1
|
Lu Z, Ren T, Li Y, Cakmak I, Lu J. Nutrient limitations on photosynthesis: from individual to combinational stresses. TRENDS IN PLANT SCIENCE 2025:S1360-1385(25)00066-4. [PMID: 40221269 DOI: 10.1016/j.tplants.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 03/03/2025] [Accepted: 03/12/2025] [Indexed: 04/14/2025]
Abstract
Liebig's law of the minimum states that increasing photosynthetic productivity on nutrient-impoverished soils depends on addressing the most limiting nutrient. Research has identified the roles of different mineral nutrients in photosynthetic processes. However, diffusional and biochemical regulation of photosynthesis both feature patterns of cumulative effects that jointly determine photosynthetic capacity. More importantly, responses to multiple nutrient stresses are not simply additive and require a comprehensive understanding of how these stresses interact and impact photosynthetic performance. In this review we highlight key macroelements for photosynthesis - nitrogen, phosphorus, potassium, and magnesium - focusing on their unique functions and interactions in regulating carbon fixation under multiple nutrient deficiencies, with the goal of enhancing crop productivity through balanced nutrient applications.
Collapse
Affiliation(s)
- Zhifeng Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Tao Ren
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ismail Cakmak
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, 34956, Turkey.
| | - Jianwei Lu
- Microelement Research Center, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Wuhan 430070, China.
| |
Collapse
|
2
|
Yan Y, Li B, Dechant B, Xu M, Luo X, Qu S, Miao G, Leng J, Shang R, Shu L, Jiang C, Wang H, Jeong S, Ryu Y, Chen JM. Plant traits shape global spatiotemporal variations in photosynthetic efficiency. NATURE PLANTS 2025; 11:924-934. [PMID: 40133671 DOI: 10.1038/s41477-025-01958-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 02/26/2025] [Indexed: 03/27/2025]
Abstract
Photosynthetic efficiency (PE) quantifies the fraction of absorbed light used in photochemistry to produce chemical energy during photosynthesis and is essential for understanding ecosystem productivity and the global carbon cycle, particularly under conditions of vegetation stress. However, nearly 60% of the global spatiotemporal variance in terrestrial PE remains unexplained. Here we integrate remote sensing and eco-evolutionary optimality theory to derive key plant traits, alongside explainable machine learning and global eddy covariance observations, to uncover the drivers of daily PE variations. Incorporating plant traits into our model increases the explained daily PE variance from 36% to 80% for C3 vegetation and from 54% to 84% for C4 vegetation compared with using climate data alone. Key plant traits-including chlorophyll content, leaf longevity and leaf mass per area-consistently emerge as important factors across global biomes and temporal scales. Water availability and light conditions are also critical in regulating PE, underscoring the need for an integrative approach that combines plant traits with climatic factors. Overall, our findings demonstrate the potential of remote sensing and eco-evolutionary optimality theory to capture principal PE drivers, offering valuable tools for more accurately predicting ecosystem productivity and improving Earth system models under climate change.
Collapse
Affiliation(s)
- Yulin Yan
- Geography Postdoctoral Program, Fujian Normal University, Fuzhou, China.
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China.
| | - Bolun Li
- School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
| | - Benjamin Dechant
- German Centre for Integrative Biodiversity Research, Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Mingzhu Xu
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China
| | - Xiangzhong Luo
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Sai Qu
- Department of Geography, National University of Singapore, Singapore, Singapore
| | - Guofang Miao
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China
| | - Jiye Leng
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada
| | - Rong Shang
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China
| | - Lei Shu
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China
| | - Chongya Jiang
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Han Wang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Sujong Jeong
- Department of Environmental Planning, Seoul National University, Seoul, South Korea
| | - Youngryel Ryu
- Department of Landscape Architecture and Rural Systems Engineering, Seoul National University, Seoul, South Korea
| | - Jing M Chen
- Key Laboratory of Humid Subtropical Eco-Geographical Process (Ministry of Education), Fujian Normal University, Fuzhou, China.
- Department of Geography and Planning, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
3
|
Zhang D, Xu F, Wang F, Le L, Pu L. Synthetic biology and artificial intelligence in crop improvement. PLANT COMMUNICATIONS 2025; 6:101220. [PMID: 39668563 PMCID: PMC11897457 DOI: 10.1016/j.xplc.2024.101220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Synthetic biology plays a pivotal role in improving crop traits and increasing bioproduction through the use of engineering principles that purposefully modify plants through "design, build, test, and learn" cycles, ultimately resulting in improved bioproduction based on an input genetic circuit (DNA, RNA, and proteins). Crop synthetic biology is a new tool that uses circular principles to redesign and create innovative biological components, devices, and systems to enhance yields, nutrient absorption, resilience, and nutritional quality. In the digital age, artificial intelligence (AI) has demonstrated great strengths in design and learning. The application of AI has become an irreversible trend, with particularly remarkable potential for use in crop breeding. However, there has not yet been a systematic review of AI-driven synthetic biology pathways for plant engineering. In this review, we explore the fundamental engineering principles used in crop synthetic biology and their applications for crop improvement. We discuss approaches to genetic circuit design, including gene editing, synthetic nucleic acid and protein technologies, multi-omics analysis, genomic selection, directed protein engineering, and AI. We then outline strategies for the development of crops with higher photosynthetic efficiency, reshaped plant architecture, modified metabolic pathways, and improved environmental adaptability and nutrient absorption; the establishment of trait networks; and the construction of crop factories. We propose the development of SMART (self-monitoring, adapted, and responsive technology) crops through AI-empowered synthetic biotechnology. Finally, we address challenges associated with the development of synthetic biology and offer potential solutions for crop improvement.
Collapse
Affiliation(s)
- Daolei Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Fan Xu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China
| | - Fanhua Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China; School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Liang Le
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Li Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
4
|
Jiang J, Chen Y, Zhang R, Zhu W, Liu F, Xu N, Li Y. New insights on the impact of light, photoperiod and temperature on the reproduction of green algae Ulva prolifera via transcriptomics and physiological analyses. MARINE POLLUTION BULLETIN 2025; 211:117393. [PMID: 39647275 DOI: 10.1016/j.marpolbul.2024.117393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/18/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
Ulva prolifera, a key species in China's massive green tides, is widely used in aquaculture, biofuel, pharmaceutical and cosmetic industries. In this study, we cultured U. prolifera under 100, 200, and 400 μmol m-2 s-1 with 10:14 and 12:12 light/dark at 15 °C and 25 °C, respectively, to investigate the effectiveness of light intensity, photoperiod, and temperature on the reproduction cell formation, oxidative status, photosynthesis on this species, as well as the related genes from transcriptomic perspective. Results showed that 25 °C or 400 μmol m-2 s-1 increased reproduction, although shorter daylength reduced cell numbers, correlating with higher O₂- content. The ascorbate-glutathione cycle activity was enhanced by reproduction, aligning with gene expression changes. Meiosis-specific gene MSH4 expression correlated positively with cell numbers. We speculate that higher temperature, light intensity, and shorter photoperiod enhance reproduction by inducing oxidative stress and signaling via the AsA-GSH cycle to regulate MSH4 expression.
Collapse
Affiliation(s)
- Jianan Jiang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China
| | - Yili Chen
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China
| | - Ruihong Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China
| | - Wenrong Zhu
- Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo 315700, China
| | - Fengjie Liu
- Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London SW7 2AZ, UK
| | - Nianjun Xu
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China; Grantham Institute - Climate Change and the Environment, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | - Yahe Li
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo 325800, China; Xiangshan Xuwen Seaweed Development Co., Ltd., Ningbo 315700, China.
| |
Collapse
|
5
|
Hess WR, Wilde A, Mullineaux CW. Does mRNA targeting explain gene retention in chloroplasts? TRENDS IN PLANT SCIENCE 2025; 30:147-155. [PMID: 39443276 DOI: 10.1016/j.tplants.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/25/2024]
Abstract
During their evolution from cyanobacteria, plastids have relinquished most of their genes to the host cell nucleus, but have retained a core set of genes that are transcribed and translated within the organelle. Previous explanations have included incompatible codon or base composition, problems importing certain proteins across the double membrane, or the need for tight regulation in concert with the redox status of the electron transport chain. In this opinion article we propose the 'mRNA targeting hypothesis'. Studies in cyanobacteria suggest that mRNAs encoding core photosynthetic proteins have features that are crucial for membrane targeting and coordination of early steps in complex assembly. We propose that the requirement for intimate involvement of mRNA molecules at the thylakoid surface explains the retention of core photosynthetic genes in chloroplasts.
Collapse
Affiliation(s)
- Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Annegret Wilde
- Molecular Genetics of Prokaryotes, Institute of Biology III, University of Freiburg, Freiburg, Germany
| | - Conrad W Mullineaux
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
6
|
Gusain S, Joshi R. Morphological, Physiological, and Transcriptional Changes in Crocus sativus L. Under In Vitro Polyethylene Glycol-Induced Water Stress. BIOLOGY 2025; 14:78. [PMID: 39857308 PMCID: PMC11760865 DOI: 10.3390/biology14010078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/18/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Saffron (Crocus sativus L.), a perennial geophyte from the Iridaceae family, blooms in autumn and thrives in Mediterranean-like climates. It is highly valued for its therapeutic and commercial uses. While saffron cultivation generally requires minimal water, insufficient irrigation can negatively impact its yield. Although numerous studies have explored the detrimental impact of drought on saffron under field conditions, its impact in vitro remains largely unexplored. The present study aims to investigate the effects of polyethylene glycol (PEG) 6000 at concentrations of 0%, 5%, and 10% in inducing drought stress on saffron shoots under controlled conditions. The research focuses on evaluating morphological, physiological, and biochemical changes and analyzing the expression of drought-responsive genes. Shoot establishment was carried out on Murashige and Skoog (MS) medium supplemented with 6 mg/L 6-benzyladenine (BAP) and 1 mg/L naphthaleneacetic acid (NAA), while PEG 6000 was used to induce drought stress. Various morphological, biochemical, and molecular parameters were assessed 30 days after stress induction. Increasing PEG concentrations in the medium significantly reduced shoot regeneration, leading to increased apical tissue browning. Significant chlorophyll and carotenoid level changes were observed in shoots exposed to higher PEG concentrations. PEG-induced drought led to decreased plant growth and biomass and lowered relative water content of leaves. Lipid peroxidation, membrane damage, and H2O2 content increased, indicating heightened stress levels. Proline concentration significantly increased in plants subjected to 5% and 10% PEG compared to controls. Non-enzymatic antioxidant activity (phenolics, flavonoids, % inhibition, total reducing power, and total antioxidant activity) also increased with the severity of stress. In contrast, a decrease in the activity of superoxide dismutase (SOD) and peroxidase was observed in PEG-treated shoots. Significant changes in the expression of drought-related genes, such as DREB1, DREB2, AREB1, DHN1 (Dehydrin), and SnRK2, were observed in shoots exposed to 5% and 10% PEG. In conclusion, the study highlights that PEG, as an inducer of drought stress, negatively impacts saffron's growth and physiological responses under in vitro conditions. It also triggers significant changes in biochemical and molecular mechanisms, indicating the plant's susceptibility to water scarcity.
Collapse
Affiliation(s)
- Suman Gusain
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology, Palampur 176061, Himachal Pradesh, India;
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| |
Collapse
|
7
|
Cui J, Yang Q, Zhang J, Ju C, Cui S. Mitochondrial Genome Insights into Evolution and Gene Regulation in Phragmites australis. Int J Mol Sci 2025; 26:546. [PMID: 39859262 PMCID: PMC11764873 DOI: 10.3390/ijms26020546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 12/28/2024] [Accepted: 12/28/2024] [Indexed: 01/27/2025] Open
Abstract
As a globally distributed perennial Gramineae, Phragmites australis can adapt to harsh ecological environments and has significant economic and environmental values. Here, we performed a complete assembly and annotation of the mitogenome of P. australis using genomic data from the PacBio and BGI platforms. The P. australis mitogenome is a multibranched structure of 501,134 bp, divided into two circular chromosomes of 325,493 bp and 175,641 bp, respectively. A sequence-simplified succinate dehydrogenase 4 gene was identified in this mitogenome, which is often translocated to the nuclear genome in the mitogenomes of gramineous species. We also identified tissue-specific mitochondrial differentially expressed genes using RNAseq data, providing new insights into understanding energy allocation and gene regulatory strategies in the long-term adaptive evolution of P. australis mitochondria. In addition, we studied the mitogenome features of P. australis in more detail, including repetitive sequences, gene Ka/Ks analyses, codon preferences, intracellular gene transfer, RNA editing, and multispecies phylogenetic analyses. Our results provide an essential molecular resource for understanding the genetic characterisation of the mitogenome of P. australis and provide a research basis for population genetics and species evolution in Arundiaceae.
Collapse
Affiliation(s)
- Jipeng Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Qianhui Yang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Jiyue Zhang
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
| | - Chuanli Ju
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Haidian District, Beijing 100048, China; (J.C.); (Q.Y.); (J.Z.); (C.J.)
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing 100048, China
| |
Collapse
|
8
|
Li C, Du X, Liu C. Enhancing crop yields to ensure food security by optimizing photosynthesis. J Genet Genomics 2025:S1673-8527(25)00017-7. [PMID: 39800260 DOI: 10.1016/j.jgg.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 12/30/2024] [Accepted: 01/01/2025] [Indexed: 01/15/2025]
Abstract
The crop yields achieved through traditional plant breeding techniques appear to be nearing a plateau. Therefore, it is essential to accelerate advancements in photosynthesis, the fundamental process by which plants convert light energy into chemical energy, to further enhance crop yields. Research focused on improving photosynthesis holds significant promise for increasing sustainable agricultural productivity and addressing challenges related to global food security. This review examines the latest advancements and strategies aimed at boosting crop yields by enhancing photosynthetic efficiency. There has been a linear increase in yield over the years in historically released germplasm selected through traditional breeding methods, and this increase is accompanied by improved photosynthesis. We explore various aspects of the light reactions designed to enhance crop yield, including light harvest efficiency through smart canopy systems, expanding the absorbed light spectrum to include far-red light, optimizing non-photochemical quenching, and accelerating electron transport flux. At the same time, we investigate carbon reactions that can enhance crop yield, such as manipulating Rubisco activity, improving the Calvin-Benson-Bassham (CBB) cycle, introducing CO2 concentrating mechanisms (CCMs) in C3 plants, and optimizing carbon allocation. These strategies could significantly impact crop yield enhancement and help bridge the yield gap.
Collapse
Affiliation(s)
- Chunrong Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xuejia Du
- University of Houston, 5000 Gulf Fwy, Houston, TX 77023, USA
| | - Cuimin Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Mohammed SB, Ongom PO, Belko N, Umar ML, Muñoz-Amatriaín M, Huynh BL, Togola A, Ishiyaku MF, Boukar O. Quantitative Trait Loci for Phenology, Yield, and Phosphorus Use Efficiency in Cowpea. Genes (Basel) 2025; 16:64. [PMID: 39858611 PMCID: PMC11764512 DOI: 10.3390/genes16010064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Cowpea is an important legume crop in sub-Saharan Africa (SSA) and beyond. However, access to phosphorus (P), a critical element for plant growth and development, is a significant constraint in SSA. Thus, it is essential to have high P-use efficiency varieties to achieve increased yields in environments where little-to- no phosphate fertilizers are applied. METHODS In this study, crop phenology, yield, and grain P efficiency traits were assessed in two recombinant inbred line (RIL) populations across ten environments under high- and low-P soil conditions to identify traits' response to different soil P levels and associated quantitative trait loci (QTLs). Single-environment (SEA) and multi-environment (MEA) QTL analyses were conducted for days to flowering (DTF), days to maturity (DTM), biomass yield (BYLD), grain yield (GYLD), grain P-use efficiency (gPUE) and grain P-uptake efficiency (gPUpE). RESULTS Phenotypic data indicated significant variation among the RILs, and inadequate soil P had a negative impact on flowering, maturity, and yield traits. A total of 40 QTLs were identified by SEA, with most explaining greater than 10% of the phenotypic variance, indicating that many major-effect QTLs contributed to the genetic component of these traits. Similarly, MEA identified 23 QTLs associated with DTF, DTM, GYLD, and gPUpE under high- and low-P environments. Thirty percent (12/40) of the QTLs identified by SEA were also found by MEA, and some of those were identified in more than one P environment, highlighting their potential in breeding programs targeting PUE. QTLs on chromosomes Vu03 and Vu08 exhibited consistent effects under both high- and low-P conditions. In addition, candidate genes underlying the QTL regions were identified. CONCLUSIONS This study lays the foundation for molecular breeding for PUE and contributes to understanding the genetic basis of cowpea response in different soil P conditions. Some of the identified genomic loci, many being novel QTLs, could be deployed in marker-aided selection and fine mapping of candidate genes.
Collapse
Affiliation(s)
- Saba B. Mohammed
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - Patrick Obia Ongom
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
| | - Nouhoun Belko
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- Africa Rice Center (AfricaRice), 01 B.P. 2551, Bouake 01, Côte d’Ivoire
| | - Muhammad L. Umar
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - María Muñoz-Amatriaín
- Department of Botany and Plant Sciences, University of California, Riverside, CA 94607, USA;
- Departamento de Biología Molecular (Área Genética), Universidad de León, 24071 León, Spain
| | - Bao-Lam Huynh
- Department of Nematology, University of California, 900 University Avenue, Riverside, CA 92521, USA;
| | - Abou Togola
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
- International Maize and Wheat Improvement Center, World Agroforestry Centre Campus, UN Avenue Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Muhammad F. Ishiyaku
- Department of Plant Science, Ahmadu Bello University, PMB 1044, Zaria 810211, Nigeria; (M.L.U.); (M.F.I.)
| | - Ousmane Boukar
- International Institute of Tropical Agriculture, PMB 3112, Kano 700223, Nigeria; (S.B.M.); (N.B.); (A.T.); (O.B.)
| |
Collapse
|
10
|
Li G, Wang H, Li H, Feng B, Fu W, Ma J, Li J, Wu Z, Islam MR, Chen T, Zhang H, Wei H, Tao L, Fu G. GRAIN SIZE ON CHROMOSOME 2 orchestrates phytohormone, sugar signaling and energy metabolism to confer thermal resistance in rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70113. [PMID: 39972987 DOI: 10.1111/ppl.70113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 02/21/2025]
Abstract
GRAIN SIZE ON CHROMOSOME 2 (GS2) has been reported to enhance rice grain yield and confer tolerance to cold, drought, and salt stress, but its function in heat tolerance of rice remains undocumented. This study aimed to investigate whether GS2 could enhance thermal tolerance by subjecting rice seedlings of Huazhan (HZ) and its near-isogenic line (HZ-GS2) to heat stress. HZ-GS2 plants exhibited less damage compared to HZ plants under heat stress. Transcriptome revealed the involvement of phytohormones, sugar signaling, and energy metabolism in the mechanism by which GS2 influences heat tolerance. Under heat stress, HZ-GS2 plants showed higher increases or lower decreases in glucose, gibberellins (GAs), salicylic acid (SA), indoleacetic acid (IAA), adenosine triphosphate (ATP), energy charge, as well as the activities of hexokinase, NADH dehydrogenase, cytochrome oxidase, ATP synthase, and ATPase. Exogenous GA3 enhanced heat tolerance in rice by increasing energy charge, ATPase, activities of complex V and hexokinase. Additionally, glucose, sucrose, 3-aminobenzamide (3-ab), and Na2SO3 conferred heat tolerance in rice plants. Importantly, a significant increase in Fv/Fm was observed in plants treated with a combination of GA3, glucose, and 3-ab, compared to those sprayed alone. Thus, GS2 coordinates GA3, hexokinase, and energy metabolism to improve energy status, thereby enhancing heat tolerance in rice plants.
Collapse
Affiliation(s)
- Guangyan Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Huanran Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Hubo Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Baohua Feng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Weimeng Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Jiaying Ma
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Juncai Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Zhihai Wu
- Agronomy College, Jilin Agricultural University, Changchun, China
| | - Md Rezaul Islam
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Department of agriculture Extension, Ministry of agriculture, Dhaka, Bangladesh
| | - Tingting Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Hongcheng Zhang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Haiyan Wei
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops/Agricultural College/Research Institute of Rice Industrial Engineering Technology, Yangzhou University, Yangzhou, China
| | - Longxing Tao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
| | - Guanfu Fu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou, China
- Agronomy College, Jilin Agricultural University, Changchun, China
| |
Collapse
|
11
|
Xiao X, Duan B, Huang F, Zhi X, Jiang Z, Ma N. Analysis of canopy light utilization efficiency in high-yielding rapeseed varieties. Sci Rep 2024; 14:31243. [PMID: 39732880 DOI: 10.1038/s41598-024-82602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
The photosynthetic mechanism responsible for the differences in yield between different rapeseed varieties remains unclear, and there have been no consensus and definite conclusions about the relationship between photosynthesis and yield. Representation of the whole plant by measuring the photosynthetic performance at a single site may lead to biased results. In this study, we comprehensively analyzed the main photosynthetic organs of four high-yielding rapeseed varieties at the seedling, bud, flowering, and podding stages. The canopy photosynthetic parameters were derived by measuring the photosynthetic area, net photosynthetic rate, and chlorophyll content, and canopy photosynthetic capacity was used to evaluate the light utilization efficiency of different rapeseed varieties to establish the relationship between canopy photosynthetic traits and yield. The results showed that there were significant differences in photosynthetic traits among different parts of rapeseed plants. The photosynthetic trait parameters of the whole plant differed significantly when represented by leaves at different positions among different varieties, and different rapeseed varieties exhibited significantly different sensitivity to light intensity. The whole-plant study showed that the canopy photosynthetic capacity was the highest and second highest at the seedling and bud stage, respectively, both of which were closely and positively correlated with rapeseed yield, and ZY501 had higher canopy photosynthetic capacity than other varieties at these two stages due to its larger canopy photosynthetic area. Canopy chlorophyll content was also positively correlated with canopy photosynthetic capacity. These results indicated that investigation of photosynthetic characteristics at single sites in rapeseed might lead to biased results of photosynthetic capacity in different varieties, and provided a new evaluation index for studying the light utilization efficiency of rapeseed. Our results also clarified that canopy photosynthetic area has significantly greater contribution to canopy photosynthetic capacity than canopy photosynthetic efficiency, and provided a theoretical basis for investigating the photosynthesis mechanism underlying high crop yield.
Collapse
Affiliation(s)
- Xiaolu Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Bo Duan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Fangyuan Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Ximin Zhi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Zhan Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China
| | - Ni Ma
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Science, Wuhan, 430062, China.
| |
Collapse
|
12
|
Zhang Z, Fang J, Jin H, Zhang L, Fang S. Application of oxide nanoparticles mitigates the salt-induced effects on photosynthesis and reduces salt injury in Cyclocarya paliurus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176333. [PMID: 39304156 DOI: 10.1016/j.scitotenv.2024.176333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/09/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Salinization is very detrimental to photosynthetic processes and plant growth, while nanoparticles (NPs) are considered to be the emerging materials to improve plant adaptability to salt stress. Cyclocarya paliurus is being planted on saline-alkali soils to meet the growing demand for its leaves and medicinal products. However, this species exhibits low salt tolerance and little information is available on whether NPs application would mitigate the salt-induced effects. This study explored the influence of three oxide NPs and their application doses on improving salt tolerance in C. paliurus under simulated natural conditions. The results showed that these oxide NPs could modify the salt tolerance in C. paliurus seedlings, but the alleviating effects varied in the NPs types and their application doses. Under the salt stress, foliar applications of SiO2-NPs with 500 mg L-1 and MnO2-NPs with 50 mg L-1 significantly increased net photosynthetic rate and seedling height by 52.0-59.5 %, and reduced the salt injury index by 67.6-70.7 %. Transcriptomic analysis revealed that the genes related to photosynthesis pathway were well responsive to both salt stress and NPs application, while the applications of high-dose SiO2- and MnO2-NPs up-regulated the expression of 50 photosynthesis-related genes. Weighted gene co-expression network analysis (WGCNA) indicated there existed a close relationship between physiological parameters and gene expression patterns, and the nine key genes in mitigating salt stress in C. paliurus were identified after the NPs application. Our findings suggested that the effects of NPs on mitigating salt-induced damages depending on the NP type and applied dose. The applications of SiO2-NPs and MnO2-NPs with an appropriate dose hold great promise for mitigating the salt-induced photosynthetic dysfunction via regulation of related key genes, and ultimately promoting plant growth and ameliorating the salt-tolerance.
Collapse
Affiliation(s)
- Zijie Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Jie Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Huiyin Jin
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China
| | - Lei Zhang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Shengzuo Fang
- College of Forestry and Grassland, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Centre for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
13
|
Xing YH, Lu H, Zhu X, Deng Y, Xie Y, Luo Q, Yu J. How Rice Responds to Temperature Changes and Defeats Heat Stress. RICE (NEW YORK, N.Y.) 2024; 17:73. [PMID: 39611857 DOI: 10.1186/s12284-024-00748-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 11/06/2024] [Indexed: 11/30/2024]
Abstract
With the intensification of the greenhouse effect, a series of natural phenomena, such as global warming, are gradually recognized; when the ambient temperature increases to the extent that it causes heat stress in plants, agricultural production will inevitably be affected. Therefore, several issues associated with heat stress in crops urgently need to be solved. Rice is one of the momentous food crops for humans, widely planted in tropical and subtropical monsoon regions. It is prone to high temperature stress in summer, leading to a decrease in yield and quality. Understanding how rice can tolerate heat stress through genetic effects is particularly vital. This article reviews how rice respond to rising temperature by integrating the molecular regulatory pathways and introduce its physiological mechanisms of tolerance to heat stress from the perspective of molecular biology. In addition, genome selection and genetic engineering for rice heat tolerance were emphasized to provide a theoretical basis for the sustainability and stability of crop yield-quality structures under high temperatures from the point of view of molecular breeding.
Collapse
Affiliation(s)
- Yuan-Hang Xing
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Hongyu Lu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Xinfeng Zhu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Yufei Deng
- College of Agronomy, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Yujun Xie
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China
| | - Qiuhong Luo
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| | - Jinsheng Yu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
14
|
Wang Y, Zhang Y, Zhang Z, Liu Q, Xu T, Liu J, Han S, Song T, Li L, Wei X, Lin Y. The bifunctional impact of polylactic acid microplastics on composting processes and soil-plant systems: Dynamics of microbial communities and ecological niche competition. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135774. [PMID: 39255660 DOI: 10.1016/j.jhazmat.2024.135774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/12/2024]
Abstract
Although extensive research has been conducted on the environmental impact of microplastics (MPs), their effects on microorganisms during the composting process and on the compost-soil system remain unclear. Our research investigates the microbial response to polylactic acid microplastics (PLAMPs) during aerobic composting and examines how compost enriched with PLAMPs affects plants. Our findings reveal that PLAMPs play a dual role in the composting process, influencing microorganisms differently depending on the composting phase. PLAMPs reduce the relative abundance of sensitive bacterial ASVs, specifically those belonging to Limnochordaceae and Enterobacteriaceae, during composting, while increasing the relative abundance of ASVs belonging to Steroidobacteriaceae and Bacillaceae. The impact of PLAMPs on microbial community assembly and niche width was found to be phase-dependent. In the stabilization phase (S5), the presence of PLAMPs caused a shift in the core microbial network from bacterial dominance to fungal dominance, accompanied by heightened microbial antagonism. Additionally, these intricate microbial interactions can be transferred to the soil ecosystem. Our study indicates that composting, as a method of managing PLAMPs, is also influenced by PLAMPs. This influence is transferred to the soil through the use of compost, resulting in severe oxidative stress in plants. Our research is pivotal for devising future strategies for PLAMPs management and predicting the subsequent changes in compost quality and environmental equilibrium.
Collapse
Affiliation(s)
- Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiqiong Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhouchang Zhang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qing Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tengqi Xu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tianjiao Song
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
| | - Xiaomin Wei
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
15
|
Zheng K, Lv M, Qian J, Lian Y, Liu R, Huo S, Rehman OU, Lin Q, Zhou Z, Liu X, Cao S. Identification and Characterization of the DOF Gene Family in Phoebe bournei and Its Role in Abiotic Stress-Drought, Heat and Light Stress. Int J Mol Sci 2024; 25:11147. [PMID: 39456929 PMCID: PMC11508201 DOI: 10.3390/ijms252011147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Phoebe bournei is a second-class endangered and protected species unique to China, and it holds significant ecological and economic value. DNA binding one zinc finger (Dof) transcription factors are plant-specific regulators. Numerous studies have demonstrated that Dof genes are involved in plant growth, development and responses to abiotic stress. In this study, we identified and analyzed 34 PbDof gene members at the whole-genome level. The results indicated that the 34 PbDof genes were unevenly distributed across 12 chromosomes. We utilized the Dof genes from Arabidopsis thaliana and P. bournei to construct a phylogenetic tree and categorized these genes into eight subgroups. In the collinearity analysis, there were 16 homologous gene pairs between AtDof and PbDof and nine homologous gene pairs between ZmDof and PbDof. We conducted a cis-acting element analysis and found that cis-acting elements involved in light response were the most abundant in PbDof genes. Through SSR site prediction, we analyzed that the evolution level of Dof genes is low. Additionally, we assessed the expression profiles of eight PbDof genes under high temperature, drought, and light stress using qRT-PCR. In particular, PbDof08 and PbDof16 are significantly upregulated under the three stresses. This study provides foundational information for PbDof genes and offers new insights for further research on the mechanism of Dof transcription factors responding to stress, as well as the adaptation of P. bournei to environmental changes.
Collapse
Affiliation(s)
- Kehui Zheng
- College of Computer and Information Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Mengmeng Lv
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Jiaying Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Yiran Lian
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Ronglin Liu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Obaid Ur Rehman
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; (S.H.); (O.U.R.)
| | - Qinmin Lin
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (Y.L.); (Q.L.)
| | - Zhongyang Zhou
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Xiaomin Liu
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China;
| | - Shijiang Cao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.L.); (J.Q.); (R.L.)
- University Key Laboratory of Forest Stress Physiology, Ecology and Molecular Biology of Fujian Province, Fuzhou 350002, China
| |
Collapse
|
16
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
17
|
Chen LH, Xu M, Cheng Z, Yang LT. Effects of Nitrogen Deficiency on the Photosynthesis, Chlorophyll a Fluorescence, Antioxidant System, and Sulfur Compounds in Oryza sativa. Int J Mol Sci 2024; 25:10409. [PMID: 39408737 PMCID: PMC11476759 DOI: 10.3390/ijms251910409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Decreasing nitrogen (N) supply affected the normal growth of Oryza sativa (O. sativa) seedlings, reducing CO2 assimilation, stomatal conductance (gs), the contents of chlorophylls (Chl) and the ratio of Chl a/Chl b, but increasing the intercellular CO2 concentration. Polyphasic chlorophyll a fluorescence transient and relative fluorescence parameters (JIP test) results indicated that N deficiency increased Fo, but decreased the maximum quantum yield of primary photochemistry (Fv/Fm) and the maximum of the IPphase, implying that N-limiting condition impaired the whole photo electron transport chain from the donor side of photosystem II (PSII) to the end acceptor side of PSI in O. sativa. N deficiency enhanced the activities of the antioxidant enzymes, such as ascorbate peroxidase (APX), guaiacol peroxidase (GuPX), dehydro-ascorbate reductase (DHAR), superoxide dismutase (SOD), glutathione peroxidase (GlPX), glutathione reductase (GR), glutathione S-transferase (GST) and O-acetylserine (thiol) lyase (OASTL), and the contents of antioxidant compounds including reduced glutathione (GSH), total glutathione (GSH+GSSG) and non-protein thiol compounds in O. sativa leaves. In contrast, the enhanced activities of catalase (CAT), DHAR, GR, GST and OASTL, the enhanced ASC-GSH cycle and content of sulfur-containing compounds might provide protective roles against oxidative stress in O. sativa roots under N-limiting conditions. Quantitative real-time PCR (qRT-PCR) analysis indicated that 70% of the enzymes have a consistence between the gene expression pattern and the dynamic of enzyme activity in O. sativa leaves under different N supplies, whereas only 60% of the enzymes have a consistence in O. sativa roots. Our results suggested that the antioxidant system and sulfur metabolism take part in the response of N limiting condition in O. sativa, and this response was different between leaves and roots. Future work should focus on the responsive mechanisms underlying the metabolism of sulfur-containing compounds in O. sativa under nutrient deficient especially N-limiting conditions.
Collapse
Affiliation(s)
- Ling-Hua Chen
- Jinshan College of Fujian Agriculture and Forestry University, Fuzhou 350002, China;
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Ming Xu
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Zuxin Cheng
- Engineering Technology Research Center of Fujian Special Crop Breeding and Utilization, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (M.X.); (Z.C.)
| | - Lin-Tong Yang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
18
|
Zhang YN, Zhuang Y, Wang XG, Wang XD. Evaluation of growth, physiological response, and drought resistance of different flue-cured tobacco varieties under drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1442618. [PMID: 39391771 PMCID: PMC11464342 DOI: 10.3389/fpls.2024.1442618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024]
Abstract
Background In recent years, more severe droughts have occurred frequently in many parts of the world, drought stress is the primary abiotic stress factor restricting the growth and quality of flue-cured tobacco. Therefore, screening dryland cultivation-compatible flue-cured tobacco varieties will help reduce the negative impact of drought. Methods Tobacco varieties were selected: Qinyan 96 (Q96), Zhongyan 101 (Z101), Yunyan 87 (Y87), and Yunyan 116 (Y116). A pot experiment was conducted with four water supply gradients: sufficient, mild stress, moderate stress, and severe stress. The aim was to analyze inter-varietal differences in agronomic traits, photosynthetic traits, reactive oxygen species (ROS) metabolism, and antioxidant enzyme system under drought stress. Additionally, the drought resistance of four flue-cured tobacco varieties was evaluated using principal component analysis and membership function analysis. Results The results showed that drought intensification inhibited seedling growth and development across all varieties, with Q96 showing the least decrease and Y116 the greatest. With the increasing degree of drought stress, photosynthetic rates (Pn), transpiration rate (Tr), and stomatal conduction (Gs) have shown gradually decreasing trends, while substomatal cavity CO2 concentration (Ci) showed a growing trend. Severe drought corresponded with lower chlorophyll content and decreased the maximal photochemical efficiency (Fv/Fm), photosystem II (PSII), and photochemical quenching coefficient (qP) in all varieties, while steady-state non-photochemical quenching (NPQ) increased. Increased drought stress led to significantly higher reactive oxygen species (ROS) and malondialdehyde (MDA) content accumulation in tobacco seedlings. The antioxidant enzyme activities in, Q96, Z101, and Y87 increased under mild drought stress, whereas Y116 showed decreased activity. Conclusion The drought resistance ranking among the four varieties is as follows: Q96 > Z101 > Y87 > Y116. Therefore, Q96 is a promising drought-tolerant breeding material that can be used as a reference for dryland cultivation of flue-cured tobacco.
Collapse
Affiliation(s)
- Yi-nan Zhang
- Henan Province Dryland Agricultural Engineering Technology Research Center/College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ye Zhuang
- Henan Province Dryland Agricultural Engineering Technology Research Center/College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
| | - Xiao-guo Wang
- Technology Research Center, Henan Tobacco Company, Luoyang, Henan, China
| | - Xiao-dong Wang
- Henan Province Dryland Agricultural Engineering Technology Research Center/College of Agronomy, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
19
|
Huang F, Chen L, Zhou Y, Huang J, Wu F, Hu Q, Chang N, Qiu T, Zeng Y, He H, White JC, Yang W, Fang L. Exogenous selenium promotes cadmium reduction and selenium enrichment in rice: Evidence, mechanisms, and perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135043. [PMID: 38941835 DOI: 10.1016/j.jhazmat.2024.135043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 06/30/2024]
Abstract
Cadmium (Cd) accumulation in rice, a global environmental issue, poses a significant threat to human health due to its widespread presence and potential transfer through the food chain. Selenium (Se), an essential micronutrient for humans and plants, can reduce Cd uptake in rice and alleviate Cd-induced toxicity. However, the effects and mechanisms of Se supplementation on rice performance in Cd-contaminated soil remain largely unknown. Here, a global meta-analysis was conducted to evaluate the existing knowledge on the effects and mechanisms by which Se supplementation impacts rice growth and Cd accumulation. The result showed that Se supplementation has a significant positive impact on rice growth in Cd-contaminated soil. Specifically, Se supplementation decreased Cd accumulation in rice roots by 16.3 % (11.8-20.6 %), shoots by 24.6 % (19.9-29.1 %), and grain by 37.3 % (33.4-40.9 %), respectively. The grain Cd reduction was associated with Se dose and soil Cd contamination level but not Se type or application method. Se influences Cd accumulation in rice by regulating the expression of Cd transporter genes (OSLCT1, OSHMA2, and OSHMA3), enhancing Cd sequestration in the cell walls, and reducing Cd bioavailability in the soil. Importantly, Se treatment promoted Se enrichment in rice and alleviated oxidative damage associated with Cd exposure by stimulating photosynthesis and activating antioxidant enzymes. Overall, Se treatment mitigated the health hazard associated with Cd in rice grains, particularly in lightly contaminated soil. These findings reveal that Se supplementation is a promising strategy for simultaneous Cd reduction and Se enrichment in rice.
Collapse
Affiliation(s)
- Fengyu Huang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China
| | - Li Chen
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China.
| | - Ying Zhou
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Jingqiu Huang
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Fang Wu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Qing Hu
- College of Environment and Resource, Xichang University, Xichang 615000, China
| | - Nan Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Tianyi Qiu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Yi Zeng
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Haoran He
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Jason C White
- The Connecticut Agricultural Experiment Station, New Haven, CT 06511, United States
| | - Wenchao Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| | - Linchuan Fang
- Key Laboratory of Green Utilization of Critical Non-metallic Mineral Resources, Ministry of Education, Wuhan University of Technology, Wuhan 430070, China; College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
20
|
Zhang M, Ming Y, Wang HB, Jin HL. Strategies for adaptation to high light in plants. ABIOTECH 2024; 5:381-393. [PMID: 39279858 PMCID: PMC11399379 DOI: 10.1007/s42994-024-00164-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/19/2024] [Indexed: 09/18/2024]
Abstract
Plants absorb light energy for photosynthesis via photosystem complexes in their chloroplasts. However, excess light can damage the photosystems and decrease photosynthetic output, thereby inhibiting plant growth and development. Plants have developed a series of light acclimation strategies that allow them to withstand high light. In the first line of defense against excess light, leaves and chloroplasts move away from the light and the plant accumulates compounds that filter and reflect the light. In the second line of defense, known as photoprotection, plants dissipate excess light energy through non-photochemical quenching, cyclic electron transport, photorespiration, and scavenging of excess reactive oxygen species. In the third line of defense, which occurs after photodamage, plants initiate a cycle of photosystem (mainly photosystem II) repair. In addition to being the site of photosynthesis, chloroplasts sense stress, especially light stress, and transduce the stress signal to the nucleus, where it modulates the expression of genes involved in the stress response. In this review, we discuss current progress in our understanding of the strategies and mechanisms employed by plants to withstand high light at the whole-plant, cellular, physiological, and molecular levels across the three lines of defense.
Collapse
Affiliation(s)
- Man Zhang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Yu Ming
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
| | - Hong-Bin Wang
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Key Laboratory of Chinese Medicinal Resource From Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006 China
| | - Hong-Lei Jin
- State Key Laboratory of Traditional Chinese Medicine/School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Institute of Medical Plant Physiology and Ecology, Guangzhou University of Chinese Medicine, Guangzhou, 510006 China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375 China
| |
Collapse
|
21
|
Liu S, Han J, Ma X, Zhu X, Qu H, Xin G, Huang X. Repeated release of cerium oxide nanoparticles altered algal responses: Growth, photosynthesis, and photosynthetic gene expression. ECO-ENVIRONMENT & HEALTH 2024; 3:290-299. [PMID: 39263270 PMCID: PMC11387588 DOI: 10.1016/j.eehl.2024.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/29/2024] [Accepted: 04/02/2024] [Indexed: 09/13/2024]
Abstract
The expanding production of engineered nanomaterials (ENMs) can eventually cause their increased release into and presence in aquatic ecosystems, potentially threatening the health of aquatic organisms and the stability of the ecological environment. Generally, ENMs are repeatedly released into real-world aquatic environments in relatively low concentrations, potentially affecting photosynthesis in primary producers such as algae. However, knowledge regarding the effects of repeated exposure to ENMs on algal photosynthesis is still lacking. Herein, the physiological responses of the freshwater algae Chlorella vulgaris following single and repeated exposures to cerium oxide nanoparticles (CeO2 NPs) were investigated at 10 mg/L, with a focus on photosynthesis. The results showed that repeated exposures triggered increased photosynthetic pigment contents, oxidative stress levels, decreased photosynthetic performance, and lower biomass in C. vulgaris compared to a single exposure. Photosynthesis-related genes (i.e., petA, petB, psaA, atpB, and rbcL) were found to be upregulated following repeated exposures. Particularly for petB, repeated rather than single exposure treatment significantly upregulated its expression levels by 2.92-10.24-fold compared to unexposed controls. Furthermore, increased exposure times could aggravate the interaction between CeO2 NPs and algae, elevating 8.13%, 12.13%, and 20.51% Ce distribution on the algal cell surface or intracellularly, compared to a single exposure. This study is the first to investigate the effects of ENM exposure times on algal photosynthesis, providing new insights into the assessment of the risks these materials pose to real-world aquatic environments.
Collapse
Affiliation(s)
- Saibo Liu
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Jingheng Han
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaowu Ma
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoshan Zhu
- College of Ecology and Environment, Hainan University, Haikou 570228, China
| | - Han Qu
- College of Environment and Ecology, Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Guorong Xin
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaochen Huang
- State Key Lab of Biocontrol, Guangdong Provincial Key Laboratory of Plant Resources, School of Agriculture and Biotechnology, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| |
Collapse
|
22
|
Ma B, Zhang Y, Fan Y, Zhang L, Li X, Zhang QQ, Shu Q, Huang J, Chen G, Li Q, Gao Q, Zhu XG, He Z, Wang P. Genetic improvement of phosphate-limited photosynthesis for high yield in rice. Proc Natl Acad Sci U S A 2024; 121:e2404199121. [PMID: 39136985 PMCID: PMC11348269 DOI: 10.1073/pnas.2404199121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/25/2024] [Indexed: 08/29/2024] Open
Abstract
Low phosphate (Pi) availability decreases photosynthesis, with phosphate limitation of photosynthesis occurring particularly during grain filling of cereal crops; however, effective genetic solutions remain to be established. We previously discovered that rice phosphate transporter OsPHO1;2 controls seed (sink) development through Pi reallocation during grain filling. Here, we find that OsPHO1;2 regulates Pi homeostasis and thus photosynthesis in leaves (source). Loss-of-function of OsPHO1;2 decreased Pi levels in leaves, leading to decreased photosynthetic electron transport activity, CO2 assimilation rate, and early occurrence of phosphate-limited photosynthesis. Interestingly, ectopic expression of OsPHO1;2 greatly increased Pi availability, and thereby, increased photosynthetic rate in leaves during grain filling, contributing to increased yield. This was supported by the effect of foliar Pi application. Moreover, analysis of core rice germplasm resources revealed that higher OsPHO1;2 expression was associated with enhanced photosynthesis and yield potential compared to those with lower expression. These findings reveal that phosphate-limitation of photosynthesis can be relieved via a genetic approach, and the OsPHO1;2 gene can be employed to reinforce crop breeding strategies for achieving higher photosynthetic efficiency.
Collapse
Affiliation(s)
- Bin Ma
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Zhongshan Biological Breeding Laboratory/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Agricultural College of Yangzhou University, Yangzhou225009, China
| | - You Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Yanfei Fan
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Lin Zhang
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou225009, China
| | - Xiaoyuan Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Institute of Biotechnology, Hangzhou Academy of Agricultural Sciences, Hangzhou310024, China
| | - Qi-Qi Zhang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- University of the Chinese Academy of Sciences, Beijing100049, China
| | - Qingyao Shu
- National Key Laboratory of Rice Biology, Institute of Crop Sciences, Zhejiang University, Hangzhou310058, Zhejiang, China
| | - Jirong Huang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai200234, China
| | - Genyun Chen
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qun Li
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Qifei Gao
- Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, China
| | - Xin-Guang Zhu
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| | - Zuhua He
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
| | - Peng Wang
- Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai200032, China
- Key Laboratory of Plant Carbon Capture, Chinese Academy of Sciences, Shanghai200032, China
| |
Collapse
|
23
|
Khan N, Choi SH, Lee CH, Qu M, Jeon JS. Photosynthesis: Genetic Strategies Adopted to Gain Higher Efficiency. Int J Mol Sci 2024; 25:8933. [PMID: 39201620 PMCID: PMC11355022 DOI: 10.3390/ijms25168933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
The global challenge of feeding an ever-increasing population to maintain food security requires novel approaches to increase crop yields. Photosynthesis, the fundamental energy and material basis for plant life on Earth, is highly responsive to environmental conditions. Evaluating the operational status of the photosynthetic mechanism provides insights into plants' capacity to adapt to their surroundings. Despite immense effort, photosynthesis still falls short of its theoretical maximum efficiency, indicating significant potential for improvement. In this review, we provide background information on the various genetic aspects of photosynthesis, explain its complexity, and survey relevant genetic engineering approaches employed to improve the efficiency of photosynthesis. We discuss the latest success stories of gene-editing tools like CRISPR-Cas9 and synthetic biology in achieving precise refinements in targeted photosynthesis pathways, such as the Calvin-Benson cycle, electron transport chain, and photorespiration. We also discuss the genetic markers crucial for mitigating the impact of rapidly changing environmental conditions, such as extreme temperatures or drought, on photosynthesis and growth. This review aims to pinpoint optimization opportunities for photosynthesis, discuss recent advancements, and address the challenges in improving this critical process, fostering a globally food-secure future through sustainable food crop production.
Collapse
Affiliation(s)
- Naveed Khan
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
| | - Seok-Hyun Choi
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| | - Choon-Hwan Lee
- Life and Industry Convergence Research Institute, Pusan National University, Miryang 50463, Republic of Korea;
- Department of Molecular Biology, Pusan National University, Busan 46241, Republic of Korea
| | - Mingnan Qu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Jong-Seong Jeon
- Graduate School of Green-Bio Science, Kyung Hee University, Yongin 17104, Republic of Korea; (N.K.); (S.-H.C.)
| |
Collapse
|
24
|
Miao F, Wang Y, Haq NU, Lyu MJA, Zhu XG. Rewiring of primary metabolism for ammonium recycling under short-term low CO 2 treatment - its implication for C 4 evolution. FRONTIERS IN PLANT SCIENCE 2024; 15:1322261. [PMID: 39148616 PMCID: PMC11324553 DOI: 10.3389/fpls.2024.1322261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 07/04/2024] [Indexed: 08/17/2024]
Abstract
The dramatic decrease in atmospheric CO2 concentration during Oligocene was proposed as directly linked to C4 evolution. However, it remains unclear how the decreased CO2 concentration directly facilitate C4 evolution, besides its role as a selection pressure. We conducted a systematic transcriptomics and metabolomics analysis under short-term low CO2 condition and found that Arabidopsis grown under this condition showed 1) increased expression of most genes encoding C4-related enzymes and transporters; 2) increased expression of genes involved in photorespiration and pathways related to carbon skeleton generation for ammonium refixation; 3) increased expression of genes directly involved in ammonium refixation. Furthermore, we found that in vitro treatment of leaves with NH4 + induced a similar pattern of changes in C4 related genes and genes involved in ammonium refixation. These data support the view that Arabidopsis grown under short-term low CO2 conditions rewired its metabolism to supply carbon skeleton for ammonium recycling, during which process the expression of C4 genes were up-regulated as a result of a hitchhiking process. This study provides new insights into the adaptation of the C3 model plant Arabidopsis under low CO2 conditions and suggests that low CO2 can facilitate the evolution of C4 photosynthesis beyond the commonly assumed role of being a selection pressure.
Collapse
Affiliation(s)
- Fenfen Miao
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Ying Wang
- University of Chinese Academy of Sciences (UCAS), Beijing, China
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Noor Ui Haq
- Department of Computer Science and Bioinformatics, Khushal Khan Khattak University, Karak, Khyber-Pakhtunkhwa, Pakistan
| | - Ming-Ju Amy Lyu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| | - Xin-Guang Zhu
- CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology (SIPPE), Chinese Academy of Sciences (CAS), Shanghai, China
| |
Collapse
|
25
|
Khapte PS, Changan SS, Kumar P, Singh TH, Singh AK, Rane J, Reddy KS. Deciphering desiccation tolerance in wild eggplant species: insights from chlorophyll fluorescence dynamics. BMC PLANT BIOLOGY 2024; 24:702. [PMID: 39054439 PMCID: PMC11270916 DOI: 10.1186/s12870-024-05430-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/17/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Climate change exacerbates abiotic stresses, which are expected to intensify their impact on crop plants. Drought, the most prevalent abiotic stress, significantly affects agricultural production worldwide. Improving eggplant varieties to withstand abiotic stress is vital due to rising drought from climate change. Despite the diversity of wild eggplant species that thrive under harsh conditions, the understanding of their drought tolerance mechanisms remains limited. In the present study, we used chlorophyll fluorescence (ChlaF) imaging, which reveals a plant's photosynthetic health, to investigate desiccation tolerance in eggplant and its wild relatives. Conventional fluorescence measurements lack spatial heterogeneity, whereas ChlaF imaging offers comprehensive insights into plant responses to environmental stresses. Hence, employing noninvasive imaging techniques is essential for understanding this heterogeneity. RESULTS Desiccation significantly reduced the leaf tissue moisture content (TMC) across species. ChlaF and TMC displayed greater photosystem II (PSII) efficiency after 54 h of desiccation in S. macrocarpum, S. torvum, and S. indicum, with S. macrocarpum demonstrating superior efficiency due to sustained fluorescence. PSII functions declined gradually in S. macrocarpum and S. torvum, unlike those in other species, which exhibited abrupt declines after 54 h of desiccation. However, after 54 h, PSII efficiency remained above 50% of its initial quantum yield in S. macrocarpum at 35% leaf RWC (relative water content), while S. torvum and S. indicum displayed 50% decreases at 31% and 33% RWC, respectively. Conversely, the susceptible species S. gilo and S. sisymbriifolium exhibited a 50% reduction in PSII function at an early stage of 50% RWC, whereas in S. melongena, this reduction occurred at 40% RWC. CONCLUSION Overall, our study revealed notably greater leaf desiccation tolerance, especially in S. macrocarpum, S. torvum, and S. indicum, attributed to sustained PSII efficiency at low TMC levels, indicating that these species are promising sources of drought tolerance.
Collapse
Affiliation(s)
- Pratapsingh S Khapte
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413115, India.
| | - Sushil S Changan
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413115, India
| | - Pradeep Kumar
- ICAR-Central Arid Zone Research Institute, Jodhpur, Rajasthan, 342003, India
| | - T H Singh
- ICAR-Indian Institute of Horticultural Research, Bengaluru, Karnataka, 560089, India
| | - Ajay Kumar Singh
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413115, India
| | - Jagadish Rane
- ICAR-Central Institute for Arid Horticulture, Bikaner, Rajasthan, 334006, India
| | - K Sammi Reddy
- ICAR-National Institute of Abiotic Stress Management, Baramati, Maharashtra, 413115, India
| |
Collapse
|
26
|
Wang J, Kan S, Liao X, Zhou J, Tembrock LR, Daniell H, Jin S, Wu Z. Plant organellar genomes: much done, much more to do. TRENDS IN PLANT SCIENCE 2024; 29:754-769. [PMID: 38220520 DOI: 10.1016/j.tplants.2023.12.014] [Citation(s) in RCA: 82] [Impact Index Per Article: 82.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/15/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
Plastids and mitochondria are the only organelles that possess genomes of endosymbiotic origin. In recent decades, advances in sequencing technologies have contributed to a meteoric rise in the number of published organellar genomes, and have revealed greatly divergent evolutionary trajectories. In this review, we quantify the abundance and distribution of sequenced plant organellar genomes across the plant tree of life. We compare numerous genomic features between the two organellar genomes, with an emphasis on evolutionary trajectories, transfers, the current state of organellar genome editing by transcriptional activator-like effector nucleases (TALENs), transcription activator-like effector (TALE)-mediated deaminase, and clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas), as well as genetic transformation. Finally, we propose future research to understand these different evolutionary trajectories, and genome-editing strategies to promote functional studies and eventually improve organellar genomes.
Collapse
Affiliation(s)
- Jie Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; College of Science, Health, Engineering and Education, Murdoch University, Perth, WA 6000-6999, Australia
| | - Shenglong Kan
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; Marine College, Shandong University, Weihai, 264209, China
| | - Xuezhu Liao
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Jiawei Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Luke R Tembrock
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Henry Daniell
- Department of Basic and Translational Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104-6030, USA.
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| | - Zhiqiang Wu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China.
| |
Collapse
|
27
|
Luo X, Cao L, Yu L, Gao M, Ai J, Gao D, Zhang X, John Lucas W, Huang S, Xu J, Shang Y. Deep learning-based characterization and redesign of major potato tuber storage protein. Food Chem 2024; 443:138556. [PMID: 38290299 DOI: 10.1016/j.foodchem.2024.138556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/01/2024]
Abstract
Potato is one of the most important crops worldwide, to feed a fast-growing population. In addition to providing energy, fiber, vitamins, and minerals, potato storage proteins are considered as one of the most valuable sources of non-animal proteins due to their high essential amino acid (EAA) index. However, low tuber protein content and limited knowledge about potato storage proteins restrict their widespread utilization in the food industry. Here, we report a proof-of-concept study, using deep learning-based protein design tools, to characterize the biological and chemical characteristics of patatins, the major potato storage proteins. This knowledge was then employed to design multiple cysteines on the patatin surface to build polymers linked by disulfide bonds, which significantly improved viscidity and nutrient of potato flour dough. Our study shows that deep learning-based protein design strategies are efficient to characterize and to create novel proteins for future food sources.
Collapse
Affiliation(s)
- Xuming Luo
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Lijuan Cao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Langhua Yu
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Meng Gao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Ju Ai
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Dongli Gao
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China
| | - Xiaopeng Zhang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of Ministry of Agriculture, Sino-Dutch Joint Lab of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - William John Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Sanwen Huang
- State Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China; State Key Laboratory of Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan 571101, China.
| | - Jianfei Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunnan 650500, China.
| |
Collapse
|
28
|
Zhu S, Sun S, Zhao W, Yang X, Chen Z, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the resistance mechanism of rice (Oryza sativa L) to cadmium stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116413. [PMID: 38728942 DOI: 10.1016/j.ecoenv.2024.116413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Cadmium contamination can lead to a decrease in crop yield and quality. However, Cd-tolerant rice can improve rice resistance genes, improve crop tolerance to heavy metals, and protect plants from oxidative damage. In this study, Japonica rice: Chunyou 987 and Indica rice: Chuanzhong you 3607 were used to reveal the molecular response mechanism of Cd-tolerant rice under cadmium concentration of 3 mg/kg through comparative experiments combined with physiology and proteomics. The results showed that compared with indica rice, japonica rice showed more robust resistance to Cd stress and effectively retained many Cd ions in roots. Moreover, it enhanced its enzymatic and non-enzymatic anti-oxidative stress mechanism, which increased the activities of catalase (CAT), peroxidase (POD), and superoxide dismutase (SOD) by 47.37%, 21.75%, and 55.42%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid (AsA), glutathione (GSH), cysteine (Cys), proline (PRO), anthocyanins (OPC), and flavonoids were increased by 25.32%, 42.67%, 21.43%, 50.81%, 33.23%, and 72.16%, respectively. Through proteomics analysis, it was found that in response to the damage caused by cadmium stress, Japonica rice makes Photosynthesis functional proteins (psbO and PetH), Photosynthesis antenna proteins (LHCA and ASCAB9), Carbon fixation functional proteins (PEPC and OsAld), Porphyrin metabolism functional proteins (OsRCCR1 and SE5), Glyoxylate and dicarboxylate The expression of metabolism functional proteins (CATC and GLO4.) and Glutathione metabolism functional proteins (APX8 and OsGSTU13) were significantly up-regulated, which stimulated the antioxidant stress mechanism and photosynthetic system, and constructed a robust energy supply system to ensure the normal metabolic activities of life. Strengthening the mechanisms of plant homeostasis. In summary, this study revealed the molecular mechanism of tolerance to Cd stress in japonica rice, and the results of this study will provide a possible way to improve Cd-resistant rice seedlings.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Praha-Suchdol 16500, Czech Republic
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University; The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang 550025, China
| |
Collapse
|
29
|
Yang W, Gao S, Bao M, Li X, Liu Z, Wang G. HSP70A promotes the photosynthetic activity of marine diatom Phaeodactylum tricornutum under high temperature. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2085-2093. [PMID: 38525917 DOI: 10.1111/tpj.16730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/29/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024]
Abstract
With global climate change, the high-temperature environment has severely impacted the community structure and phenotype of marine diatoms. Phaeodactylum tricornutum, a model species of marine diatom, is sensitive to high temperature, which grow slowly under high temperature. However, the regulatory mechanism of P. tricornutum in response to high-temperature is still unclear. In this study, we found that the expression level of the HSP70A in the wild type (WT) increased 28 times when exposed to high temperature (26°C) for 1 h, indicating that HSP70A plays a role in high temperature in P. tricornutum. Furthermore, overexpression and interference of HSP70A have great impact on the exponential growth phase of P. tricornutum under 26°C. Moreover, the results of Co-immunoprecipitation (Co-IP) suggested that HSP70A potentially involved in the correct folding of the photosynthetic system-related proteins (D1/D2), preventing aggregation. The photosynthetic activity results demonstrated that overexpression of HSP70A improves non-photochemical quenching (NPQ) activity under high-temperature stress. These results reveal that HSP70A regulates the photosynthetic activity of P. tricornutum under high temperatures. This study not only helps us to understand the photosynthetic activity of marine diatoms to high temperature but also provides a molecular mechanism for HSP70A in P. tricornutum under high-temperature stress.
Collapse
Affiliation(s)
- Wenting Yang
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
| | - Shan Gao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| | - Mengjiao Bao
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Xin Li
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- College of Earth Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhiyuan Liu
- School of Marine Biology and Fisheries, Hainan University, Haikou, Hainan, China
| | - Guangce Wang
- Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
| |
Collapse
|
30
|
Sixi Z, Sun S, Zhao W, Yang X, Mao H, Sheng L. Comprehensive physiology and proteomics analysis revealed the molecular toxicological mechanism of Se stress on indica and japonica rice. CHEMOSPHERE 2024; 358:142190. [PMID: 38685336 DOI: 10.1016/j.chemosphere.2024.142190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Selenium pollution can lead to a decrease in crop yield and quality. However, the toxicological mechanisms of high Se concentrations on crops remain unclear. This study aimed to elucidate the physiological and proteomic molecular responses to Se stress in Oryza sativa. The results showed that under selenium stress, enzymatic activities of catalase, peroxidase, and superoxide dismutase in indica rice decreased by 61%, 28%, and 68%, respectively. The contents of non-enzymatic antioxidant substances ascorbic acid, glutathione, cysteine, proline, anthocyanidin, and flavonoids were decreased by 13%, 39%, 46%, 32%, 20%, and 5%, respectively, which significantly inhibited the antioxidant stress process of plants. At the same time, the results of proteomics analysis showed that rice seedlings, under Se stress, are involved in photosynthesis, photosynthesis-antenna proteins, carbon fixation, porphyrin metabolism, glyoxylate, and dicarboxylate. The differentially expressed proteins in metabolism and glutathione metabolism pathways showed a downward trend. It significantly inhibited the anti-oxidative stress, photosynthesis, and energy cycling process in plant cells, destroyed the homeostasis balance of rice plants, and inhibited the growth and development of rice. This finding reveals the molecular toxicological mechanism of Se stress on rice seedlings and provides a possible way to improve Se-resistant rice seedlings.
Collapse
Affiliation(s)
- Zhu Sixi
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-environment Engineering, Guizhou Minzu University, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guiyang, 550025, China
| |
Collapse
|
31
|
Li Z, Gao J, Wang B, Zhang H, Tian Y, Peng R, Yao Q. Ectopic expression of an Old Yellow Enzyme (OYE3) gene from Saccharomyces cerevisiae increases the tolerance and phytoremediation of 2-nitroaniline in rice. Gene 2024; 906:148239. [PMID: 38325666 DOI: 10.1016/j.gene.2024.148239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/27/2024] [Accepted: 01/31/2024] [Indexed: 02/09/2024]
Abstract
2-nitroaniline (2-NA) is an environmental pollutant and has been extensively used as intermediates in organic synthesis. The presence of 2-NA in the environment is not only harmful for aquatic life but also mutagenic for human beings. In this study, we constructed transgenic rice expressing an Old Yellow Enzyme gene, ScOYE3, from Saccharomyces cerevisiae. The ScOYE3 transgenic plants were comprehensively investigated for their biochemical responses to 2-NA treatment and their 2-NA phytoremediation capabilities. Our results showed that the rice seedlings exposed to 2-NA stress, showed growth inhibition and biomass reduction. However, the transgenic plants exhibited strong tolerance to 2-NA stress compared to wild-type plants. Ectopic expression of ScOYE3 could effectively protect transgenic plants against 2-NA damage, which resulted in less reactive oxygen species accumulation in transgenic plants than that in wild-type plants. Our phytoremediation assay revealed that transgenic plants could eliminate more 2-NA from the medium than wild-type plants. Moreover, omics analysis was performed in order to get a deeper insight into the mechanism of ScOYE3-mediated 2-NA transformation in rice. Altogether, the function of ScOYE3 during 2-NA detoxification was characterized for the first time, which serves as strong theoretical support for the phytoremediation potential of 2-NA by Old Yellow Enzyme genes.
Collapse
Affiliation(s)
- Zhenjun Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Jianjie Gao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Bo Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Hao Zhang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China
| | - Yongsheng Tian
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Rihe Peng
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| | - Quanhong Yao
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Agro-Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, 2901 Beidi Rd, Shanghai 201106, PR China.
| |
Collapse
|
32
|
Zhu S, Sun S, Zhao W, Yang X, Mao H, Sheng L, Chen Z. Utilizing transcriptomics and proteomics to unravel key genes and proteins of Oryza sativa seedlings mediated by selenium in response to cadmium stress. BMC PLANT BIOLOGY 2024; 24:360. [PMID: 38698342 PMCID: PMC11067083 DOI: 10.1186/s12870-024-05076-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cadmium (Cd) pollution has declined crop yields and quality. Selenium (Se) is a beneficial mineral element that protects plants from oxidative damage, thereby improving crop tolerance to heavy metals. The molecular mechanism of Se-induced Cd tolerance in rice (Oryza sativa) is not yet understood. This study aimed to elucidate the beneficial mechanism of Se (1 mg/kg) in alleviating Cd toxicity in rice seedlings. RESULTS Exogenous selenium addition significantly improved the toxic effect of cadmium stress on rice seedlings, increasing plant height and fresh weight by 20.53% and 34.48%, respectively, and increasing chlorophyll and carotenoid content by 16.68% and 15.26%, respectively. Moreover, the MDA, ·OH, and protein carbonyl levels induced by cadmium stress were reduced by 47.65%, 67.57%, and 56.43%, respectively. Cell wall metabolism, energy cycling, and enzymatic and non-enzymatic antioxidant systems in rice seedlings were significantly enhanced. Transcriptome analysis showed that the expressions of key functional genes psbQ, psbO, psaG, psaD, atpG, and PetH were significantly up-regulated under low-concentration Se treatment, which enhanced the energy metabolism process of photosystem I and photosystem II in rice seedlings. At the same time, the up-regulation of LHCA, LHCB family, and C4H1, PRX, and atp6 functional genes improved the ability of photon capture and heavy metal ion binding in plants. Combined with proteome analysis, the expression of functional proteins OsGSTF1, OsGSTU11, OsG6PDH4, OsDHAB1, CP29, and CabE was significantly up-regulated under Se, which enhanced photosynthesis and anti-oxidative stress mechanism in rice seedlings. At the same time, it regulates the plant hormone signal transduction pathway. It up-regulates the expression response process of IAA, ABA, and JAZ to activate the synergistic effect between each cell rapidly and jointly maintain the homeostasis balance. CONCLUSION Our results revealed the regulation process of Se-mediated critical metabolic pathways, functional genes, and proteins in rice under cadmium stress. They provided insights into the expression rules and dynamic response process of the Se-mediated plant resistance mechanism. This study provided the theoretical basis and technical support for crop safety in cropland ecosystems and cadmium-contaminated areas.
Collapse
Affiliation(s)
- Sixi Zhu
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China.
| | - Suxia Sun
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Wei Zhao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Xiuqin Yang
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Huan Mao
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Luying Sheng
- College of Eco-Environment Engineering, The Karst Environmental Geological Hazard Prevention of Key Laboratory of State Ethnic Affairs Commission, Guizhou Minzu University, Guiyang, 550025, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcka 129, Prague-Suchdol, 16500, Czech Republic
| |
Collapse
|
33
|
Tanveer M, Abidin ZU, Alawadi HFN, Shahzad AN, Mahmood A, Khan BA, Qari S, Oraby HF. Recent advances in genome editing strategies for balancing growth and defence in sugarcane ( Saccharum officinarum). FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:FP24036. [PMID: 38696670 DOI: 10.1071/fp24036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/14/2024] [Indexed: 05/04/2024]
Abstract
Sugarcane (Saccharum officinarum ) has gained more attention worldwide in recent decades because of its importance as a bioenergy resource and in producing table sugar. However, the production capabilities of conventional varieties are being challenged by the changing climates, which struggle to meet the escalating demands of the growing global population. Genome editing has emerged as a pivotal field that offers groundbreaking solutions in agriculture and beyond. It includes inserting, removing or replacing DNA in an organism's genome. Various approaches are employed to enhance crop yields and resilience in harsh climates. These techniques include zinc finger nuclease (ZFN), transcription activator-like effector nuclease (TALEN) and clustered regularly interspaced short palindromic repeats/associated protein (CRISPR/Cas). Among these, CRISPR/Cas is one of the most promising and rapidly advancing fields. With the help of these techniques, several crops like rice (Oryza sativa ), tomato (Solanum lycopersicum ), maize (Zea mays ), barley (Hordeum vulgare ) and sugarcane have been improved to be resistant to viral diseases. This review describes recent advances in genome editing with a particular focus on sugarcane and focuses on the advantages and limitations of these approaches while also considering the regulatory and ethical implications across different countries. It also offers insights into future prospects and the application of these approaches in agriculture.
Collapse
Affiliation(s)
- Maira Tanveer
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Zain Ul Abidin
- Department of Botany, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | | | - Ahmad Naeem Shahzad
- Department of Agronomy, Bahauddin Zakarriya University, Multan 60650, Pakistan
| | - Athar Mahmood
- Department of Agronomy, University of Agriculture Faisalabad, Faisalabad 38000, Pakistan
| | - Bilal Ahmad Khan
- Department of Agronomy, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Sameer Qari
- Department of Biology, Al-Jumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Hesham Farouk Oraby
- Deanship of Scientific Research, Umm Al-Qura University, Makkah 21955, Saudi Arabia; and Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| |
Collapse
|
34
|
Zhang Q, Wang P, Li W, Liu M, Zhou L, Su X, Cheng H, Guo H. AmCBF1 activates the expression of GhClpR1 to mediate dark-green leaves in cotton (Gossypium hirsutum). PLANT CELL REPORTS 2024; 43:83. [PMID: 38441719 DOI: 10.1007/s00299-024-03171-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/07/2024] [Indexed: 03/07/2024]
Abstract
KEY MESSAGE The transcription factor AmCBF1 deepens the leaf colour of transgenic cotton by binding to the promoter of the chloroplast development-related protein GhClpR1 to promote photosynthesis. The ATP-dependent caseinolytic protease (Clp protease) family plays a crucial role within chloroplasts, comprising several Clp proteins to maintain chloroplast homeostasis. At present, research on Clp proteins mainly focuses on Arabidopsis, leaving its function in other plants, particularly in crops, less explored. In this study, we overexpressed AmCBF1 from Ammopiptanthus mongolicus (A. mongolicus) in wild type (R15), and found a significant darkening of leaf colour in transgenic plants (L28 and L30). RNA-seq analysis showed an enrichment of pathways associated with photosynthesis. Subsequent screening of differentially expressed genes revealed a significant up-regulation of GhClpR1, a gene linked to chloroplast development, in the transgenic strain. In addition, GhClpR1 was consistently expressed in upland cotton, with the highest expression observed in leaves. Subcellular localization analysis revealed that the protein encoded by GhClpR1 was located in chloroplasts. Yeast one hybrid and dual luciferase experiments showed that the AmCBF1 transcription factor positively regulates the expression of GhClpR1. VIGs-mediated silencing of GhClpR1 led to a significant yellowing phenotype in the leaves. This was accompanied by a reduction in chlorophyll content, and microscopic examination of chloroplast ultrastructure revealed severe developmental impairment. Finally, yeast two-hybrid assays showed that GhClpR1 interacts with the Clp protease complex accessory protein GhClpT2. Our study provides a foundation for studying the function of the Clp protease complex and a new strategy for cultivating high-light-efficiency cotton resources.
Collapse
Affiliation(s)
- Qianqian Zhang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peilin Wang
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China
| | - Weilong Li
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Man Liu
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lili Zhou
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Hainan Yazhou Bay Seed Lab, Sanya, 572024, China
| | - Xiaofeng Su
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hongmei Cheng
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| | - Huiming Guo
- Biotechnology Research Institute/Key Laboratory of Agricultural Microbiome (MARA), Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- National Nanfan Research Institute, Chinese Academy of Agricultural Sciences, Sanya, 572024, China.
| |
Collapse
|
35
|
Aguirre-Bottger C, Zolla G. The best of both worlds: photosynthesis and Solanaceae biodiversity seeking a sustainable food and cosmetic industry. FRONTIERS IN PLANT SCIENCE 2024; 15:1362814. [PMID: 38434437 PMCID: PMC10904534 DOI: 10.3389/fpls.2024.1362814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/05/2024]
Affiliation(s)
| | - Gaston Zolla
- Grupo de Investigation en Fisiología Molecular de Plantas, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Peru
| |
Collapse
|
36
|
Falcioni R, Chicati ML, de Oliveira RB, Antunes WC, Hasanuzzaman M, Demattê JAM, Nanni MR. Decreased Photosynthetic Efficiency in Nicotiana tabacum L. under Transient Heat Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:395. [PMID: 38337928 PMCID: PMC10856914 DOI: 10.3390/plants13030395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024]
Abstract
Heat stress is an abiotic factor that affects the photosynthetic parameters of plants. In this study, we examined the photosynthetic mechanisms underlying the rapid response of tobacco plants to heat stress in a controlled environment. To evaluate transient heat stress conditions, changes in photochemical, carboxylative, and fluorescence efficiencies were measured using an infrared gas analyser (IRGA Licor 6800) coupled with chlorophyll a fluorescence measurements. Our findings indicated that significant disruptions in the photosynthetic machinery occurred at 45 °C for 6 h following transient heat treatment, as explained by 76.2% in the principal component analysis. The photosynthetic mechanism analysis revealed that the dark respiration rate (Rd and Rd*CO2) increased, indicating a reduced potential for carbon fixation during plant growth and development. When the light compensation point (LCP) increased as the light saturation point (LSP) decreased, this indicated potential damage to the photosystem membrane of the thylakoids. Other photosynthetic parameters, such as AMAX, VCMAX, JMAX, and ΦCO2, also decreased, compromising both photochemical and carboxylative efficiencies in the Calvin-Benson cycle. The energy dissipation mechanism, as indicated by the NPQ, qN, and thermal values, suggested that a photoprotective strategy may have been employed. However, the observed transitory damage was a result of disruption of the electron transport rate (ETR) between the PSII and PSI photosystems, which was initially caused by high temperatures. Our study highlights the impact of rapid temperature changes on plant physiology and the potential acclimatisation mechanisms under rapid heat stress. Future research should focus on exploring the adaptive mechanisms involved in distinguishing mutants to improve crop resilience against environmental stressors.
Collapse
Affiliation(s)
- Renan Falcioni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
- Department of Biotechnology, Genetic and Cellular Biology, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil
| | - Marcelo Luiz Chicati
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Roney Berti de Oliveira
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Werner Camargos Antunes
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh;
| | - José A. M. Demattê
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of São Paulo, Av. Pádua Dias, 11, Piracicaba 13418-260, SP, Brazil;
| | - Marcos Rafael Nanni
- Department of Agronomy, State University of Maringá, Av. Colombo, 5790, Maringá 87020-900, PR, Brazil; (M.L.C.); (R.B.d.O.); (W.C.A.); (M.R.N.)
| |
Collapse
|
37
|
Zheng H, Dang Y, Sui N. Sorghum: A Multipurpose Crop. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:17570-17583. [PMID: 37933850 DOI: 10.1021/acs.jafc.3c04942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Sorghum (Sorghum bicolor L.) is one of the top five cereal crops in the world in terms of production and planting area and is widely grown in areas with severe abiotic stresses such as drought and saline-alkali land due to its excellent stress resistance. Moreover, sorghum is a rare multipurpose crop that can be classified into grain sorghum, energy sorghum, and silage sorghum according to its domestication direction and utilization traits, endowing it with broad breeding and economic value. In this review, we mainly discuss the latest research progress and regulatory genes of agronomic traits of sorghum as a grain, energy, and silage crop, as well as the future improvement direction of multipurpose sorghum. We also emphasize the feasibility of cultivating multipurpose sorghum through genetic engineering methods by exploring potential targets using wild sorghum germplasm and genetic resources, as well as genomic resources.
Collapse
Affiliation(s)
- Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| | - Yingying Dang
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
- Dongying Institute, Shandong Normal University, Dongying, 257000, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of life Sciences, Shandong Normal University, Jinan, 250014, China
| |
Collapse
|
38
|
Xu H, Wang H, Zhang Y, Yang X, Lv S, Hou D, Mo C, Wassie M, Yu B, Hu T. A synthetic light-inducible photorespiratory bypass enhances photosynthesis to improve rice growth and grain yield. PLANT COMMUNICATIONS 2023; 4:100641. [PMID: 37349987 PMCID: PMC10721467 DOI: 10.1016/j.xplc.2023.100641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 04/25/2023] [Accepted: 06/19/2023] [Indexed: 06/24/2023]
Abstract
Bioengineering of photorespiratory bypasses is an effective strategy for improving plant productivity by modulating photosynthesis. In previous work, two photorespiratory bypasses, the GOC and GCGT bypasses, increased photosynthetic rates but decreased seed-setting rate in rice (Oryza sativa), probably owing to excess photosynthate accumulation in the stem. To solve this bottleneck, we successfully developed a new synthetic photorespiratory bypass (called the GMA bypass) in rice chloroplasts by introducing Oryza sativa glycolate oxidase 1 (OsGLO1), Cucurbita maxima malate synthase (CmMS), and Oryza sativa ascorbate peroxidase7 (OsAPX7) into the rice genome using a high-efficiency transgene stacking system. Unlike the GOC and GCGT bypass genes driven by constitutive promoters, OsGLO1 in GMA plants was driven by a light-inducible Rubisco small subunit promoter (pRbcS); its expression dynamically changed in response to light, producing a more moderate increase in photosynthate. Photosynthetic rates were significantly increased in GMA plants, and grain yields were significantly improved under greenhouse and field conditions. Transgenic GMA rice showed no reduction in seed-setting rate under either test condition, unlike previous photorespiratory-bypass rice, probably reflecting proper modulation of the photorespiratory bypass. Together, these results imply that appropriate engineering of the GMA bypass can enhance rice growth and grain yield without affecting seed-setting rate.
Collapse
Affiliation(s)
- Huawei Xu
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China.
| | - Huihui Wang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Yanwen Zhang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Xiaoyi Yang
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Shufang Lv
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Dianyun Hou
- College of Agriculture, Henan University of Science and Technology, Luoyang 471000, China
| | - Changru Mo
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Misganaw Wassie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Bo Yu
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Tao Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
39
|
Liu X, Cheng C, Min Y, Xie X, Muzahid ANM, Lv H, Tian H, Zhang C, Ye C, Cao S, Chen P, Zhong C, Li D. Increased ascorbic acid synthesis by overexpression of AcGGP3 ameliorates copper toxicity in kiwifruit. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132393. [PMID: 37660623 DOI: 10.1016/j.jhazmat.2023.132393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/13/2023] [Accepted: 08/23/2023] [Indexed: 09/05/2023]
Abstract
The widespread application of copper (Cu) -based fertilizers and pesticides could increase the accumulation of Cu in kiwifruit. According to a global survey, red- and yellow-fleshed kiwifruit contained more elevated amounts of Cu than green-fleshed kiwifruit due to weaker disease resistance and higher use of Cu pesticides. Intriguingly, our research revealed that external and endogenous ascorbic acid (AsA) reduced the phenotypic and physiological injury of Cu toxicity in kiwifruit. Cu stress assays and transcriptional analysis have shown that Cu treatment for 12 h significantly increased the AsA content in kiwifruit leaves and up-regulated key genes involved in AsA biosynthesis, such as GDP-L-galactose phosphorylase3 (GGP3) and GDP-mannose-3',5'-epimerase (GME). Overexpressing GGP3 in transgenic kiwifruit significantly increased the endogenous AsA content of kiwifruit, which was beneficial in mitigating Cu toxicity by decreasing levels of reactive oxygen species, malondialdehyde, and electrolyte leakage, as well as reducing damage to the chloroplast structure and photosystem II. This study presented a novel strategy to ameliorate plant Cu stress by increasing the endogenous antioxidant (AsA) content through transgenesis.
Collapse
Affiliation(s)
- Xiaoying Liu
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Chang Cheng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Yan Min
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaodong Xie
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Abu Naim Md Muzahid
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Haiyan Lv
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Hua Tian
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Congxiao Zhang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China
| | - Can Ye
- State Key Joint Laboratory of Environment Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Bejing 100871, China
| | - Shifeng Cao
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Peng Chen
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Caihong Zhong
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Dawei Li
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
40
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
41
|
Zhang Y, Tian L, Lu C. Chloroplast gene expression: Recent advances and perspectives. PLANT COMMUNICATIONS 2023; 4:100611. [PMID: 37147800 PMCID: PMC10504595 DOI: 10.1016/j.xplc.2023.100611] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/11/2023] [Accepted: 05/01/2023] [Indexed: 05/07/2023]
Abstract
Chloroplasts evolved from an ancient cyanobacterial endosymbiont more than 1.5 billion years ago. During subsequent coevolution with the nuclear genome, the chloroplast genome has remained independent, albeit strongly reduced, with its own transcriptional machinery and distinct features, such as chloroplast-specific innovations in gene expression and complicated post-transcriptional processing. Light activates the expression of chloroplast genes via mechanisms that optimize photosynthesis, minimize photodamage, and prioritize energy investments. Over the past few years, studies have moved from describing phases of chloroplast gene expression to exploring the underlying mechanisms. In this review, we focus on recent advances and emerging principles that govern chloroplast gene expression in land plants. We discuss engineering of pentatricopeptide repeat proteins and its biotechnological effects on chloroplast RNA research; new techniques for characterizing the molecular mechanisms of chloroplast gene expression; and important aspects of chloroplast gene expression for improving crop yield and stress tolerance. We also discuss biological and mechanistic questions that remain to be answered in the future.
Collapse
Affiliation(s)
- Yi Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Lin Tian
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Congming Lu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
42
|
Liang XG, Gao Z, Fu XX, Chen XM, Shen S, Zhou SL. Coordination of carbon assimilation, allocation, and utilization for systemic improvement of cereal yield. FRONTIERS IN PLANT SCIENCE 2023; 14:1206829. [PMID: 37731984 PMCID: PMC10508850 DOI: 10.3389/fpls.2023.1206829] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/14/2023] [Indexed: 09/22/2023]
Abstract
The growth of yield outputs is dwindling after the first green revolution, which cannot meet the demand for the projected population increase by the mid-century, especially with the constant threat from extreme climates. Cereal yield requires carbon (C) assimilation in the source for subsequent allocation and utilization in the sink. However, whether the source or sink limits yield improvement, a crucial question for strategic orientation in future breeding and cultivation, is still under debate. To narrow the knowledge gap and capture the progress, we focus on maize, rice, and wheat by briefly reviewing recent advances in yield improvement by modulation of i) leaf photosynthesis; ii) primary C allocation, phloem loading, and unloading; iii) C utilization and grain storage; and iv) systemic sugar signals (e.g., trehalose 6-phosphate). We highlight strategies for optimizing C allocation and utilization to coordinate the source-sink relationships and promote yields. Finally, based on the understanding of these physiological mechanisms, we envisage a future scenery of "smart crop" consisting of flexible coordination of plant C economy, with the goal of yield improvement and resilience in the field population of cereals crops.
Collapse
Affiliation(s)
- Xiao-Gui Liang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Zhen Gao
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, China
| | - Xiao-Xiang Fu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education and Jiangxi Province/The Laboratory for Phytochemistry and Botanical Pesticides, College of Agriculture, Jiangxi Agricultural University, Nanchang, China
| | - Xian-Min Chen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Si Shen
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shun-Li Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| |
Collapse
|
43
|
Chen Y, Guo Y, Xie X, Wang Z, Miao L, Yang Z, Jiao Y, Xie C, Liu J, Hu Z, Xin M, Yao Y, Ni Z, Sun Q, Peng H, Guo W. Pangenome-based trajectories of intracellular gene transfers in Poaceae unveil high cumulation in Triticeae. PLANT PHYSIOLOGY 2023; 193:578-594. [PMID: 37249052 PMCID: PMC10469385 DOI: 10.1093/plphys/kiad319] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/04/2023] [Indexed: 05/31/2023]
Abstract
Intracellular gene transfers (IGTs) between the nucleus and organelles, including plastids and mitochondria, constantly reshape the nuclear genome during evolution. Despite the substantial contribution of IGTs to genome variation, the dynamic trajectories of IGTs at the pangenomic level remain elusive. Here, we developed an approach, IGTminer, that maps the evolutionary trajectories of IGTs using collinearity and gene reannotation across multiple genome assemblies. We applied IGTminer to create a nuclear organellar gene (NOG) map across 67 genomes covering 15 Poaceae species, including important crops. The resulting NOGs were verified by experiments and sequencing data sets. Our analysis revealed that most NOGs were recently transferred and lineage specific and that Triticeae species tended to have more NOGs than other Poaceae species. Wheat (Triticum aestivum) had a higher retention rate of NOGs than maize (Zea mays) and rice (Oryza sativa), and the retained NOGs were likely involved in photosynthesis and translation pathways. Large numbers of NOG clusters were aggregated in hexaploid wheat during 2 rounds of polyploidization, contributing to the genetic diversity among modern wheat accessions. We implemented an interactive web server to facilitate the exploration of NOGs in Poaceae. In summary, this study provides resources and insights into the roles of IGTs in shaping interspecies and intraspecies genome variation and driving plant genome evolution.
Collapse
Affiliation(s)
- Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yiwen Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiaoming Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhengzhao Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuannian Jiao
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaojie Xie
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Jie Liu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhaorong Hu
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Mingming Xin
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| |
Collapse
|
44
|
Sun AZ, Chen JH, Jin XQ, Li H, Guo FQ. Supplementing the Nuclear-Encoded PSII Subunit D1 Induces Dramatic Metabolic Reprogramming in Flag Leaves during Grain Filling in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:3009. [PMID: 37631220 PMCID: PMC10458752 DOI: 10.3390/plants12163009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/11/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
Our previous study has demonstrated that the nuclear-origin supplementation of the PSII core subunit D1 protein stimulates growth and increases grain yields in transgenic rice plants by enhancing photosynthetic efficiency. In this study, the underlying mechanisms have been explored regarding how the enhanced photosynthetic capacity affects metabolic activities in the transgenic plants of rice harboring the integrated transgene RbcSPTP-OspsbA cDNA, cloned from rice, under control of the AtHsfA2 promoter and N-terminal fused with the plastid-transit peptide sequence (PTP) cloned from the AtRbcS. Here, a comparative metabolomic analysis was performed using LC-MS in flag leaves of the transgenic rice plants during the grain-filling stage. Critically, the dramatic reduction in the quantities of nucleotides and certain free amino acids was detected, suggesting that the increased photosynthetic assimilation and grain yield in the transgenic plants correlates with the reduced contents of free nucleotides and the amino acids such as glutamine and glutamic acid, which are cellular nitrogen sources. These results suggest that enhanced photosynthesis needs consuming more free nucleotides and nitrogen sources to support the increase in biomass and yields, as exhibited in transgenic rice plants. Unexpectedly, dramatic changes were measured in the contents of flavonoids in the flag leaves, suggesting that a tight and coordinated relationship exists between increasing photosynthetic assimilation and flavonoid biosynthesis. Consistent with the enhanced photosynthetic efficiency, the substantial increase was measured in the content of starch, which is the primary product of the Calvin-Benson cycle, in the transgenic rice plants under field growth conditions.
Collapse
Affiliation(s)
- Ai-Zhen Sun
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Juan-Hua Chen
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| | - Xue-Qi Jin
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Li
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang-Qing Guo
- The National Key Laboratory of Plant Molecular Genetics and CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology & Ecology, Chinese Academy of Sciences, Shanghai 200032, China; (A.-Z.S.); (J.-H.C.); (X.-Q.J.); (H.L.)
| |
Collapse
|
45
|
Farooq N, Khan MO, Ahmed MZ, Fatima S, Nawaz MA, Abideen Z, Nielsen BL, Ahmad N. Salt-Induced Modulation of Ion Transport and PSII Photoprotection Determine the Salinity Tolerance of Amphidiploid Brassicas. PLANTS (BASEL, SWITZERLAND) 2023; 12:2590. [PMID: 37514204 PMCID: PMC10386101 DOI: 10.3390/plants12142590] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023]
Abstract
Brassica species show varying levels of resistance to salt stress. To understand the genetics underlying these differential stress tolerance patterns in Brassicas, we exposed two widely cultivated amphidiploid Brassica species having different genomes, Brassica juncea (AABB, n = 18) and Brassica napus (AACC, n = 19), to elevated levels of NaCl concentration (300 mM, half the salinity of seawater). B. juncea produced more biomass, an increased chlorophyll content, and fewer accumulated sodium (Na+) and chloride (Cl-) ions in its photosynthesizing tissues. Chlorophyll fluorescence assays revealed that the reaction centers of PSII of B. juncea were more photoprotected and hence more active than those of B. napus under NaCl stress, which, in turn, resulted in a better PSII quantum efficiency, better utilization of photochemical energy with significantly reduced energy loss, and higher electron transport rates, even under stressful conditions. The expression of key genes responsible for salt tolerance (NHX1 and AVP1, which are nuclear-encoded) and photosynthesis (psbA, psaA, petB, and rbcL, which are chloroplast-encoded) were monitored for their genetic differences underlying stress tolerance. Under NaCl stress, the expression of NHX1, D1, and Rubisco increased several folds in B. juncea plants compared to B. napus, highlighting differences in genetics between these two Brassicas. The higher photosynthetic potential under stress suggests that B. juncea is a promising candidate for genetic modifications and its cultivation on marginal lands.
Collapse
Affiliation(s)
- Nisma Farooq
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (N.F.); (M.O.K.); (S.F.); (M.A.N.)
| | - Muhammad Omar Khan
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (N.F.); (M.O.K.); (S.F.); (M.A.N.)
| | - Muhammad Zaheer Ahmed
- Dr Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (M.Z.A.); (Z.A.)
| | - Samia Fatima
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (N.F.); (M.O.K.); (S.F.); (M.A.N.)
| | - Muhammad Asif Nawaz
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (N.F.); (M.O.K.); (S.F.); (M.A.N.)
| | - Zainul Abideen
- Dr Muhammad Ajmal Khan Institute of Sustainable Halophyte Utilization, University of Karachi, Karachi 75270, Pakistan; (M.Z.A.); (Z.A.)
| | - Brent L. Nielsen
- Microbiology & Molecular Biology, Brigham Young University, Provo, UT 84602, USA
| | - Niaz Ahmad
- National Institute for Biotechnology and Genetic Engineering College (NIBGE-C), Pakistan Institute of Engineering and Applied Sciences (PIEAS), Faisalabad 38000, Pakistan; (N.F.); (M.O.K.); (S.F.); (M.A.N.)
| |
Collapse
|
46
|
Liu H, Jiao Q, Fan L, Jiang Y, Alyemeni MN, Ahmad P, Chen Y, Zhu M, Liu H, Zhao Y, Liu F, Liu S, Li G. Integrated physio-biochemical and transcriptomic analysis revealed mechanism underlying of Si-mediated alleviation to cadmium toxicity in wheat. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131366. [PMID: 37030231 DOI: 10.1016/j.jhazmat.2023.131366] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cadmium (Cd) contamination has resulted in serious reduction of crop yields. Silicon (Si), as a beneficial element, regulates plant growth to heavy metal toxicity mainly through reducing metal uptake and protecting plants from oxidative injury. However, the molecular mechanism underlying Si-mediated Cd toxicity in wheat has not been well understood. This study aimed to reveal the beneficial role of Si (1 mM) in alleviating Cd-induced toxicity in wheat (Triticum aestivum) seedlings. The results showed that exogenous supply of Si decreased Cd concentration by 67.45% (root) and 70.34% (shoot), and maintained ionic homeostasis through the function of important transporters, such as Lsi, ZIP, Nramp5 and HIPP. Si ameliorated Cd-induced photosynthetic performance inhibition through up-regulating photosynthesis-related genes and light harvesting-related genes. Si minimized Cd-induced oxidative stress by decreasing MDA contents by 46.62% (leaf) and 75.09% (root), and helped re-establish redox homeostasis by regulating antioxidant enzymes activities, AsA-GSH cycle and expression of relevant genes through signal transduction pathway. The results revealed molecular mechanism of Si-mediated wheat tolerance to Cd toxicity. Si fertilizer is suggested to be applied in Cd contaminated soil for food safety production as a beneficial and eco-friendly element.
Collapse
Affiliation(s)
- Haitao Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Qiujuan Jiao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Lina Fan
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Ying Jiang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Mohammed Nasser Alyemeni
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; Department of Botany, GDC Pulwama, 192301, Jammu and Kashmir, India
| | - Yinglong Chen
- The UWA Institute of Agriculture & School of Agriculture and Environment, The University of Western Australia, Perth 6009, Australia
| | - Mo Zhu
- College of Life Sciences, Henan Normal University, Xinxiang 453007, PR China; Henan International Joint Laboratory of Agricultural Microbial Ecology and Technology, Henan Normal University, Xinxiang 453007, PR China
| | - Haiping Liu
- School of Civil Engineering and Architecture, Zhengzhou University of Aeronautics, Zhengzhou 450046, PR China
| | - Ying Zhao
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Fang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Shiliang Liu
- College of Resources and Environment, Henan Agricultural University, Zhengzhou 450046, PR China
| | - Gezi Li
- National Engineering Research Center for Wheat, Henan Agricultural University, Zhengzhou 450046, PR China.
| |
Collapse
|
47
|
Hura T, Hura K, Ostrowska A, Gadzinowska J, Urban K, Pawłowska B. The role of invasive plant species in drought resilience in agriculture: the case of sweet briar (Rosa rubiginosa L.). JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2799-2810. [PMID: 36124695 DOI: 10.1093/jxb/erac377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/05/2022] [Indexed: 06/06/2023]
Abstract
Sweet briar (Rosa rubiginosa) belongs to the group of wild roses. Under natural conditions it grows throughout Europe, and was introduced also into the southern hemisphere, where it has efficiently adapted to dry lands. This review focuses on the high adaptation potential of sweet briar to soil drought in the context of global climatic changes, especially considering steppe formation and desertification of agricultural, orchard, and horticultural areas. We provide a comprehensive overview of current knowledge on sweet briar traits associated with drought tolerance and particularly water use efficiency, sugar accumulation, accumulation of CO2 in intercellular spaces, stomatal conductance, gibberellin level, effective electron transport between photosystem II and photosystem I, and protein content. We discuss the genetics and potential applications in plant breeding and suggest future directions of study concerning invasive populations of R. rubiginosa. Finally, we point out that sweet briar can provide new genes for breeding in the context of depleting gene pools of the crop plants.
Collapse
Affiliation(s)
- Tomasz Hura
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Katarzyna Hura
- Department of Plant Breeding, Physiology and Seed Science, Faculty of Agriculture and Economics, Agricultural University, Podłużna 3, 30-239 Kraków, Poland
| | - Agnieszka Ostrowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Joanna Gadzinowska
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Karolina Urban
- Polish Academy of Sciences, The Franciszek Górski Institute of Plant Physiology, Kraków, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Arts, Agricultural University, 29 Listopada 54 Avenue, 31-425 Kraków, Poland
| |
Collapse
|
48
|
Wang L, Yang Y, Yang Z, Li W, Hu D, Yu H, Li X, Cheng H, Kan G, Che Z, Zhang D, Zhang H, Wang H, Huang F, Yu D. GmFtsH25 overexpression increases soybean seed yield by enhancing photosynthesis and photosynthates. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1026-1040. [PMID: 36349957 DOI: 10.1111/jipb.13405] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/08/2022] [Indexed: 06/16/2023]
Abstract
Increasing plant photosynthetic capacity is a promising approach to boost yields, but it is particularly challenging in C3 crops, such as soybean (Glycine max (L.) Merr.). Here, we identified GmFtsH25, encoding a member of the filamentation temperature-sensitive protein H protease family, as a major gene involved in soybean photosynthesis, using linkage mapping and a genome-wide association study. Overexpressing GmFtsH25 resulted in more grana thylakoid stacks in chloroplasts and increased photosynthetic efficiency and starch content, while knocking out GmFtsH25 produced the opposite phenotypes. GmFtsH25 interacted with photosystem I light harvesting complex 2 (GmLHCa2), and this interaction may contribute to the observed enhanced photosynthesis. GmFtsH25 overexpression lines had superior yield traits, such as yield per plant, compared to the wild type and knockout lines. Additionally, we identified an elite haplotype of GmFtsH25, generated by natural mutations, which appears to have been selected during soybean domestication. Our study sheds light on the molecular mechanism by which GmFtsH25 modulates photosynthesis and provides a promising strategy for improving the yields of soybean and other crops.
Collapse
Affiliation(s)
- Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zhongyi Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenlong Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Dezhou Hu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huilian Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiao Li
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guizhen Kan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhijun Che
- School of Agriculture, Ningxia University, Yinchuan, 750021, China
| | - Dan Zhang
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hengyou Zhang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, the Chinese Academy of Sciences, Harbin, 150081, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fang Huang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
49
|
Zhang X, Han Y, Han X, Zhang S, Xiong L, Chen T. Peptide chain release factor DIG8 regulates plant growth by affecting ROS-mediated sugar transportation in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2023; 14:1172275. [PMID: 37063204 PMCID: PMC10102589 DOI: 10.3389/fpls.2023.1172275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
Chloroplasts have important roles in photosynthesis, stress sensing and retrograde signaling. However, the relationship between chloroplast peptide chain release factor and ROS-mediated plant growth is still unclear. In the present study, we obtained a loss-of-function mutant dig8 by EMS mutation. The dig8 mutant has few lateral roots and a pale green leaf phenotype. By map-based cloning, the DIG8 gene was located on AT3G62910, with a point mutation leading to amino acid substitution in functional release factor domain. Using yeast-two-hybrid and BiFC, we confirmed DIG8 protein was characterized locating in chloroplast by co-localization with plastid marker and interacting with ribosome-related proteins. Through observing by transmission electron microscopy, quantifying ROS content and measuring the transport efficiency of plasmodesmata in dig8 mutant, we found that abnormal thylakoid stack formation and chloroplast dysfunction in the dig8 mutant caused increased ROS activity leading to callose deposition and lower PD permeability. A local sugar supplement partially alleviated the growth retardation phenotype of the mutant. These findings shed light on chloroplast peptide chain release factor-affected plant growth by ROS stress.
Collapse
Affiliation(s)
- Xiangxiang Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Yuliang Han
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Xiao Han
- College of Life Sciences, Fuzhou University, Fuzhou, China
| | - Siqi Zhang
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Kowloon Tang, Hong Kong, Hong Kong SAR, China
| | - Tao Chen
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, College of Life and Environmental Science, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
50
|
Recent developments in the engineering of Rubisco activase for enhanced crop yield. Biochem Soc Trans 2023; 51:627-637. [PMID: 36929563 DOI: 10.1042/bst20221281] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/18/2023]
Abstract
Rubisco activase (RCA) catalyzes the release of inhibitory sugar phosphates from ribulose-1,6-biphosphate carboxylase/oxygenase (Rubisco) and can play an important role in biochemical limitations of photosynthesis under dynamic light and elevated temperatures. There is interest in increasing RCA activity to improve crop productivity, but a lack of understanding about the regulation of photosynthesis complicates engineering strategies. In this review, we discuss work relevant to improving RCA with a focus on advances in understanding the structural cause of RCA instability under heat stress and the regulatory interactions between RCA and components of photosynthesis. This reveals substantial variation in RCA thermostability that can be influenced by single amino acid substitutions, and that engineered variants can perform better in vitro and in vivo under heat stress. In addition, there are indications RCA activity is controlled by transcriptional, post-transcriptional, post-translational, and spatial regulation, which may be important for balancing between carbon fixation and light capture. Finally, we provide an overview of findings from recent field experiments and consider the requirements for commercial validation as part of efforts to increase crop yields in the face of global climate change.
Collapse
|