1
|
Xiao L, Hu X, Zhou Z, Xie X, Huang S, Ji M, Xu A, Tian Y. Diverse applications of DNA origami as a cross-disciplinary tool. NANOSCALE 2025; 17:10411-10432. [PMID: 40192061 DOI: 10.1039/d4nr04490h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
As knowledge from a single discipline is no longer sufficient to keep pace with the growing complexity of technological advancements, interdisciplinary collaboration has become a crucial driver of innovation. DNA nanotechnology exemplifies this integration, serving as a field where cross-disciplinary communication is particularly prominent. Since its introduction by Rothemund in 2006, DNA origami has proved to be a powerful tool for interdisciplinary research, offering exceptional structural stability, programmability, and addressability. This review provides an overview of the development of DNA origami technology, highlights its major advances, and explores its innovative applications across various disciplines in recent years, showcasing its vast potential and future prospects. We believe DNA origami is poised for even broader applications, driving progress across multiple fields.
Collapse
Affiliation(s)
- Lingyun Xiao
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaoxue Hu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Zhaoyu Zhou
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Xiaolin Xie
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Shujing Huang
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Min Ji
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Aobo Xu
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| | - Ye Tian
- College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Elblová P, Anthi J, Liu M, Lunova M, Jirsa M, Stephanopoulos N, Lunov O. DNA Nanostructures for Rational Regulation of Cellular Organelles. JACS AU 2025; 5:1591-1616. [PMID: 40313805 PMCID: PMC12042030 DOI: 10.1021/jacsau.5c00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/15/2025] [Accepted: 03/20/2025] [Indexed: 05/03/2025]
Abstract
DNA nanotechnology has revolutionized materials science and biomedicine by enabling precise manipulation of matter at the nanoscale. DNA nanostructures (DNs) in particular represent a promising frontier for targeted therapeutics. Engineered DNs offer unprecedented molecular programmability, biocompatibility, and structural versatility, making them ideal candidates for advanced drug delivery, organelle regulation, and cellular function modulation. This Perspective explores the emerging role of DNs in modulating cellular behavior through organelle-targeted interventions. We highlight current advances in nuclear, mitochondrial, and lysosomal targeting, showcasing applications ranging from gene delivery to cancer therapeutics. For instance, DNs have enabled precision mitochondrial disruption in cancer cells, lysosomal pH modulation to enhance gene silencing, and nuclear delivery of gene-editing templates. While DNs hold immense promise for advancing nanomedicine, outstanding challenges include optimizing biological interactions and addressing safety concerns. This Perspective highlights the current potential of DNs for rational control of targeted organelles, which could lead to novel therapeutic strategies and advancement of precision nanomedicines in the future.
Collapse
Affiliation(s)
- Petra Elblová
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, Ke Karlovu 3, 121 16 Prague 2, Czech Republic
| | - Judita Anthi
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Minghui Liu
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Mariia Lunova
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
- Institute
for Clinical & Experimental Medicine (IKEM), 14 021 Prague, Czech Republic
| | - Milan Jirsa
- Institute
for Clinical & Experimental Medicine (IKEM), 14 021 Prague, Czech Republic
| | - Nicholas Stephanopoulos
- School
of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- Biodesign
Center for Molecular Design and Biomimetics, Arizona State University, Tempe, Arizona 85281, United States
| | - Oleg Lunov
- FZU
- Institute of Physics of the Czech Academy of Sciences, 182 21 Prague, Czech Republic
| |
Collapse
|
3
|
Zhou M, Peng H, Luo S, Jiao K, Guo L, Fan C, Li J. Functionalization of Nucleic Acid Molecular Machines under Physiological Conditions: A Review. ACS APPLIED BIO MATERIALS 2025; 8:2751-2764. [PMID: 40168177 DOI: 10.1021/acsabm.5c00357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
In-situ fabrication of nucleic acid molecular machines in biological environments is desirable for smart theranostic applications. However, given the complex nature of biological environments, the integration of multiple functional modules into a coordinated machine remains challenging. Recent advances in nucleic acid nanotechnology offer solutions to these challenges. Here, we outline design principles for nucleic acid-based molecular machines tailored for physiological conditions, drawing on recent examples. We review cutting-edge technologies that facilitate their functionalization in physiological settings, particularly presynthesis modifications using unnatural bases and postsynthesis functionalization via bioorthogonal chemistry and noncovalent biological interactions. We discuss the advantages and limitations of these technologies and suggest future directions to overcome existing challenges.
Collapse
Affiliation(s)
- Mo Zhou
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Zhangjiang Laboratory, 100 Haike Road, Shanghai 201210, China
| | - Hongzhen Peng
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Shihua Luo
- Department of Traumatology, Rui Jin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Kai Jiao
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Linjie Guo
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- State Key Laboratory of Synergistic Chem-Bio Synthesis, School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, College of Sciences, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Fan J, Yang C, Zhu H, Wang H, Li X, Liu J, Ding B. DNA/RNA Origami Based on Different Scaffolds and Their Biomedical Applications. ACS Biomater Sci Eng 2025; 11:2080-2095. [PMID: 40047239 DOI: 10.1021/acsbiomaterials.5c00154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2025]
Abstract
Nucleic acids, including DNA and RNA, have been used extensively as building blocks to construct sophisticated nanostructures through complementary base pairing with predetermined shapes and sizes. With remarkable biocompatibility, spatial addressability, and structural programmability, self-assembled nucleic acid biomaterials have found widespread applications in various biomedical researches, including drug delivery, bioimaging, or disease diagnosis. Notably, as one of the representative nanostructures, DNA origami has drawn much attention. In this review, we summarize the latest developments in DNA/RNA origami design based on single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), and single-stranded RNA (ssRNA) scaffolds for a range of biomedical applications, including drug delivery, gene regulation, immunomodulation, and receptor recognition. Additionally, the challenges and future opportunities of DNA/RNA origami in biomedical applications will be discussed.
Collapse
Affiliation(s)
- Jing Fan
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Changping Yang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Hanyin Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xintong Li
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Yang C, Fan J, Zhu H, Wang H, He Y, Liu J, Ding B. Genetically Encoded Nucleic Acid Nanostructures for Biological Applications. Chembiochem 2025; 26:e202400991. [PMID: 39809714 DOI: 10.1002/cbic.202400991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 01/14/2025] [Accepted: 01/14/2025] [Indexed: 01/16/2025]
Abstract
Nucleic acid, as a carrier of genetic information, has been widely employed as a building block for the construction of versatile nanostructures with pre-designed sizes and shapes through complementary base pairing. With excellent programmability, addressability, and biocompatibility, nucleic acid nanostructures are extensively applied in biomedical researches, such as bio-imaging, bio-sensing, and drug delivery. Notably, the original gene-encoding capability of the nucleic acids themselves has been utilized in these structurally well-defined nanostructures. In this review, we will summarize the recent progress in the design of double-stranded DNA and mRNA-encoded nanostructures for various biological applications, such as gene regulation, gene expression, and mRNA transcription. Furthermore, the challenges and future opportunities of genetically encoded nucleic acid nanostructures in biomedical applications will be discussed.
Collapse
Affiliation(s)
- Changping Yang
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jing Fan
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Hanyin Zhu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hong Wang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuling He
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Jianbing Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Baoquan Ding
- School of Materials Science and Engineering, Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450001, China
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Seitz I, Saarinen S, Wierzchowiecka J, Kumpula EP, Shen B, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. Folding of mRNA-DNA Origami for Controlled Translation and Viral Vector Packaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417642. [PMID: 40012449 DOI: 10.1002/adma.202417642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/28/2025] [Indexed: 02/28/2025]
Abstract
mRNA is an important molecule in vaccine development and treatment of genetic disorders. Its capability to hybridize with DNA oligonucleotides in a programmable manner facilitates the formation of RNA-DNA origami structures, which can possess a well-defined morphology and serve as rigid supports for mRNA delivery. However, to date, comprehensive studies on the requirements for efficient folding of mRNA into distinct mRNA-DNA structures while preserving its translation functionality remain elusive. Here, the impact of design parameters on the folding of protein-encoding mRNA into mRNA-DNA origami structures is systematically investigated and the importance of the availability of ribosome-binding sequences on the translation efficiency is demonstrated. Furthermore, these hybrid structures are encapsulated inside virus capsids resulting in protecting them against nuclease degradation and also in enhancement of their cellular uptake. This multicomponent system therefore showcases a modular and versatile nanocarrier. The work provides valuable insight into the design of mRNA-DNA origami structures contributing to the development of mRNA-based gene delivery platforms.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Julia Wierzchowiecka
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Boxuan Shen
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, 7522, Enschede, The Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
- Institute of Technology, University of Tartu, 50411, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, 00014, Helsinki, Finland
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, 00076, Aalto, Finland
- LIBER Center of Excellence, Aalto University, 00076, Aalto, Finland
| |
Collapse
|
7
|
Bao H, Yao Y, Tang W, Yang D. Advances in Cell Separation: Harnessing DNA Nanomaterials for High-Specificity Recognition and Isolation. CHEM & BIO ENGINEERING 2025; 2:171-181. [PMID: 40171128 PMCID: PMC11955853 DOI: 10.1021/cbe.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/22/2025] [Accepted: 01/27/2025] [Indexed: 04/03/2025]
Abstract
Advancements in cell separation are essential for understanding cellular phenotypes and functions, with implications for both research and therapeutic applications. This review examines the evolution of cell separation techniques, categorizing them into physical and affinity-based methods, with a primary focus on the latter due to its high specificity. Among affinity techniques, DNA nanomaterials have emerged as powerful tools for biomolecular recognition owing to their unique properties and diverse range of nanostructures. We discuss various DNA nanomaterials, including linear aptamers, multivalent DNA constructs, DNA origami, and DNA hydrogels and their roles in cell recognition and separation. Each section highlights the distinctive characteristics of these DNA nanostructures, providing examples from recent studies that demonstrate their applications in cell isolation and release. We also compare the four DNA nanomaterials, outlining their individual contributions and identifying the remaining challenges and opportunities for further development. We conclude that DNA nanotechnology holds great promise as a transformative solution for cell separation, particularly in the context of personalized therapeutics.
Collapse
Affiliation(s)
- Huimin Bao
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Yao Yao
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Wenqi Tang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
| | - Dayong Yang
- Department
of Chemistry, State Key Laboratory of Molecular Engineering of Polymers,
Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,
College of Chemistry and Materials, Fudan
University, Shanghai, 200438, P.R. China
- Bioinformatics
Center of AMMS, Beijing, 100850, P.R. China
| |
Collapse
|
8
|
Li X, Hu H, Wang H, Liu J, Jiang W, Zhou F, Zhang J. DNA nanotechnology-based strategies for minimising hybridisation-dependent off-target effects in oligonucleotide therapies. MATERIALS HORIZONS 2025; 12:1388-1412. [PMID: 39692461 DOI: 10.1039/d4mh01158a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Targeted therapy has emerged as a transformative breakthrough in modern medicine. Oligonucleotide drugs, such as antisense oligonucleotides (ASOs) and small interfering RNAs (siRNAs), have made significant advancements in targeted therapy. Other oligonucleotide-based therapeutics like clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein (Cas) systems are also leading a revolution in targeted gene therapy. However, hybridisation-dependent off-target effects, arising from imperfect base pairing, remain a significant and growing concern for the clinical translation of oligonucleotide-based therapeutics. These mismatches in base pairing can lead to unintended steric blocking or cleavage events in non-pathological genes, affecting the efficacy and safety of the oligonucleotide drugs. In this review, we examine recent developments in oligonucleotide-based targeted therapeutics, explore the factors influencing sequence-dependent targeting specificity, and discuss the current approaches employed to reduce the off-target side effects. The existing strategies, such as chemical modifications and oligonucleotide length optimisation, often require a trade-off between specificity and binding affinity. To further address the challenge of hybridisation-dependent off-target effects, we discuss DNA nanotechnology-based strategies that leverage the collaborative effects of nucleic acid assembly in the design of oligonucleotide-based therapies. In DNA nanotechnology, collaborative effects refer to the cooperative interactions between individual strands or nanostructures, where multiple bindings result in more stable and specific hybridisation behaviour. By requiring multiple complementary interactions to occur simultaneously, the likelihood of unintended partially complementary binding events in nucleic acid hybridisation should be reduced. And thus, with the aid of collaborative effects, DNA nanotechnology has great promise in achieving both high binding affinity and high specificity to minimise the hybridisation-dependent off-target effects of oligonucleotide-based therapeutics.
Collapse
Affiliation(s)
- Xiaoyu Li
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Huanhuan Hu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Hailong Wang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, China
| | - Jia Liu
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Wenting Jiang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
- Cixi Biomedical Research Institute, Wenzhou Medical University, Zhejiang, China
| | - Feng Zhou
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| | - Jiantao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- Ningbo Cixi Institute of Biomedical Engineering, Ningbo, China
| |
Collapse
|
9
|
Huzar J, Coreas R, Landry MP, Tikhomirov G. AI-Based Prediction of Protein Corona Composition on DNA Nanostructures. ACS NANO 2025; 19:4333-4345. [PMID: 39772513 PMCID: PMC11803750 DOI: 10.1021/acsnano.4c12259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025]
Abstract
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered in vivo due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate in vivo are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures in vivo for biophysical and biomedical applications.
Collapse
Affiliation(s)
- Jared Huzar
- Biophysics
Graduate Group, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Roxana Coreas
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
| | - Markita P. Landry
- Department
of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720, United States
- Innovative
Genomics Institute, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg
Biohub, San Francisco, California 94158, United States
| | - Grigory Tikhomirov
- Department
of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
10
|
Wang R, Wang Y, Lu B, Zhang W, Xia B, Xiao SJ. Construction of Double-layered DNA Tiles and Arrays from Double Crossover Motifs. Chembiochem 2025; 26:e202400898. [PMID: 39777971 DOI: 10.1002/cbic.202400898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
DNA double crossover (DX) motifs including DAE (double crossover, antiparallel, even spacing) and DAO (double crossover, antiparallel, odd spacing) are well-known monolayered DNA building blocks for construction of 2D DNA arrays and tubes in nanoscale and microscale. Compared to the 3D architectures of DNA origami and single-stranded DNA bricks to build nanoscale 3D bundles, tessellations, gears, castles, etc., designs of double- and multi-layers of DX motifs for 3D architectures are still limited. Herein, we report two types of double-layered tiles derived from DAE motifs with single-stranded circular 42- and 64-nt oligonucleotides as scaffold strands. Further tiling of the tiles generated planar 3D crystalline domains and curved tubes, correspondingly. Finally, we applied the chiral index theory to derive the unit tube parameters of six E-tiling (inter-tile distance of even spacing) tubes and analyzed the causation of difference between these tubes.
Collapse
Affiliation(s)
- Ruoran Wang
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, P. R. China E-amil
| | - Biao Lu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, P. R. China E-amil
| | - Wei Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, P. R. China E-amil
| | - Bing Xia
- College of Science, State Key Laboratory of Tree Genetics and Breeding, Nanjing Forestry University, Nanjing, 210037, P. R. China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, P. R. China E-amil
| |
Collapse
|
11
|
Kaviani S, Bai H, Das T, Asohan J, Elmanzalawy A, Marlyn J, Choueiri LE, Damha MJ, Laurent Q, Sleiman HF. Photochemical Stabilization of Self-Assembled Spherical Nucleic Acids. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2407742. [PMID: 39790078 PMCID: PMC11840461 DOI: 10.1002/smll.202407742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/08/2024] [Indexed: 01/12/2025]
Abstract
Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications. Our laboratory has introduced sequence-defined DNA amphiphiles which self-assemble in aqueous solutions. Despite their advantages, self-assembled SNAs can be inherently fragile due to their reliance on non-covalent interactions and fall apart in biologically relevant conditions, specifically by interaction with serum proteins. Herein, this challenge is addressed by introducing two methods of covalent crosslinking of SNAs via UV irradiation. Thymine photodimerization or disulfide crosslinking at the micellar interface enhance SNA stability against human serum albumin binding. This enhanced stability, particularly for disulfide crosslinked SNAs, leads to increased cellular uptake. Furthermore, this crosslinking results in sustained activity and accessibility for release of the therapeutic nucleic acid, along with improvement in unaided gene silencing. The findings demonstrate the efficient stabilization of SNAs through UV crosslinking, influencing their cellular uptake, therapeutic release, and ultimately, gene silencing activity. These studies offer promising avenues for further optimization and exploration of pre-clinical, in vivo studies.
Collapse
Affiliation(s)
- Sepideh Kaviani
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Haochen Bai
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Trishalina Das
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Jathavan Asohan
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | | | - Julian Marlyn
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Lea El Choueiri
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Masad J. Damha
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| | - Quentin Laurent
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
- University Grenoble Alpes, DCM UMR 5250Grenoble Cedex 938058France
| | - Hanadi F. Sleiman
- Department of ChemistryMcGill University801, Sherbrooke St. WestMontrealQCH3A 0B8Canada
| |
Collapse
|
12
|
Neyra K, Desai S, Mathur D. Plugging synthetic DNA nanoparticles into the central dogma of life. Chem Commun (Camb) 2024; 61:220-231. [PMID: 39611736 PMCID: PMC11606385 DOI: 10.1039/d4cc04648j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/11/2024] [Indexed: 11/30/2024]
Abstract
Synthetic DNA nanotechnology has emerged as a powerful tool for creating precise nanoscale structures with diverse applications in biotechnology and materials science. Recently, it has evolved to include gene-encoded DNA nanoparticles, which have potentially unique advantages compared to alternative gene delivery platforms. In exciting new developments, we and others have shown how the long single strand within DNA origami nanoparticles, the scaffold strand, can be customized to encode protein-expressing genes and engineer nanoparticles that interface with the transcription-translation machinery for protein production. Remarkably, therefore, DNA nanoparticles - despite their complex three-dimensional shapes - can function as canonical genes. Characteristics such as potentially unlimited gene packing size and low immunogenicity make DNA-based platforms promising for a variety of gene therapy applications. In this review, we first outline various techniques for the isolation of the gene-encoded scaffold strand, a crucial precursor for building protein-expressing DNA nanoparticles. Next, we highlight how features such as sequence design, staple strand optimization, and overall architecture of gene-encoded DNA nanoparticles play a key role in the enhancement of protein expression. Finally, we discuss potential applications of these DNA origami structures to provide a comprehensive overview of the current state of gene-encoded DNA nanoparticles and motivate future directions.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| | - Sara Desai
- Department of Biochemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
13
|
Silvester E, Baker LA. Molecular tags for electron cryo-tomography. Emerg Top Life Sci 2024:ETLS20240006. [PMID: 39636021 DOI: 10.1042/etls20240006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
Electron cryotomography enables the direct visualisation of biological specimens without stains or fixation, revealing complex molecular landscapes at high resolution. However, identifying specific proteins within these crowded environments is challenging. Molecular tagging offers a promising solution by attaching visually distinctive markers to proteins of interest, differentiating them from the background. This review explores available tagging strategies, including gold nanoparticles, metal-binding proteins, nucleic acid nanostructures and protein-based tags. The identification and targeting strategies for each approach are discussed, highlighting their respective advantages and limitations. Future directions for advancing these tagging techniques to expand their applicability to broader research questions are also considered.
Collapse
Affiliation(s)
- Emma Silvester
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, U.K
| | - Lindsay A Baker
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, U.K
- Kavli Institute for Nanoscience Discovery, University of Oxford, Dorothy Crowfoot Hodgkin Building, South Parks Road, Oxford OX1 3QU, U.K
| |
Collapse
|
14
|
Oh CY, Kaur H, Tuteja G, Henderson ER. DNA origami drives gene expression in a human cell culture system. Sci Rep 2024; 14:27364. [PMID: 39521857 PMCID: PMC11550841 DOI: 10.1038/s41598-024-78399-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Self-assembling DNA nanoparticles have the potential to significantly advance the targeted delivery of molecular cargo owing to their chemical and architectural flexibility. Recently, it has been demonstrated that the genetic code embedded in DNA nanoparticles produced by the method of DNA origami or related techniques can be recognized and copied by RNA polymerase in vitro. Further, sculpted DNA nanoparticles can serve as a substrate for Cas9-mediated gene modification and gene expression in cell culture. In the present study, we further investigate the ability of DNA origami nanoparticles to be expressed in a human cell line with emphasis on the impact of single-stranded DNA (ssDNA) domains and the contributions of the architectural disposition of genetic control elements, namely promoter and enhancer sequences. Our findings suggest that while cells possess the remarkable capability to express genes within highly folded architectures, the presence and relative density and location of ssDNA domains appears to influence overall levels of gene expression. These results suggest that it may be possible to nuance folded DNA nanoparticle architecture to regulate the rate and/or level of gene expression. Considering the highly malleable architecture and chemistry of self-assembling DNA nanoparticles, these findings motivate further exploration of their potential as an economic nanotechnology platform for targeted gene editing, nucleic acid-based vaccines, and related biotherapeutic applications.
Collapse
Affiliation(s)
- Chang Yong Oh
- Department of Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
- Department of Oncology, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| | - Haninder Kaur
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Geetu Tuteja
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | - Eric R Henderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
15
|
Yu L, Chen L, Satyabola D, Prasad A, Yan H. NucleoCraft: The Art of Stimuli-Responsive Precision in DNA and RNA Bioengineering. BME FRONTIERS 2024; 5:0050. [PMID: 39290204 PMCID: PMC11407293 DOI: 10.34133/bmef.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 09/19/2024] Open
Abstract
Recent advancements in DNA and RNA bioengineering have paved the way for developing stimuli-responsive nanostructures with remarkable potential across various applications. These nanostructures, crafted through sophisticated bioengineering techniques, can dynamically and precisely respond to both physiological and physical stimuli, including nucleic acids (DNA/RNA), adenosine triphosphate, proteins, ions, small molecules, pH, light, and temperature. They offer high sensitivity and specificity, making them ideal for applications such as biomarker detection, gene therapy, and controlled targeted drug delivery. In this review, we summarize the bioengineering methods used to assemble versatile stimuli-responsive DNA/RNA nanostructures and discuss their emerging applications in structural biology and biomedicine, including biosensing, targeted drug delivery, and therapeutics. Finally, we highlight the challenges and opportunities in the rational design of these intelligent bioengineered nanostructures.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Liangxiao Chen
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Deeksha Satyabola
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA
| |
Collapse
|
16
|
Yao X, He D, Wei P, Niu Z, Chen H, Li L, Fu P, Wang Y, Lou S, Qian S, Zheng J, Zuo G, Wang K. DNA Nanomaterial-Empowered Surface Engineering of Extracellular Vesicles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306852. [PMID: 38041689 DOI: 10.1002/adma.202306852] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/30/2023] [Indexed: 12/03/2023]
Abstract
Extracellular vesicles (EVs) are cell-secreted biological nanoparticles that are critical mediators of intercellular communication. They contain diverse bioactive components, which are promising diagnostic biomarkers and therapeutic agents. Their nanosized membrane-bound structures and innate ability to transport functional cargo across major biological barriers make them promising candidates as drug delivery vehicles. However, the complex biology and heterogeneity of EVs pose significant challenges for their controlled and actionable applications in diagnostics and therapeutics. Recently, DNA molecules with high biocompatibility emerge as excellent functional blocks for surface engineering of EVs. The robust Watson-Crick base pairing of DNA molecules and the resulting programmable DNA nanomaterials provide the EV surface with precise structural customization and adjustable physical and chemical properties, creating unprecedented opportunities for EV biomedical applications. This review focuses on the recent advances in the utilization of programmable DNA to engineer EV surfaces. The biology, function, and biomedical applications of EVs are summarized and the state-of-the-art achievements in EV isolation, analysis, and delivery based on DNA nanomaterials are introduced. Finally, the challenges and new frontiers in EV engineering are discussed.
Collapse
Affiliation(s)
- Xuxiang Yao
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Dongdong He
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Pengyao Wei
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Zitong Niu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
| | - Hao Chen
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Lin Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Pan Fu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Yiting Wang
- College of Chemistry, Jilin Normal University, Siping, 136000, P. R. China
| | - Saiyun Lou
- Second Clinical Medicine Faculty, Zhejiang Chinese Medical University, Hangzhou, 310000, P. R. China
- Ningbo Second Hospital, Ningbo, 315010, P. R. China
| | - Sihua Qian
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Jianping Zheng
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Guokun Zuo
- Cixi Biomedical Research Institute, Wenzhou Medical University, Ningbo, 315300, P. R. China
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| | - Kaizhe Wang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Ningbo Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315300, P. R. China
| |
Collapse
|
17
|
Huzar J, Coreas R, Landry MP, Tikhomirov G. AI-based Prediction of Protein Corona Composition on DNA Nanostructures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.25.609594. [PMID: 39253427 PMCID: PMC11383312 DOI: 10.1101/2024.08.25.609594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
DNA nanotechnology has emerged as a powerful approach to engineering biophysical tools, therapeutics, and diagnostics because it enables the construction of designer nanoscale structures with high programmability. Based on DNA base pairing rules, nanostructure size, shape, surface functionality, and structural reconfiguration can be programmed with a degree of spatial, temporal, and energetic precision that is difficult to achieve with other methods. However, the properties and structure of DNA constructs are greatly altered in vivo due to spontaneous protein adsorption from biofluids. These adsorbed proteins, referred to as the protein corona, remain challenging to control or predict, and subsequently, their functionality and fate in vivo are difficult to engineer. To address these challenges, we prepared a library of diverse DNA nanostructures and investigated the relationship between their design features and the composition of their protein corona. We identified protein characteristics important for their adsorption to DNA nanostructures and developed a machine-learning model that predicts which proteins will be enriched on a DNA nanostructure based on the DNA structures' design features and protein properties. Our work will help to understand and program the function of DNA nanostructures in vivo for biophysical and biomedical applications.
Collapse
Affiliation(s)
- Jared Huzar
- Biophysics Graduate Group, University of California, Berkeley, Berkeley, CA
| | - Roxana Coreas
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
| | - Markita P. Landry
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA
- Innovative Genomics Institute, Berkeley, CA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA
- Chan Zuckerberg Biohub, San Francisco, CA
| | - Grigory Tikhomirov
- Department of Electrical Engineering and Computer Sciences, University of California Berkeley, Berkeley, CA
| |
Collapse
|
18
|
Huang J, Chakraborty A, Tadepalli LS, Paul A. Adoption of a Tetrahedral DNA Nanostructure as a Multifunctional Biomaterial for Drug Delivery. ACS Pharmacol Transl Sci 2024; 7:2204-2214. [PMID: 39144555 PMCID: PMC11320733 DOI: 10.1021/acsptsci.4c00308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/09/2024] [Accepted: 07/11/2024] [Indexed: 08/16/2024]
Abstract
DNA nanostructures have been widely researched in recent years as emerging biomedical materials for drug delivery, biosensing, and cancer therapy, in addition to their hereditary function. Multiple precisely designed single-strand DNAs can be fabricated into complex, three-dimensional DNA nanostructures through a simple self-assembly process. Among all of the synthetic DNA nanostructures, tetrahedral DNA nanostructures (TDNs) stand out as the most promising biomedical nanomaterial. TDNs possess the merits of structural stability, cell membrane permeability, and natural biocompatibility due to their compact structures and DNA origin. In addition to their inherent advantages, TDNs were shown to have great potential in delivering therapeutic agents through multiple functional modifications. As a multifunctional material, TDNs have enabled innovative pharmaceutical applications, including antimicrobial therapy, anticancer treatment, immune modulation, and cartilage regeneration. Given the rapid development of TDNs in the biomedical field, it is critical to understand how to successfully produce and fine-tune the properties of TDNs for specific therapeutic needs and clinical translation. This article provides insights into the synthesis and functionalization of TDNs and summarizes the approaches for TDN-based therapeutics delivery as well as their broad applications in the field of pharmaceutics and nanomedicine, challenges, and future directions.
Collapse
Affiliation(s)
- Jiaqi Huang
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Aishik Chakraborty
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Lakshmi Suchitra Tadepalli
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
| | - Arghya Paul
- Department
of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- School of
Biomedical Engineering, The University of
Western Ontario, London, Ontario N6A 5B9, Canada
- Collaborative
Specialization in Musculoskeletal Health Research and Bone and Joint
Institute, The University of Western Ontario, London, Ontario N6A 5B9, Canada
- Department
of Chemistry, The University of Western
Ontario, London, Ontario N6A 5B9, Canada
| |
Collapse
|
19
|
Schaffter SW, Kengmana E, Fern J, Byrne SR, Schulman R. Strategies to Reduce Promoter-Independent Transcription of DNA Nanostructures and Strand Displacement Complexes. ACS Synth Biol 2024; 13:1964-1977. [PMID: 38885464 PMCID: PMC11613775 DOI: 10.1021/acssynbio.3c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Bacteriophage RNA polymerases, in particular T7 RNA polymerase (RNAP), are well-characterized and popular enzymes for many RNA applications in biotechnology both in vitro and in cellular settings. These monomeric polymerases are relatively inexpensive and have high transcription rates and processivity to quickly produce large quantities of RNA. T7 RNAP also has high promoter-specificity on double-stranded DNA (dsDNA) such that it only initiates transcription downstream of its 17-base promoter site on dsDNA templates. However, there are many promoter-independent T7 RNAP transcription reactions involving transcription initiation in regions of single-stranded DNA (ssDNA) that have been reported and characterized. These promoter-independent transcription reactions are important to consider when using T7 RNAP transcriptional systems for DNA nanotechnology and DNA computing applications, in which ssDNA domains often stabilize, organize, and functionalize DNA nanostructures and facilitate strand displacement reactions. Here we review the existing literature on promoter-independent transcription by bacteriophage RNA polymerases with a specific focus on T7 RNAP, and provide examples of how promoter-independent reactions can disrupt the functionality of DNA strand displacement circuit components and alter the stability and functionality of DNA-based materials. We then highlight design strategies for DNA nanotechnology applications that can mitigate the effects of promoter-independent T7 RNAP transcription. The design strategies we present should have an immediate impact by increasing the rate of success of using T7 RNAP for applications in DNA nanotechnology and DNA computing.
Collapse
Affiliation(s)
- Samuel W Schaffter
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Eli Kengmana
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Joshua Fern
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Shane R Byrne
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Rebecca Schulman
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, Baltimore, Maryland 21218, United States
- Department of Computer Science, Johns Hopkins University, Baltimore, Maryland 21218, United States
| |
Collapse
|
20
|
Roozbahani GM, Colosi PL, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live-cell nuclei. SCIENCE ADVANCES 2024; 10:eadn9423. [PMID: 38968349 PMCID: PMC11225781 DOI: 10.1126/sciadv.adn9423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/03/2024] [Indexed: 07/07/2024]
Abstract
DNA origami nanostructures (DOs) are promising tools for applications including drug delivery, biosensing, detecting biomolecules, and probing chromatin substructures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing, visualizing, and controlling biomolecular processes within live cells. We present an approach to deliver DOs into live-cell nuclei. We show that these DOs do not undergo detectable structural degradation in cell culture media or cell extracts for 24 hours. To deliver DOs into the nuclei of human U2OS cells, we conjugated 30-nanometer DO nanorods with an antibody raised against a nuclear factor, specifically the largest subunit of RNA polymerase II (Pol II). We find that DOs remain structurally intact in cells for 24 hours, including inside the nucleus. We demonstrate that electroporated anti-Pol II antibody-conjugated DOs are piggybacked into nuclei and exhibit subdiffusive motion inside the nucleus. Our results establish interfacing DOs with a nuclear factor as an effective method to deliver nanodevices into live-cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - P. L. Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708, USA
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch 67404, France
- Université de Strasbourg, Illkirch 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
21
|
Galvan AR, Green CM, Hooe SL, Oktay E, Thakur M, Díaz SA, Veneziano R, Medintz IL, Mathur D. Design and Characterization of a Gene-Encoding DNA Nanoparticle in a Cell-Free Transcription-Translation System. ACS APPLIED NANO MATERIALS 2024; 7:12891-12902. [PMID: 39830902 PMCID: PMC11741557 DOI: 10.1021/acsanm.4c01456] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA nanotechnology has made initial progress toward developing gene-encoded DNA origami nanoparticles (NPs) that display potential utility for future gene therapy applications. However, due to the challenges involved with gene delivery into cells including transport through the membrane, intracellular targeting, and inherent expression of nucleases along with interference from other active proteins, it can be difficult to more directly study the effect of DNA NP design on subsequent gene expression. In this work, we demonstrate an approach for studying the expression of gene-encoding DNA origami NPs without the use of cells. We utilize a pure E. coli-derived cell-free transcription-translation (TXTL) system, which is composed of optimized components from bacterial expression, for benchtop studies to assess how the promoter sequence in conjunction with structural design of the DNA NP template affects gene expression. The gene for an optimized Renilla luciferase was first amplified into a single-stranded (ss) scaffold strand and then folded into a 12-helix bundle DNA NP with exogenous staple strands as a test platform. Using luciferase-based bioluminescence assays to characterize the relative protein expression level, it was found that the gene can still be transcribed when folded, albeit at a lower rate than the double-stranded DNA gene segment. On comparing three variants of DNA NP with different promoter configurations, results indicate that a promoter designed to remain in ssDNA form has reduced protein expression from the DNA NP, and replacing the promoter sequence with an arbitrary sequence significantly lowers protein expression. This work demonstrates the power inherent in cell-free TXTL systems as an aid to study the gene expression capabilities of DNA NPs toward design and development of future applications.
Collapse
Affiliation(s)
- Angelica Rose Galvan
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States; Fischell Department of Bioengineering, College of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Shelby L Hooe
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Esra Oktay
- Department of Bioengineering College of Engineering and Computing, George Mason University, Manassas, Virginia 20110, United States; Department of Infectious Diseases/Virology, Section Viral Vector Technologies, Medical Faculty, University of Heidelberg, Center for Integrative Infectious Diseases Research (CIID), 69120 Heidelberg, Germany
| | - Meghna Thakur
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States; College of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Remi Veneziano
- Department of Bioengineering College of Engineering and Computing, George Mason University, Manassas, Virginia 20110, United States
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Divita Mathur
- Department of Chemistry, College of Arts and Sciences, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
22
|
Chen Q, Xia X, Liang Z, Zuo T, Xu G, Wei F, Yang J, Hu Q, Zhao Z, Tang BZ, Cen Y. Self-Assembled DNA Nanospheres Driven by Carbon Dots for MicroRNAs Imaging in Tumor via Logic Circuit. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310728. [PMID: 38229573 DOI: 10.1002/smll.202310728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/26/2023] [Indexed: 01/18/2024]
Abstract
DNA nanostructures with diverse biological functions have made significant advancements in biomedical applications. However, a universal strategy for the efficient production of DNA nanostructures is still lacking. In this work, a facile and mild method is presented for self-assembling polyethylenimine-modified carbon dots (PEI-CDs) and DNA into nanospheres called CANs at room temperature. This makes CANs universally applicable to multiple biological applications involving various types of DNA. Due to the ultra-small size and strong cationic charge of PEI-CDs, CANs exhibit a dense structure with high loading capacity for encapsulated DNA while providing excellent stability by protecting DNA from enzymatic hydrolysis. Additionally, Mg2+ is incorporated into CANs to form Mg@CANs which enriches the performance of CANs and enables subsequent biological imaging applications by providing exogenous Mg2+. Especially, a DNAzyme logic gate system that contains AND and OR Mg@CANs is constructed and successfully delivered to tumor cells in vitro and in vivo. They can be specifically activated by endogenic human apurinic/apyrimidinic endonuclease 1 and recognize the expression levels of miRNA-21 and miRNA-155 at tumor sites by logic biocomputing. A versatile pattern for delivery of diverse DNA and flexible logic circuits for multiple miRNAs imaging are developed.
Collapse
Affiliation(s)
- Qiutong Chen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Xinyi Xia
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zhigang Liang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Tongshan Zuo
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Jing Yang
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| | - Zheng Zhao
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Ben Zhong Tang
- Clinical Translational Research Center of Aggregation-Induced Emission, The Second Affiliated Hospital, School of Medicine, School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu, 211166, P. R. China
| |
Collapse
|
23
|
Tian Z, Shao D, Tang L, Li Z, Chen Q, Song Y, Li T, Simmel FC, Song J. Circular single-stranded DNA as a programmable vector for gene regulation in cell-free protein expression systems. Nat Commun 2024; 15:4635. [PMID: 38821953 PMCID: PMC11143192 DOI: 10.1038/s41467-024-49021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 05/22/2024] [Indexed: 06/02/2024] Open
Abstract
Cell-free protein expression (CFE) systems have emerged as a critical platform for synthetic biology research. The vectors for protein expression in CFE systems mainly rely on double-stranded DNA and single-stranded RNA for transcription and translation processing. Here, we introduce a programmable vector - circular single-stranded DNA (CssDNA), which is shown to be processed by DNA and RNA polymerases for gene expression in a yeast-based CFE system. CssDNA is already widely employed in DNA nanotechnology due to its addressability and programmability. To apply above methods in the context of synthetic biology, CssDNA can not only be engineered for gene regulation via the different pathways of sense CssDNA and antisense CssDNA, but also be constructed into several gene regulatory logic gates in CFE systems. Our findings advance the understanding of how CssDNA can be utilized in gene expression and gene regulation, and thus enrich the synthetic biology toolbox.
Collapse
Affiliation(s)
- Zhijin Tian
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Dandan Shao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhen Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Chen
- College of Forestry, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Yongxiu Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
- Ningbo institute of Dalian University of Technology, Ningbo, 315016, China
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui, 230026, China
| | - Friedrich C Simmel
- Department of Bioscience, School of Natural Sciences, Technische Universität München, Garching, Germany
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
24
|
Kalra S, Donnelly A, Singh N, Matthews D, Del Villar-Guerra R, Bemmer V, Dominguez C, Allcock N, Cherny D, Revyakin A, Rusling DA. Functionalizing DNA Origami by Triplex-Directed Site-Specific Photo-Cross-Linking. J Am Chem Soc 2024; 146:13617-13628. [PMID: 38695163 PMCID: PMC11100008 DOI: 10.1021/jacs.4c03413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Here, we present a cross-linking approach to covalently functionalize and stabilize DNA origami structures in a one-pot reaction. Our strategy involves adding nucleotide sequences to adjacent staple strands, so that, upon assembly of the origami structure, the extensions form short hairpin duplexes targetable by psoralen-labeled triplex-forming oligonucleotides bearing other functional groups (pso-TFOs). Subsequent irradiation with UVA light generates psoralen adducts with one or both hairpin staples leading to site-specific attachment of the pso-TFO (and attached group) to the origami with ca. 80% efficiency. Bis-adduct formation between strands in proximal hairpins further tethers the TFO to the structure and generates "superstaples" that improve the structural integrity of the functionalized complex. We show that directing cross-linking to regions outside of the origami core dramatically reduces sensitivity of the structures to thermal denaturation and disassembly by T7 RNA polymerase. We also show that the underlying duplex regions of the origami core are digested by DNase I and thus remain accessible to read-out by DNA-binding proteins. Our strategy is scalable and cost-effective, as it works with existing DNA origami structures, does not require scaffold redesign, and can be achieved with just one psoralen-modified oligonucleotide.
Collapse
Affiliation(s)
- Shantam Kalra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Amber Donnelly
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Nishtha Singh
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Daniel Matthews
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Rafael Del Villar-Guerra
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Victoria Bemmer
- Centre
for Enzyme Innovation, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2DY, U.K.
| | - Cyril Dominguez
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Natalie Allcock
- Core
Biotechnology Services Electron Microscopy Facility, University of Leicester, Leicester LE1 7RH, U.K.
| | - Dmitry Cherny
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - Andrey Revyakin
- Department
of Molecular and Cell Biology, and Leicester Institute of Chemical
Biology, University of Leicester, Leicester LE1 7RH, U.K.
| | - David A. Rusling
- School
of Medicine, Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DT, U.K.
| |
Collapse
|
25
|
Ge W, Wang Y, Xiao SJ. Three-Point-Star Deoxyribonucleic Acid Tiles with the Core Arm Length at Three Half-Turns for Two-Dimensional Archimedean Tilings and Beyond. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:10326-10333. [PMID: 38686650 DOI: 10.1021/acs.langmuir.4c00985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
2D Archimedean tiling and complex tessellation patterns assembled from soft materials including modular DNA tiles have attracted great interest because of their specific structures and potential applications in nanofabrication, nanoelectronics, nanophotonics, biomedical sensing, drug delivery, therapeutics, etc. Traditional three- and four-point-star DNA tiles with the core arm length at two half-turns (specified as three- and four-point-star-E previously and abbreviated as 3PSE and 4PSE tiles here) have been applied to assemble intricate tessellations through tuning the size of inserted nT (n = 1-7, T is thymine) loops on helper strands at the tile center. Following our recent findings using a new type of four-point-star tiles with the core arm length at three half-turns (specified as four-point-star-O previously and abbreviated as 4PSO tiles here) to assemble DNA tubes and flat 2D arrays, we report here the cross-hybridization weaving architectures at the tile center to construct three new 3PSO tiles with circular DNA oligonucleotides of 96-nt (nucleotides) serving as the scaffolds, further the monotonous and combinatory E- and O-tilings on one type of 3PSO tiles to create 2D Archimedean tiling patterns (6.6.6) and (4.8.8), and finally, the combination of 3PSO with 4PSO as well as 2PSO tiles to tile into complex tessellation patterns. The easy realization of regular and intricate DNA tessellations with 2-4PSO tiles not only richens the fundamental DNA modules and complex DNA nanostructures in types but also broadens the potential application scopes of DNA nanostructures in nanofabrication, DNA computing, biomedicine, etc.
Collapse
Affiliation(s)
- Wei Ge
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yantong Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
26
|
Everson HR, Neyra K, Scarton DV, Chandrasekhar S, Green CM, Schmidt TL, Medintz IL, Veneziano R, Mathur D. Purification of DNA Nanoparticles Using Photocleavable Biotin Tethers. ACS APPLIED MATERIALS & INTERFACES 2024; 16:22334-22343. [PMID: 38635042 PMCID: PMC11261745 DOI: 10.1021/acsami.3c18955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
The number of applications of self-assembled deoxyribonucleic acid (DNA) origami nanoparticles (DNA NPs) has increased drastically, following the development of a variety of single-stranded template DNA (ssDNA) that can serve as the scaffold strand. In addition to viral genomes, such as M13 bacteriophage and lambda DNAs, enzymatically produced ssDNA from various template sources is rapidly gaining traction and being applied as the scaffold for DNA NP preparation. However, separating fully formed DNA NPs that have custom scaffolds from crude assembly mixes is often a multistep process of first separating the ssDNA scaffold from its enzymatic amplification process and then isolating the assembled DNA NPs from excess precursor strands. Only then is the DNA NP sample ready for downstream characterization and application. In this work, we highlight a single-step purification of custom sequence- or M13-derived scaffold-based DNA NPs using photocleavable biotin tethers. The process only requires an inexpensive ultraviolet (UV) lamp, and DNA NPs with up to 90% yield and high purity are obtained. We show the versatility of the process in separating two multihelix bundle structures and a wireframe polyhedral architecture.
Collapse
Affiliation(s)
- Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Dylan V Scarton
- College of Science, Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, Virginia 22030, United States
- Institute for Advanced Biomedical Research, George Mason University, Manassas, Virginia 20110, United States
| | | | - Christopher M Green
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | | | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Washington, District of Columbia 20375, United States
| | - Remi Veneziano
- Institute for Advanced Biomedical Research, George Mason University, Manassas, Virginia 20110, United States
- College of Engineering and Computing, Department of Bioengineering, George Mason University, Manassas, Virginia 20110, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland, Ohio 44106, United States
| |
Collapse
|
27
|
Jiang Q, Shang Y, Xie Y, Ding B. DNA Origami: From Molecular Folding Art to Drug Delivery Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2301035. [PMID: 37715333 DOI: 10.1002/adma.202301035] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/08/2023] [Indexed: 09/17/2023]
Abstract
DNA molecules that store genetic information in living creatures can be repurposed as building blocks to construct artificial architectures, ranging from the nanoscale to the microscale. The precise fabrication of self-assembled DNA nanomaterials and their various applications have greatly impacted nanoscience and nanotechnology. More specifically, the DNA origami technique has realized the assembly of various nanostructures featuring rationally predesigned geometries, precise addressability, and versatile programmability, as well as remarkable biocompatibility. These features have elevated DNA origami from academic interest to an emerging class of drug delivery platform for a wide range of diseases. In this minireview, the latest advances in the burgeoning field of DNA-origami-based innovative platforms for regulating biological functions and delivering versatile drugs are presented. Challenges regarding the novel drug vehicle's safety, stability, targeting strategy, and future clinical translation are also discussed.
Collapse
Affiliation(s)
- Qiao Jiang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yingxu Shang
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
| | - Yiming Xie
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Baoquan Ding
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for NanoScience and Technology, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
28
|
Cao X, Tang L, Song J. Circular Single-Stranded DNA: Discovery, Biological Effects, and Applications. ACS Synth Biol 2024; 13:1038-1058. [PMID: 38501391 DOI: 10.1021/acssynbio.4c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The field of nucleic acid therapeutics has witnessed a significant surge in recent times, as evidenced by the increasing number of approved genetic drugs. However, current platform technologies containing plasmids, lipid nanoparticle-mRNAs, and adeno-associated virus vectors encounter various limitations and challenges. Thus, we are devoted to finding a novel nucleic acid vector and have directed our efforts toward investigating circular single-stranded DNA (CssDNA), an ancient form of nucleic acid. CssDNAs are ubiquitous, but generally ignored. Accumulating evidence suggests that CssDNAs possess exceptional properties as nucleic acid vectors, exhibiting great potential for clinical applications in genetic disorders, gene editing, and immune cell therapy. Here, we comprehensively review the discovery and biological effects of CssDNAs as well as their applications in the field of biomedical research for the first time. Undoubtedly, as an ancient form of DNA, CssDNA holds immense potential and promises novel insights for biomedical research.
Collapse
Affiliation(s)
- Xisen Cao
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
29
|
Wang W, Chopra B, Walawalkar V, Liang Z, Adams R, Deserno M, Ren X, Taylor RE. Cell-Surface Binding of DNA Nanostructures for Enhanced Intracellular and Intranuclear Delivery. ACS APPLIED MATERIALS & INTERFACES 2024; 16:15783-15797. [PMID: 38497300 PMCID: PMC10995898 DOI: 10.1021/acsami.3c18068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
DNA nanostructures (DNs) have found increasing use in biosensing, drug delivery, and therapeutics because of their customizable assembly, size and shape control, and facile functionalization. However, their limited cellular uptake and nuclear delivery have hindered their effectiveness in these applications. Here, we demonstrate the potential of applying cell-surface binding as a general strategy to enable rapid enhancement of intracellular and intranuclear delivery of DNs. By targeting the plasma membrane via cholesterol anchors or the cell-surface glycocalyx using click chemistry, we observe a significant 2 to 8-fold increase in the cellular uptake of three distinct types of DNs that include nanospheres, nanorods, and nanotiles, within a short time frame of half an hour. Several factors are found to play a critical role in modulating the uptake of DNs, including their geometries, the valency, positioning and spacing of binding moieties. Briefly, nanospheres are universally preferable for cell surface attachment and internalization. However, edge-decorated nanotiles compensate for their geometry deficiency and outperform nanospheres in both categories. In addition, we confirm the short-term structural stability of DNs by incubating them with cell medium and cell lysate. Further, we investigate the endocytic pathway of cell-surface bound DNs and reveal that it is an interdependent process involving multiple pathways, similar to those of unmodified DNs. Finally, we demonstrate that cell-surface attached DNs exhibit a substantial enhancement in the intranuclear delivery. Our findings present an application that leverages cell-surface binding to potentially overcome the limitations of low cellular uptake, which may strengthen and expand the toolbox for effective cellular and nuclear delivery of DNA nanostructure systems.
Collapse
Affiliation(s)
- Weitao Wang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Bhavya Chopra
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Vismaya Walawalkar
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Zijuan Liang
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebekah Adams
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Markus Deserno
- Department
of Physics, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Xi Ren
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
| | - Rebecca E. Taylor
- Department
of Mechanical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Biomedical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Department
of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
30
|
Neyra K, Everson HR, Mathur D. Dominant Analytical Techniques in DNA Nanotechnology for Various Applications. Anal Chem 2024; 96:3687-3697. [PMID: 38353660 PMCID: PMC11261746 DOI: 10.1021/acs.analchem.3c04176] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
DNA nanotechnology is rapidly gaining traction in numerous applications, each bearing varying degrees of tolerance to the quality and quantity necessary for viable nanostructure function. Despite the distinct objectives of each application, they are united in their reliance on essential analytical techniques, such as purification and characterization. This tutorial aims to guide the reader through the current state of DNA nanotechnology analytical chemistry, outlining important factors to consider when designing, assembling, purifying, and characterizing a DNA nanostructure for downstream applications.
Collapse
Affiliation(s)
- Kayla Neyra
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Heather R Everson
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| | - Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland Ohio 44106, United States
| |
Collapse
|
31
|
Yazdani S, Mozaffarian M, Pazuki G, Hadidi N, Villate-Beitia I, Zárate J, Puras G, Pedraz JL. Carbon-Based Nanostructures as Emerging Materials for Gene Delivery Applications. Pharmaceutics 2024; 16:288. [PMID: 38399344 PMCID: PMC10891563 DOI: 10.3390/pharmaceutics16020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Gene therapeutics are promising for treating diseases at the genetic level, with some already validated for clinical use. Recently, nanostructures have emerged for the targeted delivery of genetic material. Nanomaterials, exhibiting advantageous properties such as a high surface-to-volume ratio, biocompatibility, facile functionalization, substantial loading capacity, and tunable physicochemical characteristics, are recognized as non-viral vectors in gene therapy applications. Despite progress, current non-viral vectors exhibit notably low gene delivery efficiency. Progress in nanotechnology is essential to overcome extracellular and intracellular barriers in gene delivery. Specific nanostructures such as carbon nanotubes (CNTs), carbon quantum dots (CQDs), nanodiamonds (NDs), and similar carbon-based structures can accommodate diverse genetic materials such as plasmid DNA (pDNA), messenger RNA (mRNA), small interference RNA (siRNA), micro RNA (miRNA), and antisense oligonucleotides (AONs). To address challenges such as high toxicity and low transfection efficiency, advancements in the features of carbon-based nanostructures (CBNs) are imperative. This overview delves into three types of CBNs employed as vectors in drug/gene delivery systems, encompassing their synthesis methods, properties, and biomedical applications. Ultimately, we present insights into the opportunities and challenges within the captivating realm of gene delivery using CBNs.
Collapse
Affiliation(s)
- Sara Yazdani
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
| | - Mehrdad Mozaffarian
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Gholamreza Pazuki
- Department of Chemical Engineering, Amirkabir University of Technology, Tehran P.O. Box 15875-4413, Iran; (S.Y.); (G.P.)
| | - Naghmeh Hadidi
- Department of Clinical Research and EM Microscope, Pasteur Institute of Iran (PII), Tehran P.O. Box 131694-3551, Iran;
| | - Ilia Villate-Beitia
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jon Zárate
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| | - Jose Luis Pedraz
- NanoBioCel Research Group, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (I.V.-B.); (J.Z.); (G.P.)
- Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Av Monforte de Lemos 3-5, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, Calle José Achotegui s/n, 01009 Vitoria-Gasteiz, Spain
| |
Collapse
|
32
|
Guan X, Pei Y, Song J. DNA-Based Nonviral Gene Therapy─Challenging but Promising. Mol Pharm 2024; 21:427-453. [PMID: 38198640 DOI: 10.1021/acs.molpharmaceut.3c00907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Over the past decades, significant progress has been made in utilizing nucleic acids, including DNA and RNA molecules, for therapeutic purposes. For DNA molecules, although various DNA delivery systems have been established, viral vector systems are the go-to choice for large-scale commercial applications. However, viral systems have certain disadvantages such as immune response, limited payload capacity, insertional mutagenesis and pre-existing immunity. In contrast, nonviral systems are less immunogenic, not size limited, safer, and easier for manufacturing compared with viral systems. What's more, nonviral DNA vectors have demonstrated their capacity to mediate specific protein expression in vivo for diverse therapeutic objectives containing a wide range of diseases such as cancer, rare diseases, neurodegenerative diseases, and infectious diseases, yielding promising therapeutic outcomes. However, exogenous plasmid DNA is prone to degrade and has poor immunogenicity in vivo. Thus, various strategies have been developed: (i) designing novel plasmids with special structures, (ii) optimizing plasmid sequences for higher expression, and (iii) developing more efficient nonviral DNA delivery systems. Based on these strategies, many interesting clinical results have been reported. This Review discusses the development of DNA-based nonviral gene therapy, including novel plasmids, nonviral delivery systems, clinical advances, and prospects. These developments hold great potential for enhancing the efficacy and safety of nonviral gene therapy and expanding its applications in the treatment of various diseases.
Collapse
Affiliation(s)
- Xiaocai Guan
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yufeng Pei
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
- Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy of Sciences, Hangzhou 310022, China
| |
Collapse
|
33
|
Roozbahani GM, Colosi P, Oravecz A, Sorokina EM, Pfeifer W, Shokri S, Wei Y, Didier P, DeLuca M, Arya G, Tora L, Lakadamyali M, Poirier MG, Castro CE. Piggybacking functionalized DNA nanostructures into live cell nuclei. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573746. [PMID: 38260628 PMCID: PMC10802371 DOI: 10.1101/2023.12.30.573746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
DNA origami (DO) are promising tools for in vitro or in vivo applications including drug delivery; biosensing, detecting biomolecules; and probing chromatin sub-structures. Targeting these nanodevices to mammalian cell nuclei could provide impactful approaches for probing visualizing and controlling important biological processes in live cells. Here we present an approach to deliver DO strucures into live cell nuclei. We show that labelled DOs do not undergo detectable structural degradation in cell culture media or human cell extracts for 24 hr. To deliver DO platforms into the nuclei of human U2OS cells, we conjugated 30 nm long DO nanorods with an antibody raised against the largest subunit of RNA Polymerase II (Pol II), a key enzyme involved in gene transcription. We find that DOs remain structurally intact in cells for 24hr, including within the nucleus. Using fluorescence microscopy we demonstrate that the electroporated anti-Pol II antibody conjugated DOs are efficiently piggybacked into nuclei and exihibit sub-diffusive motion inside the nucleus. Our results reveal that functionalizing DOs with an antibody raised against a nuclear factor is a highly effective method for the delivery of nanodevices into live cell nuclei.
Collapse
Affiliation(s)
- Golbarg M. Roozbahani
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Patricia Colosi
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Attila Oravecz
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Elena M. Sorokina
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Wolfgang Pfeifer
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Siamak Shokri
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
| | - Yin Wei
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| | - Pascal Didier
- Université de Strasbourg, Illkirch, 67404, France
- Laboratoire de Biophotonique et Pharmacologie, Illkirch, 67401, France
| | - Marcello DeLuca
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - Gaurav Arya
- Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708, United States
| | - László Tora
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, 67404, France
- Centre National de la Recherche Scientifique, UMR7104, Illkirch, 67404, France
- Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, 67404, France
- Université de Strasbourg, Illkirch, 67404, France
| | - Melike Lakadamyali
- Department of Physiology, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael G. Poirier
- Department of Physics, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, 43210, USA
| | - Carlos E. Castro
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH, 43210, USA
- Biophysics Graduate Program, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
34
|
Gong X, Zhang J, Zhang P, Jiang Y, Hu L, Jiang Z, Wang F, Wang Y. Engineering of a Self-Regulatory Bidirectional DNA Assembly Circuit for Amplified MicroRNA Imaging. Anal Chem 2023; 95:18731-18738. [PMID: 38096424 DOI: 10.1021/acs.analchem.3c02822] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The engineering of catalytic hybridization DNA circuits represents versatile ways to orchestrate a complex flux of molecular information at the nanoscale, with potential applications in DNA-encoded biosensing, drug discovery, and therapeutics. However, the diffusive escape of intermediates and unintentional binding interactions remain an unsolved challenge. Herein, we developed a compact, yet efficient, self-regulatory assembly circuit (SAC) for achieving robust microRNA (miRNA) imaging in live cells through DNA-templated guaranteed catalytic hybridization. By integrating the toehold strand with a preblocked palindromic fragment in the stem domain, the proposed miniature SAC system allows the reactant-to-template-controlled proximal hybridization, thus facilitating the bidirectional-sustained assembly and the localization-intensified signal amplification without undesired crosstalk. With condensed components and low reactant complexity, the SAC amplifier realized high-contrast intracellular miRNA imaging. We anticipate that this simple and template-controlled design can enrich the clinical diagnosis and prognosis toolbox.
Collapse
Affiliation(s)
- Xue Gong
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Jiajia Zhang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Pu Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing 400016, P. R. China
| | - Yuqian Jiang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Lianzhe Hu
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Zhongwei Jiang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| | - Fuan Wang
- Research Institute of Shenzhen, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Yi Wang
- Engineering Research Center for Biotechnology of Active Substances (Ministry of Education), Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, P. R. China
| |
Collapse
|
35
|
Yu L, Xu Y, Al-Amin M, Jiang S, Sample M, Prasad A, Stephanopoulos N, Šulc P, Yan H. CytoDirect: A Nucleic Acid Nanodevice for Specific and Efficient Delivery of Functional Payloads to the Cytoplasm. J Am Chem Soc 2023; 145:27336-27347. [PMID: 38055928 PMCID: PMC10789493 DOI: 10.1021/jacs.3c07491] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Direct and efficient delivery of functional payloads such as chemotherapy drugs, siRNA, or small-molecule inhibitors into the cytoplasm, bypassing the endo/lysosomal trapping, is a challenging task for intracellular medicine. Here, we take advantage of the programmability of DNA nanotechnology to develop a DNA nanodevice called CytoDirect, which incorporates disulfide units and human epidermal growth factor receptor 2 (HER2) affibodies into a DNA origami nanostructure, enabling rapid cytosolic uptake into targeted cancer cells and deep tissue penetration. We further demonstrated that therapeutic oligonucleotides and small-molecule chemotherapy drugs can be easily delivered by CytoDirect and showed notable effects on gene knockdown and cell apoptosis, respectively. This study demonstrates the synergistic effect of disulfide and HER2 affibody modifications on the rapid cytosolic delivery of DNA origami and its payloads to targeted cells and deep tissues, thereby expanding the delivery capabilities of DNA nanostructures in a new direction for disease treatment.
Collapse
Affiliation(s)
- Lu Yu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Yang Xu
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Md Al-Amin
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Shuoxing Jiang
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Matthew Sample
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Abhay Prasad
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Nicholas Stephanopoulos
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Petr Šulc
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| | - Hao Yan
- School of Molecular Sciences and Center for Molecular Design and Biomimetics, The Biodesign Institute, Arizona State University, Tempe, Arizona 85281, United States
| |
Collapse
|
36
|
Julin S, Best N, Anaya-Plaza E, Enlund E, Linko V, Kostiainen MA. Assembly and optically triggered disassembly of lipid-DNA origami fibers. Chem Commun (Camb) 2023; 59:14701-14704. [PMID: 37997149 DOI: 10.1039/d3cc04677j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
The co-assembly of lipids and other compounds has recently gained increasing interest. Here, we report the formation of stimuli-responsive lipid-DNA origami fibers through the electrostatic co-assembly of cationic lipids and 6-helix bundle (6HB) DNA origami. The photosensitive lipid degrades when exposed to UV-A light, which allows a photoinduced, controlled release of the 6HBs from the fibers. The presented complexation strategy may find uses in developing responsive nanomaterials e.g. for therapeutics.
Collapse
Affiliation(s)
- Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Nadine Best
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Technische Universität Darmstadt, 64289 Darmstadt, Germany
- Fraunhofer Institute for Microengineering and Microsystems IMM, 55129 Mainz, Germany
| | - Eduardo Anaya-Plaza
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Eeva Enlund
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- Institute of Technology, University of Tartu, 50411 Tartu, Estonia
| | - Mauri A Kostiainen
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland.
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
37
|
Mentis AFA, Papavassiliou KA, Papavassiliou AG. DNA origami: a tool to evaluate and harness transcription factors. J Mol Med (Berl) 2023; 101:1493-1498. [PMID: 37813986 DOI: 10.1007/s00109-023-02380-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 10/11/2023]
Abstract
Alongside other players, such as CpG methylation and the "histone code," transcription factors (TFs) represent a key feature of gene regulation. TFs are implicated in critical cellular processes, ranging from cell death, growth, and differentiation, up to intranuclear signaling of steroid and other hormones, physical entities, and hypoxia regulation. Notwithstanding an extensive body of research in this field, several questions and therapeutic options remain unanswered and unexplored, respectively. Of note, many of these TFs represent therapeutic targets, which are either difficult to be pharmacologically tackled or are still not drugged via traditional approaches, such as small-molecule inhibition. Upon providing a brief overview of TFs, we focus herein on how synthetic biology/medicine could assist in their study as well as their therapeutic targeting. Specifically, we contend that DNA origami, i.e., a novel synthetic DNA nanotechnological approach, represents an excellent synthetic biology/medicine tool to accomplish the above goals, since it can harness several vital characteristics of DNA: DNA polymerization, DNA complementarity, DNA "programmability," and DNA "editability." In doing so, DNA origami can be applied to study TF dynamics during DNA transcription, to elucidate xeno-nucleic acids with distinct scaffolds and unconventional base pairs, and to use TFs as competitors of oncogene-engaged promoters. Overall, because of their potential for high-throughput design and their favorable pharmacodynamic and pharmacokinetic properties, DNA origami can be a novel armory for TF-related drug design. Last, we discuss future trends in the field, such as RNA origami and innovative DNA origami-based therapeutic delivery approaches.
Collapse
Affiliation(s)
| | - Kostas A Papavassiliou
- First University Department of Respiratory Medicine, Sotiria' Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, 11527, Greece.
| |
Collapse
|
38
|
Mathur D, Díaz SA, Hildebrandt N, Pensack RD, Yurke B, Biaggne A, Li L, Melinger JS, Ancona MG, Knowlton WB, Medintz IL. Pursuing excitonic energy transfer with programmable DNA-based optical breadboards. Chem Soc Rev 2023; 52:7848-7948. [PMID: 37872857 PMCID: PMC10642627 DOI: 10.1039/d0cs00936a] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Indexed: 10/25/2023]
Abstract
DNA nanotechnology has now enabled the self-assembly of almost any prescribed 3-dimensional nanoscale structure in large numbers and with high fidelity. These structures are also amenable to site-specific modification with a variety of small molecules ranging from drugs to reporter dyes. Beyond obvious application in biotechnology, such DNA structures are being pursued as programmable nanoscale optical breadboards where multiple different/identical fluorophores can be positioned with sub-nanometer resolution in a manner designed to allow them to engage in multistep excitonic energy-transfer (ET) via Förster resonance energy transfer (FRET) or other related processes. Not only is the ability to create such complex optical structures unique, more importantly, the ability to rapidly redesign and prototype almost all structural and optical analogues in a massively parallel format allows for deep insight into the underlying photophysical processes. Dynamic DNA structures further provide the unparalleled capability to reconfigure a DNA scaffold on the fly in situ and thus switch between ET pathways within a given assembly, actively change its properties, and even repeatedly toggle between two states such as on/off. Here, we review progress in developing these composite materials for potential applications that include artificial light harvesting, smart sensors, nanoactuators, optical barcoding, bioprobes, cryptography, computing, charge conversion, and theranostics to even new forms of optical data storage. Along with an introduction into the DNA scaffolding itself, the diverse fluorophores utilized in these structures, their incorporation chemistry, and the photophysical processes they are designed to exploit, we highlight the evolution of DNA architectures implemented in the pursuit of increased transfer efficiency and the key lessons about ET learned from each iteration. We also focus on recent and growing efforts to exploit DNA as a scaffold for assembling molecular dye aggregates that host delocalized excitons as a test bed for creating excitonic circuits and accessing other quantum-like optical phenomena. We conclude with an outlook on what is still required to transition these materials from a research pursuit to application specific prototypes and beyond.
Collapse
Affiliation(s)
- Divita Mathur
- Department of Chemistry, Case Western Reserve University, Cleveland OH 44106, USA
| | - Sebastián A Díaz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| | - Niko Hildebrandt
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
- Department of Engineering Physics, McMaster University, Hamilton, L8S 4L7, Canada
| | - Ryan D Pensack
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Bernard Yurke
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Austin Biaggne
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Lan Li
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
- Center for Advanced Energy Studies, Idaho Falls, ID 83401, USA
| | - Joseph S Melinger
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
| | - Mario G Ancona
- Electronics Science and Technology Division, Code 6800, U.S. Naval Research Laboratory, Washington, DC 20375, USA
- Department of Electrical and Computer Engineering, Florida State University, Tallahassee, FL 32310, USA
| | - William B Knowlton
- Micron School of Materials Science & Engineering, Boise State University, Boise, ID 83725, USA.
| | - Igor L Medintz
- Center for Bio/Molecular Science and Engineering, Code 6900, USA.
| |
Collapse
|
39
|
Tang L, Tian Z, Cheng J, Zhang Y, Song Y, Liu Y, Wang J, Zhang P, Ke Y, Simmel FC, Song J. Circular single-stranded DNA as switchable vector for gene expression in mammalian cells. Nat Commun 2023; 14:6665. [PMID: 37863879 PMCID: PMC10589306 DOI: 10.1038/s41467-023-42437-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Synthetic gene networks in mammalian cells are currently limited to either protein-based transcription factors or RNA-based regulators. Here, we demonstrate a regulatory approach based on circular single-stranded DNA (Css DNA), which can be used as an efficient expression vector with switchable activity, enabling gene regulation in mammalian cells. The Css DNA is transformed into its double-stranded form via DNA replication and used as vectors encoding a variety of different proteins in a wide range of cell lines as well as in mice. The rich repository of DNA nanotechnology allows to use sort single-stranded DNA effectors to fold Css DNA into DNA nanostructures of different complexity, leading the gene expression to programmable inhibition and subsequently re-activation via toehold-mediated strand displacement. The regulatory strategy from Css DNA can thus expand the molecular toolbox for the realization of synthetic regulatory networks with potential applications in genetic diagnosis and gene therapy.
Collapse
Affiliation(s)
- Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhijin Tian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yijing Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yongxiu Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jinghao Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| | | | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
40
|
Wang J, Zhang T, Li X, Wu W, Xu H, Xu XM, Zhang T. DNA Nanobarrel-Based Drug Delivery for Paclitaxel and Doxorubicin. Chembiochem 2023; 24:e202300424. [PMID: 37470220 DOI: 10.1002/cbic.202300424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/21/2023]
Abstract
Co-delivery of anticancer drugs and target agents by endogenous materials is an inevitable approach towards targeted and synergistic therapy. Employing DNA base pair complementarities, DNA nanotechnology exploits a unique nanostructuring method and has demonstrated its capacity for nanoscale positioning and templated assembly. Moreover, the water solubility, biocompatibility, and modifiability render DNA structure suitable candidate for drug delivery applications. We here report single-stranded DNA tail conjugated antitumor drug paclitaxel (PTX), and the co-delivery of PTX, doxorubicin and targeting agent mucin 1 (MUC-1) aptamer on a DNA nanobarrel carrier. We investigated the effect of tail lengths on drug release efficiencies and dual drug codelivery-enabled cytotoxicity. Owing to the rapidly developing field of structural DNA nanotechnology, functional DNA-based drug delivery is promising to achieve clinical therapeutic applications.
Collapse
Affiliation(s)
- Jiaoyang Wang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Tianyu Zhang
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xueqiao Li
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Wenna Wu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Hui Xu
- Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, China
| | - Xin-Ming Xu
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Tao Zhang
- Department of Applied Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
41
|
Seitz I, Saarinen S, Kumpula EP, McNeale D, Anaya-Plaza E, Lampinen V, Hytönen VP, Sainsbury F, Cornelissen JJLM, Linko V, Huiskonen JT, Kostiainen MA. DNA-origami-directed virus capsid polymorphism. NATURE NANOTECHNOLOGY 2023; 18:1205-1212. [PMID: 37460794 PMCID: PMC10575778 DOI: 10.1038/s41565-023-01443-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 06/06/2023] [Indexed: 10/15/2023]
Abstract
Viral capsids can adopt various geometries, most iconically characterized by icosahedral or helical symmetries. Importantly, precise control over the size and shape of virus capsids would have advantages in the development of new vaccines and delivery systems. However, current tools to direct the assembly process in a programmable manner are exceedingly elusive. Here we introduce a modular approach by demonstrating DNA-origami-directed polymorphism of single-protein subunit capsids. We achieve control over the capsid shape, size and topology by employing user-defined DNA origami nanostructures as binding and assembly platforms, which are efficiently encapsulated within the capsid. Furthermore, the obtained viral capsid coatings can shield the encapsulated DNA origami from degradation. Our approach is, moreover, not limited to a single type of capsomers and can also be applied to RNA-DNA origami structures to pave way for next-generation cargo protection and targeting strategies.
Collapse
Affiliation(s)
- Iris Seitz
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Sharon Saarinen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
| | - Esa-Pekka Kumpula
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland
| | - Donna McNeale
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | | | - Vili Lampinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vesa P Hytönen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Frank Sainsbury
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia
| | - Jeroen J L M Cornelissen
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, University of Twente, Enschede, Netherlands
| | - Veikko Linko
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland
- LIBER Center of Excellence, Aalto University, Aalto, Finland
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Juha T Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science HiLIFE, University of Helsinki, Helsinki, Finland.
| | - Mauri A Kostiainen
- Department of Bioproducts and Biosystems, Aalto University, Aalto, Finland.
- LIBER Center of Excellence, Aalto University, Aalto, Finland.
| |
Collapse
|
42
|
Feng F, Zhang L, Zheng P, Xiao SJ. Construction of DNA Bilayer Tiles and Arrays Using Circular DNA Molecules as Scaffolds. Chembiochem 2023; 24:e202300420. [PMID: 37464981 DOI: 10.1002/cbic.202300420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Using oligonucleotides to weave 2D tiles such as double crossovers (DX) and multi-arm junction (mAJ) tiles and arrays is well-known, but weaving 3D tiles is rare. Here, we report the construction of two new bilayer tiles in high yield using small circular 84mer oligonucleotides as scaffolds. Further, we designed five E-tiling approaches to construct porous nanotubes of microns long in medium yield via solution assembly and densely covered planar microscale arrays via surface-mediated assembly.
Collapse
Affiliation(s)
- Feiyang Feng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Ling Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Peng Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| | - Shou-Jun Xiao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 163 Xianlin Avenue, Nanjing, 210023, China
| |
Collapse
|
43
|
Oh CY, Henderson ER. In vitro transcription of self-assembling DNA nanoparticles. Sci Rep 2023; 13:12961. [PMID: 37563161 PMCID: PMC10415316 DOI: 10.1038/s41598-023-39777-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Nucleic acid nanoparticles are playing an increasingly important role in biomolecular diagnostics and therapeutics as well as a variety of other areas. The unique attributes of self-assembling DNA nanoparticles provide a potentially valuable addition or alternative to the lipid-based nanoparticles that are currently used to ferry nucleic acids in living systems. To explore this possibility, we have assessed the ability of self-assembling DNA nanoparticles to be constructed from complete gene cassettes that are capable of gene expression in vitro. In the current report, we describe the somewhat counter-intuitive result that despite extensive crossovers (the stereochemical analogs of Holliday junctions) and variations in architecture, these DNA nanoparticles are amenable to gene expression as evidenced by T7 RNA polymerase-driven transcription of a reporter gene in vitro. These findings, coupled with the vastly malleable architecture and chemistry of self-assembling DNA nanoparticles, warrant further investigation of their utility in biomedical genetics.
Collapse
Affiliation(s)
- Chang Yong Oh
- Department of Biochemistry and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| | - Eric R Henderson
- Department of Genetics, Development, and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| |
Collapse
|
44
|
Dai K, Gong C, Xu Y, Ding F, Qi X, Tu X, Yu L, Liu X, Li J, Fan C, Yan H, Yao G. Single-Stranded RNA Origami-Based Epigenetic Immunomodulation. NANO LETTERS 2023; 23:7188-7196. [PMID: 37499095 DOI: 10.1021/acs.nanolett.3c02185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The integration of functional modules at the molecular level into RNA nanostructures holds great potential for expanding their applications. However, the quantitative integration of nucleoside analogue molecules into RNA nanostructures and their impact on the structure and function of RNA nanostructures remain largely unexplored. Here, we report a transcription-based approach to controllably integrate multiple nucleoside analogues into a 2000 nucleotide (nt) single-stranded RNA (ssRNA) origami nanostructure. The resulting integrated ssRNA origami preserves the morphology and biostability of the original ssRNA origami. Moreover, the integration of nucleoside analogues introduced new biomedical functions to ssRNA origamis, including innate immune recognition and regulation after the precise integration of epigenetic nucleoside analogues and synergistic effects on tumor cell killing after integration of therapeutic nucleoside analogues. This study provides a promising approach for the quantitative integration of functional nucleoside analogues into RNA nanostructures at the molecular level, thereby offering valuable insights for the development of multifunctional ssRNA origamis.
Collapse
Affiliation(s)
- Kun Dai
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yang Xu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Fei Ding
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xiaodong Qi
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xinyi Tu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Lu Yu
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jiang Li
- Institute of Materiobiology, Department of Chemistry, College of Science, Shanghai University, Shanghai 200444, China
| | - Chunhai Fan
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Yan
- School of Molecular Sciences and Biodesign Center for Molecular Design and Biomimetics, Biodesign Institute, Arizona State University, Tempe, Arizona 85287, United States
| | - Guangbao Yao
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
45
|
Linko V, Keller A. Stability of DNA Origami Nanostructures in Physiological Media: The Role of Molecular Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301935. [PMID: 37093216 DOI: 10.1002/smll.202301935] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/05/2023] [Indexed: 05/03/2023]
Abstract
Programmable, custom-shaped, and nanometer-precise DNA origami nanostructures have rapidly emerged as prospective and versatile tools in bionanotechnology and biomedicine. Despite tremendous progress in their utilization in these fields, essential questions related to their structural stability under physiological conditions remain unanswered. Here, DNA origami stability is explored by strictly focusing on distinct molecular-level interactions. In this regard, the fundamental stabilizing and destabilizing ionic interactions as well as interactions involving various enzymes and other proteins are discussed, and their role in maintaining, modulating, or decreasing the structural integrity and colloidal stability of DNA origami nanostructures is summarized. Additionally, specific issues demanding further investigation are identified. This review - through its specific viewpoint - may serve as a primer for designing new, stable DNA objects and for adapting their use in applications dealing with physiological media.
Collapse
Affiliation(s)
- Veikko Linko
- Institute of Technology, University of Tartu, Nooruse 1, Tartu, 50411, Estonia
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, P. O. Box 16100, Aalto, 00076, Finland
| | - Adrian Keller
- Technical and Macromolecular Chemistry, Paderborn University, Warburger Str. 100, 33098, Paderborn, Germany
| |
Collapse
|
46
|
Wamhoff EC, Knappe GA, Burds AA, Du RR, Neun BW, Difilippantonio S, Sanders C, Edmondson EF, Matta JL, Dobrovolskaia MA, Bathe M. Evaluation of Nonmodified Wireframe DNA Origami for Acute Toxicity and Biodistribution in Mice. ACS APPLIED BIO MATERIALS 2023; 6:1960-1969. [PMID: 37040258 PMCID: PMC10189729 DOI: 10.1021/acsabm.3c00155] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023]
Abstract
Wireframe DNA origami can be used to fabricate virus-like particles for a range of biomedical applications, including the delivery of nucleic acid therapeutics. However, the acute toxicity and biodistribution of these wireframe nucleic acid nanoparticles (NANPs) have not been previously characterized in animal models. In the present study, we observed no indications of toxicity in BALB/c mice following a therapeutically relevant dosage of nonmodified DNA-based NANPs via intravenous administration, based on liver and kidney histology, liver and kidney biochemistry, and body weight. Further, the immunotoxicity of these NANPs was minimal, as indicated by blood cell counts and type-I interferon and pro-inflammatory cytokines. In an SJL/J model of autoimmunity, we observed no indications of NANP-mediated DNA-specific antibody response or immune-mediated kidney pathology following the intraperitoneal administration of NANPs. Finally, biodistribution studies revealed that these NANPs accumulate in the liver within one hour, concomitant with substantial renal clearance. Our observations support the continued development of wireframe DNA-based NANPs as next-generation nucleic acid therapeutic delivery platforms.
Collapse
Affiliation(s)
- Eike-Christian Wamhoff
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Grant A. Knappe
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Aurora A. Burds
- Koch
Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Rebecca R. Du
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| | - Barry W. Neun
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Simone Difilippantonio
- Laboratory
of Animal Sciences Program, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Chelsea Sanders
- Laboratory
of Animal Sciences Program, Frederick National
Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Elijah F. Edmondson
- Molecular
Histology and Pathology Laboratory, Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Jennifer L. Matta
- Molecular
Histology and Pathology Laboratory, Frederick
National Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Marina A. Dobrovolskaia
- Nanotechnology
Characterization Laboratory, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, United States of America
| | - Mark Bathe
- Department
of Biological Engineering, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States of America
| |
Collapse
|
47
|
Poppleton E, Urbanek N, Chakraborty T, Griffo A, Monari L, Göpfrich K. RNA origami: design, simulation and application. RNA Biol 2023; 20:510-524. [PMID: 37498217 PMCID: PMC10376919 DOI: 10.1080/15476286.2023.2237719] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 06/20/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023] Open
Abstract
Design strategies for DNA and RNA nanostructures have developed along parallel lines for the past 30 years, from small structural motifs derived from biology to large 'origami' structures with thousands to tens of thousands of bases. With the recent publication of numerous RNA origami structures and improved design methods-even permitting co-transcriptional folding of kilobase-sized structures - the RNA nanotechnolgy field is at an inflection point. Here, we review the key achievements which inspired and enabled RNA origami design and draw comparisons with the development and applications of DNA origami structures. We further present the available computational tools for the design and the simulation, which will be key to the growth of the RNA origami community. Finally, we portray the transition from RNA origami structure to function. Several functional RNA origami structures exist already, their expression in cells has been demonstrated and first applications in cell biology have already been realized. Overall, we foresee that the fast-paced RNA origami field will provide new molecular hardware for biophysics, synthetic biology and biomedicine, complementing the DNA origami toolbox.
Collapse
Affiliation(s)
- Erik Poppleton
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Molecular Biomechanics, Heidelberg Institute for Theoretical Studies (HITS), Heidelberg, Germany
| | - Niklas Urbanek
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Taniya Chakraborty
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Alessandra Griffo
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| | - Luca Monari
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
- Institut de Science Et D’ingénierie Supramoléculaires (ISIS), Université de Strasbourg, Strasbourg, France
| | - Kerstin Göpfrich
- Biophysical Engineering Group, Center for Molecular Biology of Heidelberg University (ZMBH), Heidelberg University, Heidelberg, Germany
- Biophysical Engineering Group, Max Planck Institute for Medical Research, Heidelberg, Germany
| |
Collapse
|