses mammary tumor growth via a TRIM21-P27KIP1-mTOR axis. EMBO J 2025; 44:1414-1441. [PMID: 39875724 PMCID: PMC11876615 DOI: 10.1038/s44318-024-00359-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025] Open
Abstract
mTOR plays a pivotal role in cancer growth control upon amino acid response. Recently, CDK inhibitor P27KIP1 has been reported as a noncanonical inhibitor of mTOR signaling in MEFs, via unclear mechanisms. Here, we find that P27KIP1 degradation via E3 ligase TRIM21 is inhibited by human micropeptide hSPAR through its C-terminus (hSPAR-C), causing P27KIP1's cytoplasmic accumulation in breast cancer cells. Furthermore, hSPAR/hSPAR-C also serves as an inhibitor of glutamine transporter SLC38A2 expression and thereby decreases the cellular glutamine levels specifically in cancer cells. The resultant glutamine deprivation sequentially triggers translocation of cytoplasmic P27KIP1 to lysosomes, where P27KIP1 disrupts the Ragulator complex and suppresses mTORC1 assembly. Administration of hSPAR or hSPAR-C significantly impedes breast cancer cell proliferation and tumor growth in xenograft models. These findings define hSPAR as an intrinsic control factor for cellular glutamine levels and as a novel tumor suppressor inhibiting mTORC1 assembly.
Collapse
Affiliation(s)
- Yan Huang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Hua Lu
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yao Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jiabei Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qingan Xia
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, Hebei, China
| | - Xiangmin Shi
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Yan Jin
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaolin Liang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Wei Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Xiaopeng Ma
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yangyi Wang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Meng Gong
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China
| | - Canjun Li
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Chunlei Cang
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Qinghua Cui
- School of Sports Medicine, Wuhan Institute of Physical Education, Wuhan, Hubei, China
- Department of Biomedical Informatics, Centre for Noncoding RNA Medicine, State Key Laboratory of Vascular Homeostasis and Remodeling, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ceshi Chen
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Academy of Biomedical Engineering, Kunming Medical University, Kunming, Yunnan, China
- Yunnan Key Laboratory of Breast Cancer Precision Medicine, Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University, Peking University Cancer Hospital Yunnan, Kunming, Yunnan, China
| | - Tao Shen
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Metabolic Diseases, Anhui Provincial Engineering Research Centre for Molecular Detection and Diagnostics, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.
| | - Lianxin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
| | - Xiangting Wang
- Department of Geriatrics, Gerontology Institute of Anhui Province, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei, Anhui, China.
| |
Collapse
|
16
|
Diesendorf V, La Rocca V, Teutsch M, Alattar H, Obernolte H, Kenst K, Seibel J, Wörsdörfer P, Sewald K, Steinke M, Schneider-Schaulies S, Lutz MB, Bodem J. AMPK Activation Downregulates TXNIP, Rab5, and Rab7 Within Minutes, Thereby Inhibiting the Endocytosis-Mediated Entry of Human Pathogenic Viruses. Cells 2025; 14:334. [PMID: 40072063 PMCID: PMC11899703 DOI: 10.3390/cells14050334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Cellular metabolism must adapt rapidly to environmental alterations and adjust nutrient uptake. Low glucose availability activates the AMP-dependent kinase (AMPK) pathway. We demonstrate that activation of AMPK or the downstream Unc-51-like autophagy-activating kinase (ULK1) inhibits receptor-mediated endocytosis. Beyond limiting dextran uptake, this activation prevents endocytic uptake of human pathogenic enveloped and non-enveloped, positive- and negative-stranded RNA viruses, such as yellow fever, dengue, tick-borne encephalitis, chikungunya, polio, rubella, rabies lyssavirus, and SARS-CoV-2, not only in mammalian and insect cells but also in precision-cut lung slices and neuronal organoids. ULK1 activation inhibited enveloped viruses but not EV71. However, receptor presentation at the cytoplasmic membrane remained unaffected, indicating that receptor binding was unchanged, while later stages of endocytosis were targeted via two distinct pathways. Drug-induced activation of the AMPK pathway reduced early endocytic factor TXNIP by suppressing translation. In contrast, the amounts of Rab5 and the late endosomal marker Rab7 decreased due to translation inactivation and ULK1-dependent proteasome activation within minutes. Furthermore, activation of AMPK hindered the late replication steps of SARS-CoV-2 by reducing viral RNAs and proteins and the endo-lysosomal markers LAMP1 and GRP78, suggesting a reduction in early and late endosomes and lysosomes. Inhibition of the PI3K and mTORC2 pathways, which sense amino acid and growth factor availability, promotes AMPK activity and blocks viral entry. Our results indicate that AMPK and ULK1 emerge as restriction factors of cellular endocytosis, impeding the receptor-mediated endocytic entry of enveloped and non-enveloped RNA viruses.
Collapse
Affiliation(s)
- Viktoria Diesendorf
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
| | - Veronica La Rocca
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
- Fondazione Human Technopole–Viale Rita Levi-Montalcini, 1–Area MIND, 20157 Milano, Italy
| | - Michelle Teutsch
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
| | - Haisam Alattar
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Helena Obernolte
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), 30625 Hannover, Germany; (H.O.); (K.S.)
| | - Kornelia Kenst
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, 97070 Würzburg, Germany; (K.K.); (P.W.)
| | - Jens Seibel
- Bayer Vital GmbH, Medical Affairs Consumer Health Analgesics, Cough & Cold, 51368 Leverkusen, Germany;
| | - Philipp Wörsdörfer
- Institute of Anatomy and Cell Biology, Koellikerstraße 6, 97070 Würzburg, Germany; (K.K.); (P.W.)
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine ITEM, Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), 30625 Hannover, Germany; (H.O.); (K.S.)
| | - Maria Steinke
- Fraunhofer Institute for Silicate Research ISC, Röntgenring 12, 97070 Würzburg, Germany;
- Department of Oto-Rhino-Laryngology, Plastic, Aesthetic and Reconstructive Head and Neck Surgery, University Hospital Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany
| | - Sibylle Schneider-Schaulies
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
| | - Manfred B. Lutz
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
| | - Jochen Bodem
- Institute of Virology and Immunobiology, University of Würzburg, Versbacher Str. 7, 97078 Würzburg, Germany; (V.D.); (V.L.R.); (M.T.); (H.A.); (S.S.-S.); (M.B.L.)
| |
Collapse
|
17
|
Wright EB, Larsen EG, Padilla-Rodriguez M, Langlais PR, Bhattacharya MRC. Neuronal endolysosomal acidification relies on interactions between transmembrane protein 184B (TMEM184B) and the vesicular proton pump. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.635992. [PMID: 39975166 PMCID: PMC11838497 DOI: 10.1101/2025.02.01.635992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Disruption of endolysosomal acidification is a hallmark of several neurodevelopmental and neurodegenerative disorders. Impaired acidification causes accumulation of toxic protein aggregates and disrupts neuronal homeostasis, yet the molecular mechanisms regulating endolysosomal pH in neurons remain poorly understood. A critical regulator of lumenal acidification is the vacuolar ATPase (V-ATPase), a proton pump whose activity depends on dynamic assembly of its V0 and V1 subdomains. In this study, we identify transmembrane protein 184B (TMEM184B) as a novel regulator of endolysosomal acidification in neurons. TMEM184B is an evolutionarily conserved 7-pass transmembrane protein required for synaptic structure and function, and sequence variation in TMEM184B causes neurodevelopmental disorders, but the mechanism for this effect is unknown. We performed proteomic analysis of TMEM184B-interacting proteins and identified enrichment of components involved in endosomal trafficking and function, including the V-ATPase. TMEM184B localizes to early and late endosomes, further supporting a role in the endosomal system. Loss of TMEM184B results in significant reductions in endolysosomal acidification within cultured mouse cortical neurons. This alteration in pH is associated with impaired assembly of the V-ATPase V0 and V1 subcomplexes in the TMEM184B mutant mouse brain, suggesting a mechanism by which TMEM184B promotes flux through the endosomal pathway. Overall, these findings identify a new contributor in maintaining endosomal function and provide a mechanistic basis for disrupted neuronal function in human TMEM184B-associated nervous system disorders. Significance Statement Endolysosomal acidification is essential for neuronal protein homeostasis, yet its regulation in neurons remains poorly understood. Here, we identify TMEM184B as a key regulator of this process, establishing its first known cellular role. We show that TMEM184B interacts with vacuolar ATPase (V-ATPase) components and promotes the assembly of its V0 and V1 subdomains, facilitating lumenal acidification. Loss of TMEM184B disrupts endolysosomal pH in neurons, potentially impairing proteostasis. These findings reveal a critical function for TMEM184B in neuronal maintenance and provide mechanistic insight into its link to neurological disorders. This work advances our understanding of endolysosomal regulation and suggests TMEM184B regulation could improve outcomes in diseases involving lysosomal dysfunction.
Collapse
|
18
|
Savy C, Bourgoin M, Cluzeau T, Jacquel A, Robert G, Auberger P. VEXAS, Chediak-Higashi syndrome and Danon disease: myeloid cell endo-lysosomal pathway dysfunction as a common denominator? Cell Mol Biol Lett 2025; 30:12. [PMID: 39865233 PMCID: PMC11765923 DOI: 10.1186/s11658-025-00691-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
Vacuolization of hematopoietic precursors cells is a common future of several otherwise non-related clinical settings such as VEXAS, Chediak-Higashi syndrome and Danon disease. Although these disorders have a priori nothing to do with one other from a clinical point of view, all share abnormal vacuolization in different cell types including cells of the erythroid/myeloid lineage that is likely the consequence of moderate to drastic dysfunctions in the ubiquitin proteasome system and/or the endo-lysosomal pathway. Indeed, the genes affected in these three diseases UBA1, LYST or LAMP2 are known to be direct or indirect regulators of lysosome trafficking and function and/or of different modes of autophagy. Furthermore, all three genes are highly expressed in the more mature myeloid cells pointing out their likely important function in these cells. LAMP2 deficiency for instance is known to be associated with alterations of lysosome architecture and function. It is thus well established that different cell types from Danon disease patients that harbor invalidating mutations in LAMP2 exhibit giant lysosomes containing undigested materials characteristic of defects in the fusion of lysosomes with autophagosomes, a feature also found in VEXAS and CHS. Other similarities regarding these three diseases include granulocyte and monocyte dysfunctions and a recurrent inflammatory climate. In the present review we discuss the possibility that some common clinical manifestations of these diseases, notably the hematopoietic ones are consecutive to a dysfunction of the endo-lysosomal pathway in myeloid/erythroid progenitors and in mature myeloid cells including neutrophiles, monocytes and macrophages. Finally, we propose reacidification as a way of reinducing lysosome functionalities and autophagy as a potential approach for a better management of these diseases.
Collapse
Affiliation(s)
- Coline Savy
- University Cote d'Azur, Inserm, C3M, Nice, France
| | | | - Thomas Cluzeau
- University Cote d'Azur, Inserm, C3M, Nice, France
- Clinical Hematology Department, Centre Hospitalier Universitaire, Nice, France
| | | | | | | |
Collapse
|
19
|
Knight K, Park JB, Oot RA, Khan MM, Roh SH, Wilkens S. Monoclonal nanobodies alter the activity and assembly of the yeast vacuolar H +-ATPase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.10.632502. [PMID: 39829782 PMCID: PMC11741422 DOI: 10.1101/2025.01.10.632502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The vacuolar ATPase (V-ATPase; V1Vo) is a multi-subunit rotary nanomotor proton pump that acidifies organelles in virtually all eukaryotic cells, and extracellular spaces in some specialized tissues of higher organisms. Evidence suggests that metastatic breast cancers mislocalize V-ATPase to the plasma membrane to promote cell survival and facilitate metastasis, making the V-ATPase a potential drug target. We have generated a library of camelid single-domain antibodies (Nanobodies; Nbs) against lipid-nanodisc reconstituted yeast V-ATPase Vo proton channel subcomplex. Here, we present an in-depth characterization of three anti-Vo Nbs using biochemical and biophysical in vitro experiments. We find that the Nbs bind Vo with high affinity, with one Nb inhibiting holoenzyme activity and another one preventing enzyme assembly. Using cryoEM, we find that two of the Nbs bind the c subunit ring of the Vo on the lumen side of the complex. Additionally, we show that one of the Nbs raised against yeast Vo can pull down human V-ATPase (HsV1Vo). Our research demonstrates Nb versatility to target and modulate the activity of the V-ATPase, and highlights the potential for future therapeutic Nb development.
Collapse
Affiliation(s)
- Kassidy Knight
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Jun Bae Park
- Department of Biological Sciences, Seoul National University, Seoul, Korea
- Present address: Department of Cancer Biology, Lerner research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Rebecca A. Oot
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Md. Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
- Present address: Howard Hughes Medical Institute, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Soung-Hun Roh
- Department of Biological Sciences, Seoul National University, Seoul, Korea
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
20
|
Yilmaz S, Cizmecioglu O. PI3K Signaling at the Crossroads of Lipid Metabolism and Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1479:139-164. [PMID: 39616584 DOI: 10.1007/5584_2024_832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
The proto-oncogenic PI3K pathway is crucial for the integration of growth factor signaling and metabolic pathways to facilitate the coordination for cell growth. Since transformed cells have the ability to upregulate their anabolic pathways and selectively modulate a subset of metabolites functioning as anti- or pro-tumorigenic signal mediators, the question of how the levels of these metabolites are regulated has also become the center of attention for cancer researchers. Apart from its well-defined roles in glucose metabolism and peptide anabolism, the PI3K pathway appears to be a significant regulator of lipid metabolism and a potentiator of proto-oncogenic bioactive lipid metabolite signaling. In this review, we aim to describe the crosstalk between the PI3K pathway and bioactive lipid species of the three main lipid classes.
Collapse
Affiliation(s)
- Sevval Yilmaz
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Onur Cizmecioglu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey.
| |
Collapse
|
21
|
Hashmi F, Kane PM. V-ATPase Disassembly at the Yeast Lysosome-Like Vacuole Is a Phenotypic Driver of Lysosome Dysfunction in Replicative Aging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604825. [PMID: 39091794 PMCID: PMC11291124 DOI: 10.1101/2024.07.23.604825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Declines in lysosomal acidification and function with aging are observed in organisms ranging from yeast to humans. V-ATPases play a central role in organelle acidification and V-ATPase activity is regulated by reversible disassembly in many different settings. Using the yeast Saccharomyces cerevisiae as a replicative aging model, we demonstrate that V-ATPases disassemble into their V1 and V0 subcomplexes in aging cells, with release of V1 subunit C (Vma5) from the lysosome-like vacuole into the cytosol. Disassembly is observed after ≥5 cell divisions and results in overall vacuole alkalinization. Caloric restriction, an established mechanism for reversing many age-related outcomes, prevents V-ATPase disassembly in older cells and preserves vacuolar pH homeostasis. Reversible disassembly is controlled in part by the activity of two opposing and conserved factors, the RAVE complex and Oxr1. The RAVE complex promotes V-ATPase assembly and a rav1Δ mutant shortens replicative lifespan; Oxr1 promotes disassembly and an oxr1Δ mutation extends lifespan. Importantly, the level of Rav2, a subunit of the RAVE complex, declines in aged cells, and Rav2 overexpression delays V-ATPase disassembly with age. These data indicate that reduced V-ATPase assembly contributes to the loss of lysosome acidification with age, which affects replicative lifespan.
Collapse
Affiliation(s)
- Fiza Hashmi
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY USA
| | - Patricia M Kane
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY USA
| |
Collapse
|
22
|
Evans LMP, Gawron J, Sim FJ, Feltri ML, Marziali LN. Human iPSC-derived myelinating organoids and globoid cells to study Krabbe disease. PLoS One 2024; 19:e0314858. [PMID: 39636943 PMCID: PMC11620608 DOI: 10.1371/journal.pone.0314858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 11/18/2024] [Indexed: 12/07/2024] Open
Abstract
Krabbe disease (Kd) is a lysosomal storage disorder (LSD) caused by the deficiency of the lysosomal galactosylceramidase (GALC) which cleaves the myelin enriched lipid galactosylceramide (GalCer). Accumulated GalCer is catabolized into the cytotoxic lipid psychosine that causes myelinating cells death and demyelination which recruits microglia/macrophages that fail to digest myelin debris and become globoid cells. Here, to understand the pathological mechanisms of Kd, we used induced pluripotent stem cells (iPSCs) from Kd patients to produce myelinating organoids and microglia. We show that Kd organoids have no obvious defects in neurogenesis, astrogenesis, and oligodendrogenesis but manifest early myelination defects. Specifically, Kd organoids showed shorter but a similar number of myelin internodes than Controls at the peak of myelination and a reduced number and shorter internodes at a later time point. Interestingly, myelin is affected in the absence of autophagy and mTOR pathway dysregulation, suggesting lack of lysosomal dysfunction which makes this organoid model a very valuable tool to study the early events that drive demyelination in Kd. Kd iPSC-derived microglia show a marginal rate of globoid cell formation under normal culture conditions that is drastically increased upon GalCer feeding. Under normal culture conditions, Kd microglia show a minor LAMP1 content decrease and a slight increase in the autophagy protein LC3B. Upon GalCer feeding, Kd cells show accumulation of autophagy proteins and strong LAMP1 reduction that at a later time point are reverted showing the compensatory capabilities of globoid cells. Altogether, this supports the value of our cultures as tools to study the mechanisms that drive globoid cell formation and the compensatory mechanism in play to overcome GalCer accumulation in Kd.
Collapse
Affiliation(s)
- Lisa Marie P. Evans
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Joseph Gawron
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - Fraser J. Sim
- Department of Pharmacology and Toxicology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| | - M. Laura Feltri
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
- Biometra Department and IRCcs Carlo Besta, Università degli Studi di Milano, Milano, Italy
| | - Leandro N. Marziali
- Departments of Biochemistry and Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, New York, United States of America
| |
Collapse
|
23
|
Sun L, Wei S, Wang C, Zhang Y, Zan X, Li L, Zhang C. Procyanidin capsules provide a new option for long-term ROS scavenging in chronic inflammatory diseases. Mater Today Bio 2024; 29:101310. [PMID: 39534678 PMCID: PMC11554635 DOI: 10.1016/j.mtbio.2024.101310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/13/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Chronic inflammatory diseases such as diabetic wounds and osteoarthritis are significant threats to human health. Failure to scavenge longstanding excessive reactive oxygen species (ROS) is an important cause of chronic inflammatory diseases, yet existing treatments that provide long-lasting therapeutic effects are limited. Here, procyanidin capsules were synthesized in a simple one-step way using calcium carbonate as a template. The biosafety of procyanidin capsules in vitro and in vivo was monitored by cytotoxicity and pathological sections. The therapeutic effect of procyanidin capsules in diabetic wounds and osteoarthritis was accessed by pathological evaluation combined with the quantification of inflammatory markers. The data showed that procyanidin capsules could long-term scavenge excessive ROS and effectively promote articular cartilage repair in osteoarthritis, accelerating diabetic wound healing. Lastly, transcriptome analysis suggested that procyanidin capsules commonly regulated adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) signaling in diabetic wounds and osteoarthritis. This study provides a straightforward protocol for creating procyanidin capsules, while presenting a promising new therapeutic option for long-term scavenging ROS in chronic inflammatory diseases.
Collapse
Affiliation(s)
- Linxiao Sun
- Department of Laboratory, Guizhou Provincial People's Hospital, Guiyang, Guizhou, 550002, China
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shaoyin Wei
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Chenglong Wang
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Yipiao Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, No. 18, Chaowang Road, Gongshu District, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, China
- Zhejiang Provincial Key Laboratory of TCM for Innovative R&D and Digital Intelligent Manufacturing of TCM Great Health Products, Huzhou, 313200, China
| | - Xingjie Zan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325001, Zhejiang, China
| | - Lianxin Li
- Department of Orthopaedics Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Chunwu Zhang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| |
Collapse
|
24
|
Song C, Huang W, Zhang P, Shi J, Yu T, Wang J, Hu Y, Zhao L, Zhang R, Wang G, Zhang Y, Chen H, Wang H. Critical role of ROCK1 in AD pathogenesis via controlling lysosomal biogenesis and acidification. Transl Neurodegener 2024; 13:54. [PMID: 39497162 PMCID: PMC11533276 DOI: 10.1186/s40035-024-00442-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 09/11/2024] [Indexed: 11/06/2024] Open
Abstract
BACKGROUND Lysosomal homeostasis and functions are essential for the survival of neural cells. Impaired lysosomal biogenesis and acidification in Alzheimer's disease (AD) pathogenesis leads to proteolytic dysfunction and neurodegeneration. However, the key regulatory factors and mechanisms of lysosomal homeostasis in AD remain poorly understood. METHODS ROCK1 expression and its co-localization with LAMP1 and SQSTM1/p62 were detected in post-mortem brains of healthy controls and AD patients. Lysosome-related fluorescence probe staining, transmission electron microscopy and immunoblotting were performed to evaluate the role of ROCK1 in lysosomal biogenesis and acidification in various neural cell types. The interaction between ROCK1 and TFEB was confirmed by surface plasmon resonance and in situ proximity ligation assay (PLA). Moreover, we performed AAV-mediated ROCK1 downregulation followed by immunofluorescence, enzyme-linked immunosorbent assay (ELISA) and behavioral tests to unveil the effects of the ROCK1-TFEB axis on lysosomes in APP/PS1 transgenic mice. RESULTS ROCK1 level was significantly increased in the brains of AD individuals, and was positively correlated with lysosomal markers and Aβ. Lysosomal proteolysis was largely impaired by the high abundance of ROCK1, while ROCK1 knockdown mitigated the lysosomal dysfunction in neurons and microglia. Moreover, we verified ROCK1 as a previously unknown upstream kinase of TFEB independent of m-TOR or GSK-3β. ROCK1 elevation resulted in abundant extracellular Aβ deposition which in turn bound to Aβ receptors and activated RhoA/ROCK1, thus forming a vicious circle of AD pathogenesis. Genetically downregulating ROCK1 lowered its interference with TFEB, promoted TFEB nuclear distribution, lysosomal biogenesis and lysosome-mediated Aβ clearance, and eventually prevented pathological traits and cognitive deficits in APP/PS1 mice. CONCLUSION In summary, our results provide a mechanistic insight into the critical role of ROCK1 in lysosomal regulation and Aβ clearance in AD by acting as a novel upstream serine kinase of TFEB.
Collapse
Affiliation(s)
- Chenghuan Song
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wanying Huang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Pingao Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiyun Shi
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Yu
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jing Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yongbo Hu
- Department of Neurology, Chang-Hai Hospital, The Second Military Medical University, Shanghai, 200433, China
| | - Lanxue Zhao
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rui Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Gang Wang
- Department of Neurology and Neuroscience Institute, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongfang Zhang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hongzhuan Chen
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Shuguang Lab of Future Health, Shanghai Frontiers Science Center of TCM Chemical Biology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Hao Wang
- Department of Pharmacology and Chemical Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
25
|
Zhang H, Liu J, Yuan W, Zhang Q, Luo X, Li Y, Peng Y, Feng J, Liu X, Chen J, Zhou Y, Lv J, Zhou N, Ma J, Tang K, Huang B. Ammonia-induced lysosomal and mitochondrial damage causes cell death of effector CD8 + T cells. Nat Cell Biol 2024; 26:1892-1902. [PMID: 39261719 DOI: 10.1038/s41556-024-01503-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 08/15/2024] [Indexed: 09/13/2024]
Abstract
Ammonia is thought to be a cytotoxin and its increase in the blood impairs cell function. However, whether and how this toxin triggers cell death under pathophysiological conditions remains unclear. Here we show that ammonia induces a distinct form of cell death in effector T cells. We found that rapidly proliferating T cells use glutaminolysis to release ammonia in the mitochondria, which is then translocated to and stored in the lysosomes. Excessive ammonia accumulation increases lysosomal pH and results in the termination of lysosomal ammonia storage and ammonia reflux into mitochondria, leading to mitochondrial damage and cell death, which is characterized by lysosomal alkalization, mitochondrial swelling and impaired autophagic flux. Inhibition of glutaminolysis or blocking lysosomal alkalization prevents ammonia-induced T cell death and improves T cell-based antitumour immunotherapy. These findings identify a distinct form of cell death that differs from previously known mechanisms.
Collapse
Affiliation(s)
- Huafeng Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
| | - Jincheng Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Wu Yuan
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qian Zhang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Luo
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yonggang Li
- Hubei Provincial Key Laboratory for Applied Toxicology, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Yue'e Peng
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jingyu Feng
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyu Liu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Chen
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yabo Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jiadi Lv
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nannan Zhou
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jingwei Ma
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ke Tang
- Cell Architecture Research Center, Huazhong University of Science and Technology, Wuhan, China
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Huang
- Department of Immunology and National Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
- Department of Biochemistry and Molecular Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
26
|
Chen X, Su Q, Gong R, Ling X, Xu R, Feng Q, Ke J, Liu M, Kahaerjiang G, Liu Y, Yang Y, Jiang Z, Wu H, Qi Y. LC3-associated phagocytosis and human diseases: Insights from mechanisms to therapeutic potential. FASEB J 2024; 38:e70130. [PMID: 39446073 DOI: 10.1096/fj.202402126r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
LC3-associated phagocytosis (LAP) is a distinct type of autophagy that involves the sequestration of extracellular material by phagocytes. Beyond the removal of dead cells and cellular debris from eukaryotic cells, LAP is also involved in the removal of a variety of pathogens, including bacteria, fungi, and viruses. These events are integral to multiple physiological and pathological processes, such as host defense, inflammation, and tissue homeostasis. Dysregulation of LAP has been associated with the pathogenesis of several human diseases, including infectious diseases, autoimmune diseases, and neurodegenerative diseases. Thus, understanding the molecular mechanisms underlying LAP and its involvement in human diseases may provide new insights into the development of novel therapeutic strategies for these conditions. In this review, we summarize and highlight the current consensus on the role of LAP and its biological functions in disease progression to propose new therapeutic strategies. Further studies are needed to illustrate the precise role of LAP in human disease and to determine new therapeutic targets for LAP-associated pathologies.
Collapse
Affiliation(s)
- Xu Chen
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Qi Su
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Ruize Gong
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Xing Ling
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Runxiao Xu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Qijia Feng
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Jialiang Ke
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Meng Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | | | - Yuhang Liu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yanyan Yang
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Zhihong Jiang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau SAR, China
| | - Hongmei Wu
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| | - Yitao Qi
- College of Life Sciences, Shaanxi Normal University, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Tebeje BM, Thiex NW, Swanson JA. Growing Macrophages Regulate High Rates of Solute Flux by Pinocytosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.22.619691. [PMID: 39484410 PMCID: PMC11526976 DOI: 10.1101/2024.10.22.619691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
In metazoan cells, growth factors stimulate solute ingestion by pinocytosis. To examine the role of pinocytosis in cell growth, this study measured cell proliferation and the attendant rates of solute flux by pinocytosis in murine macrophages in response to the growth factor colony-stimulating factor-1 (CSF1). During CSF1-dependent growth in rich medium, macrophages internalized 72 percent of their cell volume in extracellular fluid every hour. Removal of the essential amino acid leucine from growth medium limited rates of protein synthesis and growth, but increased rates of solute accumulation by macropinocytosis. The amount of protein synthesized during leucine-dependent growth exceeded the capacity of pinocytosis to internalize enough soluble leucine to support growth and proliferation. Fluid-phase solute recycling from lysosomes secreted small molecules from the cells at high rates. Inhibitors of pinocytosis and the mechanistic target-of-rapamycin (mTOR) reduced cell growth and solute recycling, indicating roles for pinocytosis in growth and for nutrient sensing in the regulation of solute flux by pinocytosis.
Collapse
Affiliation(s)
- Biniam M Tebeje
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| | - Natalie W Thiex
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD 57007
| | - Joel A Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109-5620
| |
Collapse
|
28
|
Ghoochani A, Heiby JC, Rawat ES, Medoh UN, Di Fraia D, Dong W, Gastou M, Nyame K, Laqtom NN, Gomez-Ospina N, Ori A, Abu-Remaileh M. Cell-Type Resolved Protein Atlas of Brain Lysosomes Identifies SLC45A1-Associated Disease as a Lysosomal Disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618295. [PMID: 39464040 PMCID: PMC11507716 DOI: 10.1101/2024.10.14.618295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Mutations in lysosomal genes cause neurodegeneration and neurological lysosomal storage disorders (LSDs). Despite their essential role in brain homeostasis, the cell-type-specific composition and function of lysosomes remain poorly understood. Here, we report a quantitative protein atlas of the lysosome from mouse neurons, astrocytes, oligodendrocytes, and microglia. We identify dozens of novel lysosomal proteins and reveal the diversity of the lysosomal composition across brain cell types. Notably, we discovered SLC45A1, mutations in which cause a monogenic neurological disease, as a neuron-specific lysosomal protein. Loss of SLC45A1 causes lysosomal dysfunction in vitro and in vivo. Mechanistically, SLC45A1 plays a dual role in lysosomal sugar transport and stabilization of V1 subunits of the V-ATPase. SLC45A1 deficiency depletes the V1 subunits, elevates lysosomal pH, and disrupts iron homeostasis causing mitochondrial dysfunction. Altogether, our work redefines SLC45A1-associated disease as a LSD and establishes a comprehensive map to study lysosome biology at cell-type resolution in the brain and its implications for neurodegeneration.
Collapse
Affiliation(s)
- Ali Ghoochani
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- These authors contributed equally
| | - Julia C. Heiby
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- These authors contributed equally
| | - Eshaan S. Rawat
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Uche N. Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- Current affiliation: Arc Institute, Palo Alto, CA 94304, USA
| | - Domenico Di Fraia
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Current affiliation: Department of Biology, University of Rochester, Rochester, NY, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Marc Gastou
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Kwamina Nyame
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Nouf N. Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
| | - Natalia Gomez-Ospina
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alessandro Ori
- Leibniz Institute on Aging - Fritz Lipmann Institute (FLI) e.V., Jena, Germany
- Co-senior authors
| | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
- The Institute for Chemistry, Engineering and Medicine for Human Health (Sarafan ChEM-H), Stanford University, Stanford, CA 94305, USA
- Aligning Science Across Parkinson’s (ASAP) Collaborative Research Network; Chevy Chase, MD, 20815, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA 94305, USA
- Co-senior authors
- Lead author
| |
Collapse
|
29
|
Wu Y, Wang A, Feng G, Pan X, Shuai W, Yang P, Zhang J, Ouyang L, Luo Y, Wang G. Autophagy modulation in cancer therapy: Challenges coexist with opportunities. Eur J Med Chem 2024; 276:116688. [PMID: 39033611 DOI: 10.1016/j.ejmech.2024.116688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/08/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Autophagy, a crucial intracellular degradation process facilitated by lysosomes, plays a pivotal role in maintaining cellular homeostasis. The elucidation of autophagy key genes and signaling pathways has significantly advanced our understanding of this process and has led to the exploration of autophagy as a promising therapeutic approach. This review comprehensively assesses the latest developments in small molecule modulators targeting autophagy. Moreover, the review delves into the most recent strategies for drug discovery, specifically focusing on selective agents that exploit autophagosomes and lysosomes for targeted protein degradation. Additionally, this article highlights the prevailing challenges and outlines potential future advancements in the field. By amalgamating the cutting-edge knowledge in the field, we aim to offer valuable insights and references for the anti-cancer drug development of autophagy-targeted therapies, thus contributing to the advancement of novel therapeutic interventions.
Collapse
Affiliation(s)
- Yongya Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Aoxue Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Guotai Feng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Xiaoli Pan
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Wen Shuai
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Panpan Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Jing Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Liang Ouyang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China
| | - Yi Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, Innovation Center of Nursing Research, Nursing Key Laboratory of Sichuan Province, Department of Orthopedics, Orthopedic Research Institute, West China Hospital, West China School of Nursing, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
30
|
Zhao S, Liu M, Zhou H. Identification of novel M2 macrophage-related molecule ATP6V1E1 and its biological role in hepatocellular carcinoma based on machine learning algorithms. J Cell Mol Med 2024; 28:e70072. [PMID: 39294741 PMCID: PMC11410555 DOI: 10.1111/jcmm.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 08/08/2024] [Accepted: 08/27/2024] [Indexed: 09/21/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains the most prevalent form of primary liver cancer, characterized by late detection and suboptimal response to current therapies. The tumour microenvironment, especially the role of M2 macrophages, is pivotal in the progression and prognosis of HCC. We applied the machine learning algorithm-CIBERSORT, to quantify cellular compositions within the HCC TME, focusing on M2 macrophages. Gene expression profiles were analysed to identify key molecules, with ATP6V1E1 as a primary focus. We employed Gene Set Enrichment Analysis (GSEA) and Kaplan-Meier survival analysis to investigate the molecular pathways and prognostic significance of ATP6V1E1. A prognostic model was developed using multivariate Cox regression analysis based on ATP6V1E1-related molecules, and functional impacts were assessed through cell proliferation assays. M2 macrophages were the dominant cell type in the HCC TME, significantly correlating with adverse survival outcomes. ATP6V1E1 was robustly associated with advanced disease stages and poor prognostic features such as vascular invasion and elevated alpha-fetoprotein levels. GSEA linked high ATP6V1E1 expression to critical oncogenic pathways, including immunosuppression and angiogenesis, and reduced activity in metabolic processes like bile acid and fatty acid metabolism. The prognostic model stratified HCC patients into distinct risk categories, showing high predictive accuracy (1-year AUC = 0.775, 3-year AUC = 0.709 and 5-year AUC = 0.791). In vitro assays demonstrated that ATP6V1E1 knockdown markedly inhibited the proliferation of HCC cells. The study underscores the significance of M2 macrophages and ATP6V1E1 in HCC, highlighting their potential as therapeutic and prognostic targets.
Collapse
Affiliation(s)
- Sen Zhao
- School of Basic MedicalAnhui Medical CollegeHefeiAnhuiChina
| | - Meimei Liu
- School of Basic MedicalAnhui Medical CollegeHefeiAnhuiChina
| | - Hua Zhou
- School of Basic MedicalAnhui Medical CollegeHefeiAnhuiChina
| |
Collapse
|
31
|
Deng D, Liu X, Huang W, Yuan S, Liu G, Ai S, Fu Y, Xu H, Zhang X, Li S, Xu S, Bai X, Zhang Y. Osteoclasts control endochondral ossification via regulating acetyl-CoA availability. Bone Res 2024; 12:49. [PMID: 39198395 PMCID: PMC11358419 DOI: 10.1038/s41413-024-00360-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoclast is critical in skeletal development and fracture healing, yet the impact and underlying mechanisms of their metabolic state on these processes remain unclear. Here, by using osteoclast-specific small GTPase Rheb1-knockout mice, we reveal that mitochondrial respiration, rather than glycolysis, is essential for cathepsin K (CTSK) production in osteoclasts and is regulated by Rheb1 in a mechanistic target of rapamycin complex 1 (mTORC1)-independent manner. Mechanistically, we find that Rheb1 coordinates with mitochondrial acetyl-CoA generation to fuel CTSK, and acetyl-CoA availability in osteoclasts is the central to elevating CTSK. Importantly, our findings demonstrate that the regulation of CTSK by acetyl-CoA availability is critical and may confer a risk for abnormal endochondral ossification, which may be the main cause of poor fracture healing on alcohol consumption, targeting Rheb1 could successfully against the process. These findings uncover a pivotal role of mitochondria in osteoclasts and provide a potent therapeutic opportunity in bone disorders.
Collapse
Affiliation(s)
- Daizhao Deng
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xianming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Wenlan Huang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Sirui Yuan
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Genming Liu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shanshan Ai
- Department of Physiology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yijie Fu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Haokun Xu
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xinyi Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Shihai Li
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Song Xu
- Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Xiaochun Bai
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| | - Yue Zhang
- Department of Cell Biology, School of Basic Medical Science, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
32
|
Falace A, Volpedo G, Scala M, Zara F, Striano P, Fassio A. V-ATPase Dysfunction in the Brain: Genetic Insights and Therapeutic Opportunities. Cells 2024; 13:1441. [PMID: 39273013 PMCID: PMC11393946 DOI: 10.3390/cells13171441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024] Open
Abstract
Vacuolar-type ATPase (v-ATPase) is a multimeric protein complex that regulates H+ transport across membranes and intra-cellular organelle acidification. Catabolic processes, such as endocytic degradation and autophagy, strictly rely on v-ATPase-dependent luminal acidification in lysosomes. The v-ATPase complex is expressed at high levels in the brain and its impairment triggers neuronal dysfunction and neurodegeneration. Due to their post-mitotic nature and highly specialized function and morphology, neurons display a unique vulnerability to lysosomal dyshomeostasis. Alterations in genes encoding subunits composing v-ATPase or v-ATPase-related proteins impair brain development and synaptic function in animal models and underlie genetic diseases in humans, such as encephalopathies, epilepsy, as well as neurodevelopmental, and degenerative disorders. This review presents the genetic and functional evidence linking v-ATPase subunits and accessory proteins to various brain disorders, from early-onset developmental epileptic encephalopathy to neurodegenerative diseases. We highlight the latest emerging therapeutic strategies aimed at mitigating lysosomal defects associated with v-ATPase dysfunction.
Collapse
Affiliation(s)
- Antonio Falace
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Greta Volpedo
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Marcello Scala
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Federico Zara
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
- Medical Genetics Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy
| | - Pasquale Striano
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genoa, 16132 Genoa, Italy; (G.V.)
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
33
|
Oh S, Lee J, Choi HJ, Kim S, Sapuru V, Kim M, Hite RK. Discovery of Selective Inhibitors for the Lysosomal Parkinson's Disease Channel TMEM175. J Am Chem Soc 2024; 146:23230-23239. [PMID: 39116214 PMCID: PMC11513884 DOI: 10.1021/jacs.4c05623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
TMEM175 is a lysosomal potassium and proton channel that is associated with the development of Parkinson's disease. Advances in understanding the physiological roles of TMEM175 have been hampered by the absence of selective inhibitors, and studies involving genetic perturbations have yielded conflicting results. Here, we report the discovery and characterization of the first reported TMEM175-selective inhibitors, 2-phenylpyridin-4-ylamine (2-PPA), and AP-6. Cryo-EM structures of human TMEM175 bound by 2-PPA and AP-6 reveal that they act as pore blockers, binding at distinct sites in the pore and occluding the ion permeation pathway. Acute inhibition of TMEM175 by 2-PPA or AP-6 increases the level of lysosomal macromolecule catabolism, thereby accelerating macropinocytosis and other digestive processes. These inhibitors may serve as valuable tools to study the roles of TMEM175 in regulating lysosomal function and provide useful templates for future therapeutic development in Parkinson's disease.
Collapse
Affiliation(s)
- SeCheol Oh
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| | - Jooyeon Lee
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Ho Jeong Choi
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Songwon Kim
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| | - Vinay Sapuru
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
- Physiology, Biophysics, and Systems Biology (PBSB) Program, Weill Cornell Graduate School of Biomedical Sciences, 1300 York Avenue, New York, NY, 10065, USA
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Republic of Korea
| | - Richard K. Hite
- Structural Biology Program, Memorial Sloan Kettering Cancer Center; New York, New York 10065, USA
| |
Collapse
|
34
|
Bonini S, Winter D. Two-Step Enrichment Facilitates Background Reduction for Proteomic Analysis of Lysosomes. J Proteome Res 2024; 23:3393-3403. [PMID: 38967832 DOI: 10.1021/acs.jproteome.4c00053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Lysosomes constitute the main degradative compartment of most mammalian cells and are involved in various cellular functions. Most of them are catalyzed by lysosomal proteins, which typically are low abundant, complicating their analysis by mass spectrometry-based proteomics. To increase analytical performance and to enable profiling of lysosomal content, lysosomes are often enriched. Two approaches have gained popularity in recent years, namely, superparamagnetic iron oxide nanoparticles (SPIONs) and immunoprecipitation from cells overexpressing a 3xHA-tagged version of TMEM192 (TMEM-IP). The effect of these approaches on the lysosomal proteome has not been investigated to date. We addressed this topic through a combination of both techniques and proteomic analysis of lysosome-enriched fractions. For SPIONs treatment, we identified altered cellular iron homeostasis and moderate changes of the lysosomal proteome. For overexpression of TMEM192, we observed more pronounced effects in lysosomal protein expression, especially for lysosomal membrane proteins and those involved in protein trafficking. Furthermore, we established a combined strategy based on the sequential enrichment of lysosomes with SPIONs and TMEM-IP. This enabled increased purity of lysosome-enriched fractions and, through TMEM-IP-based lysosome enrichment from SPIONs flow-through and eluate fractions, additional insights into the properties of individual approaches. All data are available via ProteomeXchange with PXD048696.
Collapse
Affiliation(s)
- Sara Bonini
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| | - Dominic Winter
- Institute for Biochemistry and Molecular Biology, Medical Faculty, University of Bonn, Bonn 53115, Germany
| |
Collapse
|
35
|
Esposito A, Pepe S, Cerullo MS, Cortese K, Semini HT, Giovedì S, Guerrini R, Benfenati F, Falace A, Fassio A. ATP6V1A is required for synaptic rearrangements and plasticity in murine hippocampal neurons. Acta Physiol (Oxf) 2024; 240:e14186. [PMID: 38837572 DOI: 10.1111/apha.14186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 05/05/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
AIM Understanding the physiological role of ATP6V1A, a component of the cytosolic V1 domain of the proton pump vacuolar ATPase, in regulating neuronal development and function. METHODS Modeling loss of function of Atp6v1a in primary murine hippocampal neurons and studying neuronal morphology and function by immunoimaging, electrophysiological recordings and electron microscopy. RESULTS Atp6v1a depletion affects neurite elongation, stabilization, and function of excitatory synapses and prevents synaptic rearrangement upon induction of plasticity. These phenotypes are due to an overall decreased expression of the V1 subunits, that leads to impairment of lysosomal pH-regulation and autophagy progression with accumulation of aberrant lysosomes at neuronal soma and of enlarged vacuoles at synaptic boutons. CONCLUSIONS These data suggest a physiological role of ATP6V1A in the surveillance of synaptic integrity and plasticity and highlight the pathophysiological significance of ATP6V1A loss in the alteration of synaptic function that is associated with neurodevelopmental and neurodegenerative diseases. The data further support the pivotal involvement of lysosomal function and autophagy flux in maintaining proper synaptic connectivity and adaptive neuronal properties.
Collapse
Affiliation(s)
| | - Sara Pepe
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Maria Sabina Cerullo
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Katia Cortese
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
| | | | - Silvia Giovedì
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| | - Renzo Guerrini
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino, University of Florence, Florence, Italy
| | - Fabio Benfenati
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
- Center for Synaptic Neuroscience and Technology, Italian Institute of Technology, Genoa, Italy
| | - Antonio Falace
- Children's Hospital A. Meyer IRCCS, Florence, Italy
- Pediatric Neurology and Muscular Diseases Unit, IRCCS Istituto "Giannina Gaslini", Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
36
|
Liang Y, Kaushal D, Wilson RB. Cellular Senescence and Extracellular Vesicles in the Pathogenesis and Treatment of Obesity-A Narrative Review. Int J Mol Sci 2024; 25:7943. [PMID: 39063184 PMCID: PMC11276987 DOI: 10.3390/ijms25147943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/04/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
This narrative review explores the pathophysiology of obesity, cellular senescence, and exosome release. When exposed to excessive nutrients, adipocytes develop mitochondrial dysfunction and generate reactive oxygen species with DNA damage. This triggers adipocyte hypertrophy and hypoxia, inhibition of adiponectin secretion and adipogenesis, increased endoplasmic reticulum stress and maladaptive unfolded protein response, metaflammation, and polarization of macrophages. Such feed-forward cycles are not resolved by antioxidant systems, heat shock response pathways, or DNA repair mechanisms, resulting in transmissible cellular senescence via autocrine, paracrine, and endocrine signaling. Senescence can thus affect preadipocytes, mature adipocytes, tissue macrophages and lymphocytes, hepatocytes, vascular endothelium, pancreatic β cells, myocytes, hypothalamic nuclei, and renal podocytes. The senescence-associated secretory phenotype is closely related to visceral adipose tissue expansion and metaflammation; inhibition of SIRT-1, adiponectin, and autophagy; and increased release of exosomes, exosomal micro-RNAs, pro-inflammatory adipokines, and saturated free fatty acids. The resulting hypernefemia, insulin resistance, and diminished fatty acid β-oxidation lead to lipotoxicity and progressive obesity, metabolic syndrome, and physical and cognitive functional decline. Weight cycling is related to continuing immunosenescence and exposure to palmitate. Cellular senescence, exosome release, and the transmissible senescence-associated secretory phenotype contribute to obesity and metabolic syndrome. Targeted therapies have interrelated and synergistic effects on cellular senescence, obesity, and premature aging.
Collapse
Affiliation(s)
- Yicong Liang
- Bankstown Hospital, University of New South Wales, Sydney, NSW 2560, Australia;
| | - Devesh Kaushal
- Campbelltown Hospital, Western Sydney University, Sydney, NSW 2560, Australia;
| | - Robert Beaumont Wilson
- School of Clinical Medicine, University of New South Wales, High St., Kensington, Sydney, NSW 2052, Australia
| |
Collapse
|
37
|
Bandyopadhyay S, Adebayo D, Obaseki E, Hariri H. Lysosomal membrane contact sites: Integrative hubs for cellular communication and homeostasis. CURRENT TOPICS IN MEMBRANES 2024; 93:85-116. [PMID: 39181579 DOI: 10.1016/bs.ctm.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Lysosomes are more than just cellular recycling bins; they play a crucial role in regulating key cellular functions. Proper lysosomal function is essential for growth pathway regulation, cell proliferation, and metabolic homeostasis. Impaired lysosomal function is associated with lipid storage disorders and neurodegenerative diseases. Lysosomes form extensive and dynamic close contacts with the membranes of other organelles, including the endoplasmic reticulum, mitochondria, peroxisomes, and lipid droplets. These membrane contacts sites (MCSs) are vital for many lysosomal functions. In this chapter, we will explore lysosomal MCSs focusing on the machinery that mediates these contacts, how they are regulated, and their functional implications on physiology and pathology.
Collapse
Affiliation(s)
- Sumit Bandyopadhyay
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Daniel Adebayo
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Eseiwi Obaseki
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
| | - Hanaa Hariri
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States.
| |
Collapse
|
38
|
Oot RA, Wilkens S. Human V-ATPase function is positively and negatively regulated by TLDc proteins. Structure 2024; 32:989-1000.e6. [PMID: 38593795 PMCID: PMC11246223 DOI: 10.1016/j.str.2024.03.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024]
Abstract
Proteins that contain a highly conserved TLDc domain (Tre2/Bub2/Cdc16 LysM domain catalytic) offer protection against oxidative stress and are widely implicated in neurological health and disease. How this family of proteins exerts their function, however, is poorly understood. We have recently found that the yeast TLDc protein, Oxr1p, inhibits the proton pumping vacuolar ATPase (V-ATPase) by inducing disassembly of the pump. While loss of TLDc protein function in mammals shares disease phenotypes with V-ATPase defects, whether TLDc proteins impact human V-ATPase activity directly is unclear. Here we examine the effects of five human TLDc proteins, TLDC2, NCOA7, OXR1, TBC1D24, and mEAK7 on the activity of the human V-ATPase. We find that while TLDC2, TBC1D24, and the TLDc domains of OXR1 and NCOA7 inhibit V-ATPase by inducing enzyme disassembly, mEAK7 activates the pump. The data thus shed new light both on mammalian TLDc protein function and V-ATPase regulation.
Collapse
Affiliation(s)
- Rebecca A Oot
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | - Stephan Wilkens
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
39
|
Eaton AF, Danielson EC, Capen D, Merkulova M, Brown D. Dmxl1 Is an Essential Mammalian Gene that Is Required for V-ATPase Assembly and Function In Vivo. FUNCTION 2024; 5:zqae025. [PMID: 38984989 PMCID: PMC11237898 DOI: 10.1093/function/zqae025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 07/11/2024] Open
Abstract
The proton pumping V-ATPase drives essential biological processes, such as acidification of intracellular organelles. Critically, the V-ATPase domains, V1 and VO, must assemble to produce a functional holoenzyme. V-ATPase dysfunction results in cancer, neurodegeneration, and diabetes, as well as systemic acidosis caused by reduced activity of proton-secreting kidney intercalated cells (ICs). However, little is known about the molecular regulation of V-ATPase in mammals. We identified a novel interactor of the mammalian V-ATPase, Drosophila melanogaster X chromosomal gene-like 1 (Dmxl1), aka Rabconnectin-3A. The yeast homologue of Dmxl1, Rav1p, is part of a complex that catalyzes the reversible assembly of the domains. We, therefore,hypothesized that Dmxl1 is a mammalian V-ATPase assembly factor. Here, we generated kidney IC-specific Dmxl1 knockout (KO) mice, which had high urine pH, like B1 V-ATPase KO mice, suggesting impaired V-ATPase function. Western blotting showed decreased B1 expression and B1 (V1) and a4 (VO) subunits were more intracellular and less colocalized in Dmxl1 KO ICs. In parallel, subcellular fractionation revealed less V1 associated B1 in the membrane fraction of KO cells relative to the cytosol. Furthermore, a proximity ligation assay performed using probes against B1 and a4 V-ATPase subunits also revealed decreased association. We propose that loss of Dmxl1 reduces V-ATPase holoenzyme assembly, thereby inhibiting proton pumping function. Dmxl1 may recruit the V1 domain to the membrane and facilitate assembly with the VO domain and in its absence V1 may be targeted for degradation. We conclude that Dmxl1 is a bona fide mammalian V-ATPase assembly factor.
Collapse
Affiliation(s)
- Amity F Eaton
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Elizabeth C Danielson
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Diane Capen
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Maria Merkulova
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Dennis Brown
- Program in Membrane Biology and Division of Nephrology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
40
|
Kaur A, Venkatesan A, Kandarpa M, Talpaz M, Raghavan M. Lysosomal degradation targets mutant calreticulin and the thrombopoietin receptor in myeloproliferative neoplasms. Blood Adv 2024; 8:3372-3387. [PMID: 38640435 PMCID: PMC11255115 DOI: 10.1182/bloodadvances.2023011432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 03/24/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024] Open
Abstract
ABSTRACT Somatic mutants of calreticulin (CRT) drive myeloproliferative neoplasms (MPNs) via binding to the thrombopoietin receptor (MPL) and aberrant activation of the JAK/STAT pathway. Compared with healthy donors, platelets from mutant CRT-expressing patients with MPN display low cell surface MPL. Additionally, coexpression of MPL with an MPN-linked CRT mutant (CRTDel52) reduces cell surface MPL, suggesting that CRTDel52 may induce MPL degradation. We show that lysosomal degradation is relevant to the turnover of CRTDel52 and MPL. Furthermore, CRTDel52 increases the lysosomal localization and degradation of MPL. Mammalian target of rapamycin (mTOR) inhibitors reduce cellular CRTDel52 and MPL, secreted CRTDel52 levels, and impair CRTDel52-mediated cell proliferation. mTOR inhibition also reduces colony formation and differentiation of CD34+ cells from patients with MPN but not from healthy donors. Together, these findings indicate that low-surface MPL is a biomarker of mutant CRT-mediated MPN and that induced degradation of CRTDel52 and MPL is an avenue for therapeutic intervention.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Arunkumar Venkatesan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| | - Malathi Kandarpa
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Moshe Talpaz
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Malini Raghavan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
41
|
Zhang W, Sha Z, Tang Y, Jin C, Gao W, Chen C, Yu L, Lv N, Liu S, Xu F, Wang D, Shi L. Defective Lamtor5 Leads to Autoimmunity by Deregulating v-ATPase and Lysosomal Acidification. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400446. [PMID: 38639386 PMCID: PMC11165510 DOI: 10.1002/advs.202400446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/02/2024] [Indexed: 04/20/2024]
Abstract
Despite accumulating evidence linking defective lysosome function with autoimmune diseases, how the catabolic machinery is regulated to maintain immune homeostasis remains unknown. Late endosomal/lysosomal adaptor, MAPK and mTOR activator 5 (Lamtor5) is a subunit of the Ragulator mediating mechanistic target of rapamycin complex 1 (mTORC1) activation in response to amino acids, but its action mode and physiological role are still unclear. Here it is demonstrated that Lamtor5 level is markedly decreased in peripheral blood mononuclear cells (PBMCs) of patients with systemic lupus erythematosus (SLE). In parallel, the mice with myeloid Lamtor5 ablation developed SLE-like manifestation. Impaired lysosomal function and aberrant activation of mTORC1 are evidenced in Lamtor5 deficient macrophages and PBMCs of SLE patients, accompanied by blunted autolysosomal pathway and undesirable inflammatory responses. Mechanistically, it is shown that Lamtor5 is physically associated with ATP6V1A, an essential subunit of vacuolar H+-ATPase (v-ATPase), and promoted the V0/V1 holoenzyme assembly to facilitate lysosome acidification. The binding of Lamtor5 to v-ATPase affected the lysosomal tethering of Rag GTPase and weakened its interaction with mTORC1 for activation. Overall, Lamtor5 is identified as a critical factor for immune homeostasis by intergrading v-ATPase activity, lysosome function, and mTOR pathway. The findings provide a potential therapeutic target for SLE and/or other autoimmune diseases.
Collapse
Affiliation(s)
- Wei Zhang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Zhou Sha
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Yunzhe Tang
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Cuiyuan Jin
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| | - Wenhua Gao
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Changmai Chen
- School of PharmacyFujian Medical UniversityFuzhou350122China
| | - Lang Yu
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Nianyin Lv
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
| | - Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese MedicineNanjing210029China
| | - Feng Xu
- Department of Infectious DiseasesThe Second Affiliated HospitalZhejiang University School of MedicineHangzhou310009China
| | - Dandan Wang
- Department of Rheumatology and ImmunologyThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210093China
| | - Liyun Shi
- School of MedicineNanjing University of Chinese MedicineNanjing210046China
- Key lab of Artificial Organs and Computational MedicineInstitute of Translational MedicineZhejiang Shuren UniversityHangzhou310022China
| |
Collapse
|
42
|
Wang X, Wang WX. Tracking the Cellular Degradation of Silver Nanoparticles: Development of a Generic Kinetic Model. ACS NANO 2024; 18:13308-13321. [PMID: 38716827 DOI: 10.1021/acsnano.4c03032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the degradation of nanoparticles (NPs) after crossing the cell plasma membrane is crucial in drug delivery designs and cytotoxicity assessment. However, the key factors controlling the degradable kinetics remain unclear due to the absence of a quantification model. In this study, subcellular imaging of silver nanoparticles (AgNPs) was used to determine the intracellular transfer of AgNPs, and single particle ICP-MS was utilized to track the degradation process. A cellular kinetic model was subsequently developed to describe the uptake, transfer, and degradation behaviors of AgNPs. Our model demonstrated that the intracellular degradation efficiency of AgNPs was much higher than that determined by mimicking testing, and the degradation of NPs was highly influenced by cellular factors. Specifically, deficiencies in Ca or Zn primarily decreased the kinetic dissolution of NPs, while a Ca deficiency also resulted in the retardation of NP transfer. The biological significance of these kinetic parameters was strongly revealed. Our model indicated that the majority of internalized AgNPs dissolved, with the resulting ions being rapidly depurated. The release of Ag ions was largely dependent on the microvesicle-mediated route. By changing the coating and size of AgNPs, the model results suggested that size influenced the transfer of NPs into the degradation process, whereas coating affected the degradation kinetics. Overall, our developed model provides a valuable tool for understanding and predicting the impacts of the physicochemical properties of NPs and the ambient environment on nanotoxicity and therapeutic efficacy.
Collapse
Affiliation(s)
- Xiangrui Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong, China
- Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
43
|
Mulligan RJ, Magaj MM, Digilio L, Redemann S, Yap CC, Winckler B. Collapse of late endosomal pH elicits a rapid Rab7 response via the V-ATPase and RILP. J Cell Sci 2024; 137:jcs261765. [PMID: 38578235 PMCID: PMC11166203 DOI: 10.1242/jcs.261765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
Endosomal-lysosomal trafficking is accompanied by the acidification of endosomal compartments by the H+-V-ATPase to reach low lysosomal pH. Disruption of the correct pH impairs lysosomal function and the balance of protein synthesis and degradation (proteostasis). Here, we treated mammalian cells with the small dipeptide LLOMe, which is known to permeabilize lysosomal membranes, and find that LLOMe also impacts late endosomes (LEs) by neutralizing their pH without causing membrane permeabilization. We show that LLOMe leads to hyperactivation of Rab7 (herein referring to Rab7a), and disruption of tubulation and mannose-6-phosphate receptor (CI-M6PR; also known as IGF2R) recycling on pH-neutralized LEs. pH neutralization (NH4Cl) and expression of Rab7 hyperactive mutants alone can both phenocopy the alterations in tubulation and CI-M6PR trafficking. Mechanistically, pH neutralization increases the assembly of the V1G1 subunit (encoded by ATP6V1G1) of the V-ATPase on endosomal membranes, which stabilizes GTP-bound Rab7 via RILP, a known interactor of Rab7 and V1G1. We propose a novel pathway by which V-ATPase and RILP modulate LE pH and Rab7 activation in concert. This pathway might broadly contribute to pH control during physiologic endosomal maturation or starvation and during pathologic pH neutralization, which occurs via lysosomotropic compounds and in disease states.
Collapse
Affiliation(s)
- Ryan J. Mulligan
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
- Medical Scientist Training Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Magdalena M. Magaj
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Cell and Developmental Biology Graduate Program, University of Virginia, Charlottesville, VA 22908, USA
| | - Laura Digilio
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Stefanie Redemann
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA 22908, USA
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
| | - Chan Choo Yap
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| | - Bettina Winckler
- Department of Cell Biology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
44
|
Khan MM, Wilkens S. Molecular mechanism of Oxr1p mediated disassembly of yeast V-ATPase. EMBO Rep 2024; 25:2323-2347. [PMID: 38565737 PMCID: PMC11094088 DOI: 10.1038/s44319-024-00126-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 03/07/2024] [Accepted: 03/09/2024] [Indexed: 04/04/2024] Open
Abstract
The eukaryotic vacuolar H+-ATPase (V-ATPase) is regulated by reversible disassembly into autoinhibited V1-ATPase and Vo proton channel subcomplexes. We recently reported that the TLDc protein Oxr1p induces V-ATPase disassembly in vitro. Whether and how Oxr1p is involved in enzyme disassembly in vivo, however, is not known. Here, using yeast genetics and fluorescence microscopy, we show that Oxr1p is essential for efficient V-ATPase disassembly in the cell. Supporting biochemical and biophysical in vitro experiments show that whereas Oxr1p-driven holoenzyme disassembly can occur in the absence of nucleotides, the presence of ATP greatly accelerates the process. ATP hydrolysis is needed, however, for subsequent release of Oxr1p so that the free V1 can adopt the autoinhibited conformation. Overall, our study unravels the molecular mechanism of Oxr1p-induced disassembly that occurs in vivo as part of the canonical V-ATPase regulation by reversible disassembly.
Collapse
Affiliation(s)
- Md Murad Khan
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Stephan Wilkens
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
45
|
Sava I, Davis LJ, Gray SR, Bright NA, Luzio JP. Reversible assembly and disassembly of V-ATPase during the lysosome regeneration cycle. Mol Biol Cell 2024; 35:ar63. [PMID: 38446621 PMCID: PMC11151095 DOI: 10.1091/mbc.e23-08-0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/23/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
Regulation of the luminal pH of late endocytic compartments in continuously fed mammalian cells is poorly understood. Using normal rat kidney fibroblasts, we investigated the reversible assembly/disassembly of the proton pumping V-ATPase when endolysosomes are formed by kissing and fusion of late endosomes with lysosomes and during the subsequent reformation of lysosomes. We took advantage of previous work showing that sucrosomes formed by the uptake of sucrose are swollen endolysosomes from which lysosomes are reformed after uptake of invertase. Using confocal microscopy and subcellular fractionation of NRK cells stably expressing fluorescently tagged proteins, we found net recruitment of the V1 subcomplex during sucrosome formation and loss during lysosome reformation, with a similar time course to RAB7a loss. Addition of invertase did not alter mTORC1 signalling, suggesting that the regulation of reversible V-ATPase assembly/disassembly in continuously fed cells differs from that in cells subject to amino acid depletion/refeeding. Using live cell microscopy, we demonstrated recruitment of a fluorescently tagged V1 subunit during endolysosome formation and a dynamic equilibrium and rapid exchange between the cytosolic and membrane bound pools of this subunit. We conclude that reversible V-ATPase assembly/disassembly plays a key role in regulating endolysosomal/lysosomal pH in continuously fed cells.
Collapse
Affiliation(s)
- Ioana Sava
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Luther J. Davis
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Sally R. Gray
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - Nicholas A. Bright
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| | - J. Paul Luzio
- Cambridge Institute for Medical Research (CIMR) and Department of Clinical Biochemistry, University of Cambridge School of Clinical Medicine, The Keith Peters Building, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0XY, UK
| |
Collapse
|
46
|
Zhang Y, Ji L, Yang D, Wu J, Yang F. Decoding cardiovascular risks: analyzing type 2 diabetes mellitus and ASCVD gene expression. Front Endocrinol (Lausanne) 2024; 15:1383772. [PMID: 38715799 PMCID: PMC11075663 DOI: 10.3389/fendo.2024.1383772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/09/2024] [Indexed: 06/04/2024] Open
Abstract
Background ASCVD is the primary cause of mortality in individuals with T2DM. A potential link between ASCVD and T2DM has been suggested, prompting further investigation. Methods We utilized linear and multivariate logistic regression, Wilcoxon test, and Spearman's correlation toanalyzethe interrelation between ASCVD and T2DM in NHANES data from 2001-2018.The Gene Expression Omnibus (GEO) database and Weighted Gene Co-expression Network Analysis (WGCNA) wereconducted to identify co-expression networks between ASCVD and T2DM. Hub genes were identified using LASSO regression analysis and further validated in two additional cohorts. Bioinformatics methods were employed for gene ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis, along with the prediction of candidate small molecules. Results Our analysis of the NHANES dataset indicated a significant impact of blood glucose on lipid levels within diabetic cohort, suggesting that abnormal lipid metabolism is a critical factor in ASCVD development. Cross-phenotyping analysis revealed two pivotal genes, ABCC5 and WDR7, associated with both T2DM and ASCVD. Enrichment analyses demonstrated the intertwining of lipid metabolism in both conditions, encompassing adipocytokine signaling pathway, fatty acid degradation and metabolism, and the regulation of adipocyte lipolysis. Immune infiltration analysis underscored the involvement of immune processes in both diseases. Notably, RITA, ON-01910, doxercalciferol, and topiramate emerged as potential therapeutic agents for both T2DM and ASCVD, indicating their possible clinical significance. Conclusion Our findings pinpoint ABCC5 and WDR7 as new target genes between T2DM and ASCVD, with RITA, ON-01910, doxercalciferol, and topiramate highlighted as promising therapeutic agents.
Collapse
Affiliation(s)
- Youqi Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Liu Ji
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin, China
| | - Daiwei Yang
- Department of Orthopedics, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jianjun Wu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fan Yang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
47
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
48
|
Chang I, Loo YL, Patel J, Nguyen JT, Kim JK, Krebsbach PH. Targeting of lysosomal-bound protein mEAK-7 for cancer therapy. Front Oncol 2024; 14:1375498. [PMID: 38532930 PMCID: PMC10963491 DOI: 10.3389/fonc.2024.1375498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
mEAK-7 (mammalian EAK-7 or MTOR-associated protein, eak-7 homolog), is an evolutionarily conserved lysosomal membrane protein that is highly expressed in several cancer cells. Multiple recent studies have identified mEAK-7 as a positive activator of mTOR (mammalian/mechanistic target of rapamycin) signaling via an alternative mTOR complex, implying that mEAK-7 plays an important role in the promotion of cancer proliferation and migration. In addition, structural analyses investigating interactions between mEAK-7 and V-ATPase, a protein complex responsible for regulating pH homeostasis in cellular compartments, have suggested that mEAK-7 may contribute to V-ATPase-mediated mTORC1 activation. The C-terminal α-helix of mEAK-7 binds to the D and B subunits of the V-ATPase, creating a pincer-like grip around its B subunit. This binding undergoes partial disruption during ATP hydrolysis, potentially enabling other proteins such as mTOR to bind to the α-helix of mEAK-7. mEAK-7 also promotes chemoresistance and radiation resistance by sustaining DNA damage-mediated mTOR signaling through interactions with DNA-PKcs (DNA-dependent protein kinase catalytic subunit). Taken together, these findings indicate that mEAK-7 may be a promising therapeutic target against tumors. However, the precise molecular mechanisms and signal transduction pathways of mEAK-7 in cancer remain largely unknown, motivating the need for further investigation. Here, we summarize the current known roles of mEAK-7 in normal physiology and cancer development by reviewing the latest studies and discuss potential future developments of mEAK-7 in targeted cancer therapy.
Collapse
Affiliation(s)
- Insoon Chang
- Section of Endodontics, Division of Regenerative and Reconstructive Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Yi-Ling Loo
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jay Patel
- School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Joe Truong Nguyen
- Laboratory of Cancer Biology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- Oral Immunobiology Unit, National Institutes of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, United States
| | - Jin Koo Kim
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| | - Paul H Krebsbach
- Division of Oral and Systemic Health Sciences, School of Dentistry, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
49
|
Braulke T, Carette JE, Palm W. Lysosomal enzyme trafficking: from molecular mechanisms to human diseases. Trends Cell Biol 2024; 34:198-210. [PMID: 37474375 DOI: 10.1016/j.tcb.2023.06.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/16/2023] [Accepted: 06/19/2023] [Indexed: 07/22/2023]
Abstract
Lysosomes degrade and recycle macromolecules that are delivered through the biosynthetic, endocytic, and autophagic routes. Hydrolysis of the different classes of macromolecules is catalyzed by about 70 soluble enzymes that are transported from the Golgi apparatus to lysosomes in a mannose 6-phosphate (M6P)-dependent process. The molecular machinery that generates M6P tags for receptor-mediated targeting of lysosomal enzymes was thought to be understood in detail. However, recent studies on the M6P pathway have identified a previously uncharacterized core component, yielded structural insights in known components, and uncovered functions in various human diseases. Here we review molecular mechanisms of lysosomal enzyme trafficking and discuss its relevance for rare lysosomal disorders, cancer, and viral infection.
Collapse
Affiliation(s)
- Thomas Braulke
- Department of Osteology and Biomechanics, Cell Biology of Rare Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wilhelm Palm
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
50
|
Settembre C, Perera RM. Lysosomes as coordinators of cellular catabolism, metabolic signalling and organ physiology. Nat Rev Mol Cell Biol 2024; 25:223-245. [PMID: 38001393 DOI: 10.1038/s41580-023-00676-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 72.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/26/2023]
Abstract
Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.
Collapse
Affiliation(s)
- Carmine Settembre
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy.
- Department of Clinical Medicine and Surgery, Federico II University, Naples, Italy.
| | - Rushika M Perera
- Department of Anatomy, University of California at San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California at San Francisco, San Francisco, CA, USA.
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, CA, USA.
| |
Collapse
|