1
|
Sha HN, Lu YM, Zhan PP, Chen J, Qiu QF, Xiong JB. Beneficial effects of probiotics on Litopenaeus vannamei growth and immune function via the recruitment of gut Rhodobacteraceae symbionts. Zool Res 2025; 46:388-400. [PMID: 40091533 PMCID: PMC12000132 DOI: 10.24272/j.issn.2095-8137.2024.364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 03/19/2025] Open
Abstract
Probiotic supplementation enhances the abundance of gut-associated Rhodobacteraceae species, critical symbionts contributing to the health and physiological fitness of Litopenaeus vannamei. Understanding the role of Rhodobacteraceae in shaping the shrimp gut microbiota is essential for optimizing probiotic application. This study investigated whether probiotics benefit shrimp health and fitness via the recruitment of Rhodobacteraceae commensals in the gut. Probiotic supplementation significantly enhanced feed conversion efficiency, digestive enzyme activity, and immune responses, thereby promoting shrimp growth. Additionally, probiotics induced pronounced shifts in gut microbial composition, enriched gut Rhodobacteraceae abundance, and reduced community variability, leading to a more stable gut microbiome. Network analysis revealed that the removal of Rhodobacteraceae nodes disrupted gut microbial connectivity more rapidly than the removal of non-Rhodobacteraceae nodes, indicating a disproportionate role of Rhodobacteraceae in maintaining network stability. Probiotic supplementation facilitated the migration of Rhodobacteraceae taxa from the aquatic environment to the shrimp gut while reinforcing deterministic selection in gut microbiota assembly. Transcriptomic analysis revealed that up-regulation of amino acid metabolism and NF-κB signaling pathways was positively correlated with Rhodobacteraceae abundance. These findings demonstrate that probiotic supplementation enriches key Rhodobacteraceae taxa, stabilizes gut microbial networks, and enhances host digestive and immune functions, ultimately improving shrimp growth performance. This study provides novel perspectives on the ecological and molecular mechanisms underlying the beneficial effects of probiotics on shrimp fitness.
Collapse
Affiliation(s)
- Hao-Nan Sha
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Yang-Ming Lu
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Ping-Ping Zhan
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiong Chen
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Qiong-Fen Qiu
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jin-Bo Xiong
- State Key Laboratory for Quality and Safety of Agro-Products, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China
- Key Laboratory of Aquacultural Biotechnology, Ministry of Education, School of Marine Sciences, Ningbo University, Ningbo, Zhejiang 315211, China. E-mail:
| |
Collapse
|
2
|
Meng JX, Li MH, Wang XY, Li S, Zhang Y, Ni HB, Ma H, Liu R, Yan JC, Li XM, Sun YZ, Yang X, Zhang XX. Temporal variability in the diversity, function and resistome landscapes in the gut microbiome of broilers. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117976. [PMID: 40037072 DOI: 10.1016/j.ecoenv.2025.117976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 02/15/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
Understanding the dynamic and stability of gut microbiota over the course of production cycle of broiler chicken can help identify microbial features that associate with better health and productivity. In the present study, we profile the changes in the composition and stability of gut microbiota of commercially raised broilers at nine distinct time points using shotgun metagenomics and culturomics approaches. We demonstrate, within the first week post-hatching, a rapid decline in relative abundance of 122 pioneer microbial species including Bacteroides fragilis, Lachnospira eligens and Ruminococcus gnavus, accompanied by a substantial decrease in both microbial richness and diversity. This was followed by a gradual increase and stabilization in the microbial diversity and population structure that persisted until the broilers reached the marketing age. Throughout the production cycle, key bacterial families such as Lachnospiraceae, Bacteroidaceae, and Ruminococcaceae were identified. However, significant shifts at the lower taxonomic levels occurred at different production stages, influencing the functional capacities and resistance profiles of the microbiota. During the rapid growth phase, enzymes crucial to vitamin and amino acid metabolism dominated, whereas enzymes associated with carbohydrate and energy metabolism were notably more abundant during the fattening stage. Many predicted antibiotic resistance genes were detected in association with typical commensal bacterial species in the gut microbiota, indicating a sustained resistance of the gut microbiota to antibiotic classes such as aminoglycosides and tetracyclines, which persist even in the absence of antibiotic selection pressure. Our research carries important implications for the management and health surveillance of broiler production.
Collapse
Affiliation(s)
- Jin-Xin Meng
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Ming-Han Li
- College of Animal Medicine, Jilin Agricultural University Changchun, Jilin Province 130118, PR China
| | - Xiang-Yu Wang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Shenghui Li
- Puensum Genetech Institute, Wuhan, Hubei Province 430223, PR China
| | - Yue Zhang
- Puensum Genetech Institute, Wuhan, Hubei Province 430223, PR China
| | - Hong-Bo Ni
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - He Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Rui Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Jin-Chu Yan
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Xiao-Man Li
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Yu-Zhe Sun
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China
| | - Xing Yang
- Department of Medical Microbiology and Immunology, School of Basic Medicine, Dali University, Dali, Yunnan Province 671000, PR China
| | - Xiao-Xuan Zhang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao, Shandong Province 266109, PR China.
| |
Collapse
|
3
|
Li Z, Lv J, Chen J, Sun F, Sheng R, Qin Y, Rao L, Lu T, Sun L. Comparative study of gut content microbiota in freshwater fish with different feeding habits: A case study of an urban lake. JOURNAL OF FISH BIOLOGY 2025; 106:823-835. [PMID: 39567260 DOI: 10.1111/jfb.16002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 11/06/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024]
Abstract
The gut microbiota plays a crucial role in various physiological functions of the host and can be modulated by numerous factors, including feeding habit or trophic level. In this study, the impact of host feeding habits on the gut microbiota of freshwater fish was explored. Ten fish species, classified into four feeding habit categories (herbivorous, omnivorous, planktivorous, and carnivorous) were sampled from West Lake, a renowned urban scenic lake, and their gut content microbiota was analysed using 16S ribosomal RNA gene sequencing. A total of 2531 operational taxonomic units, belonging to 34 bacterial phyla, were identified, with 33.4% shared across all feeding habits. Firmicutes and Proteobacteria were the predominant phyla. However, at the family level, Peptostreptococcaceae and Clostridiaceae_1 were the most dominant. Microbiota composition diversity was highest in herbivorous fish, followed by omnivores, carnivores, and planktivores. Statistically significant differences in microbiota diversity were found between different feeding categories, except for the omnivores, which did not differ from the carnivores or planktivores. The most abundant predicted metabolic pathways across all feeding habits were similar, with amino acid metabolism, carbohydrate metabolism, metabolism of cofactors and vitamins, and metabolism of other amino acids being dominant. However, comparing the relative abundance of gene functions between different feeding habits revealed notable variations across most comparisons. Co-occurrence network analysis for each feeding habit revealed that all networks were dominated by the strong positive correlation among pairs of bacterial genera abundances, while the basic properties varied, implying differences in gut microbiota interactions based on the feeding habit. In conclusion, these results confirmed that the feeding habit could affect the structure and composition of the gut content microbiota but also changed their functions and interactions.
Collapse
Affiliation(s)
- Zaitian Li
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Junsheng Lv
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Jun Chen
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Fengzhu Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Ruozhu Sheng
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Yueyun Qin
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Lihua Rao
- Division of Hangzhou West Lake Aquatic Area Management, Hangzhou, China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
4
|
Wang J, Hu C, Tong X, Gao Y, Liang R, Liu C, Zhao K. Microbial communities associated with the skin, gill, and gut of large yellow croaker (Larimichthys crocea). BMC Microbiol 2025; 25:16. [PMID: 39799309 PMCID: PMC11724461 DOI: 10.1186/s12866-024-03695-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/09/2024] [Indexed: 01/15/2025] Open
Abstract
The microbiota inhabiting the surface of fish mucosal tissue play important roles in the nutrition, metabolism and immune system of their host. However, most investigations on microbial symbionts have focused on the fish gut, but the microbiota associated with external mucosal tissues (such as the skin and gill) is poorly understood. This study characterised the traits and dynamic of microbial communities associated with the skin, gill and gut of large yellow croaker (Larimichthys crocea) culturing with net enclosures or pens at different sampling times (with seasonal transition). Results revealed the structure and function of microbial communities differed according to the mucosal tissues of large yellow croaker. The richness and diversity of microbiota in the skin were significantly higher than that in the gill and gut. Discriminative microbial taxa such as Psychrobacter in the skin, Enterobacterales in the gill, and Fusobacterium in the gut, and discriminative predictive functions were identified in the skin, gill and gut. Furthermore, different environmental-related factors (such as sampling time/season and culture method) had impacts on the fish microbiota differently. The diversity and composition of microbiota associated with the skin, gill and gut changed over time, and the difference in skin microbiota across sampling times was most significant among the three tissues. The culture method significantly impacted the diversity and composition of skin microbiota, but no significant difference was found in the gill and gut microbiota between net enclosure and net pen. These results indicated that the skin microbiota of large yellow croaker was more diverse and affected by environmental-related factors than other tissues. This study provides new insights into the structure, environmental response pattern, and relationship with host health of microbiota associated with the mucosal tissues of large yellow croaker.
Collapse
Affiliation(s)
- Jingan Wang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chenghao Hu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Xiaojie Tong
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Yuan Gao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Renjie Liang
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China
| | - Chibo Liu
- Department of Clinical Laboratory, Municipal Hospital Affiliated to Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| | - Kai Zhao
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou Key Laboratory of Biomedicine and Advanced Dosage Forms, School of Life Sciences, Taizhou University, Taizhou, 318000, Zhejiang Province, China.
| |
Collapse
|
5
|
Guo H, Li D, Miao B, Feng K, Chen G, Gan R, Kang Z, Gao H. Mild ultrasound-assisted alkali de-esterification modified pectins: Characterization and structure-activity relationships in immunomodulatory effects. ULTRASONICS SONOCHEMISTRY 2025; 112:107215. [PMID: 39742686 PMCID: PMC11751549 DOI: 10.1016/j.ultsonch.2024.107215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Accepted: 12/28/2024] [Indexed: 01/04/2025]
Abstract
Apple pectin (AP), a well-established dietary fiber, offers significant health benefits, particularly in immunomodulation. However, the structure-activity relationship (SAR) in this context remains poorly understood. This study aimed to elucidate the impact of varying degrees of esterification (DE) on AP's SAR in immunomodulatory activity. AP-Es (AP-E1, AP-E2, AP-E3) with different DE were prepared using mild ultrasound-assisted alkali de-esterification, followed by SAR analysis. Results revealed that AP-E3, with the lowest DE (5.08 ± 0.22 %), demonstrated a significant reduction in homogalacturonan (HG) domains and a corresponding increase in rhamnogalacturonan-I (RG-I) domains, which coincided with enhanced immunomodulatory effects. The molecular weights of AP-E1, AP-E2, and AP-E3 were determined to be 30.94 ± 0.83 kDa, 27.61 ± 0.65 kDa, and 22.17 ± 0.57 kDa, respectively. To further explore the underlying mechanism, transgenic zebrafish with fluorescent macrophages were utilized. A positive correlation was observed between AP-E3 concentration and the number of fluorescent microspheres engulfed by macrophages. Additionally, AP-E3 significantly upregulated the expression of key immune response genes (tnf-α, il-1β, il-6, cox-2, inos, and nf-κb) and restored the gut microbiota composition and abundance in chloramphenicol-induced immunocompromised zebrafish. Metabolomics analysis revealed that AP-E3 effectively restored metabolic homeostasis by activating multiple signaling pathways associated with signal transduction, immune regulation, and metabolism. These findings highlight the potential of low-esterified AP enriched with RG-I domains as a promising candidate for applications in immune modulation and gut health management.
Collapse
Affiliation(s)
- Huan Guo
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China
| | - Dong Li
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China; Department of Food Science and Engineering, Moutai Institute, Renhuai 564502, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, National Agricultural Science and Technology Center, Chengdu 610213, China.
| | - Kanglin Feng
- Fruit and Vegetable Storage and Processing Research Center, Institute of Agricultural Products Processing, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China
| | - Guijing Chen
- Sichuan University-The Hong Kong Polytechnic University Institute for Disaster Management and Reconstruction, Chengdu 610200, China
| | - Renyou Gan
- Department of Food Science and Nutrition, Faculty of Science, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Zhiliang Kang
- College of Mechanical and Electrical Engineering, Sichuan Agricultural University, Ya'an, Sichuan 625014, China
| | - Hong Gao
- College of Biomass Science and Engineering and Healthy Food Evaluation Research Center, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
6
|
Araujo G, Montoya JM, Thomas T, Webster NS, Lurgi M. A mechanistic framework for complex microbe-host symbioses. Trends Microbiol 2025; 33:96-111. [PMID: 39242229 DOI: 10.1016/j.tim.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/05/2024] [Accepted: 08/06/2024] [Indexed: 09/09/2024]
Abstract
Virtually all multicellular organisms on Earth live in symbiotic associations with complex microbial communities: the microbiome. This ancient relationship is of fundamental importance for both the host and the microbiome. Recently, the analyses of numerous microbiomes have revealed an incredible diversity and complexity of symbionts, with different mechanisms identified as potential drivers of this diversity. However, the interplay of ecological and evolutionary forces generating these complex associations is still poorly understood. Here we explore and summarise the suite of ecological and evolutionary mechanisms identified as relevant to different aspects of microbiome complexity and diversity. We argue that microbiome assembly is a dynamic product of ecology and evolution at various spatio-temporal scales. We propose a theoretical framework to classify mechanisms and build mechanistic host-microbiome models to link them to empirical patterns. We develop a cohesive foundation for the theoretical understanding of the combined effects of ecology and evolution on the assembly of complex symbioses.
Collapse
Affiliation(s)
- Gui Araujo
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK
| | - José M Montoya
- Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Torsten Thomas
- Centre for Marine Science and Innovation, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nicole S Webster
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, 7001, Australia; Australian Centre for Ecogenomics, University of Queensland, Brisbane, 4072, Australia; Australian Institute of Marine Science, Townsville, 4810, Australia
| | - Miguel Lurgi
- Department of Biosciences, Swansea University, Swansea, SA2 8PP, UK.
| |
Collapse
|
7
|
Apostolou K, Radea C, Meziti A, Kormas KA. Bacterial Diversity Associated with Terrestrial and Aquatic Snails. Microorganisms 2024; 13:8. [PMID: 39858777 PMCID: PMC11767905 DOI: 10.3390/microorganisms13010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/15/2024] [Accepted: 12/20/2024] [Indexed: 01/27/2025] Open
Abstract
The introduction of the holobiont concept has triggered scientific interest in depicting the structural and functional diversity of animal microbial symbionts, which has resulted in an unprecedented wealth of such cross-domain biological associations. The steadfast technological progress in nucleic acid-based approaches would cause one to expect that scientific works on the microbial symbionts of animals would be balanced at least for the farmed animals of human interest. For some animals, such as ruminants and a few farmed fish species of financial significance, the scientific wealth of the microbial worlds they host is immense and ever growing. The opposite happens for other animals, such as snails, in both the wild and farmed species. Snails are evolutionary old animals, with complex ecophysiological roles, living in rich microbial habitats such as soil and sediments or water. In order to create a stepping stone for future snail microbiome studies, in this literature review, we combined all the available knowledge to date, as documented in scientific papers, on any microbes associated with healthy and diseased terrestrial and aquatic snail species from natural and farmed populations. We conducted a Boolean search in Scopus, Web of Science, and ScienceDirect until June 2024, identifying 137 papers, of which 60 were used for original data on snail bacterial communities in the gastrointestinal tract, hepatopancreas, and feces. We provide a synthesis on how representative this knowledge is towards depicting the possible snail core microbiota, as well as the steps that need to be taken in the immediate future to increase the in-depth and targeted knowledge of the bacterial component in snail holobionts.
Collapse
Affiliation(s)
- Konstantinos Apostolou
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece;
| | - Canella Radea
- Section of Ecology and Taxonomy, Department of Biology, National and Kapodistrian University of Athens, Panepistimioupolis Ilissia, 157 84 Athens, Greece;
| | - Alexandra Meziti
- Department of Marine Sciences, University of the Aegean, 811 00 Mytilene, Greece;
| | - Konstantinos Ar. Kormas
- Department of Ichthyology and Aquatic Environment, School of Agricultural Sciences, University of Thessaly, 384 46 Volos, Greece;
| |
Collapse
|
8
|
Ashrafi R, Sundberg LR, Hyvärinen P, Karvonen A. Heterogeneity of the rearing environment enhances diversity of microbial communities in intensive farming. Anim Microbiome 2024; 6:75. [PMID: 39707572 DOI: 10.1186/s42523-024-00359-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/24/2024] [Indexed: 12/23/2024] Open
Abstract
Heterogeneity of the rearing environment in farmed animals can improve welfare and stocking success by enhancing natural behaviours, reducing stress, and decreasing pathogen occurrence. Although microbial diversity is often associated with well-being, their direct and indirect effects on health of farmed animals remain underexplored. We examined the impact of structural heterogeneity of aquaculture tanks on microbial communities in tank biofilm and fish gut microbiome. Enrichment (stones and shelters) significantly promoted microbial diversity and community homogeneity in tank biofilm. However, diversity of gut microbiome did not depend on rearing treatment or microbial composition of the environment. Fish in enriched tanks exhibited greater compositional variation in gut microbiome than those in standard tanks. Tanks without enrichments had higher occurrence of potentially pathogenic bacterial families (Corynebacteriaceae and Staphylococcaceae), while enriched tanks had more beneficial gut microbes (Lactobacillus). Microbial diversity in tank biofilm was negatively associated with fish mortality during a natural epidemic of Flavobacterium columnare, suggesting a protective effect of diverse microbial communities. These findings support environmental enrichment in mitigating disease outbreaks through enhanced microbial diversity, providing important implications for disease control and sustainable health management in aquaculture.
Collapse
Affiliation(s)
- Roghaieh Ashrafi
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland.
| | - Lotta-Riina Sundberg
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Pekka Hyvärinen
- Aquatic Population Dynamics, Natural Resources Institute Finland (Luke), Paltamo, Finland
| | - Anssi Karvonen
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
9
|
Jiang S, Guo X, Qian X, Ning X, Zhang C, Yin S, Zhang K. Sex-bias of core intestinal microbiota in different stocks of Chinese mitten crabs (Eriocheir sinensis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2024; 52:101281. [PMID: 38935994 DOI: 10.1016/j.cbd.2024.101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/17/2024] [Accepted: 06/18/2024] [Indexed: 06/29/2024]
Abstract
The differences in intestinal microbiota composition are synergistically shaped by internal and external factors of the host. The core microbiota plays a vital role in maintaining intestinal homeostasis. In this study, we conducted 16S rRNA sequencing analysis to investigate the stability of intestinal microbiota and sex-bias of six stocks of Chinese mitten crabs (105 females; and 110 males). The dominant phyla in all six stocks were Proteobacteria, Tenericutes, Bacteroidetes and Firmicutes; however, their relative abundance differed significantly. Twenty-seven core operational taxonomic units (OTUs), corresponding to 18 genera, were screened. Correlation analysis revealed that OTUs of four stocks in the Yangtze River system play important roles in maintaining the stability of intestinal microbiota. Additionally, the core intestinal microbiota was significantly sex-biased, and the top three genera in terms of relative abundance (Acinetobacter, Vibrio, and Candidatus_Hepatoplasma) were significantly dominant in female crabs. Network structure analysis also confirmed gender differences in the association pattern of intestinal microbiota. The intestinal microbiota of male crabs has a higher degree of functional enrichment. This study provided a theoretical basis for further investigating exploring the shaping effect of gender and geographical factors on the intestinal microbiota of Chinese mitten crabs.
Collapse
Affiliation(s)
- Su Jiang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xinping Guo
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xiaobin Qian
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China
| | - Xianhui Ning
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Cong Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China
| | - Shaowu Yin
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| | - Kai Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Jiangsu Province Engineering Research Center for Aquatic Animals Breeding and Green Efficient Aquacultural Technology, Nanjing 210023, China; Co-Innovation Center for Marine Bio-Industry Technology, Lian Yungang 222005, China.
| |
Collapse
|
10
|
Sumithra TG, Sharma SRK, Suresh G, Suja G, Prasad V, Gop AP, Patil PK, Gopalakrishnan A. Gut microbes of a high-value marine fish, Snubnose Pompano (Trachinotus blochii) are resilient to therapeutic dosing of oxytetracycline. Sci Rep 2024; 14:27949. [PMID: 39543167 PMCID: PMC11564560 DOI: 10.1038/s41598-024-75319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 10/04/2024] [Indexed: 11/17/2024] Open
Abstract
Trachinotus blochii is a high-value tropical mariculture species. The present study evaluated the gut microbial impact of therapeutic exposure (80 mg/day/kg biomass for 10 days) to oxytetracycline, the most common aquaculture antibiotic in T. blochii. The cultivable counts, α-diversity measures of taxonomic and functional metagenomics, microbial dysbiosis (MD) index, and microbial taxon abundances showed the resilience of gut microbiota at 16-26 days of treatment. A significant reduction in bacterial abundance, diversity measures, Firmicutes and Actinobacteria and an increase in γ-Proteobacteria was recorded on the 6th and 11th day of treatment. The increased metagenomic stress signatures, decreased beneficial bacterial abundances, decreased abundance of microbial pathways on energy metabolism, and MD index indicated short-term transient stress during the initial days of therapeutic withdrawal, warranting health management measures. Therapeutic exposure reduced the abundance of fish pathogens, including Vibrio spp., kanamycin and ampicillin-resistant bacteria. Strikingly, oxytetracycline treatment did not increase tetracycline-resistant bacterial counts and the predicted abundance of tetracycline resistance encoding genes in the gut, illustrating that therapeutic application would not pose a risk in the context of antimicrobial resistance in short term. Altogether, the present study provides a foundation for oxytetracycline treatment to develop suitable risk minimization tactics in sustainable aquaculture.
Collapse
Affiliation(s)
- T G Sumithra
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - S R Krupesha Sharma
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India.
| | - Gayathri Suresh
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
- Cochin University of Science and Technology, Kochi, Kerala, 682022, India
| | - G Suja
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Vishnu Prasad
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| | - Ambarish P Gop
- Vizhinjam Regional Centre of ICAR-CMFRI, Vizhinjam P.O., Thiruvananthapuram, Kerala, 695521, India
| | - Prasanna Kumar Patil
- Aquatic Animal Health and Environment Division, ICAR-Central Institute of Brackishwater Aquaculture, MRC Nagar, Chennai, Tamil Nadu, 600028, India
| | - A Gopalakrishnan
- Marine Biotechnology, Fish Nutrition and Health Division, ICAR-Central Marine Fisheries Research Institute, Ernakulam North P.O., Kochi, Kerala, 682018, India
| |
Collapse
|
11
|
Wei D, Zhu L, Wang Y, Liu M, Huang L, Yang H, Wang H, Shi D, Wang G, Ling F, Yu Q, Li P. Variation in the intestinal bacterial community composition under different water temperature culture conditions in largemouth bass (Micropterus salmoides). J Appl Microbiol 2024; 135:lxae283. [PMID: 39509281 DOI: 10.1093/jambio/lxae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/15/2024]
Abstract
AIMS This study aimed to investigate the impact of temperature on the intestinal microbiota of largemouth bass using 16S rRNA gene amplicon sequencing, focusing on the under-explored role of abiotic factors in shaping the gut microbial community. METHODS AND RESULTS Five water temperature groups (20.0 ± 0.2°C, 25.0 ± 0.2°C, 28.0 ± 0.2°C, 31.0 ± 0.2°C, and 35.0 ± 0.2°C) were established, each with three replicates. Significant variations in intestinal bacterial community composition were observed across these conditions. Elevated temperatures (31.0 ± 0.2°C and 35.0 ± 0.2°C) led to an increase in opportunistic pathogens such as OTU180 Vibrio and OTU2015 Vogesella (P < 0.05). Species correlation network analysis showed a shift toward more positive relationships among intestinal microbes at higher temperatures (P < 0.05). Ecological process analysis highlighted a greater role of ecological drift in microbial community structure at 31.0 ± 0.2°C and 35.0 ± 0.2°C (P < 0.05). CONCLUSIONS The study suggests that higher temperatures may predispose largemouth bass to opportunistic pathogens by altering their intestinal microbiota. Effective water temperature management is crucial for largemouth bass aquaculture to mitigate pathogen risks and maintain a balanced intestinal microbiota. This research provides critical insights into the temperature-microbiota relationship and offers practical recommendations for aquaculture practices.
Collapse
Affiliation(s)
- Dongdong Wei
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Libo Zhu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Yibing Wang
- College of Oceanography and Biotechnology, Guangxi University for Nationalities, No. 188, East University Road, Nanning 530006, P.R. China
| | - Mingzhu Liu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Lin Huang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Hui Yang
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Hao Wang
- National Pathogen Collection Center for Aquatic Animals, Shanghai Ocean University, No. 999, Huicheng Ring Road, Shanghai 201306, China
| | - Deqiang Shi
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road,Yangling 712100, P.R. China
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, No. 22, Xinong Road,Yangling 712100, P.R. China
| | - Qing Yu
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| | - Pengfei Li
- Guangxi Key Laboratory of Aquatic Biotechnology and Modern Ecological Aquaculture, Guangxi Engineering Research Center for Fishery Major Diseases Control and Efficient Healthy Breeding Industrial Technology (GERCFT), Guangxi Academy of Marine Sciences, Guangxi Academy of Sciences, No.98 Daling Road, Nanning 530007, P.R. China
| |
Collapse
|
12
|
Garibay-Valdez E, Olivas-Bernal CA, Vargas-Albores F, Martínez-Porchas M, García-Godínez DM, Medina-Félix D, Martínez-Córdova LR, Cicala F. Deciphering the gut microbiota of zebrafish, the most used fish as a biological model: A meta-analytic approach. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111713. [PMID: 39074543 DOI: 10.1016/j.cbpa.2024.111713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
A meta-analytic approach deciphered the taxonomic profile of the zebrafish gut microbiota at different developmental stages. Data (16S rDNA) were systematically searched in databases, selecting those with intestine samples of fish not exposed to a particular treatment or challenge (e.g., pathogens, dietetic tests, xenobiotics, etc.) and obtaining 340 samples to be processed. Results revealed marked differences between the developmental phases. Proteobacteria was the dominant phylum in the larval phase, with a relative abundance of 90%, while the rest of the phyla did not exceed 2%. Vibrio, Aeromonas, Plesiomonas, Pseudomonas, Shewanella, and Acinetobacter were the dominant genera in this phase. Transitional changes were observed after the larvae stage. Proteobacteria still registered high abundance (48%) in the juvenile phase, but Fusobacteria (40%) and Bacteriodota (5.9%) registered considerable increases. Genera, including Cetobacterium, Plesiomonas, Aeromonas, Vibrio, and Flavobacterium, dominated this stage. The phyla Proteobacteria (48%) and Fusobacteria (35%) were strongly established in the adult phase. Cetobacterium was registered as the most abundant genus, followed by Aeromonas, Acinetobacter, Plesiomonas, Vibrio, and ZOR0006 (Firmicutes; 6%). In conclusion, the composition of the intestinal microbiota of zebrafish is consistently determined by two primary phyla, Proteobacteria and Fusobacteria; however, this composition varies depending on the developmental stage. Cetobacterium and Aeromonas are the most relevant genera in juveniles and adults. Finally, these results reveal a consistent pattern of certain bacterial groups in the zebrafish microbiota that could help shape gnotobiotic models (colonized with a specific known bacterial community) or synthetic microbiota (in vitro assembly of microbes), among other approaches.
Collapse
Affiliation(s)
- Estefanía Garibay-Valdez
- Biology of Aquatic Organisms, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | | | - Francisco Vargas-Albores
- Biology of Aquatic Organisms, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Biology of Aquatic Organisms, Centro de Investigación en Alimentación y Desarrollo, A.C., Hermosillo, Sonora, Mexico.
| | | | | | - Luis Rafael Martínez-Córdova
- Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Universidad de Sonora, Hermosillo, Sonora, Mexico
| | - Francesco Cicala
- IRSA Verbania, Consiglio Nazionale delle Ricerche-Verbania, Italy
| |
Collapse
|
13
|
Shi Z, Yao F, Liu Z, Zhang J. Microplastics predominantly affect gut microbiota by altering community structure rather than richness and diversity: A meta-analysis of aquatic animals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124639. [PMID: 39095000 DOI: 10.1016/j.envpol.2024.124639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 07/18/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The impacts of microplastics on the gut microbiota, a crucial component of the health of aquatic animals, remain inadequately understood. This phylogenetically controlled meta-analysis aims to identify general patterns of microplastic effects on the alpha diversity (richness and Shannon index), beta diversity, and community structure of gut microbiota in aquatic animals. Data from 63 peer-reviewed articles on the Web of Science were synthesized, encompassing 424 observations across 31 aquatic species. The analysis showed that microplastics significantly altered the community structure of gut microbiota, with between-group distances being 87.75% higher than within-group distances. This effect was significant even at environmentally relevant concentrations (≤1 mg L-1). However, their effects on richness, Shannon index, and beta diversity (community variation) were found to be insignificant. The study also indicated that the effects of microplastics were primarily dependent on their concentration and size, while the phylogeny of tested species explained limited heterogeneity. Furthermore, variations in gut microbiota alpha diversity, beta diversity, and community structure were correlated with changes in antioxidant enzyme activities from the liver and hepatopancreas. This implies that gut microbiota attributes of aquatic animals may provide insights into host antioxidant levels. In summary, this study illuminates the impacts of microplastics on the gut microbiota of aquatic animals and examines the implications of these effects for host health. It emphasizes that microplastics mainly alter the community structure of gut microbiota rather than significantly affecting richness and diversity.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Ziqiang Liu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, 510642, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Delleuze M, Schwob G, Orlando J, Gerard K, Saucède T, Brickle P, Poulin E, Cabrol L. Habitat specificity modulates the bacterial biogeographic patterns in the Southern Ocean. FEMS Microbiol Ecol 2024; 100:fiae134. [PMID: 39363207 PMCID: PMC11523047 DOI: 10.1093/femsec/fiae134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024] Open
Abstract
Conceptual biogeographic frameworks have proposed that the relative contribution of environmental and geographical factors on microbial distribution depends on several characteristics of the habitat (e.g. environmental heterogeneity, species diversity, and proportion of specialist/generalist taxa), all of them defining the degree of habitat specificity, but few experimental demonstrations exist. Here, we aimed to determine the effect of habitat specificity on bacterial biogeographic patterns and assembly processes in benthic coastal ecosystems of the Southern Ocean (Patagonia, Falkland/Malvinas, Kerguelen, South Georgia, and King George Islands), using 16S rRNA gene metabarcoding. The gradient of habitat specificity resulted from a 'natural experimental design' provided by the Abatus sea urchin model, from the sediment (least specific habitat) to the intestinal tissue (most specific habitat). The phylogenetic composition of the bacterial communities showed a clear differentiation by site, driven by a similar contribution of geographic and environmental distances. However, the strength of this biogeographic pattern decreased with increasing habitat specificity: sediment communities showed stronger geographic and environmental divergence compared to gut tissue. The proportion of stochastic and deterministic processes contributing to bacterial assembly varied according to the geographic scale and the habitat specificity level. For instance, an increased contribution of dispersal limitation was observed in gut tissue habitat. Our results underscore the importance of considering different habitats with contrasting levels of specificity to better understand bacterial biogeography and assembly processes over oceanographic scales.
Collapse
Affiliation(s)
- Mélanie Delleuze
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Marine Biology Lab, CP160/15, Université Libre de Bruxelles (ULB), Brussels 1050, Belgium
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Guillaume Schwob
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Julieta Orlando
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecología Microbiana, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| | - Karin Gerard
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Laboratorio de Ecosistemas Marinos Antárticos y Subantárticos, Universidad de Magallanes, Punta Arenas 6210427, Chile
- Cape Horn Investigation Center, Puerto Williams 6350054, Chile
| | - Thomas Saucède
- Biogéosciences, UMR CNRS 6282, Université de Bourgogne, 21000 Dijon, France
| | - Paul Brickle
- South Atlantic Environmental Research Institute, Port Stanley FIQQ 1ZZ, Falkland Islands
- School of Biological Sciences (Zoology), University of Aberdeen, Aberdeen AB24 3FX, Scotland, United Kingdom
| | - Elie Poulin
- Laboratorio de Ecología Molecular, Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
| | - Léa Cabrol
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems (BASE), Santiago 7800003, Chile
- Aix-Marseille University, Univ Toulon, CNRS, IRD, Mediterranean Institute of Oceanography (M.I.O.) UM 110, 13009 Marseille, France
| |
Collapse
|
15
|
Wang J, Li S, Sun Z, Lu C, Zhao R, Liu T, Wang D, Zheng X. Comparative study of immune responses and intestinal microbiota in the gut-liver axis between wild and farmed pike perch ( Sander Lucioperca). Front Immunol 2024; 15:1473686. [PMID: 39439785 PMCID: PMC11494242 DOI: 10.3389/fimmu.2024.1473686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/10/2024] [Indexed: 10/25/2024] Open
Abstract
Introduction Pike perch (Sander Lucioperca) is a predatory freshwater fish, which is highly popular amongst consumers, owing to its white flesh with a delicate structure and mild flavor. Compared to wild pike perch, the diet of farmed ones has shifted from natural food to artificial feeds. These changes would affect the gut flora of the pike perch. Endogenous metabolites of the intestinal flora are transferred through the gut-liver axis, which affects the physiological functions of the host. By studying wild and farmed individuals of the pike perch, novel insights into the stability of the intestinal flora can be provided. Methods and results In this study, we measured various immune parameters in the blood, liver and intestine of wild and farmed pike perch using enzyme activity assays and real-time fluorescence quantitative PCR. Gut microbes were also collected for 16S rRNA gene sequencing. Our results showed that the serum low-density lipoprotein cholesterol (LDL-C) levels were twice as high in the wild group as in the farmed group. Furthermore, the activities of glutamate pyruvate transaminase (GPT) and glutamate oxaloacetate transaminase (GOT) in the intestinal tissues of the wild group were 733.91 U/g and 375.35 U/g, which were significantly higher than those of the farmed group. Expression of IL10 in the liver of farmed pike perch was also 4-fold higher than that of wild pike perch. The expression of genes related to the p53-BAX/Bcl2 signaling pathway was higher in both intestinal and liver tissues of wild pike perch compared with farmed. 16S rRNA gene analysis of the gut microflora showed a high relative abundance of Cetobacterium in the gut of farmed pike perch. Conclusion As a result, our study indicates that dietary differences affect the diversity, composition and relative abundance of the gut flora of the pike perch. Meanwhile, it affects the glycolipid metabolism and immunomodulation of pike perch.
Collapse
Affiliation(s)
- Jing Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Shaowu Li
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Zhipeng Sun
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Cuiyun Lu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Ran Zhao
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Tianqi Liu
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Di Wang
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Aquatic Animal Diseases and Immune Technology of Heilongjiang Province, Heilongjiang River Fisheries Research Institute, Harbin, China
| | - Xianhu Zheng
- Heilongjiang River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Harbin, China
- Key Laboratory of Freshwater Aquatic Biotechnology and Breeding, Ministry of Agriculture and Rural Affairs, Harbin, China
- National and Local Joint Engineering Laboratory of Freshwater Fish Breeding, Heilongjiang River Fisheries Research Institute, Harbin, China
| |
Collapse
|
16
|
Duan Y, Yang Y, Zhang Z, Nan Y, Xiao M. The toxic effect of lead exposure on the physiological homeostasis of grouper: Insight from gut-liver axis. MARINE POLLUTION BULLETIN 2024; 207:116926. [PMID: 39244887 DOI: 10.1016/j.marpolbul.2024.116926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
The heavy metal lead (Pb) pollution in marine environment has been widely concerned. The liver and intestine are important for the health of fish. In this study, the grouper were exposed to 1 μg/L Pb for 14 days, and the physiological homeostasis changes were explored via gut-liver axis. The results showed that Pb stress caused liver morphological changes, oxidative stress, and the accumulation and peroxidation of the lipids. The liver metabolism were disturbed, especially amino acid metabolism and the synthesis and degradation of ketone bodies. Pb stress also caused intestinal mucosal ablation, tight junction dysfunction and inflammatory response. Additionally, intestinal microbial diversity was decreased, and the community composition was altered especially several bacteria genera (Ruminococcus UCG-005, Ruminococcus UCG-014, Oscillibacter, and Streptococcus) were significantly correlated with the physiological indexes and metabolites of the liver. These results reveal that Pb stress negatively affect the physiological homeostasis of the grouper via gut-liver axis.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
17
|
Shi Z, Yao F, Chen Q, Chen Y, Zhang J, Guo J, Zhang S, Zhang C. More deterministic assembly constrains the diversity of gut microbiota in freshwater snails. Front Microbiol 2024; 15:1394463. [PMID: 39040899 PMCID: PMC11260827 DOI: 10.3389/fmicb.2024.1394463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/10/2024] [Indexed: 07/24/2024] Open
Abstract
Growing evidence has suggested a strong link between gut microbiota and host fitness, yet our understanding of the assembly mechanisms governing gut microbiota remains limited. Here, we collected invasive and native freshwater snails coexisting at four independent sites in Guangdong, China. We used high-throughput sequencing to study the assembly processes of their gut microbiota. Our results revealed significant differences in the diversity and composition of gut microbiota between invasive and native snails. Specifically, the gut microbiota of invasive snails exhibited lower alpha diversity and fewer enriched bacteria, with a significant phylogenetic signal identified in the microbes that were enriched or depleted. Both the phylogenetic normalized stochasticity ratio (pNST) and the phylogenetic-bin-based null model analysis (iCAMP) showed that the assembly process of gut microbiota in invasive snails was more deterministic compared with that in native snails, primarily driven by homogeneous selection. The linear mixed-effects model revealed a significant negative correlation between deterministic processes (homogeneous selection) and alpha diversity of snail gut microbiota, especially where phylogenetic diversity explained the most variance. This indicates that homogeneous selection acts as a filter by the host for specific microbial lineages, constraining the diversity of gut microbiota in invasive freshwater snails. Overall, our study suggests that deterministic assembly-mediated lineage filtering is a potential mechanism for maintaining the diversity of gut microbiota in freshwater snails.
Collapse
Affiliation(s)
- Zhaoji Shi
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Fucheng Yao
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Qi Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Yingtong Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jiaen Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| | - Jing Guo
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Shaobin Zhang
- Henry Fok School of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Chunxia Zhang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Engineering Technology Research Centre of Modern Eco-Agriculture and Circular Agriculture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Eco-Circular Agriculture, South China Agricultural University, Guangzhou, China
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou, China
| |
Collapse
|
18
|
Duan Y, Yang Y, Li H, Zhang Z, Chen X, Xiao M, Nan Y. The toxic effects of tetracycline exposure on the physiological homeostasis of the gut-liver axis in grouper. ENVIRONMENTAL RESEARCH 2024; 258:119402. [PMID: 38866314 DOI: 10.1016/j.envres.2024.119402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/20/2024] [Accepted: 06/09/2024] [Indexed: 06/14/2024]
Abstract
Antibiotic residues, such as tetracycline (TET), in aquatic environments have become a global concern. The liver and gut are important for immunity and metabolism in aquatic organisms. In this study, juvenile groupers were subjected to 1 and 100 μg/L TET for 14 days, and the physiological changes of these fish were evaluated from the perspective of gut-liver axis. After TET exposure, the liver showed histopathology, lipid accumulation, and the elevated ALT activity. An oxidative stress response was induced in the liver and the metabolic pattern was disturbed, especially pyrimidine metabolism. Further, intestinal health was also affected, including the damaged intestinal mucosa, the decreased mRNA expression levels of tight junction proteins (ZO-1, Occludin, and Claudin-3), along with the increased gene expression levels of inflammation (IL-1β, IL-8, TNF-α) and apoptosis (Casp-3 and p53). The diversity of intestinal microbes increased and the community composition was altered, and several beneficial bacteria (Lactobacillus, Bacteroidales S24-7 group, and Romboutsia) and harmful (Aeromonas, Flavobacterium, and Nautella) exhibited notable correlations with hepatic physiological indicators and metabolites. These results suggested that TET exposure can adversely affect the physiological homeostasis of groupers through the gut-liver axis.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China.
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Xiaoying Chen
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou, 510640, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| |
Collapse
|
19
|
Duan Y, Nan Y, Xiao M, Yang Y. Toxicity of three microcystin variants on the histology, physiological and metabolism of hepatopancreas and intestinal microbiota of Litopenaeus vannamei. Comp Biochem Physiol C Toxicol Pharmacol 2024; 280:109904. [PMID: 38508355 DOI: 10.1016/j.cbpc.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/10/2024] [Accepted: 03/17/2024] [Indexed: 03/22/2024]
Abstract
Microcystins (MCs) are prevalent harmful contaminants within shrimp aquaculture systems, exhibiting a diverse array of variants. Gut microbiota can engage in mutual interactions with the host through the gut-liver axis. In this study, the shrimp Litopenaeus vannamei were subjected to three different variants of MCs (LR, YR, RR) at a concentration of 1 μg/L each, and elucidated the alterations in both intestinal microbiota and hepatopancreas physiological homeostasis. The results showed that all three variants of MCs prompted histological alterations in the hepatopancreas, induced elevated levels of oxidative stress biomarkers (H2O2, T-SOD, and CAT), disturbed the transcription levels of immune-related genes (Crus, ALF, and Lys), along with an increase in apoptotic genes (Casp-3 and P53). Furthermore, the metabolic profiles of the hepatopancreas were perturbed, particularly in amino acid metabolism such as "lysine degradation" and "β-alanine metabolism"; the mTOR and FoxO signaling were also influenced, encompassing alterations in the transcription levels of related genes. Additionally, the alterations were observed in the intestinal microbiota's diversity and composition, particularly potential beneficial bacteria (Alloprevotella, Bacteroides, Collinsella, Faecalibacterium, and Prevotellaceae UCG-001), which exhibited a positive correlation with the metabolite berberine. These findings reveal that the three MCs variants can impact the health of the shrimp by interfering with the homeostasis of intestinal microbial and hepatopancreas physiology.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Meng Xiao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| |
Collapse
|
20
|
Liang Y, Wang Z, Gao N, Qi X, Zeng J, Cui K, Lu W, Bai S. Variations and Interseasonal Changes in the Gut Microbial Communities of Seven Wild Fish Species in a Natural Lake with Limited Water Exchange during the Closed Fishing Season. Microorganisms 2024; 12:800. [PMID: 38674744 PMCID: PMC11052518 DOI: 10.3390/microorganisms12040800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 04/06/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
The gut microbiota of fish is crucial for their growth, development, nutrient uptake, physiological balance, and disease resistance. Yet our knowledge of these microbial communities in wild fish populations in their natural ecosystems is insufficient. This study systematically examined the gut microbial communities of seven wild fish species in Chaohu Lake, a fishing-restricted area with minimal water turnover, across four seasons. We found significant variations in gut microbial community structures among species. Additionally, we observed significant seasonal and regional variations in the gut microbial communities. The Chaohu Lake fish gut microbial communities were predominantly composed of the phyla Firmicutes, Proteobacteria(Gamma), Proteobacteria(Alpha), Actinobacteriota, and Cyanobacteria. At the genus level, Aeromonas, Cetobacterium, Clostridium sensu stricto 1, Romboutsia, and Pseudomonas emerged as the most prevalent. A co-occurrence network analysis revealed that C. auratus, C. carpio, and C. brachygnathus possessed more complex and robust gut microbial networks than H. molitrix, C. alburnus, C. ectenes taihuensis, and A. nobilis. Certain microbial groups, such as Clostridium sensu stricto 1, Romboutsia, and Pseudomonas, were both dominant and keystone in the fish gut microbial network. Our study offers a new approach for studying the wild fish gut microbiota in natural, controlled environments. It offers an in-depth understanding of gut microbial communities in wild fish living in stable, limited water exchange natural environments.
Collapse
Affiliation(s)
- Yangyang Liang
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Zijia Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Gao
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Xiaoxue Qi
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| | - Juntao Zeng
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kai Cui
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Wenxuan Lu
- Key Laboratory of Freshwater Aquaculture and Enhancement of Anhui Province, Fisheries Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230001, China; (Y.L.); (N.G.); (K.C.); (W.L.)
| | - Shijie Bai
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; (Z.W.); (X.Q.); (J.Z.)
| |
Collapse
|
21
|
Auclert LZ, Chhanda MS, Derome N. Interwoven processes in fish development: microbial community succession and immune maturation. PeerJ 2024; 12:e17051. [PMID: 38560465 PMCID: PMC10981415 DOI: 10.7717/peerj.17051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/13/2024] [Indexed: 04/04/2024] Open
Abstract
Fishes are hosts for many microorganisms that provide them with beneficial effects on growth, immune system development, nutrition and protection against pathogens. In order to avoid spreading of infectious diseases in aquaculture, prevention includes vaccinations and routine disinfection of eggs and equipment, while curative treatments consist in the administration of antibiotics. Vaccination processes can stress the fish and require substantial farmer's investment. Additionally, disinfection and antibiotics are not specific, and while they may be effective in the short term, they have major drawbacks in the long term. Indeed, they eliminate beneficial bacteria which are useful for the host and promote the raising of antibiotic resistance in beneficial, commensal but also in pathogenic bacterial strains. Numerous publications highlight the importance that plays the diversified microbial community colonizing fish (i.e., microbiota) in the development, health and ultimately survival of their host. This review targets the current knowledge on the bidirectional communication between the microbiota and the fish immune system during fish development. It explores the extent of this mutualistic relationship: on one hand, the effect that microbes exert on the immune system ontogeny of fishes, and on the other hand, the impact of critical steps in immune system development on the microbial recruitment and succession throughout their life. We will first describe the immune system and its ontogeny and gene expression steps in the immune system development of fishes. Secondly, the plurality of the microbiotas (depending on host organism, organ, and development stage) will be reviewed. Then, a description of the constant interactions between microbiota and immune system throughout the fish's life stages will be discussed. Healthy microbiotas allow immune system maturation and modulation of inflammation, both of which contribute to immune homeostasis. Thus, immune equilibrium is closely linked to microbiota stability and to the stages of microbial community succession during the host development. We will provide examples from several fish species and describe more extensively the mechanisms occurring in zebrafish model because immune system ontogeny is much more finely described for this species, thanks to the many existing zebrafish mutants which allow more precise investigations. We will conclude on how the conceptual framework associated to the research on the immune system will benefit from considering the relations between microbiota and immune system maturation. More precisely, the development of active tolerance of the microbiota from the earliest stages of life enables the sustainable establishment of a complex healthy microbial community in the adult host. Establishing a balanced host-microbiota interaction avoids triggering deleterious inflammation, and maintains immunological and microbiological homeostasis.
Collapse
Affiliation(s)
- Lisa Zoé Auclert
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| | - Mousumi Sarker Chhanda
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
- Department of Aquaculture, Faculty of Fisheries, Hajee Mohammad Danesh Science and Technology University, Basherhat, Bangladesh
| | - Nicolas Derome
- Département de Biologie, Institut de Biologie Intégrative et des Systèmes, Université Laval, Québec, Canada
| |
Collapse
|
22
|
Zhang B, Xiao J, Liu H, Zhai D, Wang Y, Liu S, Xiong F, Xia M. Vertical habitat preferences shape the fish gut microbiota in a shallow lake. Front Microbiol 2024; 15:1341303. [PMID: 38572242 PMCID: PMC10987288 DOI: 10.3389/fmicb.2024.1341303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/06/2024] [Indexed: 04/05/2024] Open
Abstract
Understanding the interactions between fish gut microbiota and the aquatic environment is a key issue for understanding aquatic microorganisms. Environmental microorganisms enter fish intestines through feeding, and the amount of invasion varies due to different feeding habits. Traditional fish feeding habitat preferences are determined by fish morphology or behavior. However, little is known about how the feeding behavior of fish relative to the vertical structure in a shallow lake influences gut microbiota. In our study, we used nitrogen isotopes to measure the trophic levels of fish. Then high-throughput sequencing was used to describe the composition of environmental microbiota and fish gut microbiota, and FEAST (fast expectation-maximization for microbial source tracking) method was used to trace the source of fish gut microbiota. We investigated the microbial diversity of fish guts and their habitats in Lake Sanjiao and verified that the sediments indeed played an important role in the assembly of fish gut microbiota. Then, the FEAST analysis indicated that microbiota in water and sediments acted as the primary sources in half of the fish gut microbiota respectively. Furthermore, we classified the vertical habitat preferences using microbial data and significant differences in both composition and function of fish gut microbiota were observed between groups with distinct habitat preferences. The performance of supervised and unsupervised machine learning in classifying fish gut microbiota by habitat preferences actually exceeded classification by fish species taxonomy and fish trophic level. Finally, we described the stability of fish co-occurrence networks with different habitat preferences. Interestingly, the co-occurrence network seemed more stable in pelagic fish than in benthic fish. Our results show that the preferences of fish in the vertical structure of habitat was the main factor affecting their gut microbiota. We advocated the use of microbial interactions between fish gut and their surrounding environment to reflect fish preferences in vertical habitat structure. This approach not only offers a novel perspective for understanding the interactions between fish gut microbiota and environmental factors, but also provides new methods and ideas for studying fish habitat selection in aquatic ecosystems.
Collapse
Affiliation(s)
- Bowei Zhang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Jiaman Xiao
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Hongyan Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Dongdong Zhai
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Ying Wang
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Shujun Liu
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Fei Xiong
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| | - Ming Xia
- Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, School of Life Sciences, Jianghan University, Wuhan, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, Jianghan University, Wuhan, China
| |
Collapse
|
23
|
Tan J, Fu B, Zhao X, Ye L. Novel Techniques and Models for Studying the Role of the Gut Microbiota in Drug Metabolism. Eur J Drug Metab Pharmacokinet 2024; 49:131-147. [PMID: 38123834 DOI: 10.1007/s13318-023-00874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
The gut microbiota, known as the second human genome, plays a vital role in modulating drug metabolism, significantly impacting therapeutic outcomes and adverse effects. Emerging research has elucidated that the microbiota mediates a range of modifications of drugs, leading to their activation, inactivation, or even toxication. In diverse individuals, variations in the gut microbiota can result in differences in microbe-drug interactions, underscoring the importance of personalized approaches in pharmacotherapy. However, previous studies on drug metabolism in the gut microbiota have been hampered by technical limitations. Nowadays, advances in biotechnological tools, such as microbially derived metabolism screening and microbial gene editing, have provided a deeper insight into the mechanism of drug metabolism by gut microbiota, moving us toward personalized therapeutic interventions. Given this situation, our review summarizes recent advances in the study of gut-microbiota-mediated drug metabolism and showcases techniques and models developed to navigate the challenges posed by the microbial involvement in drug action. Therefore, we not only aim at understanding the complex interaction between the gut microbiota and drugs and outline the development of research techniques and models, but we also summarize the specific applications of new techniques and models in researching gut-microbiota-mediated drug metabolism, with the expectation of providing new insights on how to study drug metabolism by gut microbiota.
Collapse
Affiliation(s)
- Jianling Tan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Bingxuan Fu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Xiaojie Zhao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Ling Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
24
|
Xu T, Novotny A, Zamora-Terol S, Hambäck PA, Winder M. Dynamics of Gut Bacteria Across Different Zooplankton Genera in the Baltic Sea. MICROBIAL ECOLOGY 2024; 87:48. [PMID: 38409540 PMCID: PMC10896951 DOI: 10.1007/s00248-024-02362-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 02/28/2024]
Abstract
In aquatic ecosystems, zooplankton-associated bacteria potentially have a great impact on the structure of ecosystems and trophic networks by providing various metabolic pathways and altering the ecological niche of host species. To understand the composition and drivers of zooplankton gut microbiota, we investigated the associated microbial communities of four zooplankton genera from different seasons in the Baltic Sea using the 16S rRNA gene. Among the 143 ASVs (amplified sequence variants) observed belonging to heterotrophic bacteria, 28 ASVs were shared across all zooplankton hosts over the season, and these shared core ASVs represented more than 25% and up to 60% of relative abundance in zooplankton hosts but were present at low relative abundance in the filtered water. Zooplankton host identity had stronger effects on bacterial composition than seasonal variation, with the composition of gut bacterial communities showing host-specific clustering patterns. Although bacterial compositions and dominating core bacteria were different between zooplankton hosts, higher gut bacteria diversity and more bacteria contributing to the temporal variation were found in Temora and Pseudocalanus, compared to Acartia and Synchaeta. Diet diatom and filamentous cyanobacteria negatively correlated with gut bacteria diversity, but the difference in diet composition did not explain the dissimilarity of gut bacteria composition, suggesting a general effect of diet on the inner conditions in the zooplankton gut. Synchaeta maintained high stability of gut bacterial communities with unexpectedly low bacteria-bacteria interactions as compared to the copepods, indicating host-specific regulation traits. Our results suggest that the patterns of gut bacteria dynamics are host-specific and the variability of gut bacteria is not only related to host taxonomy but also related to host behavior and life history traits.
Collapse
Affiliation(s)
- Tianshuo Xu
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| | - Andreas Novotny
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, Canada
| | - Sara Zamora-Terol
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- Institute of Marine Research, Bergen, Norway
| | - Peter A Hambäck
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Monika Winder
- Department of Ecology Environment and Plant Sciences, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
25
|
Zhu Y, Ma R, Hu L, Yang H, Gong H, He K. Structure, variation and assembly of body-wide microbiomes in endangered crested ibis Nipponia nippon. Mol Ecol 2024; 33:e17238. [PMID: 38108198 DOI: 10.1111/mec.17238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/17/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Limited knowledge of bird microbiome in the all-body niche hinders our understanding of host-microbial relationships and animal health. Here, we characterized the microbial composition of the crested ibis from 13 body sites, representing the cloaca, oral, feather and skin habitats, and explored assembly mechanism structuring the bacterial community of the four habitats respectively. The bacterial community characteristics were distinct among the four habitats. The skin harboured the highest alpha diversity and most diverse functions, followed by feather, oral and cloaca. Individual-specific features were observed when the skin and feathers were concentrated independently. Skin and feather samples of multiple body sites from the same individual were more similar than those from different individuals. Although a significant proportion of the microbiota in the host (85.7%-96.5%) was not derived from the environmental microbiome, as body sites became more exposed to the environment, the relative importance of neutral processes (random drift or dispersal) increased. Neutral processes were the most important contributor in shaping the feather microbiome communities (R2 = .859). A higher percentage of taxa (29.3%) on the skin were selected by hosts compared to taxa on other body habitats. This study demonstrated that niche speciation and partial neutral processes, rather than environmental sources, contribute to microbiome variation in the crested ibis. These results enhance our knowledge of baseline microbial diversity in birds and will aid health management in crested ibises in the future.
Collapse
Affiliation(s)
- Ying Zhu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Ruifeng Ma
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Lei Hu
- Institute of Qinghai-Tibetan Plateau, Provincial Key Laboratory for Alpine Grassland Conservation and Utilization on Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu, China
| | - Haiqiong Yang
- Emei Breeding Center for Crested Ibis, Emei, China
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Haizhou Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ke He
- College of Animal Science and Technology, College of Veterinary Medicine, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
26
|
Yang H, Zhong J, Leng X, Wu J, Cheng P, Shen L, Wu J, Li P, Du H. Effectiveness assessment of using water environmental microHI to predict the health status of wild fish. Front Microbiol 2024; 14:1293342. [PMID: 38274749 PMCID: PMC10808811 DOI: 10.3389/fmicb.2023.1293342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024] Open
Abstract
Aquatic wildlife health assessment is critically important for aquatic wildlife conservation. However, the health assessment of aquatic wildlife (especially aquatic wild animals) is difficult and often accompanied by invasive survey activities and delayed observability. As there is growing evidence that aquatic environmental microbiota could impact the health status of aquatic animals by influencing their symbiotic microbiota, we propose a non-invasive method to monitor the health status of wild aquatic animals using the environmental microbiota health index (microHI). However, it is unknown whether this method is effective for different ecotype groups of aquatic wild animals. To answer this question, we took a case study in the middle Yangtze River and studied the water environmental microbiota and fish gut microbiota at the fish community level, population level, and ecotype level. The results showed that the gut microHI of the healthy group was higher than that of the unhealthy group at the community and population levels, and the overall gut microHI was positively correlated with the water environmental microHI, whereas the baseline gut microHI was species-specific. Integrating these variations in four ecotype groups (filter-feeding, scraper-feeding, omnivorous, and carnivorous), only the gut microHI of the carnivorous group positively correlated with water environmental microHI. Alcaligenaceae, Enterobacteriaceae, and Achromobacter were the most abundant groups with health-negative-impacting phenotypes, had high positive correlations between gut sample group and environment sample group, and had significantly higher abundance in unhealthy groups than in healthy groups of carnivorous, filter-feeding, and scraper-feeding ecotypes. Therefore, using water environmental microHI to indicate the health status of wild fish is effective at the community level, is effective just for carnivorous fish at the ecotype level. In the middle Yangtze River, Alcaligenaceae, Enterobacteriaceae (family level), and Achromobacter (genus level) were the key water environmental microbial groups that potentially impacted wild fish health status. Of course, more data and research that test the current hypothesis and conclusion are encouraged.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hao Du
- Key Laboratory of Freshwater Biodiversity Conservation, Ministry of Agriculture and Rural Affairs, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| |
Collapse
|
27
|
Duan Y, Nan Y, Zhu X, Yang Y, Xing Y. The adverse impacts of ammonia stress on the homeostasis of intestinal health in Pacific white shrimp (Litopenaeus vannamei). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 340:122762. [PMID: 37863254 DOI: 10.1016/j.envpol.2023.122762] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/15/2023] [Accepted: 10/14/2023] [Indexed: 10/22/2023]
Abstract
Ammonia is a prevalent pollutant in aquaculture systems that poses a risk to shrimp health. The shrimp's intestine plays a crucial role in immunity and metabolism. Therefore, we exposed Litopenaeus vannamei to 2 mg/L ammonia-N stress for a duration of 7 days, and explored the alterations in intestinal tissue morphology, physiological status, microbial community, and metabolic function. The findings revealed that ammonia stress led to a decrease in shrimp survival rates and inflicted damage to the intestinal mucosa, resulting in epithelial exfoliation. The mRNA relative expression levels of oxidative stress genes (Nrf2 and SOD) were elevated, while the level of GPx was decreased. Additionally, there was an increase in the levels of endoplasmic reticulum stress genes (Bip, IRE1 and XBP1), inflammatory cytokines (NF-κB and JNK), and apoptosis mediators (CytC and Casp-3) were increased. Ammonia stress also caused a decline in intestinal microbial diversity and significant variations in the bacterial community composition, including Bacteroides, Enterococcus, Faecalibacterium, Nautella, Pseudoalteromonas, Tenacibaculum, and Weissella. Furthermore, ammonia stress disrupted the intestinal metabolic function, particularly affecting pyrimidine, purine, amino acid, and alkaloid metabolism. These results revealed that 2 mg/L ammonia-N stress damaged the intestinal health of the shrimp by damaging mucosal integrity, affecting physiological homeostasis, causing microbial community and metabolic variation, which are related to the decreased survival of the shrimp and should be paid attention to in shrimp farming.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, 572018, PR China.
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Xuanyi Zhu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen, 518121, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, 510300, PR China
| |
Collapse
|
28
|
Sadeghi J, Chaganti SR, Johnson TB, Heath DD. Host species and habitat shape fish-associated bacterial communities: phylosymbiosis between fish and their microbiome. MICROBIOME 2023; 11:258. [PMID: 37981701 PMCID: PMC10658978 DOI: 10.1186/s40168-023-01697-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 10/11/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND While many studies have reported that the structure of the gut and skin microbiota is driven by both species-specific and habitat-specific factors, the relative importance of host-specific versus environmental factors in wild vertebrates remains poorly understood. The aim of this study was to determine the diversity and composition of fish skin, gut, and surrounding water bacterial communities (hereafter referred to as microbiota) and assess the extent to which host habitat and phylogeny predict microbiota similarity. Skin swabs and gut samples from 334 fish belonging to 17 species were sampled in three Laurentian Great Lakes (LGLs) habitats (Detroit River, Lake Erie, Lake Ontario). We also collected and filtered water samples at the time of fish collection. We analyzed bacterial community composition using 16S metabarcoding and tested for community variation. RESULTS We found that the water microbiota was distinct from the fish microbiota, although the skin microbiota more closely resembled the water microbiota. We also found that environmental (sample location), habitat, fish diet, and host species factors shape and promote divergence or convergence of the fish microbiota. Since host species significantly affected both gut and skin microbiota (separately from host species effects), we tested for phylosymbiosis using pairwise host species phylogenetic distance versus bacterial community dissimilarity. We found significant phylogenetic effects on bacterial community dissimilarity, consistent with phylosymbiosis for both the fish skin and gut microbiota, perhaps reflecting the longstanding co-evolutionary relationship between the host species and their microbiomes. CONCLUSIONS Analyzing the gut and skin mucus microbiota across diverse fish species in complex natural ecosystems such as the LGLs provides insights into the potential for habitat and species-specific effects on the microbiome, and ultimately the health, of the host. Video Abstract.
Collapse
Affiliation(s)
- Javad Sadeghi
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, USA
| | - Timothy B Johnson
- Ontario Ministry of Natural Resources and Forestry, Glenora Fisheries Station, Picton, ON, Canada
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research, University of Windsor, Windsor, ON, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
29
|
Sieler MJ, Al-Samarrie CE, Kasschau KD, Varga ZM, Kent ML, Sharpton TJ. Disentangling the link between zebrafish diet, gut microbiome succession, and Mycobacterium chelonae infection. Anim Microbiome 2023; 5:38. [PMID: 37563644 PMCID: PMC10413624 DOI: 10.1186/s42523-023-00254-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/21/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (129- and 214-day-old) zebrafish fed each diet throughout their lifespan. RESULTS Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated how 214-day-old fish microbiome compositions respond to exposure of a common laboratory pathogen, Mycobacterium chelonae, and whether these responses differ as a function of diet. Our analysis finds that diet determines the manner in which the zebrafish gut microbiome responds to M. chelonae exposure, especially for moderate and low abundance taxa. Moreover, histopathological analysis finds that male fish fed different diets are differentially infected by M. chelonae. CONCLUSIONS Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
Collapse
Affiliation(s)
- Michael J Sieler
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | | | - Kristin D Kasschau
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
| | - Zoltan M Varga
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Michael L Kent
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA
- Department of Biomedical Sciences, Oregon State University, Corvallis, OR, 97330, USA
- Zebrafish International Resource Center, University of Oregon, Eugene, OR, 97330, USA
| | - Thomas J Sharpton
- Department of Microbiology, Oregon State University, Corvallis, OR, 97330, USA.
- Department of Statistics, Oregon State University, Corvallis, OR, 97330, USA.
| |
Collapse
|
30
|
Ziab M, Chaganti SR, Heath DD. The effects of host quantitative genetic architecture on the gut microbiota composition of Chinook salmon (Oncorhynchus tshawytscha). Heredity (Edinb) 2023; 131:43-55. [PMID: 37179383 PMCID: PMC10313681 DOI: 10.1038/s41437-023-00620-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
The microbiota consists of microbes living in or on an organism and has been implicated in host health and function. Environmental and host-related factors were shown to shape host microbiota composition and diversity in many fish species, but the role of host quantitative architecture across populations and among families within a population is not fully characterized. Here, Chinook salmon were used to determine if inter-population differences and additive genetic variation within populations influenced the gut microbiota diversity and composition. Specifically, hybrid stocks of Chinook salmon were created by crossing males from eight populations with eggs from an inbred line created from self-fertilized hermaphrodite salmon. Based on high-throughput sequencing of the 16S rRNA gene, significant gut microbial community diversity and composition differences were found among the hybrid stocks. Furthermore, additive genetic variance components varied among hybrid stocks, indicative of population-specific heritability patterns, suggesting the potential to select for specific gut microbiota composition for aquaculture purposes. Determining the role of host genetics in shaping their gut microbiota has important implications for predicting population responses to environmental changes and will thus impact conservation efforts for declining populations of Chinook salmon.
Collapse
Affiliation(s)
- Mubarak Ziab
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada
| | - Subba Rao Chaganti
- Cooperative Institute for Great Lakes Research, University of Michigan, Ann Arbor, MI, 48109, USA.
| | - Daniel D Heath
- Great Lakes Institute for Environmental Research (GLIER), University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
- Department of Integrative Biology, University of Windsor, 401 Sunset Avenue, Windsor, Ontario, N9B 3P4, Canada.
| |
Collapse
|
31
|
Lan X, Peng X, Du T, Xia Z, Gao Q, Tang Q, Yi S, Yang G. Alterations of the Gut Microbiota and Metabolomics Associated with the Different Growth Performances of Macrobrachium rosenbergii Families. Animals (Basel) 2023; 13:ani13091539. [PMID: 37174576 PMCID: PMC10177557 DOI: 10.3390/ani13091539] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
To investigate the key gut microbiota and metabolites associated with the growth performance of Macrobrachium rosenbergii families, 16S rRNA sequencing and LC-MS metabolomic methods were used. In this study, 90 M. rosenbergii families were bred to evaluate growth performance. After 92 days of culture, high (H), medium (M), and low (L) experimental groups representing three levels of growth performance, respectively, were collected according to the weight gain and specific growth rate of families. The composition of gut microbiota showed that the relative abundance of Firmicutes, Lachnospiraceae, Lactobacillus, and Blautia were much higher in Group H than those in M and L groups. Meanwhile, compared to the M and L groups, Group H had significantly higher levels of spermidine, adenosine, and creatinine, and lower levels of L-citrulline. Correlation analysis showed that the abundances of Lactobacillus and Blautia were positively correlated with the levels of alpha-ketoglutaric acid and L-arginine. The abundance of Blautia was also positively correlated with the levels of adenosine, taurine, and spermidine. Notably, lots of metabolites related to the metabolism and biosynthesis of arginine, taurine, hypotaurine, and fatty acid were upregulated in Group H. This study contributes to figuring out the landscape of the gut microbiota and metabolites associated with prawn growth performance and provides a basis for selective breeding.
Collapse
Affiliation(s)
- Xuan Lan
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Xin Peng
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Tingting Du
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Zhenglong Xia
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| | - Quanxin Gao
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Qiongying Tang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Shaokui Yi
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
| | - Guoliang Yang
- Zhejiang Provincial Key Laboratory of Aquatic Resources Conservation and Development, Key Laboratory of Aquatic Animal Genetic Breeding and Nutrition, Chinese Academy of Fishery Sciences, College of Life Sciences, Huzhou University, Huzhou 313000, China
- Jiangsu Shufeng Prawn Breeding Co., Ltd., Gaoyou 225654, China
| |
Collapse
|
32
|
Cai M, Deng H, Sun H, Si W, Li X, Hu J, Huang M, Fan W. Changes of intestinal microbiota in the giant salamander (Andrias davidianus) during growth based on high-throughput sequencing. Front Microbiol 2023; 14:1052824. [PMID: 37007534 PMCID: PMC10061097 DOI: 10.3389/fmicb.2023.1052824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/16/2023] [Indexed: 03/18/2023] Open
Abstract
Despite an increasing appreciation of the importance of host–microbe interaction in healthy growth, information on gut microbiota changes of the Chinese giant salamander (Andrias davidianus) during growth is still lacking. Moreover, it is interesting to identify gut microbial structure for further monitoring A. davidianus health. This study explored the composition and functional characteristics of gut bacteria in different growth periods, including tadpole stage (ADT), gills internalization stage (ADG), 1 year age (ADY), 2 year age (ADE), and 3 year age (ADS), using high-throughput sequencing. The results showed that significant differences were observed in microbial community composition and abundance among different growth groups. The diversity and abundance of intestinal flora gradually reduced from larvae to adult stages. Overall, the gut microbial communities were mainly composed of Fusobacteriota, Firmicutes, Bacteroidota, and Proteobacteria. More specifically, the Cetobacterium genus was the most dominant, followed by Lactobacillus and Candidatus Amphibiichlamydia. Interestingly, Candidatus Amphibiichlamydia, a special species related to amphibian diseases, could be a promising indicator for healthy monitoring during A. davidianus growth. These results could be an important reference for future research on the relationship between the host and microbiota and also provide basic data for the artificial feeding of A. davidianus.
Collapse
Affiliation(s)
- Mingcheng Cai
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Huan Deng
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Hanchang Sun
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Wantong Si
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Xiaoying Li
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Jing Hu
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
| | - Mengjun Huang
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing, China
- *Correspondence: Mengjun Huang,
| | - Wenqiao Fan
- Institute of Aquatic Animal Disease Prevention and Control, Chongqing University of Arts and Sciences, Chongqing, China
- Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine, Chongqing, China
- Chongqing Engineering Laboratory of Targeted and Innovative Therapeutics, Chongqing, China
- Wenqiao Fan,
| |
Collapse
|
33
|
Pan B, Han X, Yu K, Sun H, Mu R, Lian CA. Geographical distance, host evolutionary history and diet drive gut microbiome diversity of fish across the Yellow River. Mol Ecol 2023; 32:1183-1196. [PMID: 36478318 DOI: 10.1111/mec.16812] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
Fish represent a large part of the taxonomic diversity of vertebrates and are of high commercial value. However, the factors influencing the gut microbiota composition of freshwater fish over large spatial scales remain unclear. Therefore, this study explored gut microbiome diversity in 24 fish species from the Yellow River, which spans over 1500 km across China. The results showed that geographical distance, host phylogeny and diet significantly influenced gut microbial community diversity, whereas sex, body length and body weight had minimal influence. Geographical distance was the primary factor shaping gut microbiota, and dissimilarity in microbial community structure increased with an increase in geographical distance, which was mainly driven by dispersal limitation. The microbial communities were more homogeneous at higher host taxonomic resolutions due to the dominant role of homogeneous selection in community convergence. Phylosymbiosis was observed across all host species, with a stronger pattern in Cypriniformes, which harbour host-specific microbial taxa. Host diet explained little variation in gut microbiome diversity, although it was significant for all diversity metrics tested. These findings collectively suggest that the geographical and host-based patterns of fish gut microbiota tend to be shaped by different ecological forces across the Yellow River. The present work provides a robust assessment of multiple factors driving fish gut microbial community assembly and offers insight into the mechanisms underlying shifts in fish gut microbiota in rivers across large spatial scales.
Collapse
Affiliation(s)
- Baozhu Pan
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Xu Han
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Ke Yu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - He Sun
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi'an University of Technology, Xi'an, China
| | - Rong Mu
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| | - Chun-Ang Lian
- School of Environment and Energy, Shenzhen Graduate School, Peking University, Shenzhen, China
| |
Collapse
|
34
|
Host Hybridization Dominates over Cohabitation in Affecting Gut Microbiota of Intrageneric Hybrid Takifugu Pufferfish. mSystems 2023; 8:e0118122. [PMID: 36815841 PMCID: PMC10134855 DOI: 10.1128/msystems.01181-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Microbial symbionts are of great importance for macroscopic life, including fish, and both collectively comprise an integrated biological entity known as the holobiont. Yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to biotic and/or abiotic influences. Here, through amplicon profiling, the genealogical relationship between artificial F1 hybrid pufferfish with growth heterosis, produced from crossing female Takifugu obscurus with male Takifugu rubripes and its maternal halfsibling purebred, was well recapitulated by their gut microbial community similarities, indicating an evident parallelism between host phylogeny (hybridity) and microbiota relationships therein. Interestingly, modest yet significant fish growth promotion and gut microbiota alteration mediated by hybrid-purebred cohabitation were observed, in comparison with their respective monoculture cohorts that share common genetic makeups, implying a certain degree of environmental influences. Moreover, the underlying assemblage patterns of gut microbial communities were found associated with a trade-off between variable selection and dispersal limitation, which are plausibly driven by the augmented social interactions between hybrid and purebred cohabitants differing in behaviors. Results from this study not only can enrich, from a microbial perspective, the sophisticated understanding of complex and dynamic assemblage of the fish holobiont, but will also provide deeper insights into the ecophysiological factors imposed on the diversity-function relationships thereof. Our findings emphasize the intimate associations of gut microbiota in host genetics-environmental interactions and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve the production of farmed fishes. IMPORTANCE Microbial symbionts are of great importance for macroscopic life, including fish, and yet little is known as to how the normal balance within the fish holobiont is maintained and how it responds to the biotic and/or abiotic influences. Through gut microbiota profiling, we show that host intrageneric hybridization and cohabitation can impose a strong disturbance upon pufferfish gut microbiota. Moreover, marked alterations in the composition and function of gut microbiota in both hybrid and purebred pufferfish cohabitants were observed, which are potentially correlated with different metabolic priorities and behaviors between host genealogy. These results can enrich, from a microbial perspective, the sophisticated understanding of the complex and dynamic assemblage of the fish holobiont and would have deeper practical implications for microbial contributions to optimize performance prediction and to improve farmed fish production.
Collapse
|
35
|
Shang Y, Zhong H, Liu G, Wang X, Wu X, Wei Q, Shi L, Zhang H. Characteristics of Microbiota in Different Segments of the Digestive Tract of Lycodon rufozonatus. Animals (Basel) 2023; 13:ani13040731. [PMID: 36830518 PMCID: PMC9952230 DOI: 10.3390/ani13040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023] Open
Abstract
The gastrointestinal tract of animals contains microbiota, forming a complex microecosystem. Gut microbes and their metabolites can regulate the development of host innate and adaptive immune systems. Animal immune systems maintain intestinal symbiotic microbiota homeostasis. However, relatively few studies have been published on reptiles, particularly snakes, and even fewer studies on different parts of the digestive tracts of these animals. Herein, we used 16S rRNA gene sequencing to investigate the microbial community composition and adaptability in the stomach and small and large intestines of Lycodon rufozonatus. Proteobacteria, Bacteroidetes, and Firmicutes were most abundant in the stomach; Fusobacteria in the small intestine; and Proteobacteria, Bacteroidetes, Fusobacteria, and Firmicutes in the large intestine. No dominant genus could be identified in the stomach; however, dominant genera were evident in the small and large intestines. The microbial diversity index was significantly higher in the stomach than in the small and large intestines. Moreover, the influence of the microbial community structure on function was clarified through function prediction. Collectively, the gut microbes in the different segments of the digestive tract revealed the unique features of the L. rufozonatus gut microbiome. Our results provide insights into the co-evolutionary relationship between reptile gut microbiota and their hosts.
Collapse
Affiliation(s)
- Yongquan Shang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Huaming Zhong
- College of Biology and Food, Shangqiu Normal University, Shangqiu 476000, China
| | - Gang Liu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xibao Wang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Xiaoyang Wu
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Qinguo Wei
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Lupeng Shi
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
| | - Honghai Zhang
- College of Life Sciences, Qufu Normal University, Qufu 273165, China
- Correspondence:
| |
Collapse
|
36
|
Zhao R, Symonds JE, Walker SP, Steiner K, Carter CG, Bowman JP, Nowak BF. Relationship between gut microbiota and Chinook salmon ( Oncorhynchus tshawytscha) health and growth performance in freshwater recirculating aquaculture systems. Front Microbiol 2023; 14:1065823. [PMID: 36825086 PMCID: PMC9941681 DOI: 10.3389/fmicb.2023.1065823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/06/2023] [Indexed: 02/10/2023] Open
Abstract
Gut microbiota play important roles in fish health and growth performance and the microbiome in fish has been shown to be a biomarker for stress. In this study, we surveyed the change of Chinook salmon (Oncorhynchus tshawytscha) gut and water microbiota in freshwater recirculating aquaculture systems (RAS) for 7 months and evaluated how gut microbial communities were influenced by fish health and growth performance. The gut microbial diversity significantly increased in parallel with the growth of the fish. The dominant gut microbiota shifted from a predominance of Firmicutes to Proteobacteria, while Proteobacteria constantly dominated the water microbiota. Photobacterium sp. was persistently the major gut microbial community member during the whole experiment and was identified as the core gut microbiota for freshwater farmed Chinook salmon. No significant variation in gut microbial diversity and composition was observed among fish with different growth performance. At the end of the trial, 36 out of 78 fish had fluid in their swim bladders. These fish had gut microbiomes containing elevated proportions of Enterococcus, Stenotrophomonas, Aeromonas, and Raoultella. Our study supports the growing body of knowledge about the beneficial microbiota associated with modern salmon aquaculture systems and provides additional information on possible links between dysbiosis and gut microbiota for Chinook salmon.
Collapse
Affiliation(s)
- Ruixiang Zhao
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| | - Jane E. Symonds
- Cawthron Institute, Nelson, New Zealand
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | | | | | - Chris G. Carter
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - John P. Bowman
- Centre for Food Safety and Innovation, Tasmanian Institute of Agriculture, Hobart, TAS, Australia
| | - Barbara F. Nowak
- Institute for Marine and Antarctic Studies, University of Tasmania, Newnham, TAS, Australia
| |
Collapse
|
37
|
Sieler M, Al-Samarrie C, Kasschau K, Varga Z, Kent M, Sharpton T. Common laboratory diets differentially influence zebrafish gut microbiome's successional development and sensitivity to pathogen exposure. RESEARCH SQUARE 2023:rs.3.rs-2530939. [PMID: 36778316 PMCID: PMC9915791 DOI: 10.21203/rs.3.rs-2530939/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Background Despite the long-established importance of zebrafish (Danio rerio) as a model organism and their increasing use in microbiome-targeted studies, relatively little is known about how husbandry practices involving diet impact the zebrafish gut microbiome. Given the microbiome's important role in mediating host physiology and the potential for diet to drive variation in microbiome composition, we sought to clarify how three different dietary formulations that are commonly used in zebrafish facilities impact the gut microbiome. We compared the composition of gut microbiomes in approximately 60 AB line adult (4- and 7-month-old) zebrafish fed each diet throughout their lifespan. Results Our analysis finds that diet has a substantial impact on the composition of the gut microbiome in adult fish, and that diet also impacts the developmental variation in the gut microbiome. We further evaluated whether the 7-month-old fish microbiome compositions that result from dietary variation are differentially sensitive to infection by a common laboratory pathogen, Mycobacterium chelonae. Our analysis finds that the gut microbiome's sensitivity to M. chelonae infection varies as a function of diet, especially for moderate and low abundance taxa. Conclusions Overall, our results indicate that diet drives the successional development of the gut microbiome as well as its sensitivity to exogenous exposure. Consequently, investigators should carefully consider the role of diet in their microbiome zebrafish investigations, especially when integrating results across studies that vary by diet.
Collapse
|
38
|
Dai W, Ye J, Xue Q, Liu S, Xu H, Liu M, Lin Z. Changes in Bacterial Communities of Kumamoto Oyster Larvae During Their Early Development and Following Vibrio Infection Resulting in a Mass Mortality Event. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:30-44. [PMID: 36370246 DOI: 10.1007/s10126-022-10178-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
Vibrio and Ostreid herpesvirus 1 are responsible for mass mortalities of oyster larvae in hatcheries. Relevant works have focused on their relationships with the disease when larval mortality occurs. On the contrary, little is known about how the resident microbiota in oyster larvae responds to Vibrio-infected disease causing mortality as the disease progressed, whereas this knowledge is fundamental to unveil the etiology of the disease. Here, we analyzed the temporal succession of the microbiome of Kumamoto oyster (Crassostrea sikamea) larvae during their early development, accompanied by a Vibrio-caused mortality event that occurred at the post D-stage of larval development in a shellfish hatchery in Ningbo, China, on June 2020. The main causative agent of larval mortality was attributable to Vibrio infection, which was confirmed by linearly increased Vibrio abundance over disease progression. Larval bacterial communities dramatically changed over host development and disease progression, as highlighted by reduced α-diversity and less diverse core taxa when the disease occurred. Null model and phylogenetic-based mean nearest taxon distance analyses showed that the relative importance of deterministic processes governing larval bacterial assembly initially increased over host development, whereas this dominance was depleted over disease progression. Furthermore, we screened the disease-discriminatory taxa with a significant change in their relative abundances, which could be indicative of disease progression. In addition, network analysis revealed that disease occurrence remodeled the co-occurrence patterns and niche characteristics of larval microbiota. Our findings demonstrate that the dysbiosis of resident bacterial communities and the shift of microecological mechanisms in the larval microbiome may contribute to mortality during oyster early development.
Collapse
Affiliation(s)
- Wenfang Dai
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Jing Ye
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Qinggang Xue
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| | - Sheng Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Hongqiang Xu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Minhai Liu
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China
| | - Zhihua Lin
- Ninghai Institute of Mariculture Breeding and Seed Industry, Zhejiang Wanli University, Ningbo, China.
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo, China.
| |
Collapse
|
39
|
Duan Y, Xing Y, Huang J, Nan Y, Li H, Dong H. Toxicological response of Pacific white shrimp Litopenaeus vannamei to a hazardous cyanotoxin nodularin exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120950. [PMID: 36574809 DOI: 10.1016/j.envpol.2022.120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/24/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Nodularin (NOD) is a harmful cyanotoxin that affects shrimp farming. The hepatopancreas and intestine of shrimp are the main target organs of cyanotoxins. In this study, we exposed Litopenaeus vannamei to NOD at 0.1 and 1 μg/L for 72 h, respectively, and changes in histology, oxidative stress, gene transcription, metabolism, and intestinal microbiota were investigated. After NOD exposure, the hepatopancreas and intestine showed obvious histopathological damage and elevated oxidative stress response. Transcription patterns of immune genes related to detoxification, prophenoloxidase and coagulation system were altered in the hepatopancreas. Furthermore, metabolic patterns, especially amino acid metabolism and arachidonic acid related metabolites, were also disturbed. The integration of differential genes and metabolites revealed that the functions of "alanine, aspartic acid and glutamate metabolism" and "aminoacyl-tRNA biosynthesis" were highly affected. Alternatively, NOD exposure induced the variation of the diversity and composition of intestinal microbiota, especially the abundance of potentially beneficial bacteria (Demequina, Phyllobacterium and Pseudoalteromonas) and pathogenic bacteria (Photobacterium and Vibrio). Several intestinal bacteria were correlated with the changes of host the metabolic function and immune factors. These results revealed the toxic effects of NOD on shrimp, and identified some biomarkers.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Jianhua Huang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yuxiu Nan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hongbiao Dong
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| |
Collapse
|
40
|
Duan Y, Yang Y, Zhang Z, Xing Y, Li H. Toxicity of titanium dioxide nanoparticles on the histology, liver physiological and metabolism, and intestinal microbiota of grouper. MARINE POLLUTION BULLETIN 2023; 187:114600. [PMID: 36652857 DOI: 10.1016/j.marpolbul.2023.114600] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/15/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Titanium dioxide nanoparticles (nano-TiO2) are a common environmental pollutant threatening aquatic animals. The natural habitats and cultured environments of groupers make them vulnerable to nanoparticle pollution. In this study, hybrid grouper juveniles were separately exposed to 1 or 10 mg/L nano-TiO2 for 14 days, and the toxicological response of these groupers were investigated. After nano-TiO2 exposure, the liver showed apparent histopathology and intestinal goblet cells were also affected. The transcription of antioxidant and apoptosis-related genes were down-regulated, and the inflammatory factor TNF-α was up-regulated in the liver. The metabolite patterns of the liver were disturbed, especially amino acid metabolism. The diversity and composition of the intestinal microbiota were also altered especially the genera Lactobacillus and Nautella. The changes of several intestinal bacteria were correlated with the immune factors and metabolites of respective hosts. We concluded that nano-TiO2 exposure negatively affects the physiological homeostasis of groupers.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China.
| | - Yukai Yang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Shenzhen Base of South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, PR China
| | - Zhe Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China
| | - Hua Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, PR China; Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya 572018, PR China
| |
Collapse
|
41
|
Li X, Meng Z, Chen K, Hu F, Liu L, Zhu T, Yang D. Comparing diversity patterns and processes of microbial community assembly in water column and sediment in Lake Wuchang, China. PeerJ 2023; 11:e14592. [PMID: 36627922 PMCID: PMC9826614 DOI: 10.7717/peerj.14592] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
The study compare the diversity patterns and processes of microbial community assembly in the water and sediment of Lake Wuchang (China) using high-throughput sequencing of 16S rRNA gene amplicons. A higher microbial α-diversity in the sediment was revealed (P < 0.01), and the most common bacterial phyla in water column were Proteobacteria, Cyanobacteria and Actinobacteria, while Proteobacteria, Acidobacteria, Chloroflexi and Nitrospirae were dominant in sediment. Functions related to phototrophy and nitrogen metabolism primarily occurred in the water column and sediment, respectively. The microbial communities in water column from different seasons were divided into three groups, while no such dispersion in sediment based on PCoA and ANOSIM. According to Pearson correlation analysis, water temperature, dissolved oxygen, water depth, total nitrogen, ammonium, and nitrite were key factors in determining microbial community structure in water column, while TN in sediment, conductivity, and organic matter were key factors in sediment. However, the stochastic processes (|βNTI| < 2) dominated community assembly in both the water column and sediment of Lake Wuchang. These data will provide a foundation for microbial development and utilization in lake water column and sediment under the circumstances of increasing tendency of lake ecological fishery in China.
Collapse
|
42
|
Xia H, Chen H, Cheng X, Yin M, Yao X, Ma J, Huang M, Chen G, Liu H. Zebrafish: an efficient vertebrate model for understanding role of gut microbiota. Mol Med 2022; 28:161. [PMID: 36564702 PMCID: PMC9789649 DOI: 10.1186/s10020-022-00579-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/21/2022] [Indexed: 12/24/2022] Open
Abstract
Gut microbiota plays a critical role in the maintenance of host health. As a low-cost and genetically tractable vertebrate model, zebrafish have been widely used for biological research. Zebrafish and humans share some similarities in intestinal physiology and function, and this allows zebrafish to be a surrogate model for investigating the crosstalk between the gut microbiota and host. Especially, zebrafish have features such as high fecundity, external fertilization, and early optical transparency. These enable the researchers to employ the fish to address questions not easily addressed in other animal models. In this review, we described the intestine structure of zebrafish. Also, we summarized the methods of generating a gnotobiotic zebrafish model, the factors affecting its intestinal flora, and the study progress of gut microbiota functions in zebrafish. Finally, we discussed the limitations and challenges of the zebrafish model for gut microbiota studies. In summary, this review established that zebrafish is an attractive research tool to understand mechanistic insights into host-microbe interaction.
Collapse
Affiliation(s)
- Hui Xia
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Huimin Chen
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xue Cheng
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mingzhu Yin
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Xiaowei Yao
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Jun Ma
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Mengzhen Huang
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China
| | - Gang Chen
- Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430061, China.
| | - Hongtao Liu
- College of Basic Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Hongshan Disctrict, Wuhan, 430065, China.
| |
Collapse
|
43
|
Zhu Y, Yang R, Wang X, Wen T, Gong M, Shen Y, Xu J, Zhao D, Du Y. Gut microbiota composition in the sympatric and diet-sharing Drosophila simulans and Dicranocephalus wallichii bowringi shaped largely by community assembly processes rather than regional species pool. IMETA 2022; 1:e57. [PMID: 38867909 PMCID: PMC10989964 DOI: 10.1002/imt2.57] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/01/2022] [Accepted: 09/14/2022] [Indexed: 06/14/2024]
Abstract
Clarifying the mechanisms underlying microbial community assembly from regional microbial pools is a central issue of microbial ecology, but remains largely unexplored. Here, we investigated the gut bacterial and fungal microbiome assembly processes and potential sources in Drosophila simulans and Dicranocephalus wallichii bowringi, two wild, sympatric insect species that share a common diet of waxberry. While some convergence was observed, the diversity, composition, and network structure of the gut microbiota significantly differed between these two host species. Null model analyses revealed that stochastic processes (e.g., drift, dispersal limitation) play a principal role in determining gut microbiota from both hosts. However, the strength of each ecological process varied with the host species. Furthermore, the source-tracking analysis showed that only a minority of gut microbiota within D. simulans and D. wallichii bowringi are drawn from a regional microbial pool from waxberries, leaves, or soil. Results from function prediction implied that host species-specific gut microbiota might arise partly through host functional requirement and specific selection across host-microbiota coevolution. In conclusion, our findings uncover the importance of community assembly processes over regional microbial pools in shaping sympatric insect gut microbiome structure and function.
Collapse
Affiliation(s)
- Yu‐Xi Zhu
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Run Yang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Xin‐Yu Wang
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| | - Tao Wen
- The Key Laboratory of Plant Immunity, Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource‐saving fertilizersNanjing Agricultural UniversityNanjingChina
| | - Ming‐Hui Gong
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Yuan Shen
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Jue‐Ye Xu
- Bureau of Agriculture and Rural Affairs of Binhu District of WuxiWuxiChina
| | - Dian‐Shu Zhao
- Entomology and Nematology DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Yu‐Zhou Du
- Department of Entomology, College of Plant ProtectionYangzhou UniversityYangzhouChina
| |
Collapse
|
44
|
Tao L, Chai J, Liu H, Huang W, Zou Y, Wu M, Peng B, Wang Q, Tang K. Characterization and Dynamics of the Gut Microbiota in Rice Fishes at Different Developmental Stages in Rice-Fish Coculture Systems. Microorganisms 2022; 10:2373. [PMID: 36557627 PMCID: PMC9787495 DOI: 10.3390/microorganisms10122373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022] Open
Abstract
The rice-fish system (RFS), a traditional coculture farming model, was selected as a "globally important agricultural heritage system." Host-associated microbiota play important roles in development, metabolism, physiology, and immune function. However, studies on the gut microbiota of aquatic animals in the RFS are scarce, especially the lack of baseline knowledge of the dynamics of gut microbial communities in rice fish during different developmental stages. In this study, we characterized the microbial composition, community structure, and functions of several sympatric aquatic animals (common carp (Cyprinus carpio), crucian carp (Carassius carassius), and black-spotted frogs (Pelophylax nigromaculatus)), and the environment (water) in the RFS using 16S rRNA gene sequencing. Moreover, we investigated stage-specific signatures in the gut microbiota of common carp throughout the three developmental stages (juvenile, sub-adult, and adult). Our results indicated that the Fusobacteriota, Proteobacteria, and Firmicutes were dominant gut microbial phyla in rice fish. The differences in gut microbial compositions and community structure between the three aquatic species were observed. Although no significant differences in alpha diversity were observed across the three developmental stages, the microbial composition and community structure varied with development in common carp in the RFS, with an increase in the relative abundance of Firmicutes in sub-adults and a shift in the functional features of the community. This study sheds light on the gut microbiota of aquatic animals in the RFS. It deepens our understanding of the dynamics of gut microflora during common carp development, which may help improve aquaculture strategies in the RFS.
Collapse
Affiliation(s)
- Ling Tao
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Jie Chai
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
| | - Hongyi Liu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Wenhao Huang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Yan Zou
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Mengling Wu
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Buqing Peng
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Qiong Wang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| | - Keyi Tang
- College of Life Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
45
|
Maraci Ö, Antonatou-Papaioannou A, Jünemann S, Engel K, Castillo-Gutiérrez O, Busche T, Kalinowski J, Caspers BA. Timing matters: age-dependent impacts of the social environment and host selection on the avian gut microbiota. MICROBIOME 2022; 10:202. [PMID: 36434663 PMCID: PMC9700942 DOI: 10.1186/s40168-022-01401-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND The establishment of the gut microbiota in early life is a critical process that influences the development and fitness of vertebrates. However, the relative influence of transmission from the early social environment and host selection throughout host ontogeny remains understudied, particularly in avian species. We conducted conspecific and heterospecific cross-fostering experiments in zebra finches (Taeniopygia guttata) and Bengalese finches (Lonchura striata domestica) under controlled conditions and repeatedly sampled the faecal microbiota of these birds over the first 3 months of life. We thus documented the development of the gut microbiota and characterised the relative impacts of the early social environment and host selection due to species-specific characteristics and individual genetic backgrounds across ontogeny by using 16S ribosomal RNA gene sequencing. RESULTS The taxonomic composition and community structure of the gut microbiota changed across ontogenetic stages; juvenile zebra finches exhibited higher alpha diversity than adults at the post-breeding stage. Furthermore, in early development, the microbial communities of juveniles raised by conspecific and heterospecific foster parents resembled those of their foster family, emphasising the importance of the social environment. In later stages, the social environment continued to influence the gut microbiota, but host selection increased in importance. CONCLUSIONS We provided a baseline description of the developmental succession of gut microbiota in zebra finches and Bengalese finches, which is a necessary first step for understanding the impact of the early gut microbiota on host fitness. Furthermore, for the first time in avian species, we showed that the relative strengths of the two forces that shape the establishment and maintenance of the gut microbiota (i.e. host selection and dispersal from the social environment) change during development, with host selection increasing in importance. This finding should be considered when experimentally manipulating the early-life gut microbiota. Our findings also provide new insights into the mechanisms of host selection. Video Abstract.
Collapse
Affiliation(s)
- Öncü Maraci
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany.
| | - Anna Antonatou-Papaioannou
- Evolutionary Biology, Bielefeld University, Bielefeld, Germany
- Institute of Biology-Zoology, Freie Universität Berlin, Berlin, Germany
| | - Sebastian Jünemann
- Institute for Bio- and Geosciences, Research Center Jülich, Jülich, Germany
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
| | - Kathrin Engel
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| | - Omar Castillo-Gutiérrez
- Faculty of Technology, Bielefeld University, Bielefeld, Germany
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Tobias Busche
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jörn Kalinowski
- Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Barbara A Caspers
- Department of Behavioural Ecology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
46
|
Gundersen MS, Vadstein O, De Schryver P, Attramadal KJK. Aquaculture rearing systems induce no legacy effects in Atlantic cod larvae or their rearing water bacterial communities. Sci Rep 2022; 12:19812. [PMID: 36396669 PMCID: PMC9672056 DOI: 10.1038/s41598-022-24149-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/09/2022] [Indexed: 11/18/2022] Open
Abstract
The microbial rearing quality influences the survival of marine larvae. Microbially matured water treatment systems (MMS) provide a more favourable rearing water microbiome than flow-through systems (FTS). It has previously been hypothesised, but not investigated, that initial rearing in MMS leaves a protective legacy effect in Atlantic cod larvae (Gadus morhua). We tested this hypothesis through a crossover 2 × 2 factorial experiment varying the rearing water treatment system (MMS vs FTS) and the microbial carrying capacity (+ /- added organic matter). At 9 days post-hatching, we switched the rearing water treatment system. By comparing switched and unswitched rearing tanks, we evaluated if legacy effects had been established in the larvae or their surrounding rearing water bacterial community. We analysed the bacterial communities with flow cytometry and 16S rRNA gene sequencing. We found no evidence that the initial rearing condition left a legacy effect in the communities by evaluating the bacterial community diversity and structure. Instead, the present rearing condition was the most important driver for differences in the rearing water microbiota. Furthermore, we found that MMS with high microbial carrying capacity appeared to seed a stable bacterial community to the rearing tanks. This finding highlights the importance of keeping a similar carrying capacity between the inlet and rearing water. Moreover, we reject the hypothesis that the initial rearing condition leaves a protective legacy effect in larvae, as the larval survival and robustness were linked to the present rearing condition. In conclusion, our results highlight the importance of maintaining a beneficial microbial rearing environment from hatching and throughout the larval rearing period.
Collapse
Affiliation(s)
- Madeleine S Gundersen
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway.
| | - Olav Vadstein
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| | - Peter De Schryver
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Kari Johanne Kihle Attramadal
- Department of Biotechnology and Food Science, NTNU-Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
47
|
Chen CZ, Li P, Liu L, Li ZH. Exploring the interactions between the gut microbiome and the shifting surrounding aquatic environment in fisheries and aquaculture: A review. ENVIRONMENTAL RESEARCH 2022; 214:114202. [PMID: 36030922 DOI: 10.1016/j.envres.2022.114202] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/10/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
The rise of "new" sequencing technologies and the development of sophisticated bioinformatics tools have dramatically increased the study of the aquaculture microbiome. Microbial communities exist in complex and dynamic communities that play a vital role in the stability of healthy ecosystems. The gut microbiome contributes to multiple aspects of the host's physiological health status, ranging from nutritional regulation to immune modulation. Although studies of the gut microbiome in aquaculture are growing rapidly, the interrelationships between the aquaculture microbiome and its aquatic environment have not been discussed and summarized. In particular, few reviews have focused on the potential mechanisms driving the alteration of the gut microbiome by surrounding aquatic environmental factors. Here, we review current knowledge on the host gut microbiome and its interrelationship with the microbiome of the surrounding environment, mainly including the main methods for characterizing the gut microbiome, the composition and function of microbial communities, the dynamics of microbial interactions, and the relationship between the gut microbiome and the surrounding water/sediment microbiome. Our review highlights two potential mechanisms for how surrounding aquatic environmental factors drive the gut microbiome. This may deepen the understanding of the interactions between the microbiome and environmental factors. Lastly, we also briefly describe the research gaps in current knowledge and prospects for the future orientation of research. This review provides a framework for studying the complex relationship between the host gut microbiome and environmental stresses to better facilitate the widespread application of microbiome technologies in fisheries and aquaculture.
Collapse
Affiliation(s)
- Cheng-Zhuang Chen
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Ling Liu
- Marine College, Shandong University, Weihai, Shandong, 264209, China
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong, 264209, China.
| |
Collapse
|
48
|
Duan Y, Xing Y, Zeng S, Dan X, Mo Z, Zhang J, Li Y. Integration of metagenomic and metabolomic insights into the effects of microcystin-LR on intestinal microbiota of Litopenaeus vannamei. Front Microbiol 2022; 13:994188. [PMID: 36212851 PMCID: PMC9537473 DOI: 10.3389/fmicb.2022.994188] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/05/2022] [Indexed: 12/04/2022] Open
Abstract
Microcystin-LR (MC-LR) is a hazardous substance that threaten the health of aquatic animals. Intestinal microbes and their metabolites can interact with hosts to influence physiological homeostasis. In this study, the shrimp Litopenaeus vannamei were exposed to 1.0 μg/l MC-LR for 72 h, and the toxic effects of MC-LR on the intestinal microbial metagenomic and metabolomic responses of the shrimp were investigated. The results showed that MC-LR stress altered the gene functions of intestinal microbial, including ABC transporter, sulfur metabolism and riboflavin (VB2) metabolism, and induced a significant increase of eight carbohydrate metabolism enzymes. Alternatively, intestinal metabolic phenotypes were also altered, especially ABC transporters, protein digestion and absorption, and the biosynthesis and metabolism of amino acid. Furthermore, based on the integration of intestinal microbial metagenomic and metabolome, four bacteria species (Demequina globuliformis, Demequina sp. NBRC 110055, Sphingomonas taxi and Sphingomonas sp. RIT328) and three metabolites (yangonin, α-hederin and soyasaponin ii) biomarkers were identified. Overall, our study provides new insights into the effects of MC-LR on the intestinal microbial functions of L. vannamei.
Collapse
Affiliation(s)
- Yafei Duan
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- Key Laboratory of Efficient Utilization and Processing of Marine Fishery Resources of Hainan Province, Sanya Tropical Fisheries Research Institute, Sanya, China
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yifu Xing
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
| | - Shimin Zeng
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xueming Dan
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zequan Mo
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Jiasong Zhang
- Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou, China
- *Correspondence: Jiasong Zhang,
| | - Yanwei Li
- University Joint Laboratory of Guangdong Province, Hong Kong and Macao Region on Marine Bioresource Conservation and Exploitation, Guangdong Laboratory for Lingnan Modern Agriculture, College of Marine Sciences, South China Agricultural University, Guangzhou, China
- Yanwei Li,
| |
Collapse
|
49
|
Unzueta-Martínez A, Scanes E, Parker LM, Ross PM, O'Connor W, Bowen JL. Microbiomes of the Sydney Rock Oyster are acquired through both vertical and horizontal transmission. Anim Microbiome 2022; 4:32. [PMID: 35590396 PMCID: PMC9118846 DOI: 10.1186/s42523-022-00186-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 05/07/2022] [Indexed: 11/10/2022] Open
Abstract
Background The term holobiont is widely accepted to describe animal hosts and their associated microorganisms. The genomes of all that the holobiont encompasses, are termed the hologenome and it has been proposed as a unit of selection in evolution. To demonstrate that natural selection acts on the hologenome, a significant portion of the associated microbial genomes should be transferred between generations. Using the Sydney Rock Oyster (Saccostrea glomerata) as a model, we tested if the microbes of this broadcast spawning species could be passed down to the next generation by conducting single parent crosses and tracking the microbiome from parent to offspring and throughout early larval stages using 16S rRNA gene amplicon sequencing. From each cross, we sampled adult tissues (mantle, gill, stomach, gonad, eggs or sperm), larvae (D-veliger, umbo, eyed pediveliger, and spat), and the surrounding environment (water and algae feed) for microbial community analysis. Results We found that each larval stage has a distinct microbiome that is partially influenced by their parental microbiome, particularly the maternal egg microbiome. We also demonstrate the presence of core microbes that are consistent across all families, persist throughout early life stages (from eggs to spat), and are not detected in the microbiomes of the surrounding environment. In addition to the core microbiomes that span all life cycle stages, there is also evidence of environmentally acquired microbial communities, with earlier larval stages (D-veliger and umbo), more influenced by seawater microbiomes, and later larval stages (eyed pediveliger and spat) dominated by microbial members that are specific to oysters and not detected in the surrounding environment. Conclusion Our study characterized the succession of oyster larvae microbiomes from gametes to spat and tracked selected members that persisted across multiple life stages. Overall our findings suggest that both horizontal and vertical transmission routes are possible for the complex microbial communities associated with a broadcast spawning marine invertebrate. We demonstrate that not all members of oyster-associated microbiomes are governed by the same ecological dynamics, which is critical for determining what constitutes a hologenome. Supplementary Information The online version contains supplementary material available at 10.1186/s42523-022-00186-9.
Collapse
Affiliation(s)
- Andrea Unzueta-Martínez
- Department of Marine and Environmental Science, Northeastern University, Nahant, MA, 01908, USA. .,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA.
| | - Elliot Scanes
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia.,Climate Change Cluster, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Laura M Parker
- School of Biological, Earth and Environmental Sciences, The University of New South Wales, Kensington, NSW, 2052, Australia
| | - Pauline M Ross
- School of Life and Environmental Sciences, The University of Sydney, Camperdown, NSW, 2006, Australia
| | - Wayne O'Connor
- New South Wales Department of Primary Industries, Port Stephens Fisheries Institute, Taylors Beach, NSW, 2316, Australia
| | - Jennifer L Bowen
- Department of Marine and Environmental Science, Northeastern University, Nahant, MA, 01908, USA
| |
Collapse
|
50
|
Drivers of ecological assembly in the hindgut of Atlantic Cod fed a macroalgal supplemented diet. NPJ Biofilms Microbiomes 2022; 8:36. [PMID: 35508464 PMCID: PMC9068720 DOI: 10.1038/s41522-022-00296-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 03/31/2022] [Indexed: 11/09/2022] Open
Abstract
It is difficult to disentangle the many variables (e.g. internal or external cues and random events) that shape the microbiota in the gastrointestinal tract of any living species. Ecological assembly processes applied to microbial communities can elucidate these drivers. In our study, farmed Atlantic cod (Gadus morhua) were fed a diet of 10% macroalgae supplement (Ulva rigida [ULVA] or Ascophyllum nodosum [ASCO] or a non-supplemented control diet [CTRL]) over 12 weeks. We determined the influence of ecological assembly processes using a suite of null-modelling tools. We observed dissimilarity in the abundance of common OTUs over time, which was driven by deterministic assembly. The CTRL samples showed selection as a critical assembly process. While dispersal limitation was a driver of the gut microbiome for fish fed the macroalgae supplemented diet at Week 12 (i.e., ASCO and ULVA). Fish from the ASCO grouping diverged into ASCO_N (normal) and ASCO_LG (lower growth), where ASCO_LG individuals found the diet unpalatable. The recruitment of new taxa overtime was altered in the ASCO_LG fish, with the gut microbiome showing phylogenetic underdispersion (nepotistic species recruitment). Finally, the gut microbiome (CTRL and ULVA) showed increasing robustness to taxonomic disturbance over time and lower functional redundancy. This study advances our understanding of the ecological assembly and succession in the hindgut of juvenile Atlantic cod across dietary treatments. Understanding the processes driving ecological assembly in the gut microbiome, in fish research specifically, could allow us to manipulate the microbiome for improved health or resilience to disease for improved aquaculture welfare and production.
Collapse
|