1
|
Braverman EL, Mognol GP, Minn AJ, Vignali DAA, Varner JA. One Step Ahead: Preventing Tumor Adaptation to Immune Therapy. Am Soc Clin Oncol Educ Book 2025; 45:e481556. [PMID: 40334183 DOI: 10.1200/edbk-25-481556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Immune checkpoint inhibitors are cancer therapeutics that have shown remarkable success in extending lives in many cancers, including melanoma, MSI-high cancers, and other cancers. However, these therapeutics have not shown benefit for many patients with cancer, especially those with advanced cancer diagnoses. In addition, many patients develop resistance to these therapeutics and/or life-altering adverse events that can include cardiotoxicity, pneumonitis, thyroiditis, pancreatitis, and hepatitis. Extensive efforts to improve cancer care by uncovering mechanisms of resistance to immune therapy in solid tumors have led to identification of new sources of resistance and to the development of new approaches to activate or sustain antitumor immunity. Chronic stimulation of T cells by tumors and by checkpoint inhibitors can lead to a progressive state of T-cell exhaustion. Chronic T-cell activation by the tumor microenvironment (TME) or immune therapeutics can upregulate the expression and function of alternate checkpoints, including the T-cell protein LAG-3. Persistent interferon signaling in the TME can drive epigenetic changes in cancer cells that enable tumors to counter immune activation and disrupt tumor cell elimination. In addition, immune-suppressive macrophages can flood tumors in response to signals from dying tumor cells, further preventing effective immune responses. New clinical developments and/or approvals for therapies that target alternate immune checkpoints, such as the T-cell checkpoint LAG-3; myeloid cell proteins, such as the kinase phosphoinositide 3-kinase gamma isoform; and chronic interferon signaling, such as Jak 1 inhibitors, have been approved for cancer care or shown promise in recent clinical trials.
Collapse
Affiliation(s)
- Erica L Braverman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Department of Pediatrics, Division of Pediatric Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Giuliana P Mognol
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
| | - Andy J Minn
- Institute for Immunology and Immune Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA
- Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA
- Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA
| | - Judith A Varner
- Moores Cancer Center, University of California, San Diego, La Jolla, CA
- Department of Pathology, University of California, San Diego, La Jolla, CA
| |
Collapse
|
2
|
Tian L, Liu L, Wang C, Kong Y, Miao Z, Yao Q, Zhang H, Li Y. PTTG1 promotes M2 macrophage polarization via the cGMP-PKG signaling pathway and facilitates EMT progression in human epithelial ovarian cancer cells. Discov Oncol 2025; 16:730. [PMID: 40353994 PMCID: PMC12069767 DOI: 10.1007/s12672-025-02512-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/25/2025] [Indexed: 05/14/2025] Open
Abstract
Epithelial Ovarian Cancer (EOC) is complex and heterogeneous, making accurate prognosis and treatment prediction difficult. New therapeutic targets and their mechanisms are urgently needed. This study explored the role of PTTG1 in ovarian cancer via the cGMP-PKG signaling pathway, focusing on its effects on M2 macrophage polarization and EMT progression in EOC cells. Using the GSE135886 database, we performed differential gene expression, pathway enrichment, and immune infiltration analyses to identify key targets influencing EMT and macrophage polarization. We then constructed PTTG1 knockdown and overexpression cell lines to assess the impact of PTTG1 on cell proliferation, migration, invasion, EMT, and macrophage polarization in vitro. Analysis revealed that differentially expressed genes were enriched in the cGMP-PKG pathway and correlated with M2 macrophages. PTTG1 overexpression in A2780 and SK-OV-3 ovarian cancer cells promoted proliferation, invasion, and migration, while enhancing sGC, PKG1, and PKG2 expression to activate the cGMP-PKG pathway and induce M2 macrophage polarization. PTTG1 knockdown produced opposite results, reinforcing our conclusions. This study uncovers a novel mechanism of PTTG1 in ovarian cancer development and suggests it as a potential therapeutic target.
Collapse
Affiliation(s)
- Liang Tian
- Department of Pathology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, China
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Liyun Liu
- Department of Pathology, Tangshan Gongren Hospital, Tangshan, 063000, China
| | - Chunlou Wang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yan Kong
- Department of Clinical Lab, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Zhigang Miao
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Qing Yao
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - He Zhang
- Department of Pathology, Cangzhou Central Hospital, Cangzhou, 061000, China
| | - Yuehong Li
- Department of Pathology, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, China.
| |
Collapse
|
3
|
Saiprayong K, Chupradit K, Sasithong P, Suwanpitak S, Muneekaew S, Thongsin N, Srisantitham J, Wattanapanitch M. Development of 2LTRZFP-expressing induced pluripotent stem cells as a potential anti-HIV-1 gene therapy against viral integration. J Leukoc Biol 2025; 117:qiaf018. [PMID: 39946247 DOI: 10.1093/jleuko/qiaf018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 11/29/2024] [Accepted: 02/12/2025] [Indexed: 04/26/2025] Open
Abstract
Highly active antiretroviral drug is the standard treatment for HIV-1 infection to suppress the viral load. However, this treatment does not completely eradicate the virus; it simply decreases the viral load to undetectable levels. The development of a novel therapy to cure the disease is essential. Previously, we developed an engineered zinc finger protein (ZFP) that specifically binds to the 2-LTR-circle junction (2LTRZFP), the target site for viral integrase, preventing HIV-1 integration in human CD34+ hematopoietic stem/progenitor cells (HSPCs) and macrophages. Although the transduction efficiency of 2LTRZFP was ∼50%, purifying and expanding the 2LTRZFP-expressing HSPCs proved difficult. In addition, the batch-to-batch variability in transduction efficiency could have a major impact on the therapeutic efficacy. In this study, we introduced the 2LTRZFP into human induced pluripotent stem cells (iPSCs) followed by clonal isolation and functional validation of the 2LTRZFP. Upon the HIV-1 challenge, the 2LTRZFP protein was found to inhibit the viral integration in iPSCs, iPSC-derived HSPCs, and macrophages. The engineered iPSC clone could be differentiated into functional macrophages, as evidenced by M1 and M2 polarization, and phagocytosis. Our finding revealed that the 2LTRZFP did not perturb the macrophage differentiation process. Therefore, the 2LTRZFP-expressing iPSCs could provide an unlimited supply of HIV-1-resistant HSPCs for transplantation, potentially leading to HIV-1-resistant blood cells. The knowledge obtained from this study will provide a cornerstone for HIV-1 gene therapy using HSPC transplantation as a sustainable HIV-1 treatment in the future.
Collapse
Affiliation(s)
- Kritayaporn Saiprayong
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Koollawat Chupradit
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Pasut Sasithong
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Biomedical Sciences Graduate Program, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Siriwal Suwanpitak
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Saitong Muneekaew
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Nontaphat Thongsin
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Jakkrapatra Srisantitham
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| | - Methichit Wattanapanitch
- Siriraj Center for Regenerative Medicine, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Wanglang Rd, Bangkok 10700, Thailand
| |
Collapse
|
4
|
Liu C, Qiao H, Li H, Hu X, Yan M, Fu Z, Zhang H, Wang Y, Du N. Exploring the role of LOX family in glioma progression and immune modulation. Front Immunol 2025; 16:1512186. [PMID: 40270974 PMCID: PMC12014642 DOI: 10.3389/fimmu.2025.1512186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 03/11/2025] [Indexed: 04/25/2025] Open
Abstract
Background Glioma is a major cause of mortality among central nervous system tumors, with a generally poor prognosis. The lysyl oxidase (LOX) family, a group of copper-dependent amine oxidases, has been implicated in the progression of various cancers, but its specific role in glioma and its relationship with immune infiltration remains insufficiently explored. This study aims to investigate the LOX family's expression, prognostic significance, and immune infiltration dynamics in glioma to identify potential therapeutic targets. Methods A comprehensive analysis was conducted using public databases to assess gene expression, mutation frequency, and immune infiltration patterns related to the LOX family in glioma. The results were validated through survival analysis and immunohistochemistry. Functional assays, including EdU, Transwell, and flow cytometry, were used to evaluate glioma cell proliferation, migration, invasion, and apoptosis. Co-culture experiments with immune cells, ELISA, and a glioma transplantation model were employed to study the immune-modulatory effects of the LOX family. Gene and protein expression levels were further analyzed using qRT-PCR and Western blotting. Results The LOX family was significantly upregulated in low-grade gliomas and strongly associated with poor clinical outcomes. Although mutation frequencies were low, the LOX family contributed to glioma progression through pathways involving metastasis, hypoxia response, angiogenesis, and immune cell infiltration. LOX expression correlated with increased infiltration of macrophages and eosinophils and decreased presence of Treg and CD8+ T cells. Knockdown of LOX genes impaired glioma cell functions, induced apoptosis, and altered immune cell behavior by reducing M2 macrophage polarization and enhancing CD8+ T cell activity. Conclusions The LOX family is overexpressed in glioma and is associated with poor prognosis and altered immune infiltration patterns. These findings highlight the LOX family as a promising prognostic marker and therapeutic target, particularly for enhancing the effectiveness of immunotherapy in glioma treatment.
Collapse
Affiliation(s)
- Chen Liu
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Oncology, the Fifth Medical Center, Chinese People’s Liberation Army (PLA) General Hospital, Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Huilian Qiao
- Department of Pathology, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Hongqi Li
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Xiaolong Hu
- Department of Radiation Oncology, Beijing Geriatric Hospital, Beijing, China
| | - Maohui Yan
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Zhiguang Fu
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Hengheng Zhang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Yingjie Wang
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| | - Nan Du
- Medical School of Chinese People’s Liberation Army (PLA), Beijing, China
- Department of Radiotherapy, Air Force Medical Center, The Fourth Military Medical University, People’s Liberation Army (PLA), Beijing, China
| |
Collapse
|
5
|
Reiss KA, Angelos MG, Dees EC, Yuan Y, Ueno NT, Pohlmann PR, Johnson ML, Chao J, Shestova O, Serody JS, Schmierer M, Kremp M, Ball M, Qureshi R, Schott BH, Sonawane P, DeLong SC, Christiano M, Swaby RF, Abramson S, Locke K, Barton D, Kennedy E, Gill S, Cushing D, Klichinsky M, Condamine T, Abdou Y. CAR-macrophage therapy for HER2-overexpressing advanced solid tumors: a phase 1 trial. Nat Med 2025; 31:1171-1182. [PMID: 39920391 DOI: 10.1038/s41591-025-03495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Accepted: 01/06/2025] [Indexed: 02/09/2025]
Abstract
Chimeric antigen receptor (CAR) macrophages (CAR-Ms) mediate antitumor immunity via phagocytosis, cytokine release, activation of the tumor microenvironment and antigen presentation. We report results from a non-prespecified interim analysis of a first-in-human, phase 1 clinical trial of CT-0508, an anti-human epidermal growth factor receptor 2 (HER2) CAR-M in patients with advanced HER2-overexpressing tumors. Fourteen patients were treated across two different regimens. Patients with breast cancer and gastroesophageal cancer were primarily enrolled and had to have demonstrated overexpression of HER2 according to the American Society of Clinical Oncology/College of American Pathologists guidelines (HER2 immunohistochemistry 3+ or immunohistochemistry 2+/in situ hybridization-amplified). No lymphodepletion chemotherapy was used before infusion. The primary endpoints were safety and CAR-M manufacturability. Secondary endpoints included cellular kinetics and efficacy using objective response rate, overall survival, progression-free survival and duration of response. No dose-limiting toxicities, severe cytokine release syndrome (≥grade 3) or immune effector cell-associated neurotoxicity syndrome were observed; 44% (n = 4 of 9, 95% confidence interval = 14-79%) of HER2 3+ tumors achieved stable disease as best overall response 8 weeks after treatment. No meaningful activity was observed in the HER2 2+ population (n = 5). Correlative analyses of serial biopsies confirmed that CT-0508 traffics to and remodels the tumor microenvironment, resulting in expansion of CD8+ T cells. These findings demonstrate the preliminary safety, tolerability and manufacturing feasibility of CT-0508 for HER2+ tumors. ClinicalTrials.gov registration: NCT04660929 .
Collapse
Affiliation(s)
- Kim A Reiss
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Mathew G Angelos
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - E Claire Dees
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - Yuan Yuan
- City of Hope Cancer Center, Duarte, CA, USA
- Cedars-Sinai Cancer, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Naoto T Ueno
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- University of Hawai'i Cancer Center, Honolulu, HI, USA
| | - Paula R Pohlmann
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | | | - Olga Shestova
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | - Jonathan S Serody
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | | | | | | | | | | | | | | | | | | | | | - Ken Locke
- Carisma Therapeutics, Philadelphia, PA, USA
| | | | | | - Saar Gill
- University of Pennsylvania Abramson Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Yara Abdou
- University of North Carolina Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
6
|
Ma J, Ao Y, Yue Z, Wang Z, Hou X, Li H, Wang H, Luo S, He J, Duan Z, Liu L, Wei K. Elevated GFI1 in Alveolar Macrophages Suppresses ACOD1 Expression and Exacerbates Lipopolysaccharide-Induced Lung Injury in Obesity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413546. [PMID: 39921443 PMCID: PMC11967830 DOI: 10.1002/advs.202413546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/13/2025] [Indexed: 02/10/2025]
Abstract
To investigate the mechanisms behind the worsening of acute lung injury (ALI) in obesity, transcriptomic sequencing is performed, and significantly reduced mRNA levels of Aconitate Decarboxylase 1 (ACOD1) in the lung tissue of high-fat diet (HFD) mice are found. Clinical samples are collected, an ALI model is established in HFD mice, and both human and mouse samples are analyzed, revealing a significant decrease in ACOD1 expression in lung tissue and alveolar macrophages in obesity. Further in vivo and in vitro experiments show that ACOD1 knockdown worsens lung injury, inflammation, and oxidative stress, while ACOD1 overexpression alleviates these effects. Moreover, nuclear factor erythroid 2-related factor 2 (Nrf2) inhibition diminishes the protective effects of ACOD1 overexpression in ALI exacerbated by obesity. Additionally, in the context of obesity, growth factor independent 1 (GFI1) protein levels are elevated in alveolar macrophages, and its knockdown leads to upregulated ACOD1 expression. Therefore, this study suggests that ACOD1 downregulation in alveolar macrophages is a key factor in worsening ALI in obesity, likely driven by GFI1 upregulation.
Collapse
Affiliation(s)
- Jingyue Ma
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Yichan Ao
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zhen Yue
- Department of AnesthesiologyXinjiang Uygur Autonomous Region Changji People's HospitalChangji831100China
| | - Zhiqiao Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Xiangyu Hou
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Hongbin Li
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Hanbing Wang
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Siqing Luo
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Jianyu He
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Zikun Duan
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ling Liu
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| | - Ke Wei
- Department of AnesthesiologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400016China
| |
Collapse
|
7
|
Tarannum M, Ding X, Barisa M, Hu S, Anderson J, Romee R, Zhang J. Engineering innate immune cells for cancer immunotherapy. Nat Biotechnol 2025; 43:516-533. [PMID: 40229380 DOI: 10.1038/s41587-025-02629-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 03/05/2025] [Indexed: 04/16/2025]
Abstract
Innate immune cells, including natural killer cells, macrophages and γδ T cells, are gaining prominence as promising candidates for cancer immunotherapy. Unlike conventional T cells, these cells possess attributes such as inherent antitumor activity, rapid immune responses, favorable safety profiles and the ability to target diverse malignancies without requiring prior antigen sensitization. In this Review, we examine the engineering strategies used to enhance their anticancer potential. We discuss challenges associated with each cell type and summarize insights from preclinical and clinical work. We propose strategies to address existing barriers, providing a perspective on the advancement of innate immune engineering as a powerful modality in anticancer treatment.
Collapse
Affiliation(s)
- Mubin Tarannum
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Xizhong Ding
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China
| | - Marta Barisa
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Sabrina Hu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - John Anderson
- Cancer Section, Developmental Biology and Cancer Department, UCL Great Ormond Street Institute of Child Health, University College London, London, UK.
| | - Rizwan Romee
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
| | - Jin Zhang
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
8
|
Hua Q, Li Z, Weng Y, Wu Y, Zheng L. Myeloid cells: key players in tumor microenvironments. Front Med 2025; 19:265-296. [PMID: 40048137 DOI: 10.1007/s11684-025-1124-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/16/2024] [Indexed: 05/04/2025]
Abstract
Cancer is the result of evolving crosstalk between neoplastic cell and its immune microenvironment. In recent years, immune therapeutics targeting T lymphocytes, such as immune checkpoint blockade (ICB) and CAR-T, have made significant progress in cancer treatment and validated targeting immune cells as a promising approach to fight human cancers. However, responsiveness to the current immune therapeutic agents is limited to only a small proportion of solid cancer patients. As major components of most solid tumors, myeloid cells played critical roles in regulating the initiation and sustentation of adaptive immunity, thus determining tumor progression as well as therapeutic responses. In this review, we discuss emerging data on the diverse functions of myeloid cells in tumor progression through their direct effects or interactions with other immune cells. We explain how different metabolic reprogramming impacts the characteristics and functions of tumor myeloid cells, and discuss recent progress in revealing different mechanisms-chemotaxis, proliferation, survival, and alternative sources-involved in the infiltration and accumulation of myeloid cells within tumors. Further understanding of the function and regulation of myeloid cells is important for the development of novel strategies for therapeutic exploitation in cancer.
Collapse
Affiliation(s)
- Qiaomin Hua
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhixiong Li
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yulan Weng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Yan Wu
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Limin Zheng
- Guangdong Provincial Key Laboratory of Pharmaceutical Functional Genes, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
9
|
Greiner D, Xue Q, Waddell TQ, Kurudza E, Chaudhary P, Belote RL, Dotti G, Judson-Torres RL, Reeves MQ, Cheshier SH, Roh-Johnson M. Human CSPG4-targeting CAR-macrophages inhibit melanoma growth. Oncogene 2025:10.1038/s41388-025-03332-0. [PMID: 40082557 DOI: 10.1038/s41388-025-03332-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/12/2025] [Accepted: 02/24/2025] [Indexed: 03/16/2025]
Abstract
Approximately half of melanoma patients relapse or fail to respond to current standards of care, highlighting the need for new treatment options. Engineering T-cells with chimeric antigen receptors (CARs) has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. We therefore sought to engineer alternative immune cell types to inhibit melanoma progression. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells; however, whether these engineered macrophages can effectively inhibit melanoma growth is unknown. To determine whether CAR-macrophages (CAR-Ms) specifically target and kill melanoma cells, we engineered CAR-Ms targeting chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. We developed 3D approaches to show that CSPG4-targeting CAR-Ms efficiently infiltrated melanoma spheroids. Furthermore, combining CSPG4-targeting CAR-Ms with strategies inhibiting CD47/SIRPα "don't eat me" signaling synergistically enhanced CAR-M-mediated phagocytosis and robustly inhibited melanoma spheroid growth in 3D. Importantly, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest engineering macrophages against melanoma antigens is a promising solid tumor immunotherapy approach for treating melanoma.
Collapse
Affiliation(s)
- Daniel Greiner
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Qian Xue
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Trinity Qa Waddell
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Elena Kurudza
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
| | - Piyush Chaudhary
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Rachel L Belote
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Molecular Genetics, The Ohio State University College of Arts and Sciences, Columbus, OH, 43210, USA
| | - Gianpietro Dotti
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Robert L Judson-Torres
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Dermatology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Department of Pathology, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
| | - Samuel H Cheshier
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, 84112, USA
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA
- Division of Pediatric Neurosurgery, Intermountain Primary Children's Hospital, Salt Lake City, UT, 84112, USA
| | - Minna Roh-Johnson
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, 84112, USA.
| |
Collapse
|
10
|
Du Y, Yang Y, Zheng B, Zhang Q, Zhou S, Zhao L. Finding a needle in a haystack: functional screening for novel targets in cancer immunology and immunotherapies. Oncogene 2025; 44:409-426. [PMID: 39863748 PMCID: PMC11810799 DOI: 10.1038/s41388-025-03273-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 12/06/2024] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Genome-wide functional genetic screening has been widely used in the biomedicine field, which makes it possible to find a needle in a haystack at the genetic level. In cancer research, gene mutations are closely related to tumor development, metastasis, and recurrence, and the use of state-of-the-art powerful screening technologies, such as clustered regularly interspaced short palindromic repeat (CRISPR), to search for the most critical genes or coding products provides us with a new possibility to further refine the cancer mapping and provide new possibilities for the treatment of cancer patients. The use of CRISPR screening for the most critical genes or coding products has further refined the cancer atlas and provided new possibilities for the treatment of cancer patients. Immunotherapy, as a highly promising cancer treatment method, has been widely validated in the clinic, but it could only meet the needs of a small proportion of cancer patients. Finding new immunotherapy targets is the key to the future of tumor immunotherapy. Here, we revisit the application of functional screening in cancer immunology from different perspectives, from the selection of diverse in vitro and in vivo screening models to the screening of potential immune checkpoints and potentiating genes for CAR-T cells. The data will offer fresh therapeutic clues for cancer patients.
Collapse
Affiliation(s)
- Yi Du
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Yang Yang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
| | - Bohao Zheng
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China
- Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, China
| | - Qian Zhang
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Shengtao Zhou
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| | - Linjie Zhao
- Department of Obstetrics and Gynecology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second Hospital, State Key Laboratory of Biotherapy, and Department of Neurosurgery, West China Hospital, Sichuan University and Collaborative Innovation Center, Chengdu, P. R. China.
| |
Collapse
|
11
|
Gao H, Qu L, Li M, Guan X, Zhang S, Deng X, Wang J, Xing F. Unlocking the potential of chimeric antigen receptor T cell engineering immunotherapy: Long road to achieve precise targeted therapy for hepatobiliary pancreatic cancers. Int J Biol Macromol 2025; 297:139829. [PMID: 39814310 DOI: 10.1016/j.ijbiomac.2025.139829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 01/03/2025] [Accepted: 01/11/2025] [Indexed: 01/18/2025]
Abstract
Innovative therapeutic strategies are urgently needed to address the ongoing global health concern of hepatobiliary pancreatic malignancies. This review summarizes the latest and most comprehensive research of chimeric antigen receptor (CAR-T) cell engineering immunotherapy for treating hepatobiliary pancreatic cancers. Commencing with an exploration of the distinct anatomical location and the immunosuppressive, hypoxic tumor microenvironment (TME), this review critically assesses the limitations of current CAR-T therapy in hepatobiliary pancreatic cancers and proposes corresponding solutions. Various studies aim at enhancing CAR-T cell efficacy in these cancers through improving T cell persistence, enhancing antigen specificity and reducing tumor heterogeneity, also modulating the immunosuppressive and hypoxic TME. Additionally, the review examines the application of emerging nanoparticles and biotechnologies utilized in CAR-T therapy for these cancers. The results suggest that constructing optimized CAR-T cells to overcome physical barrier, manipulating the TME to relieve immunosuppression and hypoxia, designing CAR-T combination therapies, and selecting the most suitable delivery strategies, all together could collectively enhance the safety of CAR-T engineering and advance the effectiveness of adaptive cell therapy for hepatobiliary pancreatic cancers.
Collapse
Affiliation(s)
- Hongli Gao
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Lianyue Qu
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang 110001, China
| | - Mu Li
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Guan
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Shuang Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xin Deng
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| | - Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang 110001, China.
| | - Fei Xing
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang 110004, China.
| |
Collapse
|
12
|
Lei Q, Deng H, Sun S. Pluripotent stem cell-based immunotherapy: advances in translational research, cell differentiation, and gene modifications. LIFE MEDICINE 2025; 4:lnaf002. [PMID: 40110110 PMCID: PMC11916900 DOI: 10.1093/lifemedi/lnaf002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 01/16/2025] [Indexed: 03/22/2025]
Abstract
Cell-based immunotherapy, recognized as living drugs, is revolutionizing clinical treatment to advanced cancer and shaping the landscape of biomedical research for complex diseases. The differentiation of human pluripotent stem cells (PSCs) emerges as a novel platform with the potential to generate an unlimited supply of therapeutic immune cells, especially when coupled with gene modification techniques. PSC-based immunotherapy is expected to meet the vast clinical demand for living drugs. Here, we examine recent preclinical and clinical advances in PSC-based immunotherapy, focusing on PSC gene modification strategies and differentiation methods for producing therapeutic immune cells. We also discuss opportunities in this field and challenges in cell quality and safety and stresses the need for further research and transparency to unlock the full potential of PSC immunotherapies.
Collapse
Affiliation(s)
- Qi Lei
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Beijing 100191, China
| | - Hongkui Deng
- Department of Cell Biology, School of Basic Medical Sciences, Peking University Stem Cell Research Center, Peking University Health Science Center, Beijing 100191, China
- Changping Laboratory, Beijing 102206, China
| | - Shicheng Sun
- Changping Laboratory, Beijing 102206, China
- Murdoch Children's Research Institute, The Royal Children's Hospital, Parkville, Victoria 3052, Australia
| |
Collapse
|
13
|
Lindenbergh PL, van der Stegen SJ. Adoptive Cell Therapy from the Dish: Potentiating Induced Pluripotent Stem Cells. Transfus Med Hemother 2025; 52:27-41. [PMID: 39944411 PMCID: PMC11813279 DOI: 10.1159/000540473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/19/2024] [Indexed: 02/16/2025] Open
Abstract
Background The clinical success of autologous adoptive cell therapy (ACT) is substantial but wide application is challenged by the quality and quantity of the patient's immune cells and the need for personalized manufacturing processes. Induced pluripotent stem cells (iPSCs) can be differentiated into immune effectors and thus provide an alternative, allogeneic cell source for ACT. Here, we compare iPSC-derived immune effectors to their PBMC-derived counterparts and review iPSC-derived ACT products currently under preclinical and clinical development. Summary iPSC-derived T cells, NK cells, macrophages, and neutrophils largely mimic their PBMC-derived counterparts in terms of cell-surface marker expression and cytotoxic effector functions. iPSC-derived immune effectors can be engineered with chimeric antigen receptors and other activating receptors to redirect their cytotoxic potential specifically to tumor-associated antigens (TAAs). However, several differences between iPSC- and PBMC-derived immune effectors remain and have inspired additional engineering strategies to enhance the antitumor capacity of iPSC-derived immune effectors. Key Messages iPSCs can be engineered to facilitate the generation of immune effectors with homogenous specificity for TAAs and enhanced effector functions. TAA-specific and functionally enhanced iPSC-derived T and NK cells are currently undergoing clinical evaluation in phase 1 trials. Engineered iPSC-derived macrophages and neutrophils are in preclinical development.
Collapse
Affiliation(s)
- Pieter L. Lindenbergh
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Hematology, Cancer Center Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | | |
Collapse
|
14
|
Wang L, Hu Z, Zhang W, Wang Z, Cao M, Cao X. Promoting macrophage phagocytosis of cancer cells for effective cancer immunotherapy. Biochem Pharmacol 2025; 232:116712. [PMID: 39675588 DOI: 10.1016/j.bcp.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 11/26/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
Cancer therapy has been revolutionized by immunotherapeutic agents exploiting adaptive antitumor immunity in the past two decades. However, the overall response rate of these immunotherapies is limited, and patients also develop resistance upon treatment, promoting a rapidly growing exploration of anti-tumor innate immunity for effective cancer therapy. Among these, macrophage immunotherapy through harnessing macrophage phagocytosis has been thrust into the spotlight due to its potential for simultaneously inducing cancer cell killing effect and mobilizing adaptive antitumor responses. Here in this review, we summarize the current macrophage immunotherapy such as therapeutic antibodies, phagocytosis checkpoint blockades, and CAR-macrophages with a particular emphasis on the resistant mechanisms limiting their therapeutic effects. Moreover, we further survey the efforts being placed to seek synergistic mechanisms and combination strategies for promoting macrophage phagocytosis which might stand as next-generation cancer immunotherapy.
Collapse
Affiliation(s)
- Lei Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Ziyi Hu
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Wencan Zhang
- Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhixin Wang
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China
| | - Ming Cao
- Department of Urology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Cao
- Shanghai Frontiers Science Center for Drug Target Identification and Delivery, and the Engineering Research Center of Cell and Therapeutic Antibody of the Ministry of Education, School of Pharmaceutical Sciences, National Key Laboratory of Innovative Immunotherapy, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
15
|
Jin R, Neufeld L, McGaha TL. Linking macrophage metabolism to function in the tumor microenvironment. NATURE CANCER 2025; 6:239-252. [PMID: 39962208 DOI: 10.1038/s43018-025-00909-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 12/10/2024] [Indexed: 02/28/2025]
Abstract
Macrophages are present at high frequency in most solid tumor types, and their relative abundance negatively correlates with therapy responses and survival outcomes. Tissue-resident macrophages are highly tuned to integrate tissue niche signals, and multiple factors within the idiosyncratic tumor microenvironment (TME) drive macrophages to polarization states that favor immune suppression, tumor growth and metastasis. These diverse functional states are underpinned by extensive and complex rewiring of tumor-associated macrophage (TAM) metabolism. In this Review, we link distinct and specific macrophage functional states within the TME to major, phenotype-sustaining metabolic programs and discuss the metabolic impact of macrophage-modulating therapeutic interventions.
Collapse
Affiliation(s)
- Robbie Jin
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Luke Neufeld
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada
| | - Tracy L McGaha
- Tumor Immunotherapy Program, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada.
- Department of Immunology, Temerty Faculty of Medicine, the University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
16
|
Chen C, Li X. The cell autonomous and non-autonomous roles of itaconate in immune response. CELL INSIGHT 2025; 4:100224. [PMID: 39877254 PMCID: PMC11773213 DOI: 10.1016/j.cellin.2024.100224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/12/2024] [Accepted: 11/17/2024] [Indexed: 01/31/2025]
Abstract
Itaconate which is discovered as a mammalian metabolite possessing antimicrobial and immunoregulatory activity has attracted much attention in the field of immunometabolism. Itaconate is synthesized by myeloid cells under conditions of pathogen infection and sterile inflammation. In addition to regulating immune response of myeloid cells, itaconate secreted from myeloid cells can also be taken up by non-myeloid cells to exert immunoregulatory effects in a cell non-autonomous manner. In this review, we recap the discovery of itaconate as a distinct immunologic regulator and effector, describe the development of itaconate biosensor, and detail the recent findings that decipher the mechanism underlying intercellular transport of itaconate. Based on these knowledges, we propose itaconate is a messenger transmitting immunologic signals from myeloid cells to other types of cells during host inflammation and immune defense.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinjian Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
17
|
Xu J, Li Z, Tong Q, Zhang S, Fang J, Wu A, Wei G, Zhang C, Yu S, Zheng B, Lin H, Liao X, Xiao Z, Lu W. CD133 +PD-L1 + cancer cells confer resistance to adoptively transferred engineered macrophage-based therapy in melanoma. Nat Commun 2025; 16:895. [PMID: 39837811 PMCID: PMC11751330 DOI: 10.1038/s41467-025-55876-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Adoptive transfer of genetically or nanoparticle-engineered macrophages represents a promising cell therapy modality for treatment of solid tumor. However, the therapeutic efficacy is suboptimal without achieving a complete tumor regression, and the underlying mechanism remains elusive. Here, we discover a subpopulation of cancer cells with upregulated CD133 and programmed death-ligand 1 in mouse melanoma, resistant to the phagocytosis by the transferred macrophages. Compared to the CD133-PD-L1- cancer cells, the CD133+PD-L1+ cancer cells express higher transforming growth factor-β signaling molecules to foster a resistant tumor niche, that restricts the trafficking of the transferred macrophages by stiffened extracellular matrix, and inhibits their cell-killing capability by immunosuppressive factors. The CD133+PD-L1+ cancer cells exhibit tumorigenic potential. The CD133+PD-L1+ cells are further identified in the clinically metastatic melanoma. Hyperthermia reverses the resistance of CD133+PD-L1+ cancer cells through upregulating the 'eat me' signal calreticulin, significantly improving the efficacy of adoptive macrophage therapy. Our findings demonstrate the mechanism of resistance to adoptive macrophage therapy, and provide a de novo strategy to counteract the resistance.
Collapse
Affiliation(s)
- Jiaojiao Xu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Zhe Li
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Qinli Tong
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sihang Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Jianchen Fang
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Aihua Wu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Guoguang Wei
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Chen Zhang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Sheng Yu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Binbin Zheng
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Hongzheng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
- Minhang Hospital, Fudan University, Shanghai, 201199, China
| | - Xueling Liao
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China
| | - Zeyu Xiao
- Department of Pathology, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Wei Lu
- School of Pharmacy, Key Laboratory of Smart Drug Delivery Ministry of Education, State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai, 201203, China.
- Minhang Hospital, Fudan University, Shanghai, 201199, China.
- Quzhou Fudan Institute, Quzhou, Zhejiang, 324002, China.
| |
Collapse
|
18
|
Shi Y, Li X, Dong Y, Yuan H, Wang Y, Yang R. Exploring the potential of CAR-macrophage therapy. Life Sci 2025; 361:123300. [PMID: 39643037 DOI: 10.1016/j.lfs.2024.123300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/28/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) cell therapy has achieved significant success in treating hematologic malignancies, but its efficacy in solid tumor treatment is relatively limited. Therefore, researchers are exploring other genetically modified immune cells as potential treatment strategies to address the challenges in solid tumor therapy. Chimeric antigen receptor macrophage (CAR-M) involves the genetic engineering of macrophages to express chimeric antigen receptors, enabling them to recognize and attack tumor cells. In contrast to CAR-T cells, CAR-M cells offer distinct advantages such as enhanced infiltration and survival capabilities, along with a diverse array of anti-tumor mechanisms, making them a promising immunotherapy approach that may yield better results in solid tumor treatment. This article provides an overview of the research advancements in CAR-M-mediated tumor immunotherapy, encompassing topics such as the design and transduction of CAR, cell sources, anti-tumor mechanisms and clinical applications. The future research direction in this field will involve leveraging innovative biological technologies to augment the anti-tumor efficacy of CAR-M, understand the underlying mechanisms, and enhance the safety and efficacy of CAR-M therapy.
Collapse
Affiliation(s)
- Yongyu Shi
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China.
| | - Xia Li
- Department of Internal Medicine, Jinan No. 1 People's Hospital, China
| | - Yanlei Dong
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Hong Yuan
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Yingyue Wang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| | - Ruoxuan Yang
- Department of Immunology and Shandong Key Laboratory of Infection and Immunity, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, China
| |
Collapse
|
19
|
Pierini S, Gabbasov R, Oliveira-Nunes MC, Qureshi R, Worth A, Huang S, Nagar K, Griffin C, Lian L, Yashiro-Ohtani Y, Ross K, Sloas C, Ball M, Schott B, Sonawane P, Cornell L, Blumenthal D, Chhum S, Minutolo N, Ciccaglione K, Shaw L, Zentner I, Levitsky H, Shestova O, Gill S, Varghese B, Cushing D, Ceeraz DeLong S, Abramson S, Condamine T, Klichinsky M. Chimeric antigen receptor macrophages (CAR-M) sensitize HER2+ solid tumors to PD1 blockade in pre-clinical models. Nat Commun 2025; 16:706. [PMID: 39814734 PMCID: PMC11735936 DOI: 10.1038/s41467-024-55770-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 01/18/2025] Open
Abstract
We previously developed human CAR macrophages (CAR-M) and demonstrated redirection of macrophage anti-tumor function leading to tumor control in immunodeficient xenograft models. Here, we develop clinically relevant fully immunocompetent syngeneic models to evaluate the potential for CAR-M to remodel the tumor microenvironment (TME), induce T cell anti-tumor immunity, and sensitize solid tumors to PD1/PDL1 checkpoint inhibition. In vivo, anti-HER2 CAR-M significantly reduce tumor burden, prolong survival, remodel the TME, increase intratumoral T cell and natural killer (NK) cell infiltration, and induce antigen spreading. CAR-M therapy protects against antigen-negative relapses in a T cell dependent fashion, confirming long-term anti-tumor immunity. In HER2+ solid tumors with limited sensitivity to anti-PD1 (aPD1) monotherapy, the combination of CAR-M and aPD1 significantly improves tumor growth control, survival, and remodeling of the TME in pre-clinical models. These results demonstrate synergy between CAR-M and T cell checkpoint blockade and provide a strategy to potentially enhance response to aPD1 therapy for patients with non-responsive tumors.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuo Huang
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | - Karan Nagar
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | - Lurong Lian
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | - Lauren Shaw
- Carisma Therapeutics Inc, Philadelphia, PA, USA
| | | | | | - Olga Shestova
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Saar Gill
- Center for Cellular Immunotherapies, Division of Hematology-Oncology, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | |
Collapse
|
20
|
Chen Y, Xin Q, Zhu M, Qiu J, Luo Y, Li R, Wei W, Tu J. Exploring CAR-macrophages in non-tumor diseases: Therapeutic potential beyond cancer. J Adv Res 2025:S2090-1232(25)00004-9. [PMID: 39756574 DOI: 10.1016/j.jare.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 01/01/2025] [Accepted: 01/02/2025] [Indexed: 01/07/2025] Open
Abstract
BACKGROUND After significant advancements in tumor treatment, personalized cell therapy based on chimeric antigen receptors (CAR) holds promise for transforming the management of various diseases. CAR-T therapy, the first approved CAR cell therapy product, has demonstrated therapeutic potential in treating infectious diseases, autoimmune disorders, and fibrosis. CAR-macrophages (CAR-Ms) are emerging as a promising approach in CAR immune cell therapy, particularly for solid tumor treatment, highlighting the feasibility of using macrophages to eliminate pathogens and abnormal cells. AIM OF REVIEW This review summarizes the progress of CAR-M therapy in non-tumor diseases and discusses various CAR intracellular activation domain designs and their potential to optimize therapeutic effects by modulating interactions between cellular components in the tissue microenvironment and CAR-M. Additionally, we discuss the characteristics and advantages of CAR-M therapy compared to traditional medicine and CAR-T/NK therapy, as well as the challenges and prospects for the clinical translation of CAR-M. KEY SCIENTIFIC CONCEPTS OF REVIEW This review provides a comprehensive understanding of CAR-M for the treatment of non-tumor diseases, analyzes the advantages and characteristics of CAR-M therapy, and highlights the important impact of CAR intracellular domain design on therapeutic efficacy. In addition, the challenges and clinical translation prospects of developing CAR-M as a new cell therapy are discussed.
Collapse
Affiliation(s)
- Yizhao Chen
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China; Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Qianling Xin
- Anhui Women and Children's Medical Center, Hefei Maternal and Child Health Hospital, Hefei, China
| | - Mengjuan Zhu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Jiaqi Qiu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China
| | - Yan Luo
- Department of Abdominal Radiotherapy, Hubei Provincial Cancer Hospital, Wuhan, China.
| | - Ruilin Li
- Department of Pharmacy, The Third Affiliated Hospital of Anhui Medical University, Hefei First People's Hospital, Hefei, China.
| | - Wei Wei
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| | - Jiajie Tu
- Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Collaborative Innovation Center of Anti-Inflammatory and Immune Medicine, Institute of Clinical Pharmacology, Anhui Medical University, Hefei, China.
| |
Collapse
|
21
|
Kitajima K, Hara T. Generation of chimeric antigen receptor-macrophages by using human induced pluripotent stem cells. Biochem Biophys Res Commun 2025; 743:151158. [PMID: 39673975 DOI: 10.1016/j.bbrc.2024.151158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 12/16/2024]
Abstract
Cancer immunotherapy using chimeric antigen receptor (CAR) cells shows high therapeutic efficacy against several types of leukemia. Among acute lymphoblastic leukemias (ALLs), B cell-derived ALL can be cured by CAR-expressing T cells (CAR-Ts); however, CAR-T cells cannot be simply applied for T cell-derived ALL (T-ALL) because antigens expressed by T-ALL cells, but not by CAR-T cells, have not yet been identified. To apply CAR-T therapy for T-ALL, gene editing of CAR-T cells is required to avoid attacking CAR-T cells themselves. Alternatively, CAR-expressing macrophages (CAR-Ms) have proven to be effective against various cancers, suggesting that CAR-Ms may also be effective against T-ALL. Recently, we developed an efficient differentiation induction system to generate a large number of macrophages from human induced pluripotent stem cells (iPSCs). Here, we asked whether these human iPSC-derived macrophages (iPS-MACs) can be used to develop and evaluate CAR-based immunotherapy against T-ALLs. When non-transduced iPS-MACs were co-cultured with human T-ALL-derived cells, the iPS-MACs appeared to phagocytose parts of T-ALL cells; this method of phagocytosis operated mainly through incorporation of small, "bite-sized" vesicles derived from the T-ALL cells into iPS-MACs (similar to trogocytosis). By contrast, when CAR-expressing iPS-MACs were co-cultured with T-ALL cells, iPS-MACs engulfed the whole T-ALL cell. Thus, our differentiation induction system may be a promising tool for building up CAR-M therapy for T-ALLs.
Collapse
Affiliation(s)
- Kenji Kitajima
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.
| | - Takahiko Hara
- Stem Cell Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan; Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan; Graduate School of Science, Department of Biological Science, Tokyo Metropolitan University, Tokyo, Japan.
| |
Collapse
|
22
|
Koppers MJA, Monnikhof M, Meeldijk J, Koorman T, Bovenschen N. Chimeric antigen receptor-macrophages: Emerging next-generation cell therapy for brain cancer. Neurooncol Adv 2025; 7:vdaf059. [PMID: 40376682 PMCID: PMC12080554 DOI: 10.1093/noajnl/vdaf059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025] Open
Abstract
Adoptive cell-based therapy utilizing chimeric antigen receptor (CAR)-T technology holds promise in the field of neuro-oncology. Significant progress has been made in enhancing both the efficacy and safety of CAR-T-cell therapies. However, challenges such as the multifaceted immunosuppressive impact of the tumor microenvironment and insufficient CAR-T-cell infiltration into brain tumor sites remain a major hurdles. Emerging novel approaches utilizing CAR-macrophages (CAR-MACs) show potent results for brain tumor immunotherapy. CAR-MACs localize to tumor sites more readily, increase immune cell infiltrates, and demonstrate high antitumor efficacy by effectively eliminating tumor cells through mechanisms such as phagocytosis or efferocytosis. This review discusses the current advancements in CAR-MAC cell therapies for brain cancer, followed by an overview of research on manufacturing CAR-MACs for clinical application. We further highlight the potential future applications of CAR-MACs in combinatory therapies in the treatment of brain tumors.
Collapse
Affiliation(s)
- Myrthe J A Koppers
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Matthijs Monnikhof
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jan Meeldijk
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thijs Koorman
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Niels Bovenschen
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Pathology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
23
|
Chaparro V, Leroux LP, Lebourg A, Chagneau S, Graber TE, Alain T, Jaramillo M. Leukemia inhibitory factor drives transcriptional programs that promote lipid accumulation and M2 polarization in macrophages. J Leukoc Biol 2024; 117:qiae178. [PMID: 39178293 DOI: 10.1093/jleuko/qiae178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/24/2024] [Accepted: 08/22/2024] [Indexed: 08/25/2024] Open
Abstract
Leukemia inhibitory factor, a member of the interleukin-6 cytokine family, plays a central role in homeostasis and disease. Interestingly, some of the pleiotropic effects of leukemia inhibitory factor have been attributed to the modulation of macrophage functions although the molecular underpinnings have not been explored at a genome-wide scale. Herein, we investigated leukemia inhibitory factor-driven transcriptional changes in murine bone marrow-derived macrophages by RNA sequencing. In silico analyses revealed a selective and time-dependent remodeling of macrophage gene expression programs associated with lipid metabolism and cell activation. Accordingly, a subset of leukemia inhibitory factor-upregulated transcripts related to cholesterol metabolism and lipid internalization was validated by real-time quantitative polymerase chain reaction. This was accompanied by a leukemia inhibitory factor-enhanced capacity for lipid accumulation in macrophages upon incubation with oxidized low-density lipoprotein. Mechanistically, leukemia inhibitory factor triggered the phosphorylation (Y705 and S727) and nuclear translocation of the transcription factor STAT3 in bone marrow-derived macrophages. Consistent with this, ingenuity pathway analysis identified STAT3 as an upstream regulator of a subset of transcripts, including Il4ra, in leukemia inhibitory factor-treated macrophages. Notably, leukemia inhibitory factor priming enhanced bone marrow-derived macrophage responses to interleukin-4-mediated M2 polarization (i.e. increased arginase activity and accumulation of transcripts encoding for M2 markers). Conversely, leukemia inhibitory factor stimulation had no significant effect in bone marrow-derived macrophage responses to M1-polarizing stimuli (interferon-γ and lipopolysaccharide). Thus, our study provides insight into the transcriptional landscape of leukemia inhibitory factor-treated macrophages, shedding light on its role in lipid metabolism and M2 polarization responses. A better understanding of the regulatory mechanisms governing leukemia inhibitory factor-driven changes might help informing novel therapeutic approaches aiming to reprogram macrophage phenotypes in diseased states (e.g. cancer, atherosclerosis, and infection).
Collapse
Affiliation(s)
- Visnu Chaparro
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Louis-Philippe Leroux
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Aurore Lebourg
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Sophie Chagneau
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| | - Tyson E Graber
- Children's Hospital of Eastern Ontario Research Institute, 401 Smith Rd. Ottawa, ON K1H 8L1, Canada
| | - Tommy Alain
- Children's Hospital of Eastern Ontario Research Institute, 401 Smith Rd. Ottawa, ON K1H 8L1, Canada
- Department of Biochemistry, Microbiology and Immunology, 75 Laurier Ave E. University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Maritza Jaramillo
- Institut National de la Recherche Scientifique (INRS) - Centre Armand-Frappier Santé Biotechnologie (CAFSB), 531 boul. des Prairies, Laval, QC H7V 1B7, Canada
| |
Collapse
|
24
|
Li X, Wang X, Wang H, Zuo D, Xu J, Feng Y, Xue D, Zhang L, Lin L, Zhang J. A clinical study of autologous chimeric antigen receptor macrophage targeting mesothelin shows safety in ovarian cancer therapy. J Hematol Oncol 2024; 17:116. [PMID: 39609867 PMCID: PMC11603993 DOI: 10.1186/s13045-024-01635-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/12/2024] [Indexed: 11/30/2024] Open
Abstract
CAR-macrophage has promising prospect in treating solid tumors, due to its high infiltration into tumors, and its dual roles in phagocytosis and immune modulation. Here we show the clinical results of CAR-macrophage treatment of two ovarian cancer patients. The CAR-macrophages were produced by introducing a mesothelin targeting CAR to patients' primary peripheral blood mononuclear cell-derived macrophages, and the products were infused to patients intravenously. Our data show good safety of the infusion product, and the efficacy can be further improved. Intraperitoneal infusion of CAR-macrophages has proven effective in treating intraperitoneal tumors in a preclinical model, paving the way for demonstrating proof-of-concept clinical efficacy of CAR-macrophages in the treatment of intraperitoneal tumors.
Collapse
Affiliation(s)
- Xiumin Li
- The First Department of Gynecological Oncology, Linyi Cancer Hospital, Linyi, 276002, China.
| | - Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Hao Wang
- CellOrigin Biotech (Hangzhou) Co., Ltd, Hangzhou, 311100, China
| | - Donghua Zuo
- The First Department of Gynecological Oncology, Linyi Cancer Hospital, Linyi, 276002, China
| | - Jianpo Xu
- CellOrigin Biotech (Hangzhou) Co., Ltd, Hangzhou, 311100, China
| | - Yixuan Feng
- CellOrigin Biotech (Hangzhou) Co., Ltd, Hangzhou, 311100, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Li Zhang
- CellOrigin Biotech (Hangzhou) Co., Ltd, Hangzhou, 311100, China
| | - Lin Lin
- CellOrigin Biotech (Hangzhou) Co., Ltd, Hangzhou, 311100, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China.
- Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
- Institute of Hematology, Hangzhou, 310058, China.
- Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
25
|
Zhang Z, Du H, Gao W, Zhang D. Engineered macrophages: an "Intelligent Repair" cellular machine for heart injury. CELL REGENERATION (LONDON, ENGLAND) 2024; 13:25. [PMID: 39592532 PMCID: PMC11599506 DOI: 10.1186/s13619-024-00209-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/22/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024]
Abstract
Macrophages are crucial in the heart's development, function, and injury. As part of the innate immune system, they act as the first line of defense during cardiac injury and repair. After events such as myocardial infarction or myocarditis, numerous macrophages are recruited to the affected areas of the heart to clear dead cells and facilitate tissue repair. This review summarizes the roles of resident and recruited macrophages in developing cardiovascular diseases. We also describe how macrophage phenotypes dynamically change within the cardiovascular disease microenvironment, exhibiting distinct pro-inflammatory and anti-inflammatory functions. Recent studies reveal the values of targeting macrophages in cardiovascular diseases treatment and the novel bioengineering technologies facilitate engineered macrophages as a promising therapeutic strategy. Engineered macrophages have strong natural tropism and infiltration for cardiovascular diseases aiming to reduce inflammatory response, inhibit excessive fibrosis, restore heart function and promote heart regeneration. We also discuss recent studies highlighting therapeutic strategies and new approaches targeting engineered macrophages, which can aid in heart injury recovery.
Collapse
Affiliation(s)
- Zhuo Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Hetian Du
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Weijie Gao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| | - Donghui Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, 430062, China.
- Stem Cells and Tissue Engineering Manufacture Center, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
26
|
Diop MP, van der Stegen SJC. The Pluripotent Path to Immunotherapy. Exp Hematol 2024; 139:104648. [PMID: 39251182 DOI: 10.1016/j.exphem.2024.104648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/14/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Adoptive cell therapy (ACT) enhances the patient's own immune cells' ability to identify and eliminate cancer cells. Several immune cell types are currently being applied in autologous ACT, including T cells, natural killer (NK) cells, and macrophages. The cells' inherent antitumor capacity can be used, or they can be targeted toward tumor-associated antigen through expression of a chimeric antigen receptor (CAR). Although CAR-based ACT has achieved great results in hematologic malignancies, the accessibility of ACT is limited by the autologous nature of the therapy. Induced pluripotent stem cells (iPSCs) hold the potential to address this challenge, because they can provide an unlimited source for the in vitro generation of immune cells. Various immune subsets have been generated from iPSC for application in ACT, including several T-cell subsets (αβT cells, mucosal-associated invariant T cells, invariant NKT [iNKT] cells, and γδT cells), as well as NK cells, macrophages, and neutrophils. iPSC-derived αβT, NK, and iNKT cells are currently being tested in phase I clinical trials. The ability to perform (multiplexed) gene editing at the iPSC level and subsequent differentiation into effector populations not only expands the arsenal of ACT but allows for development of ACT utilizing cell types which cannot be efficiently obtained from peripheral blood or engineered and expanded in vitro.
Collapse
Affiliation(s)
- Mame P Diop
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | | |
Collapse
|
27
|
Zhang H, Huo Y, Zheng W, Li P, Li H, Zhang L, Sa L, He Y, Zhao Z, Shi C, Shan L, Yang A, Wang T. Silencing of SIRPα enhances the antitumor efficacy of CAR-M in solid tumors. Cell Mol Immunol 2024; 21:1335-1349. [PMID: 39379603 PMCID: PMC11527885 DOI: 10.1038/s41423-024-01220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/14/2024] [Indexed: 10/10/2024] Open
Abstract
The potential of macrophage-mediated phagocytosis as a cancer treatment is promising. Blocking the CD47-SIRPα interaction with a CD47-specific antibody significantly enhances macrophage phagocytosis. However, concerns regarding their toxicity to nontumor cells remain substantial. Here, we engineered chimeric antigen receptor macrophages (CAR-Ms) by fusing a humanized single-chain variable fragment with FcγRIIa and integrating short hairpin RNA to silence SIRPα, thereby disrupting the CD47-SIRPα signaling pathway. These modified CAR-shSIRPα-M cells exhibited an M1-like phenotype, superior phagocytic function, substantial cytotoxic effects on HER2-positive tumor cells, and the ability to eliminate patient-derived organoids. In vivo, CAR-M cells significantly inhibited tumor growth and prolonged survival in tumor-bearing mice. Notably, CAR-shSIRPα-M cells enhanced cytotoxic T-cell infiltration into tumors, thereby enhancing the antitumor response in both the humanized immune system mouse model and immunocompetent mice. Mechanistically, SIRPα inhibition activated inflammatory pathways and the cGAS-STING signaling cascade in CAR-M cells, leading to increased production of proinflammatory cytokines, reactive oxygen species, and nitric oxide, thereby enhancing their antitumor effects. These findings underscore the potential of SIRPα inhibition as a novel strategy to increase the antitumor efficacy of CAR-M cells in cancer immunotherapy, particularly against solid tumors.
Collapse
MESH Headings
- Animals
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/genetics
- Humans
- Mice
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
- CD47 Antigen/metabolism
- Cell Line, Tumor
- Antigens, Differentiation
- Macrophages/immunology
- Macrophages/metabolism
- Neoplasms/therapy
- Neoplasms/immunology
- Phagocytosis
- Signal Transduction
- Gene Silencing
- Receptors, IgG/metabolism
- Receptors, IgG/genetics
- Immunotherapy, Adoptive/methods
- Female
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yi Huo
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, China
| | - Wenjing Zheng
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Peng Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Hui Li
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China
| | - Lingling Zhang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Longqi Sa
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yang He
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Zihao Zhao
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China
| | - Changhong Shi
- Division of Cancer Biology, Laboratory Animal Center, Fourth Military Medical University, Xi'an, China.
| | - Lequn Shan
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China.
| | - Angang Yang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Immunology, Fourth Military Medical University, Xi'an, China.
| | - Tao Wang
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers, Department of Medical Genetics and Developmental Biology, Fourth Military Medical University, Xi'an, China.
| |
Collapse
|
28
|
Gao T, Yang L, Zhang Y, Bajinka O, Yuan X. Cancer metabolic reprogramming and precision medicine-current perspective. Front Pharmacol 2024; 15:1450441. [PMID: 39484162 PMCID: PMC11524845 DOI: 10.3389/fphar.2024.1450441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/04/2024] [Indexed: 11/03/2024] Open
Abstract
Despite the advanced technologies and global attention on cancer treatment strategies, cancer continues to claim lives and adversely affects socio-economic development. Although combination therapies were anticipated to eradicate this disease, the resilient and restorative nature of cancers allows them to proliferate at the expense of host immune cells energetically. This proliferation is driven by metabolic profiles specific to the cancer type and the patient. An emerging field is exploring the metabolic reprogramming (MR) of cancers to predict effective treatments. This mini-review discusses the recent advancements in cancer MR that have contributed to predictive, preventive, and precision medicine. Current perspectives on the mechanisms of various cancer types and prospects for MR and personalized cancer medicine are essential for optimizing metabolic outputs necessary for personalized treatments.
Collapse
Affiliation(s)
- Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Yali Zhang
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, Gambia
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, Harbin, China
| |
Collapse
|
29
|
Huang T, Bei C, Hu Z, Li Y. CAR-macrophage: Breaking new ground in cellular immunotherapy. Front Cell Dev Biol 2024; 12:1464218. [PMID: 39421021 PMCID: PMC11484238 DOI: 10.3389/fcell.2024.1464218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Chimeric Antigen Receptor (CAR) technology has revolutionized cellular immunotherapy, particularly with the success of CAR-T cells in treating hematologic malignancies. However, CAR-T cells have the limited efficacy of against solid tumors. To address these limitations, CAR-macrophages (CAR-Ms) leverage the innate properties of macrophages with the specificity and potency of CAR technology, offering a novel and promising approach to cancer immunotherapy. Preclinical studies have shown that CAR-Ms can effectively target and destroy tumor cells, even within challenging microenvironments, by exhibiting direct cytotoxicity and enhancing the recruitment and activation of other immune cells. Additionally, the favorable safety profile of macrophages and their persistence within solid tumors position CAR-Ms as potentially safer and more durable therapeutic options compared to CAR-T cells. This review explores recent advancements in CAR-Ms technology, including engineering strategies to optimize their anti-tumor efficacy and preclinical evidence supporting their use. We also discuss the challenges and future directions in developing CAR-Ms therapies, emphasizing their potential to revolutionize cellular immunotherapy. By harnessing the unique properties of macrophages, CAR-Ms offer a groundbreaking approach to overcoming the current limitations of CAR-T cell therapies, paving the way for more effective and sustainable cancer treatments.
Collapse
Affiliation(s)
- Ting Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chenqi Bei
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhenhua Hu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
30
|
He R, Zuo Y, Yi K, Liu B, Song C, Li N, Geng Q. The role and therapeutic potential of itaconate in lung disease. Cell Mol Biol Lett 2024; 29:129. [PMID: 39354366 PMCID: PMC11445945 DOI: 10.1186/s11658-024-00642-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 09/04/2024] [Indexed: 10/03/2024] Open
Abstract
Lung diseases triggered by endogenous or exogenous factors have become a major concern, with high morbidity and mortality rates, especially after the coronavirus disease 2019 (COVID-19) pandemic. Inflammation and an over-activated immune system can lead to a cytokine cascade, resulting in lung dysfunction and injury. Itaconate, a metabolite produced by macrophages, has been reported as an effective anti-inflammatory and anti-oxidative stress agent with significant potential in regulating immunometabolism. As a naturally occurring metabolite in immune cells, itaconate has been identified as a potential therapeutic target in lung diseases through its role in regulating inflammation and immunometabolism. This review focuses on the origin, regulation, and function of itaconate in lung diseases, and briefly discusses its therapeutic potential.
Collapse
Affiliation(s)
- Ruyuan He
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Yifan Zuo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Ke Yi
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China
| | - Bohao Liu
- Department of Thoracic Surgery, Jilin University, Changchun, China
| | - Congkuan Song
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Hubei Province, 99 Zhangzhidong Road, Wuhan, 430060, China.
| |
Collapse
|
31
|
Wang X, Zhang S, Xue D, Neculai D, Zhang J. Metabolic reprogramming of macrophages in cancer therapy. Trends Endocrinol Metab 2024:S1043-2760(24)00244-3. [PMID: 39304355 DOI: 10.1016/j.tem.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024]
Abstract
Cancer presents a significant global public health challenge. Within the tumor microenvironment (TME), macrophages are the most abundant immune cell population. Tumor-associated macrophages (TAMs) undergo metabolic reprogramming through influence of the TME; thus, by manipulating key metabolic pathways such as glucose, lipid, or amino acid metabolism, it may be possible to shift TAMs towards an antitumor state, enhancing the immune response against tumors. Here, we highlight the metabolic reprogramming of macrophages as a potential approach for cancer immunotherapy. We explore the major pathways involved in the metabolic reprogramming of TAMs and offer new and valuable insights on the current technologies utilized for TAM reprogramming, including genome editing, antibodies, small molecules, nanoparticles and other in situ editing strategies.
Collapse
Affiliation(s)
- Xudong Wang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China.
| | - Shaolong Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China
| | - Dixuan Xue
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Dante Neculai
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, China
| | - Jin Zhang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, 311121, China; Center for Stem Cell and Regenerative Medicine, Department of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China; The Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China; Institute of Hematology, Hangzhou, 310058, China; Center of Gene/Cell Engineering and Genome Medicine of Zhejiang Province, Hangzhou, 310000, China.
| |
Collapse
|
32
|
Li S, Chen G, Huang X, Zhang Y, Shen S, Feng H, Li Y. c-Myc alone is enough to reprogram fibroblasts into functional macrophages. J Hematol Oncol 2024; 17:83. [PMID: 39267119 PMCID: PMC11396436 DOI: 10.1186/s13045-024-01605-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Macrophage-based cell therapy is promising in solid tumors, but the efficient acquisition of macrophages remains a challenge. Induced pluripotent stem cell (iPSC)-induced macrophages are a valuable source, but time-consuming and costly. The application of reprogramming technologies allows for the generation of macrophages from somatic cells, thereby facilitating the advancement of cell-based therapies for numerous malignant diseases. METHODS The composition of CD45+ myeloid-like cell complex (MCC) and induced macrophage (iMac) were analyzed by flow cytometry and single-cell RNA sequencing. The engraftment capacity of CD45+ MCC was evaluated by two transplantation assays. Regulation of c-Myc on MafB was evaluated by ChIP-qPCR and promoter reporter and dual luciferase assays. The phenotype and phagocytosis of iMac were explored by flow cytometry and immunofluorescence. Leukemia, breast cancer, and patient-derived tumor xenograft models were used to explore the anti-tumor function of iMac. RESULTS Here we report on the establishment of a novel methodology allowing for reprogramming fibroblasts into functional macrophages with phagocytic activity by c-Myc overexpression. Fibroblasts with ectopic expression of c-Myc in iPSC medium rapidly generated CD45+ MCC intermediates with engraftment capacity as well as the repopulation of distinct hematopoietic compartments. MCC intermediates were stably maintained in iPSC medium and continuously generated functional and highly pure iMac just by M-CSF cytokine stimulation. Single-cell transcriptomic analysis of MCC intermediates revealed that c-Myc up-regulated the expression of MafB, a major regulator of macrophage differentiation, to promote macrophage differentiation. Characterization of the iMac activity showed NF-κB signaling activation and a pro-inflammatory phenotype. iMac cells displayed significantly increased in vivo persistence and inhibition of tumor progression in leukemia, breast cancer, and patient-derived tumor xenograft models. CONCLUSIONS Our findings demonstrate that c-Myc alone is enough to reprogram fibroblasts into functional macrophages, supporting that c-Myc reprogramming strategy of fibroblasts can help circumvent long-standing obstacles to gaining "off-the-shelf" macrophages for anti-cancer immunotherapy.
Collapse
Affiliation(s)
- Shanshan Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Guoyu Chen
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Xia Huang
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Yingwen Zhang
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Shuhong Shen
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Haizhong Feng
- State Key Laboratory of Systems Medicine for Cancer, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Cancer Institute, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| | - Yanxin Li
- Pediatric Translational Medicine Institute, Department of Hematology & Oncology, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China.
| |
Collapse
|
33
|
Feng F, Shen J, Qi Q, Zhang Y, Ni S. Empowering brain tumor management: chimeric antigen receptor macrophage therapy. Theranostics 2024; 14:5725-5742. [PMID: 39310093 PMCID: PMC11413779 DOI: 10.7150/thno.98290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 08/17/2024] [Indexed: 09/25/2024] Open
Abstract
Brain tumors pose formidable challenges in oncology due to the intricate biology and the scarcity of effective treatment modalities. The emergence of immunotherapy has opened new avenues for innovative therapeutic strategies. Chimeric antigen receptor, originally investigated in T cell-based therapy, has now expanded to encompass macrophages, presenting a compelling avenue for augmenting anti-tumor immune surveillance. This emerging frontier holds promise for advancing the repertoire of therapeutic options against brain tumors, offering potential breakthroughs in combating the formidable malignancies of the central nervous system. Tumor-associated macrophages constitute a substantial portion, ranging from 30% to 50%, of the tumor tissue and exhibit tumor-promoting phenotypes within the immune-compromised microenvironment. Constructing CAR-macrophages can effectively repolarize M2-type macrophages towards an M1-type phenotype, thereby eliciting potent anti-tumor effects. CAR-macrophages can recruit T cells to the brain tumor site, thereby orchestrating a remodeling of the immune niche to effectively inhibit tumor growth. In this review, we explore the potential limitations as well as strategies for optimizing CAR-M therapy, offering insights into the future direction of this innovative therapeutic approach.
Collapse
Affiliation(s)
| | | | - Qichao Qi
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Yulin Zhang
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| | - Shilei Ni
- Department of Neurosurgery, Qilu Hospital and Institute of Brain and Brain-Inspired Science, Cheeloo College of Medicine, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong, China
| |
Collapse
|
34
|
Huang KT, Aye Y. Toward decoding spatiotemporal signaling activities of reactive immunometabolites with precision immuno-chemical biology tools. Commun Chem 2024; 7:195. [PMID: 39223329 PMCID: PMC11369232 DOI: 10.1038/s42004-024-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs-e.g., fumarate, itaconate) is an emerging phenomenon of major biomedical importance. Despite their localized production, mt-REMs elicit significantly large local and global footprints within and across cells, through mechanisms involving electrophile signaling. Burgeoning efforts are being put into profiling mt-REMs' potential protein-targets and phenotypic mapping of their multifaceted inflammatory behaviors. Yet, precision indexing of mt-REMs' first-responders with spatiotemporal intelligence and locale-specific function assignments remain elusive. Highlighting the latest advances and overarching challenges, this perspective aims to stimulate thoughts and spur interdisciplinary innovations to address these unmet chemical-biotechnological needs at therapeutic immuno-signaling frontiers.
Collapse
Affiliation(s)
- Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- University of Oxford, Oxford, UK.
| |
Collapse
|
35
|
Lu J, Ma Y, Li Q, Xu Y, Xue Y, Xu S. CAR Macrophages: a promising novel immunotherapy for solid tumors and beyond. Biomark Res 2024; 12:86. [PMID: 39175095 PMCID: PMC11342599 DOI: 10.1186/s40364-024-00637-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 08/09/2024] [Indexed: 08/24/2024] Open
Abstract
With the advent of adoptive cellular therapy, chimeric antigen receptor (CAR)-T cell therapy has gained widespread application in cancer treatment and has demonstrated significant efficacy against certain hematologic malignancies. However, due to the limitations of CAR-T cell therapy in treating solid tumors, other immune cells are being modified with CAR to address this issue. Macrophages have emerged as a promising option, owing to their extensive immune functions, which include antigen presentation, powerful tumor phagocytosis, and particularly active trafficking to the tumor microenvironment. Leveraging their unique advantages, CAR-macrophages (CAR-M) are expected to enhance the effectiveness of solid tumor treatments as a novel form of immunotherapy, potentially overcoming major challenges associated with CAR-T/NK therapy. This review outlines the primary mechanism underlying CAR-M and recent progressions in CAR-M therapy, while also discussing their further applications.
Collapse
Affiliation(s)
- Jialin Lu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yuqing Ma
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Qiuxin Li
- Department of Gastroenterology, Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yihuan Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China
| | - Yiquan Xue
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
| | - Sheng Xu
- National Key Lab of Immunity and Inflammation and Institute of Immunology, Naval Medical University/Second Military Medical University, Shanghai, 200433, China.
- Shanghai Institute of Stem Cell Research and Clinical Translation, Shanghai, 200120, China.
| |
Collapse
|
36
|
Wu H, Fu M, Wu M, Cao Z, Zhang Q, Liu Z. Emerging mechanisms and promising approaches in pancreatic cancer metabolism. Cell Death Dis 2024; 15:553. [PMID: 39090116 PMCID: PMC11294586 DOI: 10.1038/s41419-024-06930-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Pancreatic cancer is an aggressive cancer with a poor prognosis. Metabolic abnormalities are one of the hallmarks of pancreatic cancer, and pancreatic cancer cells can adapt to biosynthesis, energy intake, and redox needs through metabolic reprogramming to tolerate nutrient deficiency and hypoxic microenvironments. Pancreatic cancer cells can use glucose, amino acids, and lipids as energy to maintain malignant growth. Moreover, they also metabolically interact with cells in the tumour microenvironment to change cell fate, promote tumour progression, and even affect immune responses. Importantly, metabolic changes at the body level deserve more attention. Basic research and clinical trials based on targeted metabolic therapy or in combination with other treatments are in full swing. A more comprehensive and in-depth understanding of the metabolic regulation of pancreatic cancer cells will not only enrich the understanding of the mechanisms of disease progression but also provide inspiration for new diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Hao Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengdi Fu
- Department of Clinical Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Qiyao Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
37
|
Lu R, Luo Z, Zhang Y, Chen J, Zhang Y, Zhang C. A Multifunctional Tissue-Engineering Hydrogel Aimed to Regulate Bacterial Ferroptosis-Like Death and Overcoming Infection Toward Bone Remodeling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309820. [PMID: 38896799 PMCID: PMC11321691 DOI: 10.1002/advs.202309820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 05/12/2024] [Indexed: 06/21/2024]
Abstract
Infection is the most common complication after orthopedic surgery and can result in prolonged ailments such as chronic wounds, enlarged bone defects, and osteomyelitis. Iron, which is essential for bacterial metabolism and immune cell functions, is extremely important. Bacteria harness iron from nearby cells to promote biofilm formation, ensuring their survival. Iron deficiency within the infection microenvironment (IME) consequently hampers macrophage function, enabling further dissemination of the infection and hindering macrophage polarization to the M2 phenotype. Therefore, a novel approach is proposed to regulate macrophage polarization, aiming to restore the inflammatory immune environment. A composite hydrogel derived from natural polymers is developed to address infections and manage iron metabolism in macrophages. This IME-responsive hydrogel, named FCL-ECMH, is synthesized by encapsulating vermiculite functional core layers within a decellularized extracellular matrix hydrogel. It is noteworthy that FCL-ECMH can produce reactive oxygen species within the IME. Supplementary photothermal treatment enhances bacterial iron uptake, leading to ferroptosis-like death. This process also rejuvenates the iron-enriched macrophages around the IME, thereby enhancing their antibacterial and tissue repair functions. In vivo experiments confirmed the antibacterial and repair-promoting capabilities of FCL-ECMH, indicating its potential for clinical applications.
Collapse
Affiliation(s)
- Renjie Lu
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Zhiyuan Luo
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| | - Yuanyuan Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Jiahao Chen
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
| | - Yang Zhang
- Nanomedicine and Intestinal Microecology Research Center, Shanghai Tenth People's Hospital, School of MedicineTongji University301 Yanchang RoadShanghai200072China
- Precision Medicine CenterTaizhou Central Hospital999 Donghai RoadTaizhouZhejiang318000China
| | - Chi Zhang
- Department of Orthopedic Surgery, Shanghai Institute of Microsurgery on ExtremitiesShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine600 Yishan RoadShanghai200233China
| |
Collapse
|
38
|
Liu B, Zhou H, Tan L, Siu KTH, Guan XY. Exploring treatment options in cancer: Tumor treatment strategies. Signal Transduct Target Ther 2024; 9:175. [PMID: 39013849 PMCID: PMC11252281 DOI: 10.1038/s41392-024-01856-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 07/18/2024] Open
Abstract
Traditional therapeutic approaches such as chemotherapy and radiation therapy have burdened cancer patients with onerous physical and psychological challenges. Encouragingly, the landscape of tumor treatment has undergone a comprehensive and remarkable transformation. Emerging as fervently pursued modalities are small molecule targeted agents, antibody-drug conjugates (ADCs), cell-based therapies, and gene therapy. These cutting-edge treatment modalities not only afford personalized and precise tumor targeting, but also provide patients with enhanced therapeutic comfort and the potential to impede disease progression. Nonetheless, it is acknowledged that these therapeutic strategies still harbour untapped potential for further advancement. Gaining a comprehensive understanding of the merits and limitations of these treatment modalities holds the promise of offering novel perspectives for clinical practice and foundational research endeavours. In this review, we discussed the different treatment modalities, including small molecule targeted drugs, peptide drugs, antibody drugs, cell therapy, and gene therapy. It will provide a detailed explanation of each method, addressing their status of development, clinical challenges, and potential solutions. The aim is to assist clinicians and researchers in gaining a deeper understanding of these diverse treatment options, enabling them to carry out effective treatment and advance their research more efficiently.
Collapse
Affiliation(s)
- Beilei Liu
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China
| | - Hongyu Zhou
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Licheng Tan
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Kin To Hugo Siu
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, The University of Hong Kong-Shenzhen Hospital, Shenzhen, China.
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, China.
- State Key Laboratory for Liver Research, The University of Hong Kong, Hong Kong, China.
- Advanced Energy Science and Technology Guangdong Laboratory, Huizhou, China.
- MOE Key Laboratory of Tumor Molecular Biology, Jinan University, Guangzhou, China.
| |
Collapse
|
39
|
Shen J, Lyu S, Xu Y, Zhang S, Li L, Li J, Mou J, Xie L, Tang K, Wen W, Peng X, Yang Y, Shi Y, Li X, Wang M, Li X, Wang J, Cheng T. Activating innate immune responses repolarizes hPSC-derived CAR macrophages to improve anti-tumor activity. Cell Stem Cell 2024; 31:1003-1019.e9. [PMID: 38723634 DOI: 10.1016/j.stem.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 07/08/2024]
Abstract
Generation of chimeric antigen receptor macrophages (CAR-Ms) from human pluripotent stem cells (hPSCs) offers new prospects for cancer immunotherapy but is currently challenged by low differentiation efficiency and limited function. Here, we develop a highly efficient monolayer-based system that can produce around 6,000 macrophages from a single hPSC within 3 weeks. Based on CAR structure screening, we generate hPSC-CAR-Ms with stable CAR expression and potent tumoricidal activity in vitro. To overcome the loss of tumoricidal activity of hPSC-CAR-Ms in vivo, we use interferon-γ and monophosphoryl lipid A to activate an innate immune response that repolarizes the hPSC-CAR-Ms to tumoricidal macrophages. Moreover, through combined activation of T cells by hPSC-CAR-Ms, we demonstrate that activating a collaborative innate-adaptive immune response can further enhance the anti-tumor effect of hPSC-CAR-Ms in vivo. Collectively, our study provides feasible methodologies that significantly improve the production and function of hPSC-CAR-Ms to support their translation into clinical applications.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| | - Shuzhen Lyu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Yingxi Xu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Li Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Medicine, Nankai University, Tianjin 300071, China
| | - Jinze Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Junli Mou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Leling Xie
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Kejing Tang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Wei Wen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xuemei Peng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Ying Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China; Key Laboratory of Tumor Immunopathology, Ministry of Education of China, Chongqing 400038, China
| | - Xinjie Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China
| | - Min Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China
| | - Xin Li
- School of Medicine, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jianxiang Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China.
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300020, China; Center for Stem Cell Medicine, Chinese Academy of Medical Sciences, Tianjin 300020, China; Department of Stem Cell & Regenerative Medicine, Peking Union Medical College, Tianjin 300020, China.
| |
Collapse
|
40
|
Ye D, Wang P, Chen LL, Guan KL, Xiong Y. Itaconate in host inflammation and defense. Trends Endocrinol Metab 2024; 35:586-606. [PMID: 38448252 DOI: 10.1016/j.tem.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/03/2024] [Indexed: 03/08/2024]
Abstract
Immune cells undergo rapid and extensive metabolic changes during inflammation. In addition to contributing to energetic and biosynthetic demands, metabolites can also function as signaling molecules. Itaconate (ITA) rapidly accumulates to high levels in myeloid cells under infectious and sterile inflammatory conditions. This metabolite binds to and regulates the function of diverse proteins intracellularly to influence metabolism, oxidative response, epigenetic modification, and gene expression and to signal extracellularly through binding the G protein-coupled receptor (GPCR). Administration of ITA protects against inflammatory diseases and blockade of ITA production enhances antitumor immunity in preclinical models. In this article, we review ITA metabolism and its regulation, discuss its target proteins and mechanisms, and conjecture a rationale for developing ITA-based therapeutics to treat inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Dan Ye
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
| | - Pu Wang
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Lei-Lei Chen
- Molecular and Cell Biology Laboratory, Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Kun-Liang Guan
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Yue Xiong
- Cullgen Inc., 12730 High Bluff Drive, San Diego, CA 92130, USA.
| |
Collapse
|
41
|
Greiner D, Xue Q, Waddell TQ, Kurudza E, Belote RL, Dotti G, Judson-Torres RL, Reeves MQ, Cheshier SH, Roh-Johnson M. CSPG4-targeting CAR-macrophages inhibit melanoma growth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597413. [PMID: 38895447 PMCID: PMC11185669 DOI: 10.1101/2024.06.04.597413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematological malignancies but has been clinically less effective in solid tumors. Engineering macrophages with CARs has emerged as a promising approach to overcome some of the challenges faced by CAR-T cells due to the macrophage's ability to easily infiltrate tumors, phagocytose their targets, and reprogram the immune response. We engineered CAR-macrophages (CAR-Ms) to target chondroitin sulfate proteoglycan 4 (CSPG4), an antigen expressed in melanoma, and several other solid tumors. CSPG4-targeting CAR-Ms exhibited specific phagocytosis of CSPG4-expressing melanoma cells. Combining CSPG4-targeting CAR-Ms with CD47 blocking antibodies synergistically enhanced CAR-M-mediated phagocytosis and effectively inhibited melanoma spheroid growth in 3D. Furthermore, CSPG4-targeting CAR-Ms inhibited melanoma tumor growth in mouse models. These results suggest that CSPG4-targeting CAR-M immunotherapy is a promising solid tumor immunotherapy approach for treating melanoma. STATEMENT OF SIGNIFICANCE We engineered macrophages with CARs as an alternative approach for solid tumor treatment. CAR-macrophages (CAR-Ms) targeting CSPG4, an antigen expressed in melanoma and other solid tumors, phagocytosed melanoma cells and inhibited melanoma growth in vivo . Thus, CSPG4-targeting CAR-Ms may be a promising strategy to treat patients with CSPG4-expressing tumors.
Collapse
|
42
|
Li N, Geng S, Dong ZZ, Jin Y, Ying H, Li HW, Shi L. A new era of cancer immunotherapy: combining revolutionary technologies for enhanced CAR-M therapy. Mol Cancer 2024; 23:117. [PMID: 38824567 PMCID: PMC11143597 DOI: 10.1186/s12943-024-02032-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/24/2024] [Indexed: 06/03/2024] Open
Abstract
Significant advancements have been made in the application of chimeric antigen receptor (CAR)-T treatment for blood cancers during the previous ten years. However, its effectiveness in treating solid tumors is still lacking, necessitating the exploration of alternative immunotherapies that can overcome the significant challenges faced by current CAR-T cells. CAR-based immunotherapy against solid tumors shows promise with the emergence of macrophages, which possess robust phagocytic abilities, antigen-presenting functions, and the ability to modify the tumor microenvironment and stimulate adaptive responses. This paper presents a thorough examination of the latest progress in CAR-M therapy, covering both basic scientific studies and clinical trials. This study examines the primary obstacles hindering the realization of the complete potential of CAR-M therapy, as well as the potential strategies that can be employed to overcome these hurdles. With the emergence of revolutionary technologies like in situ genetic modification, synthetic biology techniques, and biomaterial-supported gene transfer, which provide a wider array of resources for manipulating tumor-associated macrophages, we suggest that combining these advanced methods will result in the creation of a new era of CAR-M therapy that demonstrates improved efficacy, safety, and availability.
Collapse
Affiliation(s)
- Na Li
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Immunology, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, China
| | - Shinan Geng
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
| | - Zhen-Zhen Dong
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Ying Jin
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hangjie Ying
- Hangzhou Institute of Medicine (HIM), Zhejiang Caner Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Hung-Wing Li
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liyun Shi
- Key lab of Artificial Organs and Computational Medicine, Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, Zhejiang, 310015, China.
| |
Collapse
|
43
|
Jiang B, Zhang W, Zhang X, Sun Y. Targeting senescent cells to reshape the tumor microenvironment and improve anticancer efficacy. Semin Cancer Biol 2024; 101:58-73. [PMID: 38810814 DOI: 10.1016/j.semcancer.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/09/2024] [Accepted: 05/12/2024] [Indexed: 05/31/2024]
Abstract
Cancer is daunting pathology with remarkable breadth and scope, spanning genetics, epigenetics, proteomics, metalobomics and cell biology. Cellular senescence represents a stress-induced and essentially irreversible cell fate associated with aging and various age-related diseases, including malignancies. Senescent cells are characterized of morphologic alterations and metabolic reprogramming, and develop a highly active secretome termed as the senescence-associated secretory phenotype (SASP). Since the first discovery, senescence has been understood as an important barrier to tumor progression, as its induction in pre-neoplastic cells limits carcinogenesis. Paradoxically, senescent cells arising in the tumor microenvironment (TME) contribute to tumor progression, including augmented therapeutic resistance. In this article, we define typical forms of senescent cells commonly observed within the TME and how senescent cells functionally remodel their surrounding niche, affect immune responses and promote cancer evolution. Furthermore, we highlight the recently emerging pipelines of senotherapies particularly senolytics, which can selectively deplete senescent cells from affected organs in vivo and impede tumor progression by restoring therapeutic responses and securing anticancer efficacies. Together, co-targeting cancer cells and their normal but senescent counterparts in the TME holds the potential to achieve increased therapeutic benefits and restrained disease relapse in future clinical oncology.
Collapse
Affiliation(s)
- Birong Jiang
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Wei Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuguang Zhang
- Mengniu Institute of Nutrition Science, Global R&D Innovation Center, Shanghai 200124, China
| | - Yu Sun
- School of Pharmacy, Institute of Aging Medicine, Binzhou Medical University, Yantai, Shandong 264003, China; CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, China; Department of Medicine and VAPSHCS, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
44
|
Kumar V, Stewart Iv JH. Pattern-Recognition Receptors and Immunometabolic Reprogramming: What We Know and What to Explore. J Innate Immun 2024; 16:295-323. [PMID: 38740018 PMCID: PMC11250681 DOI: 10.1159/000539278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Evolutionarily, immune response is a complex mechanism that protects the host from internal and external threats. Pattern-recognition receptors (PRRs) recognize MAMPs, PAMPs, and DAMPs to initiate a protective pro-inflammatory immune response. PRRs are expressed on the cell membranes by TLR1, 2, 4, and 6 and in the cytosolic organelles by TLR3, 7, 8, and 9, NLRs, ALRs, and cGLRs. We know their downstream signaling pathways controlling immunoregulatory and pro-inflammatory immune response. However, the impact of PRRs on metabolic control of immune cells to control their pro- and anti-inflammatory activity has not been discussed extensively. SUMMARY Immune cell metabolism or immunometabolism critically determines immune cells' pro-inflammatory phenotype and function. The current article discusses immunometabolic reprogramming (IR) upon activation of different PRRs, such as TLRs, NLRs, cGLRs, and RLRs. The duration and type of PRR activated, species studied, and location of immune cells to specific organ are critical factors to determine the IR-induced immune response. KEY MESSAGE The work herein describes IR upon TLR, NLR, cGLR, and RLR activation. Understanding IR upon activating different PRRs is critical for designing better immune cell-specific immunotherapeutics and immunomodulators targeting inflammation and inflammatory diseases.
Collapse
Affiliation(s)
- Vijay Kumar
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - John H Stewart Iv
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Medical Education Building-C, Morehouse School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
45
|
Yuan G, Ye M, Zhang Y, Zeng X. Challenges and strategies in relation to effective CAR-T cell immunotherapy for solid tumors. Med Oncol 2024; 41:126. [PMID: 38652178 DOI: 10.1007/s12032-024-02310-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/23/2024] [Indexed: 04/25/2024]
Abstract
Chimeric Antigen Receptor T cell (CAR-T) therapy has revolutionized cancer treatment, but its application to solid tumors is limited. CAR-T cells have poor incapability of entering, surviving, proliferating, and finally exerting function in the tumor microenvironment. This review summarizes the main strategies related to enhancing the infiltration, efficacy, antigen recognition, and production of CAR-T in solid tumors. Additional applications of CAR-γδ T and macrophages are also discussed. We believe CAR-T will be a milestone in treating solid tumors once these problems are solved.
Collapse
Affiliation(s)
- Guangxun Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Mengke Ye
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yixi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
46
|
Huang J, Yang Q, Wang W, Huang J. CAR products from novel sources: a new avenue for the breakthrough in cancer immunotherapy. Front Immunol 2024; 15:1378739. [PMID: 38665921 PMCID: PMC11044028 DOI: 10.3389/fimmu.2024.1378739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy has transformed cancer immunotherapy. However, significant challenges limit its application beyond B cell-driven malignancies, including limited clinical efficacy, high toxicity, and complex autologous cell product manufacturing. Despite efforts to improve CAR T cell therapy outcomes, there is a growing interest in utilizing alternative immune cells to develop CAR cells. These immune cells offer several advantages, such as major histocompatibility complex (MHC)-independent function, tumor microenvironment (TME) modulation, and increased tissue infiltration capabilities. Currently, CAR products from various T cell subtypes, innate immune cells, hematopoietic progenitor cells, and even exosomes are being explored. These CAR products often show enhanced antitumor efficacy, diminished toxicity, and superior tumor penetration. With these benefits in mind, numerous clinical trials are underway to access the potential of these innovative CAR cells. This review aims to thoroughly examine the advantages, challenges, and existing insights on these new CAR products in cancer treatment.
Collapse
Affiliation(s)
| | | | - Wen Wang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Juan Huang
- Department of Hematology, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Harber KJ, Neele AE, van Roomen CP, Gijbels MJ, Beckers L, Toom MD, Schomakers BV, Heister DA, Willemsen L, Griffith GR, de Goede KE, van Dierendonck XA, Reiche ME, Poli A, L-H Mogensen F, Michelucci A, Verberk SG, de Vries H, van Weeghel M, Van den Bossche J, de Winther MP. Targeting the ACOD1-itaconate axis stabilizes atherosclerotic plaques. Redox Biol 2024; 70:103054. [PMID: 38309122 PMCID: PMC10848031 DOI: 10.1016/j.redox.2024.103054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/16/2024] [Accepted: 01/20/2024] [Indexed: 02/05/2024] Open
Abstract
Inflammatory macrophages are key drivers of atherosclerosis that can induce rupture-prone vulnerable plaques. Skewing the plaque macrophage population towards a more protective phenotype and reducing the occurrence of clinical events is thought to be a promising method of treating atherosclerotic patients. In the current study, we investigate the immunomodulatory properties of itaconate, an immunometabolite derived from the TCA cycle intermediate cis-aconitate and synthesised by the enzyme Aconitate Decarboxylase 1 (ACOD1, also known as IRG1), in the context of atherosclerosis. Ldlr-/- atherogenic mice transplanted with Acod1-/- bone marrow displayed a more stable plaque phenotype with smaller necrotic cores and showed increased recruitment of monocytes to the vessel intima. Macrophages from Acod1-/- mice contained more lipids whilst also displaying reduced induction of apoptosis. Using multi-omics approaches, we identify a metabolic shift towards purine metabolism, in addition to an altered glycolytic flux towards production of glycerol for triglyceride synthesis. Overall, our data highlight the potential of therapeutically blocking ACOD1 with the aim of stabilizing atherosclerotic plaques.
Collapse
Affiliation(s)
- Karl J Harber
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Annette E Neele
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands
| | - Cindy Paa van Roomen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Marion Jj Gijbels
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Department of Pathology, CARIM, Cardiovascular Research Institute Maastricht, GROW-School for Oncology and Developmental Biology, Maastricht UMC, University of Maastricht, 6229 HX, Maastricht, the Netherlands
| | - Linda Beckers
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Myrthe den Toom
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Bauke V Schomakers
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Daan Af Heister
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Lisa Willemsen
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands
| | - Guillermo R Griffith
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands
| | - Kyra E de Goede
- Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands
| | - Xanthe Amh van Dierendonck
- Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands
| | - Myrthe E Reiche
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Department of Medical Cell Biology, Uppsala University, 75236, Uppsala, Sweden
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Frida L-H Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, 6A Rue Nicolas-Ernest Barblé, L-1210, Luxembourg, Luxembourg
| | - Sanne Gs Verberk
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands
| | - Helga de Vries
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Neuroscience, Amsterdam, the Netherlands
| | - Michel van Weeghel
- Department of Genetic Metabolic Diseases, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Core Facility Metabolomics, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, the Netherlands
| | - Jan Van den Bossche
- Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands; Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, the Netherlands; Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, the Netherlands.
| | - Menno Pj de Winther
- Department of Medical Biochemistry, Amsterdam UMC, University of Amsterdam, 1105 AZ, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences (ACS), Atherosclerosis & Ischemic Syndromes, Amsterdam UMC, the Netherlands; Amsterdam Institute for Infection and Immunity (AII), Inflammatory Diseases, Amsterdam UMC, the Netherlands.
| |
Collapse
|
48
|
Saha P, Ettel P, Weichhart T. Leveraging macrophage metabolism for anticancer therapy: opportunities and pitfalls. Trends Pharmacol Sci 2024; 45:335-349. [PMID: 38494408 DOI: 10.1016/j.tips.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 03/19/2024]
Abstract
Tumor-associated macrophages (TAMs) constitute an important part of the tumor microenvironment (TME) that regulates tumor progression. Tumor-derived signals, hypoxia, and competition for nutrients influence TAMs to reprogram their cellular metabolism. This altered metabolic profile creates a symbiotic communication between tumor and other immune cells to support tumor growth. In addition, the metabolic profile of TAMs regulates the expression of immune checkpoint molecules. The dynamic plasticity also allows TAMs to reshape their metabolism in response to modern therapeutic strategies. Therefore, over the years, a significant number of approaches have been implicated to reprogram cancer-promoting metabolism in TAMs. In this review, we discuss the current strategies and pitfalls, along with upcoming promising opportunities in leveraging TAM metabolism for developing better therapeutic approaches against cancer.
Collapse
Affiliation(s)
- Piyal Saha
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Paul Ettel
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria
| | - Thomas Weichhart
- Institute for Medical Genetics, Center for Pathobiochemistry and Genetics, Medical University of Vienna, Währinger Straße 10, 1090 Vienna, Austria.
| |
Collapse
|
49
|
Chen X, Du J, Yun S, Xue C, Yao Y, Rao S. Recent advances in CRISPR-Cas9-based genome insertion technologies. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102138. [PMID: 38379727 PMCID: PMC10878794 DOI: 10.1016/j.omtn.2024.102138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Programmable genome insertion (or knock-in) is vital for both fundamental and translational research. The continuously expanding number of CRISPR-based genome insertion strategies demonstrates the ongoing development in this field. Common methods for site-specific genome insertion rely on cellular double-strand breaks repair pathways, such as homology-directed repair, non-homologous end-joining, and microhomology-mediated end joining. Recent advancements have further expanded the toolbox of programmable genome insertion techniques, including prime editing, integrase coupled with programmable nuclease, and CRISPR-associated transposon. These tools possess their own capabilities and limitations, promoting tremendous efforts to enhance editing efficiency, broaden targeting scope and improve editing specificity. In this review, we first summarize recent advances in programmable genome insertion techniques. We then elaborate on the cons and pros of each technique to assist researchers in making informed choices when using these tools. Finally, we identify opportunities for future improvements and applications in basic research and therapeutics.
Collapse
Affiliation(s)
- Xinwen Chen
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Jingjing Du
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shaowei Yun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Chaoyou Xue
- Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Yao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| | - Shuquan Rao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China
- Tianjin Institutes of Health Science, Tianjin 301600, China
| |
Collapse
|
50
|
Chen C, Zhang Z, Liu C, Sun P, Liu P, Li X. ABCG2 is an itaconate exporter that limits antibacterial innate immunity by alleviating TFEB-dependent lysosomal biogenesis. Cell Metab 2024; 36:498-510.e11. [PMID: 38181789 DOI: 10.1016/j.cmet.2023.12.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 11/08/2023] [Accepted: 12/11/2023] [Indexed: 01/07/2024]
Abstract
Itaconate is a metabolite that synthesized from cis-aconitate in mitochondria and transported into the cytosol to exert multiple regulatory effects in macrophages. However, the mechanism by which itaconate exits from macrophages remains unknown. Using a genetic screen, we reveal that itaconate is exported from cytosol to extracellular space by ATP-binding cassette transporter G2 (ABCG2) in an ATPase-dependent manner in human and mouse macrophages. Elevation of transcription factor TFEB-dependent lysosomal biogenesis and antibacterial innate immunity are observed in inflammatory macrophages with deficiency of ABCG2-mediated itaconate export. Furthermore, deficiency of ABCG2-mediated itaconate export in macrophages promotes antibacterial innate immune defense in a mouse model of S. typhimurium infection. Thus, our findings identify ABCG2-mediated itaconate export as a key regulatory mechanism that limits TFEB-dependent lysosomal biogenesis and antibacterial innate immunity in inflammatory macrophages, implying the potential therapeutic utility of blocking itaconate export in treating human bacterial infections.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenxing Zhang
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Caiyun Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengkai Sun
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xinjian Li
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|