1
|
Mukhin N, Dietzel A, Issakov V, Bakhchova L. Balancing performance and stability characteristics in organic electrochemical transistor. Biosens Bioelectron 2025; 281:117476. [PMID: 40245610 DOI: 10.1016/j.bios.2025.117476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/10/2025] [Accepted: 04/13/2025] [Indexed: 04/19/2025]
Abstract
Nowadays organic electrochemical transistors (OECTs) are becoming a promising platform for bioelectronics and biosensing due to its biocompatibility, high sensitivity and selectivity, low driving voltages, high transconductance and flexibility. However, the existing problems associated with degradation processes within the OECT during long-term operation hinder their widespread implementation. Moreover, trade-offs often arise between OECT transconductance and speed, fast ion transport and electron mobility, electrochemical stability and sensitivity, cycling stability and signal amplification, and other metrics. Ensuring high performance characteristics and achieving enhanced stability in OECTs are distinct strategies that do not always align, as progress in one aspect often necessitates a trade-off with the other. This dynamic arises from the need to find a balance between reversible and irreversible processes in the behavior of OECT active layers, and providing simultaneously favorable conditions for ion and electron transport and their efficient charge coupling. This review article systematically summarizes the phenomenological and physical-chemical aspects associated with factors and mechanisms that determine both performance and long-term stability of OECT, paying special attention to the consideration of existing and promising approaches to extend the OECT lifespan, while maintaining (or even increasing) high effectiveness of its operation.
Collapse
Affiliation(s)
- Nikolay Mukhin
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany.
| | - Andreas Dietzel
- Institute of Microtechnology, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Vadim Issakov
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| | - Liubov Bakhchova
- Institute for CMOS Design, Technical University of Braunschweig, 38106, Braunschweig, Germany
| |
Collapse
|
2
|
Zhou Q, Abushammala H, Gao D, Xu P, Niu D, Yang W, Ma P. Human soft tissues-like PVA/cellulose hydrogels with multifunctional properties towards flexible electronics applications. Carbohydr Polym 2025; 357:123425. [PMID: 40158965 DOI: 10.1016/j.carbpol.2025.123425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 04/02/2025]
Abstract
Conductive hydrogels have attracted significant attention due to their exceptional flexibility, biocompatibility, and promising applications in flexible electronics. Inspired by human soft tissues, robust ionic conductive hydrogels were developed via constructing cellulose-reinforced polyvinyl alcohol networks and precise modulation of zinc ions. The hydrogel exhibits impressive mechanical behaviors (σ = 4.55 MPa, ε = 1293 %) and ionic conductivity as high as 1.17 S/m, ascribed from the multiscale interaction mechanism. These mechanisms include the formation of dense nanofiber networks and nanocrystalline domains, the effects of multiple metal coordination and hydrogen bonds, and the reinforcement of nanocellulose. Moreover, the hydrogel demonstrates a low strain detection limit of 1 % and shows great potential for applications in human health monitoring. Interestingly, based on the principle of Morse code, the hydrogel can be used for information transmission in hazardous environments for emergency signaling. More importantly, when used as an electrolyte in flexible zinc-ion battery, it significantly inhibits zinc dendrite growth and supports stable charge-discharge cycles, making it ideal for small flexible electronic devices. This work presents a biomimetic and sustainable strategy for the rapid fabrication of robust ionic conductive hydrogels, offering advanced applications in flexible electronics.
Collapse
Affiliation(s)
- Qi Zhou
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Hatem Abushammala
- Environmental Health and Safety Program, College of Health Sciences, Abu Dhabi University, Abu Dhabi, P.O. Box 59911, United Arab Emirates
| | - Daqian Gao
- Department of Surgery, School of Medicine, Yale University, New Haven 06510, USA
| | - Pengwu Xu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Deyu Niu
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Weijun Yang
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | - Piming Ma
- The Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
3
|
Feng Y, Shan L, Wang Y, Chen X, Wang C, Liu J. Conductive Hydrogels with Topographical Geometry and Mechanical Robustness for Enhanced Peripheral Nerve Regeneration. ACS NANO 2025; 19:16675-16684. [PMID: 40273006 DOI: 10.1021/acsnano.5c00845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Nerve guidance conduits (NGCs) emerge as a promising solution for nerve regeneration; however, conventional NGCs fail to fulfill the requirements for peripheral nerve regeneration, which are subjected to periodical yet vigorous stretching, bending, and compression. Here, we developed a fatigue-resistant conductive hydrogel-based NGC by integrating topographical geometry, enhanced electroactivity, and superior fatigue resistance within one unit. The hydrogel, consisting of a PVA matrix with PEDOT:PSS as a conductive filler, features a topographical alignment that promotes axonal growth and achieves a fatigue threshold over 500 J/m2, making it well-suited for sciatic nerve repairing. Phase segregation of PEDOT chains enhances its electrical conductivity (>500 S/m) and mitigates the interfacial impedance mismatch, allowing for high-efficiency bioelectrical signal transmission. In vivo studies on a rat sciatic nerve injury model corroborate the accelerated peripheral nerve regeneration through improved motor function recovery and efficient electrophysiological signal transmission. These findings establish our hydrogel-based NGCs as a promising solution for high-efficiency nerve regeneration through the synergy of topographical, mechanical, and electrical engineering.
Collapse
Affiliation(s)
- Yinghui Feng
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liangjie Shan
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yafei Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xingmei Chen
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chang Wang
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Ji Liu
- Department of Mechanical and Energy Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
4
|
Zheng Y, Yang G, Li P, Tian B. Bioelectric and physicochemical foundations of bioelectronics in tissue regeneration. Biomaterials 2025; 322:123385. [PMID: 40367812 DOI: 10.1016/j.biomaterials.2025.123385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 04/15/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
Understanding and exploiting bioelectric signaling pathways and physicochemical properties of materials that interface with living tissues is central to advancing tissue regeneration. In particular, the emerging field of bioelectronics leverages these principles to develop personalized, minimally invasive therapeutic strategies tailored to the dynamic demands of individual patients. By integrating sensing and actuation modules into flexible, biocompatible devices, clinicians can continuously monitor and modulate local electrical microenvironments, thereby guiding regenerative processes without extensive surgical interventions. This review provides a critical examination of how fundamental bioelectric cues and physicochemical considerations drive the design and engineering of next-generation bioelectronic platforms. These platforms not only promote the formation and maturation of new tissues across neural, cardiac, musculoskeletal, skin, and gastrointestinal systems but also precisely align therapies with the unique structural, functional, and electrophysiological characteristics of each tissue type. Collectively, these insights and innovations represent a convergence of biology, electronics, and materials science that holds tremendous promise for enhancing the efficacy, specificity, and long-term stability of regenerative treatments, ushering in a new era of advanced tissue engineering and patient-centered regenerative medicine.
Collapse
Affiliation(s)
- Yuze Zheng
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Guangqing Yang
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA
| | - Pengju Li
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, 60637, USA
| | - Bozhi Tian
- Department of Chemistry, The University of Chicago, Chicago, IL, 60637, USA; The James Franck Institute, The University of Chicago, Chicago, IL, 60637, USA; The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
5
|
Park JY, Lim J, Russell CR, Chen P, Eksioglu D, Hong S, Mesa JC, Ward MP, Lee CH, Lee H. Hydrogel Adhesive Integrated-Microstructured Electrodes for Cuff-Free, Less-Invasive, and Stable Interface for Vagus Nerve Stimulation. Adv Healthc Mater 2025; 14:e2404189. [PMID: 40171796 PMCID: PMC12057590 DOI: 10.1002/adhm.202404189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/25/2025] [Indexed: 04/04/2025]
Abstract
Vagus nerve stimulation (VNS) is a recognized treatment for neurological disorders, yet the surgical procedure carries significant risks. During the process of isolating or cuffing the vagus nerve, there is a danger of damaging the nerve itself or the adjacent carotid artery or jugular vein. To minimize this risk, here we introduce a novel hydrogel adhesive-integrated and stretchable microdevice that provides a less invasive, cuff-free option for interfacing with the vagus nerve. The device features a novel hydrogel adhesive formulation that enables crosslinking on biological tissue. The inclusion of kirigami structures within the thin-film microdevice creates space for uniform hydrogel-to-epineurium contact while accommodating the stiffness changes of the hydrogel upon hydration. Using a rodent model, we demonstrate a robust device adhesion on a partially exposed vagus nerve in physiological fluid even without the vagus nerve isolation and cuffing process. Our device elicted stable and clear evoked compound action potential (~1500 µV peak-to-peak) in C-fibers with a current amplitude of 0.4 mA. We believe this innovative platform provides a novel, less-risky approach to interface with fragile nerve and vascular structures during VNS implantation.
Collapse
Affiliation(s)
- Jae Young Park
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| | - Jongcheon Lim
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| | - Carl R. Russell
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Pei‐Lun Chen
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Deniz Eksioglu
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Seokkyoon Hong
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Juan C. Mesa
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| | - Matthew P. Ward
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Indiana University School of MedicineIndianapolisIN46202USA
| | - Chi Hwan Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Mechanical EnginWeeringPurdue UniversityWest LafayetteIN47907USA
- Elmore Family School of Electrical and Computer EngineeringPurdue UniversityWest LafayetteIN47907USA
- School of Materials EngineeringPurdue UniversityWest LafayetteIN47907USA
| | - Hyowon Lee
- Weldon School of Biomedical EngineeringPurdue UniversityWest LafayetteIN47907USA
- Birck Nanotechnology CenterPurdue UniversityWest LafayetteIN47907USA
- Center for Implantable DevicesPurdue UniversityWest LafayetteIN47907USA
| |
Collapse
|
6
|
Choudhary P, Shaw A, Ramalingam B, Das SK. Nanoengineered and highly porous 3D chitosan-graphene scaffold for enhanced antibacterial activity and rapid hemostasis. Int J Biol Macromol 2025; 306:141521. [PMID: 40020811 DOI: 10.1016/j.ijbiomac.2025.141521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/31/2025] [Accepted: 02/25/2025] [Indexed: 03/03/2025]
Abstract
Chitosan-based hydrogels have been utilized over the years as an efficient hemorrhage because of their biocompatibility and biodegradability nature. Here we have nanoengineered the polycationic peptide-conjugated graphene‑silver nanocomposite into the chitosan matrix as a 3D highly porous CGrSP scaffold to facilitate rapid hemostasis and prevent bacterial infection. This CGrSP scaffold interacted with blood cells and platelets, initiating the blood coagulation process by activating the plasmatic contact system. Notably, it reduced the activated Partial Thromboplastin Time (aPTT) and Prothrombin Time (PT), indicating that the scaffold promoted platelet activation associated with Factors XII and X, leading to fibrin formation and clot stabilization. In vitro studies showed that the CGrSP scaffold reduced whole blood clotting time by 87 % compared to the commercial dressing "QuikClot." Additionally, in vivo studies using rat-tail amputation and skin laceration models demonstrated a significant reduction in hemostatic time compared to both the chitosan scaffold (p-value<0.003) and "QuikClot" (p-value<0.01). Beyond its hemostatic properties, the CGrSP scaffold exhibited strong antibacterial activity, achieving a 5-log reduction against both Escherichia coli and Staphylococcus aureus. With its biodegradable nature, rapid hemostasis, and potential for tissue regeneration, the CGrSP scaffold presents a novel and safe therapeutic material.
Collapse
Affiliation(s)
- Priyadarshani Choudhary
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Shaw
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India
| | - Baskaran Ramalingam
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR)-Central Leather Research Institute (CLRI), Chennai 600020, India; Department of Civil Engineering, Anna University, Chennai 600020, India
| | - Sujoy K Das
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Infectious Diseases and Immunology Division, Council of Scientific and Industrial Research (CSIR)-Indian Institute of Chemical Biology (IICB), Kolkata 700032, India.
| |
Collapse
|
7
|
Ma J, Yang W, Chen J, Zhou Y, Ye M, Xu X, Xiao H, Han J. Lignosulfonate-enhanced dispersion and compatibility of liquid metal nanodroplets in PVA hydrogel for improved self-recovery and fatigue resistance in wearable sensors. Int J Biol Macromol 2025; 306:141653. [PMID: 40049467 DOI: 10.1016/j.ijbiomac.2025.141653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 02/12/2025] [Accepted: 02/28/2025] [Indexed: 05/11/2025]
Abstract
Stretchable and resilient conductive hydrogels, incorporating flowable liquid metals (LM) into polyvinyl alcohol (PVA), have emerged as promising materials for wearable sensors due to their exceptional mechanical properties and sustainability. However, the fluidity and compatibility of LM with the hydrogel matrix limit the construction and performance of LM/PVA conductive hydrogels. This study aimed to develop a flexible, high-performance hydrogel for advanced wearable sensors by introducing LM nanoparticles encapsulated in sodium lignosulfonate (LS-LM) into the PVA matrix. The renewable natural macromolecule LS, rich in functional groups, enhanced the compatibility between LM and the PVA matrix. Moreover, LS formed a stable shell around the LM droplets, preventing rupture and leakage of LM, ensuring uniform dispersion within the hydrogel and significantly improving its durability by preventing phase separation. The optimized conductive lignosulfonate-liquid metal/polyvinyl alcohol hydrogel (LS-LM/PVA) exhibited a tensile stress of 1.60 MPa, a compressive strength of 0.53 MPa under 70 % strain, and electrical conductivity (4.87 S m-1). The hydrogel-based sensor demonstrated excellent sensitivity (GF = 2.40) and outstanding fatigue resistance (over 500 cycles). A Life Cycle Assessment (LCA) was conducted to evaluate the environmental impacts of LS-LM/PVA hydrogel production. The composite hydrogel-based sensor shows significant promise for advancing human motion tracking and information recognition.
Collapse
Affiliation(s)
- Jingren Ma
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Weisheng Yang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| | - Junfeng Chen
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Yihui Zhou
- Hunan Automotive Engineering Vocational University, Zhuzhou 412001, China
| | - Mingqiang Ye
- Aerospace Kaitian Environmental Technology Co., Ltd, Changsha 410100, China
| | - Xinwu Xu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Huining Xiao
- Chemical Engineering Department, New Brunswick University, Fredericton, New Brunswick E3B 5A3, Canada
| | - Jingquan Han
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Joint International Research Lab of Lignocellulosic Functional Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, Jiangsu, China.
| |
Collapse
|
8
|
Wu X, Ye Y, Sun M, Mei Y, Ji B, Wang M, Song E. Recent Progress of Soft and Bioactive Materials in Flexible Bioelectronics. CYBORG AND BIONIC SYSTEMS 2025; 6:0192. [PMID: 40302943 PMCID: PMC12038164 DOI: 10.34133/cbsystems.0192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 05/02/2025] Open
Abstract
Materials that establish functional, stable interfaces to targeted tissues for long-term monitoring/stimulation equipped with diagnostic/therapeutic capabilities represent breakthroughs in biomedical research and clinical medicine. A fundamental challenge is the mechanical and chemical mismatch between tissues and implants that ultimately results in device failure for corrosion by biofluids and associated foreign body response. Of particular interest is in the development of bioactive materials at the level of chemistry and mechanics for high-performance, minimally invasive function, simultaneously with tissue-like compliance and in vivo biocompatibility. This review summarizes the most recent progress for these purposes, with an emphasis on material properties such as foreign body response, on integration schemes with biological tissues, and on their use as bioelectronic platforms. The article begins with an overview of emerging classes of material platforms for bio-integration with proven utility in live animal models, as high performance and stable interfaces with different form factors. Subsequent sections review various classes of flexible, soft tissue-like materials, ranging from self-healing hydrogel/elastomer to bio-adhesive composites and to bioactive materials. Additional discussions highlight examples of active bioelectronic systems that support electrophysiological mapping, stimulation, and drug delivery as treatments of related diseases, at spatiotemporal resolutions that span from the cellular level to organ-scale dimension. Envisioned applications involve advanced implants for brain, cardiac, and other organ systems, with capabilities of bioactive materials that offer stability for human subjects and live animal models. Results will inspire continuing advancements in functions and benign interfaces to biological systems, thus yielding therapy and diagnostics for human healthcare.
Collapse
Affiliation(s)
- Xiaojun Wu
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
| | - Yuanming Ye
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
- Queen Mary University of London Engineering School, Northwestern Polytechnical University, Xi’an 710072, China
| | - Mubai Sun
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Institute of Agro-food Technology, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| | - Yongfeng Mei
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
- Yiwu Research Institute of Fudan University, Yiwu, Zhejiang 322000, China
| | - Bowen Ji
- Unmanned System Research Institute, National Key Laboratory of Unmanned Aerial Vehicle Technology, Integrated Research and Development Platform of Unmanned Aerial Vehicle Technology, Northwestern Polytechnical University, Xi’an 710072, China
| | - Ming Wang
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- Frontier Institute of Chip and System,
Fudan University, Shanghai 200433, China
| | - Enming Song
- Institute of Optoelectronics & Department of Materials Science, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, State Key Laboratory of Integrated Chips and Systems (SKLICS),
Fudan University, Shanghai 200438, China
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, State Key Laboratory of Molecular Engineering of Polymer,
Fudan University, Shanghai 200438, China
- International Institute for Intelligent Nanorobots and Nanosystems,
Neuromodulation and Brain-machine-interface Centre, Fudan University, Shanghai 200438, China
| |
Collapse
|
9
|
O'Neill SJK, Ashizawa M, McLean AM, Serrano RRM, Shimura T, Agetsuma M, Tsutsumi M, Nemoto T, Parmenter CDJ, McCune JA, Malliaras GG, Matsuhisa N, Scherman OA. Supramolecular Conductive Hydrogels With Homogeneous Ionic and Electronic Transport. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2415687. [PMID: 40296300 DOI: 10.1002/adma.202415687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 03/07/2025] [Indexed: 04/30/2025]
Abstract
Mechanically resilient hydrogels with ion-electron mixed transport properties effectively bridge biology with electronics. An ideal bioelectronic interface can be realized through introducing electronically conductive polymers into supramolecular hydrogels. However, inhomogeneous morphologies of conducting polymers, such as poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have limited mechanical properties and ion-electron interactions. Here, supramolecular conductive hydrogels that possess homogeneous ionic and electronic transport are achieved. The materials demonstrate high toughness (620 kJ m-3), stretchability (>1000%), softness (10.5 kPa), and conductivity (5.8 S cm-1), which surpasses commonly used inhomogeneous PEDOT:PSS-based hydrogels. The homogeneous network leads to higher charge injection capacitance and lower skin impedance compared to commercial electrodes or commonly used inhomogeneous PEDOT:PSS conducting networks. This significant advance arises from the homogeneous incorporation of the hydrophilic self-doped conducting polymer S-PEDOT, which has polymerized within a supramolecular polymer network template mediated by high-binding affinity host-guest crosslinks. Furthermore, the compatibility of S-PEDOT with hydrophilic secondary networks enables the realization of fully dryable and reswellable electronic devices, facilitating reusability and improving their ease of handling. It is anticipated that achieving such material architectures will offer a promising new direction in future synthesis and implementation of conductive hydrogels in the field of bioelectronics.
Collapse
Affiliation(s)
- Stephen J K O'Neill
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Minoru Ashizawa
- Department of Materials Science and Engineering, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Alan M McLean
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ruben Ruiz-Mateos Serrano
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Tokihiko Shimura
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Electronics and Electrical Engineering, Faculty of Science and Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Masakazu Agetsuma
- Division of Homeostatic Development, National Institute for Physiological Sciences, 38 Nishigohnaka Myodaiji-cho, Okazaki, Aichi, 444-8585, Japan
- Quantum Regenerative and Biomedical Engineering Team, Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Chiba Inage-ku, Chiba, 263-8555, Japan
| | - Motosuke Tsutsumi
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Tomomi Nemoto
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
- Research Division of Biophotonics, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Christopher D J Parmenter
- Nottingham Nanoscale and Microscale Research Centre, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Jade A McCune
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - George G Malliaras
- Electrical Engineering Division, Department of Engineering, University of Cambridge, 9 JJ Thomson Ave, Cambridge, CB3 0FA, UK
| | - Naoji Matsuhisa
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
- Electronics and Electrical Engineering, Faculty of Science and Engineering, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa, 223-8522, Japan
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| |
Collapse
|
10
|
Haghani Dogahe M, Mahan MA, Zhang M, Bashiri Aliabadi S, Rouhafza A, Karimzadhagh S, Feizkhah A, Monsef A, Habibi Roudkenar M. Advancing Prosthetic Hand Capabilities Through Biomimicry and Neural Interfaces. Neurorehabil Neural Repair 2025:15459683251331593. [PMID: 40275590 DOI: 10.1177/15459683251331593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Background and ObjectivesProsthetic hand development is undergoing a transformative phase, blending biomimicry and neural interface technologies to redefine functionality and sensory feedback. This article explores the symbiotic relationship between biomimetic design principles and neural interface technology (NIT) in advancing prosthetic hand capabilities.MethodsDrawing inspiration from biological systems, researchers aim to replicate the intricate movements and capabilities of the human hand through innovative prosthetic designs. Central to this endeavor is NIT, facilitating seamless communication between artificial devices and the human nervous system. Recent advances in fabrication methods have propelled brain-computer interfaces, enabling precise control of prosthetic hands by decoding neural activity.ResultsAnatomical complexities of the human hand underscore the importance of understanding biomechanics, neuroanatomy, and control mechanisms for crafting effective prosthetic solutions. Furthermore, achieving the goal of a fully functional cyborg hand necessitates a multidisciplinary approach and biomimetic design to replicate the body's inherent capabilities. By incorporating the expertise of clinicians, tissue engineers, bioengineers, electronic and data scientists, the next generation of the implantable devices is not only anatomically and biomechanically accurate but also offer intuitive control, sensory feedback, and proprioception, thereby pushing the boundaries of current prosthetic technology.ConclusionBy integrating machine learning algorithms, biomechatronic principles, and advanced surgical techniques, prosthetic hands can achieve real-time control while restoring tactile sensation and proprioception. This manuscript contributes novel approaches to prosthetic hand development, with potential implications for enhancing the functionality, durability, and safety of the prosthetic limb.
Collapse
Affiliation(s)
- Mohammad Haghani Dogahe
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mark A Mahan
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, USA
| | - Somaye Bashiri Aliabadi
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Rouhafza
- Department of ECE, University of Minnesota, Minneapolis, MN, USA
| | - Sahand Karimzadhagh
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Alireza Feizkhah
- Biomedical Engineering and Bioinspired Technologies Research Center, Sina Institute for Bioengineering, Rasht, Iran
| | - Abbas Monsef
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
11
|
Wang Y, Gao C, Cheng S, Li Y, Huang Y, Cao X, Zhang Z, Huang J. 3D Bioprinting of Double-Layer Conductive Skin for Wound Healing. Adv Healthc Mater 2025; 14:e2404388. [PMID: 40018834 DOI: 10.1002/adhm.202404388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/17/2025] [Indexed: 03/01/2025]
Abstract
Conductive hydrogels are highly attractive in 3D bioprinting of tissue engineered scaffolds for skin injury repair. However, their application is limited by mismatched electrical signal conduction mode and poor printability. Herein, the 3D bioprinting-assisted fabrication of a double-layer ionic conductive skin scaffold using a newly designed ionic conductive biomimetic bioink (GHCM) is reported, which is composed of gelatin methacrylate (GelMA), oxidized hyaluronic acid (OHA), carboxymethyl chitosan (CMCS), and 2-methacryloyloxyethyl phosphorylcholine (MPC) for the treatment of full-thickness skin defects. The combination of rigid (GelMA) and dynamic (OHA-CMCS) polymer networks imparts GHCM bioink excellent reversible thixotropy, enabling good printability, and allowing the creation of skin-like constructs with high shape fidelity and cell activity by convenient one-step bioprinting. Moreover, the incorporation of zwitterionic MPC endows the bioink with electrical signaling pattern similar to that of natural skin tissue. By integrating human foreskin fibroblasts (HFF-1), human umbilical vein endothelial cells (HUVECs), and human immortalized keratinocytes (HaCaTs), a double-layer conductive skin scaffold comprising an epidermal layer and a vascularized dermal layer is created. In vivo experiments have demonstrated that the conductive skin scaffolds provide an appropriate conductive microenvironment for cellular signaling, growth, migration, and differentiation, ultimately accelerating the re-epithelialization, collagen deposition, and vascularization of skin wounds, which may represent a general and versatile strategy for precise engineering of electroactive tissues for regenerative medicine applications.
Collapse
Affiliation(s)
- Yuhan Wang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Chen Gao
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Shengnan Cheng
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Yuxuan Li
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Ying Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Xiaoling Cao
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Zhijun Zhang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| | - Jie Huang
- School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China
- Organoid Innovation Center, CAS Key Laboratory of Nano-Bio Interface, Division of Nanobiomedicine, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China
| |
Collapse
|
12
|
Zhou ZZ, Li MM, Wei N, Sun Z, Liu H, Feng JC, Xia X, Li BJ, Xia H. High-Fidelity, High-Conductivity and Multifunctional PEDOT:PSS Hydrogel for Efficient Electromagnetic Interference Shielding and Ultrafast Response Electrochromic Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2412720. [PMID: 40042254 DOI: 10.1002/smll.202412720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/25/2025] [Indexed: 04/17/2025]
Abstract
Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogel are promising for applications in electromagnetic interference (EMI) shielding, energy storage, and electrochromic (EC) devices. However, challenges such as low conductivity at reduced solid content, limited charge storage, poor mechanical properties, and structural distortion during solvent treatment limit their high-performance applications. To address these issues, a high-fidelity, high-conductivity and multifunctional PEDOT:PSS hydrogel is developed by an ice crystal-assisted skeleton stacking and stepwise treatment strategy, achieving ultrahigh conductivity of 87,249 S m-1 at 5.8 wt% solid content. The PEDOT:PSS hydrogel also features a charge storage capacity of 35.66 mC cm-2 and a capacitance density of 587.6 mF cm-2. Additionally, The PEDOT:PSS hydrogel demonstrates exceptional EMI shielding effectiveness, achieving 81.2 dB, and also exhibits an ultrahigh specific surface shielding efficiency of 30,769.23 dB cm2 g-1. Notably, The PEDOT:PSS maintains high EMI shielding stability even after undergoing various harsh conditions. Using femtosecond laser direct writing, the highly stable all-solid-state EC reflective displays are developed with ultrafast response (<0.3 s) and superior durability.
Collapse
Affiliation(s)
- Zhuang-Zhuang Zhou
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Meng-Meng Li
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Ning Wei
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Zheng Sun
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Hao Liu
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Jia-Cheng Feng
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| | - Xu Xia
- Oujiang laboratory (Zhejiang Lab For Regenerative Medicine, vision and Brain Health), Wenzhou University, Wenzhou, 325000, China
| | - Bing-Jie Li
- Oujiang laboratory (Zhejiang Lab For Regenerative Medicine, vision and Brain Health), Wenzhou University, Wenzhou, 325000, China
| | - Hong Xia
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, China
| |
Collapse
|
13
|
Chen Z, Xu C, Chen X, Huang J, Guo Z. Advances in Electrically Conductive Hydrogels: Performance and Applications. SMALL METHODS 2025; 9:e2401156. [PMID: 39529563 DOI: 10.1002/smtd.202401156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Electrically conductive hydrogels are highly hydrated 3D networks consisting of a hydrophilic polymer skeleton and electrically conductive materials. Conductive hydrogels have excellent mechanical and electrical properties and have further extensive application prospects in biomedical treatment and other fields. Whereas numerous electrically conductive hydrogels have been fabricated, a set of general principles, that can rationally guide the synthesis of conductive hydrogels using different substances and fabrication methods for various application scenarios, remain a central demand of electrically conductive hydrogels. This paper systematically summarizes the processing, performances, and applications of conductive hydrogels, and discusses the challenges and opportunities in this field. In view of the shortcomings of conductive hydrogels in high electrical conductivity, matchable mechanical properties, as well as integrated devices and machines, it is proposed to synergistically design and process conductive hydrogels with applications in complex surroundings. It is believed that this will present a fresh perspective for the research and development of conductive hydrogels, and further expand the application of conductive hydrogels.
Collapse
Affiliation(s)
- Zhiwei Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Chenggong Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xionggang Chen
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| | - Jinxia Huang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Applications, Hubei University, Wuhan, 430062, China
| |
Collapse
|
14
|
Wang W, Liu J, Li H, Zhao Y, Wan R, Wang Q, Xu J, Lu B. Photopatternable PEDOT:PSS Hydrogels for High-Resolution Photolithography. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2414834. [PMID: 40125730 DOI: 10.1002/advs.202414834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/21/2025] [Indexed: 03/25/2025]
Abstract
Conducting polymer hydrogels have been extensively explored toward diverse applications like bioelectronics and soft robotics. However, the fabrication resolution of conducting polymer hydrogels by typical techniques, including ink-jet printing, 3D-printing, etc., has been generally limited to >10 µm, significantly restricting rapid innovations and broad applications of conducting polymer hydrogels. To address this issue, a photosensitive biphasic conducting polymer hydrogel (PB-CH) is rationally designed and synthesized, comprising poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) as the conductive phase and a light-sensitive matrix as the mechanical phase. The formation of phase-separated structures within PB-CH preserves the integrity of the conductive channels during the photoinitiated cross-linking. This minimizes the conductivity loss, a common limitation in similar materials. Remarkably, the resultant PB-CH exhibits a combination of excellent electrical conductivity (≈30 S cm-1), robust mechanical performance (tensile strain up to 50%), and high photopatternability. A detailed investigation of the photolithography process identifies key technological parameters that enable high-resolution patterning of 5 µm. By simultaneously maintaining processability, conductivity, and mechanical flexibility, this PB-CH represents an ideal candidate for advanced flexible electronic applications, offering a new technique to fabricating high-performance conducting polymer hydrogels.
Collapse
Affiliation(s)
- Wen Wang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingcheng Liu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Hai Li
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Yi Zhao
- Robotics Institute and State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Rongtai Wan
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Qiaobo Wang
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| | - Jingkun Xu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, P. R. China
| | - Baoyang Lu
- Jiangxi Provincial Key Laboratory of Flexible Electronics, Flexible Electronics Innovation Institute, Jiangxi Science & Technology Normal University, Nanchang, 330013, P. R. China
| |
Collapse
|
15
|
Rahman MS, Shon A, Joseph R, Pavlov A, Stefanov A, Namkoong M, Guo H, Bui D, Master R, Sharma A, Lee J, Rivas M, Elati A, Jones-Hall Y, Zhao F, Park H, Hook MA, Tian L. Soft, stretchable conductive hydrogels for high-performance electronic implants. SCIENCE ADVANCES 2025; 11:eads4415. [PMID: 40117365 PMCID: PMC11927610 DOI: 10.1126/sciadv.ads4415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/13/2025] [Indexed: 03/23/2025]
Abstract
Conductive hydrogels are emerging as promising materials for electronic implants owing to their favorable mechanical and electrical properties. Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels are particularly attractive, but their preparation often requires toxic additives. Here, we introduced a nutritive sweetener, d-sorbitol, as a nontoxic additive to create soft and stretchable PEDOT:PSS conductive hydrogels. These hydrogels exhibit mechanical properties comparable with biological tissues, reducing adverse immune responses. The hydrogels can be patterned on elastic substrates using a simple, low-cost micromolding technique to fabricate soft and stretchable implantable devices for electrical stimulation and recording. The hydrogel electrodes show much lower electrochemical impedance and higher charge storage and injection capacity compared to platinum electrodes. In addition, the properties of hydrogels and devices remain stable after long-term storage and exposure to extreme conditions. We demonstrate the use of soft hydrogel-based electronic devices for effective electrical stimulation and high-quality electrical recordings in live animal models.
Collapse
Affiliation(s)
- Md Saifur Rahman
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Ahnsei Shon
- Department of Multidisciplinary Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Rose Joseph
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX 77807, USA
| | - Anton Pavlov
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Alex Stefanov
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX 77807, USA
| | - Myeong Namkoong
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Heng Guo
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Dangnghi Bui
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Reid Master
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Archita Sharma
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Jennifer Lee
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Melissa Rivas
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Ananya Elati
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Yava Jones-Hall
- Department of Veterinary Pathobiology, School of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Feng Zhao
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| | - Hangue Park
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Electrical & Computer Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Michelle A. Hook
- Department of Neuroscience and Experimental Therapeutics, Texas A&M University, Bryan, TX 77807, USA
| | - Limei Tian
- Department of Biomedical Engineering, Center for Remote Health Technologies and Systems, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
16
|
Choi W, Hong J. Regulation of the gelatin helix-to-coil transition through chain confinements at the polymer-protein interface and protein-protein interface. Acta Biomater 2025; 195:216-224. [PMID: 39914637 DOI: 10.1016/j.actbio.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/30/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Gelatin is an essential material widely used in biomedical applications due to its characteristic temperature responsivity-helix-to-coil transition. However, the current helix-to-coil transition is limited by its single-step behavior and the difficulty in designing a specific onset temperature. In this study, we investigated the fundamentals of the helix-to-coil transition with a focus on gelatin chain mobility. We observed distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The confinement approach serves two purposes: first, it prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition; second, the interfacial confinement between the polymer and gelatin, referred to as polymer-protein interface confinement, restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins, that is protein-protein interface confinement, shifts the onset temperature to a higher point. This fundamental comprehension of helix-to-coil transition could contribute to broadening the biomedical application potential of gelatin materials. STATEMENT OF SIGNIFICANCE: Gelatin is essential in biomedical applications due to its characteristic temperature responsivity-helix-to-coil transition. Herein, we fundamentally investigated the distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The gelatin chain confinement prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition. The interfacial confinement between the polymer and gelatin restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins shifts the onset temperature to a higher point.
Collapse
Affiliation(s)
- Woojin Choi
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jinkee Hong
- Department of Chemical and Biomolecular Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
17
|
Lao J, Jiao Y, Zhang Y, Xu H, Wang Y, Ma Y, Feng X, Yu J. Intrinsically Adhesive and Conductive Hydrogel Bridging the Bioelectronic-Tissue Interface for Biopotentials Recording. ACS NANO 2025; 19:7755-7766. [PMID: 39988891 DOI: 10.1021/acsnano.4c12823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Achieving high-quality biopotential signal recordings requires soft and stable interfaces between soft tissues and bioelectronic devices. Traditional bioelectronics, typically rigid and dependent on medical tape or sutures, lead to mechanical mismatches and inflammatory responses. Existing conducting polymer-based bioelectronics offer tissue-like softness but lack intrinsic adhesion, limiting their effectiveness in creating stable, conductive interfaces. Here, we present an intrinsically adhesive and conductive hydrogel with a tissue-like modulus and strong adhesion to various substrates. Adhesive catechol groups are incorporated into the conductive poly(3,4-ethylenedioxythiophene) (PEDOT) hydrogel matrix, which reduces the PEDOT size and improves dispersity to form a percolating network with excellent electrical conductivity and strain insensitivity. This hydrogel effectively bridges the bioelectronics-tissue interface, ensuring pristine signal recordings with minimal interference from bodily movements. This capability is demonstrated through comprehensive in vivo experiments, including electromyography and electrocardiography recordings on both static and dynamic human skin and electrocorticography on moving rats. This hydrogel represents a significant advancement for bioelectronic interfaces, facilitating more accurate and less intrusive medical diagnostics.
Collapse
Affiliation(s)
- Jiazheng Lao
- Institute of Flexible Electronics Technology, Tsinghua University, Jiaxing, Zhejiang 314000, China
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Yang Jiao
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yingchao Zhang
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Hanyan Xu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
| | - Yutong Wang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Yinji Ma
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Xue Feng
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
- Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Jing Yu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), Singapore 639798, Singapore
- Mechano-X Institute, Applied Mechanics Laboratory, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Xue C, Zhao Y, Liao Y, Zhang H. Bioinspired Super-Robust Conductive Hydrogels for Machine Learning-Assisted Tactile Perception System. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416275. [PMID: 39901430 DOI: 10.1002/adma.202416275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/29/2024] [Indexed: 02/05/2025]
Abstract
Conductive hydrogels have attracted significant attention due to exceptional flexibility, electrochemical property, and biocompatibility. However, the low mechanical strength can compromise their stability under high stress, making the material susceptible to fracture in complex or harsh environments. Achieving a balance between conductivity and mechanical robustness remains a critical challenge. In this study, super-robust conductive hydrogels were designed and developed with highly oriented structures and densified networks, by employing techniques such as stretch-drying-induced directional assembly, salting-out, and ionic crosslinking. The hydrogels showed remarkable mechanical property (tensile strength: 17.13-142.1 MPa; toughness: 50 MJ m- 3), high conductivity (30.1 S m-1), and reliable strain sensing performance. Additionally, it applied this hydrogel material to fabricate biomimetic electronic skin device, significantly improving signal quality and device stability. By integrating the device with 1D convolutional neural network algorithm, it further developed a real-time material recognition system based on triboelectric and piezoresistive signal collection, achieving a classification accuracy of up to 99.79% across eight materials. This study predicted the potential of the high-performance conductive hydrogels for various applications in flexible smart wearables, the Internet of Things, bioelectronics, and bionic robotics.
Collapse
Affiliation(s)
- Chao Xue
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanran Zhao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Police Equipment and Technology College, China People's Police University, Langfang, 065000, China
| | - Yuantai Liao
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Hongyu Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
19
|
Huang R, Ding D, Huang C, Zhang H, Jiang G, Guo X, Cai W, Lin M, Meng Z, Xu J, Chen Y, Zhang XA. Multidimensional Integrated Architectonics for Hierarchical Hydrogels with Enhanced Thermal Conductivity for Effective Burn Healing. ACS APPLIED MATERIALS & INTERFACES 2025; 17:11085-11099. [PMID: 39912432 DOI: 10.1021/acsami.4c20867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
To be the wound dressings that alleviate progressive thermal injury, hydrogels require to have high thermal conductivity, excellent mechanical properties, and outstanding biocompatibility, which are hard to achieve simultaneously. Inspired by the multiscale structure of spider silk, we developed a hierarchical hydrogel architecture. This architecture includes molecular-scale hydrogen bonds between oxygen plasma-treated graphene fibers (OPGFs) and poly(vinyl alcohol) (PVA), as well as within PVA molecular chains. It also features nanometer-scale ordered crystalline domains in the PVA matrix and micrometer-scale highly oriented OPGFs. The hydrogel was prepared using OPGFs assisted by a magnetic field, directional freezing, and salting-out treatment. This hierarchical structure reduces the interfacial thermal resistance between OPGFs and PVA, as proven by molecular dynamics. Finite element simulations show that the improvement in the hydrogel's thermal conductivity during the salting-out process is primarily due to the increase in PVA's intrinsic thermal conductivity. Additionally, the oriented OPGFs create directional thermal pathways. PVA/OPGFs hydrogels have a thermal conductivity of 1.71 W/(m·K), 322% higher than that of pristine PVA hydrogel. PVA/OPGFs hydrogels exhibit robust mechanical properties and good biocompatibility, indicating their vast potential as burn wound dressings. In vivo tests show that PVA/OPGFs hydrogels quickly reduce thermal damage in burn wounds and accelerate healing. Furthermore, the PVA/OPGFs hydrogels demonstrated good electrical conductivity and outstanding sensing capabilities, indicating that they can monitor motion under stress and serve as electrical stimulation carriers, showing great potential for integrated therapeutic monitoring in intelligent wound dressings. The strategy of constructing multiscale structures expands the potential applicability of hydrogels in biothermal management.
Collapse
Affiliation(s)
- Ruoyu Huang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Dongliang Ding
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
- Department of Electronics Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Chenyi Huang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Haobo Zhang
- Research Institute of Aero-Engine, Beihang University, Beijing 100191, China
| | - Gaoxiao Jiang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Xing Guo
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Weiwei Cai
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Mingyuan Lin
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
| | - Zhaohui Meng
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
- Jiujiang research institute of Xiamen University, Jiujiang 360404, China
| | - Jianbin Xu
- Department of Electronics Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong 999077, China
| | - Yanhui Chen
- School of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Macromolecular Science and Technology, Key Laboratory of Special Functional and Smart Polymer Materials of Ministry of Industry and Information Technology, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xue-Ao Zhang
- College of Physical Science and Technology, Xiamen University, Xiamen 361000, China
- Jiujiang research institute of Xiamen University, Jiujiang 360404, China
| |
Collapse
|
20
|
Belay AN, Guo R, Ahmadian Koudakan P, Pan S. Biointerface engineering of flexible and wearable electronics. Chem Commun (Camb) 2025; 61:2858-2877. [PMID: 39838849 DOI: 10.1039/d4cc06078d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Biointerface sensing is a cutting-edge interdisciplinary field that merges conceptual and practical aspects. Wearable bioelectronics enable efficient interaction and close contact with biological components such as tissues and organs, paving the way for a wide range of medical applications, including personal health monitoring and medical intervention. To be applicable in real-world settings, the patches must be stable and adhere to the skin without causing discomfort or allergies in both wet and dry conditions, as well as other desirable features such as being ultra-soft, thin, flexible, and stretchable. Biosensors have emerged as promising tools primarily used to directly detect biological and electrophysiological signals, enhancing the efficacy of personalized medical treatments and enabling accurate tracking of human well-being. This review highlights the engineering of skin-tissue surfaces/interfaces and their interactions with wearable patches, aiming for both a broad and in-depth understanding of the mechanical and physicochemical properties required for the advancement of flexible and wearable skin patches. Specifically, the advantages of flexible bioelectronics and sensors with optimized surface geometry for long-term diagnosis are discussed. This insight aims to guide the future development of functional materials that can interact with human tissue in a controlled manner. Finally, we provide perspectives on the challenges and potential applications of biointerface engineering in wearable devices.
Collapse
Affiliation(s)
- Alebel Nibret Belay
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemistry, College of Science, Bahir Dar University, P.O. Box 79, Bahir Dar, Ethiopia
| | - Rui Guo
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
| | | | - Shuaijun Pan
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China.
- Department of Chemical Engineering, University of Melbourne, Parkville 3010, Australia
| |
Collapse
|
21
|
Han Q, Gao X, Zhang C, Tian Y, Liang S, Li X, Jing Y, Zhang M, Wang A, Bai S. Acid-Induced in Situ Phase Separation and Percolation for Constructing Bi-Continuous Phase Hydrogel Electrodes With Motion-Insensitive Property. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415445. [PMID: 39679750 DOI: 10.1002/adma.202415445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/22/2024] [Indexed: 12/17/2024]
Abstract
Conducting polymer hydrogels have gained attention in the bioelectronics field due to their unique combination of biocompatibility and customizable mechanical properties. However, achieving both excellent conductivity and mechanical strength in a hydrogel remains a significant challenge, primarily because of the inherent conflict between the hydrophobic nature of conducting polymers and the hydrophilic characteristics of hydrogels. To address this issue, this work proposes a simple one-step acid-induced approach that not only promotes the gelation of hydrophilic polymers but also facilitates the in situ phase separation of hydrophobic conducting polymers under mild conditions. This results in a distinctive bi-continuous phase structure with exceptional electrical property (906 mS cm-1) and mechanical performance (fracture strain of 1103%). The hydrogel forms robust percolating networks that maintain structural integrity under mechanical stress due to their entropic elasticity, providing remarkable strain insensitivity, low mechanical hysteresis, and an impressive resilience (95%). Electrodes fabricated from the conductive hydrogel exhibit stable and minimal interfacial contact impedance with skin (1-6 kilohms at 1-100 Hz) and significantly lower noise power (4.9 µV2). This work believes that the motion-insensitive characteristics and mechanical robustness of this hydrogel will enable efficient and reliable monitoring of biological signals, establishing a new benchmark in the bioelectronics.
Collapse
Affiliation(s)
- Qingquan Han
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xigang Gao
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Chao Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Yajie Tian
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sen Liang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Li
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yafeng Jing
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Milin Zhang
- Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China
| | - Anhe Wang
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shuo Bai
- State Key Laboratory of Biochemical Engineering and Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
22
|
Ding H, Wang B, Yang X, Liu J, Sang W, Li X, Wen Y, Li H, Shen X. Conductive polyacrylamide/pullulan/ammonium sulfate hydrogels with high toughness, low-hysteresis and tissue-like modulus as flexible strain sensors. Int J Biol Macromol 2025; 291:139183. [PMID: 39732245 DOI: 10.1016/j.ijbiomac.2024.139183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/16/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Conductive hydrogels have great potential for applications in flexible wearable sensors due to the combination of biocompatibility, mechanical flexibility and electrical conductivity. However, constructing conductive hydrogels with high toughness, low hysteresis and skin-like modulus simultaneously remains challenging. In the present study, we prepared a tough and conductive polyacrylamide/pullulan/ammonium sulfate hydrogel with a semi-interpenetrating network. Ammonium sulfate promoted the formation of low-energy-dissipating motifs between polymer chains, reinforcing the gel matrix and resulting in excellent mechanical properties, including a high stretchability of 2063 %, a high strength of 890 kPa, and a high toughness of 4268 kJ/m3. The hydrogen bonds formed within the network endowed the gels with low-hysteresis under deformation. The unique semi-interpenetrating network structure provided the gels with a tissue-like low modulus. Additionally, the resulting hydrogels exhibited a high conductivity of 2.39 S/m and excellent anti-freezing properties, making them suitable for flexible strain sensors. These sensors demonstrated high sensitivity over a broad strain window of 0.1-1500 %, enabling the detection of various human motions and the recognition of different languages. These findings emphasize the potential of the composite hydrogels as wearable strain sensors for flexible devices.
Collapse
Affiliation(s)
- Hongyao Ding
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Bingyao Wang
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Xu Yang
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Jie Liu
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Wei Sang
- School of Intelligent Manufacturing, Yangzhou Polytechnic Institute, Yangzhou 225127, China
| | - Xuewen Li
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Yuefang Wen
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China
| | - Hui Li
- Key Laboratory for Light-weight Materials, Nanjing Tech University, Nanjing 210009, China.
| | - Xiaodong Shen
- College of Materials Science and Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
23
|
Kim J, Kim Y, Kim K, Jung H, Seong D, Shin M, Son D. Tissue-Adhesive and Stiffness-Adaptive Neural Electrodes Fabricated Through Laser-Based Direct Patterning. SMALL METHODS 2025:e2401796. [PMID: 39778076 DOI: 10.1002/smtd.202401796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/15/2024] [Indexed: 01/11/2025]
Abstract
Recently, implantable devices for treating peripheral nerve disorders have demonstrated significant potential as neuroprosthetics for diagnostics and electrical stimulation. However, the mechanical mismatch between these devices and nerves frequently results in tissue damage and performance degradation. Although advances are made in stretchable electrodes, challenges, including complex patterning techniques and unstable performance, persist. Herein, an efficient method for developing a tissue-adhesive, stiffness-adaptive peripheral neural interface (TA-SA-PNI) is presented employing mechanically and electrically stable ultrathin conductive micro/nanomembrane bilayer (UC-MNB) electrodes. A direct laser-patterning technique is utilized to anchor the UC-MNB, comprising a conductive Cu micromembrane encapsulated by a biocompatible Au nanomembrane, onto a tough self-healing polymer (T-SHP) substrate using the thermoplastic properties of T-SHP. The UC-MNB with a wavy structure exhibited strain-insensitive performance under strains of up to 60%. Furthermore, its dynamic stress-relaxation properties enable stiffness adaptation, potentially minimizing chronic nerve compression. Finally, the phenylboronic acid-conjugated alginate (Alg-BA) adhesive layer offers stable tissue adhesion and ionic conductivity, optimizing the TA-SA-PNI for seamless integration into neural applications. Leveraging these advantages, in vivo demonstrations of bidirectional neural pathways are successfully conducted, featuring stable measurements of sensory neural signals and feedback electrical stimulation of the sciatic nerves of rats.
Collapse
Affiliation(s)
- Jaehyon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Yewon Kim
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Kyoungryong Kim
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunjin Jung
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Duhwan Seong
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
| | - Mikyung Shin
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Donghee Son
- Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Centre for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon, 16419, Republic of Korea
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
24
|
Luo W, Ren L, Hu B, Zhang H, Yang Z, Jin L, Zhang D. Recent Development of Fibrous Hydrogels: Properties, Applications and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408657. [PMID: 39530645 PMCID: PMC11714238 DOI: 10.1002/advs.202408657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/03/2024] [Indexed: 11/16/2024]
Abstract
Fibrous hydrogels (FGs), characterized by a 3D network structure made from prefabricated fibers, fibrils and polymeric materials, have emerged as significant materials in numerous fields. However, the challenge of balancing mechanical properties and functions hinders their further development. This article reviews the main advantages of FGs, including enhanced mechanical properties, high conductivity, high antimicrobial and anti-inflammatory properties, stimulus responsiveness, and an extracellular matrix (ECM)-like structure. It also discusses the influence of assembly methods, such as fiber cross-linking, interfacial treatments of fibers with hydrogel matrices, and supramolecular assembly, on the diverse functionalities of FGs. Furthermore, the mechanisms for improving the performance of the above five aspects are discussed, such as creating ion carrier channels for conductivity, in situ gelation of drugs to enhance antibacterial and anti-inflammatory properties, and entanglement and hydrophobic interactions between fibers, resulting in ECM-like structured FGs. In addition, this review addresses the application of FGs in sensors, dressings, and tissue scaffolds based on the synergistic effects of optimizing the performance. Finally, challenges and future applications of FGs are discussed, providing a theoretical foundation and new insights for the design and application of cutting-edge FGs.
Collapse
Affiliation(s)
- Wen Luo
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Liujiao Ren
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
| | - Bin Hu
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Huali Zhang
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Zhe Yang
- The Key Laboratory of Biomedical Information Engineering of Ministry of EducationSchool of Life Science and TechnologyXi'an Jiaotong UniversityXi'an710049P. R. China
- Research Institute of Xi'an Jiaotong UniversityHangzhou311200P. R. China
| | - Lin Jin
- International Joint Research Laboratory for Biomedical Nanomaterials of HenanHenan Key Laboratory of Rare Earth Functional MaterialsZhoukou Normal UniversityZhoukou466001P. R. China
| | - Di Zhang
- Department of General Surgery (Colorectal Surgery)Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesGuangdong Institute of GastroenterologyBiomedical Innovation Center, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655P. R. China
| |
Collapse
|
25
|
Kim M, Hong S, Khan R, Park JJ, In JB, Ko SH. Recent Advances in Nanomaterial-Based Biosignal Sensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2405301. [PMID: 39610205 DOI: 10.1002/smll.202405301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/26/2024] [Indexed: 11/30/2024]
Abstract
Recent research for medical fields, robotics, and wearable electronics aims to utilize biosignal sensors to gather bio-originated information and generate new values such as evaluating user well-being, predicting behavioral patterns, and supporting disease diagnosis and prevention. Notably, most biosignal sensors are designed for body placement to directly acquire signals, and the incorporation of nanomaterials such as metal-based nanoparticles or nanowires, carbon-based or polymer-based nanomaterials-offering stretchability, high surface-to-volume ratio, and tunability for various properties-enhances their adaptability for such applications. This review categorizes nanomaterial-based biosignal sensors into three types and analyzes them: 1) biophysical sensors that detect deformation such as folding, stretching, and even pulse, 2) bioelectric sensors that capture electric signal originating from human body such as heart and nerves, and 3) biochemical sensors that catch signals from bio-originated fluids such as sweat, saliva and blood. Then, limitations and improvements to nanomaterial-based biosignal sensors is depicted. Lastly, it is highlighted on deep learning-based signal processing and human-machine interface applications, which can enhance the potential of biosignal sensors. Through this paper, it is aim to provide an understanding of nanomaterial-based biosignal sensors, outline the current state of the technology, discuss the challenges that be addressed, and suggest directions for development.
Collapse
Affiliation(s)
- Minwoo Kim
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sangwoo Hong
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Rizwan Khan
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung Bin In
- Soft Energy Systems and Laser Applications Laboratory, School of Mechanical Engineering, Chung-Ang University, Seoul, 06974, Republic of Korea
- Department of Intelligent Energy and Industry, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, Seoul, 08826, Republic of Korea
- Institute of Engineering Research / Institute of Advanced Machines and Design, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
26
|
Yao Y, Wang D, Ma Y, Zhang S, Zhou Y, Chen W, Liu T, Cai Y, Fang L, Zhang J, Liang B. One-Step Electrochemical Modification of PEDOT:PSS/PBNPs Hybrid Hydrogel on the Screen-Printed Electrode Surface for Highly Sensitive Detection of Creatinine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:70352-70361. [PMID: 39661742 DOI: 10.1021/acsami.4c17451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Creatinine (CRE) is frequently measured in clinical practice due to its recognized significance as a pivotal biomarker across a spectrum of renal and cardiovascular disorders. However, the rapid and accurate detection of CRE for assessing kidney and muscle functions remains challenging. Here, we prepared the poly(3,4ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) hydrogel uniformly loaded with Prussian blue nanoparticles (PBNPs) via a one-step metal-assisted electrochemical modification method on the screen-printed electrode for ultrasensitive CRE detection. The conductive, porous PEDOT:PSS/PBNPs hydrogel provided a confined space that facilitated highly efficient biocatalytic cascade reactions of creatinine amidohydrolase, creatine amidinohydrolase (Cl), and sarcosine oxidase, enabling the CRE detection with a high sensitivity (40.2 μA mM-1 cm-2), a wide linear detection range (20-600 μM), and a low detection limit (8.3 μM). What is more, we developed an integrated platform utilizing a differential strategy to eliminate the interference from endogenous creatine (CR), employing a dual-channel working electrode for independent CR and CRE detection, along with modules for signal processing and wireless communication. The differential method and system were validated in simulated blood, the detection error was reduced from 41.1% to 8.89% after applying the differential method, and the recoveries ranged from 89.5% to 107.8%, with errors remaining below 12%. This PEDOT:PSS/PBNPs hydrogel CRE biosensor, based on one-step modification method, offered a promising strategy for precise assessment of kidney and muscle health in both clinical and at-home settings.
Collapse
Affiliation(s)
- Yelan Yao
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Dong Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yukun Ma
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Shanshan Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yue Zhou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Wanying Chen
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Tong Liu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Yu Cai
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| | - Lu Fang
- College of Automation, Hangzhou Dianzi University, Hangzhou, Zhejiang 310018, PR China
| | - Jun Zhang
- Department of Clinical Laboratory, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
| | - Bo Liang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang 310027, PR China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, PR China
| |
Collapse
|
27
|
Lee J, Choi Y, Song J, Seong D, Jin S, Ju J, Son D, Shin M. Nerve-Mimetic Adhesive Hydrogel Electroceuticals: Tailoring In Situ Physically Entangled Domains in Singular Polymers. ACS NANO 2024; 18:34949-34961. [PMID: 39670562 DOI: 10.1021/acsnano.4c13097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Implantable electrochemicals stand out as promising candidates for resolving peripheral nerve injuries. However, challenges persist in designing bioelectronic materials that mimic tissue due to modulus matching, conformal adhesion, and immune responses. Herein, we present a nerve-mimicking design rationale for biocompatible hydrogel-based electroceuticals with a tissue-like modulus, robust and conformal tissue adhesion, exceptional mechanical toughness, and efficient stress dissipation. Inspired by the hierarchical structure of the peripheral nerve, the hydrogel substrate features a structurally gradient bilayer transitioning from a dense to a loose polymeric network, utilizing alginate functionalized with either photo-cross-linkable methacrylate or tissue-adhesive phenylborate. Due to the varying water affinity of the tethering groups, a physically entangled interfacial domain is in situ formed during dehydration of the pre-gel film, resulting in enhanced mechanical toughness and strong adhesion. The hydrogel electroceuticals, when integrated with conducting polymeric electrodes, locally stimulate nerve tissue, improving tissue regeneration in a crushed nerve injury model.
Collapse
Affiliation(s)
- Jaebeom Lee
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Yeonsun Choi
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jihyang Song
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Duhwan Seong
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Subin Jin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Jaewon Ju
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
| | - Donghee Son
- Department of Artificial Intelligence System Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Electrical and Computer Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| | - Mikyung Shin
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Republic of Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 16419, Republic of Korea
| |
Collapse
|
28
|
Li J, Wei H, Cui S, Hou H, Zhang Y, Zhang Y, Xu BB, Chu L, El-Bahy ZM, Melhi S, Sellami R, Guo Z. Polyvinyl alcohol/sodium alginate-based conductive hydrogels with in situ formed bimetallic zeolitic imidazolate frameworks towards soft electronics. Carbohydr Polym 2024; 346:122633. [PMID: 39245501 DOI: 10.1016/j.carbpol.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Bimetallic zeolitic imidazolate frameworks (BZIFs) have received enormous attention due to their unique physi-chemical properties, but are rarely reported for electrically conductive hydrogel (ECH) applications arising from low intrinsic conductivity and poor dispersion. Herein, we propose an innovative strategy to prepare highly conductive and mechanically robust ECHs by in situ growing Ni/Co-BZIFs within the polyvinyl alcohol/sodium alginate dual network (PZPS). 2-methylimidazole (MeIM) ligands copolymerize with pyrrole monomers, enhancing the electrical conductivity; meanwhile, MeIM ligands act as anchor points for in-situ formation of BZIFs, effectively avoiding phase-to-phase interfacial resistance and ensuring a uniform distribution in the hydrogel network. Due to the synergism of Ni/Co-BZIFs, the PZPS hydrogel exhibits a high areal capacitance of 630.3 mF·cm-2 at a current density of 0.5 mA·cm-2, promising for flexible energy storage devices. In addition, PZPS shows excellent mechanical strength and toughness (with an ultimate tensile strength of 405.0 kPa and a toughness of 784.2 kJ·m-3 at an elongation at break of 474.0 %), a high gauge factor of up to 4.18 over an extremely wide stress range of 0-42 kPa when used as flexible wearable strain/pressure sensors. This study provides new insights to incorporating highly conductive and uniformly dispersed ZIFs into hydrogels for flexible wearable electronics.
Collapse
Affiliation(s)
- Jiongru Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuaichuan Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yifan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Liqiang Chu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Rahma Sellami
- Department of Computer Science, Applied College, Northern Border University, Rafha 91911, Saudi Arabia
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
29
|
Yao M, Hsieh JC, Tang KWK, Wang H. Hydrogels in wearable neural interfaces. MED-X 2024; 2:23. [PMID: 39659711 PMCID: PMC11625692 DOI: 10.1007/s44258-024-00040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/21/2024] [Accepted: 10/06/2024] [Indexed: 12/12/2024]
Abstract
The integration of wearable neural interfaces (WNIs) with the human nervous system has marked a significant progression, enabling progress in medical treatments and technology integration. Hydrogels, distinguished by their high-water content, low interfacial impedance, conductivity, adhesion, and mechanical compliance, effectively address the rigidity and biocompatibility issues common in traditional materials. This review highlights their important parameters-biocompatibility, interfacial impedance, conductivity, and adhesiveness-that are integral to their function in WNIs. The applications of hydrogels in wearable neural recording and neurostimulation are discussed in detail. Finally, the opportunities and challenges faced by hydrogels for WNIs are summarized and prospected. This review aims to offer a thorough examination of hydrogel technology's present landscape and to encourage continued exploration and innovation. As developments progress, hydrogels are poised to revolutionize wearable neural interfaces, offering significant enhancements in healthcare and technological applications. Graphical Abstract
Collapse
Affiliation(s)
- Mengmeng Yao
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Ju-Chun Hsieh
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Kai Wing Kevin Tang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| | - Huiliang Wang
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
30
|
Liu L, Li Y, Lu Z, Miao R, Zhang N. Thermal and light-driven soft actuators based on a conductive polypyrrole nanofibers integrated poly(N-isopropylacrylamide) hydrogel with intelligent response. J Colloid Interface Sci 2024; 675:336-346. [PMID: 38972121 DOI: 10.1016/j.jcis.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 06/10/2024] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
The development of soft hydrogel actuators with outstanding mechanical properties, fast actuation speed, and available quantification of self-sensing actuation remains a challenging endeavor. In this work, dopamine-decorated polypyrrole nanofibers (DAPPy) were introduced into the polyethylene glycol diacrylate (PEGDA)-crosslinked poly(N-isopropyl acrylamide) network to generate a stretchable, NIR-responsive, and strain sensitive DAPPy/PNIPAM hydrogel layer. Besides, this active layer was combined with the passive ligninsulfonate sodium/polyacrylamide (LS/PAAM) to give DAPPy/PNIPAM//LS/PAAM bilayer hydrogel actuator, which exhibits ultrafast thermo-responsive actuation (19°/s) and underwater grasping and lifting performance. Moreover, the DAPPy/PNIPAM layer has excellent electrical conductivity (0.29 S/m) and thermal conversion ability (10.8 °C/min), which enable such a conductive hydrogel to act as a highly sensitive strain and temperature sensor with real-time resistance change in response to tensile strain (gauge factor up to 3.4), applied pressure, temperature, and remote NIR light irradiation. More importantly, the bilayer hydrogel actuator can integrate both actuation and self-sensing functions through the bending angle-surface temperature-relative resistance change relationship of the photothermal process. With excellent mechanical actuation and self-sensing ability, the resulting bilayer hydrogel showed a promising application potential as soft biomimetic actuating materials and soft intelligent actuators.
Collapse
Affiliation(s)
- Lingke Liu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Yueqin Li
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China.
| | - Zichun Lu
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Ruantian Miao
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| | - Ning Zhang
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
31
|
Wang Y, Liu Z, Liu Y, Yan J, Wu H, Zhang H, Li H, Wang J, Xue H, Wang L, Shi Y, Tang L, Song P, Gao J. Strong, tough and environment-tolerant organohydrogels for flaw-insensitive strain sensing. MATERIALS HORIZONS 2024; 11:5662-5673. [PMID: 39221913 DOI: 10.1039/d4mh00740a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Conductive organohydrogels are promising for strain sensing, while their weak mechanical properties, poor crack propagation resistance and unstable sensing signals during long-term use have seriously limited their applications as high-performance strain sensors. Here, we propose a facile method, i.e., solvent exchange assisted hot-pressing, to prepare strong yet tough, transparent and anti-fatigue ionically conductive organohydrogels (ICOHs). The densified polymeric network and improved crystallinity endow ICOHs with excellent mechanical properties. The tensile strength, toughness, fracture energy and fatigue threshold of ICOHs can reach 36.12 ± 4.15 MPa, 54.57 ± 2.89 MJ m-3, 43.44 ± 8.54 kJ m-2 and 1212.86 ± 57.20 J m-2, respectively, with a satisfactory fracture strain of 266 ± 33%. In addition, ICOH strain sensors with freezing and drying resistance exhibit excellent cycling stability (10 000 cycles). More importantly, the fatigue resistance allows the notched strain sensor to work normally with no crack propagation and output stable and reliable sensing signals. Overall, the unique flaw-insensitive strain sensing makes ICOHs promising in the field of wearable and durable electronics.
Collapse
Affiliation(s)
- Yuqing Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Zhanqi Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Yuntao Liu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Jun Yan
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Haidi Wu
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Hechuan Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huamin Li
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Junjie Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Huaiguo Xue
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| | - Ling Wang
- School of Chemistry and Chemical Engineering, Anqing Normal University, Anqing 246011, China
| | - Yongqian Shi
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350116, China
| | - Longcheng Tang
- College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology of MoE, Key Laboratory of Silicone Materials Technology of Zhejiang Province, Hangzhou Normal University, Hangzhou 311121, China
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Campus, QLD 4300, Australia
| | - Jiefeng Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, No 180, Road Siwangting, Yangzhou, Jiangsu, 225002, China.
| |
Collapse
|
32
|
Feng S, Zhao Y, Xie X, Sun Y, Luo X, Feng W. Unlocking Spatial Surface Energy in Porous Skeletons: a Pathway to Bridging Electronic Circuits from 2D to 3D Architectures. Angew Chem Int Ed Engl 2024; 63:e202412146. [PMID: 39001682 DOI: 10.1002/anie.202412146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Indexed: 10/26/2024]
Abstract
Conventional approaches to creating high-resolution electric circuits face challenges such as the requirement for skilled personnel and expensive equipment. In response, we propose an innovative strategy that leverages a photochemically modified porous polymer skeleton for in-situ circuit fabrication. By developing maskless surface energy manipulation that guides PEDOT:PSS-based conductive ink deposition, electric circuits with high precision, density, stability and adaptability are effortlessly engineered within or atop the porous skeleton, enabling transitions between 2D and 3D circuit configurations. This process simplifies prototyping while significantly reducing costs and maintaining efficiency, promising advancements across various technological sectors.
Collapse
Affiliation(s)
- Shengwei Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yuanyi Zhao
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xinjian Xie
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Yingxue Sun
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Xiongwei Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
| | - Wenqian Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu, 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
33
|
Wang R, Peng Y, Liu C, Zheng D, Yu J. Highly deformable bi-continuous conducting polymer hydrogels for electrochemical energy storage. J Colloid Interface Sci 2024; 673:143-152. [PMID: 38875785 DOI: 10.1016/j.jcis.2024.06.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
Conducting polymer hydrogels with inherent flexibility, ionic conductivity and environment friendliness are promising materials in the fields of energy storage. However, a trade-off between mechanical and electrochemical properties has limited the development of flexible/stretchable conducting polymer hydrogel electrodes, owing to the intrinsic conflict among mechanical and electrical phases. Here, we report a reliable design to enable conducting polymer with both exceptional mechanical and electrical/electrochemical performance through the construction of bi-continuous conducting polymer crosslinked network. The resultant bi-continuous conducting polymer hydrogels (BCPH) demonstrate significantly improved mechanical and electrochemical properties compared to the conventional conducting polymer hydrogel (CPH) electrode. BCPH presents a high specific capacitance of 715 F g-1 at 0.5 A/g, a high mechanical strength (∼1 MPa) and a large stretchability (∼300%). Enabled by such intrinsically deformability and electrochemical properties, we further demonstrate its utility in flexible solid-state supercapacitor (FSSC), which exhibits an outstanding specific capacitance of 760 mF cm-2 at 2 mA cm-2, excellent electrochemical stability with 81% capacitance retention after 5000 charge/discharge cycles, and superior bending cycle stability. This simple and scalable strategy provides a platform for the fabrication of high-performance conducting hydrogel electrodes for various wearable electronic equipment.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Yujie Peng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Changjian Liu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China
| | - Ding Zheng
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| | - Junsheng Yu
- State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China (UESTC), Chengdu 610054, China.
| |
Collapse
|
34
|
Zhu G, Javanmardia N, Qian L, Jin F, Li T, Zhang S, He Y, Wang Y, Xu X, Wang T, Feng ZQ. Advances of conductive hydrogel designed for flexible electronics: A review. Int J Biol Macromol 2024; 281:136115. [PMID: 39349076 DOI: 10.1016/j.ijbiomac.2024.136115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/31/2024] [Accepted: 09/26/2024] [Indexed: 10/02/2024]
Abstract
In recent years, there has been considerable attention devoted to flexible electronic devices within the realm of biomedical engineering. These devices demonstrate the capability to accurately capture human physiological signals, thereby facilitating efficient human-computer interaction, and providing a novel approach of flexible electronics for monitoring and treating related diseases. A notable contribution to this domain is the emergence of conductive hydrogels as a novel flexible electronic material. Renowned for their exceptional flexibility, adjustable electrical conductivity, and facile processing, conductive hydrogels have emerged as the preferred material for designing and fabricating innovative flexible electronic devices. This paper provides a comprehensive review of the recent advancements in flexible electronic devices rooted in conductive hydrogels. It offers an in-depth exploration of existing synthesis strategies for conductive hydrogels and subsequently examines the latest progress in their applications, including flexible neural electrodes, sensors, energy storage devices and soft robots. The analysis extends to the identification of technological challenges and developmental opportunities in both the synthesis of new conductive hydrogels and their application in the dynamic field of flexible electronics.
Collapse
Affiliation(s)
- Guanzhou Zhu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Negar Javanmardia
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Lili Qian
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Fei Jin
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Tong Li
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Siwei Zhang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuyuan He
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yu Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Xuran Xu
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Ting Wang
- State Key Laboratory of Digital Medical Engineering, Southeast University, Nanjing 210096, PR China.
| | - Zhang-Qi Feng
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
35
|
Li W, Li Y, Song Z, Wang YX, Hu W. PEDOT-based stretchable optoelectronic materials and devices for bioelectronic interfaces. Chem Soc Rev 2024; 53:10575-10603. [PMID: 39254255 DOI: 10.1039/d4cs00541d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
The rapid development of wearable and implantable electronics has enabled the real-time transmission of electrophysiological signals in situ, thus allowing the precise monitoring and regulation of biological functions. Devices based on organic materials tend to have low moduli and intrinsic stretchability, making them ideal choices for the construction of seamless bioelectronic interfaces. In this case, as an organic ionic-electronic conductor, poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) has low impedance to offer a high signal-to-noise ratio for monitoring bioelectrical signals, which has become one of the most promising conductive polymers. However, the initial conductivity and stretchability of pristine PEDOT:PSS are insufficient to meet the application requirements, and there is a trade-off between their improvement. In addition, PEDOT:PSS has poor stability in aqueous environments due to the hygroscopicity of the PSS chains, which severely limits its long-term applications in water-rich bioelectronic interfaces. Considering the growing demands of multi-function integration, the high-resolution fabrication of electronic devices is urgent. It is a great challenge to maintain both electrical and mechanical performance after miniaturization, particularly at feature sizes below 100 μm. In this review, we focus on the combined improvement in the conductivity and stretchability of PEDOT:PSS, as well as the corresponding mechanisms in detail. Also, we summarize the effective strategies to improve the stability of PEDOT:PSS in aqueous environments, which plays a vital role in long-term applications. Finally, we introduce the reliable micropatterning technologies and PEDOT:PSS-based stretchable optoelectronic devices applied at bio-interfaces.
Collapse
Affiliation(s)
- Weizhen Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yiming Li
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Ziyu Song
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yi-Xuan Wang
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuits, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| |
Collapse
|
36
|
Liu C, Wang Y, Shi S, Zheng Y, Ye Z, Liao J, Sun Q, Dang B, Shen X. Myelin Sheath-Inspired Hydrogel Electrode for Artificial Skin and Physiological Monitoring. ACS NANO 2024; 18:27420-27432. [PMID: 39331416 DOI: 10.1021/acsnano.4c07677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Significant advancements in hydrogel-based epidermal electrodes have been made in recent years. However, inherent limitations, such as adaptability, adhesion, and conductivity, have presented challenges, thereby limiting the sensitivity, signal-to-noise ratio (SNR), and stability of the physiological-electrode interface. In this study, we propose the concept of myelin sheath-inspired hydrogel epidermal electronics by incorporating numerous interpenetrating core-sheath-structured conductive nanofibers within a physically cross-linked polyelectrolyte network. Poly(3,4-ethylenedioxythiophene)-coated sulfonated cellulose nanofibers (PEDOT:SCNFs) are synthesized through a simple solvent-catalyzed sulfonation process, followed by oxidative self-polymerization and ionic liquid (IL) shielding steps, achieving a low electrochemical impedance of 42 Ω. The physical associations within the composite hydrogel network include complexation, electrostatic forces, hydrogen bonding, π-π stacking, hydrophobic interaction, and weak entanglements. These properties confer the hydrogel with high stretchability (770%), superconformability, self-adhesion (28 kPa on pigskin), and self-healing capabilities. By simulating the saltatory propagation effect of the nodes of Ranvier in the nervous system, the biomimetic hydrogel establishes high-fidelity epidermal electronic interfaces, offering benefits such as low interfacial contact impedance, significantly increased SNR (30 dB), as well as large-scale sensor array integration. The advanced biomimetic hydrogel holds tremendous potential for applications in electronic skin (e-skin), human-machine interfaces (HMIs), and healthcare assessment devices.
Collapse
Affiliation(s)
- Chencong Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yuanyuan Wang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Shitao Shi
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Yubo Zheng
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Zewei Ye
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Jiaqi Liao
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Qingfeng Sun
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Baokang Dang
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoping Shen
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
37
|
Zhang S, Guo F, Gao X, Yang M, Huang X, Zhang D, Li X, Zhang Y, Shang Y, Cao A. High-Strength, Antiswelling Directional Layered PVA/MXene Hydrogel for Wearable Devices and Underwater Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405880. [PMID: 39162177 PMCID: PMC11496995 DOI: 10.1002/advs.202405880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/17/2024] [Indexed: 08/21/2024]
Abstract
Hydrogel sensors are widely utilized in soft robotics and tissue engineering due to their excellent mechanical properties and biocompatibility. However, in high-water environments, traditional hydrogels can experience significant swelling, leading to decreased mechanical and electrical performance, potentially losing shape, and sensing capabilities. This study addresses these challenges by leveraging the Hofmeister effect, coupled with directional freezing and salting-out techniques, to develop a layered, high-strength, tough, and antiswelling PVA/MXene hydrogel. In particular, the salting-out process enhances the self-entanglement of PVA, resulting in an S-PM hydrogel with a tensile strength of up to 2.87 MPa. Furthermore, the S-PM hydrogel retains its structure and strength after 7 d of swelling, with only a 6% change in resistance. Importantly, its sensing performance is improved postswelling, a capability rarely achievable in traditional hydrogels. Moreover, the S-PM hydrogel demonstrates faster response times and more stable resistance change rates in underwater tests, making it crucial for long-term continuous monitoring in challenging aquatic environments, ensuring sustained operation and monitoring.
Collapse
Affiliation(s)
- Shipeng Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Fengmei Guo
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xue Gao
- Luoyang Institute of Science and TechnologySchool of Intelligent ManufacturingLuoyang471023China
| | - Mengdan Yang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinguang Huang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Ding Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Xinjian Li
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yingjiu Zhang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Yuanyuan Shang
- School of Physics and Laboratory of Zhongyuan LightZhengzhou UniversityZhengzhou450052China
| | - Anyuan Cao
- School of Materials Science and EngineeringPeking UniversityBeijing100871China
| |
Collapse
|
38
|
Kim S, Shin Y, Han J, Kim HJ, Sunwoo SH. Introductory Review of Soft Implantable Bioelectronics Using Conductive and Functional Hydrogels and Hydrogel Nanocomposites. Gels 2024; 10:614. [PMID: 39451267 PMCID: PMC11506957 DOI: 10.3390/gels10100614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/20/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
Interfaces between implantable bioelectrodes and tissues provide critical insights into the biological and pathological conditions of targeted organs, aiding diagnosis and treatment. While conventional bioelectronics, made from rigid materials like metals and silicon, have been essential for recording signals and delivering electric stimulation, they face limitations due to the mechanical mismatch between rigid devices and soft tissues. Recently, focus has shifted toward soft conductive materials, such as conductive hydrogels and hydrogel nanocomposites, known for their tissue-like softness, biocompatibility, and potential for functionalization. This review introduces these materials and provides an overview of recent advances in soft hydrogel nanocomposites for implantable electronics. It covers material strategies for conductive hydrogels, including both intrinsically conductive hydrogels and hydrogel nanocomposites, and explores key functionalization techniques like biodegradation, bioadhesiveness, injectability, and self-healing. Practical applications of these materials in implantable electronics are also highlighted, showcasing their effectiveness in real-world scenarios. Finally, we discuss emerging technologies and future needs for chronically implantable bioelectronics, offering insights into the evolving landscape of this field.
Collapse
Affiliation(s)
- San Kim
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Yumin Shin
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
| | - Jaewon Han
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Hye Jin Kim
- Division of Biomedical Engineering, Yonsei University, Wonju 26493, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea
- Andrew and Peggy Cherng Department of Medical Engineering, California Institute of Technology, Pasadena, CA 91106, USA
| |
Collapse
|
39
|
Kumar G, Panda S. Probing the ionic activation enthalpies in anionic polysaccharide xerogel-based single ion conductor for temperature sensing. Carbohydr Polym 2024; 340:122258. [PMID: 38857999 DOI: 10.1016/j.carbpol.2024.122258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/23/2024] [Accepted: 05/10/2024] [Indexed: 06/12/2024]
Abstract
Ionic charge transport in polymer-based solid electrolytes is significantly affected by thermal perturbations, facilitating the detection of temperature variations. However, the impact of ionic interactions and molecular arrangements in polymeric single-ion conductors (SICs) has not been thoroughly investigated for temperature sensing. By probing the effect of the associated energies for ionic interactions and polymeric rearrangements, the thermal sensing characteristics of alginate have been studied. For the first time, alginate SIC interacting with multivalent ions (viz., Na+, Ca2+ and Fe3+) to form xerogel has been exploited as a temperature-sensing layer by fabricating a xerogel-based ionic thermistor (xIT) as a temperature sensor. The xIT has demonstrated stable functioning from 25 to 70 °C and unveiled enhanced sensing abilities in the physiological state of the human body (35-40 °C), exhibiting a monotonic linear response, high sensitivity (-3.77 % °C-1), and high accuracy (0.1 °C). The sensing characteristic is observed due to the inward ionic flux under thermal and electrical perturbations. The concentration of ionic charge carriers and ionic drift are assumed to be Arrhenius-activated processes. A general microscopic model of ion transport within polysaccharides has been elucidated via hopping mechanisms, and the effects of the associated activation energies on temperature sensitivity have been explained.
Collapse
Affiliation(s)
- Gaurav Kumar
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Siddhartha Panda
- Materials Science Programme, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; Department of Chemical Engineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India; National Center for Flexible Electronics, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India.
| |
Collapse
|
40
|
Han R, Zeng F, Xia Q, Pang X, Wu X. Zwitterionic cellulose nanofibers-based hydrogels with high toughness, ionic conductivity, and healable capability in cryogenic environments. Carbohydr Polym 2024; 340:122271. [PMID: 38858021 DOI: 10.1016/j.carbpol.2024.122271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 06/12/2024]
Abstract
Extreme environmental conditions often lead to irreversible structural failure and functional degradation in hydrogels, limiting their service life and applicability. Achieving high toughness, self-healing, and ionic conductivity in cryogenic environments is vital to broaden their applications. Herein, we present a novel approach to simultaneously enhance the toughness, self-healing, and ionic conductivity of hydrogels, via inducing non-freezable water within the zwitterionic cellulose-based hydrogel skeleton. This approach enables resulting hydrogel to achieve an exceptional toughness of 10.8 MJ m-3, rapid self-healing capability (98.9 % in 30 min), and high ionic conductivity (2.9 S m-1), even when subjected to -40 °C, superior to the state-of-the-art hydrogels. Mechanism analyses reveal that a significant amount of non-freezable water with robust electrostatic interactions is formed within zwitterionic cellulose nanofibers-modified polyurethane molecular networks, imparting superior freezing tolerance and versatility to the hydrogel. Importantly, this strategy harnesses the non-freezable water molecular state of the zwitterionic cellulose nanofibers network, eliminating the need for additional antifreeze and organic solvents. Furthermore, the dynamic Zn coordination within these supramolecular molecule chains enhances interfacial interactions, thereby promoting rapid subzero self-healing and exceptional mechanical strength. Demonstrating its potential, this hydrogel can be used in smart laminated materials, such as aircraft windshields.
Collapse
Affiliation(s)
- Ruiheng Han
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Fan Zeng
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Qingqing Xia
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xiangchao Pang
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China
| | - Xianzhang Wu
- College of Material Science and Engineering, Hunan Province Key Laboratory of Materials Surface & Interface Science and Technology, Central South University of Forestry and Technology, Changsha 410004, China; State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
41
|
Yang M, Wang L, Liu W, Li W, Huang Y, Jin Q, Zhang L, Jiang Y, Luo Z. Highly-stable, injectable, conductive hydrogel for chronic neuromodulation. Nat Commun 2024; 15:7993. [PMID: 39266583 PMCID: PMC11393409 DOI: 10.1038/s41467-024-52418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024] Open
Abstract
Electroceuticals, through the selective modulation of peripheral nerves near target organs, are promising for treating refractory diseases. However, the small sizes and the delicate nature of these nerves present challenges in simplifying the fixation and stabilizing the electrical-coupling interface for neural electrodes. Herein, we construct a robust neural interface for fine peripheral nerves using an injectable bio-adhesive hydrogel bioelectronics. By incorporating a multifunctional molecular regulator during network formation, we optimize the injectability and conductivity of the hydrogel through fine-tuning reaction kinetics and multi-scale interactions within the conductive network. Meanwhile, the mechanical and electrical stability of the hydrogel is achieved without compromising its injectability. Minimal tissue damage along with low and stable impedance of the injectable neural interface enables chronic vagus neuromodulation for myocardial infarction therapy in the male rat model. Our highly-stable, injectable, conductive hydrogel bioelectronics are readily available to target challenging anatomical locations, paving the way for future precision bioelectronic medicine.
Collapse
Affiliation(s)
- Ming Yang
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lufang Wang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wenliang Liu
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Wenlong Li
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Qiaofeng Jin
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Li Zhang
- Department of Ultrasound Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Zhiqiang Luo
- National Engineering Research Center for Nanomedicine, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
42
|
Lim C, Lee S, Kang H, Cho YS, Yeom DH, Sunwoo SH, Park C, Nam S, Kim JH, Lee SP, Kim DH, Hyeon T. Highly Conductive and Stretchable Hydrogel Nanocomposite Using Whiskered Gold Nanosheets for Soft Bioelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407931. [PMID: 39129342 DOI: 10.1002/adma.202407931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Indexed: 08/13/2024]
Abstract
The low electrical conductivity of conductive hydrogels limits their applications as soft conductors in bioelectronics. This low conductivity originates from the high water content of hydrogels, which impedes facile carrier transport between conductive fillers. This study presents a highly conductive and stretchable hydrogel nanocomposite comprising whiskered gold nanosheets. A dry network of whiskered gold nanosheets is fabricated and then incorporated into the wet hydrogel matrices. The whiskered gold nanosheets preserve their tight interconnection in hydrogels despite the high water content, providing a high-quality percolation network even under stretched states. Regardless of the type of hydrogel matrix, the gold-hydrogel nanocomposites exhibit a conductivity of ≈520 S cm-1 and a stretchability of ≈300% without requiring a dehydration process. The conductivity reaches a maximum of ≈3304 S cm-1 when the density of the dry gold network is controlled. A gold-adhesive hydrogel nanocomposite, which can achieve conformal adhesion to moving organ surfaces, is fabricated for bioelectronics demonstrations. The adhesive hydrogel electrode outperforms elastomer-based electrodes in in vivo epicardial electrogram recording, epicardial pacing, and sciatic nerve stimulation.
Collapse
Affiliation(s)
- Chaehong Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seunghwan Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyejeong Kang
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Ye Seul Cho
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Da-Hae Yeom
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Department of Chemical Engineering, Kumoh National Institute of Technology, Gumi, 39177, Republic of Korea
| | - Chansul Park
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
| | - Seung-Pyo Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- Division of Cardiology, Department of Internal Medicine, Seoul National University Hospital, Seoul, 03080, Republic of Korea
- Department of Internal Medicine, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, 08826, Republic of Korea
- School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
43
|
Tang H, Li Y, Liao S, Liu H, Qiao Y, Zhou J. Multifunctional Conductive Hydrogel Interface for Bioelectronic Recording and Stimulation. Adv Healthc Mater 2024; 13:e2400562. [PMID: 38773929 DOI: 10.1002/adhm.202400562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/11/2024] [Indexed: 05/24/2024]
Abstract
The past few decades have witnessed the rapid advancement and broad applications of flexible bioelectronics, in wearable and implantable electronics, brain-computer interfaces, neural science and technology, clinical diagnosis, treatment, etc. It is noteworthy that soft and elastic conductive hydrogels, owing to their multiple similarities with biological tissues in terms of mechanics, electronics, water-rich, and biological functions, have successfully bridged the gap between rigid electronics and soft biology. Multifunctional hydrogel bioelectronics, emerging as a new generation of promising material candidates, have authentically established highly compatible and reliable, high-quality bioelectronic interfaces, particularly in bioelectronic recording and stimulation. This review summarizes the material basis and design principles involved in constructing hydrogel bioelectronic interfaces, and systematically discusses the fundamental mechanism and unique advantages in bioelectrical interfacing with the biological surface. Furthermore, an overview of the state-of-the-art manufacturing strategies for hydrogel bioelectronic interfaces with enhanced biocompatibility and integration with the biological system is presented. This review finally exemplifies the unprecedented advancement and impetus toward bioelectronic recording and stimulation, especially in implantable and integrated hydrogel bioelectronic systems, and concludes with a perspective expectation for hydrogel bioelectronics in clinical and biomedical applications.
Collapse
Affiliation(s)
- Hao Tang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yuanfang Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Shufei Liao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Houfang Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yancong Qiao
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Jianhua Zhou
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, No. 66, Gongchang Road, Guangming District, Shenzhen, 518107, P. R. China
- Key Laboratory of Sensing Technology and Biomedical Instruments of Guangdong Province, School of Biomedical Engineering, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
44
|
Cheng T, Liu ZT, Qu J, Meng CF, He LJ, Li L, Yang XL, Cao YJ, Han K, Zhang YZ, Lai WY. High-Performance Organic-Inorganic Hybrid Conductive Hydrogels for Stretchable Elastic All-Hydrogel Supercapacitors and Flexible Self-Powered Integrated Systems. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403358. [PMID: 38973351 PMCID: PMC11425858 DOI: 10.1002/advs.202403358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/15/2024] [Indexed: 07/09/2024]
Abstract
Conductive polymer hydrogels exhibit unique electrical, electrochemical, and mechanical properties, making them highly competitive electrode materials for stretchable high-capacity energy storage devices for cutting-edge wearable electronics. However, it remains extremely challenging to simultaneously achieve large mechanical stretchability, high electrical conductivity, and excellent electrochemical properties in conductive polymer hydrogels because introducing soft insulating networks for improving stretchability inevitably deteriorates the connectivity of rigid conductive domain and decreases the conductivity and electrochemical activity. This work proposes a distinct confinement self-assembly and multiple crosslinking strategy to develop a new type of organic-inorganic hybrid conductive hydrogels with biphase interpenetrating cross-linked networks. The hydrogels simultaneously exhibit high conductivity (2000 S m-1), large stretchability (200%), and high electrochemical activity, outperforming existing conductive hydrogels. The inherent mechanisms for the unparalleled comprehensive performances are thoroughly investigated. Elastic all-hydrogel supercapacitors are prepared based on the hydrogels, showing high specific capacitance (212.5 mF cm-2), excellent energy density (18.89 µWh cm-2), and large deformability. Moreover, flexible self-powered luminescent integrated systems are constructed based on the supercapacitors, which can spontaneously shine anytime and anywhere without extra power. This work provides new insights and feasible avenues for developing high-performance stretchable electrode materials and energy storage devices for wearable electronics.
Collapse
Affiliation(s)
- Tao Cheng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Zhong-Ting Liu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Jie Qu
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Chao-Fu Meng
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Ling-Jun He
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lang Li
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Xuan-Li Yang
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yu-Jie Cao
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Kai Han
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Yi-Zhou Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, China
| | - Wen-Yong Lai
- State Key Laboratory of Organic Electronics and Information Displays (SKLOEID), Institute of Advanced Materials (IAM), School of Chemistry and Life Sciences, Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| |
Collapse
|
45
|
Lee YJ, Ajiteru O, Lee JS, Lee OJ, Choi KY, Kim SH, Park CH. Highly conductive, stretchable, and biocompatible graphene oxide biocomposite hydrogel for advanced tissue engineering. Biofabrication 2024; 16:045032. [PMID: 39116889 DOI: 10.1088/1758-5090/ad6cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
The importance of hydrogels in tissue engineering cannot be overemphasized due to their resemblance to the native extracellular matrix. However, natural hydrogels with satisfactory biocompatibility exhibit poor mechanical behavior, which hampers their application in stress-bearing soft tissue engineering. Here, we describe the fabrication of a double methacrylated gelatin bioink covalently linked to graphene oxide (GO) via a zero-length crosslinker, digitally light-processed (DLP) printable into 3D complex structures with high fidelity. The resultant natural hydrogel (GelGOMA) exhibits a conductivity of 15.0 S m-1as a result of the delocalization of theπ-orbital from the covalently linked GO. Furthermore, the hydrogel shows a compressive strength of 1.6 MPa, and a 2.0 mm thick GelGOMA can withstand a 1.0 kg ms-1momentum. The printability and mechanical strengths of GelGOMAs were demonstrated by printing a fish heart with a functional fluid pumping mechanism and tricuspid valves. Its biocompatibility, electroconductivity, and physiological relevance enhanced the proliferation and differentiation of myoblasts and neuroblasts and the contraction of human-induced pluripotent stem cell-derived cardiomyocytes. GelGOMA demonstrates the potential for the tissue engineering of functional hearts and wearable electronic devices.
Collapse
Affiliation(s)
- Young Jin Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- CURE 3D, Department of Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Nordrhein-Westfalen 40225, Germany
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kyu Young Choi
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Kangnam, Seoul 07441, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| |
Collapse
|
46
|
Duan H, Zhang Y, Zhang Y, Zhu P, Mao Y. Recent Advances of Stretchable Nanomaterial-Based Hydrogels for Wearable Sensors and Electrophysiological Signals Monitoring. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1398. [PMID: 39269060 PMCID: PMC11397736 DOI: 10.3390/nano14171398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/15/2024]
Abstract
Electrophysiological monitoring is a commonly used medical procedure designed to capture the electrical signals generated by the body and promptly identify any abnormal health conditions. Wearable sensors are of great significance in signal acquisition for electrophysiological monitoring. Traditional electrophysiological monitoring devices are often bulky and have many complex accessories and thus, are only suitable for limited application scenarios. Hydrogels optimized based on nanomaterials are lightweight with excellent stretchable and electrical properties, solving the problem of high-quality signal acquisition for wearable sensors. Therefore, the development of hydrogels based on nanomaterials brings tremendous potential for wearable physiological signal monitoring sensors. This review first introduces the latest advancement of hydrogels made from different nanomaterials, such as nanocarbon materials, nanometal materials, and two-dimensional transition metal compounds, in physiological signal monitoring sensors. Second, the versatile properties of these stretchable composite hydrogel sensors are reviewed. Then, their applications in various electrophysiological signal monitoring, such as electrocardiogram monitoring, electromyographic signal analysis, and electroencephalogram monitoring, are discussed. Finally, the current application status and future development prospects of nanomaterial-optimized hydrogels in wearable physiological signal monitoring sensors are summarized. We hope this review will inspire future development of wearable electrophysiological signal monitoring sensors using nanomaterial-based hydrogels.
Collapse
Affiliation(s)
- Haiyang Duan
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yilong Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yitao Zhang
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Pengcheng Zhu
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| | - Yanchao Mao
- Key Laboratory of Materials Physics of Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
47
|
Liu Q, Zhou J, Zeng Q, Sun D, Yu B, Yang L, Zhang Z, Wu J, Zhang Y. Flexible Dry Epidermal Electrophysiological Electrodes Based on One-Dimensional Platinum-Coated Silver Nanowires. ACS APPLIED NANO MATERIALS 2024; 7:18226-18236. [DOI: 10.1021/acsanm.3c03457] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Affiliation(s)
- Qing Liu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jie Zhou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Optoelectronic Engineering, Chengdu University of Information Technology, Chengdu 610225, China
| | - Qi Zeng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518061, China
| | - Dexin Sun
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Bin Yu
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Liangtao Yang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhilin Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jinglong Wu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yi Zhang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| |
Collapse
|
48
|
Jeon J, Park JW. Stretchable Electrodes for Interconnects in Soft Electronics. NANO LETTERS 2024; 24:9553-9560. [PMID: 39041723 DOI: 10.1021/acs.nanolett.4c02107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Soft electronics have significantly enhanced user convenience and data accuracy in wearable devices, implantable devices, and human-machine interfaces. However, a persistent challenge in their development has been the disconnection between the rigid and soft components of devices due to the substantial difference in modulus and stretchability. To address this issue, establishing a durable and flexible connection that smoothly links components of varying stiffness to signal-capturing sections with a lower stiffness is essential. In this study, we developed a novel stretchable interconnect that strongly adheres to various materials, facilitating electrical connections effortlessly by applying minimal finger pressure. Capable of stretching up to 1000% while maintaining electrical integrity, this interconnect proves its applicability across multiple domains, including electrocardiogram (ECG), electromyography (EMG), and stretchable light-emitting diode (LED) circuits. Its versatility is further demonstrated through its compatibility with various manufacturing techniques such as 3D printing, painting, and spin coating, highlighting its adaptability in soft electronics.
Collapse
Affiliation(s)
- Jiwan Jeon
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Jin-Woo Park
- Department of Materials Science and Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
49
|
Roy A, Zenker S, Jain S, Afshari R, Oz Y, Zheng Y, Annabi N. A Highly Stretchable, Conductive, and Transparent Bioadhesive Hydrogel as a Flexible Sensor for Enhanced Real-Time Human Health Monitoring. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404225. [PMID: 38970527 PMCID: PMC11407428 DOI: 10.1002/adma.202404225] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/05/2024] [Indexed: 07/08/2024]
Abstract
Real-time continuous monitoring of non-cognitive markers is crucial for the early detection and management of chronic conditions. Current diagnostic methods are often invasive and not suitable for at-home monitoring. An elastic, adhesive, and biodegradable hydrogel-based wearable sensor with superior accuracy and durability for monitoring real-time human health is developed. Employing a supramolecular engineering strategy, a pseudo-slide-ring hydrogel is synthesized by combining polyacrylamide (pAAm), β-cyclodextrin (β-CD), and poly 2-(acryloyloxy)ethyltrimethylammonium chloride (AETAc) bio ionic liquid (Bio-IL). This novel approach decouples conflicting mechano-chemical effects arising from different molecular building blocks and provides a balance of mechanical toughness (1.1 × 106 Jm-3), flexibility, conductivity (≈0.29 S m-1), and tissue adhesion (≈27 kPa), along with rapid self-healing and remarkable stretchability (≈3000%). Unlike traditional hydrogels, the one-pot synthesis avoids chemical crosslinkers and metallic nanofillers, reducing cytotoxicity. While the pAAm provides mechanical strength, the formation of the pseudo-slide-ring structure ensures high stretchability and flexibility. Combining pAAm with β-CD and pAETAc enhances biocompatibility and biodegradability, as confirmed by in vitro and in vivo studies. The hydrogel also offers transparency, passive-cooling, ultraviolet (UV)-shielding, and 3D printability, enhancing its practicality for everyday use. The engineered sensor demonstratesimproved efficiency, stability, and sensitivity in motion/haptic sensing, advancing real-time human healthcare monitoring.
Collapse
Affiliation(s)
- Arpita Roy
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Shea Zenker
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Saumya Jain
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Ronak Afshari
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yavuz Oz
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Yuting Zheng
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
50
|
Sands I, Demarco R, Thurber L, Esteban-Linares A, Song D, Meng E, Chen Y. Interface-Mediated Neurogenic Signaling: The Impact of Surface Geometry and Chemistry on Neural Cell Behavior for Regenerative and Brain-Machine Interfacing Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401750. [PMID: 38961531 PMCID: PMC11326983 DOI: 10.1002/adma.202401750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Nanomaterial advancements have driven progress in central and peripheral nervous system applications such as tissue regeneration and brain-machine interfacing. Ideally, neural interfaces with native tissue shall seamlessly integrate, a process that is often mediated by the interfacial material properties. Surface topography and material chemistry are significant extracellular stimuli that can influence neural cell behavior to facilitate tissue integration and augment therapeutic outcomes. This review characterizes topographical modifications, including micropillars, microchannels, surface roughness, and porosity, implemented on regenerative scaffolding and brain-machine interfaces. Their impact on neural cell response is summarized through neurogenic outcome and mechanistic analysis. The effects of surface chemistry on neural cell signaling with common interfacing compounds like carbon-based nanomaterials, conductive polymers, and biologically inspired matrices are also reviewed. Finally, the impact of these extracellular mediated neural cues on intracellular signaling cascades is discussed to provide perspective on the manipulation of neuron and neuroglia cell microenvironments to drive therapeutic outcomes.
Collapse
Affiliation(s)
- Ian Sands
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Ryan Demarco
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Laura Thurber
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Alberto Esteban-Linares
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Dong Song
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ellis Meng
- Department of Biomedical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yupeng Chen
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, 06269, USA
| |
Collapse
|