1
|
Kushchuk LI, Kartsev AI. TMN (TM = V, Cr, Mn, Fe, Co) monolayers - a new class of non-van der Waals 2D magnets. NANOSCALE 2025; 17:10292-10302. [PMID: 40171608 DOI: 10.1039/d5nr00092k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2025]
Abstract
We have systematically examined various parameters of t- (tetragonal) and h- (hexagonal) lattices of transition metal nitride (TMN) monolayers through first-principles calculations, emphasising their structural and magnetic properties. Our study reveals that all TMN monolayers exhibit a preference for a magnetic ground state. Employing the Heisenberg model, we extract exchange interaction and magnetic anisotropy parameters. Notably, half of the structures exhibit a ferromagnetic (FM) configuration, while the remaining half adopt an antiferromagnetic (AFM) configuration. The magnetic anisotropy energy per metal atom falls within the range of 43 to 633 μeV for h-MnN and h-CoN, respectively. Monte Carlo (MC) simulations predict Curie and Néel temperatures for these monolayers, with TC for h-MnN estimated at approximately 339 K. To better understand structural dynamics, we employ the variable-cell nudged elastic band (VC-NEB) method, which provides an activation energy Ea for the transition in CrN of about 1.22 eV. These findings highlight the potential applicability of these structures in magnetic and spintronic devices.
Collapse
Affiliation(s)
| | - Alexey Ivanovich Kartsev
- Bauman Moscow State Technical University, Moscow, 105005, Russia.
- MIREA-Russian Technological University, 119454 Moscow, Russia
- Computing Center of the Far Eastern Branch of the Russian Academy of Sciences, 680000 Khabarovsk, Russia
| |
Collapse
|
2
|
Dey K, Khatun H, Ghosh A, Das S, Das B, Datta S. Magnetodielectric properties in two dimensional magnetic insulators. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2025; 37:163003. [PMID: 39983309 DOI: 10.1088/1361-648x/adb923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 02/21/2025] [Indexed: 02/23/2025]
Abstract
Magnetodielectric (MD) materials are important for their ability to spin-charge conversion, magnetic field control of electric polarization and vice versa. Among these, two-dimensional (2D) van der Waals (vdW) magnetic materials are of particular interest due to the presence of magnetic anisotropy (MA) originating from the interaction between the magnetic moments and the crystal field. Also, these materials indicate a high degree of stability in the long-range spin order and may be described using suitable spin Hamiltonians of the Heisenberg, XY, or Ising type. Recent reports have suggested effective interactions between magnetization and electric polarization in 2D magnets. However, MD coupling studies on layered magnetic materials are still few. This review covers the fundamentals of MD coupling by explaining related key terms. It includes the necessary conditions for having this coupling and sheds light on the possible microscopic mechanisms behind this coupling starting from phenomenological descriptions. Apart from that, this review classifies 2D magnetic materials into several categories for reaching out each and every class of materials. Additionally, this review summarizes recent advancements of some pioneer 2D MD materials. Last but not the least, the current review provides possible research directions for enhancing MD coupling in those and mentions the possibilities for future developments.
Collapse
Affiliation(s)
- Koushik Dey
- Technical Research Center (TRC), Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
| | - Hasina Khatun
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
| | - Anudeepa Ghosh
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
- Indian Institute of Science Education and Research Kolkata, Mohanpur, Nadia 741246, West Bengal, India
| | - Soumik Das
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
| | - Bikash Das
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
| | - Subhadeep Datta
- School of Physical Sciences, Indian Association for the Cultivation of Science (IACS), Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Singh Z, Kumar A, Mukherjee S. Unveiling magnetic transition-driven lattice thermal conductivity switching in monolayer VS 2. NANOSCALE 2025; 17:6550-6561. [PMID: 39963063 DOI: 10.1039/d4nr02375g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Effective thermal management is essential for maintaining the operational stability and data security of magnetic devices across diverse fields, including thermoelectric, sensing, data storage, and spintronics. In this study, density functional theory calculations were conducted to explore the spin-induced modifications in the phonon-mediated thermal properties of H-phase monolayer VS2, a two-dimensional (2D) ferromagnet. Our investigation revealed that the 2D H-phase of VS2 exhibits a substantial thermal switching ratio, exceeding four at the Curie temperature, due to the coupling between magnetic order and lattice vibrations. This sensitivity arises from spin-dependent lattice anharmonicity, which results in the stiffening of the V-S bonds, thereby modifying the frequencies of different vibrational modes. Phonon-phonon interaction calculations indicated that phonon-magnon scattering was more predominant in the paramagnetic (PM) phase than in the ferromagnetic (FM) phase, which resulted in a reduced phonon lifetime, mean free path and group velocity. As a result, the lattice thermal conductivity was calculated to drop from 53.98 W m-1 K-1 in the ferromagnetic phase to 12.10 W m-1 K-1 in the paramagnetic phase. By elucidating heat transport in two-dimensional ferromagnets, our study offers valuable insights for manipulating and converting thermal energy.
Collapse
Affiliation(s)
- Zimmi Singh
- Metallurgical and Materials Engineering Department, Indian Institute of Technology Kharagpur, India.
| | - Abhishek Kumar
- Metallurgical and Materials Engineering Department, Indian Institute of Technology Kharagpur, India.
| | - Sankha Mukherjee
- Metallurgical and Materials Engineering Department, Indian Institute of Technology Kharagpur, India.
| |
Collapse
|
4
|
Noah A, Fridman N, Zur Y, Markman M, King YK, Klang M, Rama‐Eiroa R, Solanki H, Ashby MLR, Levin T, Herrera E, Huber ME, Gazit S, Santos EJG, Suderow H, Steinberg H, Millo O, Anahory Y. Field-Induced Antiferromagnetic Correlations in a Nanopatterned Van der Waals Ferromagnet: A Potential Artificial Spin Ice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409240. [PMID: 39648691 PMCID: PMC11791941 DOI: 10.1002/advs.202409240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/29/2024] [Indexed: 12/10/2024]
Abstract
Nano-patterned magnetic materials have opened new venues for the investigation of strongly correlated phenomena including artificial spin-ice systems, geometric frustration, and magnetic monopoles, for technologically important applications such as reconfigurable ferromagnetism. With the advent of atomically thin 2D van der Waals (vdW) magnets, a pertinent question is whether such compounds could make their way into this realm where interactions can be tailored so that unconventional states of matter can be assessed. Here, it is shown that square islands of CrGeTe3 vdW ferromagnets distributed in a grid manifest antiferromagnetic correlations, essential to enable frustration resulting in an artificial spin-ice. By using a combination of SQUID-on-tip microscopy, focused ion beam lithography, and atomistic spin dynamic simulations, it is shown that a square array of CGT island as small as 150 × 150 × 60 nm3 have tunable dipole-dipole interactions, which can be precisely controlled by their lateral spacing. There is a crossover between non-interacting islands and significant inter-island anticorrelation depending on how they are spatially distributed allowing the creation of complex magnetic patterns not observable at the isolated flakes. These findings suggest that the cross-talk between the nano-patterned magnets can be explored in the generation of even more complex spin configurations where exotic interactions may be manipulated in an unprecedented way.
Collapse
Affiliation(s)
- Avia Noah
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
- Faculty of EngineeringRuppin Academic CenterEmek‐HeferMonash40250Israel
| | - Nofar Fridman
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Yishay Zur
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Maya Markman
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Yotam Katz King
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Maya Klang
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Ricardo Rama‐Eiroa
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
| | - Harshvardhan Solanki
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
| | - Michael L. Reichenberg Ashby
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Imperial College London, Blackett LaboratoryLondonSW7 2AZUK
| | - Tamar Levin
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
| | - Edwin Herrera
- Laboratorio de Bajas TemperaturasUnidad Asociada UAM/CSICDepartamento de Física de la Materia CondensadaInstituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Martin E. Huber
- Departments of Physics and Electrical EngineeringUniversity of Colorado DenverDenverCO80217USA
| | - Snir Gazit
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- The Fritz Haber Research Center for Molecular DynamicsThe Hebrew University of JerusalemJerusalem91904Israel
| | - Elton J. G. Santos
- Institute for Condensed Matter Physics and Complex SystemsSchool of Physics and AstronomyUniversity of EdinburghEdinburghEH93FDUK
- Donostia International Physics Center (DIPC)Donostia‐San SebastiánBasque Country20018Spain
- Higgs Centre for Theoretical PhysicsUniversity of EdinburghEdinburghEH93FDUK
| | - Hermann Suderow
- Laboratorio de Bajas TemperaturasUnidad Asociada UAM/CSICDepartamento de Física de la Materia CondensadaInstituto Nicolás Cabrera and Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridMadridE‐28049Spain
| | - Hadar Steinberg
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Oded Millo
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| | - Yonathan Anahory
- The Racah Institute of PhysicsThe Hebrew UniversityJerusalem9190401Israel
- Center for Nanoscience and NanotechnologyThe Hebrew UniversityJerusalem91904Israel
| |
Collapse
|
5
|
Sim KI, Park BC, Kim T, Cho BW, Kim JH, Choi EM, Lee YH. Light-Induced Hysteresis of Electronic Polarization in Anti-Ferromagnet FePS 3. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413484. [PMID: 39780546 DOI: 10.1002/adma.202413484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 12/30/2024] [Indexed: 01/11/2025]
Abstract
Research on manipulating materials using light has garnered significant interest, yet examples of controlling electronic polarization in magnetic materials remain scarce. Here, the hysteresis of electronic polarization in the anti-ferromagnetic semiconductor FePS3 is demonstrated via light. Below the Néel temperature, linear dichroism (i.e., optical anisotropy) without structural symmetry breaking is observed. Light-induced net polarization aligns along the a-axis (zigzag direction) at 1.6 eV due to the dipolar polarization and along the b-axis (armchair direction) at 2.0 eV due to the combined effects of dipolar and octupolar polarizations, resulting from charge transfer from the armchair to the zigzag direction by light. Unexpected hysteresis of the electronic polarization occurs at 2.0 eV due to the octupolar polarization, in contrast to the absence of such hysteresis at 1.6 eV. This is attributed to a symmetry breaking of the light-induced phase of FePS3 involving electronic polarization within the spin lattice. Here a new mechanism is suggested for generating and controlling electronic polarization in magnetic materials using light, with implications for future device applications.
Collapse
Affiliation(s)
- Kyung Ik Sim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byung Cheol Park
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Taesoo Kim
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Byeong Wook Cho
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Jae Hoon Kim
- Department of Physics, Yonsei University, Seoul, 03722, Republic of Korea
| | - Eun-Mi Choi
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Young Hee Lee
- Center for Integrated Nanostructure Physics, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
- Center for 2D Quantum Heterostructures, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Center for Low-Dimensional Quantum Materials, Hubei University of Technology, Wuhan, 430062, China
| |
Collapse
|
6
|
Yu H, Jing Y, Heine T. Physics and Chemistry of Two-Dimensional Triangulene-Based Lattices. Acc Chem Res 2025; 58:61-72. [PMID: 39656556 PMCID: PMC11713877 DOI: 10.1021/acs.accounts.4c00557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/08/2024] [Accepted: 11/18/2024] [Indexed: 12/17/2024]
Abstract
ConspectusTriangulene (TRI) and its heterotriangulene (HT) derivatives are planar, triangle-shaped molecules that, via suitable coupling reactions, can form extended organic two-dimensional (2D) crystal (O2DC) structures. While TRI is a diradical, HTs are either closed-shell molecules or monoradicals which can be stabilized in their cationic form.Triangulene-based O2DCs have a characteristic honeycomb-kagome lattice. This structure gives rise to four characteristic electronic bands: two of them form Dirac points, while the other two are flat and sandwich the Dirac bands. Functionalization and heteroatoms are suitable means to engineer this band structure. Heteroatoms like boron and nitrogen shift the Fermi level upward and downward, respectively, while bridging groups and functionalized triangulene edges can introduce a dispersion to the flat bands.The stable backbone architecture makes 2D HT-polymers ideal for photoelectrochemical applications: (i) bridge functionalization can tune the band gap and maximize absorption, (ii) the choice of the center atom (B or N) controls the band occupation and shifts the Fermi level with respect to vacuum, allowing in some cases for overpotential-free photon-driven surface reactions, and (iii) the large surface area allows for a high flux of educts and products.The spin polarization in TRI and in open-shell HTs is maintained when linking them to dimers or extended frameworks with direct coupling or more elaborate bridging groups (acetylene, diacetylene, and phenyl). The dimers have a high spin-polarization energy and some of them are strongly magnetically coupled, resulting in stable high-spin or broken-symmetry (BS) low-spin systems. As O2DCs, some systems become antiferromagnetic Mott insulators with large band gaps, while others show Stoner ferromagnetism, maintaining the characteristic honeycomb-kagome bands but shifting the opposite spin-polarized bands to different energies. For O2DCs based on aza- and boratriangulene (monoradicals as building blocks), the Fermi level is shifted to a spin-polarized Dirac point, and the systems have a Curie temperature of about 250 K. For half-filled (all-carbon) systems, the Ovchinnikov rule or, equivalently, Lieb's theorem, is sufficient to predict the magnetic ordering of the systems, while the non-half-filled systems (i.e., those with heteroatoms) obey the more involved Goodenough-Kanamori rule to interpret the magnetism on the grounds of fundamental electronic interactions.There remain challenges in experiment and in theory to advance the field of triangulene-based O2DCs: Coupling reactions beyond surface chemistry have to be developed to allow for highly ordered, extended crystals. Multilayer structures, which are unexplored to date, will be inevitable in alternative synthesis approaches. The predictive power of density-functional theory (DFT) within state-of-the-art functionals is limited for the description of magnetic couplings in these systems due to the apparent multireference character and the large spatial extension of the spin centers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Yu Jing
- Jiangsu
Co-Innovation Centre of Efficient Processing and Utilization of Forest
Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Thomas Heine
- Faculty
of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum
Dresden-Rossendorf, Centrum for Advanced
Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department
of Chemistry, Yonsei University and IBS
center for nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
7
|
Bennett D, Martínez-Carracedo G, He X, Ferrer J, Ghosez P, Comin R, Kaxiras E. Stacking-Engineered Ferroelectricity and Multiferroic Order in van der Waals Magnets. PHYSICAL REVIEW LETTERS 2024; 133:246703. [PMID: 39750367 DOI: 10.1103/physrevlett.133.246703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/12/2024] [Indexed: 01/04/2025]
Abstract
Two-dimensional (2D) materials that exhibit spontaneous magnetization, polarization, or strain (referred to as ferroics) have the potential to revolutionize nanotechnology by enhancing the multifunctionality of nanoscale devices. However, multiferroic order is difficult to achieve, requiring complicated coupling between electron and spin degrees of freedom. We propose a universal method to engineer multiferroics from van der Waals magnets by taking advantage of the fact that changing the stacking between 2D layers can break inversion symmetry, resulting in ferroelectricity as well as magnetoelectric coupling. We illustrate this concept using first-principles calculations in bilayer NiI_{2}, which can be made ferroelectric upon rotating two adjacent layers by 180° with respect to the bulk stacking. Furthermore, we discover a novel strong magnetoelectric coupling between the interlayer spin order and interfacial electronic polarization. Our approach is not only general but also systematic and can enable the discovery of a wide variety of 2D multiferroics with strong magnetoelectric coupling.
Collapse
|
8
|
Röseler KD, Witteveen C, Besnard C, Pomjakushin V, Jeschke HO, von Rohr FO. Efficient soft-chemical synthesis of large van-der-Waals crystals of the room-temperature ferromagnet 1T-CrTe 2. JOURNAL OF MATERIALS CHEMISTRY. A 2024:d4ta05649c. [PMID: 39669521 PMCID: PMC11629937 DOI: 10.1039/d4ta05649c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/14/2024] [Indexed: 12/14/2024]
Abstract
We herein report on a fast and convenient soft-chemical synthesis approach towards large 1T-CrTe2 van-der-Waals crystals. This compound is formed X-ray diffraction pure, with a complete conversion within just over 2 h from flux-grown LiCrTe2 crystals using diluted acids. Due to the availability of high-quality single crystals, we have confirmed the crystal structure for the first time by single-crystal X-ray diffraction experiments. For the acid deintercalated 1T-CrTe2 crystals, we find long-range ferromagnetic order with a Curie temperature of T C = 318 K. We further revealed the magnetic structure of 1T-CrTe2 using low-temperature neutron powder diffraction experiments and determined the magnetic Hamiltonian using density functional theory. X-ray diffraction experiments of post-annealed crystals suggest a thermal stability of 1T-CrTe2 up to at least 100 °C. Our findings expand the synthesis methods for 1T-CrTe2 crystals, which hold promise for integrated room-temperature spintronics applications.
Collapse
Affiliation(s)
- Kai D Röseler
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Catherine Witteveen
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Céline Besnard
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| | - Vladimir Pomjakushin
- Laboratory for Neutron Scattering and Imaging, Paul Scherrer Institute CH-5232 Villigen PSI Switzerland
| | - Harald O Jeschke
- Research Institute for Interdisciplinary Science, Okayama University Okayama 700-8530 Japan
| | - Fabian O von Rohr
- Department of Quantum Matter Physics, University of Geneva 24 Quai Ernest-Ansermet CH-1211 Geneva Switzerland
| |
Collapse
|
9
|
Shi G, Huang N, Qiao J, Zhang X, Hu F, Hu H, Zhang X, Shang J. Recent Progress in Two-Dimensional Magnetic Materials. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1759. [PMID: 39513839 PMCID: PMC11548008 DOI: 10.3390/nano14211759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The giant magnetoresistance effect in two-dimensional (2D) magnetic materials has sparked substantial interest in various fields; including sensing; data storage; electronics; and spintronics. Their unique 2D layered structures allow for the manifestation of distinctive physical properties and precise performance regulation under different conditions. In this review, we present an overview of this rapidly developing research area. Firstly, these 2D magnetic materials are catalogued according to magnetic coupling types. Then, several vital effects in 2D magnets are highlighted together with theoretical investigation, such as magnetic circular dichroism, magneto-optical Kerr effect, and anomalous Hall effect. After that, we forecast the potential applications of 2D magnetic materials for spintronic devices. Lastly, research advances in the attracting magnons, skyrmions and other spin textures in 2D magnets are discussed.
Collapse
Affiliation(s)
- Guangchao Shi
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Nan Huang
- Fifth Research Institute, China Electronics Technology Group Corporation, 524 Zhongshan East Road, Nanjing 210016, China
| | - Jingyuan Qiao
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xuewen Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Fulong Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Hanwei Hu
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Xinyu Zhang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| | - Jingzhi Shang
- Institute of Flexible Electronics (IFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, China; (G.S.); (J.Q.); (X.Z.); (F.H.); (H.H.); (X.Z.)
| |
Collapse
|
10
|
Yu H, Heine T. Prediction of metal-free Stoner and Mott-Hubbard magnetism in triangulene-based two-dimensional polymers. SCIENCE ADVANCES 2024; 10:eadq7954. [PMID: 39356753 DOI: 10.1126/sciadv.adq7954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/26/2024] [Indexed: 10/04/2024]
Abstract
Ferromagnetism and antiferromagnetism require robust long-range magnetic ordering, which typically involves strongly interacting spins localized at transition metal atoms. However, in metal-free systems, the spin orbitals are largely delocalized, and weak coupling between the spins in the lattice hampers long-range ordering. Metal-free magnetism is of fundamental interest to physical sciences, unlocking unprecedented dimensions for strongly correlated materials and biocompatible magnets. Here, we present a strategy to achieve strong coupling between spin centers of planar radical monomers in π-conjugated two-dimensional (2D) polymers and rationally control the orderings. If the π-states in these triangulene-based 2D polymers are half-occupied, then we predict that they are antiferromagnetic Mott-Hubbard insulators. Incorporating a boron or nitrogen heteroatom per monomer results in Stoner ferromagnetism and half-metallicity, with the Fermi level located at spin-polarized Dirac points. An unprecedented antiferromagnetic half-semiconductor is observed in a binary boron-nitrogen-centered 2D polymer. Our findings pioneer Stoner and Mott-Hubbard magnetism emerging in the electronic π-system of crystalline-conjugated 2D polymers.
Collapse
Affiliation(s)
- Hongde Yu
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
| | - Thomas Heine
- Faculty of Chemistry and Food Chemistry, TU Dresden, Bergstrasse 66c, 01069 Dresden, Germany
- Helmholtz-Zentrum Dresden-Rossendorf, Centrum for Advanced Systems Understanding, CASUS, Untermarkt 20, 02826 Görlitz, Germany
- Department of Chemistry, Yonsei University and IBS Center for Nanomedicine, Seodaemun-gu, Seoul 120-749, Republic of Korea
| |
Collapse
|
11
|
Mishra S, Park IK, Javaid S, Shin SH, Lee G. Enhancement of interlayer exchange coupling via intercalation in 2D magnetic bilayers: towards high Curie temperature. MATERIALS HORIZONS 2024; 11:4482-4492. [PMID: 38973585 DOI: 10.1039/d4mh00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Two-dimensional magnetic materials are considered as promising candidates for developing next-generation spintronic devices by providing the possibility of scaling down to nanometers. However, a low Curie temperature is a crucial problem for practical applications, being intimately related to weak interlayer exchange coupling. Here, by using density functional theory calculations, we show that interlayer exchange coupling can be enhanced by intercalating 3d transition metals (Sc to Zn) into a bilayer of CrI3 and NiI2. It is found that intercalated Ni and Cr atoms exhibit strong antiferromagnetic coupling with the CrI3 and NiI2 host layers, respectively. This enhances the ferromagnetic interlayer exchange coupling between the host layers by many folds compared to pristine CrI3 and NiI2 bilayers. Moreover, both intercalated compounds show out-of-plane magnetic anisotropy with half metallic nature, which makes them ideal candidates for spintronics applications. Thereby our work provides a rational approach to raise the Curie temperature of non-metallic two-dimensional magnets by intercalation.
Collapse
Affiliation(s)
- Suman Mishra
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
| | - In Kee Park
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Saqib Javaid
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
- MMSG, Theoretical Physics Division, PINSTECH, P.O. Nilore, Islamabad, Pakistan
| | - Seung Hwan Shin
- Mutipurpose Synchrotron Radiation Construction Project, Korea Basic Science Institute, 162 Yeongudanji-ro, Cheongwon-gu, Cheongju, Chungcheongbukdo 28119, Republic of Korea.
| | - Geunsik Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea.
- Department of Chemistry, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Aguirre A, Pinar Solé A, Soler Polo D, González-Orellana C, Thakur A, Ortuzar J, Stesovych O, Kumar M, Peña-Díaz M, Weber A, Tallarida M, Dai J, Dreiser J, Muntwiler M, Rogero C, Pascual JI, Jelínek P, Ilyn M, Corso M. Ferromagnetic Order in 2D Layers of Transition Metal Dichlorides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402723. [PMID: 38665115 DOI: 10.1002/adma.202402723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/08/2024] [Indexed: 05/07/2024]
Abstract
Magnetism in two dimensions is traditionally considered an exotic phase mediated by spin fluctuations, but far from collinearly ordered in the ground state. Recently, 2D magnetic states have been discovered in layered van der Waals compounds. Their robust and tunable magnetic state by material composition, combined with reduced dimensionality, foresee a strong potential as a key element in magnetic devices. Here, a class of 2D magnets based on metallic chlorides is presented. The magnetic order survives on top of a metallic substrate, even down to the monolayer limit, and can be switched from perpendicular to in-plane by substituting the metal ion from iron to nickel. Using functionalized STM tips as magnetic sensors, local exchange fields are identified, even in the absence of an external magnetic field. Since the compounds are processable by molecular beam epitaxy techniques, they provide a platform with large potential for incorporation into current device technologies.
Collapse
Affiliation(s)
- Andrea Aguirre
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
| | - Andrés Pinar Solé
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague, 16200, Czech Republic
| | - Diego Soler Polo
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague, 16200, Czech Republic
| | | | - Amitayush Thakur
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Jon Ortuzar
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
| | - Oleksandr Stesovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague, 16200, Czech Republic
| | - Manish Kumar
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague, 16200, Czech Republic
| | - Marina Peña-Díaz
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Andrew Weber
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | | | - Ji Dai
- ALBA, Cerdanyola del Vallès, Barcelona, 08290, Spain
| | - Jan Dreiser
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen, CH-5232, Switzerland
| | - Matthias Muntwiler
- Paul Scherrer Institut, Forschungsstrasse 111, Villigen, CH-5232, Switzerland
| | - Celia Rogero
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| | - José Ignacio Pascual
- CIC nanoGUNE-BRTA, Donostia-San Sebastián, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, 48013, Spain
| | - Pavel Jelínek
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague, 16200, Czech Republic
| | - Maxim Ilyn
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
| | - Martina Corso
- Centro de Física de Materiales CSIC-UPV/EHU, Donostia-San Sebastián, 20018, Spain
- Donostia International Physics Center, Donostia-San Sebastián, 20018, Spain
| |
Collapse
|
13
|
Kiaba M, Suter A, Salman Z, Prokscha T, Chen B, Koster G, Dubroka A. Observation of Mermin-Wagner behavior in LaFeO 3/SrTiO 3 superlattices. Nat Commun 2024; 15:5313. [PMID: 38906872 PMCID: PMC11192889 DOI: 10.1038/s41467-024-49518-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 06/06/2024] [Indexed: 06/23/2024] Open
Abstract
Two-dimensional magnetic materials can exhibit new magnetic properties due to the enhanced spin fluctuations that arise in reduced dimension. However, the suppression of the long-range magnetic order in two dimensions due to long-wavelength spin fluctuations, as suggested by the Mermin-Wagner theorem, has been questioned for finite-size laboratory samples. Here we study the magnetic properties of a dimensional crossover in superlattices composed of the antiferromagnetic LaFeO3 and SrTiO3 that, thanks to their large lateral size, allowed examination using a sensitive magnetic probe - muon spin rotation spectroscopy. We show that the iron electronic moments in superlattices with 3 and 2 monolayers of LaFeO3 exhibit a static antiferromagnetic order. In contrast, in the superlattices with single LaFeO3 monolayer, the moments do not order and fluctuate to the lowest measured temperature as expected from the Mermin-Wagner theorem. Our work shows how dimensionality can be used to tune the magnetic properties of ultrathin films.
Collapse
Affiliation(s)
- M Kiaba
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic.
| | - A Suter
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - Z Salman
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - T Prokscha
- Laboratory for Muon-Spin Spectroscopy, Paul Scherrer Institute, 5232, Villigen PSI, Switzerland
| | - B Chen
- Key Laboratory of Polar Materials and Devices (MOE) and Department of Electronics, East China Normal University, 200241, Shanghai, China
| | - G Koster
- MESA+ Institute for Nanotechnology, University of Twente, 7500 AE, Enschede, The Netherlands
| | - A Dubroka
- Department of Condensed Matter Physics, Faculty of Science, Masaryk University, Kotlářská 2, 611 37, Brno, Czech Republic
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| |
Collapse
|
14
|
Zhang X, Li Y, Lu Q, Xiang X, Sun X, Tang C, Mahdi M, Conner C, Cook J, Xiong Y, Inman J, Jin W, Liu C, Cai P, Santos EJG, Phatak C, Zhang W, Gao N, Niu W, Bian G, Li P, Yu D, Long S. Epitaxial Growth of Large-Scale 2D CrTe 2 Films on Amorphous Silicon Wafers With Low Thermal Budget. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311591. [PMID: 38426690 DOI: 10.1002/adma.202311591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/27/2024] [Indexed: 03/02/2024]
Abstract
2D van der Waals (vdW) magnets open landmark horizons in the development of innovative spintronic device architectures. However, their fabrication with large scale poses challenges due to high synthesis temperatures (>500 °C) and difficulties in integrating them with standard complementary metal-oxide semiconductor (CMOS) technology on amorphous substrates such as silicon oxide (SiO2) and silicon nitride (SiNx). Here, a seeded growth technique for crystallizing CrTe2 films on amorphous SiNx/Si and SiO2/Si substrates with a low thermal budget is presented. This fabrication process optimizes large-scale, granular atomic layers on amorphous substrates, yielding a substantial coercivity of 11.5 kilo-oersted, attributed to weak intergranular exchange coupling. Field-driven Néel-type stripe domain dynamics explain the amplified coercivity. Moreover, the granular CrTe2 devices on Si wafers display significantly enhanced magnetoresistance, more than doubling that of single-crystalline counterparts. Current-assisted magnetization switching, enabled by a substantial spin-orbit torque with a large spin Hall angle (85) and spin Hall conductivity (1.02 × 107 ℏ/2e Ω⁻¹ m⁻¹), is also demonstrated. These observations underscore the proficiency in manipulating crystallinity within integrated 2D magnetic films on Si wafers, paving the way for large-scale batch manufacturing of practical magnetoelectronic and spintronic devices, heralding a new era of technological innovation.
Collapse
Affiliation(s)
- Xiaoqian Zhang
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing, 211189, China
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
| | - Qiangsheng Lu
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
- Material Science & Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueqiang Xiang
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Xiaozhen Sun
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Chunli Tang
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Muntasir Mahdi
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
| | - Clayton Conner
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Jacob Cook
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Yuzan Xiong
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Jerad Inman
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Wencan Jin
- Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Physics, Auburn University, Auburn, AL, 36849, USA
| | - Chang Liu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - PeiYu Cai
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, EH9 3FD, UK
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, 20018, Basque Country, Spain
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, IL, 60439, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Wei Zhang
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
- Department of Physics, Oakland University, Rochester, MI, 48309, USA
| | - Nan Gao
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Niu
- School of Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Guang Bian
- Department of Physics and Astronomy, University of Missouri, Columbia, MO, 65211, USA
| | - Peng Li
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| | - Dapeng Yu
- Shenzhen Institute for Quantum Science and Engineering, and Department of Physics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibing Long
- School of Microelectronics, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
15
|
Moon A, Li Y, McKeever C, Casas BW, Bravo M, Zheng W, Macy J, Petford-Long AK, McCandless GT, Chan JY, Phatak C, Santos EJG, Balicas L. Writing and Detecting Topological Charges in Exfoliated Fe 5-xGeTe 2. ACS NANO 2024; 18:4216-4228. [PMID: 38262067 DOI: 10.1021/acsnano.3c09234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Fe5-xGeTe2 is a promising two-dimensional (2D) van der Waals (vdW) magnet for practical applications, given its magnetic properties. These include Curie temperatures above room temperature, and topological spin textures─TST (both merons and skyrmions), responsible for a pronounced anomalous Hall effect (AHE) and its topological counterpart (THE), which can be harvested for spintronics. Here, we show that both the AHE and THE can be amplified considerably by just adjusting the thickness of exfoliated Fe5-xGeTe2, with THE becoming observable even in zero magnetic field due to a field-induced unbalance in topological charges. Using a complementary suite of techniques, including electronic transport, Lorentz transmission electron microscopy, and micromagnetic simulations, we reveal the emergence of substantial coercive fields upon exfoliation, which are absent in the bulk, implying thickness-dependent magnetic interactions that affect the TST. We detected a "magic" thickness t ≈ 30 nm where the formation of TST is maximized, inducing large magnitudes for the topological charge density (∼6.45 × 1020 cm-2), and the concomitant anomalous (ρxyA,max ≃22.6 μΩ cm) and topological (ρxyu,T 1≃5 μΩ cm) Hall resistivities at T ≈ 120 K. These values for ρxyA,max and ρxyu,T are higher than those found in magnetic topological insulators and, so far, the largest reported for 2D magnets. The hitherto unobserved THE under zero magnetic field could provide a platform for the writing and electrical detection of TST aiming at energy-efficient devices based on vdW ferromagnets.
Collapse
Affiliation(s)
- Alex Moon
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Yue Li
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| | - Conor McKeever
- Institute for Condensed Matter and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Brian W Casas
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
| | - Moises Bravo
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Wenkai Zheng
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Juan Macy
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Amanda K Petford-Long
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Gregory T McCandless
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Julia Y Chan
- Department of Chemistry and Biochemistry, Baylor University, Waco, Texas 76798, United States
| | - Charudatta Phatak
- Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Elton J G Santos
- Institute for Condensed Matter and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh EH9 3FD, U.K
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh EH9 3FD, U.K
| | - Luis Balicas
- National High Magnetic Field Laboratory, 1800 E. Paul Dirac Dr., Tallahassee, Florida 32310, United States
- Department of Physics, Florida State University, 77 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
16
|
Boix-Constant C, Jenkins S, Rama-Eiroa R, Santos EJG, Mañas-Valero S, Coronado E. Multistep magnetization switching in orthogonally twisted ferromagnetic monolayers. NATURE MATERIALS 2024; 23:212-218. [PMID: 38036623 PMCID: PMC10837074 DOI: 10.1038/s41563-023-01735-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 10/13/2023] [Indexed: 12/02/2023]
Abstract
The advent of twist engineering in two-dimensional crystals enables the design of van der Waals heterostructures with emergent properties. In the case of magnets, this approach can afford artificial antiferromagnets with tailored spin arrangements. Here we fabricate an orthogonally twisted bilayer by twisting two CrSBr ferromagnetic monolayers with an easy-axis in-plane spin anisotropy by 90°. The magnetotransport properties reveal multistep magnetization switching with a magnetic hysteresis opening, which is absent in the pristine case. By tuning the magnetic field, we modulate the remanent state and coercivity and select between hysteretic and non-hysteretic magnetoresistance scenarios. This complexity pinpoints spin anisotropy as a key aspect in twisted magnetic superlattices. Our results highlight control over the magnetic properties in van der Waals heterostructures, leading to a variety of field-induced phenomena and opening a fruitful playground for creating desired magnetic symmetries and manipulating non-collinear magnetic configurations.
Collapse
Affiliation(s)
- Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain
| | - Sarah Jenkins
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
| | - Ricardo Rama-Eiroa
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain
| | - Elton J G Santos
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, The University of Edinburgh, Edinburgh, UK.
- Donostia International Physics Center (DIPC), Donostia-San Sebastián, Spain.
- Higgs Centre for Theoretical Physics, The University of Edinburgh, Edinburgh, UK.
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain.
- Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands.
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol) - Universitat de València, Paterna, Spain.
| |
Collapse
|
17
|
Zur Y, Noah A, Boix-Constant C, Mañas-Valero S, Fridman N, Rama-Eiroa R, Huber ME, Santos EJG, Coronado E, Anahory Y. Magnetic Imaging and Domain Nucleation in CrSBr Down to the 2D Limit. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2307195. [PMID: 37702506 DOI: 10.1002/adma.202307195] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Indexed: 09/14/2023]
Abstract
Recent advancements in 2D materials have revealed the potential of van der Waals magnets, and specifically of their magnetic anisotropy that allows applications down to the 2D limit. Among these materials, CrSBr has emerged as a promising candidate, because its intriguing magnetic and electronic properties have appeal for both fundamental and applied research in spintronics or magnonics. In this work, nano-SQUID-on-tip (SOT) microscopy is used to obtain direct magnetic imaging of CrSBr flakes with thicknesses ranging from monolayer (N = 1) to few-layer (N = 5). The ferromagnetic order is preserved down to the monolayer, while the antiferromagnetic coupling of the layers starts from the bilayer case. For odd layers, at zero applied magnetic field, the stray field resulting from the uncompensated layer is directly imaged. The progressive spin reorientation along the out-of-plane direction (hard axis) is also measured with a finite applied magnetic field, allowing evaluation of the anisotropy constant, which remains stable down to the monolayer and is close to the bulk value. Finally, by selecting the applied magnetic field protocol, the formation of Néel magnetic domain walls is observed down to the single-layer limit.
Collapse
Affiliation(s)
- Yishay Zur
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Avia Noah
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Carla Boix-Constant
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Samuel Mañas-Valero
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Nofar Fridman
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Ricardo Rama-Eiroa
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Martin E Huber
- Departments of Physics and Electrical Engineering, University of Colorado Denver, Denver, CO, 80217, USA
| | - Elton J G Santos
- Donostia International Physics Center (DIPC), Basque Country, Donostia-San Sebastián, 20018, Spain
- Institute for Condensed Matter Physics and Complex Systems, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH93FD, UK
- Higgs Centre for Theoretical Physics, University of Edinburgh, Edinburgh, EH93FD, UK
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universitat de València, Catedrático José Beltrán 2, Paterna, 46980, Spain
| | - Yonathan Anahory
- The Racah Institute of Physics, The Hebrew University, Jerusalem, 9190401, Israel
- Center for Nanoscience and Nanotechnology, Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| |
Collapse
|
18
|
Panda DP, Swain D, Raghunathan R, Sundaresan A. Photophysical Properties of S = 5/2 Zigzag-1D (2-Bromoethylammonium) 3MnBr 5 Antiferromagnet. J Phys Chem Lett 2023; 14:9531-9538. [PMID: 37852276 DOI: 10.1021/acs.jpclett.3c02252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
It has been challenging to design multifunctional lead-free organic-inorganic hybrid halides that can exhibit fascinating magnetic and photoluminescence properties since the dimensionality of the compounds has a contrasting impact on them. In this context, our newly synthesized compound (2-bromoethylammonium)3MnBr5 (BEAMBr) crystallizes in the monoclinic C2/c space group with corner-sharing zigzag 1D chains of MnBr6 distorted octahedra. Intriguingly, it exhibits a long-range antiferromagnetic ordering at low temperature (∼2.5 K) along with a typical low-dimensional broad magnetic susceptibility hump. The magnetic properties modeled by the exact diagonalization approach indicate strong intrachain and weak interchain interactions with J1 = -50.1 K, J2 = -13.0 K, and J' = -1.25 K, respectively, suggesting excellent one-dimensionality. In addition, BEAMBr displays orange-red emission with a photoluminescence quantum yield of 15.2%. Interestingly, electron-phonon coupling was observed in this soft distorted compound with coupling strength γLO = 128.3 meV, confirmed from the analysis of temperature-dependent emission line width broadening and Raman spectra.
Collapse
Affiliation(s)
- Debendra Prasad Panda
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| | - Diptikanta Swain
- Institute of Chemical Technology-IndianOil Odisha Campus, Bhubaneswar 751013, India
| | - Rajamani Raghunathan
- UGC-DAE Consortium for Scientific Research, Indore 452001, Madhya Pradesh, India
| | - A Sundaresan
- School of Advanced Materials, and Chemistry and Physics of Materials Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore 560064, India
| |
Collapse
|
19
|
Pawbake A, Pelini T, Mohelsky I, Jana D, Breslavetz I, Cho CW, Orlita M, Potemski M, Measson MA, Wilson NP, Mosina K, Soll A, Sofer Z, Piot BA, Zhitomirsky ME, Faugeras C. Magneto-Optical Sensing of the Pressure Driven Magnetic Ground States in Bulk CrSBr. NANO LETTERS 2023; 23:9587-9593. [PMID: 37823538 DOI: 10.1021/acs.nanolett.3c03216] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Competition between exchange interactions and magnetocrystalline anisotropy may bring new magnetic states that are of great current interest. An applied hydrostatic pressure can further be used to tune their balance. In this work, we investigate the magnetization process of a biaxial antiferromagnet in an external magnetic field applied along the easy axis. We find that the single metamagnetic transition of the Ising type observed in this material under ambient pressure transforms under hydrostatic pressure into two transitions, a first-order spin-flop transition followed by a second-order transition toward a polarized ferromagnetic state near saturation. This reversible tuning into a new magnetic phase is obtained in layered bulk CrSBr at low temperature by varying the interlayer distance using high hydrostatic pressure, which efficiently acts on the interlayer magnetic exchange and is probed by magneto-optical spectroscopy.
Collapse
Affiliation(s)
- Amit Pawbake
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Thomas Pelini
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ivan Mohelsky
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Dipankar Jana
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Ivan Breslavetz
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Chang-Woo Cho
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Milan Orlita
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Marek Potemski
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
- CENTERA Laboratories, Institute of High Pressure Physics, PAS, 01-142 Warsaw, Poland
| | | | - Nathan P Wilson
- Walter Schottky Institut, Physics Department and MCQST, Technische Universitat Munchen, 85748 Garching, Germany
| | - Kseniia Mosina
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Aljoscha Soll
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Zdenek Sofer
- Department of Inorganic Chemistry, University of Chemistry and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Benjamin A Piot
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| | - Mike E Zhitomirsky
- Université Grenoble Alpes, CEA, Grenoble INP, IRIG, Pheliqs, 38000 Grenoble, France
- Institut Laue-Langevin, F-38042 Grenoble Cedex 9, France
| | - Clement Faugeras
- LNCMI, UPR 3228, CNRS, EMFL, Université Grenoble Alpes, 38000 Grenoble, France
| |
Collapse
|
20
|
Laser-induced topological spin switching in a 2D van der Waals magnet. Nat Commun 2023; 14:1378. [PMID: 36914683 PMCID: PMC10011585 DOI: 10.1038/s41467-023-37082-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
Two-dimensional (2D) van der Waals (vdW) magnets represent one of the most promising horizons for energy-efficient spintronic applications because their broad range of electronic, magnetic and topological properties. However, little is known about the interplay between light and spin properties in vdW layers. Here we show that ultrafast laser excitation can not only generate different type of spin textures in CrGeTe3 vdW magnets but also induce a reversible transformation between them in a topological toggle switch mechanism. Our atomistic spin dynamics simulations and wide-field Kerr microscopy measurements show that different textures can be generated via high-intense laser pulses within the picosecond regime. The phase transformation between the different topological spin textures is obtained as additional laser pulses are applied to the system where the polarisation and final state of the spins can be controlled by external magnetic fields. Our results indicate laser-driven spin textures on 2D magnets as a pathway towards reconfigurable topological architectures at the atomistic level.
Collapse
|
21
|
Wang QH, Bedoya-Pinto A, Blei M, Dismukes AH, Hamo A, Jenkins S, Koperski M, Liu Y, Sun QC, Telford EJ, Kim HH, Augustin M, Vool U, Yin JX, Li LH, Falin A, Dean CR, Casanova F, Evans RFL, Chshiev M, Mishchenko A, Petrovic C, He R, Zhao L, Tsen AW, Gerardot BD, Brotons-Gisbert M, Guguchia Z, Roy X, Tongay S, Wang Z, Hasan MZ, Wrachtrup J, Yacoby A, Fert A, Parkin S, Novoselov KS, Dai P, Balicas L, Santos EJG. The Magnetic Genome of Two-Dimensional van der Waals Materials. ACS NANO 2022; 16:6960-7079. [PMID: 35442017 PMCID: PMC9134533 DOI: 10.1021/acsnano.1c09150] [Citation(s) in RCA: 110] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/23/2022] [Indexed: 05/23/2023]
Abstract
Magnetism in two-dimensional (2D) van der Waals (vdW) materials has recently emerged as one of the most promising areas in condensed matter research, with many exciting emerging properties and significant potential for applications ranging from topological magnonics to low-power spintronics, quantum computing, and optical communications. In the brief time after their discovery, 2D magnets have blossomed into a rich area for investigation, where fundamental concepts in magnetism are challenged by the behavior of spins that can develop at the single layer limit. However, much effort is still needed in multiple fronts before 2D magnets can be routinely used for practical implementations. In this comprehensive review, prominent authors with expertise in complementary fields of 2D magnetism (i.e., synthesis, device engineering, magneto-optics, imaging, transport, mechanics, spin excitations, and theory and simulations) have joined together to provide a genome of current knowledge and a guideline for future developments in 2D magnetic materials research.
Collapse
Affiliation(s)
- Qing Hua Wang
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Amilcar Bedoya-Pinto
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
- Instituto
de Ciencia Molecular (ICMol), Universitat
de València, 46980 Paterna, Spain
| | - Mark Blei
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Avalon H. Dismukes
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Assaf Hamo
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Sarah Jenkins
- Twist
Group,
Faculty of Physics, University of Duisburg-Essen, Campus Duisburg, 47057 Duisburg, Germany
| | - Maciej Koperski
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Yu Liu
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Qi-Chao Sun
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
| | - Evan J. Telford
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Hyun Ho Kim
- School
of Materials Science and Engineering, Department of Energy Engineering
Convergence, Kumoh National Institute of
Technology, Gumi 39177, Korea
| | - Mathias Augustin
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
| | - Uri Vool
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John Harvard
Distinguished Science Fellows Program, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Jia-Xin Yin
- Laboratory
for Topological Quantum Matter and Spectroscopy, Department of Physics, Princeton University, Princeton, New Jersey 08544, United States
| | - Lu Hua Li
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Alexey Falin
- Institute
for Frontier Materials, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, Victoria 3216, Australia
| | - Cory R. Dean
- Department
of Physics, Columbia University, New York, New York 10027, United States
| | - Fèlix Casanova
- CIC nanoGUNE
BRTA, 20018 Donostia - San Sebastián, Basque
Country, Spain
- IKERBASQUE,
Basque Foundation for Science, 48013 Bilbao, Basque Country, Spain
| | - Richard F. L. Evans
- Department
of Physics, University of York, Heslington, York YO10 5DD, United Kingdom
| | - Mairbek Chshiev
- Université
Grenoble Alpes, CEA, CNRS, Spintec, 38000 Grenoble, France
- Institut
Universitaire de France, 75231 Paris, France
| | - Artem Mishchenko
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - Cedomir Petrovic
- Condensed
Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Rui He
- Department
of Electrical and Computer Engineering, Texas Tech University, 910 Boston Avenue, Lubbock, Texas 79409, United
States
| | - Liuyan Zhao
- Department
of Physics, University of Michigan, 450 Church Street, Ann Arbor, Michigan 48109, United States
| | - Adam W. Tsen
- Institute
for Quantum Computing and Department of Chemistry, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Brian D. Gerardot
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Mauro Brotons-Gisbert
- SUPA, Institute
of Photonics and Quantum Sciences, Heriot-Watt
University, Edinburgh EH14 4AS, United Kingdom
| | - Zurab Guguchia
- Laboratory
for Muon Spin Spectroscopy, Paul Scherrer
Institute, CH-5232 Villigen PSI, Switzerland
| | - Xavier Roy
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Sefaattin Tongay
- Materials
Science and Engineering, School for Engineering of Matter, Transport
and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Ziwei Wang
- Department
of Physics and Astronomy, University of
Manchester, Manchester, M13 9PL, United Kingdom
- National
Graphene Institute, University of Manchester, Manchester, M13 9PL, United Kingdom
| | - M. Zahid Hasan
- Materials
Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley, California 94720, United States
- Princeton
Institute for Science and Technology of Materials, Princeton University, Princeton, New Jersey 08544, United States
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
| | - Joerg Wrachtrup
- Physikalisches
Institut, University of Stuttgart, 70569 Stuttgart, Germany
- Max Planck
Institute for Solid State Research, 70569 Stuttgart, Germany
| | - Amir Yacoby
- Department
of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
- John A.
Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Albert Fert
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Unité
Mixte de Physique, CNRS, Thales, Université Paris-Saclay, 91767 Palaiseau, France
- Department
of Materials Physics UPV/EHU, 20018 Donostia - San Sebastián, Basque Country, Spain
| | - Stuart Parkin
- NISE
Department, Max Planck Institute of Microstructure
Physics, 06120 Halle, Germany
| | - Kostya S. Novoselov
- Institute
for Functional Intelligent Materials, National
University of Singapore, 117544 Singapore
| | - Pengcheng Dai
- Department
of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Luis Balicas
- National
High Magnetic Field Laboratory, Florida
State University, Tallahassee, Florida 32310, United States
- Department
of Physics, Florida State University, Tallahassee, Florida 32306, United States
| | - Elton J. G. Santos
- Institute
for Condensed Matter Physics and Complex Systems, School of Physics
and Astronomy, The University of Edinburgh, Edinburgh, EH9 3FD, United Kingdom
- Donostia
International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- Higgs Centre
for Theoretical Physics, The University
of Edinburgh, Edinburgh EH9 3FD, United Kingdom
| |
Collapse
|