1
|
Tang W, Kim J, Lee RT, Maurer-Stroh S, Renia L, Tay MZ. SARS-CoV-2: lessons in virus mutation prediction and pandemic preparedness. Curr Opin Immunol 2025; 95:102560. [PMID: 40378522 DOI: 10.1016/j.coi.2025.102560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/19/2025]
Abstract
The COVID-19 pandemic has prompted an unprecedented global response. In particular, extraordinary efforts have been dedicated toward monitoring and predicting variant emergence due to its huge impact, particularly for vaccine escape. Broadly, we classify such methods into two categories: forward mutation prediction, where phenotypes are first observed and the responsible genotypes traced, and reverse mutation prediction, which starts with selected pathogen genetic profiles and characterizes their associated phenotypes. Reverse mutation prediction strategies have advantages in being able to sample a more complete evolutionary space since sequences that do not yet exist can be sampled. The rapid improvement in the maturity and scale of reverse mutation prediction strategies, such as deep mutational scanning, has led to significant amounts of data for machine learning, with concomitant improvement in the prediction results from computational tools. Such integrated prediction approaches are generalizable and offer significant opportunities for anticipating viral evolution and for pandemic preparedness.
Collapse
Affiliation(s)
- Weiyi Tang
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Jenna Kim
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Raphael Tc Lee
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore; GISAID Global Data Science Initiative (GISAID), Munich, Germany
| | - Sebastian Maurer-Stroh
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), Singapore; GISAID Global Data Science Initiative (GISAID), Munich, Germany; National Public Health Laboratory, Singapore, Singapore; Department of Biological Sciences, National University of Singapore, Singapore, Singapore; Human Potential Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Laurent Renia
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; School of Biological Sciences, Nanyang Technological University, Singapore
| | - Matthew Z Tay
- A*STAR Infectious Diseases Labs (AIDL), Agency for Science, Technology and Research (A*STAR), Singapore; Department of Biochemistry, National University of Singapore, Singapore.
| |
Collapse
|
2
|
Ruan W, Gao P, Qu X, Jiang J, Zhao Z, Qiao S, Zhang H, Yang T, Li D, Du P, Lu X, Wang Q, Zhao X, Gao GF. SARS-CoV-2 serotyping based on spike antigenicity and its implications for host immune evasion. EBioMedicine 2025; 114:105634. [PMID: 40080947 PMCID: PMC11951033 DOI: 10.1016/j.ebiom.2025.105634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/15/2025] Open
Abstract
BACKGROUND As SARS-CoV-2 continues to spread and evolve, new variants/sub-variants emerge, raising concerns about vaccine-induced immune escape. Here, we conducted a systematic analysis of the serology and immunogenicity of major circulating variants/sub-variants of SARS-CoV-2 since the outbreak. METHODS We expressed and purified trimeric S proteins from 21 SARS-CoV-2 variants, with SARS-CoV included as an outgroup. Mice were immunized, and the resulting antisera were tested for binding antibodies after the third dose injection, and for neutralizing antibodies (NAbs) after both the second and third doses. Using pseudovirus neutralization assays, we evaluated cross-neutralization among major circulating variants. By integrating serological classification, antigenic mapping, and 3D landscape analysis, we explored the antigenic relationships among different SARS-CoV-2 variants and their impact on serological responses. FINDINGS Based on the cross-neutralization activities of the sera from different S protein vaccinations and antigenicity analyses, we grouped the 21 lineages into six serotypes. Particularly, BA.2.86 and JN.1 had very weak cross-neutralization with all other SARS-CoV-2 sub-variants tested and were grouped into a separate serotype, Serotype VI. INTERPRETATION This systematic study contributes to a better understanding of the evolution of SARS-CoV-2 and its antigenic characteristics and provides valuable insights for vaccine development. FUNDING This study was supported by the National Key R&D Program of China (2023YFC2307801, 2020YFA0509202 and 2021YFA1300803), the National Natural Science Foundation of China (82222040 and 82072289), CAS Project for Young Scientists in Basic Research (YSBR-083) and Beijing Nova Program of Science and Technology (20220484181).
Collapse
Affiliation(s)
- Wenjing Ruan
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pengyue Gao
- Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Infectious Diseases, Shenzhen Children's Hospital, Shenzhen 518038, China
| | - Xiao Qu
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Junlan Jiang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zhennan Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Shitong Qiao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Life Science Academy, Beijing 102209, China
| | - He Zhang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Faculty of Health Sciences, University of Macau, Macau 999078, China
| | - Ting Yang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250100, China
| | - Dedong Li
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Pei Du
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xuancheng Lu
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), Chinese Center for Disease Control and Prevention, Beijing 102206, China.
| | - Qihui Wang
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - George Fu Gao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Department of Microbiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
3
|
Kamelian K, Sievers B, Chen-Xu M, Turner S, Cheng MTK, Altaf M, Kemp SA, Abdullahi A, Csiba K, Collier DA, Mlcochova P, Meng B, Jones RB, Smith D, Bradley J, Smith KGC, Doffinger R, Smith RM, Gupta RK. Humoral responses to SARS-CoV-2 vaccine in vasculitis-related immune suppression. SCIENCE ADVANCES 2025; 11:eadq3342. [PMID: 39937891 PMCID: PMC11817922 DOI: 10.1126/sciadv.adq3342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 01/10/2025] [Indexed: 02/14/2025]
Abstract
Immune suppression poses a challenge to vaccine immunogenicity. We show that serum antibody neutralization against SARS-CoV-2 Omicron descendants was largely absent post-doses 1 and 2 in individuals with vasculitis treated with rituximab. Detectable and increasing neutralizing titers were observed post-doses 3 and 4, except for XBB. Rituximab in vasculitis exacerbates neutralization deficits over standard immunosuppressive therapy, although impairment resolves over time since dosing. We observed discordance between detectable IgG binding and neutralizing activity specifically in the context of rituximab use, with high proportions of individuals showing reasonable IgG titer but no neutralization. ADCC response was more frequently detectable compared to neutralization in the context of rituximab, indicating that a notable proportion of binding antibodies are non-neutralizing. Therefore, use of rituximab is associated with severe impairment in neutralization against Omicron descendants despite repeated vaccinations, with better preservation of non-neutralizing antibody activity.
Collapse
Affiliation(s)
- Kimia Kamelian
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Benjamin Sievers
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Michael Chen-Xu
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | - Sam Turner
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - Mark Tsz Kin Cheng
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Mazharul Altaf
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Steven A. Kemp
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Adam Abdullahi
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Kata Csiba
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - Dami A. Collier
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Petra Mlcochova
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Bo Meng
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
| | - Rachel B. Jones
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
| | | | - Derek Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, Cambridge CB2 3EJ, UK
| | - John Bradley
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Kenneth G. C. Smith
- The Walter and Eliza Hall Institute of Medical Research (WEHI), Parkville, VIC 3052, Australia
- University of Melbourne, Melbourne, VIC 3010, Australia
| | - Rainer Doffinger
- Department of Clinical Biochemistry and Immunology, Addenbrooke’s Hospital, Cambridge, UK
| | - Rona M. Smith
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge University Hospitals NHS Foundation Trust, Hills Road, Cambridge, Cambridgeshire, UK
- Department of Renal Medicine, Addenbrooke’s Hospital, Cambridge, Cambridgeshire, UK
| | - Ravindra K. Gupta
- School of Clinical Medicine, Department of Medicine, University of Cambridge, Cambridge, Cambridgeshire, UK
- Cambridge Institute of Therapeutic Immunology and Infectious Disease (CITIID), Cambridge, Cambridgeshire, UK
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
4
|
Rössler A, Netzl A, Lasrado N, Chaudhari J, Mühlemann B, Wilks SH, Kimpel J, Smith DJ, Barouch DH. Nonhuman primate antigenic cartography of SARS-CoV-2. Cell Rep 2025; 44:115140. [PMID: 39754717 PMCID: PMC11781863 DOI: 10.1016/j.celrep.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/04/2024] [Accepted: 12/11/2024] [Indexed: 01/06/2025] Open
Abstract
Virus neutralization profiles against primary infection sera and corresponding antigenic cartography are integral part of the COVID-19 and influenza vaccine strain selection processes. Human single variant exposure sera have previously defined the antigenic relationships among SARS-CoV-2 variants but are now largely unavailable due to widespread population immunity. Therefore, antigenic characterization of future SARS-CoV-2 variants will require an animal model, analogous to using ferrets for influenza virus. We evaluated neutralization profiles against 23 SARS-CoV-2 variants in nonhuman primates (NHPs) after single variant exposure and generated an NHP-derived antigenic map. We identified a distant antigenic region occupied by BA.2.86, JN.1, and the descendants KP.2, KP.3, and KZ.1.1.1. We also found that the monovalent XBB.1.5 mRNA vaccine induced broad immunity against the mapped antigenic space. In addition, substantial concordance was observed between our NHP-derived and two human antigenic maps, demonstrating the utility of NHPs as a surrogate for antigenic cartography in humans.
Collapse
Affiliation(s)
- Annika Rössler
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Antonia Netzl
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Ninaad Lasrado
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Jayeshbhai Chaudhari
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Berlin, Germany; German Centre for Infection Research (DZIF), Partner Site Charité, 10117 Berlin, Berlin, Germany
| | - Samuel H Wilks
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, Innsbruck, Tyrol 6020, Austria
| | - Derek J Smith
- Center for Pathogen Evolution, Department of Zoology, University of Cambridge, CB2 3EJ, Cambridge, Cambridgeshire, UK
| | - Dan H Barouch
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Liu J, Wang L, Kurtesi A, Budylowski P, Potts KG, Menon H, Tan Y, Samaan P, Liu X, Wang Y, Hu Q, Samson R, Qi F, Evseev D, John C, Ellestad KK, Fan Y, Budiman F, Tohan ER, Udayakumar S, Yang J, Marcusson EG, Gingras AC, Mahoney DJ, Ostrowski MA, Martin-Orozco N. A bivalent COVID-19 mRNA vaccine elicited broad immune responses and protection against Omicron subvariants infection. NPJ Vaccines 2025; 10:4. [PMID: 39788981 PMCID: PMC11718203 DOI: 10.1038/s41541-025-01062-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 01/02/2025] [Indexed: 01/12/2025] Open
Abstract
Continuously emerging SARS-CoV-2 Omicron subvariants pose a threat thwarting the effectiveness of approved COVID-19 vaccines. Especially, the protection breadth and degree of these vaccines against antigenically distant Omicron subvariants is unclear. Here, we report the immunogenicity and efficacy of a bivalent mRNA vaccine, PTX-COVID19-M1.2 (M1.2), which encodes native spike proteins from Wuhan-Hu-1 (D614G) and Omicron BA.2.12.1, in mouse and hamster models. Both primary series and booster vaccination using M1.2 elicited potent and broad nAbs against Wuhan-Hu-1 (D614G) and some Omicron subvariants. Strong spike-specific T cell responses against Wuhan-Hu-1 and Omicron subvariants, including JN.1, were also induced. Vaccination with M1.2 protected animals from Wuhan-Hu-1 and multiple Omicron subvariants challenges. Interestingly, protection against XBB.1.5 lung infection did not correlate with nAb levels. These results indicate that M1.2 generated a broadly protective immune response against antigenically distant Omicron subvariants, and spike-specific T cells probably contributed to the breadth of the protection.
Collapse
Affiliation(s)
- Jun Liu
- Providence Therapeutics Holdings, Inc., Calgary, Canada.
| | - Li Wang
- Everest Medicines, Shanghai, China
| | - Alexandra Kurtesi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Patrick Budylowski
- Department of Medicine, University of Toronto, Toronto, Canada
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Kyle G Potts
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Haritha Menon
- Providence Therapeutics Holdings, Inc., Calgary, Canada
| | - Yilin Tan
- Providence Therapeutics Holdings, Inc., Calgary, Canada
| | - Philip Samaan
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | | | | | - Queenie Hu
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Reuben Samson
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Freda Qi
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Danyel Evseev
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Cini John
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Kristofor K Ellestad
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Yue Fan
- Everest Medicines, Shanghai, China
| | - Frans Budiman
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | - Suji Udayakumar
- Department of Medicine, University of Toronto, Toronto, Canada
| | | | | | - Anne-Claude Gingras
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Lunenfeld-Tanenbaum Research Institute at Mount Sinai Hospital, Sinai Health System, Toronto, Canada
| | - Douglas J Mahoney
- Riddell Center for Cancer Immunotherapy, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Arnie Charbonneau Cancer Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada
- Molecular Biology and Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Mario A Ostrowski
- Department of Medicine, University of Toronto, Toronto, Canada.
- Institute of Medical Science, University of Toronto, Toronto, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada.
- Department of Immunology, University of Toronto, Toronto, Canada.
- Keenan Research Centre for Biomedical Science of St. Michael's Hospital, Unity Health Toronto, Toronto, Canada.
| | | |
Collapse
|
6
|
Suntronwong N, Kanokudom S, Duangchinda T, Chantima W, Pakchotanon P, Klinfueng S, Puenpa J, Thatsanathorn T, Wanlapakorn N, Poovorawan Y. Neutralization of omicron subvariants and antigenic cartography following multiple COVID 19 vaccinations and repeated omicron non JN.1 or JN.1 infections. Sci Rep 2025; 15:1454. [PMID: 39789099 PMCID: PMC11718010 DOI: 10.1038/s41598-024-84138-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025] Open
Abstract
The ongoing emergence of SARS-CoV-2 variants, combined with antigen exposures from different waves and vaccinations, poses challenges in updating COVID-19 vaccine antigens. We collected 206 sera from individuals with vaccination-only, hybrid immunity, and single or repeated omicron post-vaccination infections (PVIs), including non-JN.1 and JN.1, and evaluated neutralization against omicron BA.5, BA.2.75, BQ.1.1, XBB.1.16, XBB.1.5, and JN.1. Neutralizing antibodies exhibited a narrow breadth against BA.5 and BA.2.75 and failed to neutralize BQ.1.1 and XBB lineages after three to five doses of the ancestral monovalent vaccine. Hybrid immunity elicited higher neutralizing titers than vaccination alone, but titers remained relatively low. A single omicron PVI elicited lower neutralization titers to all variants compared to wild-type (WT), indicating immunological imprinting. Repeated omicron PVIs, particularly JN.1, slightly mitigated these effects by increasing broad neutralization responses to all variants, though not significantly. Antigenic mapping demonstrated that XBB lineages and JN.1 are antigenically distant from WT and also evaded antibodies induced by earlier omicron variants (BA.1-5) PVIs. However, repeated JN.1 PVIs shortened this antigenic distance, indicating broader neutralization across omicron variants. These findings highlight SARS-CoV-2 immunity following various antigen boosts and the impact of repeated omicron JN.1 exposure on broad immunity, informing future COVID-19 vaccination strategies.
Collapse
Affiliation(s)
- Nungruthai Suntronwong
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Sitthichai Kanokudom
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
- Center of Excellence in Osteoarthritis and Musculoskeleton, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, 10330, Thailand
| | - Thaneeya Duangchinda
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Warangkana Chantima
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Pattarakul Pakchotanon
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency, NSTDA, Pathum Thani, 12120, Thailand
| | - Sirapa Klinfueng
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Jiratchaya Puenpa
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Thaksaporn Thatsanathorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nasamon Wanlapakorn
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
- The Royal Society of Thailand (FRS(T)), Sanam Sueapa, Dusit, Bangkok, 10330, Thailand.
| |
Collapse
|
7
|
Furnon W, Cowton VM, De Lorenzo G, Orton R, Herder V, Cantoni D, Ilia G, Mendonca DC, Kerr K, Allan J, Upfold N, Meehan GR, Bakshi S, Das UR, Molina Arias S, McElwee M, Little S, Logan N, Kwok K, Smollett K, Willett BJ, Da Silva Filipe A, Robertson DL, Grove J, Patel AH, Palmarini M. Phenotypic evolution of SARS-CoV-2 spike during the COVID-19 pandemic. Nat Microbiol 2025; 10:77-93. [PMID: 39753670 PMCID: PMC11726466 DOI: 10.1038/s41564-024-01878-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 11/11/2024] [Indexed: 01/12/2025]
Abstract
SARS-CoV-2 variants are mainly defined by mutations in their spike. It is therefore critical to understand how the evolutionary trajectories of spike affect virus phenotypes. So far, it has been challenging to comprehensively compare the many spikes that emerged during the pandemic in a single experimental platform. Here we generated a panel of recombinant viruses carrying different spike proteins from 27 variants circulating between 2020 and 2024 in the same genomic background. We then assessed several of their phenotypic traits both in vitro and in vivo. We found distinct phenotypic trajectories of spike among and between variants circulating before and after the emergence of Omicron variants. Spike of post-Omicron variants maintained enhanced tropism for the nasal epithelium and large airways but displayed, over time, several phenotypic traits typical of the pre-Omicron variants. Hence, spike with phenotypic features of both pre- and post-Omicron variants may continue to emerge in the future.
Collapse
Affiliation(s)
- Wilhelm Furnon
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa M Cowton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Richard Orton
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Vanessa Herder
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Diego Cantoni
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Georgios Ilia
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Diogo Correa Mendonca
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Karen Kerr
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Jay Allan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nicole Upfold
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Gavin R Meehan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Siddharth Bakshi
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Udeet Ranjan Das
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sergi Molina Arias
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Marion McElwee
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Sarah Little
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Nicola Logan
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Kirsty Kwok
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | - Brian J Willett
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | | | | | - Joe Grove
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Arvind H Patel
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| | - Massimo Palmarini
- MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
- CVR-CRUSH, MRC-University of Glasgow Centre for Virus Research, Glasgow, UK.
| |
Collapse
|
8
|
Brangel P, Tureli S, Mühlemann B, Liechti N, Zysset D, Engler O, Hunger-Glaser I, Ghiga I, Mattiuzzo G, Eckerle I, Bekliz M, Rössler A, Schmitt MM, Knabl L, Kimpel J, Tort LFL, de Araujo MF, de Oliveira ACA, Caetano BC, Siqueira MM, Budt M, Gensch JM, Wolff T, Hassan T, Selvaraj FA, Hermanus T, Kgagudi P, Crowther C, Richardson SI, Bhiman JN, Moore PL, Cheng SMS, Li JKC, Poon LLM, Peiris M, Corman VM, Drosten C, Lai L, Hunsawong T, Rungrojcharoenkit K, Lohachanakul J, Sigal A, Khan K, Thiel V, Barut GT, Ebert N, Mykytyn AZ, Owusu Donkor I, Aboagye JO, Nartey PA, Van Kerkhove MD, Cunningham J, Haagmans BL, Suthar MS, Smith D, Subissi L. A Global Collaborative Comparison of SARS-CoV-2 Antigenicity Across 15 Laboratories. Viruses 2024; 16:1936. [PMID: 39772242 PMCID: PMC11680265 DOI: 10.3390/v16121936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/08/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Setting up a global SARS-CoV-2 surveillance system requires an understanding of how virus isolation and propagation practices, use of animal or human sera, and different neutralisation assay platforms influence assessment of SARS-CoV-2 antigenicity. In this study, with the contribution of 15 independent laboratories across all WHO regions, we carried out a controlled analysis of neutralisation assay platforms using the first WHO International Standard for antibodies to SARS-CoV-2 variants of concern (source: NIBSC). Live virus isolates (source: WHO BioHub or individual labs) or spike plasmids (individual labs) for pseudovirus production were used to perform neutralisation assays using the same serum panels. When comparing fold drops, excellent data consistency was observed across the labs using common reagents, including between pseudovirus and live virus neutralisation assays (RMSD of data from mean fold drop was 0.59). Utilising a Bayesian model, geometric mean titres and assay titre magnitudes (offsets) can describe the data efficiently. Titre magnitudes were seen to vary largely even for labs within the same assay group. We have observed that overall, live Microneutralisation assays tend to have the lowest titres, whereas Pseudovirus Neutralisation have the highest (with a mean difference of 3.2 log2 units between the two). These findings are relevant for laboratory networks, such as the WHO Coronavirus Laboratory Network (CoViNet), that seek to support a global surveillance system for evolution and antigenic characterisation of variants to support monitoring of population immunity and vaccine composition policy.
Collapse
Affiliation(s)
| | - Sina Tureli
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | - Barbara Mühlemann
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Nicole Liechti
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Daniel Zysset
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | - Olivier Engler
- WHO BioHub Facility, Spiez Laboratory, 3700 Spiez, Switzerland
| | | | - Ioana Ghiga
- World Health Organization, 1202 Geneva, Switzerland
| | - Giada Mattiuzzo
- Medicines and Healthcare Products Regulatory Agency, London SW1W 9SZ, UK
| | - Isabella Eckerle
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Division of Infectious Diseases, Geneva University Hospitals, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Meriem Bekliz
- Department of Medicine, University of Geneva, 1205 Geneva, Switzerland
- Geneva Centre for Emerging Viral Diseases, University Hospitals of Geneva and University of Geneva, 1205 Geneva, Switzerland
| | - Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Melanie M. Schmitt
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, 6511 Zams, Austria
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Virology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Luis Fernando Lopez Tort
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
- Laboratory of Molecular Virology, Department of Biological Sciences, CENUR Litoral Norte, Universidad de la República, Salto 50000, Uruguay
| | - Mia Ferreira de Araujo
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Any Caroline Alves de Oliveira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Braulia Costa Caetano
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Marilda Mendonça Siqueira
- Laboratory of Respiratory, Exanthematous and Enteric Viruses and Viral Emergencies (LVRE), Oswaldo Cruz Institute (IOC-Fiocruz), Rio de Janeiro 21.040-900, Brazil
| | - Matthias Budt
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Jean-Marc Gensch
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Thorsten Wolff
- Unit 17 “Influenza and Other Respiratory Viruses”, Robert Koch Institut, 13353 Berlin, Germany
| | - Tarteel Hassan
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Francis Amirtharaj Selvaraj
- Reference Laboratory for Infectious Diseases, Purelab, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Tandile Hermanus
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Prudence Kgagudi
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Carol Crowther
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg 2001, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg 2131, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban 4001, South Africa
| | - Samuel M. S. Cheng
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - John K. C. Li
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Leo L. M. Poon
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Malik Peiris
- School of Public Health, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China
| | - Victor M. Corman
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Drosten
- Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Institute of Virology, Charitéplatz 1, 10117 Berlin, Germany
- German Centre for Infection Research (DZIF), Associated Partner Site Charité, Charitéplatz 1, 10117 Berlin, Germany
| | - Lilin Lai
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Taweewun Hunsawong
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Kamonthip Rungrojcharoenkit
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Jindarat Lohachanakul
- Walter Reed Army Institute of Research-Armed Forces Research Institute of Medical Sciences, Bangkok 10500, Thailand
| | - Alex Sigal
- The Lautenberg Center for Immunology and Cancer Research, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Africa Health Research Institute, Durban 4013, South Africa
| | - Khadija Khan
- Africa Health Research Institute, Durban 4013, South Africa
| | - Volker Thiel
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - G. Tuba Barut
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | - Nadine Ebert
- Multidisciplinary Center for Infectious Diseases, University of Bern, 3012 Bern, Switzerland
- Institute of Virology and Immunology, Mittelhäusern and Bern, 3012 Bern, Switzerland
| | | | - Irene Owusu Donkor
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
| | - James Odame Aboagye
- Medical and Scientific Research Centre, University of Ghana Medical Centre, Accra P.O. Box LG 25, Ghana
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | - Prince Adom Nartey
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon P.O. Box LG 581, Ghana
| | | | | | | | - Mehul S. Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Derek Smith
- Centre for Pathogen Evolution, University of Cambridge, Cambridge CB3 0FD, UK
| | | |
Collapse
|
9
|
Gonzalez V, Hurtado-Monzón AM, O'Krafka S, Mühlberger E, Letko M, Frank HK, Laing ED, Phelps KL, Becker DJ, Munster VJ, Falzarano D, Schountz T, Seifert SN, Banerjee A. Studying bats using a One Health lens: bridging the gap between bat virology and disease ecology. J Virol 2024; 98:e0145324. [PMID: 39499009 DOI: 10.1128/jvi.01453-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
Accumulating data suggest that some bat species host emerging viruses that are highly pathogenic in humans and agricultural animals. Laboratory-based studies have highlighted important adaptations in bat immune systems that allow them to better tolerate viral infections compared to humans. Simultaneously, ecological studies have discovered critical extrinsic factors, such as nutritional stress, that correlate with virus shedding in wild-caught bats. Despite some progress in independently understanding the role of bats as reservoirs of emerging viruses, there remains a significant gap in the molecular understanding of factors that drive virus spillover from bats. Driven by a collective goal of bridging the gap between the fields of bat virology, immunology, and disease ecology, we hosted a satellite symposium at the 2024 American Society for Virology meeting. Bringing together virologists, immunologists, and disease ecologists, we discussed the intrinsic and extrinsic factors such as virus receptor engagement, adaptive immunity, and virus ecology that influence spillover from bat hosts. This article summarizes the topics discussed during the symposium and emphasizes the need for interdisciplinary collaborations and resource sharing.
Collapse
Affiliation(s)
- Victoria Gonzalez
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Arianna M Hurtado-Monzón
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Sabrina O'Krafka
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Elke Mühlberger
- Department of Virology, Immunology, and Microbiology, Boston University, Boston, Massachusetts, USA
- Chobanian and Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Michael Letko
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Hannah K Frank
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, Louisiana, USA
| | - Eric D Laing
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, Maryland, USA
| | | | - Daniel J Becker
- School of Biological Sciences, University of Oklahoma, Norman, Oklahoma, USA
| | - Vincent J Munster
- Laboratory of Virology, National Institute of Allergy and Infectious Diseases (NIAID), Hamilton, Montana, USA
| | - Darryl Falzarano
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, USA
- Center for Vector-Borne Infectious Diseases, Colorado State University, Fort Collins, Colorado, USA
| | - Stephanie N Seifert
- Paul G. Allen School for Global Health, Washington State University, Pullman, Washington, USA
| | - Arinjay Banerjee
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Department of Biology, University of Waterloo, Waterloo, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
10
|
Jia T, Wang F, Chen Y, Liao G, Xu Q, Chen J, Wu J, Li N, Wang L, Yuan L, Wang D, Xie Q, Luo C, Luo H, Wang Y, Chen Y, Shu Y. Expanded immune imprinting and neutralization spectrum by hybrid immunization following breakthrough infections with SARS-CoV-2 variants after three-dose vaccination. J Infect 2024; 89:106362. [PMID: 39608577 DOI: 10.1016/j.jinf.2024.106362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/28/2024] [Accepted: 11/20/2024] [Indexed: 11/30/2024]
Abstract
BACKGROUND Despite vaccination, SARS-CoV-2 evolution leads to breakthrough infections and reinfections worldwide. Knowledge of hybrid immunization is crucial for future broad-spectrum SARS-CoV-2 vaccines. METHODS In this study, we investigated neutralizing antibodies (nAbs) against the SARS-CoV-2 ancestral virus (wild-type [WT]), pre-Omicron VOCs, Omicron subvariants, and SARS-CoV-1 using plasma collected from four distinct cohorts: individuals who received three doses of BBIBP-CorV/CoronaVac vaccines, those who experienced BA.5 breakthrough infections, those with XBB breakthrough infections, and those with BA.5-XBB consecutive infections following three-dose vaccination. FINDINGS Following Omicron breakthrough infections, the levels of nAbs against WT and pre-Omicron VOCs were higher due to immune imprinting established by WT-based vaccination, in comparison to nAbs against Omicron variants. Interestingly, the XBB breakthrough infections elicited a broader neutralization spectrum against SARS-CoV-2 variants compared to the BA.5 breakthrough infections. This observation suggests that the XBB variant demonstrates superior immunogenicity relative to BA.5. Notably, hybrid immunization of BA.5 breakthrough infections after WT vaccination led to additional immune imprinting, resulting in a broadened neutralization profile against both WT and BA.5 variants in BA.5-XBB consecutive infections. However, the duration of nAbs was shorter in these reinfections compared to the breakthrough infections. Additionally, the expanded immune imprinting from previous WT vaccination and BA.5 breakthrough infections account for the enhanced plasma neutralization immunodominance observed in the antigenic cartography for BA.5-XBB consecutive infections. INTERPRETATION Overall, we demonstrated a persistent and expanded effect of immune imprinting from prior SARS-CoV-2 exposures. Thus, future vaccines should specifically address the latest variants, and booster shots should be given at a longer interval after the previous infection or vaccination.
Collapse
Affiliation(s)
- Tingting Jia
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Fuxiang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Yihao Chen
- Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China
| | - Guancheng Liao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Qiuyi Xu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiamin Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Jiani Wu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Nina Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Liangliang Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Lifang Yuan
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Dongli Wang
- Guangming District Center for Disease Control and Prevention, Shenzhen, PR China
| | - Qian Xie
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Chuming Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China
| | - Huanle Luo
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Shenzhen Key Laboratory of Pathogenic Microbes and Biosafety, Sun Yat-sen University, Shenzhen, PR China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, Guangdong, PR China
| | - Yongkun Chen
- Guangdong Provincial Key Laboratory of Infection Immunity and Inflammation, School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen University, Shenzhen 518060, PR China.
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, PR China; School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou 510275, PR China; Key Laboratory of Pathogen Infection Prevention and Control (MOE), State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 102629, PR China.
| |
Collapse
|
11
|
Wang W, Bhushan G, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Pollett SD, Mitre E, Katzelnick LC, Weiss CD. Human and hamster sera correlate well in identifying antigenic drift among SARS-CoV-2 variants, including JN.1. J Virol 2024; 98:e0094824. [PMID: 39365051 DOI: 10.1128/jvi.00948-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 09/14/2024] [Indexed: 10/05/2024] Open
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with fivefold to sixfold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a fivefold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.IMPORTANCEUpdates to COVID-19 vaccine antigens depend on assessing how much vaccine antigens differ antigenically from newer SARS-CoV-2 variants. Human sera from single variant infections are ideal for discriminating antigenic differences among variants, but such primary infection sera are now rare due to high population immunity. It remains unclear whether sera from experimentally infected animals could substitute for human sera for antigenic assessments. This report shows that neutralization titers of variant-matched human and hamster primary infection sera correlate well and recognize variants similarly, indicating that hamster sera can be a proxy for human sera for antigenic assessments. We further show that human sera following an XBB.1.5 booster vaccine broadly neutralized XBB sub-lineage variants but titers were fivefold lower against the more recent JN.1 variant. These findings support updating the current COVID-19 vaccine variant composition and developing a framework for assessing antigenic differences in future variants using hamster primary infection sera.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhuanand Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
| | - Kimberly A Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Matthew A Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Michael R Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, USA
| | - Tony T Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
12
|
Seow J, Jefferson GCE, Keegan MD, Yau Y, Snell LB, Doores KJ. Profiling serum immunodominance following SARS-CoV-2 primary and breakthrough infection reveals distinct variant-specific epitope usage and immune imprinting. PLoS Pathog 2024; 20:e1012724. [PMID: 39556615 DOI: 10.1371/journal.ppat.1012724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/03/2024] [Indexed: 11/20/2024] Open
Abstract
Over the course of the COVID-19 pandemic, variants have emerged with increased mutations and immune evasive capabilities. This has led to breakthrough infections (BTI) in vaccinated individuals, with a large proportion of the neutralizing antibody response targeting the receptor binding domain (RBD) of the SARS-CoV-2 Spike glycoprotein. Immune imprinting, where prior exposure of the immune system to an antigen can influence the response to subsequent exposures, and its role in a population with heterogenous exposure histories has important implications in future vaccine design. Here, we develop an accessible approach to map epitope immunodominance of the neutralizing antibody response in sera. By using a panel of mutant Spike proteins in a pseudotyped virus neutralization assay, we observed distinct epitope usage in convalescent donors infected during wave 1, or infected with the Delta, or BA.1 variants, highlighting the antigenic diversity of the variant Spikes. Analysis of longitudinal serum samples taken spanning 3 doses of COVID-19 vaccine and subsequent breakthrough infection, showed the influence of immune imprinting from the ancestral-based vaccine, where reactivation of existing B cells elicited by the vaccine resulted in the enrichment of the pre-existing epitope immunodominance. However, subtle shifts in epitope usage in sera were observed following BTI by Omicron sub-lineage variants. Antigenic distance of Spike, time after last exposure, and number of vaccine boosters may play a role in the persistence of imprinting from the vaccine. This study provides insight into RBD neutralizing epitope usage in individuals with varying exposure histories and has implications for design of future SARS-CoV-2 vaccines.
Collapse
Affiliation(s)
- Jeffrey Seow
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - George C E Jefferson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Michael D Keegan
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Yeuk Yau
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| | - Luke B Snell
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
- Centre for Clinical Infection and Diagnostics Research, Department of Infectious Diseases, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom
| | - Katie J Doores
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Augello M, Wagenhäuser I, Krone M, Dauby N, Ferrara P, Sabbatucci M, Ruta S, Rezahosseini O, Velikov P, Gkrania-Klotsas E, Montes J, Franco-Paredes C, Goodman AL, Küçükkaya S, Tuells J, Harboe ZB, Epaulard O. Should SARS-CoV-2 serological testing be used in the decision to deliver a COVID-19 vaccine booster? A pro-con assessment. Vaccine 2024; 42:126184. [PMID: 39097440 DOI: 10.1016/j.vaccine.2024.126184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/05/2024]
Abstract
Anti-SARS-CoV-2 vaccination has saved millions of lives in the past few years. To maintain a high level of protection, particularly in at-risk populations, booster doses are recommended to counter the waning of circulating antibody levels over time and the continuous emergence of immune escape variants of concern (VOCs). As anti-spike serology is now widely available, it may be considered a useful tool to identify individuals needing an additional vaccine dose, i.e., to screen certain populations to identify those whose plasma antibody levels are too low to provide protection. However, no recommendations are currently available on this topic. We reviewed the relevant supporting and opposing arguments, including areas of uncertainty, and concluded that in most populations, spike serology should not be used to decide about the administration of a booster dose. The main counterarguments are as follows: correlates of protection are imperfectly characterised, essentially owing to the emergence of VOCs; spike serology has an intrinsic inability to comprehensively reflect the whole immune memory; and booster vaccines are now VOC-adapted, while the commonly available commercial serological assays explore antibodies against the original virus.
Collapse
Affiliation(s)
- Matteo Augello
- Clinic of Infectious Diseases and Tropical Medicine, San Paolo Hospital, ASST Santi Paolo e Carlo, Department of Health Sciences, University of Milan, Milan, Italy
| | - Isabell Wagenhäuser
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Manuel Krone
- University Hospital Würzburg, Infection Control and Antimicrobial Stewardship Unit, Würzburg, Germany
| | - Nicolas Dauby
- Department of Infectious Diseases, CHU Saint-Pierre, Université Libre de Bruxelles (ULB), Environmental health and occupational health, School of Public Health, Université Libre de Bruxelles (ULB), Brussel, Belgium
| | - Pietro Ferrara
- Center for Public Health Research, University of Milan - Bicocca, Monza, Italy; IRCCS Istituto Auxologico Italiano, Laboratory of Public Health, Milan, Italy
| | | | - Simona Ruta
- Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Stefan S Nicolau Institute of Virology, Bucharest, Romania
| | - Omid Rezahosseini
- Department of Pulmonary and Infectious Diseases, Copenhagen University Hospital, Hillerød, Denmark
| | - Petar Velikov
- Clinic for Pediatric Infectious Diseases, Infectious Disease Hospital "Prof. Ivan Kirov", Sofia, Bulgaria; Department of Global Public Health, University of Tsukuba, Tsukuba, Japan
| | | | - Jose Montes
- Investigación en Resistencia Antibiótica (INVERA), Buenos Aires, Argentina; Fundación del Centro de Estudios Infectológicos (FUNCEI), Buenos Aires, Argentina
| | - Carlos Franco-Paredes
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, USA; Hospital Infantil de Mexico, Mexico City, Mexico
| | - Anna L Goodman
- Centre for Infection Diagnostics research, Department of Infection at at King's College London and Guys' and St Thomas NHS Foundation trust, London, UK
| | - Sertaç Küçükkaya
- Department of Medical Microbiology, Istanbul Faculty of Medicine, İstanbul University, Istanbul, Turkey
| | - Jose Tuells
- Departamento de Enfermería Comunitaria, Medicina Preventiva y Salud Pública e historia de la ciencia, Universidad de Alicante, Alicante, Spain
| | | | - Olivier Epaulard
- Université Grenoble Alpes, Infectiologie, CHU Grenoble Alpes, Grenoble, France.
| |
Collapse
|
14
|
Feng Y, Goldberg EE, Kupperman M, Zhang X, Lin Y, Ke R. CovTransformer: A transformer model for SARS-CoV-2 lineage frequency forecasting. Virus Evol 2024; 10:veae086. [PMID: 39659498 PMCID: PMC11631054 DOI: 10.1093/ve/veae086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
With hundreds of SARS-CoV-2 lineages circulating in the global population, there is an ongoing need for predicting and forecasting lineage frequencies and thus identifying rapidly expanding lineages. Accurate prediction would allow for more focused experimental efforts to understand pathogenicity of future dominating lineages and characterize the extent of their immune escape. Here, we first show that the inherent noise and biases in lineage frequency data make a commonly-used regression-based approach unreliable. To address this weakness, we constructed a machine learning model for SARS-CoV-2 lineage frequency forecasting, called CovTransformer, based on the transformer architecture. We designed our model to navigate challenges such as a limited amount of data with high levels of noise and bias. We first trained and tested the model using data from the UK and the USA, and then tested the generalization ability of the model to many other countries and US states. Remarkably, the trained model makes accurate predictions two months into the future with high levels of accuracy both globally (in 31 countries with high levels of sequencing effort) and at the US-state level. Our model performed substantially better than a widely used forecasting tool, the multinomial regression model implemented in Nextstrain, demonstrating its utility in SARS-CoV-2 monitoring. Assuming a newly emerged lineage is identified and assigned, our test using retrospective data shows that our model is able to identify the dominating lineages 7 weeks in advance on average before they became dominant. Overall, our work demonstrates that transformer models represent a promising approach for SARS-CoV-2 forecasting and pandemic monitoring.
Collapse
Affiliation(s)
- Yinan Feng
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Emma E Goldberg
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Michael Kupperman
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- Department of Applied Mathematics, University of Washington, Seattle, WA, United States
| | - Xitong Zhang
- Department of Computational Mathematics, Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Youzuo Lin
- Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, United States
- School of Data Science and Society, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ruian Ke
- Theoretical Biology and Biophysics, Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, United States
| |
Collapse
|
15
|
Liu Y, Nie J. SARS-CoV-2-Neutralizing Antibodies. Vaccines (Basel) 2024; 12:1256. [PMID: 39591159 PMCID: PMC11598284 DOI: 10.3390/vaccines12111256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/15/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
The COVID-19 pandemic, triggered by the SARS-CoV-2 virus, has profoundly and permanently affected many aspects of the world [...].
Collapse
Affiliation(s)
| | - Jianhui Nie
- Division of HIV/AIDS and Sex-Transmitted Virus Vaccines, National Institutes for Food and Drug Control (NIFDC), State Key Laboratory of Drug Regulatory Science, NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, Beijing 102629, China;
| |
Collapse
|
16
|
Gagne M, Flynn BJ, Andrew SF, Marquez J, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Pessaint L, Todd JPM, Doria-Rose NA, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, O'Dell S, Wali B, Ellis M, Godbole S, Laboune F, Henry AR, Teng IT, Wang D, Wang L, Zhou Q, Zouantchangadou S, Van Ry A, Lewis MG, Andersen H, Kwong PD, Curiel DT, Roederer M, Nason MC, Foulds KE, Suthar MS, Diamond MS, Douek DC, Seder RA. Mucosal adenovirus vaccine boosting elicits IgA and durably prevents XBB.1.16 infection in nonhuman primates. Nat Immunol 2024; 25:1913-1927. [PMID: 39227514 PMCID: PMC11436372 DOI: 10.1038/s41590-024-01951-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 08/06/2024] [Indexed: 09/05/2024]
Abstract
A mucosal route of vaccination could prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) replication at the site of infection and limit transmission. We compared protection against heterologous XBB.1.16 challenge in nonhuman primates (NHPs) ~5 months following intramuscular boosting with bivalent mRNA encoding WA1 and BA.5 spike proteins or mucosal boosting with a WA1-BA.5 bivalent chimpanzee adenoviral-vectored vaccine delivered by intranasal or aerosol device. NHPs boosted by either mucosal route had minimal virus replication in the nose and lungs, respectively. By contrast, protection by intramuscular mRNA was limited to the lower airways. The mucosally delivered vaccine elicited durable airway IgG and IgA responses and, unlike the intramuscular mRNA vaccine, induced spike-specific B cells in the lungs. IgG, IgA and T cell responses correlated with protection in the lungs, whereas mucosal IgA alone correlated with upper airway protection. This study highlights differential mucosal and serum correlates of protection and how mucosal vaccines can durably prevent infection against SARS-CoV-2.
Collapse
Affiliation(s)
- Matthew Gagne
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Barbara J Flynn
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Shayne F Andrew
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Josue Marquez
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dillon R Flebbe
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anna Mychalowych
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Evan Lamb
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Meredith E Davis-Gardner
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Matthew R Burnett
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leonid A Serebryannyy
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bob C Lin
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Zohar E Ziff
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Erin Maule
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robin Carroll
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mursal Naisan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yogita Jethmalani
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - John-Paul M Todd
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nicole A Doria-Rose
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - James Brett Case
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Igor P Dmitriev
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Elena A Kashentseva
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | - Sijy O'Dell
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Bushra Wali
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Madison Ellis
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Sucheta Godbole
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Farida Laboune
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Amy R Henry
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - I-Ting Teng
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Danyi Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Lingshu Wang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qiong Zhou
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | | | | | | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David T Curiel
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Martha C Nason
- Biostatistics Research Branch, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathryn E Foulds
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mehul S Suthar
- Department of Pediatrics, Center for Childhood Infections and Vaccines of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Emory National Primate Research Center, Atlanta, GA, USA
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology & Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO, USA
- Center for Vaccines & Immunity to Microbial Pathogens, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel C Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
17
|
Cromer D, Reynaldi A, Mitchell A, Schlub TE, Juno JA, Wheatley AK, Kent SJ, Khoury DS, Davenport MP. Predicting COVID-19 booster immunogenicity against future SARS-CoV-2 variants and the benefits of vaccine updates. Nat Commun 2024; 15:8395. [PMID: 39333473 PMCID: PMC11436652 DOI: 10.1038/s41467-024-52194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 08/27/2024] [Indexed: 09/29/2024] Open
Abstract
The ongoing evolution of the SARS-CoV-2 virus has led to a move to update vaccine antigens in 2022 and 2023. These updated antigens were chosen and approved based largely on in vitro neutralisation titres against recent SARS-CoV-2 variants. However, unavoidable delays in vaccine manufacture and distribution meant that the updated booster vaccine was no longer well-matched to the circulating SARS-CoV-2 variant by the time of its deployment. Understanding whether the updating of booster vaccine antigens improves immune responses to subsequent SARS-CoV-2 circulating variants is a major priority in justifying future vaccine updates. Here we analyse all available data on the immunogenicity of variants containing SARS-CoV-2 vaccines and their ability to neutralise later circulating SARS-CoV-2 variants. We find that updated booster antigens give a 1.4-fold [95% CI: 1.07-1.82] greater increase in neutralising antibody levels when compared with a historical vaccine immunogen. We then use this to predict the relative protection that can be expected from an updated vaccine even when the circulating variant has evolved away from the updated vaccine immunogen. These findings help inform the rollout of future booster vaccination programmes.
Collapse
Affiliation(s)
- Deborah Cromer
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia.
| | - Arnold Reynaldi
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Ainslie Mitchell
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Timothy E Schlub
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
- Sydney School of Public Health, Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia
| | - Jennifer A Juno
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Adam K Wheatley
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
| | - Stephen J Kent
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - David S Khoury
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| | - Miles P Davenport
- Kirby Institute, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
18
|
Lees JA, Russell TW, Shaw LP, Hellewell J. Recent approaches in computational modelling for controlling pathogen threats. Life Sci Alliance 2024; 7:e202402666. [PMID: 38906676 PMCID: PMC11192964 DOI: 10.26508/lsa.202402666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/11/2024] [Accepted: 06/13/2024] [Indexed: 06/23/2024] Open
Abstract
In this review, we assess the status of computational modelling of pathogens. We focus on three disparate but interlinked research areas that produce models with very different spatial and temporal scope. First, we examine antimicrobial resistance (AMR). Many mechanisms of AMR are not well understood. As a result, it is hard to measure the current incidence of AMR, predict the future incidence, and design strategies to preserve existing antibiotic effectiveness. Next, we look at how to choose the finite number of bacterial strains that can be included in a vaccine. To do this, we need to understand what happens to vaccine and non-vaccine strains after vaccination programmes. Finally, we look at within-host modelling of antibody dynamics. The SARS-CoV-2 pandemic produced huge amounts of antibody data, prompting improvements in this area of modelling. We finish by discussing the challenges that persist in understanding these complex biological systems.
Collapse
Affiliation(s)
- John A Lees
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| | - Timothy W Russell
- Centre for Mathematical Modelling of Infectious Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Liam P Shaw
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biosciences, University of Durham, Durham, UK
| | - Joel Hellewell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK
| |
Collapse
|
19
|
Richardson SI, Mzindle N, Motlou T, Manamela NP, van der Mescht MA, Lambson BE, Everatt J, Amoako DG, Balla S, von Gottberg A, Wolter N, de Beer Z, de Villiers TR, Bodenstein A, van den Berg G, Abdullah F, Rossouw TM, Boswell MT, Ueckermann V, Bhiman JN, Moore PL. SARS-CoV-2 BA.4/5 infection triggers more cross-reactive FcγRIIIa signaling and neutralization than BA.1, in the context of hybrid immunity. J Virol 2024; 98:e0067824. [PMID: 38953380 PMCID: PMC11265454 DOI: 10.1128/jvi.00678-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 05/23/2024] [Indexed: 07/04/2024] Open
Abstract
SARS-CoV-2 variants of concern (VOCs) differentially trigger neutralizing and antibody-dependent cellular cytotoxic (ADCC) antibodies with variable cross-reactivity. Omicron BA.4/5 was approved for inclusion in bivalent vaccination boosters, and therefore the antigenic profile of antibodies elicited by this variant is critical to understand. Here, we investigate the ability of BA.4/5-elicited antibodies following the first documented (primary) infection (n = 13) or breakthrough infection after vaccination (n = 9) to mediate neutralization and FcγRIIIa signaling across multiple SARS-CoV-2 variants including XBB.1.5 and BQ.1. Using a pseudovirus neutralization assay and a FcγRIIIa crosslinking assay to measure ADCC potential, we show that unlike SARS-CoV-2 Omicron BA.1, BA.4/5 infection triggers highly cross-reactive functional antibodies. Cross-reactivity was observed both in the absence of prior vaccination and in breakthrough infections following vaccination. However, BQ.1 and XBB.1.5 neutralization and FcγRIIIa signaling were significantly compromised compared to other VOCs, regardless of prior vaccination status. BA.4/5 triggered FcγRIIIa signaling was significantly more resilient against VOCs (<10-fold decrease in magnitude) compared to neutralization (10- to 100-fold decrease). Overall, this study shows that BA.4/5 triggered antibodies are highly cross-reactive compared to those triggered by other variants. Although this is consistent with enhanced neutralization and FcγRIIIa signaling breadth of BA.4/5 vaccine boosters, the reduced activity against XBB.1.5 supports the need to update vaccines with XBB sublineage immunogens to provide adequate coverage of these highly antibody evasive variants. IMPORTANCE The continued evolution of SARS-CoV-2 has resulted in a number of variants of concern. Of these, the Omicron sublineage is the most immune evasive. Within Omicron, the BA.4/5 sublineage drove the fifth wave of infection in South Africa prior to becoming the dominant variant globally. As a result this spike sequence was approved as part of a bivalent vaccine booster, and rolled out worldwide. We aimed to understand the cross-reactivity of neutralizing and Fc mediated cytotoxic functions elicited by BA.4/5 infection following infection or breakthrough infection. We find that, in contrast to BA.1 which triggered fairly strain-specific antibodies, BA.4/5 triggered antibodies that are highly cross-reactive for neutralization and antibody-dependent cellular cytotoxicity potential. Despite this cross-reactivity, these antibodies are compromised against highly resistant variants such as XBB.1.5 and BQ.1. This suggests that next-generation vaccines will require XBB sublineage immunogens in order to protect against these evasive variants.
Collapse
Affiliation(s)
- Simone I. Richardson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nonkululeko Mzindle
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Thopisang Motlou
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Nelia P. Manamela
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Mieke A. van der Mescht
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Bronwen E. Lambson
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Josie Everatt
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
| | - Daniel Gyamfi Amoako
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, KwaZulu-Natal, South Africa
| | - Sashkia Balla
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Anne von Gottberg
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nicole Wolter
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | - Fareed Abdullah
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Theresa M. Rossouw
- Department of Immunology, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Michael T. Boswell
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Veronica Ueckermann
- Division for Infectious Diseases, Department of Internal Medicine, Steve Biko Academic Hospital and University of Pretoria, Pretoria, South Africa
| | - Jinal N. Bhiman
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
| | - Penny L. Moore
- SAMRC Antibody Immunity Research Unit, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa
- National Institute for Communicable Diseases of the National Health Laboratory Services, Johannesburg, South Africa
- Centre for the AIDS Programme of Research in South Africa, Durban, South Africa
| |
Collapse
|
20
|
Rössler A, Netzl A, Knabl L, Wilks SH, Mühlemann B, Türeli S, Mykytyn A, von Laer D, Haagmans BL, Smith DJ, Kimpel J. Direct comparison of SARS-CoV-2 variant specific neutralizing antibodies in human and hamster sera. NPJ Vaccines 2024; 9:85. [PMID: 38762525 PMCID: PMC11102554 DOI: 10.1038/s41541-024-00888-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/07/2024] [Indexed: 05/20/2024] Open
Abstract
Antigenic characterization of newly emerging SARS-CoV-2 variants is important to assess their immune escape and judge the need for future vaccine updates. To bridge data obtained from animal sera with human sera, we analyzed neutralizing antibody titers in human and hamster single infection sera in a highly controlled setting using the same authentic virus neutralization assay performed in one laboratory. Using a Bayesian framework, we found that titer fold changes in hamster sera corresponded well to human sera and that hamster sera generally exhibited higher reactivity.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antonia Netzl
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Ludwig Knabl
- Tyrolpath Obrist Brunhuber GmbH, Hauptplatz 4, 6511, Zams, Austria
| | - Samuel H Wilks
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Barbara Mühlemann
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Ins+titute of Health, 10117, Berlin, Germany
- German Centre for Infection Research (DZIF), partner site Charité, 10117, Berlin, Germany
| | - Sina Türeli
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK
| | - Anna Mykytyn
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria
| | - Bart L Haagmans
- Viroscience Department, Erasmus Medical Center, Rotterdam, Netherlands
| | - Derek J Smith
- University of Cambridge, Centre for Pathogen Evolution, Department of Zoology, Cambridge, UK.
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Peter-Mayr-Str. 4b, 6020, Innsbruck, Austria.
| |
Collapse
|
21
|
Astakhova EA, Morozov AA, Vavilova JD, Filatov AV. Antigenic Cartography of SARS-CoV-2. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:862-871. [PMID: 38880647 DOI: 10.1134/s0006297924050079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/14/2024] [Accepted: 01/17/2024] [Indexed: 06/18/2024]
Abstract
Antigenic cartography is a tool for interpreting and visualizing antigenic differences between virus variants based on virus neutralization data. This approach has been successfully used in the selection of influenza vaccine seed strains. With the emergence of SARS-CoV-2 variants escaping vaccine-induced antibody response, adjusting COVID-19 vaccines has become essential. This review provides information on the antigenic differences between SARS-CoV-2 variants revealed by antigenic cartography and explores a potential of antigenic cartography-based methods (e.g., building antibody landscapes and neutralization breadth gain plots) for the quantitative assessment of the breadth of the antibody response. Understanding the antigenic differences of SARS-CoV-2 and the possibilities of the formed humoral immunity aids in the prompt modification of preventative vaccines against COVID-19.
Collapse
Affiliation(s)
- Ekaterina A Astakhova
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia.
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Alexey A Morozov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Julia D Vavilova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Alexander V Filatov
- National Research Center Institute of Immunology, Federal Medical Biological Agency of Russia, Moscow, 115522, Russia
- Department of Immunology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| |
Collapse
|
22
|
Wang W, Bhushan GL, Paz S, Stauft CB, Selvaraj P, Goguet E, Bishop-Lilly KA, Subramanian R, Vassell R, Lusvarghi S, Cong Y, Agan B, Richard SA, Epsi NJ, Fries A, Fung CK, Conte MA, Holbrook MR, Wang TT, Burgess TH, Mitre E, Pollett SD, Katzelnick LC, Weiss CD. Antigenic cartography using hamster sera identifies SARS-CoV-2 JN.1 evasion seen in human XBB.1.5 booster sera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588359. [PMID: 38712124 PMCID: PMC11071293 DOI: 10.1101/2024.04.05.588359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Antigenic assessments of SARS-CoV-2 variants inform decisions to update COVID-19 vaccines. Primary infection sera are often used for assessments, but such sera are rare due to population immunity from SARS-CoV-2 infections and COVID-19 vaccinations. Here, we show that neutralization titers and breadth of matched human and hamster pre-Omicron variant primary infection sera correlate well and generate similar antigenic maps. The hamster antigenic map shows modest antigenic drift among XBB sub-lineage variants, with JN.1 and BA.4/BA.5 variants within the XBB cluster, but with five to six-fold antigenic differences between these variants and XBB.1.5. Compared to sera following only ancestral or bivalent COVID-19 vaccinations, or with post-vaccination infections, XBB.1.5 booster sera had the broadest neutralization against XBB sub-lineage variants, although a five-fold titer difference was still observed between JN.1 and XBB.1.5 variants. These findings suggest that antibody coverage of antigenically divergent JN.1 could be improved with a matched vaccine antigen.
Collapse
Affiliation(s)
- Wei Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gitanjali L. Bhushan
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie Paz
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Charles B. Stauft
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Prabhu Selvaraj
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Emilie Goguet
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
| | - Kimberly A. Bishop-Lilly
- Biological Defense Research Directorate, Naval Medical Research Command, Fort Detrick, Maryland, USA
| | - Rahul Subramanian
- Office of Data Science and Emerging Technologies, Office of Science Management and Operations, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Russell Vassell
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Sabrina Lusvarghi
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yu Cong
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Brian Agan
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Stephanie A. Richard
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Nusrat J. Epsi
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Anthony Fries
- US Air Force School of Aerospace Medicine, Dayton, Ohio, USA
| | - Christian K. Fung
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Matthew A. Conte
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Michael R. Holbrook
- Integrated Research Facility, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Ft. Detrick, Frederick, Maryland, USA
| | - Tony T. Wang
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy H. Burgess
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Edward Mitre
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Simon D. Pollett
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc. Bethesda, Maryland, USA
- Infectious Disease Clinical Research Program, Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Leah C. Katzelnick
- Viral Epidemiology and Immunity Unit, Laboratory of Infectious Diseases, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Carol D. Weiss
- Office of Vaccines Research and Review, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
23
|
Rössler A, Knabl L, Netzl A, Bante D, Borena W, von Laer D, Smith DJ, Kimpel J. Durability of Cross-Neutralizing Antibodies 5.5 Months After Bivalent Coronavirus Disease 2019 Vaccine Booster. J Infect Dis 2024; 229:644-647. [PMID: 38016020 PMCID: PMC10938204 DOI: 10.1093/infdis/jiad472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/30/2023] Open
Abstract
We analyzed neutralizing antibodies in samples from ancestral + BA.1 and ancestral + BA.4/5 boosted individuals, collected around 5.5 months after booster. Titers of neutralizing antibodies generally decreased compared to a time point early after the bivalent booster immunization. This was more pronounced for individuals without infection history and for recently emerged Omicron variants.
Collapse
Affiliation(s)
- Annika Rössler
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Antonia Netzl
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - David Bante
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Wegene Borena
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Dorothee von Laer
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| | - Derek J Smith
- Centre for Pathogen Evolution, Department of Zoology, University of Cambridge, United Kingdom
| | - Janine Kimpel
- Institute of Virology, Department of Hygiene, Microbiology and Public Health, Medical University of Innsbruck, Austria
| |
Collapse
|
24
|
Springer DN, Höltl E, Prüger K, Puchhammer-Stöckl E, Aberle JH, Stiasny K, Weseslindtner L. Measuring Variant-Specific Neutralizing Antibody Profiles after Bivalent SARS-CoV-2 Vaccinations Using a Multivariant Surrogate Virus Neutralization Microarray. Vaccines (Basel) 2024; 12:94. [PMID: 38250907 PMCID: PMC10818493 DOI: 10.3390/vaccines12010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/03/2024] [Accepted: 01/16/2024] [Indexed: 01/23/2024] Open
Abstract
The capability of antibodies to neutralize different SARS-CoV-2 variants varies among individuals depending on the previous exposure to wild-type or Omicron-specific immunogens by mono- or bivalent vaccinations or infections. Such profiles of neutralizing antibodies (nAbs) usually have to be assessed via laborious live-virus neutralization tests (NTs). We therefore analyzed whether a novel multivariant surrogate-virus neutralization test (sVNT) (adapted from a commercial microarray) that quantifies the antibody-mediated inhibition between the receptor angiotensin-converting enzyme 2 (ACE2) and variant-specific receptor-binding domains (RBDs) can assess the neutralizing activity against the SARS-CoV-2 wild-type, and Delta Omicron BA.1, BA.2, and BA.5 subvariants after a booster with Omicron-adapted bivalent vaccines in a manner similar to live-virus NTs. Indeed, by using the live-virus NTs as a reference, we found a significant correlation between the variant-specific NT titers and levels of ACE2-RBD binding inhibition (p < 0.0001, r ≤ 0.78 respectively). Furthermore, the sVNTs identified higher inhibition values against BA.5 and BA.1 in individuals vaccinated with Omicron-adapted vaccines than in those with monovalent wild-type vaccines. Our data thus demonstrate the ability of sVNTs to detect variant-specific nAbs following a booster with bivalent vaccines.
Collapse
Affiliation(s)
- David Niklas Springer
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Eva Höltl
- Center for Public Health, Medical University of Vienna, A-1090 Vienna, Austria;
| | - Katja Prüger
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | | | - Judith Helene Aberle
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Karin Stiasny
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| | - Lukas Weseslindtner
- Center for Virology, Medical University of Vienna, A-1090 Vienna, Austria (K.P.); (E.P.-S.); (J.H.A.)
| |
Collapse
|
25
|
Gagne M, Flynn BJ, Andrew SF, Flebbe DR, Mychalowych A, Lamb E, Davis-Gardner ME, Burnett MR, Serebryannyy LA, Lin BC, Pessaint L, Todd JPM, Ziff ZE, Maule E, Carroll R, Naisan M, Jethmalani Y, Case JB, Dmitriev IP, Kashentseva EA, Ying B, Dodson A, Kouneski K, Doria-Rose NA, O'Dell S, Godbole S, Laboune F, Henry AR, Marquez J, Teng IT, Wang L, Zhou Q, Wali B, Ellis M, Zouantchangadou S, Ry AV, Lewis MG, Andersen H, Kwong PD, Curiel DT, Foulds KE, Nason MC, Suthar MS, Roederer M, Diamond MS, Douek DC, Seder RA. Mucosal Adenoviral-vectored Vaccine Boosting Durably Prevents XBB.1.16 Infection in Nonhuman Primates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.06.565765. [PMID: 37986823 PMCID: PMC10659340 DOI: 10.1101/2023.11.06.565765] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Waning immunity and continued virus evolution have limited the durability of protection from symptomatic infection mediated by intramuscularly (IM)-delivered mRNA vaccines against COVID-19 although protection from severe disease remains high. Mucosal vaccination has been proposed as a strategy to increase protection at the site of SARS-CoV-2 infection by enhancing airway immunity, potentially reducing rates of infection and transmission. Here, we compared protection against XBB.1.16 virus challenge 5 months following IM or mucosal boosting in non-human primates (NHP) that had previously received a two-dose mRNA-1273 primary vaccine regimen. The mucosal boost was composed of a bivalent chimpanzee adenoviral-vectored vaccine encoding for both SARS-CoV-2 WA1 and BA.5 spike proteins (ChAd-SARS-CoV-2-S) and delivered either by an intranasal mist or an inhaled aerosol. An additional group of animals was boosted by the IM route with bivalent WA1/BA.5 spike-matched mRNA (mRNA-1273.222) as a benchmark control. NHP were challenged in the upper and lower airways 18 weeks after boosting with XBB.1.16, a heterologous Omicron lineage strain. Cohorts boosted with ChAd-SARS-CoV-2-S by an aerosolized or intranasal route had low to undetectable virus replication as assessed by levels of subgenomic SARS-CoV-2 RNA in the lungs and nose, respectively. In contrast, animals that received the mRNA-1273.222 boost by the IM route showed minimal protection against virus replication in the upper airway but substantial reduction of virus RNA levels in the lower airway. Immune analysis showed that the mucosal vaccines elicited more durable antibody and T cell responses than the IM vaccine. Protection elicited by the aerosolized vaccine was associated with mucosal IgG and IgA responses, whereas protection elicited by intranasal delivery was mediated primarily by mucosal IgA. Thus, durable immunity and effective protection against a highly transmissible heterologous variant in both the upper and lower airways can be achieved by mucosal delivery of a virus-vectored vaccine. Our study provides a template for the development of mucosal vaccines that limit infection and transmission against respiratory pathogens. Graphical abstract
Collapse
|
26
|
Vinzón SE, Lopez MV, Cafferata EGA, Soto AS, Berguer PM, Vazquez L, Nusblat L, Pontoriero AV, Belotti EM, Salvetti NR, Viale DL, Vilardo AE, Avaro MM, Benedetti E, Russo ML, Dattero ME, Carobene M, Sánchez-Lamas M, Afonso J, Heitrich M, Cristófalo AE, Otero LH, Baumeister EG, Ortega HH, Edelstein A, Podhajcer OL. Cross-protection and cross-neutralization capacity of ancestral and VOC-matched SARS-CoV-2 adenoviral vector-based vaccines. NPJ Vaccines 2023; 8:149. [PMID: 37794010 PMCID: PMC10550992 DOI: 10.1038/s41541-023-00737-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 09/15/2023] [Indexed: 10/06/2023] Open
Abstract
COVID-19 vaccines were originally designed based on the ancestral Spike protein, but immune escape of emergent Variants of Concern (VOC) jeopardized their efficacy, warranting variant-proof vaccines. Here, we used preclinical rodent models to establish the cross-protective and cross-neutralizing capacity of adenoviral-vectored vaccines expressing VOC-matched Spike. CoroVaxG.3-D.FR, matched to Delta Plus Spike, displayed the highest levels of nAb to the matched VOC and mismatched variants. Cross-protection against viral infection in aged K18-hACE2 mice showed dramatic differences among the different vaccines. While Delta-targeted vaccines fully protected mice from a challenge with Gamma, a Gamma-based vaccine offered only partial protection to Delta challenge. Administration of CorovaxG.3-D.FR in a prime/boost regimen showed that a booster was able to increase the neutralizing capacity of the sera against all variants and fully protect aged K18-hACE2 mice against Omicron BA.1, as a BA.1-targeted vaccine did. The neutralizing capacity of the sera diminished in all cases against Omicron BA.2 and BA.5. Altogether, the data demonstrate that a booster with a vaccine based on an antigenically distant variant, such as Delta or BA.1, has the potential to protect from a wider range of SARS-CoV-2 lineages, although careful surveillance of breakthrough infections will help to evaluate combination vaccines targeting antigenically divergent variants yet to emerge.
Collapse
Affiliation(s)
- Sabrina E Vinzón
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - María V Lopez
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Eduardo G A Cafferata
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariadna S Soto
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Paula M Berguer
- Laboratorio de Microbiología e Inmunología Molecular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Luciana Vazquez
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Leonora Nusblat
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Andrea V Pontoriero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Eduardo M Belotti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Natalia R Salvetti
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Diego L Viale
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Ariel E Vilardo
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Martin M Avaro
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Estefanía Benedetti
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mara L Russo
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - María E Dattero
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Mauricio Carobene
- Instituto de Investigaciones Biomédicas en Retrovirus y SIDA (UBA-CONICET), Ciudad Autónoma de Buenos Aires, C1121ABG, Buenos Aires, Argentina
| | | | - Jimena Afonso
- Area de Bioterio, Fundación Instituto Leloir; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Mauro Heitrich
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina
| | - Alejandro E Cristófalo
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
| | - Lisandro H Otero
- Centro de Re-diseño e Ingeniería de Proteínas (CRIP), Universidad Nacional de San Martín, San Martin, Buenos Aires, 1650, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Instituto de Biotecnología Ambiental y Salud, CONICET, Universidad Nacional de Río Cuarto, Córdoba, X5804BYA, Argentina
| | - Elsa G Baumeister
- Servicio Virosis Respiratorias, Laboratorio Nacional de Referencia de Enfermedades Respiratorias Virales, Laboratorio Nacional de Referencia de SARS-CoV-2/COVID-19 OPS/OMS, INEI-ANLIS Dr Carlos G Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Hugo H Ortega
- Centro de Medicina Comparada, ICiVet-Litoral, Universidad Nacional del Litoral-CONICET; Esperanza, Santa Fe, 3080, Argentina
| | - Alexis Edelstein
- Unidad Operativa Centro de Contención Biológica, ANLIS Dr. Carlos G. Malbrán; Ciudad Autónoma de Buenos Aires, C1282AFF, Buenos Aires, Argentina
| | - Osvaldo L Podhajcer
- Laboratorio de Terapia Molecular y Celular, Fundación Instituto Leloir-CONICET; Ciudad Autónoma de Buenos Aires, C1405BWE, Buenos Aires, Argentina.
| |
Collapse
|