1
|
Carroll OH, Seabloom EW, Borer ET, Harpole WS, Wilfahrt P, Arnillas CA, Bakker JD, Blumenthal DM, Boughton E, Bugalho MN, Caldeira M, Campbell MM, Catford J, Chen Q, Dickman CR, Donohue I, DuPre ME, Eskelinen A, Estrada C, Fay PA, Fraser EDG, Hagenah N, Hautier Y, Hersh-Green E, Jónsdóttir IS, Kadoya T, Komatsu K, Lannes L, Liang M, Venterink HO, Peri P, Power SA, Price JN, Ren Z, Risch AC, Sonnier G, Veen GF, Virtanen R, Wardle GM, Waring EF, Wheeler G, Yahdjian L, MacDougall AS. Frequent failure of nutrients to increase plant biomass supports the need for precision fertilization in agriculture. Sci Rep 2025; 15:14564. [PMID: 40281087 PMCID: PMC12032013 DOI: 10.1038/s41598-025-99071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 04/16/2025] [Indexed: 04/29/2025] Open
Abstract
Implementing precision fertilization to maximize crop yield while minimizing economic and environmental impacts has become critical for agriculture. Variability in biomass response to fertilization within fields, among regions, and over time creates simultaneous risks of under-yielding and overfertilization. We quantify factors determining fertilization responsiveness (i.e., biomass increases with fertilization) up to 15 years in 61 unfertilized rangelands on six continents. We demonstrate widespread multi-year variability in responsiveness, with fertilization increasing average yield by 43% but failing to improve biomass 26% of the time. All sites were responsive at least once, but only four of 61 responded in all plots and years. Modelled management scenarios highlighted that fertilizer cessation is likely to generate sizable economic savings but always reduces yield because of the difficulty in predicting when and where biomass will be unresponsive. This work reveals substantial scale-dependent variability in fertilization responsiveness globally, while clarifying the prospects and pitfalls of managing more spatially and temporally precise nutrient application.
Collapse
Affiliation(s)
- Oliver H Carroll
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| | - Eric W Seabloom
- Department of Ecology, Evolution, and Behaviour, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth T Borer
- Department of Ecology, Evolution, and Behaviour, University of Minnesota, St. Paul, MN, USA
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research, Leipzig University, Leipzig, Germany
| | - Peter Wilfahrt
- Department of Ecology, Evolution, and Behaviour, University of Minnesota, St. Paul, MN, USA
| | - Carlos A Arnillas
- Department of Physical and Environmental Sciences, University of Toronto at Scarborough, Scarborough, ON, Canada
| | - Jonathan D Bakker
- School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA
| | - Dana M Blumenthal
- Rangeland Resources & Systems Research Unit, USDA-ARS, Fort Collins, CO, USA
| | | | - Miguel N Bugalho
- Center for Applied Ecology, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria Caldeira
- Center for Forest Studies, Associated Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Malcolm M Campbell
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Laurentian University, Sudbury, ON, Canada
| | - Jane Catford
- Department of Geography, King's College London, London, UK
| | - Qingqing Chen
- German Centre for Integrative Biodiversity Research, Leipzig University, Leipzig, Germany
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Ian Donohue
- School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | | | - Anu Eskelinen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | | | - Philip A Fay
- USDA Agricultural Research Service, Washington, DC, USA
| | - Evan D G Fraser
- Department of Geography, University of Guelph, Guelph, ON, Canada
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Yann Hautier
- Department of Biology, Utrecht University, Utrecht, Netherlands
| | - Erika Hersh-Green
- Department of Biological Sciences, Michigan Technical University, Houghton, MI, USA
| | | | - Taku Kadoya
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Kimberly Komatsu
- Biology Department, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Luciola Lannes
- Department of Biology and Animal Sciences, State University of Sao Paulo, Sao Paulo, Brazil
| | - Maowei Liang
- Cedar Creek Ecosystem Science Reserve, University of Minnesota, East Bethel, MN, USA
| | - Harry Olde Venterink
- Wildness, Biodiversity and Ecosystems under change (WILD), Vrije Universiteit Brussel, Brussels, Belgium
| | - Pablo Peri
- Universidad Nacional de la Patagonia Austral-INTA-CONICET, La Plata, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Jodi N Price
- Gulbali Institute, Charles Sturt University, Bathurst, NSW, Australia
| | - Zhengwei Ren
- College of Ecology, Lanzhou University, Lanzhou, Gansu, China
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | | | - G F Veen
- Netherlands Institute of Ecology, Wageningen, the Netherlands
| | - Risto Virtanen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Elizabeth F Waring
- Department of Natural Sciences, Northeastern State University, Tahlequah, OK, USA
| | - George Wheeler
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Laura Yahdjian
- Cátedra de Ecología, Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA-CONICET), Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Andrew S MacDougall
- Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
2
|
Shaheen I, Malik RA, Sankaran M, Shah MA. Differential impacts of grazing on grassland plant diversity, biomass, soil C, and soil N across an elevation gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e70031. [PMID: 40294914 DOI: 10.1002/eap.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 10/09/2024] [Accepted: 03/06/2025] [Indexed: 04/30/2025]
Abstract
Understanding how vegetation traits and soil characteristics respond to grazing in grasslands is fundamental to their restoration and management. Here, we investigated changes in species diversity, plant productivity, soil total nitrogen (STN), and soil organic carbon (SOC) storage following grazer exclusion at three grassland sites along an elevation gradient in the Kashmir Himalaya. Plant cover, aboveground and belowground biomass (AGB and BGB, respectively), SOC, and STN increased following six years of grazing exclusion, though species diversity indices declined over this period. Grazer exclusion increased the biomass of all functional groups (sedges, grasses, legumes, and forbs), with sedges, particularly Carex muricata, showing the highest increase. Grazer effects on AGB and BGB, SOC, and STN varied with elevation, with the most pronounced effect of grazing detected at the highest elevation site. Grazer effects on the vertical distribution of root biomass, SOC, and STN were restricted to topsoil (10 cm) at low-elevation sites but extended to deeper layers of soil at high-elevation sites.
Collapse
Affiliation(s)
- Ishrat Shaheen
- Department of Botany, University of Kashmir, Srinagar, India
| | - Rayees A Malik
- Department of Botany, University of Kashmir, Srinagar, India
| | - Mahesh Sankaran
- National Centre for Biological Sciences, TIFR, GKVK Campus, Bengaluru, India
| | - Manzoor A Shah
- Department of Botany, University of Kashmir, Srinagar, India
| |
Collapse
|
3
|
Nelson RA, Sullivan LL, Hersch-Green EI, Seabloom EW, Borer ET, Tognetti PM, Adler PB, Biederman L, Bugalho MN, Caldeira MC, Cancela JP, Carvalheiro LG, Catford JA, Dickman CR, Dolezal AJ, Donohue I, Ebeling A, Eisenhauer N, Elgersma KJ, Eskelinen A, Estrada C, Garbowski M, Graff P, Gruner DS, Hagenah N, Haider S, Harpole WS, Hautier Y, Jentsch A, Johanson N, Koerner SE, Lannes LS, MacDougall AS, Martinson H, Morgan JW, Olde Venterink H, Orr D, Osborne BB, Peri PL, Power SA, Raynaud X, Risch AC, Shrestha M, Smith NG, Stevens CJ, Veen GFC, Virtanen R, Wardle GM, Wolf AA, Young AL, Harrison SP. Forb diversity globally is harmed by nutrient enrichment but can be rescued by large mammalian herbivory. Commun Biol 2025; 8:444. [PMID: 40089613 PMCID: PMC11910660 DOI: 10.1038/s42003-025-07882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 03/04/2025] [Indexed: 03/17/2025] Open
Abstract
Forbs ("wildflowers") are important contributors to grassland biodiversity but are vulnerable to environmental changes. In a factorial experiment at 94 sites on 6 continents, we test the global generality of several broad predictions: (1) Forb cover and richness decline under nutrient enrichment, particularly nitrogen enrichment. (2) Forb cover and richness increase under herbivory by large mammals. (3) Forb richness and cover are less affected by nutrient enrichment and herbivory in more arid climates, because water limitation reduces the impacts of competition with grasses. (4) Forb families will respond differently to nutrient enrichment and mammalian herbivory due to differences in nutrient requirements. We find strong evidence for the first, partial support for the second, no support for the third, and support for the fourth prediction. Our results underscore that anthropogenic nitrogen addition is a major threat to grassland forbs, but grazing under high herbivore intensity can offset these nutrient effects.
Collapse
Affiliation(s)
- Rebecca A Nelson
- University of California, Davis, Department of Environmental Science & Policy, Davis, CA, USA.
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA.
| | - Lauren L Sullivan
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- W K Kellogg Biological Station, Michigan State University, Hickory Corners, East Lansing, MI, USA
- Ecology, Evolution and Behavior Program, Michigan State University, East Lansing, MI, USA
| | - Erika I Hersch-Green
- Michigan Technological University, Dept. of Biological Sciences, Houghton, MI, USA
| | - Eric W Seabloom
- Dept. of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Elizabeth T Borer
- Dept. of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA
| | - Pedro M Tognetti
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires y CONICET, Buenos Aires, Argentina
| | - Peter B Adler
- Department of Wildland Resources and the Ecology Center, Utah State University, Logan, UT, USA
| | | | - Miguel N Bugalho
- Center for Applied Ecology "Prof. Baeta Neves" (CEABN-InBIO), School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Maria C Caldeira
- Forest Research Centre, Associate Laboratory TERRA, School of Agriculture, University of Lisbon, Lisbon, Portugal
| | - Juan P Cancela
- Centre for Ecology, Evolution and Environmental Changes (cE3c)/Azorean Biodiversity Group & University of Azores, Departamento de Ciências e Engenharia do Ambiente, Angra do Heroísmo, Azores, Portugal
| | | | - Jane A Catford
- Department of Geography, King's College London, London, United Kingdom
- Fenner School of Environment & Society, Australian National University, Canberra, ACT, Australia
| | - Chris R Dickman
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | | | - Ian Donohue
- Zoology, School of Natural Sciences, Trinity College Dublin, Dublin, Ireland
| | - Anne Ebeling
- Institute for Biodiversity, Ecology and Evolution, University Jena, Jena, Germany
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Leipzig University, Leipzig, Germany
| | - Kenneth J Elgersma
- Department of Biology, University of Northern Iowa, Cedar Falls, IA, USA
| | - Anu Eskelinen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | - Catalina Estrada
- Department of Life Sciences, Imperial College London, Silwood Park, London, United Kingdom
| | - Magda Garbowski
- Department of Animal and Range Sciences, New Mexico State University, Las Cruces, NM, USA
| | - Pamela Graff
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA), Facultad de Agronomía, Universidad de Buenos Aires y CONICET, Buenos Aires, Argentina
- Agencia de Extensión Rural Coronel Suárez, EEA Cesáreo Naredo, Instituto Nacional de Tecnología Agropecuaria (INTA), Coronel Suárez, Buenos Aires, Argentina
| | - Daniel S Gruner
- Department of Entomology, University of Maryland, College Park, MD, USA
| | - Nicole Hagenah
- Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa
| | - Sylvia Haider
- Institute of Ecology, Faculty of Sustainability, Leuphana University of Lüneburg, Lüneburg, Germany
| | - W Stanley Harpole
- German Centre for Integrative Biodiversity Research (iDiv), Leipzig, Germany
- Helmholtz Center for Environmental Research Ð UFZ, Department of Physiological Diversity, Leipzig, Germany
- Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Yann Hautier
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, CH, The Netherlands
| | - Anke Jentsch
- Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
| | | | - Sally E Koerner
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Lucíola S Lannes
- Department of Biology and Animal Sciences, São Paulo State University - UNESP, Ilha Solteira, SP, Brazil
| | | | - Holly Martinson
- Department of Biology, McDaniel College, Westminster, MD, USA
| | - John W Morgan
- Department of Environment & Genetics, La Trobe University, Bundoora, Melbourne, VIC, Australia
| | | | - Devyn Orr
- USDA ARS, Eastern Oregon Ag Research Center, Burns, OR, USA
| | - Brooke B Osborne
- Department of Environmental and Society, Utah State University, Moab, UT, USA
| | - Pablo L Peri
- Instituto Nacional de Tecnologia Agropecuaria (INTA), Universidad Nacional de la Patagonia Austral (UNPA), Rio Gallegos, Argentina
| | - Sally A Power
- Hawkesbury Institute for the Environment, Western Sydney University, Sydney, NSW, Australia
| | - Xavier Raynaud
- Sorbonne Université, CNRS, IRD, INRA, Université Paris Cité, UPEC, Institute of Ecology and Environmental Sciences-Paris, Paris, France
| | - Anita C Risch
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland
| | - Mani Shrestha
- Disturbance Ecology and Vegetation Dynamics, Bayreuth Center of Ecology and Environmental Research, University of Bayreuth, Bayreuth, Germany
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Carly J Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - G F Ciska Veen
- Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Risto Virtanen
- Ecology and Genetics Unit, University of Oulu, Oulu, Finland
| | - Glenda M Wardle
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
| | - Amelia A Wolf
- Department of Integrative Biology, University of Texas at Austin, Austin, TX, USA
| | - Alyssa L Young
- Department of Biology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Susan P Harrison
- University of California, Davis, Department of Environmental Science & Policy, Davis, CA, USA
| |
Collapse
|
4
|
Baidya P, Roy S, Karapurkar J, Bagchi S. Replacing native grazers with livestock influences arthropods to have implications for ecosystem functions and disease. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2025; 35:e3091. [PMID: 39888220 DOI: 10.1002/eap.3091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 10/23/2024] [Accepted: 11/14/2024] [Indexed: 02/01/2025]
Abstract
Grazing by large mammalian herbivores influences ecosystem structure and functions through its impacts on vegetation and soil, as well as by the influence on other animals such as arthropods. As livestock progressively replace native grazers around the world, it is pertinent to ask whether they have comparable influence over arthropods, or not. We use a replicated landscape-level, long-term grazer-exclusion experiment (14 years) to address how ground-dwelling arthropods respond to such a change in grazing regime where livestock replace native grazers in the cold deserts of the Trans-Himalayan ecosystem of northern India. We analyze spatial and temporal variation in the abundance of 25,604 arthropods sampled using pitfall traps across 2765 trap-days through the duration of the growing season spanning spring, summer, and autumn. These were from 88 operational taxonomic units covering six orders from 33 families (ants, wasps, bees, ticks and mites, spiders, grasshoppers, and beetles). We find that grazer assemblage-whether livestock or native herbivores-had a strong influence on both vegetation and arthropods. Partial redundancy analysis (RDA) showed that 53.6% of the spatial and temporal variation in arthropod communities could be explained by grazing and by grazer assemblage identity, alongside covariation with vegetation composition and soil variables. Structural equation models revealed that grazing and grazer assemblage identity have direct effects on arthropods, as well as indirect effects that are mediated through vegetation. Importantly, spiders (predators) were less abundant under livestock, whereas grasshoppers (leaf eaters) and ticks and mites (parasitic disease vectors) were more abundant, compared with native grazers. Reduction in spiders can fundamentally alter material and energy flow through the cascading effects of losing predators, and an abundance of grasshoppers may even contribute to vegetation degradation that is often associated with livestock. Parallelly, increases in ticks and mites lead to concerns over vector-borne disease that require planned interventions to align animal husbandry with One Health. Thus, losing native grazers to livestock expansion can have wide-ranging repercussions via arthropods. This may not only affect ecosystem structure and functions, but also offer challenges and opportunities to mitigate risks from vector-borne disease.
Collapse
Affiliation(s)
- Pronoy Baidya
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Shamik Roy
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Technische Universität Dresden, Forest Zoology, Tharandt, Germany
| | - Jalmesh Karapurkar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
- Arannya Environment Research Organisation, Sattari, Goa, India
| | - Sumanta Bagchi
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
5
|
Young ML, Dobson KC, Hammond MD, Zarnetske PL. Plant community responses to the individual and interactive effects of warming and herbivory across multiple years. Ecology 2024; 105:e4441. [PMID: 39363508 DOI: 10.1002/ecy.4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 07/17/2024] [Accepted: 08/21/2024] [Indexed: 10/05/2024]
Abstract
Anthropogenic climate warming affects plant communities by changing community structure and function. Studies on climate warming have primarily focused on individual effects of warming, but the interactive effects of warming with biotic factors could be at least as important in community responses to climate change. In addition, climate change experiments spanning multiple years are necessary to capture interannual variability and detect the influence of these effects within ecological communities. Our study explores the individual and interactive effects of warming and insect herbivory on plant traits and community responses within a 7-year warming and herbivory manipulation experiment in two early successional plant communities in Michigan, USA. We find stronger support for the individual effects of both warming and herbivory on multiple plant morphological and phenological traits; only the timing of plant green-up and seed set demonstrated an interactive effect between warming and herbivory. With herbivory, warming advanced green-up, but with reduced herbivory, there was no significant effect of warming. In contrast, warming increased plant biomass, but the effect of warming on biomass did not depend upon the level of insect herbivores. We found that these treatments had stronger effects in some years than others, highlighting the need for multiyear experiments. This study demonstrates that warming and herbivory can have strong direct effects on plant communities, but that their interactive effects are limited in these early successional systems. Because the strength and direction of these effects can vary by ecological context, it is still advisable to include levels of biotic interactions, multiple traits and years, and community type when studying climate change effects on plants and their communities.
Collapse
Affiliation(s)
- Moriah L Young
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Kara C Dobson
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Mark D Hammond
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
| | - Phoebe L Zarnetske
- Department of Integrative Biology, Michigan State University, East Lansing, Michigan, USA
- Ecology, Evolution, and Behavior Program, Michigan State University, East Lansing, Michigan, USA
- W. K. Kellogg Biological Station, Hickory Corners, Michigan, USA
- Institute for Biodiversity, Ecology, Evolution, and Macrosystems, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
6
|
Sun D, Wang Y, Zhao N. Transcriptome Responses in Medicago sativa (Alfalfa) Associated with Regrowth Process in Different Grazing Intensities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2738. [PMID: 39409610 PMCID: PMC11479129 DOI: 10.3390/plants13192738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/13/2024] [Accepted: 09/15/2024] [Indexed: 10/20/2024]
Abstract
Medicago sativa L. (alfalfa), a perennial legume, is generally regarded as a valuable source of protein for livestock and is subjected to long and repeated grazing in natural pastures. Studying the molecular response mechanism of alfalfa under different grazing treatments is crucial for understanding its adaptive traits and is of great significance for cultivating grazing-tolerant grass. Here, we performed a transcriptomic analysis to investigate changes in the gene expression of M. sativa under three grazing intensities. In total, 4184 differentially expressed genes (DEGs) were identified among the tested grazing intensities. The analysis of gene ontology (GO) revealed that genes were primarily enriched in cells, cellular processes, metabolic processes, and binding. In addition, two pathways, the plant-pathogen interaction pathway and the plant hormone signal pathway, showed significant enrichment in the Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Protein kinases and transcription factors associated with hormones and plant immunity were identified. The plant immunity-related genes were more activated under high grazing treatment, while more genes related to regeneration were expressed under light grazing treatment. These results suggest that M. sativa exhibits different strategies to increase resilience and stress resistance under various grazing intensities. Our findings provide important clues and further research directions for understanding the molecular mechanisms of plant responses to grazing.
Collapse
Affiliation(s)
- Dingyi Sun
- International Education College, Nanjing Forestry University, Nanjing 210037, China;
| | - Yalin Wang
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Na Zhao
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining 810008, China;
| |
Collapse
|
7
|
Li L, He XZ, Zhang J, Bryant R, Hu A, Hou F. Concurrent and legacy effects of sheep trampling on soil organic carbon stocks in a typical steppe, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122121. [PMID: 39121623 DOI: 10.1016/j.jenvman.2024.122121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Grazing plays a key role in ecosystem biogeochemistry, particularly soil carbon (C) pools. The non-trophic interactions between herbivores and soil processes through herbivore trampling have recently attracted extensive attention. However, their concurrent and legacy effects on the ecosystem properties and processes are still not clear, due to their effects being hard to separate via field experiments. In this study, we conducted a 2-year simulated-sheep-trampling experiment with four trampling intensity treatments (i.e., T0, T40, T80, and T120 for 0, 40, 80, and 120 hoofprints m-2, respectively) in a typical steppe to explore the concurrent and legacy effects of trampling on grassland ecosystem properties and processing. In 2017 (trampling treatment year), we found that trampling decreased aboveground biomass (AGB) of plant community and community-weighted mean shoot C concentration (CWM C), soil available nitrogen (N) and available phosphorus (P), but did not affect plant species diversity and belowground biomass (BGB). We show that compared with T0, trampling increased soil bulk density (BD) at T80, and decreased soil organic carbon (SOC) stocks. After the cessation of trampling for two years (i.e., in 2019), previous trampling increased plant diversity and BGB, reaching the highest values at T80, but decreased soil available N and available P. Compared with T0, previous trampling significantly increased soil BD at T120, while significantly decreased CWM C at T80 and T120, and reduced SOC stocks at T80. Compared with 2017, the trampling negative legacy effects amplified at T80 but weakened at T40 and T120. We also show that trampling-induced decreases in soil available N, AGB of Fabaceae and CWM C were the main predictors of decreasing SOC stocks in 2017, while previous trampling-induced legacy effects on soil available P, AGB of Poaceae and CWM C contributed to the variations of SOC stocks in 2019. Taken together, short-term trampling with low intensity could maintain most plant functions, while previous trampling with low intensity was beneficial to most plant and soil functions. The results of this study show that T40 caused by sheep managed at a stocking rate of 2.7 sheep ha-1 is most suitable for grassland adaptive management in the typical steppe. The ecosystem functions can be maintained under a high stocking rate through the process of providing enough time to rebuild sufficient vegetation cover and restore soil through measures such as regional rotational grazing and seasonal grazing.
Collapse
Affiliation(s)
- Lan Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Xiong Zhao He
- School of Agriculture and Environment, Massey University, Palmerston North, New Zealand
| | - Jing Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Racheal Bryant
- Faculty of Agriculture and Life Sciences, Lincoln University, Christchurch, New Zealand
| | - An Hu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China
| | - Fujiang Hou
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Technology Research Center for Ecological Restoration and Utilization of Degraded Grassland in Northwest China, National Forestry and Grassland Administration, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou 730020, China.
| |
Collapse
|
8
|
Defourneaux M, Barrio IC, Boulanger-Lapointe N, Speed JDM. Long-term changes in herbivore community and vegetation impact of wild and domestic herbivores across Iceland. AMBIO 2024; 53:1124-1135. [PMID: 38402492 PMCID: PMC11182994 DOI: 10.1007/s13280-024-01998-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/18/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Changes in wild and domestic herbivore populations significantly impact extensive grazing systems, particularly in low productive environments, where increasing wild herbivore populations are perceived as a threat to farming. To assess the magnitude of these changes in Iceland, we compiled time series on herbivore populations from 1986 to 2020 and estimated changes in species densities, metabolic biomass, and consumption of plant biomass in improved lands and unimproved rangelands. We compared estimates of consumption rates to past and present net primary production. Overall, the herbivore community composition shifted from livestock to wildlife dominated. However, wild herbivores only contributed a small fraction (14%) of the total herbivore metabolic biomass and consumption (4-7%), and livestock dominated the overall herbivore biomass. These insights highlight the necessity of developing improved local integrated management for both wild and domestic herbivores where they coexist.
Collapse
Affiliation(s)
- Mathilde Defourneaux
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Árleyni 22, Keldnaholt, 112, Reykjavík, Iceland.
| | - Isabel C Barrio
- Faculty of Environmental and Forest Sciences, Agricultural University of Iceland, Árleyni 22, Keldnaholt, 112, Reykjavík, Iceland
| | | | - James D M Speed
- Department of Natural History, NTNU University Museum, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
9
|
Kerns BK, Day MA. Long-term frequent fire and cattle grazing alter dry forest understory vegetation. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2024; 34:e2972. [PMID: 38751157 DOI: 10.1002/eap.2972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 11/27/2023] [Accepted: 02/06/2024] [Indexed: 07/02/2024]
Abstract
Understanding fire and large herbivore interactions in interior western forests is critical, owing to the extensive and widespread co-occurrence of these two disturbance types and multiple present and future implications for forest resilience, conservation and restoration. However, manipulative studies focused on interactions and outcomes associated with these two disturbances are rare in forested rangelands. We investigated understory vegetation response to 5-year spring and fall prescribed fire and domestic cattle grazing exclusion in ponderosa pine stands and reported long-term responses, almost two decades after the first entry fires. In fall burn areas open to cattle grazing, total understory cover prior to utilization was about 12% lower compared with fall burn areas where cattle were experimentally excluded. This response was not strongly driven by a particular palatable or unpalatable plant functional group. Fire and grazing are likely interacting in a numerically mediated process, as we found little evidence to support a functionally moderated pathway. Post-fire green-up may equalize forage to a certain extent and concentrate herbivores in the smaller burned areas within pastures, constraining a positive understory response to burning. Fall fire and grazing also increased annual forbs and resprouting shrubs. The effects of spring burning were relatively minor, and we found no interaction with grazing. The nonnative annual grass Bromus tectorum (cheatgrass) remains a problematic invader linked to fall burning but not grazing in stands that had higher propagule pressure when the experiment was initiated. At these sites, exotic grass was a major component of the vegetation by 2015, and invasion was also increasing in spring burn and unburned areas. Information from our study suggests that frequent fall fires and cattle grazing combined may reduce understory resilience in similar dry ponderosa pine forests. Consideration of longer fire return intervals, resting areas after fire, virtual fencing, or burning entire pastures may help to mitigate the effects noted in this study.
Collapse
Affiliation(s)
- Becky K Kerns
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, Oregon, USA
| | - Michelle A Day
- USDA Forest Service, Rocky Mountain Research Station, Missoula, Montana, USA
| |
Collapse
|
10
|
Trepel J, le Roux E, Abraham AJ, Buitenwerf R, Kamp J, Kristensen JA, Tietje M, Lundgren EJ, Svenning JC. Meta-analysis shows that wild large herbivores shape ecosystem properties and promote spatial heterogeneity. Nat Ecol Evol 2024; 8:705-716. [PMID: 38337048 DOI: 10.1038/s41559-024-02327-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 01/08/2024] [Indexed: 02/12/2024]
Abstract
Megafauna (animals ≥45 kg) have probably shaped the Earth's terrestrial ecosystems for millions of years with pronounced impacts on biogeochemistry, vegetation, ecological communities and evolutionary processes. However, a quantitative global synthesis on the generality of megafauna effects on ecosystems is lacking. Here we conducted a meta-analysis of 297 studies and 5,990 individual observations across six continents to determine how wild herbivorous megafauna influence ecosystem structure, ecological processes and spatial heterogeneity, and whether these impacts depend on body size and environmental factors. Despite large variability in megafauna effects, we show that megafauna significantly alter soil nutrient availability, promote open vegetation structure and reduce the abundance of smaller animals. Other responses (14 out of 26), including, for example, soil carbon, were not significantly affected. Further, megafauna significantly increase ecosystem heterogeneity by affecting spatial heterogeneity in vegetation structure and the abundance and diversity of smaller animals. Given that spatial heterogeneity is considered an important driver of biodiversity across taxonomic groups and scales, these results support the hypothesis that megafauna may promote biodiversity at large scales. Megafauna declined precipitously in diversity and abundance since the late Pleistocene, and our results indicate that their restoration would substantially influence Earth's terrestrial ecosystems.
Collapse
Affiliation(s)
- Jonas Trepel
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark.
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark.
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Mammal Research Institute, Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Andrew J Abraham
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- School of Informatics, Computing and Cyber Systems, Northern Arizona University, Flagstaff, AZ, USA
| | - Robert Buitenwerf
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Johannes Kamp
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Jeppe A Kristensen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
- Environmental Change Institute, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
| | - Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark.
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark.
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark.
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO), Department of Biology, Aarhus University, Aarhus C, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus C, Denmark
| |
Collapse
|
11
|
Sandoval‐Calderon AP, Rubio Echazarra N, van Kuijk M, Verweij PA, Soons M, Hautier Y. The effect of livestock grazing on plant diversity and productivity of mountainous grasslands in South America - A meta-analysis. Ecol Evol 2024; 14:e11076. [PMID: 38628914 PMCID: PMC11019300 DOI: 10.1002/ece3.11076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 04/19/2024] Open
Abstract
Mountainous grasslands in South America, characterized by their high diversity, provide a wide range of contributions to people, including water regulation, soil erosion prevention, livestock feed provision, and preservation of cultural heritage. Prior research has highlighted the significant role of grazing in shaping the diversity and productivity of grassland ecosystems, especially in highly productive, eutrophic systems. In such environments, grazing has been demonstrated to restore grassland plant diversity by reducing primary productivity. However, it remains unclear whether these findings are applicable to South American mountainous grasslands, where plants are adapted to different environmental conditions. To address this uncertainty, we conducted a meta-analysis of experiments excluding livestock grazing to assess its impact on plant diversity and productivity across mountainous grasslands in South America. In alignment with studies in temperate grasslands, our findings indicated that herbivore exclusion resulted in increased aboveground biomass but reduced species richness and Shannon diversity. The effects of grazing exclusion became more pronounced with longer durations of exclusion; nevertheless, they remained resilient to various climatic conditions, including mean annual precipitation and mean annual temperature, as well as the evolutionary history of grazing. In contrast to results observed in temperate grasslands, the reduction in species richness due to herbivore exclusion was not associated with increased aboveground biomass. This suggests that the processes governing (sub)tropical grassland plant diversity may differ from those in temperate grasslands. Consequently, further research is necessary to better understand the specific factors influencing plant diversity and productivity in South American montane grasslands and to elucidate the ecological implications of herbivore exclusion in these unique ecosystems.
Collapse
Affiliation(s)
- Ana Patricia Sandoval‐Calderon
- Ecology & Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
- Herbario Nacional de Bolivia (LPB)San Andres UniversityLa PazBolivia
| | - Nerea Rubio Echazarra
- Ecology & Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Marijke van Kuijk
- Ecology & Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| | - Pita A. Verweij
- Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | - Merel Soons
- Copernicus Institute of Sustainable DevelopmentUtrecht UniversityUtrechtThe Netherlands
| | - Yann Hautier
- Ecology & Biodiversity Group, Department of BiologyUtrecht UniversityUtrechtThe Netherlands
| |
Collapse
|
12
|
Lundgren EJ, Bergman J, Trepel J, le Roux E, Monsarrat S, Kristensen JA, Pedersen RØ, Pereyra P, Tietje M, Svenning JC. Functional traits-not nativeness-shape the effects of large mammalian herbivores on plant communities. Science 2024; 383:531-537. [PMID: 38301018 DOI: 10.1126/science.adh2616] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 11/30/2023] [Indexed: 02/03/2024]
Abstract
Large mammalian herbivores (megafauna) have experienced extinctions and declines since prehistory. Introduced megafauna have partly counteracted these losses yet are thought to have unusually negative effects on plants compared with native megafauna. Using a meta-analysis of 3995 plot-scale plant abundance and diversity responses from 221 studies, we found no evidence that megafauna impacts were shaped by nativeness, "invasiveness," "feralness," coevolutionary history, or functional and phylogenetic novelty. Nor was there evidence that introduced megafauna facilitate introduced plants more than native megafauna. Instead, we found strong evidence that functional traits shaped megafauna impacts, with larger-bodied and bulk-feeding megafauna promoting plant diversity. Our work suggests that trait-based ecology provides better insight into interactions between megafauna and plants than do concepts of nativeness.
Collapse
Affiliation(s)
- Erick J Lundgren
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane City, Queensland, Australia
| | - Juraj Bergman
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jonas Trepel
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Department of Conservation Biology, University of Göttingen, Göttingen, Germany
| | - Elizabeth le Roux
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Mammal Research Institute, University of Pretoria, Hatfield, South Africa
- Aarhus Institute for Advanced Studies, Aarhus University, Aarhus, Denmark
| | - Sophie Monsarrat
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Rewilding Europe, Nijmegen, Netherlands
| | - Jeppe Aagaard Kristensen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
- Leverhulme Centre for Nature Recovery, School of Geography and the Environment, University of Oxford, Oxford, UK
| | - Rasmus Østergaard Pedersen
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Patricio Pereyra
- Consejo Nacional de Investigaciones, Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Centro de Investigación Aplicada y Transferencia, Tecnológica en Recursos Marinos Almirante Storni (CIMAS), San Antonio Oeste, Argentina
| | - Melanie Tietje
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Center for Ecological Dynamics in a Novel Biosphere (ECONOVO) and Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, Denmark
- Section for Ecoinformatics and Biodiversity, Department of Biology, Aarhus University, Aarhus, Denmark
| |
Collapse
|
13
|
Tulloch AIT, Healy A, Silcock J, Wardle GM, Dickman CR, Frank ASK, Aubault H, Barton K, Greenville AC. Long-term livestock exclusion increases plant richness and reproductive capacity in arid woodlands. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2023; 33:e2909. [PMID: 37602895 DOI: 10.1002/eap.2909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/14/2023] [Accepted: 06/22/2023] [Indexed: 08/22/2023]
Abstract
Herbivore exclusion is implemented globally to recover ecosystems from grazing by introduced and native herbivores, but evidence for large-scale biodiversity benefits is inconsistent in arid ecosystems. We examined the effects of livestock exclusion on dryland plant richness and reproductive capacity. We collected data on plant species richness and seeding (reproductive capacity), rainfall, vegetation productivity and cover, soil strength and herbivore grazing intensity from 68 sites across 6500 km2 of arid Georgina gidgee (Acacia georginae) woodlands in central Australia between 2018 and 2020. Sites were on an actively grazed cattle station and two destocked conservation reserves. We used structural equation modeling to examine indirect (via soil or vegetation modification) versus direct (herbivory) effects of grazing intensity by two introduced herbivores (cattle, camels) and a native herbivore (red kangaroo), on seasonal plant species richness and seeding of all plants, and the richness and seeding of four plant groups (native grasses, forbs, annual chenopod shrubs, and palatable perennial shrubs). Non-native herbivores had a strong indirect effect on plant richness and seeding by reducing vegetative ground cover, resulting in decreased richness and seeding of native grasses and forbs. Herbivores also had small but negative direct impacts on plant richness and seeding. This direct effect was explained by reductions in annual chenopod and palatable perennial shrub richness under grazing activity. Responses to grazing were herbivore-dependent; introduced herbivore grazing reduced native plant richness and seeding, while native herbivore grazing had no significant effect on richness or seeding of different plant functional groups. Soil strength decreased under grazing by cattle but not camels or kangaroos. Cattle had direct effects on palatable perennial shrub richness and seeding, whereas camels had indirect effects, reducing richness and seeding by reducing the abundance of shrubs. We show that considering indirect pathways improves evaluations of the effects of disturbances on biodiversity, as focusing only on direct effects can mask critical mechanisms of change. Our results indicate substantial biodiversity benefits from excluding livestock and controlling camels in drylands. Reducing introduced herbivore impacts will improve soil and vegetation condition, ensure reproduction and seasonal persistence of species, and protect native plant diversity.
Collapse
Affiliation(s)
- Ayesha I T Tulloch
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Al Healy
- School of Earth and Environmental Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Jennifer Silcock
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Glenda M Wardle
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Christopher R Dickman
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| | - Anke S K Frank
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
- Pilungah Reserve, Bush Heritage Australia, Boulia, Queensland, Australia
- School of Agriculture, Environmental and Veterinary Sciences, Charles Sturt University, Port Macquarie, New South Wales, Australia
| | - Helene Aubault
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Kyle Barton
- Ethabuka Reserve, Bush Heritage Australia, Bedourie, Queensland, Australia
| | - Aaron C Greenville
- School of Life and Environmental Sciences, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
14
|
Zheng J, Wang Q, Yuan S, Zhang B, Zhang F, Li S, Qiao J, Wu Y, Xing J, Han G, Zhang J, Zhao M. Soil deterioration due to long-term grazing of desert-steppe promotes stress-tolerant ecological strategies in plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 907:168131. [PMID: 39491197 DOI: 10.1016/j.scitotenv.2023.168131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/05/2024]
Abstract
Predicting the impact of grazing on desert steppes' vegetation is crucial for sustainable management. The competitor, stress-tolerator and ruderal (CSR) theory has offer valuable insights into plant adaptive capacity and predicting changes in vegetation structure. However, whether adaptive strategy of desert steppe change with grazing intensity is not understood yet. We conducted a comprehensive assessment of the effects of 19 years of varying grazing intensities (no grazing: CK; light grazing: LG; moderate grazing: MG; heavy grazing: HG) on plant CSR strategies. Within the desert steppe ecosystem, the prevailing plant community strategy leaned towards SR (Stress-tolerant/Ruderal) under non-grazed conditions (C:S:R = 2:48:50 %). However, as grazing intensity increased, the S-score increased significantly from 48 % to 62 % while the R-score decreased from 50 % to 36 %. This trend persisted across functional groups and species, except for shrubs, due to the convergent response of traits and ecological strategies of these species under intense grazing pressure. Furthermore, our findings reveal that the shift of CSR on the community level was primarily influenced by soil nutrients and soil density, but not by evolutionary history (phylogenetic conservatism of traits). This suggests that plant traits co-evolved under prolonged environmental stress, resulting consistent variation and ecological strategies in desert grasslands. Overall, long-term grazing reinforced selective pressure, creating a simplified plant community structure with low levels of diversity and productivity, dominated by conservative resource-use strategy. This study highlights the mechanisms of plant adaptation to the prolonged grazing disturbance in desert steppes.
Collapse
Affiliation(s)
- Jiahua Zheng
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Qi Wang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Shuai Yuan
- Forestry and Grassland Monitoring and Planning Institute of Inner Mongolia Autonomous Region, Hohhot 010020, China
| | - Bin Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China.
| | - Feng Zhang
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Shaoyu Li
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jirong Qiao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Yunga Wu
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jiaqing Xing
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Guodong Han
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China
| | - Jun Zhang
- College of Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Mengli Zhao
- Key Laboratory of Grassland Resources of the Ministry of Education, Key Laboratory of Forage Cultivation, Processing and High Efficient Utilization of the Ministry of Agriculture and Rural Affairs, Inner Mongolia Key Laboratory of Grassland Management and Utilization, College of Grassland, Resources and Environment, Inner Mongolia Agricultural University, Hohhot 010011, China.
| |
Collapse
|
15
|
Ren S, Cao Y, Li J. Nitrogen availability constrains grassland plant diversity in response to grazing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 896:165273. [PMID: 37406710 DOI: 10.1016/j.scitotenv.2023.165273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/07/2023]
Abstract
Grassland plant diversity has been observed with divergent responses in grazing experiments around the world. However, the dominant role of nitrogen (N) availability in controlling this global variation has not been well explored, impeding our capacity to formulate effective strategies for preserving grassland plant diversity. Here, we synthesized data from 306 grazing experiments that measured plant diversity and soil N content across global grasslands. Overall, grazing reduced plant diversity by 7.63 %, with substantial variations observed across the dataset. Our study revealed that these contrasting effects were best explained by soil N change. Plant diversity under enhanced soil N showed a strong increase in response to grazing. We found that lower grazing intensity and higher background N deposition could collectively enhance soil N, thereby promoting diversity. These results suggest that while avoiding high grazing intensity is crucial in maintaining biodiversity of grazed grasslands, it alone is not sufficient. In regions with lower N deposition (< 500 mg N m-2 yr-1), additional management strategies that target improving soil fertility are needed. Our analysis propounds that local environmental conditions should be incorporated into decision-making of grassland biodiversity conservation, or ignoring this may lead to counterproductive impacts.
Collapse
Affiliation(s)
- Shuai Ren
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China.
| | - Yingfang Cao
- State Key Laboratory of Tibetan Plateau Earth System and Resources Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Beijing, China
| | - Juan Li
- Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou, China
| |
Collapse
|
16
|
Pringle RM, Abraham JO, Anderson TM, Coverdale TC, Davies AB, Dutton CL, Gaylard A, Goheen JR, Holdo RM, Hutchinson MC, Kimuyu DM, Long RA, Subalusky AL, Veldhuis MP. Impacts of large herbivores on terrestrial ecosystems. Curr Biol 2023; 33:R584-R610. [PMID: 37279691 DOI: 10.1016/j.cub.2023.04.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Large herbivores play unique ecological roles and are disproportionately imperiled by human activity. As many wild populations dwindle towards extinction, and as interest grows in restoring lost biodiversity, research on large herbivores and their ecological impacts has intensified. Yet, results are often conflicting or contingent on local conditions, and new findings have challenged conventional wisdom, making it hard to discern general principles. Here, we review what is known about the ecosystem impacts of large herbivores globally, identify key uncertainties, and suggest priorities to guide research. Many findings are generalizable across ecosystems: large herbivores consistently exert top-down control of plant demography, species composition, and biomass, thereby suppressing fires and the abundance of smaller animals. Other general patterns do not have clearly defined impacts: large herbivores respond to predation risk but the strength of trophic cascades is variable; large herbivores move vast quantities of seeds and nutrients but with poorly understood effects on vegetation and biogeochemistry. Questions of the greatest relevance for conservation and management are among the least certain, including effects on carbon storage and other ecosystem functions and the ability to predict outcomes of extinctions and reintroductions. A unifying theme is the role of body size in regulating ecological impact. Small herbivores cannot fully substitute for large ones, and large-herbivore species are not functionally redundant - losing any, especially the largest, will alter net impact, helping to explain why livestock are poor surrogates for wild species. We advocate leveraging a broad spectrum of techniques to mechanistically explain how large-herbivore traits and environmental context interactively govern the ecological impacts of these animals.
Collapse
Affiliation(s)
- Robert M Pringle
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA.
| | - Joel O Abraham
- Department of Ecology & Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - T Michael Anderson
- Department of Biology, Wake Forest University, Winston Salem, NC 27109, USA
| | - Tyler C Coverdale
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew B Davies
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | - Jacob R Goheen
- Department of Zoology & Physiology, University of Wyoming, Laramie, WY 82072, USA
| | - Ricardo M Holdo
- Odum School of Ecology, University of Georgia, Athens, GA 30602, USA
| | - Matthew C Hutchinson
- Department of Life & Environmental Sciences, University of California Merced, Merced, CA 95343, USA
| | - Duncan M Kimuyu
- Department of Natural Resources, Karatina University, Karatina, Kenya
| | - Ryan A Long
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844, USA
| | - Amanda L Subalusky
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | - Michiel P Veldhuis
- Institute of Environmental Sciences, Leiden University, 2333 CC Leiden, The Netherlands
| |
Collapse
|