1
|
|
Ceyhan Y, Garcia NMG, Alvarez JV. Immune cells in residual disease and recurrence. Trends Cancer 2023:S2405-8033(23)00057-2. [PMID: 37150627 DOI: 10.1016/j.trecan.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Tumor recurrence following potentially curative therapy constitutes a major obstacle to achieving cures in patients with cancer. Recurrent tumors frequently arise from a population of residual cancer cells - also referred to as minimal residual disease (RD) or persister cells - that survive therapy and persist for prolonged periods prior to tumor relapse. While there has been significant recent progress in deciphering tumor-cell-intrinsic pathways that regulate residual cancer cell survival and recurrence, much less is known about how the tumor microenvironment (TME) of residual tumors impacts persister cancer cells or tumor recurrence. In this review, we highlight recent studies exploring the regulation and function of immune cells in RD and discuss therapeutic opportunities to target immune cells in residual tumors.
Collapse
Affiliation(s)
- Yasemin Ceyhan
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Nina Marie G Garcia
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James V Alvarez
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
2
|
|
Stenmark Tullberg A, Sjöström M, Tran L, Niméus E, Killander F, Kovács A, Lundstedt D, Holmberg E, Karlsson P. Combining histological grade, TILs, and the PD-1/PD-L1 pathway to identify immunogenic tumors and de-escalate radiotherapy in early breast cancer: a secondary analysis of a randomized clinical trial. J Immunother Cancer 2023; 11:e006618. [PMID: 37208129 DOI: 10.1136/jitc-2022-006618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/17/2023] [Indexed: 05/21/2023] Open
Abstract
BACKGROUND The implementation of immunological biomarkers for radiotherapy (RT) individualization in breast cancer requires consideration of tumor-intrinsic factors. This study aimed to investigate whether the integration of histological grade, tumor-infiltrating lymphocytes (TILs), programmed cell death protein-1 (PD-1), and programmed death ligand-1 (PD-L1) can identify tumors with aggressive characteristics that can be downgraded regarding the need for RT. METHODS The SweBCG91RT trial included 1178 patients with stage I-IIA breast cancer, randomized to breast-conserving surgery with or without adjuvant RT, and followed for a median time of 15.2 years. Immunohistochemical analyses of TILs, PD-1, and PD-L1 were performed. An activated immune response was defined as stromal TILs ≥10% and PD-1 and/or PD-L1 expression in ≥1% of lymphocytes. Tumors were categorized as high-risk or low-risk using assessments of histological grade and proliferation as measured by gene expression. The risk of ipsilateral breast tumor recurrence (IBTR) and benefit of RT were then analyzed with 10 years follow-up based on the integration of immune activation and tumor-intrinsic risk group. RESULTS Among high-risk tumors, an activated immune infiltrate was associated with a reduced risk of IBTR (HR 0.34, 95% CI 0.16 to 0.73, p=0.006). The incidence of IBTR in this group was 12.1% (5.6-25.0) without RT and 4.4% (1.1-16.3) with RT. In contrast, the incidence of IBTR in the high-risk group without an activated immune infiltrate was 29.6% (21.4-40.2) without RT and 12.8% (6.6-23.9) with RT. Among low-risk tumors, no evidence of a favorable prognostic effect of an activated immune infiltrate was seen (HR 2.0, 95% CI 0.87 to 4.6, p=0.100). CONCLUSIONS Integrating histological grade and immunological biomarkers can identify tumors with aggressive characteristics but a low risk of IBTR despite a lack of RT boost and systemic therapy. Among high-risk tumors, the risk reduction of IBTR conferred by an activated immune infiltrate is comparable to treatment with RT. These findings may apply to cohorts dominated by estrogen receptor-positive tumors.
Collapse
Affiliation(s)
- Axel Stenmark Tullberg
- Department of Oncology, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| | - Martin Sjöström
- Department of Radiation Oncology, UCSF, San Francisco, California, USA
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
| | - Lena Tran
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
| | - Emma Niméus
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
- Department of Surgery, Skåne University Hospital, Lund, Sweden
| | - Fredrika Killander
- Department of Clinical Sciences Lund, Oncology/Pathology and Surgery, Lund University, Lund, Sweden
- Department of Oncology, Skåne University Hospital, Lund, Sweden
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Dan Lundstedt
- Department of Oncology, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| | - Erik Holmberg
- Department of Oncology, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| | - Per Karlsson
- Department of Oncology, University of Gothenburg Institute of Clinical Sciences, Goteborg, Sweden
| |
Collapse
|
3
|
|
Thomas JA, Gireesh Moly AG, Xavier H, Suboj P, Ladha A, Gupta G, Singh SK, Palit P, Babykutty S. Enhancement of immune surveillance in breast cancer by targeting hypoxic tumor endothelium: Can it be an immunological switch point? Front Oncol 2023; 13. [PMID: 37056346 DOI: 10.3389/fonc.2023.1063051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Breast cancer ranks second among the causes of cancer-related deaths in women. In spite of the recent advances achieved in the diagnosis and treatment of breast cancer, further study is required to overcome the risk of cancer resistance to treatment and thereby improve the prognosis of individuals with advanced-stage breast cancer. The existence of a hypoxic microenvironment is a well-known event in the development of mutagenesis and rapid proliferation of cancer cells. Tumor cells, purposefully cause local hypoxia in order to induce angiogenesis and growth factors that promote tumor growth and metastatic characteristics, while healthy tissue surrounding the tumor suffers damage or mutate. It has been found that these settings with low oxygen levels cause immunosuppression and a lack of immune surveillance by reducing the activation and recruitment of tumor infiltrating leukocytes (TILs). The immune system is further suppressed by hypoxic tumor endothelium through a variety of ways, which creates an immunosuppressive milieu in the tumor microenvironment. Non responsiveness of tumor endothelium to inflammatory signals or endothelial anergy exclude effector T cells from the tumor milieu. Expression of endothelial specific antigens and immunoinhibitory molecules like Programmed death ligand 1,2 (PDL–1, 2) and T cell immunoglobulin and mucin-domain containing-3 (TIM-3) by tumor endothelium adds fuel to the fire by inhibiting T lymphocytes while promoting regulatory T cells. The hypoxic microenvironment in turn recruits Myeloid Derived Suppressor Cells (MDSCs), Tumor Associated Macrophages (TAMs) and T regulatory cells (Treg). The structure and function of newly generated blood vessels within tumors, on the other hand, are aberrant, lacking the specific organization of normal tissue vasculature. Vascular normalisation may work for a variety of tumour types and show to be an advantageous complement to immunotherapy for improving tumour access. By enhancing immune response in the hypoxic tumor microenvironment, via immune-herbal therapeutic and immune-nutraceuticals based approaches that leverage immunological evasion of tumor, will be briefly reviewed in this article. Whether these tactics may be the game changer for emerging immunological switch point to attenuate the breast cancer growth and prevent metastatic cell division, is the key concern of the current study.
Collapse
Affiliation(s)
- Juvin Ann Thomas
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Athira Gireesh Gireesh Moly
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Hima Xavier
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
| | - Priya Suboj
- Department of Botany and Biotechnology, St. Xaviers College, Thumba, Thiruvananthapuram, Kerala, India
| | - Amit Ladha
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, West-Midlands, United Kingdom
| | - Gaurav Gupta
- Department of Immunology, University of Manitoba, Winnipeg, MB, Canada
| | - Santosh Kumar Singh
- Centre of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Partha Palit
- Drug Discovery Research Laboratory, Assam University, Silchar, Department of Pharmaceutical Sciences, Assam, India
- *Correspondence: Suboj Babykutty, ; Partha Palit,
| | - Suboj Babykutty
- Centre for Tumor Immunology and Microenvironment, Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, Kerala, India
- *Correspondence: Suboj Babykutty, ; Partha Palit,
| |
Collapse
|
4
|
|
Verdicchio M, Brancato V, Cavaliere C, Isgrò F, Salvatore M, Aiello M. A pathomic approach for tumor-infiltrating lymphocytes classification on breast cancer digital pathology images. Heliyon 2023; 9:e14371. [PMID: 36950640 DOI: 10.1016/j.heliyon.2023.e14371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Background and objectives The detection of tumor-infiltrating lymphocytes (TILs) could aid in the development of objective measures of the infiltration grade and can support decision-making in breast cancer (BC). However, manual quantification of TILs in BC histopathological whole slide images (WSI) is currently based on a visual assessment, thus resulting not standardized, not reproducible, and time-consuming for pathologists. In this work, a novel pathomic approach, aimed to apply high-throughput image feature extraction techniques to analyze the microscopic patterns in WSI, is proposed. In fact, pathomic features provide additional information concerning the underlying biological processes compared to the WSI visual interpretation, thus providing more easily interpretable and explainable results than the most frequently investigated Deep Learning based methods in the literature. Methods A dataset containing 1037 regions of interest with tissue compartments and TILs annotated on 195 TNBC and HER2+ BC hematoxylin and eosin (H&E)-stained WSI was used. After segmenting nuclei within tumor-associated stroma using a watershed-based approach, 71 pathomic features were extracted from each nucleus and reduced using a Spearman's correlation filter followed by a nonparametric Wilcoxon rank-sum test and least absolute shrinkage and selection operator. The relevant features were used to classify each candidate nucleus as either TILs or non-TILs using 5 multivariable machine learning classification models trained using 5-fold cross-validation (1) without resampling, (2) with the synthetic minority over-sampling technique and (3) with downsampling. The prediction performance of the models was assessed using ROC curves. Results 21 features were selected, with most of them related to the well-known TILs properties of having regular shape, clearer margins, high peak intensity, more homogeneous enhancement and different textural pattern than other cells. The best performance was obtained by Random-Forest with ROC AUC of 0.86, regardless of resampling technique. Conclusions The presented approach holds promise for the classification of TILs in BC H&E-stained WSI and could provide support to pathologists for a reliable, rapid and interpretable clinical assessment of TILs in BC.
Collapse
Affiliation(s)
| | - Valentina Brancato
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
- Corresponding author.
| | - Carlo Cavaliere
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Francesco Isgrò
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, Claudio 21, Naples, 80125, Italy
| | - Marco Salvatore
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| | - Marco Aiello
- IRCCS SYNLAB SDN, Via E. Gianturco 113, Naples, 80143, Italy
| |
Collapse
|
5
|
|
Riaz N, Jeen T, Whelan TJ, Nielsen TO. Recent Advances in Optimizing Radiation Therapy Decisions in Early Invasive Breast Cancer. Cancers (Basel) 2023; 15. [PMID: 36831598 DOI: 10.3390/cancers15041260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Adjuvant whole breast irradiation after breast-conserving surgery is a well-established treatment standard for early invasive breast cancer. Screening, early diagnosis, refinement in surgical techniques, the knowledge of new and specific molecular prognostic factors, and now the standard use of more effective neo/adjuvant systemic therapies have proven instrumental in reducing the rates of locoregional relapses. This underscores the need for reliably identifying women with such low-risk disease burdens in whom elimination of radiation from the treatment plan would not compromise oncological safety. This review summarizes the current evidence for radiation de-intensification strategies and details ongoing prospective clinical trials investigating the omission of adjuvant whole breast irradiation in molecularly defined low-risk breast cancers and related evidence supporting the potential for radiation de-escalation in HER2+ and triple-negative clinical subtypes. Furthermore, we discuss the current evidence for the de-escalation of regional nodal irradiation after neoadjuvant chemotherapy. Finally, we also detail the current knowledge of the clinical value of stromal tumor-infiltrating lymphocytes and liquid-based biomarkers as prognostic factors for locoregional relapse.
Collapse
|
6
|
|
Cserni B, Kilmartin D, O'Loughlin M, Andreu X, Bagó-Horváth Z, Bianchi S, Chmielik E, Figueiredo P, Floris G, Foschini MP, Kovács A, Heikkilä P, Kulka J, Laenkholm AV, Liepniece-Karele I, Marchiò C, Provenzano E, Regitnig P, Reiner A, Ryška A, Sapino A, Stovgaard ES, Quinn C, Zolota V, Webber M, Glynn SA, Bori R, Csörgő E, Oláh-Németh O, Pancsa T, Sejben A, Sejben I, Vörös A, Zombori T, Nyári T, Callagy G, Cserni G. ONEST (Observers Needed to Evaluate Subjective Tests) Analysis of Stromal Tumour-Infiltrating Lymphocytes (sTILs) in Breast Cancer and Its Limitations. Cancers (Basel) 2023; 15. [PMID: 36831541 DOI: 10.3390/cancers15041199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Tumour-infiltrating lymphocytes (TILs) reflect antitumour immunity. Their evaluation of histopathology specimens is influenced by several factors and is subject to issues of reproducibility. ONEST (Observers Needed to Evaluate Subjective Tests) helps in determining the number of observers that would be sufficient for the reliable estimation of inter-observer agreement of TIL categorisation. This has not been explored previously in relation to TILs. ONEST analyses, using an open-source software developed by the first author, were performed on TIL quantification in breast cancers taken from two previous studies. These were one reproducibility study involving 49 breast cancers, 23 in the first circulation and 14 pathologists in the second circulation, and one study involving 100 cases and 9 pathologists. In addition to the estimates of the number of observers required, other factors influencing the results of ONEST were examined. The analyses reveal that between six and nine observers (range 2-11) are most commonly needed to give a robust estimate of reproducibility. In addition, the number and experience of observers, the distribution of values around or away from the extremes, and outliers in the classification also influence the results. Due to the simplicity and the potentially relevant information it may give, we propose ONEST to be a part of new reproducibility analyses.
Collapse
Affiliation(s)
- Bálint Cserni
- TNG Technology Consulting GmbH, Király u. 26., 1061 Budapest, Hungary
| | - Darren Kilmartin
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Mark O’Loughlin
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Xavier Andreu
- Pathology Department, Atryshealth Co., Ltd., 08039 Barcelona, Spain
| | - Zsuzsanna Bagó-Horváth
- Department of Pathology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Simonetta Bianchi
- Division of Pathological Anatomy, Department of Health Sciences, University of Florence, 50134 Florence, Italy
| | - Ewa Chmielik
- Tumor Pathology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland
| | - Paulo Figueiredo
- Laboratório de Anatomia Patológica, IPO Coimbra, 3000-075 Coimbra, Portugal
| | - Giuseppe Floris
- Laboratory of Translational Cell & Tissue Research and KU Leuven, Department of Imaging and Pathology, Department of Pathology, University Hospitals Leuven, University of Leuven, Oude Market 13, 3000 Leuven, Belgium
| | - Maria Pia Foschini
- Unit of Anatomic Pathology, Department of Biomedical and Neuromotor Sciences, University of Bologna, Bellaria Hospital, 40139 Bologna, Italy
| | - Anikó Kovács
- Department of Clinical Pathology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Päivi Heikkilä
- Department of Pathology, Helsinki University Central Hospital, 00029 Helsinki, Finland
| | - Janina Kulka
- Department of Pathology, Forensic and Insurance Medicine, Semmelweis University Budapest, Üllői út 93, 1091 Budapest, Hungary
| | - Anne-Vibeke Laenkholm
- Department of Surgical Pathology, Zealand University Hospital, 4000 Roskilde, Denmark
| | - Inta Liepniece-Karele
- Department of Pathology, Riga Stradins University, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
| | - Caterina Marchiò
- Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Italy
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Elena Provenzano
- Department of Histopathology, Cambridge University Hospitals National Health Service (NHS) Foundation Trust, Cambridge CB2 0QQ, UK
- National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge CB2 0QQ, UK
| | - Peter Regitnig
- Diagnostic and Research Institute of Pathology, Medical University of Graz, 8010 Graz, Austria
| | - Angelika Reiner
- Department of Pathology, Klinikum Donaustadt, 1090 Vienna, Austria
| | - Aleš Ryška
- The Fingerland Department of Pathology, Charles University Medical Faculty and University Hospital, 50003 Hradec Kralove, Czech Republic
| | - Anna Sapino
- Unit of Pathology, Candiolo Cancer Institute FPO-IRCCS, 10060 Candiolo, Italy
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | | | - Cecily Quinn
- Department of Histopathology, Irish National Breast Screening Programme, BreastCheck, St. Vincent’s University Hospital and School of Medicine, University College Dublin, D04 T6F4 Dublin, Ireland
- School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece
| | - Mark Webber
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Sharon A. Glynn
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Rita Bori
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | - Erika Csörgő
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | | | - Tamás Pancsa
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary
| | - Anita Sejben
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary
| | - István Sejben
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
| | - András Vörös
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary
| | - Tamás Zombori
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary
| | - Tibor Nyári
- Department of Medical Physics and Informatics, University of Szeged, 6720 Szeged, Hungary
| | - Grace Callagy
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, University of Galway, H91 TK33 Galway, Ireland
| | - Gábor Cserni
- Department of Pathology, Bács-Kiskun County Teaching Hospital, 6000 Kecskemét, Hungary
- Department of Pathology, University of Szeged, 6720 Szeged, Hungary
- Correspondence:
| |
Collapse
|
7
|
|
Lam BM, Verrill C. Clinical Significance of Tumour-Infiltrating B Lymphocytes (TIL-Bs) in Breast Cancer: A Systematic Literature Review. Cancers (Basel) 2023; 15. [PMID: 36831506 DOI: 10.3390/cancers15041164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Although T lymphocytes have been considered the major players in the tumour microenvironment to induce tumour regression and contribute to anti-tumour immunity, much less is known about the role of tumour-infiltrating B lymphocytes (TIL-Bs) in solid malignancies, particularly in breast cancer, which has been regarded as heterogeneous and much less immunogenic compared to other common tumours like melanoma, colorectal cancer and non-small cell lung cancer. Such paucity of research could translate to limited opportunities for this most common type of cancer in the UK to join the immunotherapy efforts in this era of precision medicine. Here, we provide a systematic literature review assessing the clinical significance of TIL-Bs in breast cancer. Articles published between January 2000 and April 2022 were retrieved via an electronic search of two databases (PubMed and Embase) and screened against pre-specified eligibility criteria. The majority of studies reported favourable prognostic and predictive roles of TIL-Bs, indicating that they could have a profound impact on the clinical outcome of breast cancer. Further studies are, however, needed to better define the functional role of B cell subpopulations and to discover ways to harness this intrinsic mechanism in the fight against breast cancer.
Collapse
Affiliation(s)
- Brian M. Lam
- Department of Oncology, University of Oxford, Oxford OX3 9DU, UK
- Correspondence:
| | - Clare Verrill
- Nuffield Department of Surgical Sciences, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Oxford NIHR Biomedical Research Centre, University of Oxford, Oxford OX3 9DU, UK
- Department of Cellular Pathology, Oxford University Hospitals NHS Foundation Trust, John Radcliffe Hospital, Oxford OX3 9DU, UK
| |
Collapse
|
8
|
|
van den Ende NS, Nguyen AH, Jager A, Kok M, Debets R, van Deurzen CHM. Triple-Negative Breast Cancer and Predictive Markers of Response to Neoadjuvant Chemotherapy: A Systematic Review. Int J Mol Sci 2023; 24. [PMID: 36769287 DOI: 10.3390/ijms24032969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Around 40-50% of all triple-negative breast cancer (TNBC) patients achieve a pathological complete response (pCR) after treatment with neoadjuvant chemotherapy (NAC). The identification of biomarkers predicting the response to NAC could be helpful for personalized treatment. This systematic review provides an overview of putative biomarkers at baseline that are predictive for a pCR following NAC. Embase, Medline and Web of Science were searched for articles published between January 2010 and August 2022. The articles had to meet the following criteria: patients with primary invasive TNBC without distant metastases and patients must have received NAC. In total, 2045 articles were screened by two reviewers resulting in the inclusion of 92 articles. Overall, the most frequently reported biomarkers associated with a pCR were a high expression of Ki-67, an expression of PD-L1 and the abundance of tumor-infiltrating lymphocytes, particularly CD8+ T cells, and corresponding immune gene signatures. In addition, our review reveals proteomic, genomic and transcriptomic markers that relate to cancer cells, the tumor microenvironment and the peripheral blood, which also affect chemo-sensitivity. We conclude that a prediction model based on a combination of tumor and immune markers is likely to better stratify TNBC patients with respect to NAC response.
Collapse
Affiliation(s)
- Nadine S. van den Ende
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
- Correspondence: ; Tel.: +31-640213383
| | - Anh H. Nguyen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Agnes Jager
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Marleen Kok
- Department of Medical Oncology, Tumor Biology & Immunology, Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | - Reno Debets
- Department of Medical Oncology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| | - Carolien H. M. van Deurzen
- Department of Pathology, Erasmus MC Cancer Institute, Erasmus University Medical Centre, 3015 GD Rotterdam, The Netherlands
| |
Collapse
|
9
|
|
Kang C, Yun F, Shi L, Jia Y, Liu X. Landscape of costimulatory molecule signature in breast cancer and its prognostic significance. Ann Transl Med 2023; 11:59. [PMID: 36819560 DOI: 10.21037/atm-22-6245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Background Breast cancer (BRCA) is the most common malignant tumor in the world. Because of its substantial heterogeneity, its clinical treatment is faced with various problems. Only a small number of patients can benefit from the treatment of immune checkpoint inhibitor (ICI). Costimulatory molecule signature (CMS) plays an essential role in T cell activation and antitumor immune response. Previous studies found that CMS is associated with prognosis-related immune response markers, suggesting that CMS may be a potential therapeutic target. However, the research on their function in BRCA subtype is still inadequate. Our study aims to analyze CMS in BRCA and establish an effective prognostic model. Methods We extracted 1,222 messenger RNA (mRNA) samples of 1,110 patients registered in the BRCA cohort of The Cancer Genome Atlas (TCGA), including 1,109 tumor tissue mRNA samples and 113 standard tissue samples for model construction and verification. The prognostic significance was determined by least absolute shrinkage and selection operator (LASSO)-Cox proportional hazard regression, which showed that the overall survival (OS) of the high-risk group was shorter than that of the low group (P<0.01). Results Although the CMS prognostic model can predict the prognosis well, the receiver operating characteristic (ROC) prediction results were unsatisfactory. The reason for this may be the heteromorphism of BRCA, so we divided the cases into four subtypes according to the PAM50 (PAM50Call_RNAseq) in clinical information. The same method was used to construct the model in the four subtypes and verify the effect of each subtype prognostic model. Conclusions The results showed that the submodels constructed in this study can be used to evaluate the prognosis of each subtype.
Collapse
Affiliation(s)
- Changyuan Kang
- Department of Pathology, Basic Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Fen Yun
- Department of Pathology, Basic Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Lin Shi
- Department of Pathology, Basic Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Yongfeng Jia
- Department of Pathology, Basic Medicine College, Inner Mongolia Medical University, Hohhot, China
| | - Xia Liu
- Department of Pathology, Basic Medicine College, Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
10
|
|
Yin LX, Rivera M, Garcia JJ, Bartemes KR, Lewis DB, Lohse CM, Routman DM, Ma DJ, Moore EJ, Van Abel KM. Impact of Tumor-Infiltrating Lymphocytes on Disease Progression in Human Papillomavirus-Related Oropharyngeal Carcinoma. Otolaryngol Head Neck Surg 2023. [PMID: 36939471 DOI: 10.1002/ohn.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
OBJECTIVE We aim to explore the prognostic value of tumor-infiltrating lymphocytes (TILs) in the primary tumor and metastatic lymph nodes of patients with HPV(+)OPSCC. We hypothesize that TILS density at both sites is associated with disease-free survival in HPV(+)OPSCC. STUDY DESIGN Matched case-control study among HPV(+)OPSCC patients who underwent intent-to-cure surgery. Cases developed locoregional or distant recurrence. Controls were matched based on age, sex, pathologic T, N, and overall stage, year of surgery, type of adjuvant treatment received, and the Adult Comorbidity Evaluation-27 (ACE-27) score. SETTING Single tertiary care center, May 2007 to December 2016. METHODS Tumoral TILs (tTILs) density was defined as % TILs; stromal TILs (sTILs) density was defined as absent/sparse or moderate/dense crowding. Associations between TILs and time to disease progression were assessed using Cox regression models. RESULTS Forty-four case-control pairs (N = 88) were included: 42 (48%) AJCC pStage I, 39 (44%) pStage II, and 7 (8%) pStage III. tTILs density ≥10% (hazard ratio [HR] 0.41, 95% confidence interval [CI] 0.17-0.99, p = .048) and a moderate/dense sTILs density (HR 0.21, 95% CI 0.06-0.75, p = .016) in the primary tumor were significantly associated with decreased risk of progression. TILs density in the lymph node was associated with decreased risk of progression but did not reach statistical significance. The tTILs and sTILs density correlated strongly between the primary tumor and lymph node. Concordance between the pathologists' was moderate (60%-70%). CONCLUSIONS In HPV(+)OPSCC, a higher density of tumoral and stromal TILs in the primary tumor and possibly the lymph node may predict a lower risk of disease progression.
Collapse
Affiliation(s)
- Linda X Yin
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael Rivera
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Joaquin J Garcia
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathleen R Bartemes
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Derrick B Lewis
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Christine M Lohse
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota, USA
| | - David M Routman
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Daniel J Ma
- Department of Radiation Oncology, Mayo Clinic, Rochester, Minnesota, USA
| | - Eric J Moore
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Kathryn M Van Abel
- Department of Otolaryngology-Head and Neck Surgery, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
11
|
|
Valenza C, Taurelli Salimbeni B, Santoro C, Trapani D, Antonarelli G, Curigliano G. Tumor Infiltrating Lymphocytes across Breast Cancer Subtypes: Current Issues for Biomarker Assessment. Cancers (Basel) 2023; 15. [PMID: 36765724 DOI: 10.3390/cancers15030767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) represent a surrogate biomarker of anti-tumor, lymphocyte-mediated immunity. In early, triple-negative breast cancer, TILs have level 1B of evidence to predict clinical outcomes. TILs represent a promising biomarker to select patients who can experience a better prognosis with de-intensified cancer treatments and derive larger benefits from immune checkpoint inhibitors. However, the assessment and the validation of TILs as a biomarker require a prospective and rigorous demonstration of its clinical validity and utility, provided reproducible analytical performance. With pending data about the prospective validation of TILs' clinical validity to modulate treatments in early breast cancer, this review summarizes the most important current issues and future challenges related to the implementation of TILs assessments across all breast cancer subtypes and their potential integration into clinical practice.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Celeste Santoro
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Gabriele Antonarelli
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Via Ripamonti 435, 20141 Milan, Italy
- Department of Oncology and Hematology-Oncology, University of Milan, Via Festa del Perdono 7, 20122 Milan, Italy
- Correspondence: ; Tel.: +39-02-5748-9599
| |
Collapse
|
12
|
|
Sirico M, D'Angelo A, Gianni C, Casadei C, Merloni F, De Giorgi U. Current State and Future Challenges for PI3K Inhibitors in Cancer Therapy. Cancers (Basel) 2023; 15. [PMID: 36765661 DOI: 10.3390/cancers15030703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The phosphoinositide 3 kinase (PI3K)-protein kinase B (PKB/AKT)-mammalian target of the rapamycin (mTOR) axis is a key signal transduction system that links oncogenes and multiple receptor classes which are involved in many essential cellular functions. Aberrant PI3K signalling is one of the most commonly mutated pathways in cancer. Consequently, more than 40 compounds targeting key components of this signalling network have been tested in clinical trials among various types of cancer. As the oncogenic activation of the PI3K/AKT/mTOR pathway often occurs alongside mutations in other signalling networks, combination therapy should be considered. In this review, we highlight recent advances in the knowledge of the PI3K pathway and discuss the current state and future challenges of targeting this pathway in clinical practice.
Collapse
|
13
|
|
Noske A, Steiger K, Ballke S, Kiechle M, Oettler D, Roth W, Weichert W. Comparison of assessment of programmed death-ligand 1 (PD-L1) status in triple-negative breast cancer biopsies and surgical specimens. J Clin Pathol 2023:jcp-2022-208637. [PMID: 36669878 DOI: 10.1136/jcp-2022-208637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
AIMS Programmed death-ligand 1 (PD-L1) status in triple-negative breast cancer (TNBC) is important for immune checkpoint inhibitor therapies but may vary between different immunohistochemical assays, scorings and the type of specimen used for analysis. METHODS We compared the analytical concordance of three clinically relevant PD-L1 assays (VENTANA SP142, VENTANA SP263 and DAKO 22C3 pharmDx) assessing immune cell score (IC), tumour proportion score and combined positive score (CPS) in preoperative biopsies and resection specimens of primary TNBC. PD-L1 expression was scored on virtual whole slide images and compared with expression data from corresponding surgical specimens. RESULTS The mean PD-L1 positivity in TNBC biopsies defined as IC ≥1% and CPS ≥1 ranged between 11% and 61% with the lowest positivity for SP142 and highest for SP263. The corresponding surgical specimens showed overall higher positivity rates (53%-75%). When comparing biopsies with surgical specimens, the agreement for PD-L1 positivity with SP263 and 22C3 at IC score ≥1% and CPS ≥1 was fair (kappa 0.47-0.52) and poor for SP142 (kappa 0.15-0.19). Using CPS ≥10 cut-off, the agreement for SP263 was excellent (kappa 0.751) but poor for 22C3 (kappa 0.261). Spearman correlation coefficients ranged between 0.489 and 0.75 indicating a generally moderate to strong correlation between biopsies and surgical specimens for all assays and scores. CONCLUSIONS We demonstrate high accordance between biopsies and surgical specimens for SP263 and 22C3 scoring but less for SP142. Generally, biopsies are suitable for PD-L1 testing in TNBC but the appropriate assay, scoring and cut-off must be considered.
Collapse
Affiliation(s)
- Aurelia Noske
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Katja Steiger
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simone Ballke
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| | - Marion Kiechle
- Department of Gynaecology and Obstetrics, Technical University of Munich, Munich, Germany
| | - Dirk Oettler
- Medical affairs, MSD Sharp & Dohme GmbH, Haar, Germany
| | - Wilfried Roth
- Institute of Pathology, Johannes Gutenberg University, Mainz, Germany
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
14
|
|
Dieci MV, Carbognin L, Miglietta F, Canino F, Giorgi CA, Cumerlato E, Amato O, Massa D, Griguolo G, Genovesi E, Garufi G, Giannarelli D, Tornincasa A, Trudu L, Michieletto S, Saibene T, Lo Mele M, Fassan M, Zarrilli G, Piacentini F, Bria E, Guarneri V. Incorporating weekly carboplatin in anthracycline and paclitaxel-containing neoadjuvant chemotherapy for triple-negative breast cancer: propensity-score matching analysis and TIL evaluation. Br J Cancer 2023; 128:266-74. [PMID: 36396818 DOI: 10.1038/s41416-022-02050-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The generation of data capturing the risk-benefit ratio of incorporating carboplatin (Cb) to neoadjuvant chemotherapy (NACT) for triple-negative breast cancer (TNBC) in a clinical practice setting is urgently needed. Tumour-infiltrating lymphocytes (TILs) have an established role in TNBC receiving NACT, however, the role of TIL dynamics under NACT exposure in patients receiving the current standard of care is largely uncharted. METHODS Consecutive TNBC patients receiving anthracycline-taxane [A-T] +/- Cb NACT at three Institutions were enrolled. Stromal-TILs were evaluated on pre-NACT and residual disease (RD) specimens. In the clinical cohort, propensity-score-matching was used to control selection bias. RESULTS In total, 247 patients were included (A-T = 40.5%, A-TCb = 59.5%). After propensity-score-matching, pCR was significantly higher for A-TCb vs A-T (51.9% vs 34.2%, multivariate: OR = 2.40, P = 0.01). No differences in grade ≥3 haematological toxicities were observed. TILs increased from baseline to RD in the overall population and across A-T/A-TCb subgroups. TIL increase from baseline to RD was positively and independently associated with distant disease-free survival (multivariate: HR = 0.43, P = 0.05). CONCLUSIONS We confirmed in a clinical practice setting of TNBC patients receiving A-T NACT that the incorporation of weekly Cb significantly improved pCR. In addition, A-T +/- Cb enhanced immune infiltration from baseline to RD. Finally, we reported a positive independent prognostic role of TIL increase after NACT exposure.
Collapse
|
15
|
|
Onkar SS, Carleton NM, Lucas PC, Bruno TC, Lee AV, Vignali DAA, Oesterreich S. The Great Immune Escape: Understanding the Divergent Immune Response in Breast Cancer Subtypes. Cancer Discov 2023; 13:23-40. [PMID: 36620880 DOI: 10.1158/2159-8290.CD-22-0475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Breast cancer, the most common type of cancer affecting women, encompasses a collection of histologic (mainly ductal and lobular) and molecular subtypes exhibiting diverse clinical presentation, disease trajectories, treatment options, and outcomes. Immunotherapy has revolutionized treatment for some solid tumors but has shown limited promise for breast cancers. In this review, we summarize recent advances in our understanding of the complex interactions between tumor and immune cells in subtypes of breast cancer at the cellular and microenvironmental levels. We aim to provide a perspective on opportunities for future immunotherapy agents tailored to specific features of each subtype of breast cancer. SIGNIFICANCE Although there are currently over 200 ongoing clinical trials testing immunotherapeutics, such as immune-checkpoint blockade agents, these are largely restricted to the triple-negative and HER2+ subtypes and primarily focus on T cells. With the rapid expansion of new in vitro, in vivo, and clinical data, it is critical to identify and highlight the challenges and opportunities unique for each breast cancer subtype to drive the next generation of treatments that harness the immune system.
Collapse
Affiliation(s)
- Sayali S. Onkar
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Neil M. Carleton
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Peter C Lucas
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA,Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Tullia C Bruno
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Adrian V Lee
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA,Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Dario AA Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA,Tumor Microenvironment Center, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Steffi Oesterreich
- Women’s Cancer Research Center, Magee-Women’s Research Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA,Cancer Biology Program, UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| |
Collapse
|
16
|
|
Wang L, Xu H, Weng L, Sun J, Jin Y, Xiao C. Activation of cancer immunotherapy by nanomedicine. Front Pharmacol 2022; 13:1041073. [PMID: 36618938 DOI: 10.3389/fphar.2022.1041073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Cancer is one of the most difficult diseases to be treated in the world. Immunotherapy has made great strides in cancer treatment in recent years, and several tumor immunotherapy drugs have been approved by the U.S. Food and Drug Administration. Currently, immunotherapy faces many challenges, such as lacking specificity, cytotoxicity, drug resistance, etc. Nanoparticles have the characteristics of small particle size and stable surface function, playing a miraculous effect in anti-tumor treatment. Nanocarriers such as polymeric micelles, liposomes, nanoemulsions, dendrimers, and inorganic nanoparticles have been widely used to overcome deficits in cancer treatments including toxicity, insufficient specificity, and low bioavailability. Although nanomedicine research is extensive, only a few nanomedicines are approved to be used. Either Bottlenecks or solutions of nanomedicine in immunotherapy need to be further explored to cope with challenges. In this review, a brief overview of several types of cancer immunotherapy approaches and their advantages and disadvantages will be provided. Then, the types of nanomedicines, drug delivery strategies, and the progress of applications are introduced. Finally, the application and prospect of nanomedicines in immunotherapy and Chimeric antigen receptor T-cell therapy (CAR-T) are highlighted and summarized to address the problems of immunotherapy the overall goal of this article is to provide insights into the potential use of nanomedicines and to improve the efficacy and safety of immunotherapy.
Collapse
Affiliation(s)
- Lijuan Wang
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Henan Xu
- The First Hospital of Jilin University, Changchun, China
| | - Lili Weng
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Jin Sun
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Ye Jin
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| | - Chunping Xiao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China,*Correspondence: Ye Jin, ; Chunping Xiao,
| |
Collapse
|
17
|
|
Porciello N, Franzese O, D'Ambrosio L, Palermo B, Nisticò P. T-cell repertoire diversity: friend or foe for protective antitumor response? J Exp Clin Cancer Res 2022; 41:356. [PMID: 36550555 DOI: 10.1186/s13046-022-02566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Profiling the T-Cell Receptor (TCR) repertoire is establishing as a potent approach to investigate autologous and treatment-induced antitumor immune response. Technical and computational breakthroughs, including high throughput next-generation sequencing (NGS) approaches and spatial transcriptomics, are providing unprecedented insight into the mechanisms underlying antitumor immunity. A precise spatiotemporal variation of T-cell repertoire, which dynamically mirrors the functional state of the evolving host-cancer interaction, allows the tracking of the T-cell populations at play, and may identify the key cells responsible for tumor eradication, the evaluation of minimal residual disease and the identification of biomarkers of response to immunotherapy. In this review we will discuss the relationship between global metrics characterizing the TCR repertoire such as T-cell clonality and diversity and the resultant functional responses. In particular, we will explore how specific TCR repertoires in cancer patients can be predictive of prognosis or response to therapy and in particular how a given TCR re-arrangement, following immunotherapy, can predict a specific clinical outcome. Finally, we will examine current improvements in terms of T-cell sequencing, discussing advantages and challenges of current methodologies.
Collapse
Affiliation(s)
- Nicla Porciello
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Ornella Franzese
- grid.6530.00000 0001 2300 0941Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Lorenzo D’Ambrosio
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Belinda Palermo
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| | - Paola Nisticò
- grid.417520.50000 0004 1760 5276Tumor Immunology and Immunotherapy Unit, IRCCS-Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
18
|
|
Yi M, Wu Y, Niu M, Zhu S, Zhang J, Yan Y, Zhou P, Dai Z, Wu K. Anti-TGF-β/PD-L1 bispecific antibody promotes T cell infiltration and exhibits enhanced antitumor activity in triple-negative breast cancer. J Immunother Cancer 2022; 10. [PMID: 36460337 DOI: 10.1136/jitc-2022-005543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Agents blocking programmed cell death protein 1/programmed death-ligand 1 (PD-1/PD-L1) have been approved for triple-negative breast cancer (TNBC). However, the response rate of anti-PD-1/PD-L1 is still unsatisfactory, partly due to immunosuppressive factors such as transforming growth factor-beta (TGF-β). In our previous pilot study, the bispecific antibody targeting TGF-β and murine PD-L1 (termed YM101) showed potent antitumor effect. In this work, we constructed a bispecific antibody targeting TGF-β and human PD-L1 (termed BiTP) and explored the antitumor effect of BiTP in TNBC. METHODS BiTP was developed using Check-BODYTM bispecific platform. The binding affinity of BiTP was measured by surface plasmon resonance, ELISA, and flow cytometry. The bioactivity was assessed by Smad and NFAT luciferase reporter assays, immunofluorescence, western blotting, and superantigen stimulation assays. The antitumor activity of BiTP was explored in humanized epithelial-mesenchymal transition-6-hPDL1 and 4T1-hPDL1 murine TNBC models. Immunohistochemical staining, flow cytometry, and bulk RNA-seq were used to investigate the effect of BiTP on immune cell infiltration. RESULTS BiTP exhibited high binding affinity to dual targets. In vitro experiments verified that BiTP effectively counteracted TGF-β-Smad and PD-L1-PD-1-NFAT signaling. In vivo animal experiments demonstrated that BiTP had superior antitumor activity relative to anti-PD-L1 and anti-TGF-β monotherapy. Mechanistically, BiTP decreased collagen deposition, enhanced CD8+ T cell penetration, and increased tumor-infiltrating lymphocytes. This improved tumor microenvironment contributed to the potent antitumor activity of BiTP. CONCLUSION BiTP retains parent antibodies' binding affinity and bioactivity, with superior antitumor activity to parent antibodies in TNBC. Our data suggest that BiTP might be a promising agent for TNBC treatment.
Collapse
Affiliation(s)
- Ming Yi
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuze Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengke Niu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangli Zhu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Zhang
- Wuhan YZY Biopharma Co Ltd, Wuhan, China
| | | | | | - Zhijun Dai
- Department of Breast Surgery, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Cancer Center, Shanxi Bethune Hospital, Shanxi Academy of Medical Science, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| |
Collapse
|
19
|
|
Furukawa N, Stearns V, Santa-Maria CA, Popel AS. The tumor microenvironment and triple-negative breast cancer aggressiveness: shedding light on mechanisms and targeting. Expert Opin Ther Targets 2022; 26:1041-56. [PMID: 36657483 DOI: 10.1080/14728222.2022.2170779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
INTRODUCTION In contrast to other breast cancer subtypes, there are currently limited options of targeted therapies for triple-negative breast cancer (TNBC). Immense research has demonstrated that not only cancer cells but also stromal cells and immune cells in the tumor microenvironment (TME) play significant roles in the progression of TNBC. It is thus critical to understand the components of the TME of TNBC and the interactions between the various cell populations. AREAS COVERED The components of the TME of TNBC identified by single-cell technologies are reviewed. Furthermore, the molecular interactions between the cells and the potential therapeutic targets contributing to the progression of TNBC are discussed. EXPERT OPINION Single-cell omics studies have contributed to the classification of cells in the TME and the identification of important cell types involved in the progression and the treatment of the tumor. The interactions between cancer cells and stromal cells/immune cells in the TME have led to the discovery of potential therapeutic targets. Experimental data with spatial and temporal resolution will further boost the understanding of the TME of TNBC.
Collapse
Affiliation(s)
- Natsuki Furukawa
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Vered Stearns
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Cesar A Santa-Maria
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Aleksander S Popel
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
|
Gante I, Ribeiro JM, Mendes J, Gomes A, Almeida V, Regateiro FS, Caramelo F, Silva HC, Figueiredo-Dias M. One Step Nucleic Acid Amplification (OSNA) Lysate Samples Are Suitable to Establish a Transcriptional Metastatic Signature in Patients with Early Stage Hormone Receptors-Positive Breast Cancer. Cancers (Basel) 2022; 14. [PMID: 36497336 DOI: 10.3390/cancers14235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The One Step Nucleic Acid Amplification (OSNA) is being adopted worldwide for sentinel lymph nodes (SLNs) staging in breast cancer (BC). As major disadvantage, OSNA precludes prognostic information based on structural evaluation of SLNs. Our aim is to identify biomarkers related to tumor-microenvironment interplay exploring gene expression data from the OSNA remaining lysate. This study included 32 patients with early stage hormone receptors-positive BC. Remaining OSNA lysates were prepared for targeted RNA-sequencing analysis. Identification of differentially expressed genes (DEGs) was performed by DESeq2 in R and data analysis in STATA. The results show that, in metastatic SLNs, several genes were upregulated: KRT7, VTCN1, CD44, GATA3, ALOX15B, RORC, NECTIN2, LRG1, CD276, FOXM1 and IGF1R. Hierarchical clustering analysis revealed three different clusters. The identified DEGs codify proteins mainly involved in cancer aggressiveness and with impact in immune response. The overexpression of the immune suppressive genes VTCN1 and CD276 may explain that no direct evidence of activation of immune response in metastatic SLNs was found. We show that OSNA results may be improved incorporating microenvironment-related biomarkers that may be useful in the future for prognosis stratification and immunotherapy selection. As OSNA assay is being implemented for SLNs staging in other cancers, this approach could also have a wider utility.
Collapse
|
21
|
|
Kholod O, Basket WI, Mitchem JB, Kaifi JT, Hammer RD, Papageorgiou CN, Shyu CR. Immune-Related Gene Signatures to Predict the Effectiveness of Chemoimmunotherapy in Triple-Negative Breast Cancer Using Exploratory Subgroup Discovery. Cancers (Basel) 2022; 14. [PMID: 36497286 DOI: 10.3390/cancers14235806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with limited therapeutic options. Although immunotherapy has shown potential in TNBC patients, clinical studies have only demonstrated a modest response. Therefore, the exploration of immunotherapy in combination with chemotherapy is warranted. In this project we identified immune-related gene signatures for TNBC patients that may explain differences in patients' outcomes after anti-PD-L1+chemotherapy treatment. First, we ran the exploratory subgroup discovery algorithm on the TNBC dataset comprised of 422 patients across 24 studies. Secondly, we narrowed down the search to twelve homogenous subgroups based on tumor mutational burden (TMB, low or high), relapse status (disease-free or recurred), tumor cellularity (high, low and moderate), menopausal status (pre- or post) and tumor stage (I, II and III). For each subgroup we identified a union of the top 10% of genotypic patterns. Furthermore, we employed a multinomial regression model to predict significant genotypic patterns that would be linked to partial remission after anti-PD-L1+chemotherapy treatment. Finally, we uncovered distinct immune cell populations (T-cells, B-cells, Myeloid, NK-cells) for TNBC patients with various treatment outcomes. CD4-Tn-LEF1 and CD4-CXCL13 T-cells were linked to partial remission on anti-PD-L1+chemotherapy treatment. Our informatics pipeline may help to select better responders to chemoimmunotherapy, as well as pinpoint the underlying mechanisms of drug resistance in TNBC patients at single-cell resolution.
Collapse
|
22
|
|
Andreev DA, Zavyalov AA. Triple-negative breast cancer: new options for systemic targeted therapy. A review. J Mod Onco 2022; 24:368-372. [DOI: 10.26442/18151434.2022.3.201767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Background. In 15-20% of patients, breast cancer is characterized by the absence or negligible expression in malignant cells of molecular therapeutic receptor targets of three key types: estrogen receptors, progesterone receptors, human epidermal growth factor receptor-2 (triple negative breast cancer TNBC). At the 2021 conferences of the American and European Societies of Clinical Oncology (ASCO and ESMO) and the San Antonio Breast Cancer Symposium (SABCS), held from December 7 to 10, important advances in new approaches to the treatment of heterogeneous TNBC cohort were announced.
Aim. To find and summarize the most striking results of clinical studies on new treatment options for TNBC patients based on the SABCS 2021.
Materials and methods. We searched the databases of the digital medical education platform MEDtalks (Hilversum, The Netherlands) and the PubMed/Medline database and analyzed the results published in 2021-2022.
Results. We systematized some results of clinical studies on drug therapy in patients with TNBC, discussed at SABCS 2021 (December 7-10, San Antonio, USA). There are now promising results from innovative clinical studies worldwide to identify the optimal approach to the selection of differentiated targeted and immunotherapies for the treatment of TNBC patients: OlympiA, KEYNOTE-522, cTRAK TN Phase II, KEYNOTE-355, NIMBUS, TROPION Phase I study.
Conclusion. Considering the molecular and histological heterogeneity of TNBC, it is reasonable to identify subgroups of patients with some quantitative and qualitative clinical characteristics for further identification of effective personalized treatment regimens. Additional clinical studies and multivariate analysis of data in the subgroups of patients with TNBC, as well as individualized treatment cases, using current methodological tools will contribute to solving the issues in the management of this category of patients.
Collapse
|
23
|
|
Vaid PM, Puntambekar AK, Jumle NS, Banale RA, Ansari D, Reddy RR, Unde RR, Namewar NP, Kelkar DA, Shashidhara LS, Koppiker CB, Kulkarni MD. Evaluation of tumor-infiltrating lymphocytes (TILs) in molecular subtypes of an Indian cohort of breast cancer patients. Diagn Pathol 2022; 17:91. [PMID: 36411483 DOI: 10.1186/s13000-022-01271-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
OBJECTIVES Evaluation of tumor-infiltrating lymphocytes (TILs) distribution in an Indian cohort of breast cancer patients for its prognostic significance. METHODS A retrospective cohort of breast cancer patients from a single onco-surgeon's breast cancer clinic with a uniform treatment strategy was evaluated for TILs. Tumor sections were H&E stained and scored for the spatial distribution and percent stromal TILs infiltration by a certified pathologist. The scores were analysed for association with treatment response and survival outcomes across molecular subtypes. RESULTS Total 229 breast cancer tumors were evaluated. Within spatial distribution categories, intra-tumoral TILs were observed to be associated with complete pathological response and lower recurrence frequency for the entire cohort. Subtype-wise analysis of stromal TILs (sTILs) re-enforced significantly higher infiltration in TNBC compared to HER2-positive and ER-positive tumors. A favourable association of higher stromal infiltration was observed with treatment response and disease outcomes, specifically in TNBC. CONCLUSION Intra-tumoral TILs showed a higher proportion with favourable association with better patient outcomes in an Indian cohort, unlike western cohorts where both stromal and intra-tumoral TILs show similar association with prognosis. With further validation, TILs can be developed as a cost-effective surrogate marker for treatment response, especially in a low-resource setting such as India.
Collapse
Affiliation(s)
- Pooja M. Vaid
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.449178.70000 0004 5894 7096Department of Biological Sciences, Ashoka University, Sonipat, India
| | | | - Nutan S. Jumle
- grid.414967.90000 0004 1804 743XDepartment of Pathology, Jehangir Hospital, Pune, India
| | - Rituja A. Banale
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Danish Ansari
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Ruhi R. Reddy
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Rohini R. Unde
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Namrata P. Namewar
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Devaki A. Kelkar
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - L. S. Shashidhara
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.449178.70000 0004 5894 7096Department of Biological Sciences, Ashoka University, Sonipat, India ,grid.417959.70000 0004 1764 2413Indian Institute of Science Education and Research, Pune, India
| | - Chaitanyanand B. Koppiker
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| | - Madhura D. Kulkarni
- grid.417959.70000 0004 1764 2413Centre for Translational Cancer Research: a joint initiative of Indian Institute of Science Education and Research (IISER) Pune and Prashanti Cancer Care Mission (PCCM), Pune, India ,grid.506045.20000 0004 4911 4105Prashanti Cancer Care Mission, Pune, Maharashtra India
| |
Collapse
|
24
|
|
Uliano J, Nicolò E, Corvaja C, Taurelli Salimbeni B, Trapani D, Curigliano G. Combination immunotherapy strategies for triple-negative breast cancer: current progress and barriers within the pharmacological landscape. Expert Rev Clin Pharmacol 2022. [DOI: 10.1080/17512433.2022.2142559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jacopo Uliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Eleonora Nicolò
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Carla Corvaja
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Medicine, University of Udine, Udine, Italy
| | - Beatrice Taurelli Salimbeni
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Clinical and Molecular Medicine, Oncology Unit, “La Sapienza” University of RomeAzienda Ospedaliera Sant’Andrea, Rome, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Medical Oncology, Medical Oncology Dana Farber Cancer Institute, Boston, MA, USA
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development, European Institute of Oncology IRCCS, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
25
|
|
Denariyakoon S, Puttipanyalears C, Chatamra K, Mutirangura A. Breast Cancer Sera Changes in Alu Element Methylation Predict Metastatic Disease Progression. Cancer Diagn Progn 2022; 2:731-8. [PMID: 36340456 DOI: 10.21873/cdp.10168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
BACKGROUND/AIM During metastatic disease development, the cancer-immune system crosstalk induces epigenetic modifications to immune cells, impairing their functions. Recently, Alu elements methylation changes were widely studied in terms of early cancer detection. This study aimed to demonstrate in vitro Alu element methylation changes in peripheral immune cells in a metastatic setting and examine their prognostic values in metastatic breast cancer. MATERIALS AND METHODS Sera from sixteen metastatic cancer patients and sixteen healthy participants were obtained and used to culture normal peripheral immune cells. After 48 h of incubation, the percentage and pattern of Alu element methylation were examined for clinical relevance. RESULTS We found that the Alu element hypomethylation was affected by age in the cancer group. Intriguingly, a decrease in Alu element methylation was found in patients with early progressive disease. Moreover, an increase in unmethylated cytosine (mCuC) loci was related to the poorer prognosis group. Accordingly, the decrease in Alu element methylation and the increase in mCuC loci pattern in peripheral immune cells correlated with poorer prognosis and early progression in metastatic breast cancer. CONCLUSION Alu element hypomethylation in immune cells and their increased mCuC foci were related to the early progression of breast cancer. These warrant the use of Alu element methylation changes for diagnostic and therapeutic purposes in breast cancer.
Collapse
Affiliation(s)
- SIKRIT DENARIYAKOON
- Queen Sirikit Centre for Breast Cancer, The Thai Red Cross Society, Bangkok, Thailand
| | - CHAROENCHAI PUTTIPANYALEARS
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - KRIS CHATAMRA
- Queen Sirikit Centre for Breast Cancer, The Thai Red Cross Society, Bangkok, Thailand
| | - APIWAT MUTIRANGURA
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
26
|
|
Pani F, Caria P, Yasuda Y, Makoto M, Mariotti S, Leenhardt L, Roshanmehr S, Caturegli P, Buffet C. The Immune Landscape of Papillary Thyroid Cancer in the Context of Autoimmune Thyroiditis. Cancers (Basel) 2022; 14:4287. [PMID: 36077831 DOI: 10.3390/cancers14174287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Simple Summary The association between papillary thyroid cancer and Hashimoto’s thyroiditis went through a long-standing human debate recently elucidated by the establishment of a novel mouse model. Papillary thyroid carcinoma is an excellent model for studying the tumor immune microenvironment because it is naturally accompanied by immune cells, making it a good candidate for the treatment with immune checkpoint inhibitors. Abstract Papillary thyroid cancer (PTC) often co-occurs with Hashimoto’s thyroiditis, an association that has long been reported in clinical studies, remaining controversial. Experimental evidence has recently shown that pre-existing thyroiditis has a beneficial effect on PTC growth and progression by a distinctive expansion of effector memory CD8 T cells. Although the link between inflammation and PTC might involve different components of the immune system, a deep characterization of them which includes T cells, B cells and tertiary lymphoid structures, Mye-loid cells, Neutrophils, NK cells and dendritic cells will be desirable. The present review article considers the role of the adaptive and innate immune response surrounding PTC in the context of Hashimoto’s thyroiditis. This review will focus on the current knowledge by in vivo and in vitro studies specifically performed on animals’ models; thyroid cancer cells and human samples including (i) the dual role of tumor-infiltrating lymphocytes; (ii) the emerging role of B cells and tertiary lymphoid structures; (iii) the role of myeloid cells, dendritic cells, and natural killer cells; (iv) the current knowledge of the molecular biomarkers implicated in the complex link between thyroiditis and PTC and the potential implication of cancer immunotherapy in PTC patients in the context of thyroiditis.
Collapse
Affiliation(s)
- Fabiana Pani
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
- Correspondence: or
| | - Paola Caria
- Department of Biomedical Sciences, Biochemistry, Biology and Genetics Unit, University of Cagliari, Cittadella Universitaria di Monserrato, SP 8, Km 0.700, Monserrato, 09042 Cagliari, Italy
| | - Yoshinori Yasuda
- Department of Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Miyara Makoto
- Inserm, Centre d’Immunologie et des Maladies Infectieuses-Paris (CIMI-PARIS), AP-HP Hôpital Pitié-Salpêtrière, Sorbonne Université, 75013 Paris, France
| | - Stefano Mariotti
- Department of Medical Sciences and Public Health, Endocrinology Unit, University of Cagliari, Monserrato, 09042 Cagliari, Italy
| | - Laurence Leenhardt
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| | - Solmaz Roshanmehr
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Patrizio Caturegli
- Division of Immunology, Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Camille Buffet
- Service des Pathologies Thyroïdiennes et Tumeurs Endocrines, AP-HP, Hôpital Pitié-Salpêtrière, Sorbonne Université, GRC n°16, GRC Tumeurs Thyroïdiennes, 75013 Paris, France
| |
Collapse
|
27
|
|
Araujo JM, De la Cruz-Ku G, Cornejo M, Doimi F, Dyer R, Gomez HL, Pinto JA. Prognostic Capability of TNBC 3-Gene Score among Triple-Negative Breast Cancer Subtypes. Cancers (Basel) 2022; 14. [PMID: 36077821 DOI: 10.3390/cancers14174286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Triple-negative breast cancer (TNBC) is a complex and molecularly heterogeneous entity, with the poorest outcome compared with other breast cancer subtypes. Previously, we developed a TNBC 3-gene score with a significant prognostic capability. This study aims to test the 3-gene score in the different TNBC subtypes. Methods: Data from 204 TNBC patients treated with neoadjuvant chemotherapy were retrieved from public datasets and pooled (GSE25066, GSE58812, and GSE16446). After removing batch effects, cases were classified into Lehman’s TNBC subtypes and then the TNBC 3-gene score was used to evaluate the risk of distant recurrence in each subgroup. In addition, the association with tumor-infiltrating lymphocyte (TILs) levels was evaluated in a retrospective group of 72 TNBC cases. Results: The TNBC 3-gene score was able to discriminate patients with different risks within the pooled cohort (HR = 2.41 for high vs. low risk; 95%CI: 1.50−3.86). The score showed predictive capability in the immunomodulatory subtype (HR = 4.16; 95%CI: 1.63−10.60) and in the mesenchymal stem-like subtype (HR = 18.76; 95%CI: 1.68−208.97). In the basal-like 1, basal-like-2, and mesenchymal subtypes, the observed differential risk patterns showed no statistical significance. The score had poor predictive capability in the luminal androgen receptor subtype (p = 0.765). In addition, a low TNBC 3-gene score was related to a high level of TIL infiltration (p < 0.001). Conclusions: The TNBC 3-gene score is able to predict the risk of distant recurrence in TNBC patients, specifically in the immunomodulatory and mesenchymal stem-like subtype. Despite a small sample size in each subgroup, an improved prognostic capability was seen in TNBC subtypes with tumor-infiltrating components.
Collapse
Affiliation(s)
- Jhajaira M. Araujo
- Centro de Investigación Básica y Traslacional, AUNA Ideas, Lima 15036, Peru
- Escuela Profesional de Medicina Humana, Universidad Privada San Juan Bautista, Lima 15067, Peru
| | - Gabriel De la Cruz-Ku
- Department of Surgery, University of Massachusetts, Worcester, MA 01604, USA
- Universidad Cientifica del Sur, Lima 15067, Peru
| | - Melanie Cornejo
- Centro de Investigación Básica y Traslacional, AUNA Ideas, Lima 15036, Peru
| | - Franco Doimi
- Departamento de Patología, Oncosalud-AUNA, Lima 15036, Peru
| | - Richard Dyer
- Departamento de Patología, Oncosalud-AUNA, Lima 15036, Peru
| | - Henry L. Gomez
- Departamento de Medicina Oncológica, Oncosalud-AUNA, Lima 15036, Peru
| | - Joseph A. Pinto
- Centro de Investigación Básica y Traslacional, AUNA Ideas, Lima 15036, Peru
- Correspondence: ; Tel.: +51-1-5137900 (ext. 2231)
| |
Collapse
|
28
|
|
Abstract
PURPOSE OF REVIEW Here, we reviewed the recent breakthroughs in the understanding of predictive biomarkers for immune checkpoint inhibitors (ICI) treatment. RECENT FINDINGS ICI have revolutionized cancer therapy enabling novel therapeutic indications in multiple tumor types and increasing the probability of survival in patients with metastatic disease. However, in every considered tumor types only a minority of patients exhibits clear and lasting benefice from ICI treatment, and due to their unique mechanism of action treatment with ICI is also associated with acute clinical toxicities called immune related adverse events (irAEs) that can be life threatening. The approval of the first ICI drug has prompted many exploratory strategies for a variety of biomarkers and have shown that several factors might affect the response to ICI treatment, including tumors intrinsic factors, tumor microenvironment and tumor extrinsic or systemic factor. Currently, only three biomarkers programmed death-ligand 1 (PD-L1), tumor microenvironment and microsatellite instability had the US Food and Drug Administration-approbation with some limitations. SUMMARY The establishment of valid predictive biomarkers of ICI sensitivity has become a priority to guide patient treatment to maximize the chance of benefit and prevent unnecessary toxicity.
Collapse
|
29
|
|
Zhang T, Zhang C, Fu Z, Gao Q. Immune Modulatory Effects of Molecularly Targeted Therapy and Its Repurposed Usage in Cancer Immunotherapy. Pharmaceutics 2022; 14:1768. [PMID: 36145516 DOI: 10.3390/pharmaceutics14091768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Affiliation(s)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The fast evolution of anti-tumor agents embodies a deeper understanding of cancer pathogenesis. To date, chemotherapy, targeted therapy, and immunotherapy are three pillars of the paradigm for cancer treatment. The success of immune checkpoint inhibitors (ICIs) implies that reinstatement of immunity can efficiently control tumor growth, invasion, and metastasis. However, only a fraction of patients benefit from ICI therapy, which turns the spotlight on developing safe therapeutic strategies to overcome the problem of an unsatisfactory response. Molecular-targeted agents were designed to eliminate cancer cells with oncogenic mutations or transcriptional targets. Intriguingly, accumulating shreds of evidence demonstrate the immunostimulatory or immunosuppressive capacity of targeted agents. By virtue of the high attrition rate and cost of new immunotherapy exploration, drug repurposing may be a promising approach to discovering combination strategies to improve response to immunotherapy. Indeed, many clinical trials investigating the safety and efficacy of the combination of targeted agents and immunotherapy have been completed. Here, we review and discuss the effects of targeted anticancer agents on the tumor immune microenvironment and explore their potential repurposed usage in cancer immunotherapy.
Collapse
Affiliation(s)
- Tiancheng Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Chenhao Zhang
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Zile Fu
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Key Laboratory of Carcinogenesis and Cancer Invasion (Ministry of Education), Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
- State Key Laboratory of Genetic Engineering, Fudan University, Shanghai 200433, China
- Correspondence: ; Tel./Fax: +86-21-6403-7181
| |
Collapse
|
30
|
|
Nascimento C, Gameiro A, Correia J, Ferreira J, Ferreira F. The Landscape of Tumor-Infiltrating Immune Cells in Feline Mammary Carcinoma: Pathological and Clinical Implications. Cells 2022; 11:2578. [PMID: 36010653 DOI: 10.3390/cells11162578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Feline mammary carcinoma (FMC) shares key molecular and clinicopathological features with human breast cancer. We have herein studied the inflammatory infiltrate of FMC in order to uncover potential therapeutic targets and prognostic markers. To this end, the expression of different markers (CD3, CD4, CD8, CD20, CD56, FoxP3, CD68 and CD163) was analyzed in total, stromal (s) and intratumoral (i) tumor-infiltrating lymphocytes (TILs) and tumor-associated macrophages (TAMs), in 73 feline mammary carcinomas. The results revealed that higher percentages of sCD8+ TILs were associated with longer disease-free survival (p = 0.05) and overall survival (p = 0.021). Additionally, higher percentages of iCD4+ TILs correlated with positive lymph node status (p = 0.003), whereas CD163+ TAMs were associated with undifferentiated tumors (p = 0.013). In addition, sCD3+ (p = 0.033), sCD8+ (p = 0.044) and sCD68+ (p = 0.023) immune cells were enriched in triple negative normal-like carcinomas compared to other subtypes. Altogether, our results suggest that specific subsets of immune cells may play a major role in clinical outcome of cats with mammary carcinoma, resembling what has been reported in human breast cancer. These data further support the relevance of the feline model in breast cancer studies.
Collapse
|
31
|
|
Coppola L, Smaldone G, D’aiuto M, D’aiuto G, Mossetti G, Rinaldo M, Verticilo S, Nicolai E, Salvatore M, Mirabelli P. Identification of Immune Cell Components in Breast Tissues by a Multiparametric Flow Cytometry Approach. Cancers (Basel) 2022; 14:3869. [PMID: 36010863 DOI: 10.3390/cancers14163869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [What about the content of this article? (0)] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Simple Summary The tumor microenvironment in breast cancer plays important roles in tumor development and treatment response, giving important information critical for disease management. Today, an analysis of the tumor microenvironment is included in routine histopathologic reporting for practical clinical application. This manuscript aimed to deepen the study of the tumor microenvironment, analyzing the immune cells in breast tumoral and benign pathologies. Indeed, using a deep immunophenotyping approach by flow cytometry, we have studied the immune cells at the level of breast tissues, identifying different immunophenotyping that could be useful in the diagnosis and follow up of breast pathologies. As possible targets are continually being discovered in the tumor microenvironment, a future approach to breast cancer diagnosis and therapy could likely combine cancer cell elimination and tumor microenvironment modulation. Abstract Immune cell components are able to infiltrate tumor tissues, and different reports described the presence of infiltrating immune cells (TILs) in several types of solid tumors, including breast cancer. The primary immune cell component cells are reported as a lymphocyte population mainly comprising the cytotoxic (CD8+) T cells, with varying proportions of helper (CD4+) T cells and CD19+ B cells, and rarely NK cells. In clinical practice, an expert pathologist commonly detects TILs areas in hematoxylin and eosin (H&E)-stained histological slides via light microscopy. Moreover, other more in-depth approaches could be used to better define the immunological component associated with tumor tissues. Using a multiparametric flow cytometry approach, we have studied the immune cells obtained from breast tumor tissues compared to benign breast pathologies. A detailed evaluation of immune cell components was performed on 15 and 14 biopsies obtained from breast cancer and fibroadenoma subjects, respectively. The percentage of tumor-infiltrating T lymphocytes was significantly higher in breast cancer patients compared to patients with fibroadenoma. Infiltrating helper T lymphocytes were increased in the case of malignant breast lesions, while cytotoxic T lymphocytes disclosed an opposite trend. In addition, our data suggest that the synergistic effect of the presence/activation of NK cells and NKT cells, in line with the data in the literature, determines the dampening of the immune response. Moreover, the lymphocyte-to-monocyte ratio was calculated and was completely altered in patients with breast cancer. Our approach could be a potent prognostic factor to be used in diagnostic/therapeutic purposes for the improvement of breast cancer patients’ management.
Collapse
|