1
|
Zaman M, Sharma G, Almutawa W, Soule TG, Sabouny R, Joel M, Mohan A, Chute C, Joseph JT, Pfeffer G, Shutt TE. The MFN2 Q367H variant reveals a novel pathomechanism connected to mtDNA-mediated inflammation. Life Sci Alliance 2025; 8:e202402921. [PMID: 40175090 PMCID: PMC11966011 DOI: 10.26508/lsa.202402921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 03/14/2025] [Accepted: 03/17/2025] [Indexed: 04/04/2025] Open
Abstract
Pathogenic variants in the mitochondrial protein MFN2 are typically associated with a peripheral neuropathy phenotype, but can also cause a variety of additional pathologies including myopathy. Here, we identified an uncharacterized MFN2 variant, Q367H, in a patient diagnosed with late-onset distal myopathy, but without peripheral neuropathy. Supporting the hypothesis that this variant contributes to the patient's pathology, patient fibroblasts and transdifferentiated myoblasts showed changes consistent with impairment of several MFN2 functions. We also observed mtDNA outside of the mitochondrial network that colocalized with early endosomes, and measured activation of both TLR9 and cGAS-STING inflammation pathways that sense mtDNA. Re-expressing the Q367H variant in MFN2 KO cells also induced mtDNA release, demonstrating this phenotype is a direct result of the variant. As elevated inflammation can cause myopathy, our findings linking the Q367H MFN2 variant with elevated TLR9 and cGAS-STING signalling can explain the patient's myopathy. Thus, we characterize a novel MFN2 variant in a patient with an atypical presentation that separates peripheral neuropathy and myopathy phenotypes, and establish a potential pathomechanism connecting MFN2 dysfunction to mtDNA-mediated inflammation.
Collapse
Affiliation(s)
- Mashiat Zaman
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Govinda Sharma
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Walaa Almutawa
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Tyler Gb Soule
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Rasha Sabouny
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Matt Joel
- Department of Neuroscience, Cumming School of Medicine, Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Armaan Mohan
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cole Chute
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Jeffrey T Joseph
- Hotchkiss Brain Institute, Department of Clinical Neurosciences, Department of Pathology, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Gerald Pfeffer
- Hotchkiss Brain Institute, Department of Clinical Neurosciences; and Alberta Child Health Research Institute, Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Cumming School of Medicine, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Alberta Children's Hospital Research Institute; University of Calgary, Calgary, Canada
| |
Collapse
|
2
|
Lee-Glover LP, Picard M, Shutt TE. Mitochondria - the CEO of the cell. J Cell Sci 2025; 138:jcs263403. [PMID: 40310473 PMCID: PMC12070065 DOI: 10.1242/jcs.263403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025] Open
Abstract
As we have learned more about mitochondria over the past decades, including about their essential cellular roles and how altered mitochondrial biology results in disease, it has become apparent that they are not just powerplants pumping out ATP at the whim of the cell. Rather, mitochondria are dynamic information and energy processors that play crucial roles in directing dozens of cellular processes and behaviors. They provide instructions to enact programs that regulate various cellular operations, such as complex metabolic networks, signaling and innate immunity, and even control cell fate, dictating when cells should divide, differentiate or die. To help current and future generations of cell biologists incorporate the dynamic, multifaceted nature of mitochondria and assimilate modern discoveries into their scientific framework, mitochondria need a 21st century 'rebranding'. In this Opinion article, we argue that mitochondria should be considered as the 'Chief Executive Organelle' - the CEO - of the cell.
Collapse
Affiliation(s)
- Laurie P. Lee-Glover
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| | - Martin Picard
- Department of Psychiatry, Division of Behavioral Medicine, Columbia University Irving Medical Center, New York, 10032, USA
- Department of Neurology, H. Houston Merritt Center for Neuromuscular and Mitochondrial Disorders, Columbia University Translational Neuroscience Initiative, Columbia University Irving Medical Center, New York, 10032, USA
- New York State Psychiatric Institute, New York, 10032, USA
- Robert N Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, 10032, USA
| | - Timothy E. Shutt
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
- Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Alberta, T2N 4N1, Canada
| |
Collapse
|
3
|
Chung KP. Cytoplasmic inheritance: The transmission of plastid and mitochondrial genomes across cells and generations. PLANT PHYSIOLOGY 2025; 198:kiaf168. [PMID: 40304456 PMCID: PMC12079397 DOI: 10.1093/plphys/kiaf168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/24/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
In photosynthetic organisms, genetic material is stored in the nucleus and the two cytoplasmic organelles: plastids and mitochondria. While both the nuclear and cytoplasmic genomes are essential for survival, the inheritance of these genomes is subject to distinct laws. Cytoplasmic inheritance differs fundamentally from nuclear inheritance through two unique processes: vegetative segregation and uniparental inheritance. To illustrate the significance of these processes in shaping cytoplasmic inheritance, I will trace the journey of plastid and mitochondrial genomes, following their transmission from parents to progeny. The cellular and molecular mechanisms regulating their transmission along the path are explored. By providing a framework that encompasses the inheritance of both plastid and mitochondrial genomes across cells and generations, I aim to present a comprehensive overview of cytoplasmic inheritance and highlight the intricate interplay of cellular processes that determine inheritance patterns. I will conclude this review by summarizing recent breakthroughs in the field that have significantly advanced our understanding of cytoplasmic inheritance. This knowledge has paved the way for achieving the first instance of controlled cytoplasmic inheritance in plants, unlocking the potential to harness cytoplasmic genetics for crop improvement.
Collapse
Affiliation(s)
- Kin Pan Chung
- Laboratory of Plant Physiology, Wageningen University & Research, Wageningen 6708 PB, the Netherlands
| |
Collapse
|
4
|
Giordano L, Ware SA, Lagranha CJ, Kaufman BA. Mitochondrial DNA signals driving immune responses: Why, How, Where? Cell Commun Signal 2025; 23:192. [PMID: 40264103 PMCID: PMC12012978 DOI: 10.1186/s12964-025-02042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/14/2025] [Indexed: 04/24/2025] Open
Abstract
There has been a recent expansion in our understanding of DNA-sensing mechanisms. Mitochondrial dysfunction, oxidative and proteostatic stresses, instability and impaired disposal of nucleoids cause the release of mitochondrial DNA (mtDNA) from the mitochondria in several human diseases, as well as in cell culture and animal models. Mitochondrial DNA mislocalized to the cytosol and/or the extracellular compartments can trigger innate immune and inflammation responses by binding DNA-sensing receptors (DSRs). Here, we define the features that make mtDNA highly immunogenic and the mechanisms of its release from the mitochondria into the cytosol and the extracellular compartments. We describe the major DSRs that bind mtDNA such as cyclic guanosine-monophosphate-adenosine-monophosphate synthase (cGAS), Z-DNA-binding protein 1 (ZBP1), NOD-, LRR-, and PYD- domain-containing protein 3 receptor (NLRP3), absent in melanoma 2 (AIM2) and toll-like receptor 9 (TLR9), and their downstream signaling cascades. We summarize the key findings, novelties, and gaps of mislocalized mtDNA as a driving signal of immune responses in vascular, metabolic, kidney, lung, and neurodegenerative diseases, as well as viral and bacterial infections. Finally, we define common strategies to induce or inhibit mtDNA release and propose challenges to advance the field.
Collapse
Affiliation(s)
- Luca Giordano
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
- Universities of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Cardio-Pulmonary Institute (CPI), Justus-Liebig-University, Giessen, Germany.
| | - Sarah A Ware
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia J Lagranha
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brett A Kaufman
- Center for Metabolism and Mitochondrial Medicine, Division of Cardiology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Heart, Lung, and Blood Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
5
|
Kakanj P, Bonse M, Kshirsagar A, Gökmen A, Gaedke F, Sen A, Mollá B, Vogelsang E, Schauss A, Wodarz A, Pla-Martín D. Retromer promotes the lysosomal turnover of mtDNA. SCIENCE ADVANCES 2025; 11:eadr6415. [PMID: 40184468 PMCID: PMC11970507 DOI: 10.1126/sciadv.adr6415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 02/28/2025] [Indexed: 04/06/2025]
Abstract
Mitochondrial DNA (mtDNA) is exposed to multiple insults produced by normal cellular function. Upon mtDNA replication stress, the mitochondrial genome transfers to endosomes for degradation. Using proximity biotinylation, we found that mtDNA stress leads to the rewiring of the mitochondrial proximity proteome, increasing mitochondria's association with lysosomal and vesicle-related proteins. Among these, the retromer complex, particularly VPS35, plays a pivotal role by extracting mitochondrial components. The retromer promotes the formation of mitochondrial-derived vesicles shuttled to lysosomes. The mtDNA, however, directly shuttles to a recycling organelle in a BAX-dependent manner. Moreover, using a Drosophila model carrying a long deletion on the mtDNA (ΔmtDNA), we found that ΔmtDNA activates a specific transcriptome profile to counteract mitochondrial damage. Here, Vps35 expression restores mtDNA homoplasmy and alleviates associated defects. Hence, we demonstrate the existence of a previously unknown quality control mechanism for the mitochondrial matrix and the essential role of lysosomes in mtDNA turnover to relieve mtDNA damage.
Collapse
Affiliation(s)
- Parisa Kakanj
- Institute of Genetics, University of Cologne, Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Mari Bonse
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Arya Kshirsagar
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | - Aylin Gökmen
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Felix Gaedke
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ayesha Sen
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Elisabeth Vogelsang
- Department of Molecular Cell Biology, Institute I for Anatomy. University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Andreas Wodarz
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Department of Molecular Cell Biology, Institute I for Anatomy. University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Institute of Physiology, University Clinics and Faculty of Medicine, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
- Institute of Biochemistry and Molecular Biology, University Clinics and Faculty of Medicine, Heinrich-Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
6
|
Fan X, Xie Y, Cao S, Zhu L, Wang X. VPS35-Retromer: Multifunctional Roles in Various Biological Processes - A Focus on Neurodegenerative Diseases and Cancer. J Inflamm Res 2025; 18:4665-4680. [PMID: 40195959 PMCID: PMC11975009 DOI: 10.2147/jir.s510768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 03/23/2025] [Indexed: 04/09/2025] Open
Abstract
The Vacuolar Protein Sorting 35 (VPS35)-Retromer complex plays a pivotal role in intracellular protein trafficking and recycling. As an integral component of the Retromer complex, VPS35 selectively recognizes and retrogradely transports membrane protein receptors to the trans-Golgi network, thereby preventing the degradation of transmembrane proteins by lysosomes after they have fulfilled their physiological functions, and facilitating their continued activity. VPS35 regulates autophagy, mitophagy, mitochondrial homeostasis, and various other biological processes, including epidermal regeneration, neuronal iron homeostasis, and synaptic function. Studies have shown that mutations or dysfunctions in VPS35 disrupt the normal operation of Retromer, impair neuronal health and survival, and contribute to the onset of neurodegenerative diseases such as Parkinson's and Alzheimer's diseases. Additionally, VPS35 modulates tumor growth and metastasis in cancers such as liver and breast cancer through the regulation of multiple signaling pathways. Targeting VPS35 might be a potential therapy in clinic treatment of neurodegenerative diseases and cancers.
Collapse
Affiliation(s)
- Xiaoyang Fan
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Yuqi Xie
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Sitong Cao
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Li Zhu
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| | - Xueting Wang
- Institute of Special Environmental Medicine, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, People’s Republic of China
| |
Collapse
|
7
|
Macuada J, Molina-Riquelme I, Eisner V. How are mitochondrial nucleoids trafficked? Trends Cell Biol 2025; 35:194-204. [PMID: 39984359 DOI: 10.1016/j.tcb.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 02/23/2025]
Abstract
Mitochondria harbor their own DNA (mtDNA), which codifies essential proteins of the oxidative phosphorylation (OXPHOS) system and locally feeds them to their surrounding inner mitochondrial membrane (IMM), according to the 'sphere of influence' theory. mtDNA is compacted into nucleoids, which are tethered to the IMM and distributed throughout the mitochondrial network. Some nucleoid subpopulations present distinct intramitochondrial positioning during fission and their correct positioning is associated with mtDNA segregation and selective degradation. This opinion article focuses on different mechanisms that could control nucleoid positioning through intramitochondrial trafficking, either by cristae reshaping or by intercompartment-driven mechanisms involving the mitochondrial membranes and extramitochondrial elements. Understanding nucleoid trafficking promises insights into mitochondrial dysfunction in pathologies with mtDNA distribution and segregation issues.
Collapse
Affiliation(s)
- Josefa Macuada
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Verónica Eisner
- Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
8
|
Zhang G, Wei H, Zhao A, Yan X, Zhang X, Gan J, Guo M, Wang J, Zhang F, Jiang Y, Liu X, Yang Z, Jiang X. Mitochondrial DNA leakage: underlying mechanisms and therapeutic implications in neurological disorders. J Neuroinflammation 2025; 22:34. [PMID: 39920753 PMCID: PMC11806845 DOI: 10.1186/s12974-025-03363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/29/2025] [Indexed: 02/09/2025] Open
Abstract
Mitochondrial dysfunction is a pivotal instigator of neuroinflammation, with mitochondrial DNA (mtDNA) leakage as a critical intermediary. This review delineates the intricate pathways leading to mtDNA release, which include membrane permeabilization, vesicular trafficking, disruption of homeostatic regulation, and abnormalities in mitochondrial dynamics. The escaped mtDNA activates cytosolic DNA sensors, especially cyclic gmp-amp synthase (cGAS) signalling and inflammasome, initiating neuroinflammatory cascades via pathways, exacerbating a spectrum of neurological pathologies. The therapeutic promise of targeting mtDNA leakage is discussed in detail, underscoring the necessity for a multifaceted strategy that encompasses the preservation of mtDNA homeostasis, prevention of membrane leakage, reestablishment of mitochondrial dynamics, and inhibition the activation of cytosolic DNA sensors. Advancing our understanding of the complex interplay between mtDNA leakage and neuroinflammation is imperative for developing precision therapeutic interventions for neurological disorders.
Collapse
Affiliation(s)
- Guangming Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Huayuan Wei
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Anliu Zhao
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xu Yan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Xiaolu Zhang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jiali Gan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Maojuan Guo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Jie Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Fayan Zhang
- Heart Disease Department, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Yifang Jiang
- School of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xinxing Liu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China
| | - Zhen Yang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, China.
| | - Xijuan Jiang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No. 10, Poyang Lake Road, Tuanbo New City West District, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
9
|
Huo Y, Shen T, Feng T, Li M, Zhao W, Loor JJ, Aernouts B, Psifidi A, Xu C. β-Hydroxybutyrate-induced mitochondrial DNA (mtDNA) release mediated innate inflammatory response in bovine mammary epithelial cells by inhibiting autophagy. J Anim Sci Biotechnol 2025; 16:15. [PMID: 39891248 PMCID: PMC11786434 DOI: 10.1186/s40104-024-01143-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 12/17/2024] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND In perinatal dairy cows, ketosis is a prevalent metabolic disorder that lowers milk output and performance. Mitochondrial dysfunction and chronic inflammation in mammary tissue are linked to elevated blood ketone levels, particularly β-hydroxybutyrate (BHB). Recent research has linked cytosolic mitochondrial DNA (mtDNA) with chronic aseptic inflammation by activating the cGAS-STING pathway during metabolic disorders, while autophagy activation effectively reverses this process. However, whether it is involved in mammary gland damage during ketosis is poorly understood. Therefore, this study aimed to explore the underlying mechanisms of mtDNA-induced inflammation under BHB stress and evaluate the potential therapeutic strategy of autophagy activation in mitigating this damage. RESULTS Our study found an increased cytoplasmic mtDNA abundance in mammary gland tissues of dairy cows with ketosis and bovine mammary epithelial cell line (MAC-T) subjected to BHB stress. Further investigations revealed the activation of the cGAS-STING pathway and inflammatory response, indicated by elevated levels of cGAS and STING, along with increased phosphorylation levels of TBK1, P65, and IκB, and higher transcript levels of pro-inflammatory factors (IL-1B, IL-6, and TNF-α) in both in vivo and in vitro experiments. Notably, STING inhibition via si-STING transfection reversed BHB-induced inflammation. Additionally, autophagy activation appeared to protect against BHB stress by facilitating the removal of cytoplasmic mtDNA and preventing cGAS-STING pathway-mediated inflammation. CONCLUSIONS The findings illustrate that elevated BHB levels lead to the release of cytoplasmic mtDNA, which in turn activates the cGAS-STING pathway and triggers an inflammatory response in the mammary glands during hyperketonemia. Conversely, autophagy activation has been shown to alleviate this process by promoting cytoplasmic mtDNA degradation.
Collapse
Affiliation(s)
- Yihui Huo
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Taiyu Shen
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Tianyin Feng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Moli Li
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Wanli Zhao
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Juan J Loor
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ben Aernouts
- Department of Biosystems, Division of Animal and Human Health Engineering, KU Leuven, Campus Geel, Leuven, 2440, Belgium
| | - Androniki Psifidi
- Department of Clinical Science and Services, Queen Mother Hospital for Animals, The Royal Veterinary College, London, UK
| | - Chuang Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
10
|
King DE, Copeland WC. DNA repair pathways in the mitochondria. DNA Repair (Amst) 2025; 146:103814. [PMID: 39914164 PMCID: PMC11848857 DOI: 10.1016/j.dnarep.2025.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/14/2025] [Accepted: 01/28/2025] [Indexed: 02/24/2025]
Abstract
Mitochondria contain their own small, circular genome that is present in high copy number. The mitochondrial genome (mtDNA) encodes essential subunits of the electron transport chain. Mutations in the mitochondrial genome are associated with a wide range of mitochondrial diseases and the maintenance and replication of mtDNA is crucial to cellular health. Despite the importance of maintaining mtDNA genomic integrity, fewer DNA repair pathways exist in the mitochondria than in the nucleus. However, mitochondria have numerous pathways that allow for the removal and degradation of DNA damage that may prevent accumulation of mutations. Here, we briefly review the DNA repair pathways present in the mitochondria, sources of mtDNA mutations, and discuss the passive role that mtDNA mutagenesis may play in cancer progression.
Collapse
Affiliation(s)
- Dillon E King
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States
| | - William C Copeland
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, United States.
| |
Collapse
|
11
|
Ibrahim DR, Schwarz K, Suiwal S, Maragkou S, Schmitz F. Early Synapse-Specific Alterations of Photoreceptor Mitochondria in the EAE Mouse Model of Multiple Sclerosis. Cells 2025; 14:206. [PMID: 39936997 PMCID: PMC11816939 DOI: 10.3390/cells14030206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 02/13/2025] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disease of the central nervous system (CNS) linked to many neurological disabilities. The visual system is frequently impaired in MS. In previous studies, we observed early malfunctions of rod photoreceptor ribbon synapses in the EAE mouse model of MS that included alterations in synaptic vesicle cycling and disturbances of presynaptic Ca2+ homeostasis. Since these presynaptic events are highly energy-demanding, we analyzed whether synaptic mitochondria, which play a major role in synaptic energy metabolism, might be involved at that early stage. Rod photoreceptor presynaptic terminals contain a single large mitochondrion next to the synaptic ribbon. In the present study, we analyzed the expression of functionally relevant mitochondrial proteins (MIC60, ATP5B, COX1, PINK1, DRP1) by high-resolution qualitative and quantitative immunofluorescence microscopy, immunogold electron microscopy and quantitative Western blot experiments. We observed a decreased expression of many functionally relevant proteins in the synaptic mitochondria of EAE photoreceptors at an early stage, suggesting that early mitochondrial dysfunctions play an important role in the early synapse pathology. Interestingly, mitochondria in presynaptic photoreceptor terminals were strongly compromised in early EAE, whereas extra-synaptic mitochondria in photoreceptor inner segments remained unchanged, demonstrating a functional heterogeneity of photoreceptor mitochondria.
Collapse
Affiliation(s)
- Dalia R. Ibrahim
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (K.S.); (S.S.); (S.M.)
| | | | | | | | - Frank Schmitz
- Institute of Anatomy, Department of Neuroanatomy, Medical School Homburg, Saarland University, 66421 Homburg, Germany; (K.S.); (S.S.); (S.M.)
| |
Collapse
|
12
|
Yu ZQ, Pan W, Yang X, Tian M, Zhang J, Liu H, Yang L, Liu X, Yan M, Xu S. Mitochondria-Nucleus Migration Probe for Ultrasensitive Monitoring of mtDNA Damage in Living Cells. Anal Chem 2025; 97:584-593. [PMID: 39739923 DOI: 10.1021/acs.analchem.4c04862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Mitochondrial DNA (mtDNA) damage is a prevalent phenomenon that has been proven to be implicated in a wide spectrum of diseases. However, the progressive attenuation of probe signals in response to mtDNA damage within living cells inherently limits the sensitivity and precision of current probes for detecting mtDNA damage. Herein, we employ an innovative organelle signal ratio imaging approach, utilizing the mitochondria-nucleus migration probe MCQ, to achieve unparalleled sensitivity in detecting mtDNA damage in living cells. MCQ exhibited an initial preferential binding to mtDNA, facilitated by its cationic quinolinium moiety, but migrated to the nucleus upon mtDNA damage. This unique migration behavior not only enhanced the spatial identifiability of mtDNA damage but also amplified detection sensitivity and precision significantly by harnessing the intensified nucleus signal against the attenuated mitochondrial signal. This innovative approach established a positive correlation between the signal and mtDNA damage, enabling the detection of even subtle mtDNA damage at the early stage of apoptosis with a remarkable 23-fold enhancement following just 5 min H2O2 induction in living cells, whereas conventional methods relying solely on the fading of mitochondrial signals proved insufficient. Furthermore, MCQ's ability to monitor the occurrence of mtDNA damage achieved the intricate differentiation between apoptosis and ferroptosis. By monitoring mtDNA damage, drug-induced apoptosis in cancer cells was further conducted using MCQ to evaluate the therapeutic efficacy of four anticancer drugs at very low concentrations. This innovative strategy not only paves the way for ultrasensitive detection of mtDNA damage but also holds immense promise for early monitoring of mtDNA damage-associated diseases.
Collapse
Affiliation(s)
- Zhen-Qing Yu
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Wenjing Pan
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Minggang Tian
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Jing Zhang
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Hongwen Liu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, PR China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering and College of Medicine, Linyi University, Linyi 276000, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Mei Yan
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| | - Shuai Xu
- School of Chemistry and Chemical Engineering University of Jinan, Jinan 250022, People's Republic of China
| |
Collapse
|
13
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
14
|
Bhardwaj K, Jha A, Roy A, Kumar H. The crucial role of VPS35 and SHH in Parkinson's disease: Understanding the mechanisms behind the neurodegenerative disorder. Brain Res 2024; 1845:149204. [PMID: 39197569 DOI: 10.1016/j.brainres.2024.149204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/10/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Parkinson's disease (PD) is indeed a complex neurodegenerative disorder recognized by the progressive depletion of dopaminergic neurons in the brain, particularly in the substantia nigra region, leading to motor impairments and other symptoms. But at the molecular level, the study about PD still lacks. As the number of cases worldwide continues to increase, it is critical to focus on the cellular and molecular mechanisms of the disease's presentation and neurodegeneration to develop novel therapeutic approaches. At the molecular level, the complexity is more due to the involvement of vacuolar protein sorting 35 (VPS35) and sonic hedgehog (SHH) signaling in PD (directly or indirectly), leading to one of the most prominent hallmarks of the disease, which is an accumulation of α-synuclein. This elevated pathogenesis may result from impaired autophagy due to mutation in the case of VPS35 and impairment in SHH signaling at the molecular level. The traditional understanding of PD is marked by the disruption of dopaminergic neurons and dopaminergic signaling, which exacerbates symptoms of motor function deficits. However, the changes at the molecular level that are being disregarded also impact the overall health of the dopaminergic system. Gaining insight into these two unique mechanisms is essential to determine whether they give neuroprotection or have no effect on the health of neurons. Hence, here we tried to simplify the understanding of the role of VPS35 and SHH signaling to comprehend it in one direction.
Collapse
Affiliation(s)
- Kritika Bhardwaj
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Akanksha Jha
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Abhishek Roy
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Hemant Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Ahmedabad, Gandhinagar, Gujarat 382355, India.
| |
Collapse
|
15
|
King DE, Beard EE, Satusky MJ, Ryde IT, George A, Johnson C, Dolan EL, Zhang Y, Zhu W, Wilkins H, Corden E, Murphy SK, Erie D, Gordan R, Meyer JN. TFAM as a sensor of UVC-induced mitochondrial DNA damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.24.620005. [PMID: 39484377 PMCID: PMC11527015 DOI: 10.1101/2024.10.24.620005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Mitochondria lack nucleotide excision DNA repair; however, mitochondrial DNA (mtDNA) is resistant to mutation accumulation following DNA damage. These observations suggest additional damage sensing or protection mechanisms. Transcription Factor A, Mitochondrial (TFAM) compacts mtDNA into nucleoids. As such, TFAM has emerged as a candidate for protecting DNA or sensing damage. To examine these possibilities, we used live-cell imaging, cell-based assays, atomic force microscopy, and high-throughput protein-DNA binding assays to characterize the binding properties of TFAM to UVC-irradiated DNA and cellular consequences of UVC irradiation. Our data indicate an increase in mtDNA degradation and turnover, without a loss in mitochondrial membrane potential that might trigger mitophagy. We identified a reduction in sequence specificity of TFAM associated with UVC irradiation and a redistribution of TFAM binding throughout the mitochondrial genome. Our AFM data show increased compaction of DNA by TFAM in the presence of damage. Despite the TFAM-mediated compaction of mtDNA, we do not observe any protective effect on DNA damage accumulation in cells or in vitro. Taken together, these studies indicate that UVC-induced DNA damage promotes compaction by TFAM, suggesting that TFAM may act as a damage sensor, sequestering damaged genomes to prevent mutagenesis by direct removal or suppression of replication.
Collapse
|
16
|
Landoni JC, Kleele T, Winter J, Stepp W, Manley S. Mitochondrial Structure, Dynamics, and Physiology: Light Microscopy to Disentangle the Network. Annu Rev Cell Dev Biol 2024; 40:219-240. [PMID: 38976811 DOI: 10.1146/annurev-cellbio-111822-114733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Mitochondria serve as energetic and signaling hubs of the cell: This function results from the complex interplay between their structure, function, dynamics, interactions, and molecular organization. The ability to observe and quantify these properties often represents the puzzle piece critical for deciphering the mechanisms behind mitochondrial function and dysfunction. Fluorescence microscopy addresses this critical need and has become increasingly powerful with the advent of superresolution methods and context-sensitive fluorescent probes. In this review, we delve into advanced light microscopy methods and analyses for studying mitochondrial ultrastructure, dynamics, and physiology, and highlight notable discoveries they enabled.
Collapse
Affiliation(s)
- Juan C Landoni
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Tatjana Kleele
- Institute of Biochemistry, Swiss Federal Institute of Technology Zürich (ETH), Zürich, Switzerland;
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Julius Winter
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Willi Stepp
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Suliana Manley
- Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| |
Collapse
|
17
|
Paß T, Ricke KM, Hofmann P, Chowdhury RS, Nie Y, Chinnery P, Endepols H, Neumaier B, Carvalho A, Rigoux L, Steculorum SM, Prudent J, Riemer T, Aswendt M, Liss B, Brachvogel B, Wiesner RJ. Preserved striatal innervation maintains motor function despite severe loss of nigral dopaminergic neurons. Brain 2024; 147:3189-3203. [PMID: 38574200 DOI: 10.1093/brain/awae089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/22/2024] [Accepted: 02/09/2024] [Indexed: 04/06/2024] Open
Abstract
Degeneration of dopaminergic neurons in the substantia nigra and their striatal axon terminals causes cardinal motor symptoms of Parkinson's disease. In idiopathic cases, high levels of mitochondrial DNA alterations, leading to mitochondrial dysfunction, are a central feature of these vulnerable neurons. Here we present a mouse model expressing the K320E variant of the mitochondrial helicase Twinkle in dopaminergic neurons, leading to accelerated mitochondrial DNA mutations. These K320E-TwinkleDaN mice showed normal motor function at 20 months of age, although ∼70% of nigral dopaminergic neurons had perished. Remaining neurons still preserved ∼75% of axon terminals in the dorsal striatum and enabled normal dopamine release. Transcriptome analysis and viral tracing confirmed compensatory axonal sprouting of the surviving neurons. We conclude that a small population of substantia nigra dopaminergic neurons is able to adapt to the accumulation of mitochondrial DNA mutations and maintain motor control.
Collapse
Affiliation(s)
- Thomas Paß
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Konrad M Ricke
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Pierre Hofmann
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
| | - Roy S Chowdhury
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Yu Nie
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Patrick Chinnery
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Heike Endepols
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Department of Nuclear Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Bernd Neumaier
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Institute of Radiochemistry and Experimental Molecular Imaging, 50937 Cologne, Germany
- Forschungszentrum Jülich GmbH, Institute of Neuroscience and Medicine, Nuclear Chemistry (INM-5), 52425 Jülich, Germany
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - André Carvalho
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Lionel Rigoux
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Sophie M Steculorum
- Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| | - Julien Prudent
- MRC Mitochondrial Biology Unit, University of Cambridge, CB2 0XY Cambridge, UK
| | - Trine Riemer
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Markus Aswendt
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, 50937 Cologne, Germany
| | - Birgit Liss
- Institute of Applied Physiology, University of Ulm, 89081 Ulm, Germany
| | - Bent Brachvogel
- Department of Paediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine, University of Cologne, 50937 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Faculty of Medicine and University Hospital Cologne, 50931 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-associated Diseases (CECAD) and Centre for Molecular Medicine (CMMC), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
18
|
Shu X, Hua G, Zheng X, Chen Z, Zhang J, Zhuang W, Chen J. Screening of reliable reference genes for the normalization of RT-qPCR in chicken oviduct tract. Poult Sci 2024; 103:103980. [PMID: 38959666 PMCID: PMC11269787 DOI: 10.1016/j.psj.2024.103980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024] Open
Abstract
Utilizing publicly available RNA-seq data to screen for ideal reference genes is more efficient and accurate than traditional methods. Previous studies have identified optimal reference genes in various chicken tissues, but none have specifically focused on the oviduct (including the infundibulum, magnum, isthmus, uterus, and vagina), which is crucial for egg production. Identifying stable reference genes in the oviduct is essential for improving research on gene expression levels. This study investigated genes with consistent expression patterns in the chicken oviduct, encompassing both individual oviduct tract tissues and the entire oviduct, by utilizing multiple RNA-seq datasets. The screening results revealed the discovery of 100 novel reference genes in each segment of oviduct tissues, primarily associated with cell cycle regulation and RNA binding. Moreover, the majority of housekeeping genes (HKGs) showed inconsistent expression levels across distinct samples, suggesting their lack of stability under varying conditions. The stability of the newly identified reference genes was assessed in comparison to previously validated stable reference genes in chicken oviduct and commonly utilized HKGs, employing traditional reference gene screening methods. HERPUD2, CSDE1, VPS35, PBRM1, LSM14A, and YWHAB were identified to be suitable novel reference gene for different parts of the oviduct. HERPUD2 and YWHAB were reliable for gene expression normalization throughout the oviduct tract. Furthermore, overexpression and interference assays in DF1 cells showed LSM14A and YWHAB play a crucial role in cell proliferation, highlighting the importance of these newly reference genes for further research. Overall, this study has expanded the options for reference genes in RT-qPCR experiments in different segments of the chicken oviduct and the entire oviduct.
Collapse
Affiliation(s)
- Xin Shu
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Guoying Hua
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Xiaotong Zheng
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Ziwei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Jilong Zhang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Wuchao Zhuang
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Jianfei Chen
- Jiangsu Key Laboratory of Sericultural Biology and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, The Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
19
|
Reiter L, Niehoff N, Weiland D, Helbig D, Eming SA, Krieg T, Etich J, Brachvogel B, Wiesner RJ, Knuever J. Mitochondrial DNA mutations attenuate Bleomycin-induced dermal fibrosis by inhibiting differentiation into myofibroblasts. Matrix Biol 2024; 132:72-86. [PMID: 39009171 DOI: 10.1016/j.matbio.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/12/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Post-mitotic, non-proliferative dermal fibroblasts have crucial functions in maintenance and restoration of tissue homeostasis. They are involved in essential processes such as wound healing, pigmentation and hair growth, but also tumor development and aging-associated diseases. These processes are energetically highly demanding and error prone when mitochondrial damage occurs. However, mitochondrial function in fibroblasts and the influence of mitochondrial dysfunction on fibroblast-specific demands are still unclear. To address these questions, we created a mouse model in which accelerated cell-specific mitochondrial DNA (mtDNA) damage accumulates. We crossed mice carrying a dominant-negative mutant of the mitochondrial replicative helicase Twinkle (RosaSTOP system) with mice that express fibroblast-specific Cre Recombinase (Collagen1A2 CreERT) which can be activated by Tamoxifen (TwinkleFIBRO). Thus, we are able to induce mtDNA deletions and duplications in specific cells, a process which resembles the physiological aging process in humans, where this damage accumulates in all tissues. Upon proliferation in vitro, Tamoxifen induced Twinkle fibroblasts deplete most of their mitochondrial DNA which, although not disturbing the stoichiometry of the respiratory chain complexes, leads to reduced ROS production and mitochondrial membrane potential as well as an anti-inflammatory and anti-fibrotic profile of the cells. In Sodium Azide treated wildtype fibroblasts, without a functioning respiratory chain, we observe the opposite, a rather pro-inflammatory and pro-fibrotic signature. Upon accumulation of mitochondrial DNA mutations in vivo the TwinkleFIBRO mice are protected from fibrosis development induced by intradermal Bleomycin injections. This is due to dampened differentiation of the dermal fibroblasts into α-smooth-muscle-actin positive myofibroblasts in TwinkleFIBRO mice. We thus provide evidence for striking differences of the impact that mtDNA mutations have in contrast to blunted mitochondrial function in dermal fibroblasts and skin homeostasis. These data contribute to improved understanding of mitochondrial function and dysfunction in skin and provide mechanistic insight into potential targets to treat skin fibrosis in the future.
Collapse
Affiliation(s)
- Lena Reiter
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Nadine Niehoff
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany
| | - Daniela Weiland
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany; Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Doris Helbig
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sabine A Eming
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Institute of Zoology, Developmental Biology Unit, University of Cologne, 50674 Cologne, Germany
| | - Thomas Krieg
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Translational Matrix Biology, University of Cologne, Medical Faculty, 50931 Cologne, Germany
| | - Julia Etich
- Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Bent Brachvogel
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Department of Pediatrics and Adolescent Medicine, Experimental Neonatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50931 Cologne, Germany
| | - Rudolf J Wiesner
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, University of Cologne, 50931 Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, 50931 Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Jana Knuever
- Department of Dermatology and Venereology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
20
|
Liu B, Sun T, Wang Y, Xia XY, Cao S, Wang KN, Chen Q, Mao ZW. Real-Time Monitoring of mtDNA Aggregation and Mitophagy Induced by a Fluorescent Platinum Complex in Living Cells. Anal Chem 2024; 96:13421-13428. [PMID: 39109704 DOI: 10.1021/acs.analchem.4c01128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mitochondrial DNA (mtDNA) is pivotal for mitochondrial morphology and function. Upon mtDNA damage, mitochondria undergo quality control mechanisms, including fusion, fission, and mitophagy. Real-time monitoring of mtDNA enables a deeper understanding of its effect on mitochondrial function and morphology. Controllable induction and real-time tracking of mtDNA dynamics and behavior are of paramount significance for studying mitochondrial function and morphology, facilitating a deeper understanding of mitochondria-related diseases. In this work, a fluorescent platinum complex was designed and developed that not only induces mitochondrial DNA (mtDNA) aggregation but also triggers mitochondrial autophagy (mitophagy) through the MDV pathway for damaged mtDNA clearance in living cells. Additionally, this complex allows for the real-time monitoring of these processes. This complex may serve as a valuable tool for studying mitochondrial microautophagy and holds promise for broader applications in cellular imaging and disease research.
Collapse
Affiliation(s)
- Bing Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Ting Sun
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Yumeng Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Xiao-Yu Xia
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| | - Shixian Cao
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Kang-Nan Wang
- State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, P. R. China
| | - Qixin Chen
- School of Pharmaceutical Sciences, State Key Laboratory of Advanced Drug Delivery and Release System, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P. R. China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, State Key Laboratory of Oncology in South China, Sun Yat-Sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
21
|
Goel D, Kumar S. Advancements in unravelling the fundamental function of the ATAD3 protein in multicellular organisms. Adv Biol Regul 2024; 93:101041. [PMID: 38909398 DOI: 10.1016/j.jbior.2024.101041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/05/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
ATPase family AAA domain containing protein 3, commonly known as ATAD3 is a versatile mitochondrial protein that is involved in a large number of pathways. ATAD3 is a transmembrane protein that spans both the inner mitochondrial membrane and outer mitochondrial membrane. It, therefore, functions as a connecting link between the mitochondrial lumen and endoplasmic reticulum facilitating their cross-talk. ATAD3 contains an N-terminal domain which is amphipathic in nature and is inserted into the membranous space of the mitochondria, while the C-terminal domain is present towards the lumen of the mitochondria and contains the ATPase domain. ATAD3 is known to be involved in mitochondrial biogenesis, cholesterol transport, hormone synthesis, apoptosis and several other pathways. It has also been implicated to be involved in cancer and many neurological disorders making it an interesting target for extensive studies. This review aims to provide an updated comprehensive account of the role of ATAD3 in the mitochondria especially in lipid transport, mitochondrial-endoplasmic reticulum interactions, cancer and inhibition of mitophagy.
Collapse
Affiliation(s)
- Divya Goel
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Sudhir Kumar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, 110067, India.
| |
Collapse
|
22
|
Zhou Y, Kang L, Xu R, Zhao D, Wang J, Wu J, Lin H, Ding Z, Zou Y. Mitochondrial outer membrane protein Samm50 protects against hypoxia-induced cardiac injury by interacting with Shmt2. Cell Signal 2024; 120:111219. [PMID: 38723737 DOI: 10.1016/j.cellsig.2024.111219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/14/2024]
Abstract
Cardiac remodeling is a critical process following myocardial infarction (MI), potentially leading to heart failure if untreated. The significance of mitochondrial homeostasis in MI remains insufficiently understood. Samm50 is an essential component of mitochondria. Our study aimed to investigate its role in hypoxia-induced cardiac injury and the underlying mechanisms. First, we observed that Samm50 was dynamically downregulated in mice with MI compared to the control mice. In vitro, Samm50 was also downregulated in oxygen-glucose-deprived neonatal rat cardiomyocytes and fibroblasts. Overexpression and knockdown of Samm50 mitigated and exacerbated cardiac apoptosis and fibrosis, while also improving and worsening mitochondrial homeostasis, respectively. Protein interactions with Samm50 during the protective process were identified via immune-coprecipitation/mass spectroscopy. Mechanistically, serine hydroxymethyltransferase 2 (Shmt2) interacted with Samm50, acting as a crucial element in the protective process by hindering the transfer of Bax from the cytoplasm to the mitochondria and subsequent activation of caspase-3. Inhibition of Shmt2 diminished the protective effect of Samm50 overexpression against cardiac injury. Finally, Samm50 overexpression in vivo mitigated cardiac remodeling and enhanced cardiac function in both acute and chronic MI. In conclusion, Samm50 overexpression mitigated hypoxia-induced cardiac remodeling by inhibiting apoptosis and fibrosis, with Shmt2 acting as a key regulator in this protective process. The Samm50/Shmt2 axis represents a newly discovered mitochondria-related pathway for mitigating hypoxia-induced cardiac injury.
Collapse
Affiliation(s)
- Yufei Zhou
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Le Kang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Ran Xu
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Di Zhao
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jienan Wang
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Jiaying Wu
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hong Lin
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zhiwen Ding
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Yunzeng Zou
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Pla-Martín D, Reichert AS. Inner membrane turns inside out to exit mitochondrial organelles. Nature 2024; 632:987-988. [PMID: 39169127 DOI: 10.1038/d41586-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
|
24
|
Tábara LC, Burr SP, Frison M, Chowdhury SR, Paupe V, Nie Y, Johnson M, Villar-Azpillaga J, Viegas F, Segawa M, Anand H, Petkevicius K, Chinnery PF, Prudent J. MTFP1 controls mitochondrial fusion to regulate inner membrane quality control and maintain mtDNA levels. Cell 2024; 187:3619-3637.e27. [PMID: 38851188 DOI: 10.1016/j.cell.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/10/2024]
Abstract
Mitochondrial dynamics play a critical role in cell fate decisions and in controlling mtDNA levels and distribution. However, the molecular mechanisms linking mitochondrial membrane remodeling and quality control to mtDNA copy number (CN) regulation remain elusive. Here, we demonstrate that the inner mitochondrial membrane (IMM) protein mitochondrial fission process 1 (MTFP1) negatively regulates IMM fusion. Moreover, manipulation of mitochondrial fusion through the regulation of MTFP1 levels results in mtDNA CN modulation. Mechanistically, we found that MTFP1 inhibits mitochondrial fusion to isolate and exclude damaged IMM subdomains from the rest of the network. Subsequently, peripheral fission ensures their segregation into small MTFP1-enriched mitochondria (SMEM) that are targeted for degradation in an autophagic-dependent manner. Remarkably, MTFP1-dependent IMM quality control is essential for basal nucleoid recycling and therefore to maintain adequate mtDNA levels within the cell.
Collapse
Affiliation(s)
- Luis Carlos Tábara
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| | - Stephen P Burr
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Michele Frison
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Suvagata R Chowdhury
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Vincent Paupe
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Yu Nie
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Mark Johnson
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Jara Villar-Azpillaga
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Filipa Viegas
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Mayuko Segawa
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Hanish Anand
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Kasparas Petkevicius
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK
| | - Patrick F Chinnery
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK; Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Julien Prudent
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, UK.
| |
Collapse
|
25
|
Liu H, Zhen C, Xie J, Luo Z, Zeng L, Zhao G, Lu S, Zhuang H, Fan H, Li X, Liu Z, Lin S, Jiang H, Chen Y, Cheng J, Cao Z, Dai K, Shi J, Wang Z, Hu Y, Meng T, Zhou C, Han Z, Huang H, Zhou Q, He P, Feng D. TFAM is an autophagy receptor that limits inflammation by binding to cytoplasmic mitochondrial DNA. Nat Cell Biol 2024; 26:878-891. [PMID: 38783142 DOI: 10.1038/s41556-024-01419-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 04/08/2024] [Indexed: 05/25/2024]
Abstract
When cells are stressed, DNA from energy-producing mitochondria can leak out and drive inflammatory immune responses if not cleared. Cells employ a quality control system called autophagy to specifically degrade damaged components. We discovered that mitochondrial transcription factor A (TFAM)-a protein that binds mitochondrial DNA (mtDNA)-helps to eliminate leaked mtDNA by interacting with the autophagy protein LC3 through an autolysosomal pathway (we term this nucleoid-phagy). TFAM contains a molecular zip code called the LC3 interacting region (LIR) motif that enables this binding. Although mutating TFAM's LIR motif did not affect its normal mitochondrial functions, more mtDNA accumulated in the cell cytoplasm, activating inflammatory signalling pathways. Thus, TFAM mediates autophagic removal of leaked mtDNA to restrict inflammation. Identifying this mechanism advances understanding of how cells exploit autophagy machinery to selectively target and degrade inflammatory mtDNA. These findings could inform research on diseases involving mitochondrial damage and inflammation.
Collapse
Affiliation(s)
- Hao Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Huaihe Hospital of Henan University, Kaifeng City, China
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Cien Zhen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Jianming Xie
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Zhenhuan Luo
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Lin Zeng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Guojun Zhao
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China
| | - Shaohua Lu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haixia Zhuang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hualin Fan
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Biology, University of Padova, Padova, Italy
| | - Xia Li
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaojie Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Shiyin Lin
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huilin Jiang
- Emergency Department, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqian Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jiahao Cheng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
- Department of Clinical Medicine, Nanshan School, Guangzhou Medical University, Guangzhou, China
| | - Zhiyu Cao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- The First Clinical Medical School, Guangzhou Medical University, Guangzhou, China
| | - Keyu Dai
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Jinhua Shi
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhaohua Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yongquan Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Tian Meng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Chuchu Zhou
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Zhiyuan Han
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Huansen Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinghua Zhou
- Department of Cardiology, The First Affiliated Hospital, Jinan University, Guangzhou, China
- College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Pengcheng He
- Department of Cardiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Guangdong Provincial Key Laboratory of Coronary Heart Disease Prevention, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Cardiology, Heyuan People's Hospital, Heyuan, China
| | - Du Feng
- State Key Laboratory of Respiratory Disease, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China.
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, China.
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China.
- The Affiliated Traditional Chinese Medicine Hospital, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
26
|
Matsui H, Takahashi R. Current trends in basic research on Parkinson's disease: from mitochondria, lysosome to α-synuclein. J Neural Transm (Vienna) 2024; 131:663-674. [PMID: 38613675 PMCID: PMC11192670 DOI: 10.1007/s00702-024-02774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Accepted: 03/28/2024] [Indexed: 04/15/2024]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by progressive degeneration of dopaminergic neurons in the substantia nigra and other brain regions. A key pathological feature of PD is the abnormal accumulation of α-synuclein protein within affected neurons, manifesting as Lewy bodies and Lewy neurites. Despite extensive research efforts spanning several decades, the underlying mechanisms of PD and disease-modifying therapies remain elusive. This review provides an overview of current trends in basic research on PD. Initially, it discusses the involvement of mitochondrial dysfunction in the pathogenesis of PD, followed by insights into the role of lysosomal dysfunction and disruptions in the vesicular transport system. Additionally, it delves into the pathological and physiological roles of α-synuclein, a crucial protein associated with PD pathophysiology. Overall, the purpose of this review is to comprehend the current state of elucidating the intricate mechanisms underlying PD and to outline future directions in understanding this disease.
Collapse
Affiliation(s)
- Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, 1-757, Asahimachidori, Chuoku, Niigata, 951-8585, Japan.
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto University, 54, Shogoin Kawahara-cho, Sakyoku, Kyoto, 606-8507, Japan.
| |
Collapse
|
27
|
Zong Y, Yang Y, Zhao J, Li L, Luo D, Hu J, Gao Y, Xie X, Shen L, Chen S, Ning L, Jiang L. Identification of key mitochondria-related genes and their relevance to the immune system linking Parkinson's disease and primary Sjögren's syndrome through integrated bioinformatics analyses. Comput Biol Med 2024; 175:108511. [PMID: 38677173 DOI: 10.1016/j.compbiomed.2024.108511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/14/2024] [Accepted: 04/21/2024] [Indexed: 04/29/2024]
Abstract
BACKGROUND Mitochondria are the metabolic hubs of cells, regulating energy production and antigen presentation, which are essential for activation, proliferation, and function of immune cells. Recent evidence indicates that mitochondrial antigen presentation may have an impact on diseases such as Parkinson's disease (PD) and autoimmune diseases. However, there is limited knowledge about the mechanisms that regulate the presentation of mitochondrial antigens in these diseases. METHODS In the current study, RNA sequencing was performed on labial minor salivary gland (LSG) from 25 patients with primary Sjögren's syndrome (pSS) and 14 non-pSS aged controls. Additionally, we obtained gene expression omnibus datasets associated with PD patients from NCBI Gene Expression Omnibus (GEO) databases. Single-sample Gene Set Enrichment Analysis (ssGSEA), ESTIMATE and Spearman correlations were conducted to explore the association between mitochondrial related genes and the immune system. Furthermore, we applied weighted Gene Co-expression Network Analysis (WGCNA) to identify hub mitochondria-related genes and investigate the correlated networks in both diseases. Single cell transcriptome analysis, immunohistochemical (IHC) staining and quantitative real-time PCR (qRT-PCR) were used to verify the activation of the hub mitochondria-related pathway. Pearson correlations and the CIBERSORT algorithms were employed to further reveal the correlation between hub mitochondria-related pathways and immune infiltration. RESULTS The transcriptome analysis revealed the presence of overlapping mitochondria-related genes and mitochondrial DNA damage in patients with pSS and PD. Reactive oxygen species (ROS), the senescence marker p53, and the inflammatory markers CD45 and Bcl-2 were found to be regionally distributed in LSGs of pSS patients. WGCNA analysis identified the STING pathway as the central mitochondria-related pathway closely associated with the immune system. Single cell analysis, IHC staining, and qRT-PCR confirmed the activation of the STING pathway. Subsequent, bioinformatic analysis revealed the proportion of infiltrating immune cells in the STING-high and STING-low groups of pSS and PD. Furthermore, the study demonstrated the association of the STING pathway with innate and adaptive immune cells, as well as functional cells, in the immune microenvironment of PD and pSS. CONCLUSION Our study uncovered a central pathway that connects mitochondrial dysfunction and the immune microenvironment in PD and pSS, potentially offering valuable insights into therapeutic targets for these conditions.
Collapse
Affiliation(s)
- Yuan Zong
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yi Yang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawen Zhao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Li
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danyang Luo
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiawei Hu
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Yiming Gao
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianfei Xie
- Hainan Branch, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Qionghai, China; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linhui Shen
- Department of Geriatrics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sheng Chen
- Department of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Ning
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| | - Liting Jiang
- Department of Stomatology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
28
|
Lai EY, Huang YT. Identifying pleiotropic genes via the composite test amidst the complexity of polygenic traits. Brief Bioinform 2024; 25:bbae327. [PMID: 39007593 PMCID: PMC11247409 DOI: 10.1093/bib/bbae327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/29/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Identifying the causal relationship between genotype and phenotype is essential to expanding our understanding of the gene regulatory network spanning the molecular level to perceptible traits. A pleiotropic gene can act as a central hub in the network, influencing multiple outcomes. Identifying such a gene involves testing under a composite null hypothesis where the gene is associated with, at most, one trait. Traditional methods such as meta-analyses of top-hit $P$-values and sequential testing of multiple traits have been proposed, but these methods fail to consider the background of genome-wide signals. Since Huang's composite test produces uniformly distributed $P$-values for genome-wide variants under the composite null, we propose a gene-level pleiotropy test that entails combining the aforementioned method with the aggregated Cauchy association test. A polygenic trait involves multiple genes with different functions to co-regulate mechanisms. We show that polygenicity should be considered when identifying pleiotropic genes; otherwise, the associations polygenic traits initiate will give rise to false positives. In this study, we constructed gene-trait functional modules using the results of the proposed pleiotropy tests. Our analysis suite was implemented as an R package PGCtest. We demonstrated the proposed method with an application study of the Taiwan Biobank database and identified functional modules comprising specific genes and their co-regulated traits.
Collapse
Affiliation(s)
- En-Yu Lai
- Institute of Statistical Science, Academia Sinica, No.128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| | - Yen-Tsung Huang
- Institute of Statistical Science, Academia Sinica, No.128, Academia Road, Section 2, Nankang, Taipei 11529, Taiwan
| |
Collapse
|
29
|
Suomalainen A, Nunnari J. Mitochondria at the crossroads of health and disease. Cell 2024; 187:2601-2627. [PMID: 38788685 DOI: 10.1016/j.cell.2024.04.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024]
Abstract
Mitochondria reside at the crossroads of catabolic and anabolic metabolism-the essence of life. How their structure and function are dynamically tuned in response to tissue-specific needs for energy, growth repair, and renewal is being increasingly understood. Mitochondria respond to intrinsic and extrinsic stresses and can alter cell and organismal function by inducing metabolic signaling within cells and to distal cells and tissues. Here, we review how the centrality of mitochondrial functions manifests in health and a broad spectrum of diseases and aging.
Collapse
Affiliation(s)
- Anu Suomalainen
- University of Helsinki, Stem Cells and Metabolism Program, Faculty of Medicine, Helsinki, Finland; HiLife, University of Helsinki, Helsinki, Finland; HUS Diagnostics, Helsinki University Hospital, Helsinki, Finland.
| | - Jodi Nunnari
- Altos Labs, Bay Area Institute, Redwood Shores, CA, USA.
| |
Collapse
|
30
|
VanPortfliet JJ, Chute C, Lei Y, Shutt TE, West AP. Mitochondrial DNA release and sensing in innate immune responses. Hum Mol Genet 2024; 33:R80-R91. [PMID: 38779772 PMCID: PMC11112387 DOI: 10.1093/hmg/ddae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 02/09/2024] [Indexed: 05/25/2024] Open
Abstract
Mitochondria are pleiotropic organelles central to an array of cellular pathways including metabolism, signal transduction, and programmed cell death. Mitochondria are also key drivers of mammalian immune responses, functioning as scaffolds for innate immune signaling, governing metabolic switches required for immune cell activation, and releasing agonists that promote inflammation. Mitochondrial DNA (mtDNA) is a potent immunostimulatory agonist, triggering pro-inflammatory and type I interferon responses in a host of mammalian cell types. Here we review recent advances in how mtDNA is detected by nucleic acid sensors of the innate immune system upon release into the cytoplasm and extracellular space. We also discuss how the interplay between mtDNA release and sensing impacts cellular innate immune endpoints relevant to health and disease.
Collapse
Affiliation(s)
- Jordyn J VanPortfliet
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| | - Cole Chute
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Yuanjiu Lei
- Department of Pathology, Yale School of Medicine, New Haven, CT 06520, United States
| | - Timothy E Shutt
- Departments of Medical Genetics and Biochemistry & Molecular Biology, Alberta Children's Hospital Research Institute, Hotchkiss Brain Institute, Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Phillip West
- The Jackson Laboratory, Bar Harbor, ME 04609, United States
- Department of Microbial Pathogenesis and Immunology, School of Medicine, Texas A&M University, Bryan, TX 77807, United States
| |
Collapse
|
31
|
Todosenko N, Yurova K, Vulf M, Khaziakhmatova O, Litvinova L. Prohibitions in the meta-inflammatory response: a review. Front Mol Biosci 2024; 11:1322687. [PMID: 38813101 PMCID: PMC11133639 DOI: 10.3389/fmolb.2024.1322687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/01/2024] [Indexed: 05/31/2024] Open
Abstract
Prohibitins are the central regulatory element of cellular homeostasis, especially by modulating the response at different levels: Nucleus, mitochondria and membranes. Their localization and interaction with various proteins, homons, transcription and nuclear factors, and mtDNA indicate the globality and complexity of their pleiotropic properties, which remain to be investigated. A more detailed deciphering of cellular metabolism in relation to prohibitins under normal conditions and in various metabolic diseases will allow us to understand the precise role of prohibitins in the signaling cascades of PI3K/Akt, Raf/MAP/ERK, STAT3, p53, and others and to fathom their mutual influence. A valuable research perspective is to investigate the role of prohibitins in the molecular and cellular interactions between the two major players in the pathogenesis of obesity-adipocytes and macrophages - that form the basis of the meta-inflammatory response. Investigating the subtle intercellular communication and molecular cascades triggered in these cells will allow us to propose new therapeutic strategies to eliminate persistent inflammation, taking into account novel molecular genetic approaches to activate/inactivate prohibitins.
Collapse
Affiliation(s)
- Natalia Todosenko
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Kristina Yurova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Maria Vulf
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Olga Khaziakhmatova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Larisa Litvinova
- Center for Immunology and Cellular Biotechnology, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
- Laboratory of Cellular and Microfluidic Technologies, Siberian State Medical University, Tomsk, Russia
| |
Collapse
|
32
|
Waters ER, Bezanilla M, Vierling E. ATAD3 Proteins: Unique Mitochondrial Proteins Essential for Life in Diverse Eukaryotic Lineages. PLANT & CELL PHYSIOLOGY 2024; 65:493-502. [PMID: 37859594 DOI: 10.1093/pcp/pcad122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 10/21/2023]
Abstract
ATPase family AAA domain-containing 3 (ATAD3) proteins are unique mitochondrial proteins that arose deep in the eukaryotic lineage but that are surprisingly absent in Fungi and Amoebozoa. These ∼600-amino acid proteins are anchored in the inner mitochondrial membrane and are essential in metazoans and Arabidopsis thaliana. ATAD3s comprise a C-terminal ATPases Associated with a variety of cellular Activities (AAA+) matrix domain and an ATAD3_N domain, which is located primarily in the inner membrane space but potentially extends to the cytosol to interact with the ER. Sequence and structural alignments indicate that ATAD3 proteins are most similar to classic chaperone unfoldases in the AAA+ family, suggesting that they operate in mitochondrial protein quality control. A. thaliana has four ATAD3 genes in two distinct clades that appear first in the seed plants, and both clades are essential for viability. The four genes are generally coordinately expressed, and transcripts are highest in growing apices and imbibed seeds. Plants with disrupted ATAD3 have reduced growth, aberrant mitochondrial morphology, diffuse nucleoids and reduced oxidative phosphorylation complex I. These and other pleiotropic phenotypes are also observed in ATAD3 mutants in metazoans. Here, we discuss the distribution of ATAD3 proteins as they have evolved in the plant kingdom, their unique structure, what we know about their function in plants and the challenges in determining their essential roles in mitochondria.
Collapse
Affiliation(s)
- Elizabeth R Waters
- Department of Biology, San Diego State University, 5500 Campanille Dr., San Diego, CA 92182, USA
| | - Magdalena Bezanilla
- Department of Biological Sciences, Dartmouth College, 78 College St., Hanover, NH 03755, USA
| | - Elizabeth Vierling
- Department of Biochemistry & Molecular Biology, University of Massachusetts Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| |
Collapse
|
33
|
Ma L, Han T, Zhan YA. Mechanism and role of mitophagy in the development of severe infection. Cell Death Discov 2024; 10:88. [PMID: 38374038 PMCID: PMC10876966 DOI: 10.1038/s41420-024-01844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/01/2024] [Indexed: 02/21/2024] Open
Abstract
Mitochondria produce adenosine triphosphate and potentially contribute to proinflammatory responses and cell death. Mitophagy, as a conservative phenomenon, scavenges waste mitochondria and their components in the cell. Recent studies suggest that severe infections develop alongside mitochondrial dysfunction and mitophagy abnormalities. Restoring mitophagy protects against excessive inflammation and multiple organ failure in sepsis. Here, we review the normal mitophagy process, its interaction with invading microorganisms and the immune system, and summarize the mechanism of mitophagy dysfunction during severe infection. We highlight critical role of normal mitophagy in preventing severe infection.
Collapse
Affiliation(s)
- Lixiu Ma
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Tianyu Han
- Jiangxi Institute of Respiratory Disease, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Yi-An Zhan
- Department of Respiratory and Critical Care Medicine, the 1st Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
34
|
Camacho-Encina M, Booth LK, Redgrave RE, Folaranmi O, Spyridopoulos I, Richardson GD. Cellular Senescence, Mitochondrial Dysfunction, and Their Link to Cardiovascular Disease. Cells 2024; 13:353. [PMID: 38391966 PMCID: PMC10886919 DOI: 10.3390/cells13040353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/14/2024] [Accepted: 02/15/2024] [Indexed: 02/24/2024] Open
Abstract
Cardiovascular diseases (CVDs), a group of disorders affecting the heart or blood vessels, are the primary cause of death worldwide, with an immense impact on patient quality of life and disability. According to the World Health Organization, CVD takes an estimated 17.9 million lives each year, where more than four out of five CVD deaths are due to heart attacks and strokes. In the decades to come, an increased prevalence of age-related CVD, such as atherosclerosis, coronary artery stenosis, myocardial infarction (MI), valvular heart disease, and heart failure (HF) will contribute to an even greater health and economic burden as the global average life expectancy increases and consequently the world's population continues to age. Considering this, it is important to focus our research efforts on understanding the fundamental mechanisms underlying CVD. In this review, we focus on cellular senescence and mitochondrial dysfunction, which have long been established to contribute to CVD. We also assess the recent advances in targeting mitochondrial dysfunction including energy starvation and oxidative stress, mitochondria dynamics imbalance, cell apoptosis, mitophagy, and senescence with a focus on therapies that influence both and therefore perhaps represent strategies with the most clinical potential, range, and utility.
Collapse
Affiliation(s)
- Maria Camacho-Encina
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Laura K. Booth
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Rachael E. Redgrave
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Omowumi Folaranmi
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| | - Ioakim Spyridopoulos
- Vascular Medicine and Biology Theme, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (L.K.B.); (I.S.)
| | - Gavin D. Richardson
- Vascular Medicine and Biology Theme, Bioscience Institute, Newcastle University, Newcastle upon Tyne NE1 3BZ, UK; (R.E.R.); (O.F.); (G.D.R.)
| |
Collapse
|
35
|
Newman LE, Weiser Novak S, Rojas GR, Tadepalle N, Schiavon CR, Grotjahn DA, Towers CG, Tremblay MÈ, Donnelly MP, Ghosh S, Medina M, Rocha S, Rodriguez-Enriquez R, Chevez JA, Lemersal I, Manor U, Shadel GS. Mitochondrial DNA replication stress triggers a pro-inflammatory endosomal pathway of nucleoid disposal. Nat Cell Biol 2024; 26:194-206. [PMID: 38332353 PMCID: PMC11026068 DOI: 10.1038/s41556-023-01343-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/20/2023] [Indexed: 02/10/2024]
Abstract
Mitochondrial DNA (mtDNA) encodes essential subunits of the oxidative phosphorylation system, but is also a major damage-associated molecular pattern (DAMP) that engages innate immune sensors when released into the cytoplasm, outside of cells or into circulation. As a DAMP, mtDNA not only contributes to anti-viral resistance, but also causes pathogenic inflammation in many disease contexts. Cells experiencing mtDNA stress caused by depletion of the mtDNA-packaging protein, transcription factor A, mitochondrial (TFAM) or during herpes simplex virus-1 infection exhibit elongated mitochondria, enlargement of nucleoids (mtDNA-protein complexes) and activation of cGAS-STING innate immune signalling via mtDNA released into the cytoplasm. However, the relationship among aberrant mitochondria and nucleoid dynamics, mtDNA release and cGAS-STING activation remains unclear. Here we show that, under a variety of mtDNA replication stress conditions and during herpes simplex virus-1 infection, enlarged nucleoids that remain bound to TFAM exit mitochondria. Enlarged nucleoids arise from mtDNA experiencing replication stress, which causes nucleoid clustering via a block in mitochondrial fission at a stage when endoplasmic reticulum actin polymerization would normally commence, defining a fission checkpoint that ensures mtDNA has completed replication and is competent for segregation into daughter mitochondria. Chronic engagement of this checkpoint results in enlarged nucleoids trafficking into early and then late endosomes for disposal. Endosomal rupture during transit through this endosomal pathway ultimately causes mtDNA-mediated cGAS-STING activation. Thus, we propose that replication-incompetent nucleoids are selectively eliminated by an adaptive mitochondria-endosomal quality control pathway that is prone to innate immune system activation, which might represent a therapeutic target to prevent mtDNA-mediated inflammation during viral infection and other pathogenic states.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Gladys R Rojas
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | | | | | | | | | - Matthew P Donnelly
- Salk Institute for Biological Studies, La Jolla, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA, USA
| | - Sagnika Ghosh
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Sienna Rocha
- Salk Institute for Biological Studies, La Jolla, CA, USA
| | | | - Joshua A Chevez
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Ian Lemersal
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Uri Manor
- Salk Institute for Biological Studies, La Jolla, CA, USA.
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, USA.
- Department of Cell & Developmental Biology, University of California, San Diego, La Jolla, CA, USA.
| | | |
Collapse
|
36
|
Potter A, Cabrera-Orefice A, Spelbrink JN. Let's make it clear: systematic exploration of mitochondrial DNA- and RNA-protein complexes by complexome profiling. Nucleic Acids Res 2023; 51:10619-10641. [PMID: 37615582 PMCID: PMC10602928 DOI: 10.1093/nar/gkad697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/18/2023] [Accepted: 08/11/2023] [Indexed: 08/25/2023] Open
Abstract
Complexome profiling (CP) is a powerful tool for systematic investigation of protein interactors that has been primarily applied to study the composition and dynamics of mitochondrial protein complexes. Here, we further optimized this method to extend its application to survey mitochondrial DNA- and RNA-interacting protein complexes. We established that high-resolution clear native gel electrophoresis (hrCNE) is a better alternative to preserve DNA- and RNA-protein interactions that are otherwise disrupted when samples are separated by the widely used blue native gel electrophoresis (BNE). In combination with enzymatic digestion of DNA, our CP approach improved the identification of a wide range of protein interactors of the mitochondrial gene expression system without compromising the detection of other multiprotein complexes. The utility of this approach was particularly demonstrated by analysing the complexome changes in human mitochondria with impaired gene expression after transient, chemically induced mitochondrial DNA depletion. Effects of RNase on mitochondrial protein complexes were also evaluated and discussed. Overall, our adaptations significantly improved the identification of mitochondrial DNA- and RNA-protein interactions by CP, thereby unlocking the comprehensive analysis of a near-complete mitochondrial complexome in a single experiment.
Collapse
Affiliation(s)
- Alisa Potter
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| | - Alfredo Cabrera-Orefice
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical BioSciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Functional Proteomics, Institute for Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Johannes N Spelbrink
- Department of Pediatrics, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
37
|
Fu Y, Sacco O, DeBitetto E, Kanshin E, Ueberheide B, Sfeir A. Mitochondrial DNA breaks activate an integrated stress response to reestablish homeostasis. Mol Cell 2023; 83:3740-3753.e9. [PMID: 37832546 PMCID: PMC11229056 DOI: 10.1016/j.molcel.2023.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 08/10/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
Mitochondrial DNA double-strand breaks (mtDSBs) lead to the degradation of circular genomes and a reduction in copy number; yet, the cellular response in human cells remains elusive. Here, using mitochondrial-targeted restriction enzymes, we show that a subset of cells with mtDSBs exhibited defective mitochondrial protein import, reduced respiratory complexes, and loss of membrane potential. Electron microscopy confirmed the altered mitochondrial membrane and cristae ultrastructure. Intriguingly, mtDSBs triggered the integrated stress response (ISR) via the phosphorylation of eukaryotic translation initiation factor 2α (eIF2α) by DELE1 and heme-regulated eIF2α kinase (HRI). When ISR was inhibited, the cells experienced intensified mitochondrial defects and slower mtDNA recovery post-breakage. Lastly, through proteomics, we identified ATAD3A-a membrane-bound protein interacting with nucleoids-as potentially pivotal in relaying signals from impaired genomes to the inner mitochondrial membrane. In summary, our study delineates the cascade connecting damaged mitochondrial genomes to the cytoplasm and highlights the significance of the ISR in maintaining mitochondrial homeostasis amid genome instability.
Collapse
Affiliation(s)
- Yi Fu
- Skirball Institute of Biomolecular Medicine, Cell Biology Department, NYU School of Medicine, New York, NY 10016, USA; Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Olivia Sacco
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Emily DeBitetto
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Evgeny Kanshin
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA
| | - Beatrix Ueberheide
- Proteomics Laboratory, NYU School of Medicine, New York, NY 10016, USA; Biochemistry and Molecular Pharmacology, NYU School of Medicine, New York, NY 10016, USA; Department of Neurology, NYU School of Medicine, New York, NY 10016, USA; Perlmutter Cancer Center, NYU School of Medicine, New York, NY 10016, USA
| | - Agnel Sfeir
- Molecular Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
38
|
Huang H, Wang T, Wang L, Huang Y, Li W, Wang J, Hu Y, Zhou Z. Saponins of Panax japonicus ameliorates cardiac aging phenotype in aging rats by enhancing basal autophagy through AMPK/mTOR/ULK1 pathway. Exp Gerontol 2023; 182:112305. [PMID: 37797916 DOI: 10.1016/j.exger.2023.112305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/07/2023]
Abstract
Heart disease is a significant health concern for elderly individuals, with heart aging being the primary cause. Recent studies have shown that autophagy can play a protective role in preventing cardiac aging. Our previous research confirmed that Chikusetsu saponin IVa, a fundamental component of Saponins of Panax japonics (SPJ), can enhance basic autophagy levels in cardiomyocyte of isoproterenol induced cardiac fibrosis mice. However, it remains unclear whether SPJ possesses a protective effect on cardiac dysfunction during the natural aging process. Rats were randomly divided into four groups: adult control group (6 months old), aging group (24 months old), aging group treated with 10 mg/kg SPJ, and aging group treated with 30 mg/kg SPJ. The heart function, blood pressure, and heart mass index (HMI) were measured. Hematoxylin and eosin staining (H&E) and Wheat Germ Agglutinin (WGA) staining were used to observe the changes in morphology, while Masson staining was used to examine collagen deposition in the rat hearts and CD45 immunohistochemistry was conducted to examine the macrophage infiltration in heart tissues. TUNEL kit was used to detect apoptosis level of cardiomyocyte, and western blot was used to evaluate autophagy-related proteins as well as AMPK/mTOR/ULK1 pathway-related markers. SPJ treatment improved the cardiac function, reduced HMI, attenuated myocardial fiber disorder, inhibited inflammatory cell infiltration, and decreased collagen deposition and cardiomyocyte apoptosis in aging rats. Additionally, SPJ treatment decreased the expression of aging-related proteins and restored the expression of autophagy-related markers. SPJ activated autophagy through the activation of AMPK, which in turn increased the phosphorylation of ULK1(Ser555), while inhibited the phosphorylation of mTOR and ULK1(Ser757). Our study demonstrates that SPJ improves the cardiac function of aging rats by enhancing basal autophagy through the AMPK/mTOR/ULK1 pathway. These results offer a theoretical foundation and empirical evidence to support the clinical advancement of SPJ in enhancing age-related cardiac dysfunction.
Collapse
Affiliation(s)
- Hefei Huang
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China; Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China
| | - Tianlun Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Luopei Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yan Huang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Weili Li
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Jin'e Wang
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China
| | - Yuanlang Hu
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Basic Medical Sciences, China Three Gorges University, Yichang, Hubei, China.
| | - Zhiyong Zhou
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, Yichang, Hubei, China; College of Medicine and Health Sciences, China Three Gorges University, Yichang, Hubei, China.
| |
Collapse
|
39
|
Sen A, Boix J, Pla-Martín D. Endosomal-dependent mitophagy coordinates mitochondrial nucleoid and mtDNA elimination. Autophagy 2023; 19:2609-2610. [PMID: 36691806 PMCID: PMC10392727 DOI: 10.1080/15548627.2023.2170959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023] Open
Abstract
Mitophagy and its variants are considered important salvage pathways to remove dysfunctional mitochondria. Non-canonical mitophagy, independent of autophagosome formation and including endosomal-dependent mitophagy, operate upon specific injury. In a recent paper, we describe a new mechanism where, upon mtDNA damage, mitochondrial nucleoids are eliminated via an endosomal-mitophagy pathway. Using proximity proteomics, we identified the proteins required for elimination of mutated mitochondrial nucleoids from the mitochondrial matrix. Among them, ATAD3 and SAMM50 control cristae architecture and nucleoid interaction, necessary for mtDNA extraction. In the mitochondrial outer membrane, SAMM50 coordinates with the retromer protein VPS35 to sequester mtDNA in endosomes and guide them toward elimination, thus avoiding the activation of an exacerbated immune response. Here, we summarize our findings and examine how this newly described pathway contributes to our understanding of mtDNA quality control.
Collapse
Affiliation(s)
- Ayesha Sen
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Julia Boix
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| | - David Pla-Martín
- Center for Physiology and Pathophysiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
40
|
Wang Z, Wang X, Chen Y, Wang C, Chen L, Jiang M, Liu X, Zhang X, Feng Y, Xu J. Loss and recovery of myocardial mitochondria in mice under different tail suspension time: Apoptosis and mitochondrial fission, fusion and autophagy. Exp Physiol 2023; 108:1189-1202. [PMID: 37565298 PMCID: PMC10988507 DOI: 10.1113/ep090518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2023] [Indexed: 08/12/2023]
Abstract
Long-term weightlessness in animals can cause changes in myocardial structure and function, in which mitochondria play an important role. Here, a tail suspension (TS) Kunming mouse (Mus musculus) model was used to simulate the effects of weightlessness on the heart. We investigated the effects of 2 and 4 weeks of TS (TS2 and TS4) on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling. Our study revealed significant changes in the ultrastructural features of cardiomyocytes in response to TS. The results showed: (1) mitochondrial swelling and disruption of cristae in TS2, but mitochondrial recovery and denser cristae in TS4; (2) an increase in the total number of mitochondria and number of sub-mitochondria in TS4; (3) no significant changes in the nuclear ultrastructure or DNA fragmentation among the two TS groups and the control group; (4) an increase in the bax/bcl-2 protein levels in the two TS groups, indicating increased activation of the bax-mediated apoptosis pathway; (5) no change in the phosphorylation ratio of dynamin-related protein 1 in the two TS groups; (6) an increase in the protein levels of optic atrophy 1 and mitofusin 2 in the two TS groups; and (7) in comparison to the TS2 group, an increase in the phosphorylation ratio of parkin and the ratio of LC3II to LC3I in TS4, suggesting an increase in autophagy. Taken together, these findings suggest that mitochondrial autophagy and fusion levels increased after 4 weeks of TS, leading to a restoration of the bax-mediated myocardial apoptosis pathway observed after 2 weeks of TS. NEW FINDINGS: What is the central question of this study? What are the effects of 2 and 4 weeks of tail suspension on myocardial mitochondrial ultrastructure and oxidative respiratory function and on the molecular mechanisms of apoptosis and mitochondrial fission, autophagy and fusion-related signalling? What is the main finding and its importance? Increased mitochondrial autophagy and fusion levels after 4 weeks of tail suspension help to reshape the morphology and increase the number of myocardial mitochondria.
Collapse
Affiliation(s)
- Zhe Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xing‐Chen Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ya‐Fei Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Chuan‐Li Wang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Le Chen
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Ming‐Yue Jiang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xi‐Wei Liu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Xiao‐Xuan Zhang
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Yong‐Zhen Feng
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| | - Jin‐Hui Xu
- College of Life SciencesQufu Normal UniversityQufuShandongChina
| |
Collapse
|
41
|
Shao X, Meng C, Song W, Zhang T, Chen Q. Subcellular visualization: Organelle-specific targeted drug delivery and discovery. Adv Drug Deliv Rev 2023; 199:114977. [PMID: 37391014 DOI: 10.1016/j.addr.2023.114977] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Organelles perform critical biological functions due to their distinct molecular composition and internal environment. Disorders in organelles or their interacting networks have been linked to the incidence of numerous diseases, and the research of pharmacological actions at the organelle level has sparked pharmacists' interest. Currently, cell imaging has evolved into a critical tool for drug delivery, drug discovery, and pharmacological research. The introduction of advanced imaging techniques in recent years has provided researchers with richer biological information for viewing and studying the ultrastructure of organelles, protein interactions, and gene transcription activities, leading to the design and delivery of precision-targeted drugs. Therefore, this reviews the research on organelles-targeted drugs based upon imaging technologies and development of fluorescent molecules for medicinal purposes. We also give a thorough analysis of a number of subcellular-level elements of drug development, including subcellular research instruments and methods, organelle biological event investigation, subcellular target and drug identification, and design of subcellular delivery systems. This review will make it possible to promote drug research from the individual/cellular level to the subcellular level, as well as give a new focus based on newly found organelle activities.
Collapse
Affiliation(s)
- Xintian Shao
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Caicai Meng
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Wenjing Song
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China; School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Tao Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong Province 250014, PR China
| | - Qixin Chen
- School of Pharmaceutical Sciences & Institute of Materia Medica, National Key Laboratory of Advanced Drug Delivery System, Medical Science and Technology Innovation Center, Key Laboratory for Biotechnology Drugs of National Health Commission, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
42
|
Abstract
According to the endosymbiotic theory, most of the DNA of the original bacterial endosymbiont has been lost or transferred to the nucleus, leaving a much smaller (∼16 kb in mammals), circular molecule that is the present-day mitochondrial DNA (mtDNA). The ability of mtDNA to escape mitochondria and integrate into the nuclear genome was discovered in budding yeast, along with genes that regulate this process. Mitochondria have emerged as key regulators of innate immunity, and it is now recognized that mtDNA released into the cytoplasm, outside of the cell, or into circulation activates multiple innate immune signaling pathways. Here, we first review the mechanisms through which mtDNA is released into the cytoplasm, including several inducible mitochondrial pores and defective mitophagy or autophagy. Next, we cover how the different forms of released mtDNA activate specific innate immune nucleic acid sensors and inflammasomes. Finally, we discuss how intracellular and extracellular mtDNA release, including circulating cell-free mtDNA that promotes systemic inflammation, are implicated in human diseases, bacterial and viral infections, senescence and aging.
Collapse
Affiliation(s)
- Laura E Newman
- Salk Institute for Biological Studies, La Jolla, California, USA;
| | - Gerald S Shadel
- Salk Institute for Biological Studies, La Jolla, California, USA;
| |
Collapse
|
43
|
Meurant S, Mauclet L, Dieu M, Arnould T, Eyckerman S, Renard P. Endogenous TOM20 Proximity Labeling: A Swiss-Knife for the Study of Mitochondrial Proteins in Human Cells. Int J Mol Sci 2023; 24:ijms24119604. [PMID: 37298552 DOI: 10.3390/ijms24119604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/24/2023] [Accepted: 05/29/2023] [Indexed: 06/12/2023] Open
Abstract
Biotin-based proximity labeling approaches, such as BioID, have demonstrated their use for the study of mitochondria proteomes in living cells. The use of genetically engineered BioID cell lines enables the detailed characterization of poorly characterized processes such as mitochondrial co-translational import. In this process, translation is coupled to the translocation of the mitochondrial proteins, alleviating the energy cost typically associated with the post-translational import relying on chaperone systems. However, the mechanisms are still unclear with only few actors identified but none that have been described in mammals yet. We thus profiled the TOM20 proxisome using BioID, assuming that some of the identified proteins could be molecular actors of the co-translational import in human cells. The obtained results showed a high enrichment of RNA binding proteins close to the TOM complex. However, for the few selected candidates, we could not demonstrate a role in the mitochondrial co-translational import process. Nonetheless, we were able to demonstrate additional uses of our BioID cell line. Indeed, the experimental approach used in this study is thus proposed for the identification of mitochondrial co-translational import effectors and for the monitoring of protein entry inside mitochondria with a potential application in the prediction of mitochondrial protein half-life.
Collapse
Affiliation(s)
- Sébastien Meurant
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Lorris Mauclet
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Marc Dieu
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Thierry Arnould
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| | - Sven Eyckerman
- VIB-UGent Center for Medical Biotechnology, VIB, 9000 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
| | - Patricia Renard
- URBC, Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
- Mass Spectrometry Platform (MaSUN), Namur Research Institute for Life Sciences (Narilis), University of Namur (UNamur), 5000 Namur, Belgium
| |
Collapse
|
44
|
Chaiyarit S, Thongboonkerd V. Mitochondria-derived vesicles and their potential roles in kidney stone disease. J Transl Med 2023; 21:294. [PMID: 37131163 PMCID: PMC10152607 DOI: 10.1186/s12967-023-04133-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/14/2023] [Indexed: 05/04/2023] Open
Abstract
Recent evidence has shown significant roles of mitochondria-derived vesicles (MDVs) in mitochondrial quality control (MQC) system. Under mild stress condition, MDVs are formed to carry the malfunctioned mitochondrial components, such as mitochondrial DNA (mtDNA), peptides, proteins and lipids, to be eliminated to restore normal mitochondrial structure and functions. Under severe oxidative stress condition, mitochondrial dynamics (fission/fusion) and mitophagy are predominantly activated to rescue mitochondrial structure and functions. Additionally, MDVs generation can be also triggered as the major MQC machinery to cope with unhealthy mitochondria when mitophagy is unsuccessful for eliminating the damaged mitochondria or mitochondrial fission/fusion fail to recover the mitochondrial structure and functions. This review summarizes the current knowledge on MDVs and discuss their roles in physiologic and pathophysiologic conditions. In addition, the potential clinical relevance of MDVs in therapeutics and diagnostics of kidney stone disease (KSD) are emphasized.
Collapse
Affiliation(s)
- Sakdithep Chaiyarit
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6th Floor, SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
45
|
Disruption of mitochondrial dynamics triggers muscle inflammation through interorganellar contacts and mitochondrial DNA mislocation. Nat Commun 2023; 14:108. [PMID: 36609505 PMCID: PMC9822926 DOI: 10.1038/s41467-022-35732-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/14/2022] [Indexed: 01/07/2023] Open
Abstract
Some forms of mitochondrial dysfunction induce sterile inflammation through mitochondrial DNA recognition by intracellular DNA sensors. However, the involvement of mitochondrial dynamics in mitigating such processes and their impact on muscle fitness remain unaddressed. Here we report that opposite mitochondrial morphologies induce distinct inflammatory signatures, caused by differential activation of DNA sensors TLR9 or cGAS. In the context of mitochondrial fragmentation, we demonstrate that mitochondria-endosome contacts mediated by the endosomal protein Rab5C are required in TLR9 activation in cells. Skeletal muscle mitochondrial fragmentation promotes TLR9-dependent inflammation, muscle atrophy, reduced physical performance and enhanced IL6 response to exercise, which improved upon chronic anti-inflammatory treatment. Taken together, our data demonstrate that mitochondrial dynamics is key in preventing sterile inflammatory responses, which precede the development of muscle atrophy and impaired physical performance. Thus, we propose the targeting of mitochondrial dynamics as an approach to treating disorders characterized by chronic inflammation and mitochondrial dysfunction.
Collapse
|