1
|
Rimon A, Belin J, Yerushalmy O, Eavri Y, Shapochnikov A, Coppenhagen-Glazer S, Hazan R, Gavish L. Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide. Antibiotics (Basel) 2025; 14:481. [PMID: 40426547 DOI: 10.3390/antibiotics14050481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/30/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that infect bacteria, offer a promising non-antibiotic bactericidal approach. This study investigates the potential synergism between low-dose PBL and phage therapy against P. aeruginosa in planktonic cultures and preformed biofilms. Methods: We conducted a factorial dose-response in vitro study combining P. aeruginosa-specific phages with PBL (457 nm, 33 kHz) on both PA14 and multidrug-resistant PATZ2 strains. After excluding direct PBL effects on phage titer or activity, we assessed effectiveness on planktonic cultures using growth curve analysis (via growth_curve_outcomes, a newly developed, Python-based tool available on GitHub) , CFU, and PFU. Biofilm efficacy was evaluated using CFU post-sonication, crystal violet staining, and live/dead staining with confocal microscopy. Finally, we assessed reactive oxygen species (ROS) as a potential mechanism using the nitro blue tetrazolium reduction assay. ANOVA or Kruskal-Wallis tests with post hoc Tukey or Conover-Iman tests were used for comparisons (n = 5 biological replicates and technical triplicates). Results: The bacterial growth lag phase was significantly extended for phage alone or PBL alone, with a synergistic effect of up to 144% (p < 0.001 for all), achieving a 9 log CFU/mL reduction at 24 h (p < 0.001). In preformed biofilms, synergistic combinations significantly reduced biofilm biomass and bacterial viability (% Live, median (IQR): Control 80%; Phage 40%; PBL 25%; PBL&Phage 15%, p < 0.001). Mechanistically, PBL triggered transient ROS in planktonic cultures, amplified by phage co-treatment, while a biphasic ROS pattern in biofilms reflected time-dependent synergy. Conclusions: Phage therapy combined with PBL demonstrates a synergistic bactericidal effect against P. aeruginosa in both planktonic cultures and biofilms. Given the strong safety profile of PBL and phages, this approach may lead to a novel, antibiotic-complementary, safe treatment modality for patients suffering from difficult-to-treat antibiotic-resistant infections and biofilm-associated infections.
Collapse
Affiliation(s)
- Amit Rimon
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- Tzameret, The Military Track of Medicine, The Hebrew University-Hadassah Medical School, Jerusalem 9112001, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Jonathan Belin
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Ortal Yerushalmy
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Yonatan Eavri
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Anatoly Shapochnikov
- The Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
| | - Shunit Coppenhagen-Glazer
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Ronen Hazan
- Institute of Biomedical and Oral Research (IBOR), Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
- The Israeli Phage Therapy Center (IPTC) of the Hebrew University and Hadassah Medical Center, Jerusalem 9112001, Israel
| | - Lilach Gavish
- Institute for Research in Military Medicine (IRMM), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- The Department of Medical Neurobiology, Institute for Medical Research (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112001, Israel
- The Saul and Joyce Brandman Hub for Cardiovascular Research, Jerusalem 9112001, Israel
| |
Collapse
|
2
|
Zhang Y, Cai Y, Jin X, Wu Q, Bai F, Liu J. Persistent glucose consumption under antibiotic treatment protects bacterial community. Nat Chem Biol 2025; 21:238-246. [PMID: 39138382 DOI: 10.1038/s41589-024-01708-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
Antibiotics typically induce major physiological changes in bacteria. However, their effect on nutrient consumption remains unclear. Here we found that Escherichia coli communities can sustain normal levels of glucose consumption under a broad range of antibiotics. The community-living resulted in a low membrane potential in the bacteria, allowing slow antibiotic accumulation on treatment and better adaptation. Through multi-omics analysis, we identified a prevalent adaptive response characterized by the upregulation of lipid synthesis, which substantially contributes to sustained glucose consumption. The consumption was maintained by the periphery region of the community, thereby restricting glucose penetration into the community interior. The resulting spatial heterogeneity in glucose availability protected the interior from antibiotic accumulation in a membrane potential-dependent manner, ensuring rapid recovery of the community postantibiotic treatment. Our findings unveiled a community-level antibiotic response through spatial regulation of metabolism and suggested new strategies for antibiotic therapies.
Collapse
Affiliation(s)
- Yuzhen Zhang
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Yumin Cai
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Xin Jin
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Qile Wu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China
| | - Fan Bai
- Biomedical Pioneering Innovation Center, School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Jintao Liu
- Center for Infection Biology, School of Basic Medical Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, China.
| |
Collapse
|
3
|
Tu Y, Pan C, Huang Y, Ye Y, Zheng Y, Cao D, Lv Y. Red and blue LED light increases the survival rate of random skin flaps in rats after MRSA infection. Lasers Med Sci 2025; 40:34. [PMID: 39847197 DOI: 10.1007/s10103-025-04294-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/05/2025] [Indexed: 01/24/2025]
Abstract
Skin flap transplantation is a conventional wound repair method in plastic and reconstructive surgery, but infection and ischemia are common complications. Photobiomodulation (PBM) therapy has shown promise for various medical problems, including wound repair processes, due to its capability to accelerate angiogenesis and relieve inflammation. This study investigated the effect of red and blue light on the survival of random skin flaps in methicillin-resistant Staphylococcus aureus (MRSA)-infected Sprague Dawley (SD) rats. Forty male SD rats were divided into control and light-emitting diode-red and blue light-treated (LED-RBL) groups at a ratio of 1:1 and a McFarland flap procedure was performed, which was subsequently infected with MRSA strains. After 7 days, the appearance and survival of the flaps were evaluated. The microvascular density was determined by hematoxylin and eosin (HE) staining. The expression levels of vascular endothelial growth factor (VEGF), hypoxia inducible factor 1α (HIF-1α), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (normally expressed as AKT) were detected by immunohistochemistry. The flap survival rate and microvascular density in the LED-RBL group were significantly higher than those in the control group (P < 0.05). In addition, the VEGF, HIF1-α, PI3K, and AKT levels were significantly higher in the LED-RBL group compared to the control group (P < 0.05). Red and blue light increased the survival area of the infected flap in rats by promoting angiogenesis, relieving oxidative stress, and reducing bacterial loads, indicating that PBM therapy is a convenient, simple, analgesic, and safe treatment intervention in promoting the survival rate of transplanted flaps after wound repair surgery.
Collapse
Affiliation(s)
- Yiqian Tu
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Chenyu Pan
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Ye Huang
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yujie Ye
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Yunfeng Zheng
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China
| | - Dongsheng Cao
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| | - Yang Lv
- Department of Plastic and Reconstructive Surgery, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, Anhui Province, 230601, P.R. China.
| |
Collapse
|
4
|
Gobbo M, Val M, Guarda Nardini L. Blue light diode laser for treating benign maxillofacial vascular lesions: comparison of various techniques using the same diode laser. J COSMET LASER THER 2024; 26:122-128. [PMID: 39606942 DOI: 10.1080/14764172.2024.2433215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 01/09/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
Maxillofacial benign vascular lesions may require removal for aesthetic purpose or bleeding. Lasers have been substituting traditional excision. Fifteen vascular lesions were treated with different Blue Diode Laser protocols: laser forced dehydration (LFD), intralesional coagulation (ILC), surgical excision. LFD is conservative, quick and does not need anesthesia. ILC was used as second choice and surgical excision when both techniques failed. One patient reported asymptomatic ulceration after LFD and one patient referred bleeding after ILC. None experienced pain or relapse. Lasers are useful for treating vascular benign lesions. Surgical excision should be left as utmost treatment especially in case of aesthetic concern.
Collapse
Affiliation(s)
- M Gobbo
- Unit of Oral ad Maxillofacial Surgery, Ca' Foncello Hospital, Treviso, Italy
| | - M Val
- Unit of Oral ad Maxillofacial Surgery, Ca' Foncello Hospital, Treviso, Italy
| | - L Guarda Nardini
- Unit of Oral ad Maxillofacial Surgery, Ca' Foncello Hospital, Treviso, Italy
| |
Collapse
|
5
|
Wang Y, Li X, Chen H, Yang X, Guo L, Ju R, Dai T, Li G. Antimicrobial blue light inactivation of Pseudomonas aeruginosa: Unraveling the multifaceted impact of wavelength, growth stage, and medium composition. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 259:113023. [PMID: 39241393 PMCID: PMC11390306 DOI: 10.1016/j.jphotobiol.2024.113023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/20/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024]
Abstract
Pseudomonas aeruginosa, a notable pathogen frequently associated with hospital-acquired infections, displays diverse intrinsic and acquired antibiotic resistance mechanisms, posing a significant challenge in infection management. Antimicrobial blue light (aBL) has been demonstrated as a potential alternative for treating P. aeruginosa infections. In this study, we investigated the impact of blue light wavelength, bacterial growth stage, and growth medium composition on the efficacy of aBL. First, we compared the efficacy of light wavelengths 405 nm, 415 nm, and 470 nm in killing three multidrug resistant clinical strains of P. aeruginosa. The findings indicated considerably higher antibacterial efficacy for 405 nm and 415 nm wavelength compared to 470 nm. We then evaluated the impact of the bacterial growth stage on the efficacy of 405 nm light in killing P. aeruginosa using a reference strain PAO1 in exponential, transitional, or stationary phase. We found that bacteria in the exponential phase were the most susceptible to aBL, followed by the transitional phase, while those in the stationary phase exhibited the highest tolerance. Additionally, we quantified the production of reactive oxygen species (ROS) in bacteria using the 2',7'-dichlorofluorescein diacetate (DCFH-DA) probe and flow cytometry, and observed a positive correlation between aBL efficacy and ROS production. Finally, we determined the influence of growth medium on aBL efficacy. PAO1 was cultivated in brain heart infusion (BHI), Luria-Bertani (LB) broth or Casamino acids (CAA) medium, before being irradiated with aBL at 405 nm. The CAA-grown bacteria exhibited the highest sensitivity to aBL, followed by those grown in LB broth, and the BHI-grown bacteria demonstrated the lowest sensitivity. By incorporating FeCl3, MnCl2, ZnCl2, or the iron chelator 2,2'-bipyridine (BIP) into specific media, we discovered that aBL efficacy was affected by the iron levels in culture media.
Collapse
Affiliation(s)
- Yucheng Wang
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Xue Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Hongtong Chen
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Xinyi Yang
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China
| | - Lei Guo
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Rui Ju
- Department of Pharmacology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & School of Basic Medicine, Peking Union Medical College, Beijing 100005, China
| | - Tianhong Dai
- Wellman Center for Photomedicine, MA General Hospital, Harvard Medical School, United States.
| | - Guoqing Li
- Beijing Key Laboratory of Antimicrobial Agents/Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China; Division for Medicinal Microorganism-Related Strains, CAMS Collection Center of Pathogenic Microorganisms, Beijing 100050, China.
| |
Collapse
|
6
|
Ibrahim HA, Suardi N, Khaniabadi PM, Zulbaharin SFM, Taggo A. The cytotoxicity of breast cancer mcf-7 cell line treated with different wavelength of low-level laser. Lasers Med Sci 2024; 39:238. [PMID: 39307856 DOI: 10.1007/s10103-024-04187-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 09/15/2024] [Indexed: 09/28/2024]
Abstract
Breast cancer remains a significant global health challenge, spurring ongoing investigations into innovative treatment approaches. Low-level laser therapy (LLLT) has emerged as a promising non-invasive therapeutic avenue of interest. This research delves into the impact of LLLT on the cytotoxicity of the MCF-7 breast cancer cell line, employing lasers emitting various wavelengths. The objective is to assess whether diverse LLLT wavelengths elicit disparate cytotoxic responses, shedding light on LLLT's potential as a targeted breast cancer treatment. MCF-7 cell cultures were subjected to lasers of varying wavelengths, including blue (473 nm), red (660 nm), and near-infrared (780 nm). Each wavelength was delivered at four different power levels: 10, 25, 45, and 65 mW, with exposure durations of 60, 300, 600, and 900 s. Cellular responses, encompassing factors such as cell viability, and cytotoxicity were assessed using WST-1 assays technique. Statistical analysis was performed to discern the wavelength-specific impacts of low-level laser therapy (LLLT) on MCF-7 cells. The study revealed that the blue laser had the least noticeable adverse impact on MCF-7 breast cancer cell lines, leading to the highest cell survival rate of 107.62% after 24 h. The most severe toxicity occurred when the laser was used at 45 mW for 900 s, resulting in cell viability ranging from 81.85% to 107.62%. As for cell viability after exposure to the red laser, the mildest harmful effect was observed at 45 mW power for 60 s, resulting in a cell survival rate of 147.62%. Conversely, the most significant toxic response occurred at 10 mW power for 60 s, resulting in a cell viability of 91.56%. In contrast, when employing infrared laser irradiation, the least substantial cytotoxic effect on MCF-7 cells was observed at 10 mW power for 600 s, resulting in the highest cell viability of 109.37% after 24 h. The most pronounced cytotoxic effect was observed by infrared laser (780 nm) at 25 mW power for 900 s, leading to the lowest viability of 32.53%.
Collapse
Affiliation(s)
- Habibu Ahmad Ibrahim
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
- Department of Physics, Kano University of Science and Technology Wudil, Kano, Nigeria
| | - Nursakinah Suardi
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia.
| | - Pegah Moradi Khaniabadi
- Community and Health Research Unit (CaHRU), School of Health & Social Care, University of Lincoln, Lincoln, LN5 7AY, United Kingdom
| | | | - Aijesta Taggo
- School of Physics, Universiti Sains Malaysia, 11800, Penang, Malaysia
| |
Collapse
|
7
|
Ahrens M, Spörer M, Deppe H, Ritschl LM, Mela P. Bacterial reduction and temperature increase of titanium dental implant models treated with a 445 nm diode laser: an in vitro study. Sci Rep 2024; 14:18053. [PMID: 39103382 PMCID: PMC11300767 DOI: 10.1038/s41598-024-68780-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
In this in vitro study, the use of a 445 nm diode laser was investigated for the decontamination of titanium dental implants. Different irradiation protocols and the effect of repetitive laser irradiation on temperature increase and decontamination efficacy were evaluated on titanium implant models. An automated setup was developed to realize a scanning procedure for a full surface irradiation to recapitulate a clinical treatment. Three irradiation parameter sets A (continuous wave, power 0.8 W, duty cycle (DC) 100%, and 5 s), B (pulsed mode, DC 50%, power 1.0 W, and 10 s), and C (pulsed mode, DC 10%, power 3.0 W, and 20 s) were used to treat the rods for up to ten consecutive scans. The resulting temperature increase was measured by a thermal imaging camera and the decontamination efficacy of the procedures was evaluated against Escherichia coli and Staphylococcus aureus, and correlated with the applied laser fluence. An implant's temperature increase of 10 °C was set as the limit accepted in literature to avoid thermal damage to the surrounding tissue in vivo. Repeated irradiation of the specimens resulted in a steady increase in temperature. Parameter sets A and B caused a temperature increase of 11.27 ± 0.81 °C and 9.90 ± 0.37 °C after five consecutive laser scans, respectively, while parameter set C resulted in a temperature increase of only 8.20 ± 0.53 °C after ten surface scans. The microbiological study showed that all irradiation parameter sets achieved a complete bacterial reduction (99.9999% or 6-log10) after ten consecutive scans, however only parameter set C did not exceed the temperature threshold. A 445 nm diode laser can be used to decontaminate dental titanium rods, and repeated laser irradiation of the contaminated areas increases the antimicrobial effect of the treatment; however, the correct choice of parameters is needed to provide adequate laser fluence while preventing an implant's temperature increase that could cause damage to the surrounding tissue.
Collapse
Affiliation(s)
- Markus Ahrens
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Melanie Spörer
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
| | - Herbert Deppe
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Lucas M Ritschl
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany
- Department of Oral and Maxillofacial Surgery, TUM School of Medicine, Technical University of Munich, Munich, Germany
| | - Petra Mela
- Chair of Medical Materials and Implants, Department of Mechanical Engineering, TUM School of Engineering and Design, Munich Institute of Biomedical Engineering; Munich Institute of Integrated Materials, Energy and Process Engineering, Technical University of Munich, Munich, Germany.
| |
Collapse
|
8
|
Rosato R, Santarelli G, Augello A, Perini G, De Spirito M, Sanguinetti M, Papi M, De Maio F. Exploration of the Graphene Quantum Dots-Blue Light Combination: A Promising Treatment against Bacterial Infection. Int J Mol Sci 2024; 25:8033. [PMID: 39125603 PMCID: PMC11312127 DOI: 10.3390/ijms25158033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Graphene Quantum Dots (GQDs) have shown the potential for antimicrobial photodynamic treatment, due to their particular physicochemical properties. Here, we investigated the activity of three differently functionalized GQDs-Blue Luminescent GQDs (L-GQDs), Aminated GQDs (NH2-GQDs), and Carboxylated GQDs (COOH-GQDs)-against E. coli. GQDs were administrated to bacterial suspensions that were treated with blue light. Antibacterial activity was evaluated by measuring colony forming units (CFUs) and metabolic activities, as well as reactive oxygen species stimulation (ROS). GQD cytotoxicity was then assessed on human colorectal adenocarcinoma cells (Caco-2), before setting in an in vitro infection model. Each GQD exhibits antibacterial activity inducing ROS and impairing bacterial metabolism without significantly affecting cell morphology. GQD activity was dependent on time of exposure to blue light. Finally, GQDs were able to reduce E. coli burden in infected Caco-2 cells, acting not only in the extracellular milieu but perturbating the eukaryotic cell membrane, enhancing antibiotic internalization. Our findings demonstrate that GQDs combined with blue light stimulation, due to photodynamic properties, have a promising antibacterial activity against E. coli. Nevertheless, we explored their action mechanism and toxicity on epithelial cells, fixing and standardizing these infection models.
Collapse
Affiliation(s)
- Roberto Rosato
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giulia Santarelli
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Alberto Augello
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Giordano Perini
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Marco De Spirito
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Maurizio Sanguinetti
- Department of Basic Biotechnological Sciences, Intensive and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Massimiliano Papi
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, Largo Francesco Vito 1, 00168 Roma, Italy
| | - Flavio De Maio
- Department of Laboratory and Infectious Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
9
|
Zoric A, Bagheri M, von Kohout M, Fardoust T, Fuchs PC, Schiefer JL, Opländer C. High-Intensity Blue Light (450-460 nm) Phototherapy for Pseudomonas aeruginosa-Infected Wounds. Photobiomodul Photomed Laser Surg 2024; 42:356-365. [PMID: 38776546 DOI: 10.1089/photob.2023.0180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Background: Nosocomial wound infection with Pseudomonas aeruginosa (PA) is a serious complication often responsible for the septic mortality of burn patients. Objective: High-intensity antimicrobial blue light (aBL) treatment may represent an alternative therapy for PA infections and will be investigated in this study. Methods: Antibacterial effects of a light-emitting diode array (450-460 nm; 300 mW/cm2; 15/30 min; 270/540 J/cm2) against PA were determined by suspension assay, biofilm assay, and a human skin wound model and compared with 15-min topically applied 3% citric acid (CA) and wound irrigation solution (Prontosan®; PRT). Results: aBL reduced the bacterial number [2.51-3.56 log10 colony-forming unit (CFU)/mL], whereas PRT or CA treatment achieved a 4.64 or 6.60 log10 CFU/mL reduction in suspension assays. aBL reduced biofilm formation by 60-66%. PRT or CA treatment showed reductions by 25% or 13%. Here, aBL reduced bacterial number in biofilms (1.30-1.64 log10 CFU), but to a lower extend than PRT (2.41 log10 CFU) or CA (2.48 log10 CFU). In the wound skin model, aBL (2.21-2.33 log10 CFU) showed a bacterial reduction of the same magnitude as PRT (2.26 log10 CFU) and CA (2.30 log10 CFU). Conclusions: aBL showed a significant antibacterial efficacy against PA and biofilm formation in a short time. However, a clinical application of aBL in wound therapy requires effective active skin cooling and eye protection, which in turn may limit clinical implementation.
Collapse
Affiliation(s)
- Andreas Zoric
- Department of Plastic, Reconstructive and Aesthetic Surgery, RKH Hospital Bietigheim-Vaihingen, Bietigheim-Bissingen, Germany
| | - Mahsa Bagheri
- Department of Plastic and Aesthetic Surgery, Hand Surgery, HELIOS Hospital Emil von Behring, Berlin, Berlin, Germany
| | - Maria von Kohout
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Tara Fardoust
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Jennifer L Schiefer
- Department of Plastic Surgery, Hand Surgery, Burn Center, Cologne-Merheim Hospital, Witten/Herdecke University, Cologne, Germany
| | - Christian Opländer
- Institute for Research in Operative Medicine (IFOM), Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| |
Collapse
|
10
|
Serrage HJ, Eling CJ, Alves PU, Xie E, McBain AJ, Dawson MD, O’Neill C, Laurand N. Spectral characterization of a blue light-emitting micro-LED platform on skin-associated microbial chromophores. BIOMEDICAL OPTICS EXPRESS 2024; 15:3200-3215. [PMID: 38855662 PMCID: PMC11161378 DOI: 10.1364/boe.522867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/04/2024] [Accepted: 04/04/2024] [Indexed: 06/11/2024]
Abstract
The therapeutic application of blue light (380 - 500nm) has garnered considerable attention in recent years as it offers a non-invasive approach for the management of prevalent skin conditions including acne vulgaris and atopic dermatitis. These conditions are often characterised by an imbalance in the microbial communities that colonise our skin, termed the skin microbiome. In conditions including acne vulgaris, blue light is thought to address this imbalance through the selective photoexcitation of microbial species expressing wavelength-specific chromophores, differentially affecting skin commensals and thus altering the relative species composition. However, the abundance and diversity of these chromophores across the skin microbiota remains poorly understood. Similarly, devices utilised for studies are often bulky and poorly characterised which if translated to therapy could result in reduced patient compliance. Here, we present a clinically viable micro-LED illumination platform with peak emission 450 nm (17 nm FWHM) and adjustable irradiance output to a maximum 0.55 ± 0.01 W/cm2, dependent upon the concentration of titanium dioxide nanoparticles applied to an accompanying flexible light extraction substrate. Utilising spectrometry approaches, we characterised the abundance of prospective blue light chromophores across skin commensal bacteria isolated from healthy volunteers. Of the strains surveyed 62.5% exhibited absorption peaks within the blue light spectrum, evidencing expression of carotenoid pigments (18.8%, 420-483 nm; Micrococcus luteus, Kocuria spp.), porphyrins (12.5%, 402-413 nm; Cutibacterium spp.) and potential flavins (31.2%, 420-425 nm; Staphylococcus and Dermacoccus spp.). We also present evidence of the capacity of these species to diminish irradiance output when combined with the micro-LED platform and in turn how exposure to low-dose blue light causes shifts in observed absorbance spectra peaks. Collectively these findings highlight a crucial deficit in understanding how microbial chromophores might shape response to blue light and in turn evidence of a micro-LED illumination platform with potential for clinical applications.
Collapse
Affiliation(s)
- Hannah J. Serrage
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Charlotte J. Eling
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Pedro U. Alves
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Enyuan Xie
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Andrew J. McBain
- Division of Pharmacy and Optometry, School of Health Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, UK
| | - Martin D. Dawson
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| | - Catherine O’Neill
- School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, UK
| | - Nicolas Laurand
- Institute of Photonics, Department of Physics, SUPA, University of Strathclyde, UK
| |
Collapse
|
11
|
Wijewardhane N, Denniss AR, Uppington M, Hauser H, Gorochowski TE, Piddini E, Hauert S. Long-term imaging and spatio-temporal control of living cells using targeted light based on closed-loop feedback. JOURNAL OF MICRO-BIO ROBOTICS 2024; 20:2. [PMID: 38616892 PMCID: PMC11009755 DOI: 10.1007/s12213-024-00165-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 10/24/2023] [Accepted: 12/28/2023] [Indexed: 04/16/2024]
Abstract
The ability to optically interact with cells on both an individual and collective level has applications from wound healing to cancer treatment. Building systems that can facilitate both localised light illumination and visualisation of cells can, however, be challenging and costly. This work takes the Dynamic Optical MicroEnvironment (DOME), an existing platform for the closed-loop optical control of microscale agents, and adapts the design to support live-cell imaging. Through modifications made to the imaging and projection systems within the DOME, a significantly higher resolution, alternative imaging channels and the ability to customise light wavelengths are achieved (Bio-DOME). This is accompanied by an interactive calibration procedure that is robust to changes in the hardware configuration and provides fluorescence imaging (Fluoro-DOME). These alterations to the fundamental design allow for long-term use of the DOME in an environment of higher temperature and humidity. Thus, long-term imaging of living cells in a wound, with closed-loop control of real-time frontier illumination via projected light patterns, is facilitated. Supplementary Information The online version contains supplementary material available at 10.1007/s12213-024-00165-0.
Collapse
Affiliation(s)
- Neshika Wijewardhane
- Centre for Doctoral Training in Digital Health and Care, University of Bristol, Bristol, UK
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Ana Rubio Denniss
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| | - Matthew Uppington
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Helmut Hauser
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Centre for Doctoral Training in FARSCOPE, University of Bristol, University of West of England, Bristol, UK
| | - Thomas E. Gorochowski
- School of Biological Science, University of Bristol, Bristol, UK
- Bristol Synthetic Biology Research Centre, University of Bristol, Bristol, UK
| | - Eugenia Piddini
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK
| | - Sabine Hauert
- School of Engineering Mathematics and Technology, University of Bristol, Bristol, UK
- Bristol Robotics Laboratory, University of Bristol, University of West of England, Bristol, UK
| |
Collapse
|
12
|
Olszewska MA, Dev Kumar G, Hur M, Diez-Gonzalez F. Inactivation of dried cells and biofilms of Listeria monocytogenes by exposure to blue light at different wavelengths and the influence of surface materials. Appl Environ Microbiol 2023; 89:e0114723. [PMID: 37846990 PMCID: PMC10617584 DOI: 10.1128/aem.01147-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/31/2023] [Indexed: 10/18/2023] Open
Abstract
Antimicrobial blue light (aBL) in the 400-470 nm wavelength range has been reported to kill multiple bacteria. This study assessed its potential for mitigating an important foodborne pathogen, Listeria monocytogenes (Lm), focusing on surface decontamination. Three wavelengths were tested, with gallic acid as a photosensitizing agent (Ps), against dried cells obtained from bacterial suspensions, and biofilms on stainless-steel (SS) coupons. Following aBL exposure, standard microbiological analysis of inoculated coupons was conducted to measure viability. Statistical analysis of variance was performed. Confocal laser scanning microscopy was used to observe the biofilm structures. Within 16 h of exposure at 405 nm, viable Lm dried cells and biofilms were reduced by approx. 3 log CFU/cm2 with doses of 2,672 J/cm2. Application of Ps resulted in an additional 1 log CFU/cm2 at 668 J/cm2, but its effect was not consistent. The highest dose (960 J/cm2) at 420 nm reduced viable counts on the biofilms by 1.9 log CFU/cm2. At 460 nm, after 800 J/cm2, biofilm counts were reduced by 1.6 log CFU/cm2. The effect of material composition on Lm viability was also investigated. Irradiation at 405 nm (668 J/cm2) of cells dried on polystyrene resulted in one of the largest viability reductions (4.0 log CFU/cm2), followed by high-density polyethylene (3.5 log CFU/cm2). Increasing the dose to 4,008 J/cm2 from 405 nm (24 h), improved its efficacy only on SS and polyvinyl chloride. Biofilm micrographs displayed a decrease in biofilm biomass due to the removal of biofilm portions from the surface and a shift from live to dead cells suggesting damage to biofilm cell membranes. These results suggest that aBL is a potential intervention to treat Lm contamination on typical material surfaces used in food production.IMPORTANCECurrent cleaning and sanitation programs are often not capable of controlling pathogen biofilms on equipment surfaces, which transmit the bacteria to ready-to-eat foods. The presence of native plant microbiota and organic matter can protect pathogenic bacteria by reducing the efficacy of sanitizers as well as promoting biofilm formation. Post-operation washing and sanitizing of produce contact surfaces might not be adequate in eliminating the presence of pathogens and commensal bacteria. The use of a dynamic and harmless light technology during downtime and close of operation could serve as a useful tool in preventing biofilm formation and persistence. Antimicrobial blue light (aBL) technology has been explored for hospital disinfection with very promising results, but its application to control foodborne pathogens remains relatively limited. The use of aBL could be a complementary strategy to inactivate surfaces in restaurant or supermarket deli settings.
Collapse
Affiliation(s)
- Magdalena A. Olszewska
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
- Department of Industrial and Food Microbiology, The Faculty of Food Science, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Minji Hur
- Center for Food Safety, University of Georgia, Griffin, Georgia, USA
| | | |
Collapse
|
13
|
Ong J, Nazarian A, Tam J, Farinelli W, Korupolu S, Drake L, Isaacson B, Pasquina P, Williams D. An antimicrobial blue light device to manage infection at the skin-implant interface of percutaneous osseointegrated implants. PLoS One 2023; 18:e0290347. [PMID: 37624860 PMCID: PMC10456172 DOI: 10.1371/journal.pone.0290347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Antimicrobial blue light (aBL) is an attractive option for managing biofilm burden at the skin-implant interface of percutaneous osseointegrated (OI) implants. However, marketed aBL devices have both structural and optical limitations that prevent them from being used in an OI implant environment. They must be handheld, preventing even irradiation of the entire skin-implant interface, and the devices do not offer sufficient optical power outputs required to kill biofilms. We present the developmental process of a unique aBL device that overcomes these limitations. Four prototypes are detailed, each being a progressive improvement from the previous iteration as we move from proof-of-concept to in vivo application. Design features focused on a cooling system, LED orientation, modularity, and "sheep-proofing". The final prototype was tested in an in vivo OI implant sheep model, demonstrating that it was structurally and optically adequate to address biofilm burdens at the skin-implant of percutaneous OI implants. The device made it possible to test aBL in the unique OI implant environment and compare its efficacy to clinical antibiotics-data which had not before been achievable. It has provided insight into whether or not continued pursual of light therapy research for OI implants, and other percutaneous devices, is worthwhile. However, the device has drawbacks concerning the cooling system, complexity, and size if it is to be translated to human clinical trials. Overall, we successfully developed a device to test aBL therapy for patients with OI implants and helped progress understanding in the field of infection management strategies.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Dermatology, Harvard Medical School, Boston, MA, United States of America
| | - William Farinelli
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Sandeep Korupolu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Dermatology, Harvard Medical School, Boston, MA, United States of America
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- The Geneva Foundation, Tacoma, WA, United States of America
- Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, MD, United States of America
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
- Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, MD, United States of America
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States of America
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, United States of America
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, MD, United States of America
- Department of Pathology, University of Utah, Salt Lake City, UT, United States of America
| |
Collapse
|
14
|
Ong J, Godfrey R, Nazarian A, Tam J, Drake L, Isaacson B, Pasquina P, Williams D. Antimicrobial blue light as a biofilm management therapy at the skin-implant interface in an ex vivo percutaneous osseointegrated implant model. J Orthop Res 2023. [PMID: 36815575 DOI: 10.1002/jor.25535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/02/2023] [Accepted: 02/21/2023] [Indexed: 02/24/2023]
Abstract
Biofilm contamination is often present at the skin-implant interface of transfemoral osseointegrated implants leading to frequent infection, irritation, and discomfort. New biofilm management regimens are needed as the current standard of washing the site with soap and water is inadequate to manage infection rates. We investigated the potential of antimicrobial blue light, which has reduced risk of resistance development and broad antimicrobial mechanisms. Our lab developed an antimicrobial blue light (aBL) device uniquely designed for an ex vivo system based on an established ovine osseointegrated (OI) implant model with Staphylococcus aureus ATCC 6538 biofilms as initial inocula. Samples were irradiated with aBL or washed for three consecutive days after which they were quantified. Colony-forming unit (CFU) counts were compared with a control group (bacterial inocula without treatment). After 1 day, aBL administered as a single 6 h dose or two 1 h doses spaced 6 h apart both reduced the CFU count by 1.63 log10 ± 0.02 CFU. Over 3 days of treatment, a positive aBL trend was observed with a maximum reduction of ~2.7 log10 CFU following 6 h of treatment, indicating a relation between multiple days of irradiation and greater CFU reductions. aBL was more effective at reducing the biofilm burden at the skin-implant interface compared with the wash group, demonstrating the potential of aBL as a biofilm management option.
Collapse
Affiliation(s)
- Jemi Ong
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Rose Godfrey
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA
| | - Alexa Nazarian
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Joshua Tam
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lynn Drake
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA.,Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
| | - Brad Isaacson
- Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Geneva Foundation, Tacoma, Washington, USA.,Department of Physical Medicine and Rehabilitation, The Musculoskeletal Injury Rehabilitation Research for Operational Readiness (MIRROR), Uniformed Services University, Bethesda, Maryland, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA
| | - Paul Pasquina
- The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Rehabilitation, Walter Reed National Military Medical Center, Bethesda, Maryland, USA
| | - Dustin Williams
- Department of Biomedical Engineering, University of Utah, Salt Lake City, Utah, USA.,Department of Orthopaedics, University of Utah, Salt Lake City, Utah, USA.,The Center for Rehabilitation Sciences Research, Uniformed Services University, Bethesda, Maryland, USA.,Department of Pathology, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
15
|
Effects of Laser Therapy on Periodontal Status in Adult Patients Undergoing Orthodontic Treatment. Diagnostics (Basel) 2022; 12:diagnostics12112672. [DOI: 10.3390/diagnostics12112672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022] Open
Abstract
Orthodontic treatment with fixed devices should only be indicated in case of a stable, non-active periodontal disease status. Throughout orthodontic treatment, a careful assessment of the periodontal status is advised. Due to its anti-inflammatory and antimicrobial effects, laser therapy is frequently used as an adjunct to classic periodontal therapy. The aim of this study was to evaluate the advantages and limitations of the use of laser therapy on periodontal status during orthodontic treatment. Throughout the 9 months during which this placebo-controlled, single-blind clinical trial was conducted, 32 patients were included in the study, divided into two groups: microscope “+” (patients who observed the bacteria within the dental plaque-sample examination on the screen of a dark-field microscope in real time) and microscope “−” (patients who did not see the oral pathogens using a dark-field microscope). For all patients, using the split-mouth study design, laser therapy was applied to one hemiarch (HL), whereas the other hemiarch received treatment without active light (HC). After one month, by analyzing the main indicators of periodontal health status, we found that the plaque index (PI) and bleeding on probing (BOP) values were significantly decreased after receiving treatment (for PI: HL-p = 0.0005, HC-p = 0.0297; for BOP: HL-p = 0.0121, HC-p = 0.0236), whereas the probing-depth (PD) values remained almost the same as before treatment (HL-p = 1.5143; HC-p = 1.4762). Conclusions: The use of the dark-field microscope proved to be beneficial in sensitizing patients to the presence of bacteria in the oral cavity and motivated them to strictly follow the rules of oral hygiene. Laser treatment can be a valuable aid in periodontal therapy, but only in adjunction with mechanical therapy.
Collapse
|
16
|
Purbhoo-Makan M, Houreld NN, Enwemeka CS. The Effects of Blue Light on Human Fibroblasts and Diabetic Wound Healing. Life (Basel) 2022; 12:life12091431. [PMID: 36143466 PMCID: PMC9505688 DOI: 10.3390/life12091431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/31/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes is a serious threat to global health and is among the top 10 causes of death. The Diabetic foot ulcer (DFU) is among the most common and severe complications of the disease. Bacterial infections are common; therefore, timely aggressive management, using multidisciplinary management approaches is needed to prevent complications, morbidity, and mortality, particularly in view of the growing cases of antibiotic-resistant bacteria. Photobiomodulation (PBM) involves the application of low-level light at specific wavelengths to induce cellular photochemical and photophysical responses. Red and near-infrared (NIR) wavelengths have been shown to be beneficial, and recent studies indicate that other wavelengths within the visible spectrum could be helpful as well, including blue light (400–500 nm). Reports of the antimicrobial activity and susceptibility of blue light on several strains of the same bacterium show that many bacteria are less likely to develop resistance to blue light treatment, meaning it is a viable alternative to antibiotic therapy. However, not all studies have shown positive results for wound healing and fibroblast proliferation. This paper presents a critical review of the literature concerning the use of PBM, with a focus on blue light, for tissue healing and diabetic ulcer care, identifies the pros and cons of PBM intervention, and recommends the potential role of PBM for diabetic ulcer care.
Collapse
Affiliation(s)
- Meesha Purbhoo-Makan
- Department of Podiatry, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Nicolette Nadene Houreld
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Correspondence:
| | - Chukuka S. Enwemeka
- Laser Research Center, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- College of Health and Human Services, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
17
|
Besser M, Schaeler L, Plattfaut I, Brill FHH, Kampe A, Geffken M, Smeets R, Debus ES, Stuermer EK. Pulsed low-intensity laser treatment stimulates wound healing without enhancing biofilm development in vitro. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 233:112504. [PMID: 35777177 DOI: 10.1016/j.jphotobiol.2022.112504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/14/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Treating infected or chronic wounds burdened with biofilms still is a major challenge in medical care. Healing-stimulating factors lose their efficacy due to bacterial degradation, and antimicrobial substances negatively affect dermal cells. Therefore, alternative treatment approaches like the pulsed low intensity laser therapy (LILT) require consideration. METHODS The effect of pulsed LILT (904 nm, in three frequencies) on relevant human cells of the wound healing process (fibroblasts (BJ), keratinocytes (HaCaT), endothelial cells (HMEC), monocytes (THP-1)) were investigated in in-vitro and ex-vivo wound models with respect to viability, proliferation and migration. Antimicrobial efficacy of the most efficient frequency in cell biological analyses of LILT (3200 Hz) was determined in a human biofilm model (lhBIOM). Quantification of bacterial load was evaluated by suspension method and qualitative visualization was performed by scanning electron microscopy (SEM). RESULTS Pulsed LILT at 904 nm at 3200 Hz ± 50% showed the most positive effects on metabolic activity and proliferation of human wound cells in vitro (after 72 h - BJ: BPT 0.97 ± 0.05 vs. 0.75 ± 0.04 (p = 0.0283); HaCaT: BPT 0.79 ± 0.04 vs. 0.59 ± 0.02 (p = 0.0106); HMEC: 0.74 ± 0.02 vs. 0.52 ± 0.04 (p = 0.009); THP-1: 0.58 ± 0.01 vs. 0.64 ± 0.01 (p > 0.05) and ex vivo. Interestingly, re-epithelialization was stimulated in a frequency-independent manner. The inhibition of metabolic activity after TNF-α application was abolished after laser treatment. No impact of LILT on monocytes was detected. Likewise, the tested LILT regimens showed no growth rate reducing effects on three bacterial strains (after 72 h - PA: -1.03%; SA: -0.02%; EF: -1,89%) and one fungal (-2.06%) biofilm producing species compared to the respective untreated control. Accordingly, no significant morphological changes of the biofilms were observed after LILT treatment in the SEM. CONCLUSIONS Frequent application of LILT (904 nm, 3200 Hz) seems to be beneficial for the metabolism of human dermal cells during wound healing. Considering this, the lack of disturbance of the behavior of the immune cells and no growth-inducing effect on bacteria and fungi in the biofilm can be assigned as rather positive. Based on this combined mode of action, LILT may be an option for hard to heal wounds infected with persistent biofilms.
Collapse
Affiliation(s)
- Manuela Besser
- Clinic for General, Visceral and Transplant Surgery, University Hospital Muenster, Germany
| | - Lukas Schaeler
- Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany
| | - Isabell Plattfaut
- Institute of Virology and Microbiology, Faculty of Health, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Germany
| | - Florian H H Brill
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Hamburg, Germany
| | - Andreas Kampe
- Dr. Brill + Partner GmbH, Institute for Hygiene and Microbiology, Hamburg, Germany
| | - Maria Geffken
- Institute for Transfusion Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, Germany
| | - E Sebastian Debus
- Dpt. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Germany
| | - Ewa K Stuermer
- Dpt. of Vascular Medicine, University Heart Center, University Medical Center Hamburg-Eppendorf (UKE), Germany.
| |
Collapse
|
18
|
Zupin L, Gratton R, Milani M, Clemente L, Fontana F, Ruscio M, Crovella S. Direct inactivation of SARS-CoV-2 by low level blue photobiomodulation LED at 470, 454 and 450 nm. JOURNAL OF BIOPHOTONICS 2022; 15:e202100375. [PMID: 35124902 DOI: 10.1002/jbio.202100375] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
Blue light has been already reported as able to counteract different types of microorganisms including Gram-positive and Gram-negative bacteria, fungi and viruses, especially the enveloped ones. It has been reported that both blue and visible light can efficiently impact SARS-CoV-2 by affecting its ability to replicate in in vitro cellular models of infection. In this study, blue light at 450, 454 and 470 nm was tested on SARS-CoV-2 to evaluate the residual viral infectious potential on Vero E6, Caco-2 and Calu-3 cells, after the irradiation of viral particles. Following 12' of irradiation at 40 mW/cm2 , a drastic block of viral amplification was observed. Indeed, at 7 days post-irradiation/infection the viral load was the same as the one measured 1 day post-irradiation/infection, and cellular viability was maintained showing similar levels to the noninfected control cells. Taken together our results indicate that blue LED lamps can be considered as a cheap and convenient tool for SARS-CoV-2 disinfection.
Collapse
Affiliation(s)
- Luisa Zupin
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Rossella Gratton
- Institute for Maternal and Child Health-IRCCS "Burlo Garofolo", Trieste, Italy
| | - Margherita Milani
- Department of Medical Surgical and Health Sciences, University of Trieste, Trieste, Italy
| | - Libera Clemente
- Division of Laboratory Medicine, University Hospital Giuliano Isontina (ASU GI), Trieste, Italy
| | - Francesco Fontana
- Division of Laboratory Medicine, University Hospital Giuliano Isontina (ASU GI), Trieste, Italy
| | - Maurizio Ruscio
- Division of Laboratory Medicine, University Hospital Giuliano Isontina (ASU GI), Trieste, Italy
| | - Sergio Crovella
- Biological Science Program, Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| |
Collapse
|
19
|
Vuerich R, Martinelli V, Vodret S, Bertani I, Carletti T, Zentilin L, Venturi V, Marcello A, Zacchigna S. A new laser device for ultra-rapid and sustainable aerosol sterilization. ENVIRONMENT INTERNATIONAL 2022; 164:107272. [PMID: 35526297 PMCID: PMC9060718 DOI: 10.1016/j.envint.2022.107272] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 06/14/2023]
Abstract
The current COVID-19 pandemic has highlighted the importance of aerosol-based transmission of human pathogens; this therefore calls for novel medical devices which are able to sterilize contaminated aerosols. Here we describe a new laser device able to sterilize droplets containing either viruses or bacteria. Using engineered viral particles, we determined the 10,600 nm wavelength as the most efficient and exploitable laser source to be manufactured in a commercial device. Given the lack of existing working models to reproduce a human aerosol containing living microbial particles, we developed a new system mimicking human droplet formation and preserving bacterial and viral viability. This evidenced the efficacy of 10,600 nm laser light to kill two aerosol transmitted human pathogens, Legionella pneumophila and SARS-CoV-2. The minimal exposure time of <15 ms was required for the inactivation of over 99% pathogens in the aerosol; this is a key element in the design of a device that is safe and can be used in preventing inter-individual transmission. This represents a major advantage over existing devices, which mainly aim at either purifying incoming air by filters or sterilizing solid surfaces, which are not the major transmission routes for airborne communicable diseases.
Collapse
Affiliation(s)
- Roman Vuerich
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Department of Life Sciences, University of Trieste, 34127 Trieste, Italy
| | | | - Simone Vodret
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Iris Bertani
- Laboratory: Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Tea Carletti
- Molecular Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Lorena Zentilin
- Molecular Medicine Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Vittorio Venturi
- Laboratory: Bacteriology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Alessandro Marcello
- Molecular Virology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy
| | - Serena Zacchigna
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), 34149 Trieste, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, 34127 Trieste, Italy. https://www.icgeb.org/cardiovascular-biology/
| |
Collapse
|
20
|
Weigelt MA, Lev-Tov HA, Tomic-Canic M, Lee WD, Williams R, Strasfeld D, Kirsner RS, Herman IM. Advanced Wound Diagnostics: Toward Transforming Wound Care into Precision Medicine. Adv Wound Care (New Rochelle) 2022; 11:330-359. [PMID: 34128387 PMCID: PMC8982127 DOI: 10.1089/wound.2020.1319] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 05/29/2021] [Indexed: 11/01/2022] Open
Abstract
Significance: Nonhealing wounds are an ever-growing global pandemic, with mortality rates and management costs exceeding many common cancers. Although our understanding of the molecular and cellular factors driving wound healing continues to grow, standards for diagnosing and evaluating wounds remain largely subjective and experiential, whereas therapeutic strategies fail to consistently achieve closure and clinicians are challenged to deliver individualized care protocols. There is a need to apply precision medicine practices to wound care by developing evidence-based approaches, which are predictive, prescriptive, and personalized. Recent Advances: Recent developments in "advanced" wound diagnostics, namely biomarkers (proteases, acute phase reactants, volatile emissions, and more) and imaging systems (ultrasound, autofluorescence, spectral imaging, and optical coherence tomography), have begun to revolutionize our understanding of the molecular wound landscape and usher in a modern age of therapeutic strategies. Herein, biomarkers and imaging systems with the greatest evidence to support their potential clinical utility are reviewed. Critical Issues: Although many potential biomarkers have been identified and several imaging systems have been or are being developed, more high-quality randomized controlled trials are necessary to elucidate the currently questionable role that these tools are playing in altering healing dynamics or predicting wound closure within the clinical setting. Future Directions: The literature supports the need for the development of effective point-of-care wound assessment tools, such as a platform diagnostic array that is capable of measuring multiple biomarkers at once. These, along with advances in telemedicine, synthetic biology, and "smart" wearables, will pave the way for the transformation of wound care into a precision medicine. Clinical Trial Registration number: NCT03148977.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Hadar A. Lev-Tov
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Marjana Tomic-Canic
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - W. David Lee
- Precision Healing, Inc., Newton, Massachusetts, USA
| | | | | | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Ira M. Herman
- Precision Healing, Inc., Newton, Massachusetts, USA
- Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA
| |
Collapse
|
21
|
Yu X, Zheng P, Zou Y, Ye Z, Wei T, Lin J, Guo L, Yuk HG, Zheng Q. A review on recent advances in LED-based non-thermal technique for food safety: current applications and future trends. Crit Rev Food Sci Nutr 2022; 63:7692-7707. [PMID: 35369810 DOI: 10.1080/10408398.2022.2049201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Light-emitting diodes (LEDs) is an eco-friendly light source with broad-spectrum antimicrobial activity. Recent studies have extensively been conducted to evaluate its efficacy in microbiological safety and the potential as a preservation method to extend the shelf-life of foods. This review aims to present the latest update of recent studies on the basics (physical, biochemical and mechanical basics) and antimicrobial activity of LEDs, as well as its application in the food industry. The highlight will be focused on the effects of LEDs on different types (bacteria, yeast/molds, viruses) and forms (planktonic cells, biofilms, endospores, fungal toxin) of microorganisms. The antimicrobial activity of LEDs on various food matrices was also evaluated, together with further analysis on the food-related factors that lead to the differences in LEDs efficiency. Besides, the applications of LEDs on the food-related conditions, packaged food, and equipment that could enhance LEDs efficiency were discussed to explore the future trends of LEDs technology in the food industry. Overall, the present review provides important insights for future research and the application of LEDs in the food industry.
Collapse
Affiliation(s)
- Xinpeng Yu
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Peng Zheng
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yuan Zou
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Zhiwei Ye
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Tao Wei
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Junfang Lin
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Liqiong Guo
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| | - Hyun-Gyun Yuk
- Department of Food Science and Technology, Korea National University of Transportation, Chungbuk, Republic of Korea
| | - Qianwang Zheng
- College of Food Science & Institute of Food Biotechnology, South China Agricultural University, Guangzhou, China
- Research Center for Micro-Ecological Agent Engineering and Technology of Guangdong Province, Guangzhou, China
| |
Collapse
|
22
|
Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
4Antimicrobial photodynamic therapy with curcumin on methicillin-resistant Staphylococcus aureus biofilm. Photodiagnosis Photodyn Ther 2022; 37:102729. [PMID: 35041982 DOI: 10.1016/j.pdpdt.2022.102729] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/31/2022]
Abstract
Healthcare-Associated Infections (HAI) affect approximately 1.5 million individuals worldwide. Among the causes of HAIs in Latin America, Staphylococcus aureus presents a severe danger due to its rapid spread and ease of developing antibiotic resistance. Upon acquiring methicillin resistance, it receives the classification Methicillin-Resistant Staphylococcus aureus (MRSA), responsible for 40 to 60% of HAIs. The increase in resistant microorganisms led to the search for alternative methods, such as antimicrobial Photodynamic Therapy (aPDT), forming Reactive Oxygen Species (ROS), leading bacterial cells to death. The objective of this work was to evaluate in vitro the antimicrobial action of PDT with curcumin in MRSA biofilm. The strains were induced to form biofilm and incubated with curcumin for 20 minutes, irradiated with LED (Light Emitting Diode) 450 nm, at 110 mW/cm2, 50 J/cm2 for 455 seconds, subsequently counting the Colony Forming Units, Scanning Electron Microscopy (SEM) micrographs, Confocal Microscopy images, Resazurin dye test, ROS quantification to assess the effect of PDT on biofilm. The results show that PDT with curcumin reduced the biofilm growth of the MRSA strain. In addition, confocal microscopy showed that curcumin was internalized by S. aureus in the cells at the concentration used, and when isolated, curcumin and the irradiation parameter did not show cytotoxicity. The study demonstrated that the PDT in the established parameters reduced the growth of the MRSA strain biofilm, making it a relevant alternative possibility for the inactivation of this strain.
Collapse
|
24
|
Tuchin VV, Genina EA, Tuchina ES, Svetlakova AV, Svenskaya YI. Optical clearing of tissues: Issues of antimicrobial phototherapy and drug delivery. Adv Drug Deliv Rev 2022; 180:114037. [PMID: 34752842 DOI: 10.1016/j.addr.2021.114037] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/23/2021] [Accepted: 10/28/2021] [Indexed: 02/08/2023]
Abstract
This review presents principles and novelties in the field of tissue optical clearing (TOC) technology, as well as application for optical monitoring of drug delivery and effective antimicrobial phototherapy. TOC is based on altering the optical properties of tissue through the introduction of immersion optical cleaning agents (OCA), which impregnate the tissue of interest. We also analyze various methods and kinetics of delivery of photodynamic agents, nanoantibiotics and their mixtures with OCAs into the tissue depth in the context of antimicrobial and antifungal phototherapy. In vitro and in vivo studies of antimicrobial phototherapies, such as photodynamic, photothermal plasmonic and photocatalytic, are summarized, and the prospects of a new TOC technology for effective killing of pathogens are discussed.
Collapse
|
25
|
Blue Laser Light Counteracts HSV-1 in the SH-SY5Y Neuronal Cell Model of Infection. LIFE (BASEL, SWITZERLAND) 2022; 12:life12010055. [PMID: 35054448 PMCID: PMC8778157 DOI: 10.3390/life12010055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/06/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is wide-spread virus that triggers painful and recurrent infections, as herpes labialis, causing blister lesions on the lip. HSV-1 infection can be a lifelong condition starting from childhood due to the latency of the virus hidden in the trigeminal ganglia. Despite the use of antiviral treatments, there is not a resolutive cure for herpes. In our study, we tested blue light against HSV-1 in a neuronal cellular model, aimed at mimicking the neuronal tropism of HSV-1. Two laser protocols employing continuous wave and pulse modalities were delivered to infected cell cultures and to the virus alone. A significant reduction of viral replication was observed when the beam was directly applied to the virus, along with an increase in cell survival. Our findings, considering the limitation of the still-unknown mechanisms by which the blue light acts on the virus, suggested a potential use of photobiomodulation therapy for clinical applications against herpes labialis in pediatric patients.
Collapse
|
26
|
Tran VN, Park S, Khan F, Truong VG, Jeong S, Lee DH, Kim YM, Kang HW. Collective bacterial disinfection by opto-chemical treatment on mature biofilm in clinical endoscope. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 226:112367. [PMID: 34847498 DOI: 10.1016/j.jphotobiol.2021.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
The present study proposes an innovative opto-chemical treatment using a basket-integrated optical device (BIOD) to disinfect mature bacterial biofilm on endoscope channels. A BIOD was designed to position an optical diffuser on the central axis of an endoscope channel and to distribute laser light concentrically to the bacterial biofilm on the channel surface. To apply thermal damage and oxidative stress to the bacterial biofilm, a low concentration of a crosslinking agent (glutaraldehyde ~0.5%) was combined with 808 nm infrared (IR) and 405 nm blue (BL) laser lights. The applied irradiances of IR and BL were 10 W/cm2 and 1.6 W/cm2 for Teflon channel model and 20 W/cm2 and 3.2 W/cm2 for a clinical model, respectively. Individual irradiation of either IR or BL for 180 s induced the maximum temperatures of 62 ± 2 °C and 53 ± 3 °C on the biofilm, respectively. The simultaneous opto-chemical treatment reduced a significant population of the bacterial biofilms (7.5-log10 for Staphylococcus aureus and 7.1-log10 for Pseudomonas aeruginosa), which were 2.9-fold and 3.9-fold higher than that of the standard treatment with 2% glutaraldehyde (GA) solution, respectively. The proposed opto-chemical disinfection method can help reduce multi-drug resistant bacteria and prevent cross-infection during the clinical usage of a flexible endoscope.
Collapse
Affiliation(s)
- Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, South Korea
| | - Fazlurrahman Khan
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea
| | - Van Gia Truong
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea
| | - Seok Jeong
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon 22212, South Korea
| | - Don Haeng Lee
- Division of Gastroenterology, Department of Internal Medicine, Inha University College of Medicine, Incheon 22212, South Korea
| | - Young-Mog Kim
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea; Department of Food Science and Technology, Pukyong National University, Busan 48513, South Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, South Korea; Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan 48513, South Korea; Department of Biomedical Engineering, Pukyong National University, Busan 48513, South Korea.
| |
Collapse
|
27
|
Leanse LG, Dos Anjos C, Mushtaq S, Dai T. Antimicrobial blue light: A 'Magic Bullet' for the 21st century and beyond? Adv Drug Deliv Rev 2022; 180:114057. [PMID: 34800566 PMCID: PMC8728809 DOI: 10.1016/j.addr.2021.114057] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/02/2021] [Accepted: 11/15/2021] [Indexed: 01/03/2023]
Abstract
Over the past decade, antimicrobial blue light (aBL) at 400 - 470 nm wavelength has demonstrated immense promise as an alternative approach for the treatment of multidrug-resistant infections. Since our last review was published in 2017, there have been numerous studies that have investigated aBL in terms of its, efficacy, safety, mechanism, and propensity for resistance development. In addition, researchers have looked at combinatorial approaches that exploit aBL and other traditional and non-traditional therapeutics. To that end, this review aims to update the findings from numerous studies that capitalize on the antimicrobial effects of aBL, with a focus on: efficacy of aBL against different microbes, identifying endogenous chromophores and targets of aBL, Resistance development to aBL, Safety of aBL against host cells, and Synergism of aBL with other agents. We will also discuss our perspective on the future of aBL.
Collapse
Affiliation(s)
- Leon G Leanse
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Carolina Dos Anjos
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Internal Medicine, Faculty of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, SP, Brazil
| | - Sana Mushtaq
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA; Department of Pharmacy, COMSATS University Islamabad, Abbottabad campus, Pakistan
| | - Tianhong Dai
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
28
|
Vyas T, Rapalli VK, Chellappan DK, Dua K, Dubey SK, Singhvi G. Bacterial biofilms associated skin disorders: Pathogenesis, advanced pharmacotherapy and nanotechnology-based drug delivery systems as a treatment approach. Life Sci 2021; 287:120148. [PMID: 34785190 DOI: 10.1016/j.lfs.2021.120148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/30/2021] [Accepted: 11/09/2021] [Indexed: 02/05/2023]
Abstract
BACKGROUND Biofilms are microcolonies of microbes that form communities with a variety of microbes, exhibit the same gene composition but differ in gene expression. Biofilm-associated infections have been in existence for a long, however, biofilm-associated skin disorders have not been investigated much. OBJECTIVES Biofilms, which are made mostly of the matrix can be thought of as communities of microbes that are more virulent and more difficult to eradicate as compared to their planktonic counterparts. Currently, several formulations are available in the market which have the potential to treat biofilm-assisted skin disorders. However, the existing pharmacotherapies are not competent enough to cure them effectively and entirely, in several cases. KEY FINDINGS Especially with the rising resistance towards antibiotics, it has become particularly challenging to ameliorate these disorders completely. The new approaches are being used to combat biofilm-associated skin disorders, some of them being photodynamic therapy, nanotherapies, and the use of novel drug delivery systems. The focus of attention, however, is nanotherapy. Micelles, solid lipid nanoparticles, quatsomes, and many others are being considered to find a better solution for the biofilm-associated skin disorders. SIGNIFICANCE This review is an attempt to give a perspective on these new approaches for treating bacterial biofilms associated with skin disorders.
Collapse
Affiliation(s)
- Taraj Vyas
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India
| | | | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Malaysia
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney (UTS), Ultimo, NSW 2007, Australia; Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007 New South Wales, Australia
| | - Sunil Kumar Dubey
- Medical Research, R&D Healthcare Division, Emami Ltd, Kolkata 700056, India
| | - Gautam Singhvi
- Department of Pharmacy, Birla Institute of Technology and Science, Pilani 333031, India.
| |
Collapse
|
29
|
Fornaini C, Fekrazad R, Rocca JP, Zhang S, Merigo E. Use of Blue and Blue-Violet Lasers in Dentistry: A Narrative Review. J Lasers Med Sci 2021; 12:e31. [PMID: 34733754 DOI: 10.34172/jlms.2021.31] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 12/06/2020] [Indexed: 01/19/2023]
Abstract
Introduction: Blue and blue-violet diode lasers (450 and 405 nm) seem to represent an interesting approach for several clinical treatments today. The aim of this narrative review is to describe and comment on the literature regarding the utilization of blue and blue-violet lasers in dentistry. Methods: A search for "blue laser AND dentistry" was conducted using the PubMed database, and all the papers referring to this topic, ranging from 1990 to April 2020, were analyzed in the review. All the original in vivo and in vitro studies using 450 nm or 405 nm lasers were included in this study. All the articles on the LED light, laser wavelengths other than 405 and 450 nm and using lasers in specialties other than dentistry, as well as case reports, guideline papers and reviews were excluded. Results: From a total of 519 results, 47 articles met the inclusion criteria and were divided into 8 groups based on their fields of application: disinfection (10), photobiomodulation (PBM) (4), bleaching (1), resin curing (20), surgery (7), periodontics (1), endodontics (1) and orthodontics (3). Conclusion: Blue and blue-violet diode lasers may represent new and effective devices to be used in a large number of applications in dentistry, even if further studies will be necessary to fully clarify the potentialities of these laser wavelengths.
Collapse
Affiliation(s)
- Carlo Fornaini
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,Group of Applied Electro Magnetics (GAEM), Department of Engineering and Architecture, University of Parma, Viale G. P. Usberti 181/A -43124 -Parma, Italy.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Reza Fekrazad
- Radiation Sciences Research Center, Laser Research Center in Medical Sciences, AJA University of Medical Sciences, Tehran, Iran.,International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jean-Paul Rocca
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Shiying Zhang
- 2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| | - Elisabetta Merigo
- Laboratoire MICORALIS (MICrobiologie ORALe, Immunothérapie et Santé) EA7354, Université Nice Sophia Antipolis, UFR Odontologie, Avenue des Diables Bleus, 06000 Nice, France.,2nd Hospital Shijiazhuang, Dept. of Stomatology, 53 Huaxi Road, Shijiazhuang 050051, China
| |
Collapse
|
30
|
Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [PMID: 34504100 PMCID: PMC8429633 DOI: 10.1038/s41522-021-00243-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 08/02/2021] [Indexed: 02/08/2023] Open
Abstract
Burn wounds can create significant damage to human skin, compromising one of the key barriers to infection. The leading cause of death among burn wound patients is infection. Even in the patients that survive, infections can be notoriously difficult to treat and can cause lasting damage, with delayed healing and prolonged hospital stays. Biofilm formation in the burn wound site is a major contributing factor to the failure of burn treatment regimens and mortality as a result of burn wound infection. Bacteria forming a biofilm or a bacterial community encased in a polysaccharide matrix are more resistant to disinfection, the rigors of the host immune system, and critically, more tolerant to antibiotics. Burn wound-associated biofilms are also thought to act as a launchpad for bacteria to establish deeper, systemic infection and ultimately bacteremia and sepsis. In this review, we discuss some of the leading burn wound pathogens and outline how they regulate biofilm formation in the burn wound microenvironment. We also discuss the new and emerging models that are available to study burn wound biofilm formation in vivo.
Collapse
|
31
|
Suciu M, Porav S, Radu T, Rosu MC, Lazar MD, Macavei S, Socaci C. Photodynamic effect of light emitting diodes on E. coli and human skin cells induced by a graphene-based ternary composite. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 223:112298. [PMID: 34474299 DOI: 10.1016/j.jphotobiol.2021.112298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 01/10/2023]
Abstract
In this paper, the photodynamic effect of a ternary nanocomposite (TiO2-Ag/graphene) on Escherichia coli bacteria and two human cell lines: A375 (melanoma) and HaCaT (keratinocyte) after exposure to different wavelength domains (blue, green or red-Light Emitting Diode, LED) was analyzed. The results obtained through bioassays were correlated with the morphological, structural and spectral data obtained through FT-IR, XPS and UV-Vis spectroscopy, powder X-Ray diffractometry (XRD) and STEM/EDX techniques, leading to conclusions that showed different photodynamic activation mechanisms and effects on bacteria and human cells, depending on the wavelength. The nanocomposite proved a therapeutic potential for blue light-activated antibacterial treatment and revealed a keratinocyte cytotoxic effect under blue and green LEDs. The red light-nanocomposite duo gave a metabolic boost to normal keratinocytes and induced stasis to melanoma cells. The light and nanocomposite combination could be a potential therapy for bacterial keratosis or for skin tumors.
Collapse
Affiliation(s)
- Maria Suciu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania; Biology and Geology Faculty, Babes-Bolyai University, 5-7 Clinicilor Str, Cluj-Napoca, Romania
| | - Sebastian Porav
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Teodora Radu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Marcela C Rosu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Mihaela D Lazar
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Sergiu Macavei
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania
| | - Crina Socaci
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat 67-103 Str., RO-400293 Cluj-Napoca, Romania.
| |
Collapse
|
32
|
Tran VN, Saravana PS, Park S, Truong VG, Chun BS, Kang HW. Opto-chemical treatment for enhanced high-level disinfection of mature bacterial biofilm in a Teflon-based endoscope model. BIOMEDICAL OPTICS EXPRESS 2021; 12:5736-5750. [PMID: 34692212 PMCID: PMC8515982 DOI: 10.1364/boe.434047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/25/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Medical societies and public health agencies rigorously emphasize the importance of adequate disinfection of flexible endoscopes. The aim of this work was to propose a novel opto-chemical disinfection treatment against Staphylococcus aureus grown in mature biofilm on Teflon-based endoscope channel models. Laser irradiation using near-infrared and blue wavelengths combined with a low concentration of chemical disinfectant induced both irreversible thermal denaturation and intercellular oxidative stress as a combined mechanism for an augmented antimicrobial effect. The opto-chemical method yielded a 6.7-log10 reduction of the mature Staphylococcus aureus biofilms (i.e., approximately 1.0-log10 higher than current requirement of standard treatment). The proposed technique may be a feasible disinfection method for mitigating the risk associated with infection transmission.
Collapse
Affiliation(s)
- Van Nam Tran
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- These authors contributed equally to this work
| | - Periaswamy Sivagnanam Saravana
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
- These authors contributed equally to this work
| | - Suhyun Park
- Department of Electronic and Electrical Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Van Gia Truong
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Byung-Soo Chun
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Republic of Korea
| | - Hyun Wook Kang
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Biomedical Engineering and Marine-integrated Biomedical Technology Center, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
33
|
Zupin L, Gratton R, Fontana F, Clemente L, Pascolo L, Ruscio M, Crovella S. Blue photobiomodulation LED therapy impacts SARS-CoV-2 by limiting its replication in Vero cells. JOURNAL OF BIOPHOTONICS 2021; 14:e202000496. [PMID: 33619888 PMCID: PMC7995021 DOI: 10.1002/jbio.202000496] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 05/24/2023]
Abstract
The study of any intervention able to counteract SARS-CoV-2 pandemic is considerably envisaged. It was previously shown, in in vitro models of infections, that the LED blue light is able to decrease the viral load of HSV-1 and ZIKV. In our study, LED photobiomodulation therapy (PBMT) at blue wavelengths (450, 454 and 470 nm) was tested in an in vitro model of SARS-CoV-2 infection, employing three experimental settings: SARS-CoV-2 was irradiated and then transferred to cells; already infected cells were irradiated; cells were irradiated prior to infection. A decrement of the viral load was observed when previously infected cells were irradiated with all three tested wavelengths and relevant effects were registered especially at 48 hours post-infection, possibly suggesting that the blue light could interfere with the intracellular viral replication machinery. Our in vitro findings could represent the starting point for translational applications of PBMT as a supportive approach to fight SARS-CoV-2.
Collapse
Affiliation(s)
- Luisa Zupin
- Medical Genetics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Rossella Gratton
- Medical Genetics, Institute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Francesco Fontana
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Libera Clemente
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Lorella Pascolo
- Obstetrics and GynecologyInstitute for Maternal and Child Health—IRCCS “Burlo Garofolo”TriesteItaly
| | - Maurizio Ruscio
- Division of Laboratory MedicineUniversity Hospital Giuliano Isontina (ASU GI)TriesteItaly
| | - Sergio Crovella
- Department of Biological and Environmental Sciences, College of Arts and SciencesUniversity of QatarDohaQatar
| |
Collapse
|
34
|
Galo IDC, Prado RP, Santos WGD. Blue and red light photoemitters as approach to inhibit Staphylococcus aureus and Pseudomonas aeruginosa growth. BRAZ J BIOL 2021; 82:e231742. [PMID: 33787710 DOI: 10.1590/1519-6984.231742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 07/29/2020] [Indexed: 01/21/2023] Open
Abstract
The ability of pathogenic bacteria acquire resistance to the existing antibiotics has long been considered a dangerous health risk threat. Currently, the use of visible light has been considered a new approach to treat bacterial infections as an alternative to antibiotics. Herein, we investigated the antimicrobial effect of two range of visible light, blue and red, on Staphylococcus aureus and Pseudomonas aeruginosa, two pathogenic bacterial commonly found in healthcare settings-acquired infections and responsible for high rate of morbidity and mortality. Bacterial cultures were exposed to blue or red light (470 nm and 660 nm) provided by light-emitting diodes - LED. The fluencies and irradiance used for blue and red light were 284.90 J/cm2, 13.19 mW/cm2 and 603.44 J/cm2, 27.93 mW/cm2 respectively. Different experimental approaches were used to determine the optimal conditions of light application. Only exposure to blue light for 6 hours was able to inhibit about 75% in vitro growth of both bacterial species after 24 hours. The surviving exposed bacteria formed colonies significantly smaller than controls, however, these bacteria were able to resume growth after 48 hours. Blue light was able to inhibit bacterial growth upon inoculation in both saline solution and BHI culture medium. We can conclude that blue light, but not red light, is capable of temporarily retarding the growth of gram negative and gram positive bacteria.
Collapse
Affiliation(s)
- I D C Galo
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| | - R P Prado
- Universidade Federal de Catalão - UFCAT, Departamento de Medicina, Catalão, GO, Brasil
| | - W G Dos Santos
- Universidade Federal de Jataí - UFJ, Laboratório de Genética e Biologia Molecular, Programa de Pós-graduação em Ciências Aplicadas à Saúde, Jataí, GO, Brasil
| |
Collapse
|
35
|
Rupel K, Zupin L, Brich S, Mardirossian M, Ottaviani G, Gobbo M, Di Lenarda R, Pricl S, Crovella S, Zacchigna S, Biasotto M. Antimicrobial activity of amphiphilic nanomicelles loaded with curcumin against Pseudomonas aeruginosa alone and activated by blue laser light. JOURNAL OF BIOPHOTONICS 2021; 14:e202000350. [PMID: 33151640 DOI: 10.1002/jbio.202000350] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 06/11/2023]
Abstract
The aim of this work was to assess the antimicrobial efficacy on Pseudomonas aeruginosa of nanomicelles loaded with curcumin (CUR) alone and activated by blue laser light in an antimicrobial photodynamic therapy (APDT) approach. First, free CUR in liquid suspension and loaded in three amphiphilic nanomicelles (CUR-DAPMA, CUR-SPD and CUR-SPM) were tested both on bacteria and keratinocytes. While free CUR exerted limited efficacy showing moderate cytotoxicity, a strong inhibition of bacterial growth was obtained using all three nanosystems without toxicity on eukaryotic cells. CUR-SPM emerged as the most effective, and was therefore employed in APDT experiments. Among the three sublethal blue laser (λ 445 nm) protocols tested, the ones characterized by a fluence of 18 and 30 J/cm2 further decreased the antimicrobial concentration to 50 nM. The combination of blue laser APDT with CUR-SPM nanomicelles results in an effective synergistic activity that represents a promising novel therapeutic approach on resistant species.
Collapse
Affiliation(s)
- Katia Rupel
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Materno Infantile Burlo Garofolo, Trieste, Italy
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Mario Mardirossian
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Giulia Ottaviani
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Margherita Gobbo
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Roberto Di Lenarda
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Sabrina Pricl
- Molecular Biology and Nanotechnology Laboratory (MolBNL@UniTS), DEA, University of Trieste, Trieste, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Sergio Crovella
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Department of Biological and Environmental Sciences, College of Arts and Sciences, University of Qatar, Doha, Qatar
| | - Serena Zacchigna
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
- Cardiovascular Biology Laboratory, International Centre for Genetic Engineering and Biotechnology (ICGEB), Trieste, Italy
| | - Matteo Biasotto
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
36
|
Li P, Gao Z, Tan Z, Xiao J, Wei L, Chen Y. New developments in anti-biofilm intervention towards effective management of orthopedic device related infections (ODRI's). BIOFOULING 2021; 37:1-35. [PMID: 33618584 DOI: 10.1080/08927014.2020.1869725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/15/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Orthopedic device related infections (ODRI's) represent a difficult to treat situation owing to their biofilm based nature. Biofilm infections once established are difficult to eradicate even with an aggressive treatment regimen due to their recalcitrance towards antibiotics and immune attack. The involvement of antibiotic resistant pathogens as the etiological agent further worsens the overall clinical picture, pressing on the need to look into alternative treatment strategies. The present review highlightes the microbiological challenges associated with treatment of ODRI's due to biofilm formation on the implant surface. Further, it details the newer anti-infective modalities that work either by preventing biofilm formation and/or through effective disruption of the mature biofilms formed on the medical implant. The study, therefore aims to provide a comprehensive insight into the newer anti-biofilm interventions (non-antibiotic approaches) and a better understanding of their mechanism of action essential for improved management of orthopedic implant infections.
Collapse
Affiliation(s)
- Ping Li
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Zhenwu Gao
- Department of Orthopedics, Shanxi Bethune Hospital, Taiyuan City, China
| | - Zhenwei Tan
- Department of Orthopedics, Western Theater Air Force Hospital of PLA, Chengdu, China
| | - Jun Xiao
- Department of Orthopedics, Ya'an People's Hospital, Yaan City, China
| | - Li Wei
- Nursing Department, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| | - Yirui Chen
- Department of Orthopedics, Three Gorges Hospital Affiliated to Chongqing University, Chongqing, China
| |
Collapse
|
37
|
Weigelt MA, McNamara SA, Sanchez D, Hirt PA, Kirsner RS. Evidence-Based Review of Antibiofilm Agents for Wound Care. Adv Wound Care (New Rochelle) 2021; 10:13-23. [PMID: 32496980 PMCID: PMC7698998 DOI: 10.1089/wound.2020.1193] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/14/2020] [Indexed: 02/06/2023] Open
Abstract
Significance: Biofilms in vivo are small densely packed aggregations of microbes that are highly resistant to host immune responses and treatment. They attach to each other and to nearby surfaces. Biofilms are difficult to study and identify in a clinical setting as their quantification necessitates the use of advanced microscopy techniques such as confocal laser scanning microscopy. Nonetheless, it is likely that biofilms contribute to the pathophysiology of chronic skin wounds. Reducing, removing, or preventing biofilms is thus a logical approach to help clinicians heal chronic wounds. Recent Advances: Wound care products have demonstrated varying degrees of efficacy in destroying biofilms in in vitro and preclinical models, as well as in some clinical studies. Critical Issues: Controlled studies exploring the beneficial role of biofilm eradication and its relationship to healing in patients with chronic wounds are limited. This review aims to discuss the mode of action and clinical significance of currently available antibiofilm products, including surfactants, dressings, and others, with a focus on levels of evidence for efficacy in disrupting biofilms and ability to improve wound healing outcomes. Future Directions: Few available products have good evidence to support antibiofilm activity and wound healing benefits. Novel therapeutic strategies are on the horizon. More high-quality clinical studies are needed. The development of noninvasive techniques to quantify biofilms will facilitate increased ease of research about biofilms in wounds and how to combat them.
Collapse
Affiliation(s)
- Maximillian A. Weigelt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Stephanie A. McNamara
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Daniela Sanchez
- Boston University School of Medicine, Boston, Massachusetts, USA
| | - Penelope A. Hirt
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Robert S. Kirsner
- Dr. Phillip Frost Department of Dermatology & Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| |
Collapse
|
38
|
Biofilms as Promoters of Bacterial Antibiotic Resistance and Tolerance. Antibiotics (Basel) 2020; 10:antibiotics10010003. [PMID: 33374551 PMCID: PMC7822488 DOI: 10.3390/antibiotics10010003] [Citation(s) in RCA: 239] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/15/2020] [Accepted: 12/19/2020] [Indexed: 12/12/2022] Open
Abstract
Multidrug resistant bacteria are a global threat for human and animal health. However, they are only part of the problem of antibiotic failure. Another bacterial strategy that contributes to their capacity to withstand antimicrobials is the formation of biofilms. Biofilms are associations of microorganisms embedded a self-produced extracellular matrix. They create particular environments that confer bacterial tolerance and resistance to antibiotics by different mechanisms that depend upon factors such as biofilm composition, architecture, the stage of biofilm development, and growth conditions. The biofilm structure hinders the penetration of antibiotics and may prevent the accumulation of bactericidal concentrations throughout the entire biofilm. In addition, gradients of dispersion of nutrients and oxygen within the biofilm generate different metabolic states of individual cells and favor the development of antibiotic tolerance and bacterial persistence. Furthermore, antimicrobial resistance may develop within biofilms through a variety of mechanisms. The expression of efflux pumps may be induced in various parts of the biofilm and the mutation frequency is induced, while the presence of extracellular DNA and the close contact between cells favor horizontal gene transfer. A deep understanding of the mechanisms by which biofilms cause tolerance/resistance to antibiotics helps to develop novel strategies to fight these infections.
Collapse
|
39
|
Sicks B, Hönes K, Spellerberg B, Hessling M. Blue LEDs in Endotracheal Tubes May Prevent Ventilator-Associated Pneumonia. PHOTOBIOMODULATION PHOTOMEDICINE AND LASER SURGERY 2020. [DOI: 10.1089/photob.2020.4842] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Ben Sicks
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Katharina Hönes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, Ulm, Germany
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, Ulm, Germany
| |
Collapse
|
40
|
Antimicrobial Photodynamic Therapy with Chlorin e6 Is Bactericidal against Biofilms of the Primary Human Otopathogens. mSphere 2020; 5:5/4/e00492-20. [PMID: 32669474 PMCID: PMC7364218 DOI: 10.1128/msphere.00492-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM. Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae (NTHi) are ubiquitous upper respiratory opportunistic pathogens. Together, these three microbes are the most common causative bacterial agents of pediatric otitis media (OM) and have therefore been characterized as the primary human otopathogens. OM is the most prevalent bacterial infection in children and the primary reason for antibiotic administration in this population. Moreover, biofilm formation has been confirmed as a primary mechanism of chronic and recurrent OM disease. As bacterial biofilms are inherently metabolically recalcitrant to most antibiotics and these complex structures also present a significant challenge to the immune system, there is a clear need to identify novel antimicrobial approaches to treat OM infections. In this study, we evaluated the potential efficacy of antibacterial photodynamic therapy (aPDT) with the photosensitizer chlorin e6 (Ce6) against planktonic as well as biofilm-associated M. catarrhalis, S. pneumoniae, and NTHi. Our data indicate aPDT with Ce6 elicits significant bactericidal activity against both planktonic cultures and established biofilms formed by the three major otopathogens (with an efficacy of ≥99.9% loss of viability). Notably, the implementation of a novel, dual-treatment aPDT protocol resulted in this disinfectant effect on biofilm-associated bacteria and, importantly, inhibited bacterial regrowth 24 h posttreatment. Taken together, these data suggest this novel Ce6-aPDT treatment may be a powerful and innovative therapeutic strategy to effectively treat and eradicate bacterial OM infections and, significantly, prevent the development of recurrent disease. IMPORTANCE Otitis media (OM), or middle ear disease, is the most prevalent bacterial infection in children and the primary reason for antibiotic use and surgical intervention in the pediatric population. Biofilm formation by the major bacterial otopathogens, Moraxella catarrhalis, Streptococcus pneumoniae, and nontypeable Haemophilus influenzae, has been shown to occur within the middle ears of OM patients and is a key factor in the development of recurrent disease, which may result in hearing impairment and developmental delays. Bacterial biofilms are inherently impervious to most antibiotics and present a significant challenge to the immune system. In this study, we demonstrate that antimicrobial photodynamic therapy (aPDT) using the photosensitizer chlorin e6 elicits significant bactericidal activity versus planktonic and biofilm-associated otopathogens and supports further analyses of this novel, efficacious, and promising technology as an adjunctive treatment for acute and recurrent OM.
Collapse
|
41
|
Light-Mediated Decreases in Cyclic di-GMP Levels Inhibit Structure Formation in Pseudomonas aeruginosa Biofilms. J Bacteriol 2020; 202:JB.00117-20. [PMID: 32366589 DOI: 10.1128/jb.00117-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022] Open
Abstract
Light is known to trigger regulatory responses in diverse organisms, including slime molds, animals, plants, and phototrophic bacteria. However, light-dependent processes in nonphototrophic bacteria, and those of pathogens in particular, have received comparatively little research attention. In this study, we examined the impact of light on multicellular development in Pseudomonas aeruginosa, a leading cause of biofilm-based bacterial infections. We grew P. aeruginosa strain PA14 in a colony morphology assay and found that growth under prolonged exposure to low-intensity blue light inhibited biofilm matrix production and thereby the formation of vertical biofilm structures (i.e., "wrinkles"). Light-dependent inhibition of biofilm wrinkling was correlated with low levels of cyclic di-GMP (c-di-GMP), consistent with the role of this signal in stimulating matrix production. A screen of enzymes with the potential to catalyze c-di-GMP synthesis or degradation identified c-di-GMP phosphodiesterases that contribute to light-dependent inhibition of biofilm wrinkling. One of these, RmcA, was previously characterized by our group for its role in mediating the effect of redox-active P. aeruginosa metabolites called phenazines on biofilm wrinkle formation. Our results suggest that an RmcA sensory domain that is predicted to bind a flavin cofactor is involved in light-dependent inhibition of wrinkling. Together, these findings indicate that P. aeruginosa integrates information about light exposure and redox state in its regulation of biofilm development.IMPORTANCE Light exposure tunes circadian rhythms, which modulate the immune response and affect susceptibility to infection in plants and animals. Though molecular responses to light are defined for model plant and animal hosts, analogous pathways that function in bacterial pathogens are understudied. We examined the response to light exposure in biofilms (matrix-encased multicellular assemblages) of the nonphotosynthetic bacterium Pseudomonas aeruginosa We found that light at intensities that are not harmful to human cells inhibited biofilm maturation via effects on cellular signals. Because biofilm formation is a critical factor in many types of P. aeruginosa infections, including burn wound infections that may be exposed to light, these effects could be relevant for pathogenicity.
Collapse
|
42
|
Li H, Sun T, Liu C, Cao Y, Liu X. Photobiomodulation (450 nm) alters the infection of periodontitis bacteria via the ROS/MAPK/mTOR signaling pathway. Free Radic Biol Med 2020; 152:838-853. [PMID: 32014500 DOI: 10.1016/j.freeradbiomed.2020.01.184] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 12/22/2022]
Abstract
We aimed to investigate the effects of photobiomodulation (PBM) on periodontitis. A periodontitis model was established via Porphyromonas gingivalis infection in beagles. Mandibular second and third premolars were removed, and implants were positioned immediately after tooth extraction. Left gingiva was irradiated with PBM (450 nm) as the LG group, and right side without irradiation was regarded as the CG (control) group. PBM treatment increased oxidative stress by increasing the levels of reactive oxygen species (ROS) and reactive nitrogen species (RNS). The elevated levels of H2O2 (a biomarker of oxidative stress) and the free radicals (NO• and O2•-) reduced the concentration of dominant pathogens and regulated ROS/RNS/AMP-activated protein kinase (AMPK)/mTOR pathway by affecting p-AMPK, Runt-related transcription factor 2 (RUNX2), p-c-Jun N-terminal kinase (JNK)/mammalian target of rapamycin (mTOR), and acetyl-CoA carboxylase 1 (ACC1). PBM therapy increased salivary levels of interleukin-1 receptor antagonist (IL-1ra), interleukin (IL)-10, total antioxidant capacity (TAC) and catalase (CAT), and reduced the levels of tumor necrosis factor (TNF)α and interleukin (IL)-1β, malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) (p < 0.05). All the results contributed to preventing periodontitis infection. PBM therapy improved bone mineral density and implant osseointegration by controlling dominant pathogens invasion via the upregulation of salivary anti-inflammatory and antioxidant defense by affecting ROS/RNS/AMPK/mTOR signaling pathway.
Collapse
Affiliation(s)
- Hui Li
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Tong Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Cong Liu
- Department of Stomatology, Taian City Central Hospital, Taian, 271000, Shandong, China
| | - Yan Cao
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China
| | - Xin Liu
- Department of Stomatology, China-Japan Union Hospital of Jilin University, Changchun, 130033, China.
| |
Collapse
|
43
|
Angarano V, Smet C, Akkermans S, Watt C, Chieffi A, Van Impe JF. Visible Light as an Antimicrobial Strategy for Inactivation of Pseudomonas fluorescens and Staphylococcus epidermidis Biofilms. Antibiotics (Basel) 2020; 9:E171. [PMID: 32290162 PMCID: PMC7235755 DOI: 10.3390/antibiotics9040171] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022] Open
Abstract
The increase of antimicrobial resistance is challenging the scientific community to find solutions to eradicate bacteria, specifically biofilms. Light-Emitting Diodes (LED) represent an alternative way to tackle this problem in the presence of endogenous or exogenous photosensitizers. This work adds to a growing body of research on photodynamic inactivation using visible light against biofilms. Violet (400 nm), blue (420 nm), green (570 nm), yellow (584 nm) and red (698 nm) LEDs were used against Pseudomonas fluorescens and Staphylococcus epidermidis. Biofilms, grown on a polystyrene surface, were irradiated for 4 h. Different irradiance levels were investigated (2.5%, 25%, 50% and 100% of the maximum irradiance). Surviving cells were quantified and the inactivation kinetic parameters were estimated. Violet light could successfully inactivate P. fluorescens and S. epidermidis (up to 6.80 and 3.69 log10 reduction, respectively), while blue light was effective only against P. fluorescens (100% of maximum irradiance). Green, yellow and red irradiation neither increased nor reduced the biofilm cell density. This is the first research to test five different wavelengths (each with three intensities) in the visible spectrum against Gram-positive and Gram-negative biofilms. It provides a detailed study of the potential of visible light against biofilms of a different Gram-nature.
Collapse
Affiliation(s)
- Valeria Angarano
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Cindy Smet
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Charlotte Watt
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| | - Andre Chieffi
- Procter & Gamble, Newcastle Innovation Center, Newcastle NE12 9TS, UK;
| | - Jan F.M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, 9000 Gent, Belgium; (V.A.); (C.S.); (S.A.); (C.W.)
| |
Collapse
|
44
|
The Antimicrobial Effect of Radiant Catalytic Ionization on the Bacterial Attachment and Biofilm Formation by Selected Foodborne Pathogens under Refrigeration Conditions. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10041364] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The decontamination of food contact surfaces is a major problem for the food industry. The radiant catalytic ionization (RCI) method, based on the ionization process, may be an alternative for conventional decontamination procedures. The advantage of this technique is the possibility of its application to household refrigerating appliances and industrial cold rooms. This study aimed to assess the effect of RCI on the reduction of Campylobacter jejuni, Listeria monocytogenes, and Salmonella Enteritidis from the biofilms formed on a glass surface under refrigeration conditions. Bacterial biofilms were exposed to RCI for 24 h and after 12 (variant I) and 72 h (variant II) of the glass surface contamination. In the last variant (III), the contaminated meat was placed on the glass surface in the refrigerator and subjected to RCI treatment for 72 h. The significantly highest values of absolute reduction efficiency coefficient E were found for the bacterial attachment stage of biofilm formation (variant I). The research proves the efficiency of the RCI method in the reduction of bacteria number from a glass surface.
Collapse
|