1
|
Yao L, Cai X, Yang S, Song Y, Xing L, Li G, Cui Z, Chen J. A single-cell landscape of the regenerating spinal cord of zebrafish. Neural Regen Res 2026; 21:780-789. [PMID: 40326988 DOI: 10.4103/nrr.nrr-d-24-01163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/03/2025] [Indexed: 05/07/2025] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202602000-00046/figure1/v/2025-05-05T160104Z/r/image-tiff Unlike mammals, zebrafish possess a remarkable ability to regenerate their spinal cord after injury, making them an ideal vertebrate model for studying regeneration. While previous research has identified key cell types involved in this process, the underlying molecular and cellular mechanisms remain largely unexplored. In this study, we used single-cell RNA sequencing to profile distinct cell populations at different stages of spinal cord injury in zebrafish. Our analysis revealed that multiple subpopulations of neurons showed persistent activation of genes associated with axonal regeneration post injury, while molecular signals promoting growth cone collapse were inhibited. Radial glial cells exhibited significant proliferation and differentiation potential post injury, indicating their intrinsic roles in promoting neurogenesis and axonal regeneration, respectively. Additionally, we found that inflammatory factors rapidly decreased in the early stages following spinal cord injury, creating a microenvironment permissive for tissue repair and regeneration. Furthermore, oligodendrocytes lost maturity markers while exhibiting increased proliferation following injury. These findings demonstrated that the rapid and orderly regulation of inflammation, as well as the efficient proliferation and redifferentiation of new neurons and glial cells, enabled zebrafish to reconstruct the spinal cord. This research provides new insights into the cellular transitions and molecular programs that drive spinal cord regeneration, offering promising avenues for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Lei Yao
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Xinyi Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Saishuai Yang
- Department of Anesthesiology, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
| | - Yixing Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Nantong University, Nantong, Jiangsu Province, China
| | - Zhiming Cui
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| | - Jiajia Chen
- Department of Spine Surgery, Affiliated Hospital 2 of Nantong University, Nantong, Jiangsu Province, China
- Research Institute for Spine and Spinal Cord Disease of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Zeng F, Li Y, Li X, Gu X, Cao Y, Cheng S, Tian H, Mei R, Mei X. Microglia overexpressing brain-derived neurotrophic factor promote vascular repair and functional recovery in mice after spinal cord injury. Neural Regen Res 2026; 21:365-376. [PMID: 39435607 PMCID: PMC12094574 DOI: 10.4103/nrr.nrr-d-24-00381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202601000-00040/figure1/v/2025-06-09T151831Z/r/image-tiff Spinal cord injury represents a severe form of central nervous system trauma for which effective treatments remain limited. Microglia is the resident immune cells of the central nervous system, play a critical role in spinal cord injury. Previous studies have shown that microglia can promote neuronal survival by phagocytosing dead cells and debris and by releasing neuroprotective and anti-inflammatory factors. However, excessive activation of microglia can lead to persistent inflammation and contribute to the formation of glial scars, which hinder axonal regeneration. Despite this, the precise role and mechanisms of microglia during the acute phase of spinal cord injury remain controversial and poorly understood. To elucidate the role of microglia in spinal cord injury, we employed the colony-stimulating factor 1 receptor inhibitor PLX5622 to deplete microglia. We observed that sustained depletion of microglia resulted in an expansion of the lesion area, downregulation of brain-derived neurotrophic factor, and impaired functional recovery after spinal cord injury. Next, we generated a transgenic mouse line with conditional overexpression of brain-derived neurotrophic factor specifically in microglia. We found that brain-derived neurotrophic factor overexpression in microglia increased angiogenesis and blood flow following spinal cord injury and facilitated the recovery of hindlimb motor function. Additionally, brain-derived neurotrophic factor overexpression in microglia reduced inflammation and neuronal apoptosis during the acute phase of spinal cord injury. Furthermore, through using specific transgenic mouse lines, TMEM119, and the colony-stimulating factor 1 receptor inhibitor PLX73086, we demonstrated that the neuroprotective effects were predominantly due to brain-derived neurotrophic factor overexpression in microglia rather than macrophages. In conclusion, our findings suggest the critical role of microglia in the formation of protective glial scars. Depleting microglia is detrimental to recovery of spinal cord injury, whereas targeting brain-derived neurotrophic factor overexpression in microglia represents a promising and novel therapeutic strategy to enhance motor function recovery in patients with spinal cord injury.
Collapse
Affiliation(s)
- Fanzhuo Zeng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
- Department of Neurobiology, School of Basic Medical Sciences, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuxin Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xiaoyu Li
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Xinyang Gu
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Yue Cao
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Shuai Cheng
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - He Tian
- Liaoning Provincial Collaborative Innovation Center for Medical Testing and Drug Research, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Rongcheng Mei
- Department of Orthopedics, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei Province, China
| | - Xifan Mei
- Department of Orthopedics, The Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| |
Collapse
|
3
|
Yang J, Zhang S, Li X, Chen Z, Xu J, Chen J, Tan Y, Li G, Yu B, Gu X, Xu L. Convergent and divergent transcriptional reprogramming of motor and sensory neurons underlying response to peripheral nerve injury. J Adv Res 2025; 72:135-150. [PMID: 39002719 DOI: 10.1016/j.jare.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024] Open
Abstract
INTRODUCTION Motor neurons differ from sensory neurons in aspects including origins and surrounding environment. Understanding the similarities and differences in molecular response to peripheral nerve injury (PNI) and regeneration between sensory and motor neurons is crucial for developing effective drug targets for CNS regeneration. However, genome-wide comparisons of molecular changes between sensory and motor neurons following PNI remains limited. OBJECTIVES This study aims to investigate genome-wide convergence and divergence of injury response between sensory and motor neurons to identify novel drug targets for neural repair. METHODS We analyzed two large-scale RNA-seq datasets of in situ captured sensory neurons (SNs) and motoneurons (MNs) upon PNI, retinal ganglion cells and spinal cord upon CNS injury. Additionally, we integrated these with other related single-cell level datasets. Bootstrap DESeq2 and WGCNA were used to detect and explore co-expression modules of differentially expressed genes (DEGs). RESULTS We found that SNs and MNs exhibited similar injury states, but with a delayed response in MNs. We identified a conserved regeneration-associated module (cRAM) with 274 shared DEGs. Of which, 47% of DEGs could be changed in injured neurons supported by single-cell resolution datasets. We also identified some less-studied candidates in cRAM, including genes associated with transcription, ubiquitination (Rnf122), and neuron-immune cells cross-talk. Further in vitro experiments confirmed a novel role of Rnf122 in axon growth. Analysis of the top 10% of DEGs with a large divergence suggested that both extrinsic (e.g., immune microenvironment) and intrinsic factors (e.g., development) contributed to expression divergence between SNs and MNs following injury. CONCLUSIONS This comprehensive analysis revealed convergent and divergent injury response genes in SNs and MNs, providing new insights into transcriptional reprogramming of sensory and motor neurons responding to axonal injury and subsequent regeneration. It also identified some novel regeneration-associated candidates that may facilitate the development of strategies for axon regeneration.
Collapse
Affiliation(s)
- Jian Yang
- Department of Neurosurgery, People's Hospital of Deyang City, Sichuan Clinical Research Center for Neurological Diseases, Deyang 618000, China; Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Shuqiang Zhang
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaodi Li
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing 210000, China
| | - Zhifeng Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jie Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Jing Chen
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Ya Tan
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Guicai Li
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Bin Yu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China
| | - Xiaosong Gu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China.
| | - Lian Xu
- Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong 226000, China; Institute for Translational Neuroscience, the Second Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu 226000, China.
| |
Collapse
|
4
|
Weber RZ, Achón Buil B, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. J Neuroinflammation 2025; 22:112. [PMID: 40251566 PMCID: PMC12008922 DOI: 10.1186/s12974-025-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
5
|
Schafer RM, Giancotti LA, Chrivia JC, Li Y, Mufti F, Kufer TA, Zhang J, Doyle TM, Salvemini D. CARTp/GPR160 mediates behavioral hypersensitivities in mice through NOD2. Pain 2025; 166:902-915. [PMID: 39356206 DOI: 10.1097/j.pain.0000000000003418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 08/27/2024] [Indexed: 10/03/2024]
Abstract
ABSTRACT Neuropathic pain is a debilitating chronic condition that remains difficult to treat. More efficacious and safer therapeutics are needed. A potential target for therapeutic intervention recently identified by our group is the G-protein coupled receptor 160 (GPR160) and the cocaine- and amphetamine-regulated transcript peptide (CARTp) as a ligand for GPR160. Intrathecal administration of CARTp in rodents causes GPR160-dependent behavioral hypersensitivities. However, the molecular and biochemical mechanisms underpinning GPR160/CARTp-induced behavioral hypersensitivities in the spinal cord remain poorly understood. Therefore, we performed an unbiased RNA transcriptomics screen of dorsal horn spinal cord (DH-SC) tissues harvested at the time of peak CARTp-induced hypersensitivities and identified nucleotide-binding oligomerization domain-containing protein 2 ( Nod2 ) as a gene that is significantly upregulated. Nucleotide-binding oligomerization domain-containing protein 2 is a cytosolic pattern-recognition receptor involved in activating the immune system in response to bacterial pathogens. While NOD2 is well studied under pathogenic conditions, the role of NOD2-mediated responses in nonpathogenic settings is still not well characterized. Genetic and pharmacological approaches reveal that CARTp-induced behavioral hypersensitivities are driven by NOD2, with co-immunoprecipitation studies indicating an interaction between GPR160 and NOD2. Cocaine- and amphetamine-regulated transcript peptide-induced behavioral hypersensitivities are independent of receptor-interacting protein kinase 2 (RIPK2), a common adaptor protein to NOD2. Immunofluorescence studies found NOD2 co-expressed with endothelial cells rather than glial cells, implicating potential roles for CARTp/NOD2 signaling in these cells. While these findings are based only on studies with male mice, our results identify a novel pathway by which CARTp causes behavioral hypersensitivities in the DH-SC through NOD2 and highlights the importance of NOD2-mediated responses in nonpathogenic settings.
Collapse
Affiliation(s)
- Rachel M Schafer
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - John C Chrivia
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Ying Li
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Fatma Mufti
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim, Stuttgart, Germany
| | - Jinsong Zhang
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, School of Medicine, Saint Louis University, St. Louis, MO, United States
- Institute for Translational Neuroscience, Saint Louis University, St. Louis, MO, United States
| |
Collapse
|
6
|
Hasel P, Cooper ML, Marchildon AE, Rufen-Blanchette U, Kim RD, Ma TC, Groh AMR, Hill EJ, Lewis EM, Januszewski M, Light SEW, Smith CJ, Stratton JA, Sloan SA, Kang UJ, Chao MV, Liddelow SA. Defining the molecular identity and morphology of glia limitans superficialis astrocytes in vertebrates. Cell Rep 2025; 44:115344. [PMID: 39982817 PMCID: PMC12160017 DOI: 10.1016/j.celrep.2025.115344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 07/30/2024] [Accepted: 02/01/2025] [Indexed: 02/23/2025] Open
Abstract
Astrocytes are a highly abundant glial cell type and perform critical homeostatic functions in the central nervous system. Like neurons, astrocytes have many discrete heterogeneous subtypes. The subtype identity and functions are, at least in part, associated with their anatomical location and can be highly restricted to strategically important anatomical domains. Here, we report that astrocytes forming the glia limitans superficialis, the outermost border of the brain and spinal cord, are a highly specialized astrocyte subtype and can be identified by a single marker: myocilin (Myoc). We show that glia limitans superficialis astrocytes cover the entire brain and spinal cord surface, exhibit an atypical morphology, and are evolutionarily conserved from zebrafish, rodents, and non-human primates to humans. Identification of this highly specialized astrocyte subtype will advance our understanding of CNS homeostasis and potentially be targeted for therapeutic intervention to combat peripheral inflammatory effects on the CNS.
Collapse
Affiliation(s)
- Philip Hasel
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK.
| | - Melissa L Cooper
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Anne E Marchildon
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Uriel Rufen-Blanchette
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Rachel D Kim
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Thong C Ma
- Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Adam M R Groh
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Emily J Hill
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Eleanor M Lewis
- UK Dementia Research Institute at the University of Edinburgh, Edinburgh, UK; Centre for Discovery Brain Sciences, School of Biomedical Sciences, College of Medicine and Veterinary Medicine, The University of Edinburgh, Edinburgh, UK
| | | | - Sarah E W Light
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Cody J Smith
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA; Center for Stem Cells and Regenerative Medicine, University of Notre Dame, Notre Dame, IN, USA
| | - Jo Anne Stratton
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montréal, QC, Canada
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Un Jung Kang
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Fresco Institute for Parkinson's and Movement Disorders, Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA
| | - Moses V Chao
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Cell Biology, NYU Grossman School of Medicine, New York, NY, USA; Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Shane A Liddelow
- Institute for Translational Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Parekh Center for Interdisciplinary Neurology, NYU Grossman School of Medicine, New York, NY, USA; Department of Neuroscience, NYU Grossman School of Medicine, New York, NY, USA; Department of Ophthalmology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
Weng WC, Xu YH, Qiu DL, Chu CP. Enhanced cerebellar climbing fiber-Purkinje cell synaptic transmission via corticotropin-releasing factor receptor 2 during the chronic phase of spinal cord injury mice. Neuroreport 2025; 36:223-229. [PMID: 39976017 DOI: 10.1097/wnr.0000000000002141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Spinal cord injury (SCI) causes interruption of external information input from the spinal cord to the cerebellum. We here investigated the effect of SCI on mouse cerebellar climbing fiber-Purkinje cell (CF-PC) synaptic transmission. The SCI was caused at T10 using 6-week-old ICR mice. Mice recovered 4 weeks after surgery, the spontaneous complex spike (CS) activity of PC was recorded using cell-attached recording and whole-cell recording method in urethane-anesthetized mice cerebellar Crus II. The CF-PC excitatory postsynaptic currents (EPSCs) were evoked by paired electrical stimulation of CF in cerebellar slices to evaluate the changes of CF-PC synaptic transmission and paired-pulse ratio (PPR). The results showed that the number of spikelets, duration of spontaneous CS, and pause of simple spike firing were significantly increased in SCI than that in sham group. Application of a nonselective corticotropin-releasing factor receptor (CRF-R) antagonist significantly decreased spontaneous CS activity in SCI group but not in sham group. The enhanced CS activity in SCI mice was significantly decreased by a selective CRF-R2 antagonist but not a specific CRF-R1 antagonist. The amplitude of CF-PC EPSC1 was large accompanied by a lower PPR in SCI group than that in sham group. Blockade of CRF-R2 antagonist significantly decreased the amplitude of EPSC1 and increased PPR in SCI group. SCI induces enhancement of the spontaneous CS activity and CF-PC synaptic transmission via CRF-R2 in mouse cerebellar cortex, which suggests that remodeling of CF-PC synaptic transmission occurred in cerebellar cortex after SCI.
Collapse
Affiliation(s)
- Wen-Cai Weng
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - Ying-Han Xu
- Department of Physiology and Pathophysiology, College of Medicine, Yanbian University, Yanji
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - De-Lai Qiu
- Brain Science Institute, Jilin Medical University, Jilin City, China
| | - Chun-Ping Chu
- Brain Science Institute, Jilin Medical University, Jilin City, China
| |
Collapse
|
8
|
John RK, Vogel SP, Zia S, Lee KV, Nguyen AT, Torres-Espin A, Fenrich KK, Ng C, Schmidt EKA, Vavrek R, Raposo PJF, Smith K, Fouad K, Plemel JR. Reawakening inflammation in the chronically injured spinal cord using lipopolysaccharide induces diverse microglial states. J Neuroinflammation 2025; 22:56. [PMID: 40022205 PMCID: PMC11871772 DOI: 10.1186/s12974-025-03379-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 02/14/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Rehabilitative training is an effective method to promote recovery following spinal cord injury (SCI), with lower training efficacy observed in the chronic stage. The increased training efficacy during the subacute period is associated with a shift towards a more adaptive or proreparative state induced by the SCI. A potential link is SCI-induced inflammation, which is elevated in the subacute period, and, as injection of lipopolysaccharide (LPS) alongside training improves recovery in chronic SCI, suggesting LPS could reopen a window of plasticity late after injury. Microglia may play a role in LPS-mediated plasticity as they react to LPS and are implicated in facilitating recovery following SCI. However, it is unknown how microglia change in response to LPS following SCI to promote neuroplasticity. MAIN BODY Here we used single-cell RNA sequencing to examine microglial responses in subacute and chronic SCI with and without an LPS injection. We show that subacute SCI is characterized by a disease-associated microglial (DAM) signature, while chronic SCI is highly heterogeneous, with both injury-induced and homeostatic states. DAM states exhibit predicted metabolic pathway activity and neuronal interactions that are associated with potential mediators of plasticity. With LPS injection, microglia shifted away from the homeostatic signature to a primed, translation-associated state and increased DAM in degenerated tracts caudal to the injury. CONCLUSION Microglial states following an inflammatory stimulus in chronic injury incompletely recapitulate the subacute injury environment, showing both overlapping and distinct microglial signatures across time and with LPS injection. Our results contribute to an understanding of how microglia and LPS-induced neuroinflammation contribute to plasticity following SCI.
Collapse
Affiliation(s)
- Rebecca K John
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sadie P Vogel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Sameera Zia
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Kelly V Lee
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada
| | - Antoinette T Nguyen
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Abel Torres-Espin
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
- School of Public Health Sciences, Faculty of Health, University of Waterloo, Waterloo, Canada
| | - Keith K Fenrich
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Carmen Ng
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Emma K A Schmidt
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Romana Vavrek
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Pamela J F Raposo
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada
| | - Keira Smith
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
| | - Karim Fouad
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Physical Therapy, Faculty of Rehabilitation Medicine, University of Alberta, Edmonton, Canada.
| | - Jason R Plemel
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada.
- Department of Medicine, Division of Neurology, University of Alberta, Edmonton, Canada.
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Canada.
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.
| |
Collapse
|
9
|
Kabdesh I, Tutova O, Akhmetzyanova E, Timofeeva A, Bilalova A, Mukhamedshina Y, Chelyshev Y. Thoracic Spinal Cord Contusion Impacts on Lumbar Enlargement: Molecular Insights. Mol Neurobiol 2025:10.1007/s12035-025-04794-9. [PMID: 40014268 DOI: 10.1007/s12035-025-04794-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 02/18/2025] [Indexed: 02/28/2025]
Abstract
Spinal cord injury (SCI) is characterized by macrostructural pathological changes in areas significantly distant from the primary injury site. The causes and mechanisms underlying these distant changes are still being explored. Identifying the causes and mechanisms of these changes in the lumbar spinal cord is particularly important for restoring motor function, especially in cases of injury to the proximal thoracic or cervical regions. This is because the lumbar region contains neural networks that play a crucial role in comprehensive locomotor outcomes. In our study, we investigated the changes in the rat lumbar spinal cord following a thoracic contusion injury. We observed an increased expression of osteopontin (OPN) in large neurons and a higher number of interneurons co-expressing parvalbumin and OPN within lamina IX of the ventral horns (VH) in the gray matter of the lumbar spinal cord post-injury. Additionally, here we noted an increased co-localization of the glial fibirillary acidic protein and S100A10 protein, a specific marker of reactive A2 astrocytes. Our findings also include changes in the expression and content of glypicans in the gray matter, a significant rise in neurotoxic M1 microglia/macrophages, alterations in the cytokine profile, and a decreased expression of the extracellular matrix molecules tenascin R and aggrecan. This research highlights the complex pathological processes occurring far from the site of SCI and attempts to provide insights into the mechanisms involving the entire spinal cord in the response to such an injury.
Collapse
Affiliation(s)
- Ilyas Kabdesh
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia.
| | - Olga Tutova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Elvira Akhmetzyanova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Anna Timofeeva
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Aizilya Bilalova
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
| | - Yana Mukhamedshina
- OpenLab "Gene and Cell Technologies", Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, 420008, Kazan, Russia
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| | - Yuri Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012, Kazan, Russia
| |
Collapse
|
10
|
Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Alvarez Ribelles A, Tsoulfas P, Venkatesh I, Blackmore MG. Single-Nuclei Sequencing Reveals a Robust Corticospinal Response to Nearby Axotomy But Overall Insensitivity to Spinal Injury. J Neurosci 2025; 45:e1508242024. [PMID: 39746824 PMCID: PMC11841758 DOI: 10.1523/jneurosci.1508-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
The ability of neurons to sense and respond to damage is crucial for maintaining homeostasis and facilitating nervous system repair. For some cell types, notably dorsal root ganglia and retinal ganglion cells, extensive profiling has uncovered a significant transcriptional response to axon injury, which influences survival and regenerative outcomes. In contrast, the injury responses of most supraspinal cell types, which display limited regeneration after spinal damage, remain mostly unknown. In this study, we used single-nuclei sequencing in adult male and female mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury induced only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Additionally, CST neurons exhibited minimal response to cervical injury but showed a much stronger reaction to intracortical axotomy, with upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neurons to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited detection of distant injuries and the subsequent modest baseline neuronal response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Manojkumar Kumaran
- Council of Scientific and Industrial Research (CSIR)-Center for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Elizabeth Batsel
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Sofia Testor-Cabrera
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | | | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, Florida 33136
| | - Ishwariya Venkatesh
- Council of Scientific and Industrial Research (CSIR)-Center for Cellular and Molecular Biology (CCMB), Hyderabad 500007, India
| | - Murray G Blackmore
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| |
Collapse
|
11
|
Wang K, Zheng J, Li R, Chen T, Ma Y, Wu P, Luo J, Zhu J, Lin W, Zhao M, Yuan Y, Ma W, Lin X, Wang Y, Liu L, Gao P, Lin H, Liu C, Liao Y, Ji Z. Single-Cell Multi-omics Assessment of Spinal Cord Injury Blocking via Cerium-doped Upconversion Antioxidant Nanoenzymes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2412526. [PMID: 39783786 PMCID: PMC11848599 DOI: 10.1002/advs.202412526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/28/2024] [Indexed: 01/12/2025]
Abstract
Spinal cord injury (SCI) impairs the central nervous system and induces the myelin-sheath-deterioration because of reactive oxygen species (ROS), further hindering the recovery of function. Herein, the simultaneously emergency treatment and dynamic luminescence severity assessment (SETLSA) strategy is designed for SCI based on cerium (Ce)-doped upconversion antioxidant nanoenzymes (Ce@UCNP-BCH). Ce@UCNP-BCH can not only efficiently eliminate the SCI localized ROS, but dynamically monitor the oxidative state in the SCI repair process using a ratiometric luminescence signal. Moreover, the classic basso mouse scale score and immunofluorescence analysis together exhibit that Ce@UCNP-BCH effectively facilitates the regeneration of spinal cord including myelin sheath, and promotes the functional recovery of SCI mice. Particularly, the study combines snATAC-eq and snRNA-seq to reveal the heterogeneity of spinal cord tissue following Ce@UCNP-BCH treatment. The findings reveal a significant increase in myelinating oligodendrocytes, as well as higher expression of myelination-related genes, and the study also reveals the gene regulatory dynamics of remyelination after treatment. Besides, the ETLSA strategy synergistically boosts ROS consumption through the superoxide dismutase (SOD)-related pathways after SOD-siRNA treatment. In conclusion, this SETLSA strategy with simultaneously blocking and dynamic monitoring oxidative stress has enriched the toolkit for promoting SCI repair.
Collapse
Affiliation(s)
- Ke Wang
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Judun Zheng
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - Ronghai Li
- BGI ResearchShenzhen518083China
- BGI ResearchHangzhou310030China
| | - Tianjun Chen
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Yanming Ma
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Ping Wu
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Jianxian Luo
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Jingyi Zhu
- Key Laboratory of Biomaterials of Guangdong Higher Education InstitutesDepartment of Biomedical Engineering, Jinan UniversityGuangzhou510632China
| | - Weiqiang Lin
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Minghai Zhao
- Molecular Diagnosis and Treatment Center for Infectious DiseasesDermatology HospitalSouthern Medical UniversityGuangzhou510091China
| | - Yue Yuan
- BGI ResearchShenzhen518083China
- BGI ResearchHangzhou310030China
| | - Wen Ma
- BGI ResearchHangzhou310030China
| | - Xiumei Lin
- BGI ResearchHangzhou310030China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Yang Wang
- BGI ResearchHangzhou310030China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Longqi Liu
- BGI ResearchShenzhen518083China
- BGI ResearchHangzhou310030China
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijing100049China
| | - Peng Gao
- BGI ResearchShenzhen518083China
- Shanxi Medical University – BGI Collaborative Center for Future MedicineShanxi Medical UniversityTaiyuan030001China
| | - Hongsheng Lin
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| | - Chuanyu Liu
- BGI ResearchShenzhen518083China
- Shanxi Medical University – BGI Collaborative Center for Future MedicineShanxi Medical UniversityTaiyuan030001China
| | - Yuhui Liao
- Institute for Engineering MedicineKunming Medical UniversityKunming650500China
| | - Zhisheng Ji
- Department of OrthopedicsThe First Affiliated HospitalJinan UniversityGuangzhou510632China
| |
Collapse
|
12
|
Chen J, Zeng X, Wang L, Zhang W, Li G, Cheng X, Su P, Wan Y, Li X. Mutual regulation of microglia and astrocytes after Gas6 inhibits spinal cord injury. Neural Regen Res 2025; 20:557-573. [PMID: 38819067 PMCID: PMC11317951 DOI: 10.4103/nrr.nrr-d-23-01130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 12/05/2023] [Accepted: 01/17/2024] [Indexed: 06/01/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202502000-00032/figure1/v/2024-05-28T214302Z/r/image-tiff Invasive inflammation and excessive scar formation are the main reasons for the difficulty in repairing nervous tissue after spinal cord injury. Microglia and astrocytes play key roles in the spinal cord injury micro-environment and share a close interaction. However, the mechanisms involved remain unclear. In this study, we found that after spinal cord injury, resting microglia (M0) were polarized into pro-inflammatory phenotypes (MG1 and MG3), while resting astrocytes were polarized into reactive and scar-forming phenotypes. The expression of growth arrest-specific 6 (Gas6) and its receptor Axl were significantly down-regulated in microglia and astrocytes after spinal cord injury. In vitro experiments showed that Gas6 had negative effects on the polarization of reactive astrocytes and pro-inflammatory microglia, and even inhibited the cross-regulation between them. We further demonstrated that Gas6 can inhibit the polarization of reactive astrocytes by suppressing the activation of the Yes-associated protein signaling pathway. This, in turn, inhibited the polarization of pro-inflammatory microglia by suppressing the activation of the nuclear factor-κB/p65 and Janus kinase/signal transducer and activator of transcription signaling pathways. In vivo experiments showed that Gas6 inhibited the polarization of pro-inflammatory microglia and reactive astrocytes in the injured spinal cord, thereby promoting tissue repair and motor function recovery. Overall, Gas6 may play a role in the treatment of spinal cord injury. It can inhibit the inflammatory pathway of microglia and polarization of astrocytes, attenuate the interaction between microglia and astrocytes in the inflammatory microenvironment, and thereby alleviate local inflammation and reduce scar formation in the spinal cord.
Collapse
Affiliation(s)
- Jiewen Chen
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiaolin Zeng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Le Wang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Wenwu Zhang
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Gang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xing Cheng
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Peiqiang Su
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Yong Wan
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| | - Xiang Li
- Department of Spine Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
- Guangdong Province Key Laboratory of Orthopedics and Traumatology, Guangzhou, Guangdong Province, China
| |
Collapse
|
13
|
Rau CS, Wu SC, Kuo PJ, Lin CW, Lu TH, Wu YC, Tsai CW, Hsieh CH. Tracking adipose-derived stem cell exosomes applied in a mouse crush injury model: insights from fluorescent labeling and spatial transcriptomics - an experimental study. Int J Surg 2025; 111:1860-1873. [PMID: 39705130 DOI: 10.1097/js9.0000000000002166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 11/12/2024] [Indexed: 12/22/2024]
Abstract
Adipose-derived stem cell exosomes (ADSC-exos) are promising for nerve regeneration; however, their precise mechanisms remain unclear. This study employed fluorescent labeling and spatial transcriptomics to track the effects of ADSC-exos on crushed sciatic nerves in mice. Labeled exosomes were detected in spinal neurons and proximal nerve segments after application. Spatial transcriptomics revealed significant changes in gene expression, with an upregulation of neurons and Schwann cells and the downregulation of oligodendrocytes. The key pathways affected were prosaposin, pleiotrophin, fibroblast growth factor, secreted phosphoprotein 1, SLIT and NTRK-like family, member, vascular endothelial growth factor, and growth arrest-specific protein. ADSC-exo treatment enhanced cell-cell interactions, particularly between Schwann cells and astrocytes, thereby promoting a regenerative environment. Gene ontology analysis suggested improvements in metabolic activity, cell communication, and structural support. This study highlights the complex interplay between multiple cell types and signaling pathways involved in the nerve regeneration response to ADSC-exos. This comprehensive approach offers new perspectives on the role of ADSC-exos in nerve regeneration and paves the way for advanced regenerative strategies for peripheral nerve injuries.
Collapse
Affiliation(s)
- Cheng-Shyuan Rau
- Department of Neurosurgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shao-Chun Wu
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Pao-Jen Kuo
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wei Lin
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Tsu-Hsiang Lu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yi-Chan Wu
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chia-Wen Tsai
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Hua Hsieh
- Department of Plastic Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
14
|
Siebert JR, Kennedy K, Osterhout DJ. Neurons Are Not All the Same: Diversity in Neuronal Populations and Their Intrinsic Responses to Spinal Cord Injury. ASN Neuro 2025; 17:2440299. [PMID: 39819292 PMCID: PMC11877619 DOI: 10.1080/17590914.2024.2440299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025] Open
Abstract
Functional recovery following spinal cord injury will require the regeneration and repair of damaged neuronal pathways. It is well known that the tissue response to injury involves inflammation and the formation of a glial scar at the lesion site, which significantly impairs the capacity for neuronal regeneration and functional recovery. There are initial attempts by both supraspinal and intraspinal neurons to regenerate damaged axons, often influenced by the neighboring tissue pathology. Many experimental therapeutic strategies are targeted to further stimulate the initial axonal regrowth, with little consideration for the diversity of the affected neuronal populations. Notably, recent studies reveal that the neuronal response to injury is variable, based on multiple factors, including the location of the injury with respect to the neuronal cell bodies and the affected neuronal populations. New insights into regenerative mechanisms have shown that neurons are not homogenous but instead exhibit a wide array of diversity in their gene expression, physiology, and intrinsic responses to injury. Understanding this diverse intrinsic response is crucial, as complete functional recovery requires the successful coordinated regeneration and reorganization of various neuron pathways.
Collapse
Affiliation(s)
- Justin R. Siebert
- Physician Assistant Studies Program, Department of Health Care and Administration, Slippery Rock University of Pennsylvania, Slippery Rock, PA, USA
| | - Kiersten Kennedy
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Donna J. Osterhout
- Department of Cell & Developmental Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
15
|
Liu X, Li Z, Tong J, Wu F, Jin H, Liu K. Characterization of the Expressions and m6A Methylation Modification Patterns of mRNAs and lncRNAs in a Spinal Cord Injury Rat Model. Mol Neurobiol 2025; 62:806-818. [PMID: 38907070 PMCID: PMC11711147 DOI: 10.1007/s12035-024-04297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Spinal cord injury (SCI) is a serious central nervous system disease with no effective treatment strategy presently due to its complex pathogenic mechanism. N6-methyladenosine (m6A) methylation modification plays an important role in diverse physiological and pathological processes. However, our understanding of the potential mechanisms of messenger RNA (mRNA) and long non-coding RNAs (lncRNA) m6A methylation in SCI is currently limited. Here, comprehensive m6A profiles and gene expression patterns of mRNAs and lncRNAs in spinal cord tissues after SCI were identified using microarray analysis of immunoprecipitated methylated RNAs. A total of 3745 mRNAs (2343 hypermethylated and 1402 hypomethylated) and 738 lncRNAs (488 hypermethylated and 250 hypomethylated) were differentially methylated with m6A modifications in the SCI and sham rats. Functional analysis revealed that differentially m6A-modified mRNAs were mainly involved in immune inflammatory response, nervous system development, and focal adhesion pathway. In contrast, differentially m6A-modified lncRNAs were mainly related to antigen processing and presentation, the apoptotic process, and the mitogen-activated protein kinases (MAPKs) signaling pathway. In addition, combined analysis of m6A methylation and RNA expression results revealed that 1636 hypermethylated mRNAs and 262 hypermethylated lncRNAs were up-regulated, and 1571 hypomethylated mRNAs and 204 lncRNAs were down-regulated. Furthermore, we validated the altered levels of m6A methylation and RNA expression of five mRNAs (CD68, Gpnmb, Lilrb4, Lamp5, and Snap25) and five lncRNAs (XR_360518, uc.393 + , NR_131064, uc.280 - , and XR_597251) using MeRIP-qPCR and qRT-PCR. This study expands our understanding of the molecular mechanisms underlying m6A modification in SCI and provides novel insights to promote functional recovery after SCI.
Collapse
Affiliation(s)
- Xin Liu
- Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, 518040, Guangdong, China
| | - Zhiling Li
- Department of Traditional Chinese Medicine, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Juncheng Tong
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Fan Wu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China
| | - Hui Jin
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People's Hospital, Shenzhen, 518112, Guangdong, China.
- Research Centre, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, China.
| | - Kaiqing Liu
- Shenzhen Luohu Hospital Group, The Third Affiliated Hospital of Shenzhen University, Shenzhen, 518000, China.
| |
Collapse
|
16
|
Nagarajan G, Zhang Y. Distinct expression profile reveals glia involvement in the trigeminal system attributing to post-traumatic headache. J Headache Pain 2024; 25:203. [PMID: 39578726 PMCID: PMC11585153 DOI: 10.1186/s10194-024-01897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 10/23/2024] [Indexed: 11/24/2024] Open
Abstract
BACKGROUND Post-traumatic headache (PTH) is a common comorbid symptom affecting at least one-third of patients with mild traumatic brain injury (mTBI). While neuroinflammation is known to contribute to the development of PTH, the cellular mechanisms in the trigeminal system crucial for understanding the pathogenesis of PTH remain unclear. METHODS A non-invasive repetitive mTBI (4 times with a 24-h interval) was induced in male mice and effect of mTBI was tested on either bregma or pre-bregma position on the head. Periorbital allodynia and spontaneous pain behavior were assessed using von Frey test and grimace score, respectively. Quantitative PCR was used to assess extent of mTBI pathology. RNA sequencing was performed to obtain transcriptomic profile of the trigeminal ganglion (TG), trigeminal nucleus caudalis (Sp5C) and periaqueductal gray (PAG) at 7 days post-TBI. Subsequently, quantitative PCR, in situ hybridization and immunohistochemistry were used to examine mRNA and protein expression of glia specific markers and pain associated molecules. RESULTS The repetitive impacts at the bregma, but not pre-bregma site led to periorbital hypersensitivity, which was correlated with enhanced inflammatory gene expression in multiple brain regions. RNA sequencing revealed mTBI induced distinct transcriptomic profiles in the peripheral TG and central Sp5C and PAG. Using gene set enrichment analysis, positive enrichment of non-neuronal cells in the TG and neuroinflammation in the Sp5C were identified to be essential in the pathogenesis of PTH. In situ assays also revealed that gliosis of satellite glial cells in the TG and astrocytes in the Sp5C were prominent days after injury. Furthermore, immunohistochemical study revealed a close interaction between activated microglia and reactive astrocytes correlating with increased calretinin interneurons in the Sp5C. CONCLUSIONS Transcriptomics analysis indicated that non-neuronal cells in peripheral TG and successive in situ assays revealed that glia in the central Sp5C are crucial in modulating headache-like symptoms. Thus, selective targeting of glia cells can be a therapeutic strategy for PTH attributed to repetitive mTBI.
Collapse
Affiliation(s)
- Gurueswar Nagarajan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 6720A Rockledge Dr, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA
| | - Yumin Zhang
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD, 20814, USA.
| |
Collapse
|
17
|
Galindo-Hernández R, Rodríguez-Vázquez K, Galán-Vásquez E, Hernández Castellanos CI. Online-adjusted evolutionary biclustering algorithm to identify significant modules in gene expression data. Brief Bioinform 2024; 26:bbae681. [PMID: 39749664 PMCID: PMC11695933 DOI: 10.1093/bib/bbae681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Analyzing gene expression data helps the identification of significant biological relationships in genes. With a growing number of open biological datasets available, it is paramount to use reliable and innovative methods to perform in-depth analyses of biological data and ensure that informed decisions are made based on accurate information. Evolutionary algorithms have been successful in the analysis of biological datasets. However, there is still room for improvement, and further analysis should be conducted. In this work, we propose Online-Adjusted EVOlutionary Biclustering algorithm (OAEVOB), a novel evolutionary-based biclustering algorithm that efficiently handles vast gene expression data. OAEVOB incorporates an online-adjustment feature that efficiently identifies significant groups by updating the mutation probability and crossover parameters. We utilize measurements such as Pearson correlation, distance correlation, biweight midcorrelation, and mutual information to assess the similarity of genes in the biclusters. Algorithms in the specialized literature do not address generalization to diverse gene expression sources. Therefore, to evaluate OAEVOB's performance, we analyzed six gene expression datasets obtained from diverse sequencing data sources, specifically Deoxyribonucleic Acid microarray, Ribonucleic Acid (RNA) sequencing, and single-cell RNA sequencing, which are subject to a thorough examination. OAEVOB identified significant broad gene expression biclusters with correlations greater than $0.5$ across all similarity measurements employed. Additionally, when biclusters are evaluated by functional enrichment analysis, they exhibit biological functions, suggesting that OAEVOB effectively identifies biclusters with specific cancer and tissue-related genes in the analyzed datasets. We compared the OAEVOB's performance with state-of-the-art methods and outperformed them showing robustness to noise, overlapping, sequencing data sources, and gene coverage.
Collapse
Affiliation(s)
- Raúl Galindo-Hernández
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico city, México
| | - Katya Rodríguez-Vázquez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico city, México
| | - Edgardo Galán-Vásquez
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico city, México
| | - Carlos Ignacio Hernández Castellanos
- Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, Universidad Nacional Autónoma de México, Circuito Escolar, Ciudad Universitaria, 04510 Mexico city, México
| |
Collapse
|
18
|
Iyer L, Johnson K, Collier S, Koretsky AP, Petrus E. Post-Critical Period Transcriptional and Physiological Adaptations of Thalamocortical Connections after Sensory Loss. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624130. [PMID: 39876977 PMCID: PMC11774545 DOI: 10.1101/2024.11.19.624130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Unilateral whisker denervation activates plasticity mechanisms and circuit adaptations in adults. Single nucleus RNA sequencing and multiplex fluorescence in situ hybridization revealed differentially expressed genes related to altered glutamate receptor distributions and synaptogenesis in thalamocortical (TC) recipient layer 4 (L4) neurons of the sensory cortex, specifically those receiving input from the intact whiskers after whisker denervation. Electrophysiology detected increased spontaneous excitatory events at L4 neurons, confirming an increase in synaptic connections. Elevated expression levels of Gria2 mRNA and functional GluA2 subunit of AMPA receptors at the TC synapse indicate the presence of stabilized and potentiated TC synapses to L4 excitatory neurons along the intact pathway after unilateral whisker denervation. These adaptations likely underlie the increased cortical activity observed in rodents during intact whisker sensation after unilateral whisker denervation. Our findings provide new insights into the mechanisms by which the adult brain supports recovery after unilateral sensory loss.
Collapse
|
19
|
Zucha D, Abaffy P, Kirdajova D, Jirak D, Kubista M, Anderova M, Valihrach L. Spatiotemporal transcriptomic map of glial cell response in a mouse model of acute brain ischemia. Proc Natl Acad Sci U S A 2024; 121:e2404203121. [PMID: 39499634 PMCID: PMC11573666 DOI: 10.1073/pnas.2404203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/30/2024] [Indexed: 11/07/2024] Open
Abstract
The role of nonneuronal cells in the resolution of cerebral ischemia remains to be fully understood. To decode key molecular and cellular processes that occur after ischemia, we performed spatial and single-cell transcriptomic profiling of the male mouse brain during the first week of injury. Cortical gene expression was severely disrupted, defined by inflammation and cell death in the lesion core, and glial scar formation orchestrated by multiple cell types on the periphery. The glial scar was identified as a zone with intense cell-cell communication, with prominent ApoE-Trem2 signaling pathway modulating microglial activation. For each of the three major glial populations, an inflammatory-responsive state, resembling the reactive states observed in neurodegenerative contexts, was observed. The recovered spectrum of ischemia-induced oligodendrocyte states supports the emerging hypothesis that oligodendrocytes actively respond to and modulate the neuroinflammatory stimulus. The findings are further supported by analysis of other spatial transcriptomic datasets from different mouse models of ischemic brain injury. Collectively, we present a landmark transcriptomic dataset accompanied by interactive visualization that provides a comprehensive view of spatiotemporal organization of processes in the postischemic mouse brain.
Collapse
Affiliation(s)
- Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Department of Informatics and Chemistry, Faculty of Chemical Technology, University of Chemistry and Technology, Prague 16000, Czech Republic
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Denisa Kirdajova
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Daniel Jirak
- Department of Radiodiagnostic and Interventional Radiology, Institute of Clinical and Experimental Medicine, Prague 14021, Czech Republic
- Faculty of Health Studies, Technical University of Liberec, Liberec 46001, Czech Republic
| | - Mikael Kubista
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| | - Miroslava Anderova
- Department of Cellular Neurophysiology, Institute of Experimental Medicine of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology of the Czech Academy of Sciences, Vestec 25250, Czech Republic
| |
Collapse
|
20
|
Ocón B, Xiang M, Bi Y, Tan S, Brulois K, Ayesha A, Kunte M, Zhou C, LaJevic M, Lazarus N, Mengoni F, Sharma T, Montgomery S, Hooper JE, Huang M, Handel T, Dawson JRD, Kufareva I, Zabel BA, Pan J, Butcher EC. A lymphocyte chemoaffinity axis for lung, non-intestinal mucosae and CNS. Nature 2024; 635:736-745. [PMID: 39293486 PMCID: PMC11887596 DOI: 10.1038/s41586-024-08043-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024]
Abstract
Tissue-selective chemoattractants direct lymphocytes to epithelial surfaces to establish local immune environments, regulate immune responses to food antigens and commensal organisms, and protect from pathogens. Homeostatic chemoattractants for small intestines, colon and skin are known1,2, but chemotropic mechanisms selective for respiratory tract and other non-intestinal mucosal tissues remain poorly understood. Here we leveraged diverse omics datasets to identify GPR25 as a lymphocyte receptor for CXCL17, a chemoattractant cytokine whose expression by epithelial cells of airways, upper gastrointestinal and squamous mucosae unifies the non-intestinal mucosal tissues and distinguishes them from intestinal mucosae. Single-cell transcriptomic analyses show that GPR25 is induced on innate lymphocytes before emigration to the periphery, and is imprinted in secondary lymphoid tissues on activated B and T cells responding to immune challenge. GPR25 characterizes B and T tissue resident memory cells and regulatory T lymphocytes in non-intestinal mucosal tissues and lungs in humans and mediates lymphocyte homing to barrier epithelia of the airways, oral cavity, stomach, and biliary and genitourinary tracts in mouse models. GPR25 is also expressed by T cells in cerebrospinal fluid and CXCL17 by neurons, suggesting a role in central nervous system (CNS) immune regulation. We reveal widespread imprinting of GPR25 on regulatory T cells, suggesting a mechanistic link to population genetics evidence that GPR25 is protective in autoimmunity3,4. Our results define a GPR25-CXCL17 chemoaffinity axis with the potential to integrate immunity and tolerance at non-intestinal mucosae and the CNS.
Collapse
Affiliation(s)
- Borja Ocón
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Menglan Xiang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Yuhan Bi
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Serena Tan
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kevin Brulois
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Aiman Ayesha
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Manali Kunte
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Catherine Zhou
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Melissa LaJevic
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Nicole Lazarus
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Francesca Mengoni
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Tanya Sharma
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Stephen Montgomery
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jody E Hooper
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mian Huang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Tracy Handel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - John R D Dawson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Irina Kufareva
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Brian A Zabel
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Junliang Pan
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Eugene C Butcher
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| |
Collapse
|
21
|
Hilton BJ, Griffin JM, Fawcett JW, Bradke F. Neuronal maturation and axon regeneration: unfixing circuitry to enable repair. Nat Rev Neurosci 2024; 25:649-667. [PMID: 39164450 DOI: 10.1038/s41583-024-00849-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 08/22/2024]
Abstract
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
Collapse
Affiliation(s)
- Brett J Hilton
- Department of Cellular and Physiological Sciences, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada.
- International Collaboration on Repair Discoveries (ICORD), University of British Columbia, Vancouver, British Columbia, Canada.
- Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.
| | - Jarred M Griffin
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - James W Fawcett
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, University of Cambridge, Cambridge, UK.
- Centre for Reconstructive Neuroscience, Institute for Experimental Medicine Czech Academy of Science (CAS), Prague, Czechia.
| | - Frank Bradke
- Laboratory for Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.
| |
Collapse
|
22
|
Yue WWS, Touhara KK, Toma K, Duan X, Julius D. Endogenous opioid signalling regulates spinal ependymal cell proliferation. Nature 2024; 634:407-414. [PMID: 39294372 DOI: 10.1038/s41586-024-07889-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/31/2024] [Indexed: 09/20/2024]
Abstract
After injury, mammalian spinal cords develop scars to confine the lesion and prevent further damage. However, excessive scarring can hinder neural regeneration and functional recovery1,2. These competing actions underscore the importance of developing therapeutic strategies to dynamically modulate scar progression. Previous research on scarring has primarily focused on astrocytes, but recent evidence has suggested that ependymal cells also participate. Ependymal cells normally form the epithelial layer encasing the central canal, but they undergo massive proliferation and differentiation into astroglia following certain injuries, becoming a core scar component3-7. However, the mechanisms regulating ependymal proliferation in vivo remain unclear. Here we uncover an endogenous κ-opioid signalling pathway that controls ependymal proliferation. Specifically, we detect expression of the κ-opioid receptor, OPRK1, in a functionally under-characterized cell type known as cerebrospinal fluid-contacting neuron (CSF-cN). We also discover a neighbouring cell population that expresses the cognate ligand prodynorphin (PDYN). Whereas κ-opioids are typically considered inhibitory, they excite CSF-cNs to inhibit ependymal proliferation. Systemic administration of a κ-antagonist enhances ependymal proliferation in uninjured spinal cords in a CSF-cN-dependent manner. Moreover, a κ-agonist impairs ependymal proliferation, scar formation and motor function following injury. Together, our data suggest a paracrine signalling pathway in which PDYN+ cells tonically release κ-opioids to stimulate CSF-cNs and suppress ependymal proliferation, revealing an endogenous mechanism and potential pharmacological strategy for modulating scarring after spinal cord injury.
Collapse
Affiliation(s)
- Wendy W S Yue
- Department of Physiology, University of California, San Francisco, CA, USA.
| | - Kouki K Touhara
- Department of Physiology, University of California, San Francisco, CA, USA
| | - Kenichi Toma
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - Xin Duan
- Department of Ophthalmology, University of California, San Francisco, CA, USA
| | - David Julius
- Department of Physiology, University of California, San Francisco, CA, USA.
| |
Collapse
|
23
|
Fait BW, Cotto B, Murakami TC, Hagemann-Jensen M, Zhan H, Freivald C, Turbek I, Gao Y, Yao Z, Way SW, Zeng H, Tasic B, Steward O, Heintz N, Schmidt EF. Spontaneously regenerative corticospinal neurons in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612115. [PMID: 39314356 PMCID: PMC11419066 DOI: 10.1101/2024.09.09.612115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The spinal cord receives inputs from the cortex via corticospinal neurons (CSNs). While predominantly a contralateral projection, a less-investigated minority of its axons terminate in the ipsilateral spinal cord. We analyzed the spatial and molecular properties of these ipsilateral axons and their post-synaptic targets in mice and found they project primarily to the ventral horn, including directly to motor neurons. Barcode-based reconstruction of the ipsilateral axons revealed a class of primarily bilaterally-projecting CSNs with a distinct cortical distribution. The molecular properties of these ipsilaterally-projecting CSNs (IP-CSNs) are strikingly similar to the previously described molecular signature of embryonic-like regenerating CSNs. Finally, we show that IP-CSNs are spontaneously regenerative after spinal cord injury. The discovery of a class of spontaneously regenerative CSNs may prove valuable to the study of spinal cord injury. Additionally, this work suggests that the retention of juvenile-like characteristics may be a widespread phenomenon in adult nervous systems.
Collapse
|
24
|
Peng R, Zhang L, Xie Y, Guo S, Cao X, Yang M. Spatial multi-omics analysis of the microenvironment in traumatic spinal cord injury: a narrative review. Front Immunol 2024; 15:1432841. [PMID: 39267742 PMCID: PMC11390538 DOI: 10.3389/fimmu.2024.1432841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 09/15/2024] Open
Abstract
Traumatic spinal cord injury (tSCI) is a severe injury to the central nervous system that is categorized into primary and secondary injuries. Among them, the local microenvironmental imbalance in the spinal cord caused by secondary spinal cord injury includes accumulation of cytokines and chemokines, reduced angiogenesis, dysregulation of cellular energy metabolism, and dysfunction of immune cells at the site of injury, which severely impedes neurological recovery from spinal cord injury (SCI). In recent years, single-cell techniques have revealed the heterogeneity of multiple immune cells at the genomic, transcriptomic, proteomic, and metabolomic levels after tSCI, further deepening our understanding of the mechanisms underlying tSCI. However, spatial information about the tSCI microenvironment, such as cell location and cell-cell interactions, is lost in these approaches. The application of spatial multi-omics technology can solve this problem by combining the data obtained from immunohistochemistry and multiparametric analysis to reveal the changes in the microenvironment at different times of secondary injury after SCI. In this review, we systematically review the progress of spatial multi-omics techniques in the study of the microenvironment after SCI, including changes in the immune microenvironment and discuss potential future therapeutic strategies.
Collapse
Affiliation(s)
- Run Peng
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Liang Zhang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Yongqi Xie
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Shuang Guo
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Rehabilitation, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xinqi Cao
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
| | - Mingliang Yang
- School of Rehabilitation Medicine, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation, Research Center, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
25
|
Weber RZ, Buil BA, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Zlokovic BV, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608971. [PMID: 39229128 PMCID: PMC11370539 DOI: 10.1101/2024.08.21.608971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| | - Ruslan Rust
- Institute for Regenerative Medicine, University of Zurich, Schlieren, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, Switzerland
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, USA
| |
Collapse
|
26
|
Saraswathy VM, Zhou L, Mokalled MH. Single-cell analysis of innate spinal cord regeneration identifies intersecting modes of neuronal repair. Nat Commun 2024; 15:6808. [PMID: 39147780 PMCID: PMC11327264 DOI: 10.1038/s41467-024-50628-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 07/11/2024] [Indexed: 08/17/2024] Open
Abstract
Adult zebrafish have an innate ability to recover from severe spinal cord injury. Here, we report a comprehensive single nuclear RNA sequencing atlas that spans 6 weeks of regeneration. We identify cooperative roles for adult neurogenesis and neuronal plasticity during spinal cord repair. Neurogenesis of glutamatergic and GABAergic neurons restores the excitatory/inhibitory balance after injury. In addition, a transient population of injury-responsive neurons (iNeurons) show elevated plasticity 1 week post-injury. We found iNeurons are injury-surviving neurons that acquire a neuroblast-like gene expression signature after injury. CRISPR/Cas9 mutagenesis showed iNeurons are required for functional recovery and employ vesicular trafficking as an essential mechanism that underlies neuronal plasticity. This study provides a comprehensive resource of the cells and mechanisms that direct spinal cord regeneration and establishes zebrafish as a model of plasticity-driven neural repair.
Collapse
Affiliation(s)
- Vishnu Muraleedharan Saraswathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Lili Zhou
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA
| | - Mayssa H Mokalled
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Hope Center for Neurological Disorders, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
27
|
Garcia-Ramirez DL, McGrath JR, Ha NT, Wheel JH, Atoche SJ, Yao L, Stachowski NJ, Giszter SF, Dougherty KJ. Covert actions of epidural stimulation on spinal locomotor circuits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599598. [PMID: 38948733 PMCID: PMC11213016 DOI: 10.1101/2024.06.18.599598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Spinal circuitry produces the rhythm and patterning of locomotion. However, both descending and sensory inputs are required to initiate and adapt locomotion to the environment. Spinal cord injury (SCI) disrupts descending controls of the spinal cord, producing paralysis. Epidural stimulation (ES) is a promising clinical therapy for motor control recovery and is capable of reactivating the lumbar spinal locomotor networks, yet little is known about the effects of ES on locomotor neurons. Previously, we found that both sensory afferent pathways and serotonin exert mixed excitatory and inhibitory actions on lumbar interneurons involved in the generation of the locomotor rhythm, identified by the transcription factor Shox2. However, after chronic complete SCI, sensory afferent inputs to Shox2 interneurons become almost exclusively excitatory and Shox2 interneurons are supersensitive to serotonin. Here, we investigated the effects of ES on these SCI-induced changes. Inhibitory input from sensory pathways to Shox2 interneurons was maintained and serotonin supersensitivity was not observed in SCI mice that received daily sub-motor threshold ES. Interestingly, the effects of ES were maintained for at least three weeks after the ES was discontinued. In contrast, the effects of ES were not observed in Shox2 interneurons from mice that received ES after the establishment of the SCI-induced changes. Our results demonstrate mechanistic actions of ES at the level of identified spinal locomotor circuit neurons and the effectiveness of early treatment with ES on preservation of spinal locomotor circuitry after SCI, suggesting possible therapeutic benefits prior to the onset of motor rehabilitation.
Collapse
|
28
|
Woo MS, Bal LC, Winschel I, Manca E, Walkenhorst M, Sevgili B, Sonner JK, Di Liberto G, Mayer C, Binkle-Ladisch L, Rothammer N, Unger L, Raich L, Hadjilaou A, Noli B, Manai AL, Vieira V, Meurs N, Wagner I, Pless O, Cocco C, Stephens SB, Glatzel M, Merkler D, Friese MA. The NR4A2/VGF pathway fuels inflammation-induced neurodegeneration via promoting neuronal glycolysis. J Clin Invest 2024; 134:e177692. [PMID: 39145444 PMCID: PMC11324305 DOI: 10.1172/jci177692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 06/11/2024] [Indexed: 08/16/2024] Open
Abstract
A disturbed balance between excitation and inhibition (E/I balance) is increasingly recognized as a key driver of neurodegeneration in multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. To understand how chronic hyperexcitability contributes to neuronal loss in MS, we transcriptionally profiled neurons from mice lacking inhibitory metabotropic glutamate signaling with shifted E/I balance and increased vulnerability to inflammation-induced neurodegeneration. This revealed a prominent induction of the nuclear receptor NR4A2 in neurons. Mechanistically, NR4A2 increased susceptibility to excitotoxicity by stimulating continuous VGF secretion leading to glycolysis-dependent neuronal cell death. Extending these findings to people with MS (pwMS), we observed increased VGF levels in serum and brain biopsies. Notably, neuron-specific deletion of Vgf in a mouse model of MS ameliorated neurodegeneration. These findings underscore the detrimental effect of a persistent metabolic shift driven by excitatory activity as a fundamental mechanism in inflammation-induced neurodegeneration.
Collapse
Affiliation(s)
- Marcel S. Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C. Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Winschel
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Elias Manca
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Mark Walkenhorst
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bachar Sevgili
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K. Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Giovanni Di Liberto
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lisa Unger
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Alexandros Hadjilaou
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Protozoa Immunology, Bernhard-Nocht-Institute for Tropical Medicine (BNITM), Hamburg, Germany
| | - Barbara Noli
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Antonio L. Manai
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nina Meurs
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Ole Pless
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Hamburg, Germany
| | - Cristina Cocco
- Department of Biomedical Sciences, NEF-Laboratory, University of Cagliari, Monserrato, Cagliari, Italy
| | - Samuel B. Stephens
- Department of Internal Medicine, Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Manuel A. Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
29
|
Wang Z, Kumaran M, Batsel E, Testor-Cabrera S, Beine Z, Ribelles AA, Tsoulfas P, Venkatesh I, Blackmore MG. Injury distance limits the transcriptional response to spinal injury. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.27.596075. [PMID: 38854133 PMCID: PMC11160615 DOI: 10.1101/2024.05.27.596075] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The ability of neurons to sense and respond to damage is fundamental to homeostasis and nervous system repair. For some cell types, notably dorsal root ganglia (DRG) and retinal ganglion cells (RGCs), extensive profiling has revealed a large transcriptional response to axon injury that determines survival and regenerative outcomes. In contrast, the injury response of most supraspinal cell types, whose limited regeneration constrains recovery from spinal injury, is mostly unknown. Here we employed single-nuclei sequencing in mice to profile the transcriptional responses of diverse supraspinal cell types to spinal injury. Surprisingly, thoracic spinal injury triggered only modest changes in gene expression across all populations, including corticospinal tract (CST) neurons. Moreover, CST neurons also responded minimally to cervical injury but much more strongly to intracortical axotomy, including upregulation of numerous regeneration and apoptosis-related transcripts shared with injured DRG and RGC neurons. Thus, the muted response of CST neuron to spinal injury is linked to the injury's distal location, rather than intrinsic cellular characteristics. More broadly, these findings indicate that a central challenge for enhancing regeneration after a spinal injury is the limited sensing of distant injuries and the subsequent modest baseline neuronal response.
Collapse
Affiliation(s)
- Zimei Wang
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | - Manojkumar Kumaran
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | - Elizabeth Batsel
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Zac Beine
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI
| | | | - Pantelis Tsoulfas
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ishwariya Venkatesh
- Council of Scientific and Industrial Research (CSIR) – Center for Cellular and Molecular Biology (CCMB), Hyderabad, Telangana, India
| | | |
Collapse
|
30
|
Bi Y, Duan W, Silver J. Collagen I is a critical organizer of scarring and CNS regeneration failure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.07.592424. [PMID: 38766123 PMCID: PMC11100746 DOI: 10.1101/2024.05.07.592424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Although axotomized neurons retain the ability to initiate the formation of growth cones and attempt to regenerate after spinal cord injury, the scar area formed as a result of the lesion in most adult mammals contains a variety of reactive cells that elaborate multiple extracellular matrix and enzyme components that are not suitable for regrowth 1,2 . Newly migrating axons in the vicinity of the scar utilize upregulated LAR family receptor protein tyrosine phosphatases, such as PTPσ, to associate with extracellular chondroitin sulphate proteoglycans (CSPGs), which have been discovered to tightly entrap the regrowing axon tip and transform it into a dystrophic non-growing endball. The scar is comprised of two compartments, one in the lesion penumbra, the glial scar, composed of reactive microglia, astrocytes and OPCs; and the other in the lesion epicenter, the fibrotic scar, which is made up of fibroblasts, pericytes, endothelial cells and inflammatory cells. While the fibrotic scar is known to be strongly inhibitory, even more so than the glial scar, the molecular determinants that curtail axon elongation through the injury core are largely uncharacterized. Here, we show that one sole member of the entire family of collagens, collagen I, creates an especially potent inducer of endball formation and regeneration failure. The inhibitory signaling is mediated by mechanosensitive ion channels and RhoA activation. Staggered systemic administration of two blood-brain barrier permeable-FDA approved drugs, aspirin and pirfenidone, reduced fibroblast incursion into the complete lesion and dramatically decreased collagen I, as well as CSPG deposition which were accompanied by axonal growth and considerable functional recovery. The anatomical substrate for robust axonal regeneration was provided by laminin producing GFAP + and NG2 + bridging cells that spanned the wound. Our results reveal a collagen I-mechanotransduction axis that regulates axonal regrowth in spinal cord injury and raise a promising strategy for rapid clinical application.
Collapse
|
31
|
Dominguez-Bajo A, Clotman F. Potential Roles of Specific Subclasses of Premotor Interneurons in Spinal Cord Function Recovery after Traumatic Spinal Cord Injury in Adults. Cells 2024; 13:652. [PMID: 38667267 PMCID: PMC11048910 DOI: 10.3390/cells13080652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 04/28/2024] Open
Abstract
The differential expression of transcription factors during embryonic development has been selected as the main feature to define the specific subclasses of spinal interneurons. However, recent studies based on single-cell RNA sequencing and transcriptomic experiments suggest that this approach might not be appropriate in the adult spinal cord, where interneurons show overlapping expression profiles, especially in the ventral region. This constitutes a major challenge for the identification and direct targeting of specific populations that could be involved in locomotor recovery after a traumatic spinal cord injury in adults. Current experimental therapies, including electrical stimulation, training, pharmacological treatments, or cell implantation, that have resulted in improvements in locomotor behavior rely on the modulation of the activity and connectivity of interneurons located in the surroundings of the lesion core for the formation of detour circuits. However, very few publications clarify the specific identity of these cells. In this work, we review the studies where premotor interneurons were able to create new intraspinal circuits after different kinds of traumatic spinal cord injury, highlighting the difficulties encountered by researchers, to classify these populations.
Collapse
Affiliation(s)
- Ana Dominguez-Bajo
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| | - Frédéric Clotman
- Université catholique de Louvain, Louvain Institute of Biomolecular Science and Technology (LIBST), Animal Molecular and Cellular Biology Group (AMCB), Place Croix du Sud 4–5, 1348 Louvain la Neuve, Belgium
| |
Collapse
|
32
|
Donovan LJ, Bridges CM, Nippert AR, Wang M, Wu S, Forman TE, Haight ES, Huck NA, Bond SF, Jordan CE, Gardner AM, Nair RV, Tawfik VL. Repopulated spinal cord microglia exhibit a unique transcriptome and contribute to pain resolution. Cell Rep 2024; 43:113683. [PMID: 38261512 PMCID: PMC10947777 DOI: 10.1016/j.celrep.2024.113683] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 11/15/2023] [Accepted: 01/02/2024] [Indexed: 01/25/2024] Open
Abstract
Microglia are implicated as primarily detrimental in pain models; however, they exist across a continuum of states that contribute to homeostasis or pathology depending on timing and context. To clarify the specific contribution of microglia to pain progression, we take advantage of a temporally controlled transgenic approach to transiently deplete microglia. Unexpectedly, we observe complete resolution of pain coinciding with microglial repopulation rather than depletion. We find that repopulated mouse spinal cord microglia are morphologically distinct from control microglia and exhibit a unique transcriptome. Repopulated microglia from males and females express overlapping networks of genes related to phagocytosis and response to stress. We intersect the identified mouse genes with a single-nuclei microglial dataset from human spinal cord to identify human-relevant genes that may ultimately promote pain resolution after injury. This work presents a comprehensive approach to gene discovery in pain and provides datasets for the development of future microglial-targeted therapeutics.
Collapse
Affiliation(s)
- Lauren J Donovan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Caldwell M Bridges
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amy R Nippert
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Meng Wang
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Shaogen Wu
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Thomas E Forman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Elena S Haight
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Nolan A Huck
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Sabrina F Bond
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Claire E Jordan
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Aysha M Gardner
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Vivianne L Tawfik
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Lentilhas-Graça J, Santos DJ, Afonso J, Monteiro A, Pinho AG, Mendes VM, Dias MS, Gomes ED, Lima R, Fernandes LS, Fernandes-Amorim F, Pereira IM, de Sousa N, Cibrão JR, Fernandes AM, Serra SC, Rocha LA, Campos J, Pinho TS, Monteiro S, Manadas B, Salgado AJ, Almeida RD, Silva NA. The secretome of macrophages has a differential impact on spinal cord injury recovery according to the polarization protocol. Front Immunol 2024; 15:1354479. [PMID: 38444856 PMCID: PMC10912310 DOI: 10.3389/fimmu.2024.1354479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024] Open
Abstract
Introduction The inflammatory response after spinal cord injury (SCI) is an important contributor to secondary damage. Infiltrating macrophages can acquire a spectrum of activation states, however, the microenvironment at the SCI site favors macrophage polarization into a pro-inflammatory phenotype, which is one of the reasons why macrophage transplantation has failed. Methods In this study, we investigated the therapeutic potential of the macrophage secretome for SCI recovery. We investigated the effect of the secretome in vitro using peripheral and CNS-derived neurons and human neural stem cells. Moreover, we perform a pre-clinical trial using a SCI compression mice model and analyzed the recovery of motor, sensory and autonomic functions. Instead of transplanting the cells, we injected the paracrine factors and extracellular vesicles that they secrete, avoiding the loss of the phenotype of the transplanted cells due to local environmental cues. Results We demonstrated that different macrophage phenotypes have a distinct effect on neuronal growth and survival, namely, the alternative activation with IL-10 and TGF-β1 (M(IL-10+TGF-β1)) promotes significant axonal regeneration. We also observed that systemic injection of soluble factors and extracellular vesicles derived from M(IL-10+TGF-β1) macrophages promotes significant functional recovery after compressive SCI and leads to higher survival of spinal cord neurons. Additionally, the M(IL-10+TGF-β1) secretome supported the recovery of bladder function and decreased microglial activation, astrogliosis and fibrotic scar in the spinal cord. Proteomic analysis of the M(IL-10+TGF-β1)-derived secretome identified clusters of proteins involved in axon extension, dendritic spine maintenance, cell polarity establishment, and regulation of astrocytic activation. Discussion Overall, our results demonstrated that macrophages-derived soluble factors and extracellular vesicles might be a promising therapy for SCI with possible clinical applications.
Collapse
Affiliation(s)
- José Lentilhas-Graça
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Diogo J. Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - João Afonso
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Andreia G. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Vera M. Mendes
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Marta S. Dias
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Eduardo D. Gomes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Rui Lima
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís S. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Fernando Fernandes-Amorim
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Inês M. Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Nídia de Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jorge R. Cibrão
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Aline M. Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Sofia C. Serra
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Luís A. Rocha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Tiffany S. Pinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Susana Monteiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Bruno Manadas
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - António J. Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| | - Ramiro D. Almeida
- CNC—Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- iBiMED- Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Nuno A. Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s Associate Lab, PT Government Associated Lab, Braga, Portugal
| |
Collapse
|
34
|
Nelson DW, Funnell JL, Cheung CH, Quinones GB, Mendoza CS, Bentley M, Gilbert RJ. In vitro assessment of protamine toxicity with neural cells, its therapeutic potential to counter chondroitin sulfate mediated neuron inhibition, and its effects on reactive astrocytes. ADVANCED THERAPEUTICS 2024; 7:2300242. [PMID: 39071184 PMCID: PMC11281232 DOI: 10.1002/adtp.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 07/30/2024]
Abstract
Multiple therapies have been studied to ameliorate the neuroinhibitory cues present after traumatic injury to the central nervous system. Two previous in vitro studies have demonstrated the efficacy of the FDA-approved cardiovascular therapeutic, protamine (PRM), to overcome neuroinhibitory cues presented by chondroitin sulfates; however, the effect of a wide range of PRM concentrations on neuronal and glial cells has not been evaluated. In this study, we investigate the therapeutic efficacy of PRM with primary cortical neurons, hippocampal neurons, mixed glial cultures, and astrocyte cultures. We show the threshold for PRM toxicity to be at or above 10 μg/ml depending on the cell population, that 10 μg/ml PRM enables neurons to overcome the inhibitory cues presented by chondroitin sulfate type A, and that soluble PRM allows neurons to more effectively overcome inhibition compared to a PRM coating. We also assessed changes in gene expression of reactive astrocytes with soluble PRM and determined that PRM does not increase their neurotoxic phenotype and that PRM may reduce brevican production and serpin transcription in cortical and spinal cord astrocytes. This is the first study to thoroughly assess the toxicity threshold of PRM with neural cells and study astrocyte response after acute exposure to PRM in vitro.
Collapse
Affiliation(s)
- Derek W Nelson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Jessica L Funnell
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Conrad H Cheung
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Geraldine B Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Christina S Mendoza
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States; Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave. Albany, New York 12208, United States
| |
Collapse
|
35
|
Raffaele S, Thougaard E, Laursen CCH, Gao H, Andersen KM, Nielsen PV, Ortí-Casañ N, Blichfeldt-Eckhardt M, Koch S, Deb-Chatterji M, Magnus T, Stubbe J, Madsen K, Meyer M, Degn M, Eisel ULM, Wlodarczyk A, Fumagalli M, Clausen BH, Brambilla R, Lambertsen KL. Microglial TNFR2 signaling regulates the inflammatory response after CNS injury in a sex-specific fashion. Brain Behav Immun 2024; 116:269-285. [PMID: 38142915 PMCID: PMC11500189 DOI: 10.1016/j.bbi.2023.12.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/21/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023] Open
Abstract
Microglia, the resident immune cells of the central nervous system (CNS), play a major role in damage progression and tissue remodeling after acute CNS injury, including ischemic stroke (IS) and spinal cord injury (SCI). Understanding the molecular mechanisms regulating microglial responses to injury may thus reveal novel therapeutic targets to promote CNS repair. Here, we investigated the role of microglial tumor necrosis factor receptor 2 (TNFR2), a transmembrane receptor previously associated with pro-survival and neuroprotective responses, in shaping the neuroinflammatory environment after CNS injury. By inducing experimental IS and SCI in Cx3cr1CreER:Tnfrsf1bfl/fl mice, selectively lacking TNFR2 in microglia, and corresponding Tnfrsf1bfl/fl littermate controls, we found that ablation of microglial TNFR2 significantly reduces lesion size and pro-inflammatory cytokine levels, and favors infiltration of leukocytes after injury. Interestingly, these effects were paralleled by opposite sex-specific modifications of microglial reactivity, which was found to be limited in female TNFR2-ablated mice compared to controls, whereas it was enhanced in males. In addition, we show that TNFR2 protein levels in the cerebrospinal fluid (CSF) of human subjects affected by IS and SCI, as well as healthy donors, significantly correlate with disease stage and severity, representing a valuable tool to monitor the inflammatory response after acute CNS injury. Hence, these results advance our understanding of the mechanisms regulating microglia reactivity after acute CNS injury, aiding the development of sex- and microglia-specific, personalized neuroregenerative strategies.
Collapse
Affiliation(s)
- Stefano Raffaele
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Estrid Thougaard
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Cathrine C H Laursen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Han Gao
- Department of Spine Surgery, The Third Affiliated Hospital of Sun Yat-Sen University, 510630 Guangzhou, China; Guangdong Provincial Center for Engineering and Technology Research of Minimally Invasive Spine Surgery, 510630 Guangzhou, China
| | - Katrine M Andersen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Pernille V Nielsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Natalia Ortí-Casañ
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Morten Blichfeldt-Eckhardt
- Department of Anaesthesiology, Vejle Hospital, 7100 Vejle, Denmark; Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Simon Koch
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Milani Deb-Chatterji
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Tim Magnus
- Department of Neurology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jane Stubbe
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Kirsten Madsen
- Department of Cardiovascular and Renal Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark
| | - Morten Meyer
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark
| | | | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen 9713 AV, Netherlands
| | - Agnieszka Wlodarczyk
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Marta Fumagalli
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, 20133 Milan, Italy
| | - Bettina H Clausen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Roberta Brambilla
- BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami FL, USA.
| | - Kate L Lambertsen
- Department of Neurobiology Research, Institute of Molecular Medicine, University of Southern Denmark, 5230 Odense M, Denmark; BRIDGE-Brain Research Inter Disciplinary Guided Excellence, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark; Department of Neurology, Odense University Hospital, 5000 Odense C, Denmark.
| |
Collapse
|
36
|
Chelyshev Y, Ermolin I. RNA Sequencing and Spatial Transcriptomics in Traumatic Spinal Cord Injury (Review). Sovrem Tekhnologii Med 2023; 15:75-86. [PMID: 39944372 PMCID: PMC11811828 DOI: 10.17691/stm2023.15.6.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Indexed: 01/03/2025] Open
Abstract
In order to understand the fundamental mechanisms of the spinal cord functioning, it is necessary to reveal a complete set of cell types and their populations, which can be identified by the unique combination of their features. The technologies of single-cell and single-nucleus RNA sequencing serve as effective tools for determining the role of various types of cells in normal and pathological reactions in the spinal cord. Spatial transcriptomics combines these technologies with the methods of obtaining and saving spatial information about cells in the tissue, which allows one to localize more precisely the injured area, characterize in detail the tissue compartments in the specific anatomical region, and analyze the pathological picture at the cellular and molecular level. Atlases of development of RNA-sequencing technologies and spatial transcriptomics created on the basis of the data from single-cell and single-nucleus RNA sequencing open great opportunities for new perspective concepts concerning the mechanisms of rearranging neural connections and restoration of sensorimotor functions in traumatic spine injury. The transcriptomes obtained were a powerful resource for detecting new functions of the nervous tissue cells. To establish therapeutic targets, the detected molecular diversity in neurons of various types enables tracing and comparing their susceptibility and regenerative potential. Determination of causes of selective cell susceptibility in spinal cord injury needs comprehensive information on the specificity of human cell populations in comparison with the known data obtained on the experimental models. In the present review, we have summarized advances in identification and study of cell characteristics in a traumatized spinal cord based on transcription profiling at a single-cell or single-nucleus level.
Collapse
Affiliation(s)
- Yu.A. Chelyshev
- MD, DSc, Professor, Department of Histology; Kazan Federal University, 18 Kremlyovskaya St., Kazan, the Republic of Tatarstan, 420008, Russia
| | - I.L. Ermolin
- DSc, Professor, Department of Histology with Cytology and Embryology; Privolzhsky Research Medical University, 10/1 Minin and Pozharsky Square, Nizhny Novgorod, 603005, Russia
| |
Collapse
|
37
|
Kim HJ, Saikia JM, Monte KMA, Ha E, Romaus-Sanjurjo D, Sanchez JJ, Moore AX, Hernaiz-Llorens M, Chavez-Martinez CL, Agba CK, Li H, Zhang J, Lusk DT, Cervantes KM, Zheng B. Deep scRNA sequencing reveals a broadly applicable Regeneration Classifier and implicates antioxidant response in corticospinal axon regeneration. Neuron 2023; 111:3953-3969.e5. [PMID: 37848024 PMCID: PMC10843387 DOI: 10.1016/j.neuron.2023.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/26/2023] [Accepted: 09/15/2023] [Indexed: 10/19/2023]
Abstract
Despite substantial progress in understanding the biology of axon regeneration in the CNS, our ability to promote regeneration of the clinically important corticospinal tract (CST) after spinal cord injury remains limited. To understand regenerative heterogeneity, we conducted patch-based single-cell RNA sequencing on rare regenerating CST neurons at high depth following PTEN and SOCS3 deletion. Supervised classification with Garnett gave rise to a Regeneration Classifier, which can be broadly applied to predict the regenerative potential of diverse neuronal types across developmental stages or after injury. Network analyses highlighted the importance of antioxidant response and mitochondrial biogenesis. Conditional gene deletion validated a role for NFE2L2 (or NRF2), a master regulator of antioxidant response, in CST regeneration. Our data demonstrate a universal transcriptomic signature underlying the regenerative potential of vastly different neuronal populations and illustrate that deep sequencing of only hundreds of phenotypically identified neurons has the power to advance regenerative biology.
Collapse
Affiliation(s)
- Hugo J Kim
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Junmi M Saikia
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA USA
| | - Katlyn Marie A Monte
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Eunmi Ha
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel Romaus-Sanjurjo
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joshua J Sanchez
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrea X Moore
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Marc Hernaiz-Llorens
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Carmine L Chavez-Martinez
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Graduate program in Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Chimuanya K Agba
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; Neurosciences Graduate Program, University of California San Diego, La Jolla, CA, USA USA
| | - Haoyue Li
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Joseph Zhang
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Daniel T Lusk
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Kayla M Cervantes
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Binhai Zheng
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA, USA; VA San Diego Research Service, San Diego, CA, USA.
| |
Collapse
|
38
|
Tao Y, Wang QH, Li XT, Liu Y, Sun RH, Xu HJ, Zhang M, Li SY, Yang L, Wang HJ, Hao LY, Cao JL, Pan Z. Spinal-Specific Super Enhancer in Neuropathic Pain. J Neurosci 2023; 43:8547-8561. [PMID: 37802656 PMCID: PMC10711714 DOI: 10.1523/jneurosci.1006-23.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 08/31/2023] [Accepted: 10/01/2023] [Indexed: 10/08/2023] Open
Abstract
Dysfunctional gene expression in nociceptive pathways plays a critical role in the development and maintenance of neuropathic pain. Super enhancers (SEs), composed of a large cluster of transcriptional enhancers, are emerging as new players in the regulation of gene expression. However, whether SEs participate in nociceptive responses remains unknown. Here, we report a spinal-specific SE (SS-SE) that regulates chronic constriction injury (CCI)-induced neuropathic pain by driving Ntmt1 and Prrx2 transcription in dorsal horn neurons. Peripheral nerve injury significantly enhanced the activity of SS-SE and increased the expression of NTMT1 and PRRX2 in the dorsal horn of male mice in a bromodomain-containing protein 4 (BRD4)-dependent manner. Both intrathecal administration of a pharmacological BRD4 inhibitor JQ1 and CRISPR-Cas9-mediated SE deletion abolished the increased NTMT1 and PRRX2 in CCI mice and attenuated their nociceptive hypersensitivities. Furthermore, knocking down Ntmt1 or Prrx2 with siRNA suppressed the injury-induced elevation of phosphorylated extracellular-signal-regulated kinase (p-ERK) and glial fibrillary acidic protein (GFAP) expression in the dorsal horn and alleviated neuropathic pain behaviors. Mimicking the increase in spinal Ntmt1 or Prrx2 in naive mice increased p-ERK and GFAP expression and led to the genesis of neuropathic pain-like behavior. These results redefine our understanding of the regulation of pain-related genes and demonstrate that BRD4-driven increases in SS-SE activity is responsible for the genesis of neuropathic pain through the governance of NTMT1 and PRRX2 expression in dorsal horn neurons. Our findings highlight the therapeutic potential of BRD4 inhibitors for the treatment of neuropathic pain.SIGNIFICANCE STATEMENT SEs drive gene expression by recruiting master transcription factors, cofactors, and RNA polymerase, but their role in the development of neuropathic pain remains unknown. Here, we report that the activity of an SS-SE, located upstream of the genes Ntmt1 and Prrx2, was elevated in the dorsal horn of mice with neuropathic pain. SS-SE contributes to the genesis of neuropathic pain by driving expression of Ntmt1 and Prrx2 Both inhibition of SS-SE with a pharmacological BRD4 inhibitor and genetic deletion of SS-SE attenuated pain hypersensitivities. This study suggests an effective and novel therapeutic strategy for neuropathic pain.
Collapse
Affiliation(s)
- Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Xiao-Tong Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ya Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Run-Hang Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Heng-Jun Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhiqiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
39
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
40
|
Deng H, Liu Y, Shi Z, Yang J, Liu C, Mei X. Zinc regulates a specific subpopulation of VEGFA + microglia to improve the hypoxic microenvironment for functional recovery after spinal cord injury. Int Immunopharmacol 2023; 125:111092. [PMID: 37883817 DOI: 10.1016/j.intimp.2023.111092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023]
Abstract
INTRODUCTION Spinal cord injury (SCI) is a central nervous system injury that is primarily traumatic and manifests as autonomic dysfunction below the level of injury. Our previous studies have found that zinc ions have important effects on the nervous system and nerve repair, promoting autophagy and reducing inflammatory responses. However, the role of zinc ions in vascular regeneration is unclear. AIMS We investigated the effect of zinc ions after spinal cord injury from the perspective of a hypoxic microenvironment, and elucidated the role of VEGF-A secreted by microglia for vascular regeneration after spinal cord injury, providing new ideas for the treatment of spinal cord injury. RESULTS Zinc promotes functional recovery after spinal cord injury by regulating VEGF-A secretion from microglia. On the one hand, VEGF-A secreted by microglia promotes angiogenesis through the PI3K/AKT/Bcl-2 pathway and improves the hypoxic microenvironment after spinal cord injury. On the other hand, VEGF-A secreted by microglia was positively correlated with platelet endothelial cell adhesion molecule-1 (CD31), and zinc could increase the association between microglia and blood vessels. CONCLUSION Zinc promoted microglia secretion of VEGF-A, increased vascular endothelial cell proliferation and migration through the PI3K/AKT/Bcl-2 pathway, and inhibited microglia apoptosis.
Collapse
Affiliation(s)
- Hao Deng
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Yu Liu
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Zuqiang Shi
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Jing Yang
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Chang Liu
- First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| | - Xifan Mei
- Third Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province, China.
| |
Collapse
|
41
|
Kim RD, Marchildon AE, Frazel PW, Hasel P, Guo AX, Liddelow SA. Temporal and spatial analysis of astrocytes following stroke identifies novel drivers of reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566710. [PMID: 38014211 PMCID: PMC10680590 DOI: 10.1101/2023.11.12.566710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Astrocytes undergo robust gene expression changes in response to a variety of perturbations, including ischemic injury. How these transitions are affected by time, and how heterogeneous and spatially distinct various reactive astrocyte populations are, remain unclear. To address these questions, we performed spatial transcriptomics as well as single nucleus RNAseq of ∼138,000 mouse forebrain astrocytes at 1, 3, and 14 days after ischemic injury. We observed a widespread and temporally diverse response across many astrocyte subtypes. We identified astrocyte clusters unique in injury, including a transiently proliferative substate that may be BRCA1-dependent. We also found an interferon-responsive population that rapidly expands to the perilesion cortex at 1 day and persists up to 14 days post stroke. These lowly abundant, spatially restricted populations are likely functionally important in post-injury stabilization and resolution. These datasets offer valuable insights into injury-induced reactive astrocyte heterogeneity and can be used to guide functional interrogation of biologically meaningful reactive astrocyte substates to understand their pro- and anti-reparative functions following acute injuries such as stroke.
Collapse
|
42
|
Bering T, Gadgaard C, Vorum H, Honoré B, Rath MF. Diurnal proteome profile of the mouse cerebral cortex: Conditional deletion of the Bmal1 circadian clock gene elevates astrocyte protein levels and cell abundance in the neocortex and hippocampus. Glia 2023; 71:2623-2641. [PMID: 37470358 DOI: 10.1002/glia.24443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
Circadian oscillators, defined by cellular 24 h clock gene rhythms, are found throughout the brain. Cerebral cortex-specific conditional knockout of the clock gene Bmal1 (Bmal1 CKO) leads to depressive-like behavior, but the molecular link from clock gene to altered behavior is unknown. Further, diurnal proteomic data on the cerebral cortex are currently unavailable. With the aim of determining the diurnal proteome profile and downstream targets of the cortical circadian clock, we here performed a proteomic analysis of the mouse cerebral cortex. Proteomics identified approximately 2700 proteins in both the neocortex and the hippocampus. In the neocortex, 15 proteins were differentially expressed (>2-fold) between day and night, mainly mitochondrial and neuronal plasticity proteins. Only three hippocampal proteins were differentially expressed, suggesting that daily protein oscillations are more prominent in the neocortex. The number of differentially expressed proteins was reduced in the Bmal1 CKO, suggesting that daily rhythms in the cerebral cortex are primarily driven by local clocks. The proteome of the Bmal1 CKO cerebral cortex was dominated by upregulated proteins expressed in astrocytes, including GFAP (4-fold) and FABP7 (>20-fold), in both the neocortex and hippocampus. These findings were confirmed at the transcript level. Cellular analyses of astrocyte components revealed an increased number of GFAP-positive cells in the Bmal1 CKO cerebral cortex. Further, BMAL1 was found to be expressed in both GFAP- and FABP7-positive astrocytes of control animals. Our data show that Bmal1 is required for proper cellular composition of the cerebral cortex, suggesting that increased cortical astrocyte activity may induce behavioral changes.
Collapse
Affiliation(s)
- Tenna Bering
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Camilla Gadgaard
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Vorum
- Department of Ophthalmology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Bent Honoré
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
- Department of Biomedicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Martin Fredensborg Rath
- Department of Neuroscience, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
43
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits in mice produced by adolescent THC exposure and 16p11.2 duplication. Nat Commun 2023; 14:6559. [PMID: 37880248 PMCID: PMC10600150 DOI: 10.1038/s41467-023-42276-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 10/04/2023] [Indexed: 10/27/2023] Open
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. However, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, is not fully understood. Here, we report that in mice, adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in a model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings suggest the microglial Cnr1 may contribute to adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
Affiliation(s)
- Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juhyun Kim
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Korea Brain Research Institute, Daegu, Republic of Korea
| | - Gianluca Ursini
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
| | - Yan Jouroukhin
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA
| | - Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yu Miyahara
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Feiyi Xiong
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Samskruthi Madireddy
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Beat Lutz
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
- Leibniz Institute for Resilience Research (LIR) gGmbH, Mainz, Germany
| | - Akira Sawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Solange P Brown
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Mikhail V Pletnikov
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences SUNY, University at Buffalo, Buffalo, NY, USA.
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
44
|
Chudakova DA, Samoilova EM, Chekhonin VP, Baklaushev VP. Improving Efficiency of Direct Pro-Neural Reprogramming: Much-Needed Aid for Neuroregeneration in Spinal Cord Injury. Cells 2023; 12:2499. [PMID: 37887343 PMCID: PMC10605572 DOI: 10.3390/cells12202499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/13/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Spinal cord injury (SCI) is a medical condition affecting ~2.5-4 million people worldwide. The conventional therapy for SCI fails to restore the lost spinal cord functions; thus, novel therapies are needed. Recent breakthroughs in stem cell biology and cell reprogramming revolutionized the field. Of them, the use of neural progenitor cells (NPCs) directly reprogrammed from non-neuronal somatic cells without transitioning through a pluripotent state is a particularly attractive strategy. This allows to "scale up" NPCs in vitro and, via their transplantation to the lesion area, partially compensate for the limited regenerative plasticity of the adult spinal cord in humans. As recently demonstrated in non-human primates, implanted NPCs contribute to the functional improvement of the spinal cord after injury, and works in other animal models of SCI also confirm their therapeutic value. However, direct reprogramming still remains a challenge in many aspects; one of them is low efficiency, which prevents it from finding its place in clinics yet. In this review, we describe new insights that recent works brought to the field, such as novel targets (mitochondria, nucleoli, G-quadruplexes, and others), tools, and approaches (mechanotransduction and electrical stimulation) for direct pro-neural reprogramming, including potential ones yet to be tested.
Collapse
Affiliation(s)
- Daria A. Chudakova
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
| | - Ekaterina M. Samoilova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
| | - Vladimir P. Chekhonin
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| | - Vladimir P. Baklaushev
- Federal Center for Brain and Neurotechnologies, Federal Medical and Biological Agency of Russia, 117513 Moscow, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Federal Research and Clinical Center of Specialised Medical Care and Medical Technologies FMBA of Russia, 115682 Moscow, Russia
- Department of Medical Nanobiotechnology of Medical and Biological Faculty, Pirogov Russian National Research Medical University, Ministry of Health of the Russian Federation, 117997 Moscow, Russia
| |
Collapse
|
45
|
Yang Q, Zhang L, Li M, Xu Y, Chen X, Yuan R, Ou X, He M, Liao M, Zhang L, Dai H, Lv M, Xie X, Liang W, Chen X. Single-nucleus transcriptomic mapping uncovers targets for traumatic brain injury. Genome Res 2023; 33:1818-1832. [PMID: 37730437 PMCID: PMC10691476 DOI: 10.1101/gr.277881.123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The subventricular zone (SVZ) is a neurogenic niche that contributes to homeostasis and repair after brain injury. However, the effects of mild traumatic brain injury (mTBI) on the divergence of the regulatory DNA landscape within the SVZ and its link to functional alterations remain unexplored. In this study, we mapped the transcriptome atlas of murine SVZ and its responses to mTBI at the single-cell level. We observed cell-specific gene expression changes following mTBI and unveiled diverse cell-to-cell interaction networks that influence a wide array of cellular processes. Moreover, we report novel neurogenesis lineage trajectories and related key transcription factors, which we validate through loss-of-function experiments. Specifically, we validate the role of Tcf7l1, a cell cycle gene regulator, in promoting neural stem cell differentiation toward the neuronal lineage after mTBI, providing a potential target for regenerative medicine. Overall, our study profiles an SVZ transcriptome reference map, which underlies the differential cellular behavior in response to mTBI. The identified key genes and pathways that may ameliorate brain damage or facilitate neural repair serve as a comprehensive resource for drug discovery in the context of mTBI.
Collapse
Affiliation(s)
- Qiuyun Yang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
- West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Lingxuan Zhang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Manrui Li
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Yang Xu
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaogang Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Ruixuan Yuan
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaofeng Ou
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Min He
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China
| | - Miao Liao
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Lin Zhang
- Sichuan University, Chengdu 610041, China
| | - Hao Dai
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Meili Lv
- Department of Immunology, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China
| | - Xiaoqi Xie
- Department of Critical Care Medicine, Sichuan University, Chengdu 610000, China;
| | - Weibo Liang
- Department of Forensic Genetics, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| | - Xiameng Chen
- Department of Forensic Pathology and Forensic Clinical Medicine, West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610000, China;
| |
Collapse
|
46
|
Punjani N, Deska-Gauthier D, Hachem LD, Abramian M, Fehlings MG. Neuroplasticity and regeneration after spinal cord injury. NORTH AMERICAN SPINE SOCIETY JOURNAL 2023; 15:100235. [PMID: 37416090 PMCID: PMC10320621 DOI: 10.1016/j.xnsj.2023.100235] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Spinal cord injury (SCI) is a debilitating condition with significant personal, societal, and economic burden. The highest proportion of traumatic injuries occur at the cervical level, which results in severe sensorimotor and autonomic deficits. Following the initial physical damage associated with traumatic injuries, secondary pro-inflammatory, excitotoxic, and ischemic cascades are initiated further contributing to neuronal and glial cell death. Additionally, emerging evidence has begun to reveal that spinal interneurons undergo subtype specific neuroplastic circuit rearrangements in the weeks to months following SCI, contributing to or hindering functional recovery. The current therapeutic guidelines and standards of care for SCI patients include early surgery, hemodynamic regulation, and rehabilitation. Additionally, preclinical work and ongoing clinical trials have begun exploring neuroregenerative strategies utilizing endogenous neural stem/progenitor cells, stem cell transplantation, combinatorial approaches, and direct cell reprogramming. This review will focus on emerging cellular and noncellular regenerative therapies with an overview of the current available strategies, the role of interneurons in plasticity, and the exciting research avenues enhancing tissue repair following SCI.
Collapse
Affiliation(s)
- Nayaab Punjani
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Dylan Deska-Gauthier
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Laureen D. Hachem
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
| | - Madlene Abramian
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Michael G. Fehlings
- Division of Genetics and Development, Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Surgery, Division of Neurosurgery and Spine Program, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Krembil Neuroscience Centre, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
47
|
Fan Y, Wu X, Han S, Zhang Q, Sun Z, Chen B, Xue X, Zhang H, Chen Z, Yin M, Xiao Z, Zhao Y, Dai J. Single-cell analysis reveals region-heterogeneous responses in rhesus monkey spinal cord with complete injury. Nat Commun 2023; 14:4796. [PMID: 37558705 PMCID: PMC10412553 DOI: 10.1038/s41467-023-40513-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 08/01/2023] [Indexed: 08/11/2023] Open
Abstract
Spinal cord injury (SCI) leads to severe sensory and motor dysfunction below the lesion. However, the cellular dynamic responses and heterogeneity across different regions below the lesion remain to be elusive. Here, we used single-cell transcriptomics to investigate the region-related cellular responses in female rhesus monkeys with complete thoracic SCI from acute to chronic phases. We found that distal lumbar tissue cells were severely impacted, leading to degenerative microenvironments characterized by disease-associated microglia and oligodendrocytes activation alongside increased inhibitory interneurons proportion following SCI. By implanting scaffold into the injury sites, we could improve the injury microenvironment through glial cells and fibroblast regulation while remodeling spared lumbar tissues via reduced inhibitory neurons proportion and improved phagocytosis and myelination. Our findings offer crucial pathological insights into the spared distal tissues and proximal tissues after SCI, emphasizing the importance of scaffold-based treatment approaches targeting heterogeneous microenvironments.
Collapse
Affiliation(s)
- Yongheng Fan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Xianming Wu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Sufang Han
- College of Animal Science, South China Agricultural University, 510642, Guangzhou, China
| | - Qi Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Zheng Sun
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Bing Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Xiaoyu Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
| | - Haipeng Zhang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhenni Chen
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Man Yin
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Zhifeng Xiao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Yannan Zhao
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| | - Jianwu Dai
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 100101, Beijing, China.
| |
Collapse
|
48
|
Toro CA, Hansen J, Siddiq MM, Johnson K, Cao J, Pero A, Iyengar R, Cai D, Cardozo CP. Synaptojanin 1 Modulates Functional Recovery After Incomplete Spinal Cord Injury in Male Apolipoprotein E Epsilon 4 Mice. Neurotrauma Rep 2023; 4:464-477. [PMID: 37528868 PMCID: PMC10389254 DOI: 10.1089/neur.2023.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023] Open
Abstract
Apolipoprotein E epsilon 4 (ApoE4) is the second most common variant of ApoE, being present in ∼14% of the population. Clinical reports identify ApoE4 as a genetic risk factor for poor outcomes after traumatic spinal cord injury (SCI) and spinal cord diseases such as cervical myelopathy. To date, there is no intervention to promote recovery of function after SCI/spinal cord diseases that is specifically targeted at ApoE4-associated impairment. Studies in the human and mouse brain link ApoE4 to elevated levels of synaptojanin 1 (synj1), a lipid phosphatase that degrades phosphoinositol 4,5-bisphosphate (PIP2) into inositol 4-monophosphate. Synj1 regulates rearrangements of the cytoskeleton as well as endocytosis and trafficking of synaptic vesicles. We report here that, as compared to ApoE3 mice, levels of synj1 messenger RNA and protein were elevated in spinal cords of healthy ApoE4 mice associated with lower PIP2 levels. Using a moderate-severity model of contusion SCI in mice, we found that genetic reduction of synj1 improved locomotor function recovery at 14 days after SCI in ApoE4 mice without altering spared white matter. Genetic reduction of synj1 did not alter locomotor recovery of ApoE3 mice after SCI. Bulk RNA sequencing revealed that at 14 days after SCI in ApoE4 mice, genetic reduction of synj1 upregulated genes involved in glutaminergic synaptic transmission just above and below the lesion. Overall, our findings provide evidence for a link between synj1 to poor outcomes after SCI in ApoE4 mice, up to 14 days post-injury, through mechanisms that may involve the function of excitatory glutaminergic neurons.
Collapse
Affiliation(s)
- Carlos A. Toro
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jens Hansen
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mustafa M. Siddiq
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kaitlin Johnson
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
| | - Jiqing Cao
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adriana Pero
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ravi Iyengar
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dongming Cai
- Neurology Service, James J. Peters VA Medical Center, Bronx, New York, USA
- Research and Development, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Christopher P. Cardozo
- Spinal Cord Damage Research Center, James J. Peters VA Medical Center, Bronx, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Rehabilitative Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
49
|
Hasegawa Y, Kim J, Ursini G, Jouroukhin Y, Zhu X, Miyahara Y, Xiong F, Madireddy S, Obayashi M, Lutz B, Sawa A, Brown SP, Pletnikov MV, Kamiya A. Microglial cannabinoid receptor type 1 mediates social memory deficits produced by adolescent THC exposure and 16p11.2 duplication. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550212. [PMID: 37546830 PMCID: PMC10402026 DOI: 10.1101/2023.07.24.550212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Adolescent cannabis use increases the risk for cognitive impairments and psychiatric disorders. Cannabinoid receptor type 1 (Cnr1) is expressed not only in neurons and astrocytes, but also in microglia, which shape synaptic connections during adolescence. Nonetheless, until now, the role of microglia in mediating the adverse cognitive effects of delta-9-tetrahydrocannabinol (THC), the principal psychoactive constituent of cannabis, has been unexplored. Here, we report that adolescent THC exposure produces microglial apoptosis in the medial prefrontal cortex (mPFC), which was exacerbated in the mouse model of 16p11.2 duplication, a representative copy number variation (CNV) risk factor for psychiatric disorders. These effects are mediated by microglial Cnr1, leading to reduction in the excitability of mPFC pyramidal-tract neurons and deficits in social memory in adulthood. Our findings highlight the importance of microglial Cnr1 to produce the adverse effect of cannabis exposure in genetically vulnerable individuals.
Collapse
|
50
|
Salvador AFM, Dykstra T, Rustenhoven J, Gao W, Blackburn SM, Bhasiin K, Dong MQ, Guimarães RM, Gonuguntla S, Smirnov I, Kipnis J, Herz J. Age-dependent immune and lymphatic responses after spinal cord injury. Neuron 2023; 111:2155-2169.e9. [PMID: 37148871 PMCID: PMC10523880 DOI: 10.1016/j.neuron.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/13/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
Spinal cord injury (SCI) causes lifelong debilitating conditions. Previous works demonstrated the essential role of the immune system in recovery after SCI. Here, we explored the temporal changes of the response after SCI in young and aged mice in order to characterize multiple immune populations within the mammalian spinal cord. We revealed substantial infiltration of myeloid cells to the spinal cord in young animals, accompanied by changes in the activation state of microglia. In contrast, both processes were blunted in aged mice. Interestingly, we discovered the formation of meningeal lymphatic structures above the lesion site, and their role has not been examined after contusive injury. Our transcriptomic data predicted lymphangiogenic signaling between myeloid cells in the spinal cord and lymphatic endothelial cells (LECs) in the meninges after SCI. Together, our findings delineate how aging affects the immune response following SCI and highlight the participation of the spinal cord meninges in supporting vascular repair.
Collapse
Affiliation(s)
- Andrea Francesca M Salvador
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - Taitea Dykstra
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Justin Rustenhoven
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pharmacology and Clinical Pharmacology, The University of Auckland, Auckland 1023, New Zealand
| | - Wenqing Gao
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Susan M Blackburn
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Michael Q Dong
- Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Rafaela Mano Guimarães
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA; Center for Research in Inflammatory Diseases (CRID), Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo 14049-900, Brazil
| | - Sriharsha Gonuguntla
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | - Jasmin Herz
- Brain Immunology and Glia (BIG) Center, Washington University in St. Louis, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Immunobiology, Washington University in St. Louis, St. Louis, MO 63110, USA.
| |
Collapse
|