1
|
Rados T, Leland OS, Escudeiro P, Mallon J, Andre K, Caspy I, von Kügelgen A, Stolovicki E, Nguyen S, Patop IL, Rangel LT, Kadener S, Renner LD, Thiel V, Soen Y, Bharat TAM, Alva V, Bisson A. Tissue-like multicellular development triggered by mechanical compression in archaea. Science 2025; 388:109-115. [PMID: 40179183 DOI: 10.1126/science.adu0047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
The advent of clonal multicellularity is a critical evolutionary milestone, seen often in eukaryotes, rarely in bacteria, and only once in archaea. We show that uniaxial compression induces clonal multicellularity in haloarchaea, forming tissue-like structures. These archaeal tissues are mechanically and molecularly distinct from their unicellular lifestyle, mimicking several eukaryotic features. Archaeal tissues undergo a multinucleate stage followed by tubulin-independent cellularization, orchestrated by active membrane tension at a critical cell size. After cellularization, tissue junction elasticity becomes akin to that of animal tissues, giving rise to two cell types-peripheral (Per) and central scutoid (Scu) cells-with distinct actin and protein glycosylation polarity patterns. Our findings highlight the potential convergent evolution of a biophysical mechanism in the emergence of multicellular systems across domains of life.
Collapse
Affiliation(s)
- Theopi Rados
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Olivia S Leland
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Pedro Escudeiro
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - John Mallon
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Katherine Andre
- Brandeis University, Department of Biology, Waltham, MA, USA
| | - Ido Caspy
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Elad Stolovicki
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Sinead Nguyen
- Brandeis University, Department of Biology, Waltham, MA, USA
| | | | - L Thiberio Rangel
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, Dresden, Germany
| | - Vera Thiel
- Department of Microorganisms, Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures GmbH, Braunschweig, Germany
| | - Yoav Soen
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Tanmay A M Bharat
- Structural Studies Division, MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Alex Bisson
- Brandeis University, Department of Biology, Waltham, MA, USA
| |
Collapse
|
2
|
Stroud JT, Ratcliff WC. Long-term studies provide unique insights into evolution. Nature 2025; 639:589-601. [PMID: 40108318 DOI: 10.1038/s41586-025-08597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 01/06/2025] [Indexed: 03/22/2025]
Abstract
From experimental evolution in the laboratory to sustained measurements of natural selection in the wild, long-term studies have revolutionized our understanding of evolution. By directly investigating evolutionary dynamics in real time, these approaches have provided unparallelled insights into the complex interplay between evolutionary process and pattern. These approaches can reveal oscillations, stochastic fluctuations and systematic trends that unfold over extended periods, expose critical time lags between environmental shifts and population responses, and illuminate how subtle effects may accumulate into significant evolutionary patterns. Long-term studies can also reveal otherwise cryptic trends that unfold over extended periods, and offer the potential for serendipity: observing rare events that spur new evolutionary hypotheses and research directions. Despite the challenges of conducting long-term research, exacerbated by modern funding landscapes favouring short-term projects, the contributions of long-term studies to evolutionary biology are indispensable. This is particularly true in our rapidly changing, human-dominated world, where such studies offer a crucial window into how environmental changes and altered species interactions shape evolutionary trajectories. In this Review article, we showcase the groundbreaking discoveries of long-term evolutionary studies, underscoring their crucial role in advancing our understanding of the complex nature of evolution across multiple systems and timescales.
Collapse
Affiliation(s)
- James T Stroud
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
3
|
Tong K, Datta S, Cheng V, Haas DJ, Gourisetti S, Yopp HL, Day TC, Lac DT, Khalil AS, Conlin PL, Bozdag GO, Ratcliff WC. Genome duplication in a long-term multicellularity evolution experiment. Nature 2025; 639:691-699. [PMID: 40044858 DOI: 10.1038/s41586-025-08689-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 01/23/2025] [Indexed: 03/12/2025]
Abstract
Whole-genome duplication (WGD) is widespread across eukaryotes and can promote adaptive evolution1-4. However, given the instability of newly formed polyploid genomes5-7, understanding how WGDs arise in a population, persist, and underpin adaptations remains a challenge. Here, using our ongoing Multicellularity Long Term Evolution Experiment (MuLTEE)8, we show that diploid snowflake yeast (Saccharomyces cerevisiae) under selection for larger multicellular size rapidly evolve to be tetraploid. From their origin within the first 50 days of the experiment, tetraploids persisted for the next 950 days (nearly 5,000 generations, the current leading edge of our experiment) in 10 replicate populations, despite being genomically unstable. Using synthetic reconstruction, biophysical modelling and counter-selection, we found that tetraploidy evolved because it confers immediate fitness benefits under this selection, by producing larger, longer cells that yield larger clusters. The same selective benefit also maintained tetraploidy over long evolutionary timescales, inhibiting the reversion to diploidy that is typically seen in laboratory evolution experiments. Once established, tetraploidy facilitated novel genetic routes for adaptation, having a key role in the evolution of macroscopic multicellular size via the origin of evolutionarily conserved aneuploidy. These results provide unique empirical insights into the evolutionary dynamics and impacts of WGD, showing how it can initially arise due to its immediate adaptive benefits, be maintained by selection and fuel long-term innovations by creating additional dimensions of heritable genetic variation.
Collapse
Affiliation(s)
- Kai Tong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Biological Design Center, Boston University, Boston, MA, USA.
- Department of Biomedical Engineering, Boston University, Boston, MA, USA.
| | - Sayantan Datta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivian Cheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniella J Haas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Saranya Gourisetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harley L Yopp
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
4
|
Pineau RM, Kahn PC, Lac DT, Belpaire TER, Denning MG, Wong W, Ratcliff WC, Bozdag GO. Experimental evolution of multicellularity via cuboidal cell packing in fission yeast. Evol Lett 2024; 8:695-704. [PMID: 39957727 PMCID: PMC11827335 DOI: 10.1093/evlett/qrae024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 03/21/2024] [Accepted: 05/24/2024] [Indexed: 02/18/2025] Open
Abstract
The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical Schizosaccharomyces pombe yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the ace2 gene, preventing daughter cell separation after division. Remarkably, ace2 mutations also underlie the transition to multicellularity in Saccharomyces cerevisiae and Candida glabrata, lineages that last shared a common ancestor > 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Penelope C Kahn
- Department of Zoology, University of British Columbia, Vancouver, Canada
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Tom E R Belpaire
- Division of Mechatronics, Biostatistics, and Sensors, KU Leuven, Leuven, Belgium
| | - Mia G Denning
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - Whitney Wong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|
5
|
Bingham EP, Yunker PJ. Evolution of cell differentiation: Maintenance emerges from speedy models and simple rules. Curr Biol 2024; 34:R816-R818. [PMID: 39255763 DOI: 10.1016/j.cub.2024.07.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Can simple groups of cells maintain reproductive division of labor? Or will stochastic fracturing produce groups with a single cell type? A new study uses models and experiments to show that simple biophysical traits can maintain reproductive division of labor.
Collapse
Affiliation(s)
- Emma P Bingham
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Peter J Yunker
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA.
| |
Collapse
|
6
|
Casotti MC, Meira DD, Zetum ASS, Campanharo CV, da Silva DRC, Giacinti GM, da Silva IM, Moura JAD, Barbosa KRM, Altoé LSC, Mauricio LSR, Góes LSBDB, Alves LNR, Linhares SSG, Ventorim VDP, Guaitolini YM, dos Santos EDVW, Errera FIV, Groisman S, de Carvalho EF, de Paula F, de Sousa MVP, Fechine PBA, Louro ID. Integrating frontiers: a holistic, quantum and evolutionary approach to conquering cancer through systems biology and multidisciplinary synergy. Front Oncol 2024; 14:1419599. [PMID: 39224803 PMCID: PMC11367711 DOI: 10.3389/fonc.2024.1419599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Cancer therapy is facing increasingly significant challenges, marked by a wide range of techniques and research efforts centered around somatic mutations, precision oncology, and the vast amount of big data. Despite this abundance of information, the quest to cure cancer often seems more elusive, with the "war on cancer" yet to deliver a definitive victory. A particularly pressing issue is the development of tumor treatment resistance, highlighting the urgent need for innovative approaches. Evolutionary, Quantum Biology and System Biology offer a promising framework for advancing experimental cancer research. By integrating theoretical studies, translational methods, and flexible multidisciplinary clinical research, there's potential to enhance current treatment strategies and improve outcomes for cancer patients. Establishing stronger links between evolutionary, quantum, entropy and chaos principles and oncology could lead to more effective treatments that leverage an understanding of the tumor's evolutionary dynamics, paving the way for novel methods to control and mitigate cancer. Achieving these objectives necessitates a commitment to multidisciplinary and interprofessional collaboration at the heart of both research and clinical endeavors in oncology. This entails dismantling silos between disciplines, encouraging open communication and data sharing, and integrating diverse viewpoints and expertise from the outset of research projects. Being receptive to new scientific discoveries and responsive to how patients react to treatments is also crucial. Such strategies are key to keeping the field of oncology at the forefront of effective cancer management, ensuring patients receive the most personalized and effective care. Ultimately, this approach aims to push the boundaries of cancer understanding, treating it as a manageable chronic condition, aiming to extend life expectancy and enhance patient quality of life.
Collapse
Affiliation(s)
- Matheus Correia Casotti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Débora Dummer Meira
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | | | - Giulia Maria Giacinti
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Iris Moreira da Silva
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - João Augusto Diniz Moura
- Laboratório de Oncologia Clínica e Experimental, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Karen Ruth Michio Barbosa
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Lorena Souza Castro Altoé
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Lyvia Neves Rebello Alves
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Vinícius do Prado Ventorim
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | - Yasmin Moreto Guaitolini
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | | | - Sonia Groisman
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Elizeu Fagundes de Carvalho
- Instituto de Biologia Roberto Alcântara Gomes (IBRAG), Universidade do Estado do Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil
| | - Flavia de Paula
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| | | | - Pierre Basílio Almeida Fechine
- Group of Chemistry of Advanced Materials (GQMat), Department of Analytical Chemistry and Physical-Chemistry, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Iuri Drumond Louro
- Núcleo de Genética Humana e Molecular, Universidade Federal do Espírito Santo (UFES), Vitória, ES, Brazil
| |
Collapse
|
7
|
Narayanasamy N, Bingham E, Fadero T, Ozan Bozdag G, Ratcliff WC, Yunker P, Thutupalli S. Metabolically-driven flows enable exponential growth in macroscopic multicellular yeast. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599734. [PMID: 38948761 PMCID: PMC11213004 DOI: 10.1101/2024.06.19.599734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The ecological and evolutionary success of multicellular lineages is due in no small part to their increased size relative to unicellular ancestors. However, large size also poses biophysical challenges, especially regarding the transport of nutrients to all cells; these constraints are typically overcome through multicellular innovations (e.g., a circulatory system). Here we show that an emergent biophysical mechanism - spontaneous fluid flows arising from metabolically-generated density gradients - can alleviate constraints on nutrient transport, enabling exponential growth in nascent multicellular clusters of yeast lacking any multicellular adaptations for nutrient transport or fluid flow. Surprisingly, beyond a threshold size, the metabolic activity of experimentally-evolved snowflake yeast clusters drives large-scale fluid flows that transport nutrients throughout the cluster at speeds comparable to those generated by the cilia of extant multicellular organisms. These flows support exponential growth at macroscopic sizes that theory predicts should be diffusion limited. This work demonstrates how simple physical mechanisms can act as a 'biophysical scaffold' to support the evolution of multicellularity by opening up phenotypic possibilities prior to genetically-encoded innovations. More broadly, our findings highlight how co-option of conserved physical processes is a crucial but underappreciated facet of evolutionary innovation across scales.
Collapse
Affiliation(s)
- Nishant Narayanasamy
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India
| | - Emma Bingham
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shashi Thutupalli
- Simons Centre for the Study of Living Machines, National Centre for Biological Sciences (TIFR), Bangalore, India
- International Centre for Theoretical Sciences (TIFR), Bangalore, India
| |
Collapse
|
8
|
Nanda P, Barrere J, LaBar T, Murray AW. A dynamic network model predicts the phenotypes of multicellular clusters from cellular properties. Curr Biol 2024; 34:2672-2683.e4. [PMID: 38823384 PMCID: PMC11610506 DOI: 10.1016/j.cub.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/20/2024] [Accepted: 05/08/2024] [Indexed: 06/03/2024]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2 = 0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
9
|
Pineau RM, Libby E, Demory D, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. Nat Ecol Evol 2024; 8:1010-1020. [PMID: 38486107 PMCID: PMC11090753 DOI: 10.1038/s41559-024-02367-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth's ecosystems. Yet little is known about how early steps in the evolution of multicellularity affect eco-evolutionary dynamics. Through long-term experimental evolution, we observed niche partitioning and the adaptive divergence of two specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subjected to selection for rapid growth, followed by selection favouring larger group size. Small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations, specializing on divergent aspects of a trade-off between growth rate and survival. Through modelling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically impactful emergent properties of this evolutionary transition.
Collapse
Affiliation(s)
- Rozenn M Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eric Libby
- Integrated Science Lab, Umeå university, Umeå, Sweden.
- Department of Mathematics and Mathematical Statistics, Umeå university, Umeå, Sweden.
| | - David Demory
- CNRS, Sorbonne Université, USR 3579 Laboratoire de Biodiversité et Biotechnologies Microbiennes (LBBM), Observatoire Océanologique, Banyuls-sur-Mer, France
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Pablo Bravo
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Joshua S Weitz
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biology, University of Maryland, College Park, MD, USA
- Department of Physics, University of Maryland, College Park, MD, USA
| | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- Department of Biology, University of Maryland, College Park, MD, USA.
| |
Collapse
|
10
|
Tong K, Datta S, Cheng V, Haas DJ, Gourisetti S, Yopp HL, Day TC, Lac DT, Conlin PL, Bozdag GO, Ratcliff WC. Whole-genome duplication in the Multicellularity Long Term Evolution Experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.588554. [PMID: 38659912 PMCID: PMC11042302 DOI: 10.1101/2024.04.18.588554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Whole-genome duplication (WGD) is widespread across eukaryotes and can promote adaptive evolution1-4. However, given the instability of newly-formed polyploid genomes5-7, understanding how WGDs arise in a population, persist, and underpin adaptations remains a challenge. Using our ongoing Multicellularity Long Term Evolution Experiment (MuLTEE)8, we show that diploid snowflake yeast (Saccharomyces cerevisiae) under selection for larger multicellular size rapidly undergo spontaneous WGD. From its origin within the first 50 days of the experiment, tetraploids persist for the next 950 days (nearly 5,000 generations, the current leading edge of our experiment) in ten replicate populations, despite being genomically unstable. Using synthetic reconstruction, biophysical modeling, and counter-selection experiments, we found that tetraploidy evolved because it confers immediate fitness benefits in this environment, by producing larger, longer cells that yield larger clusters. The same selective benefit also maintained tetraploidy over long evolutionary timescales, inhibiting the reversion to diploidy that is typically seen in laboratory evolution experiments. Once established, tetraploidy facilitated novel genetic routes for adaptation, playing a key role in the evolution of macroscopic multicellular size via the origin of evolutionarily conserved aneuploidy. These results provide unique empirical insights into the evolutionary dynamics and impacts of WGD, showing how it can initially arise due to its immediate adaptive benefits, be maintained by selection, and fuel long-term innovations by creating additional dimensions of heritable genetic variation.
Collapse
Affiliation(s)
- Kai Tong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Sayantan Datta
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Vivian Cheng
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Integrative Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Daniella J. Haas
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Saranya Gourisetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Harley L. Yopp
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter L. Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
11
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Bozdag GO, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. SCIENCE ADVANCES 2024; 10:eadn2706. [PMID: 38457507 PMCID: PMC10923498 DOI: 10.1126/sciadv.adn2706] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/06/2024] [Indexed: 03/10/2024]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the multicellularity long-term evolution experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by down-regulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS), Georgia Institute of Technology, Atlanta, GA, USA
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
12
|
Montrose K, Lac DT, Burnetti AJ, Tong K, Ozan Bozdag G, Hukkanen M, Ratcliff WC, Saarikangas J. Proteostatic tuning underpins the evolution of novel multicellular traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.31.543183. [PMID: 37333256 PMCID: PMC10274739 DOI: 10.1101/2023.05.31.543183] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
The evolution of multicellularity paved the way for the origin of complex life on Earth, but little is known about the mechanistic basis of early multicellular evolution. Here, we examine the molecular basis of multicellular adaptation in the Multicellularity Long Term Evolution Experiment (MuLTEE). We demonstrate that cellular elongation, a key adaptation underpinning increased biophysical toughness and organismal size, is convergently driven by downregulation of the chaperone Hsp90. Mechanistically, Hsp90-mediated morphogenesis operates by destabilizing the cyclin-dependent kinase Cdc28, resulting in delayed mitosis and prolonged polarized growth. Reinstatement of Hsp90 or Cdc28 expression resulted in shortened cells that formed smaller groups with reduced multicellular fitness. Together, our results show how ancient protein folding systems can be tuned to drive rapid evolution at a new level of biological individuality by revealing novel developmental phenotypes.
Collapse
Affiliation(s)
- Kristopher Montrose
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - Dung T. Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Anthony J. Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences (QBioS)
| | - G. Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Mikaela Hukkanen
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Juha Saarikangas
- Helsinki Institute of Life Science, HiLIFE, University of Helsinki
- Faculty of Biological and Environmental Sciences, University of Helsinki
| |
Collapse
|
13
|
Copeland R, Zhang C, Hammer BK, Yunker PJ. Spatial constraints and stochastic seeding subvert microbial arms race. PLoS Comput Biol 2024; 20:e1011807. [PMID: 38277405 PMCID: PMC10849242 DOI: 10.1371/journal.pcbi.1011807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 02/07/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024] Open
Abstract
Surface attached communities of microbes grow in a wide variety of environments. Often, the size of these microbial community is constrained by their physical surroundings. However, little is known about how size constraints of a colony impact the outcome of microbial competitions. Here, we use individual-based models to simulate contact killing between two bacterial strains with different killing rates in a wide range of community sizes. We found that community size has a substantial impact on outcomes; in fact, in some competitions the identity of the most fit strain differs in large and small environments. Specifically, when at a numerical disadvantage, the strain with the slow killing rate is more successful in smaller environments than in large environments. The improved performance in small spaces comes from finite size effects; stochastic fluctuations in the initial relative abundance of each strain in small environments lead to dramatically different outcomes. However, when the slow killing strain has a numerical advantage, it performs better in large spaces than in small spaces, where stochastic fluctuations now aid the fast killing strain in small communities. Finally, we experimentally validate these results by confining contact killing strains of Vibrio cholerae in transmission electron microscopy grids. The outcomes of these experiments are consistent with our simulations. When rare, the slow killing strain does better in small environments; when common, the slow killing strain does better in large environments. Together, this work demonstrates that finite size effects can substantially modify antagonistic competitions, suggesting that colony size may, at least in part, subvert the microbial arms race.
Collapse
Affiliation(s)
- Raymond Copeland
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Christopher Zhang
- Interdisciplinary Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Brian K Hammer
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia, United States of America
| |
Collapse
|
14
|
Day TC, Zamani-Dahaj SA, Bozdag GO, Burnetti AJ, Bingham EP, Conlin PL, Ratcliff WC, Yunker PJ. Morphological Entanglement in Living Systems. PHYSICAL REVIEW. X 2024; 14:011008. [PMID: 39479526 PMCID: PMC11524534 DOI: 10.1103/physrevx.14.011008] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Many organisms exhibit branching morphologies that twist around each other and become entangled. Entanglement occurs when different objects interlock with each other, creating complex and often irreversible configurations. This physical phenomenon is well studied in nonliving materials, such as granular matter, polymers, and wires, where it has been shown that entanglement is highly sensitive to the geometry of the component parts. However, entanglement is not yet well understood in living systems, despite its presence in many organisms. In fact, recent work has shown that entanglement can evolve rapidly and play a crucial role in the evolution of tough, macroscopic multicellular groups. Here, through a combination of experiments, simulations, and numerical analyses, we show that growth generically facilitates entanglement for a broad range of geometries. We find that experimentally grown entangled branches can be difficult or even impossible to disassemble through translation and rotation of rigid components, suggesting that there are many configurations of branches that growth can access that agitation cannot. We use simulations to show that branching trees readily grow into entangled configurations. In contrast to nongrowing entangled materials, these trees entangle for a broad range of branch geometries. We, thus, propose that entanglement via growth is largely insensitive to the geometry of branched trees but, instead, depends sensitively on timescales, ultimately achieving an entangled state once sufficient growth has occurred. We test this hypothesis in experiments with snowflake yeast, a model system of undifferentiated, branched multicellularity, showing that lengthening the time of growth leads to entanglement and that entanglement via growth can occur for a wide range of geometries. Taken together, our work demonstrates that entanglement is more readily achieved in living systems than in their nonliving counterparts, providing a widely accessible and powerful mechanism for the evolution of novel biological material properties.
Collapse
Affiliation(s)
- Thomas C Day
- School of Physics, Georgia Institute of Technology
| | | | - G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology
| | | | | | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology
| | | | | |
Collapse
|
15
|
Larson BT. Perspectives on Principles of Cellular Behavior from the Biophysics of Protists. Integr Comp Biol 2023; 63:1405-1421. [PMID: 37496203 PMCID: PMC10755178 DOI: 10.1093/icb/icad106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/28/2023] Open
Abstract
Cells are the fundamental unit of biological organization. Although it may be easy to think of them as little more than the simple building blocks of complex organisms such as animals, single cells are capable of behaviors of remarkable apparent sophistication. This is abundantly clear when considering the diversity of form and function among the microbial eukaryotes, the protists. How might we navigate this diversity in the search for general principles of cellular behavior? Here, we review cases in which the intensive study of protists from the perspective of cellular biophysics has driven insight into broad biological questions of morphogenesis, navigation and motility, and decision making. We argue that applying such approaches to questions of evolutionary cell biology presents rich, emerging opportunities. Integrating and expanding biophysical studies across protist diversity, exploiting the unique characteristics of each organism, will enrich our understanding of general underlying principles.
Collapse
Affiliation(s)
- Ben T Larson
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| |
Collapse
|
16
|
Nanda P, Barrere J, LaBar T, Murray AW. Multicellular growth as a dynamic network of cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.565242. [PMID: 37961646 PMCID: PMC10635083 DOI: 10.1101/2023.11.02.565242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cell division without cell separation produces multicellular clusters in budding yeast. Two fundamental characteristics of these clusters are their size (the number of cells per cluster) and cellular composition: the fractions of cells with different phenotypes. However, we do not understand how different cellular features quantitatively influence these two phenotypes. Using cells as nodes and links between mother and daughter cells as edges, we model cluster growth and breakage by varying three parameters: the cell division rate, the rate at which intercellular connections break, and the kissing number (the maximum number of connections to one cell). We find that the kissing number sets the maximum possible cluster size. Below this limit, the ratio of the cell division rate to the connection breaking rate determines the cluster size. If links have a constant probability of breaking per unit time, the probability that a link survives decreases exponentially with its age. Modeling this behavior recapitulates experimental data. We then use this framework to examine synthetic, differentiating clusters with two cell types, faster-growing germ cells and their somatic derivatives. The fraction of clusters that contain both cell types increases as either of two parameters increase: the kissing number and difference between the growth rate of germ and somatic cells. In a population of clusters, the variation in cellular composition is inversely correlated (r2=0.87) with the average fraction of somatic cells in clusters. Our results show how a small number of cellular features can control the phenotypes of multicellular clusters that were potentially the ancestors of more complex forms of multicellular development, organization, and reproduction.
Collapse
Affiliation(s)
- Piyush Nanda
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, MA 02115, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Julien Barrere
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Andrew W. Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
17
|
Pentz JT, MacGillivray K, DuBose JG, Conlin PL, Reinhardt E, Libby E, Ratcliff WC. Evolutionary consequences of nascent multicellular life cycles. eLife 2023; 12:e84336. [PMID: 37889142 PMCID: PMC10611430 DOI: 10.7554/elife.84336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
A key step in the evolutionary transition to multicellularity is the origin of multicellular groups as biological individuals capable of adaptation. Comparative work, supported by theory, suggests clonal development should facilitate this transition, although this hypothesis has never been tested in a single model system. We evolved 20 replicate populations of otherwise isogenic clonally reproducing 'snowflake' yeast (Δace2/∆ace2) and aggregative 'floc' yeast (GAL1p::FLO1 /GAL1p::FLO1) with daily selection for rapid growth in liquid media, which favors faster cell division, followed by selection for rapid sedimentation, which favors larger multicellular groups. While both genotypes adapted to this regime, growing faster and having higher survival during the group-selection phase, there was a stark difference in evolutionary dynamics. Aggregative floc yeast obtained nearly all their increased fitness from faster growth, not improved group survival; indicating that selection acted primarily at the level of cells. In contrast, clonal snowflake yeast mainly benefited from higher group-dependent fitness, indicating a shift in the level of Darwinian individuality from cells to groups. Through genome sequencing and mathematical modeling, we show that the genetic bottlenecks in a clonal life cycle also drive much higher rates of genetic drift-a result with complex implications for this evolutionary transition. Our results highlight the central role that early multicellular life cycles play in the process of multicellular adaptation.
Collapse
Affiliation(s)
| | - Kathryn MacGillivray
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of TechnologyAtlantaUnited States
| | - James G DuBose
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Emma Reinhardt
- Department of Biology, University of North Carolina at Chapel HillChapel HillUnited States
| | | | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
18
|
Arenzon JJ, Peliti L. Emergent cooperative behavior in transient compartments. Phys Rev E 2023; 108:034409. [PMID: 37849208 DOI: 10.1103/physreve.108.034409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 09/07/2023] [Indexed: 10/19/2023]
Abstract
We introduce a minimal model of multilevel selection on structured populations, considering the interplay between game theory and population dynamics. Through a bottleneck process, finite groups are formed with cooperators and defectors sampled from an infinite pool. After the fragmentation, these transient compartments grow until the maximal number of individuals per compartment is attained. Eventually, all compartments are merged and well mixed, and the whole process is repeated. We show that cooperators, even if interacting only through mean-field intragroup interactions that favor defectors, may perform well because of the intergroup competition and the size diversity among the compartments. These cycles of isolation and coalescence may therefore be important in maintaining diversity among different species or strategies and may help to understand the underlying mechanisms of the scaffolding processes in the transition to multicellularity.
Collapse
Affiliation(s)
- Jeferson J Arenzon
- Instituto de Física, Universidade Federal do Rio Grande do Sul, CP 15051, 91501-970 Porto Alegre RS, Brazil
- Instituto Nacional de Ciência e Tecnologia-Sistemas Complexos, 22290-180 Rio de Janeiro RJ, Brazil
| | - Luca Peliti
- Santa Marinella Research Institute, 00058 Santa Marinella (RM), Italy
| |
Collapse
|
19
|
Zamani-Dahaj SA, Burnetti A, Day TC, Yunker PJ, Ratcliff WC, Herron MD. Spontaneous Emergence of Multicellular Heritability. Genes (Basel) 2023; 14:1635. [PMID: 37628687 PMCID: PMC10454505 DOI: 10.3390/genes14081635] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
The major transitions in evolution include events and processes that result in the emergence of new levels of biological individuality. For collectives to undergo Darwinian evolution, their traits must be heritable, but the emergence of higher-level heritability is poorly understood and has long been considered a stumbling block for nascent evolutionary transitions. Using analytical models, synthetic biology, and biologically-informed simulations, we explored the emergence of trait heritability during the evolution of multicellularity. Prior work on the evolution of multicellularity has asserted that substantial collective-level trait heritability either emerges only late in the transition or requires some evolutionary change subsequent to the formation of clonal multicellular groups. In a prior analytical model, we showed that collective-level heritability not only exists but is usually more heritable than the underlying cell-level trait upon which it is based, as soon as multicellular groups form. Here, we show that key assumptions and predictions of that model are borne out in a real engineered biological system, with important implications for the emergence of collective-level heritability.
Collapse
Affiliation(s)
- Seyed Alireza Zamani-Dahaj
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Anthony Burnetti
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Thomas C. Day
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - Peter J. Yunker
- Georgia Institute of Technology, School of Physics, Atlanta, GA 30332, USA; (T.C.D.); (P.J.Y.)
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| | - Matthew D. Herron
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (A.B.); (M.D.H.)
| |
Collapse
|
20
|
Chavhan Y, Dey S, Lind PA. Bacteria evolve macroscopic multicellularity by the genetic assimilation of phenotypically plastic cell clustering. Nat Commun 2023; 14:3555. [PMID: 37322016 PMCID: PMC10272148 DOI: 10.1038/s41467-023-39320-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
The evolutionary transition from unicellularity to multicellularity was a key innovation in the history of life. Experimental evolution is an important tool to study the formation of undifferentiated cellular clusters, the likely first step of this transition. Although multicellularity first evolved in bacteria, previous experimental evolution research has primarily used eukaryotes. Moreover, it focuses on mutationally driven (and not environmentally induced) phenotypes. Here we show that both Gram-negative and Gram-positive bacteria exhibit phenotypically plastic (i.e., environmentally induced) cell clustering. Under high salinity, they form elongated clusters of ~ 2 cm. However, under habitual salinity, the clusters disintegrate and grow planktonically. We used experimental evolution with Escherichia coli to show that such clustering can be assimilated genetically: the evolved bacteria inherently grow as macroscopic multicellular clusters, even without environmental induction. Highly parallel mutations in genes linked to cell wall assembly formed the genomic basis of assimilated multicellularity. While the wildtype also showed cell shape plasticity across high versus low salinity, it was either assimilated or reversed after evolution. Interestingly, a single mutation could genetically assimilate multicellularity by modulating plasticity at multiple levels of organization. Taken together, we show that phenotypic plasticity can prime bacteria for evolving undifferentiated macroscopic multicellularity.
Collapse
Affiliation(s)
- Yashraj Chavhan
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
| | - Sutirth Dey
- Indian Institute of Science Education and Research (IISER) Pune, Pune, India
| | - Peter A Lind
- Department of Molecular Biology, Umeå University, Umeå, Sweden.
- Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.
| |
Collapse
|
21
|
Bozdag GO, Zamani-Dahaj SA, Day TC, Kahn PC, Burnetti AJ, Lac DT, Tong K, Conlin PL, Balwani AH, Dyer EL, Yunker PJ, Ratcliff WC. De novo evolution of macroscopic multicellularity. Nature 2023; 617:747-754. [PMID: 37165189 PMCID: PMC10425966 DOI: 10.1038/s41586-023-06052-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/05/2023] [Indexed: 05/12/2023]
Abstract
While early multicellular lineages necessarily started out as relatively simple groups of cells, little is known about how they became Darwinian entities capable of sustained multicellular evolution1-3. Here we investigate this with a multicellularity long-term evolution experiment, selecting for larger group size in the snowflake yeast (Saccharomyces cerevisiae) model system. Given the historical importance of oxygen limitation4, our ongoing experiment consists of three metabolic treatments5-anaerobic, obligately aerobic and mixotrophic yeast. After 600 rounds of selection, snowflake yeast in the anaerobic treatment group evolved to be macroscopic, becoming around 2 × 104 times larger (approximately mm scale) and about 104-fold more biophysically tough, while retaining a clonal multicellular life cycle. This occurred through biophysical adaptation-evolution of increasingly elongate cells that initially reduced the strain of cellular packing and then facilitated branch entanglements that enabled groups of cells to stay together even after many cellular bonds fracture. By contrast, snowflake yeast competing for low oxygen5 remained microscopic, evolving to be only around sixfold larger, underscoring the critical role of oxygen levels in the evolution of multicellular size. Together, this research provides unique insights into an ongoing evolutionary transition in individuality, showing how simple groups of cells overcome fundamental biophysical limitations through gradual, yet sustained, multicellular evolution.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Seyed Alireza Zamani-Dahaj
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Penelope C Kahn
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Anthony J Burnetti
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Dung T Lac
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Kai Tong
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter L Conlin
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aishwarya H Balwani
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Eva L Dyer
- School of Electrical & Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Peter J Yunker
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
22
|
Pineau RM, Demory D, Libby E, Lac DT, Day TC, Bravo P, Yunker PJ, Weitz JS, Bozdag GO, Ratcliff WC. Emergence and maintenance of stable coexistence during a long-term multicellular evolution experiment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.19.524803. [PMID: 36711513 PMCID: PMC9882323 DOI: 10.1101/2023.01.19.524803] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The evolution of multicellular life spurred evolutionary radiations, fundamentally changing many of Earth’s ecosystems. Yet little is known about how early steps in the evolution of multicellularity transform eco-evolutionary dynamics, e.g., via niche expansion processes that may facilitate coexistence. Using long-term experimental evolution in the snowflake yeast model system, we show that the evolution of multicellularity drove niche partitioning and the adaptive divergence of two distinct, specialized lineages from a single multicellular ancestor. Over 715 daily transfers, snowflake yeast were subject to selection for rapid growth in rich media, followed by selection favoring larger group size. Both small and large cluster-forming lineages evolved from a monomorphic ancestor, coexisting for over ~4,300 generations. These small and large sized snowflake yeast lineages specialized on divergent aspects of a trade-off between growth rate and survival, mirroring predictions from ecological theory. Through modeling and experimentation, we demonstrate that coexistence is maintained by a trade-off between organismal size and competitiveness for dissolved oxygen. Taken together, this work shows how the evolution of a new level of biological individuality can rapidly drive adaptive diversification and the expansion of a nascent multicellular niche, one of the most historically-impactful emergent properties of this evolutionary transition.
Collapse
|
23
|
Kobayashi M, Tomoda K, Morihara H, Asahi M, Shimizu T, Kumagai S. Non-thermal atmospheric-pressure plasma potentiates mesodermal differentiation of human induced pluripotent stem cells. Heliyon 2022; 8:e12009. [PMID: 36506411 PMCID: PMC9727642 DOI: 10.1016/j.heliyon.2022.e12009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/08/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Non-thermal atmospheric-pressure plasma has been used for biological applications, including sterilization and stimulation of cell growth and differentiation. Here, we demonstrate that plasma exposure influences the differentiation pattern of human induced pluripotent stem cells (hiPSCs). We treated hiPSCs with dielectric barrier-discharge air plasma and found an exposure dose that does not kill hiPSCs. Immunohistochemical staining for E-CADHERIN showed that the exposure affected cell-cell attachment and doubled the average size of the hiPSCs. Analysis of mRNAs in embryoid bodies (EBs) from plasma-treated hiPSCs revealed repression of ectoderm genes, including WNT1, and increased expression of mesoderm genes. Importantly, hiPSCs deficient in DNA repair only displayed minimal damage after plasma exposure. Collectively, our results suggest that plasma treatment can be another tool for directing the fate of pluripotent stem cells without disrupting their genomic integrity.
Collapse
Affiliation(s)
- Mime Kobayashi
- Division of Biological Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan,Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan,Corresponding author.
| | - Kiichiro Tomoda
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan,Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA,Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan
| | - Hirofumi Morihara
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Michio Asahi
- Department of Pharmacology, Osaka Medical and Pharmaceutical University, 2-7 Daigaku-machi, Takatsuki, Osaka 569-8686, Japan
| | - Tetsuji Shimizu
- Research Institute for Advanced Electronics and Photonics, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki 305-8560, Japan
| | - Shinya Kumagai
- Department of Electrical and Electronic Engineering, Meijo University, 1-501 Shiogamaguchi, Tempaku-ku, Nagoya 468-8502, Japan
| |
Collapse
|
24
|
Abstract
The morphogenesis of two-dimensional bacterial colonies has been well studied. However, little is known about the colony morphologies of bacteria growing in three dimensions, despite the prevalence of three-dimensional environments (e.g., soil, inside hosts) as natural bacterial habitats. Using experiments on bacteria in granular hydrogel matrices, we find that dense multicellular colonies growing in three dimensions undergo a common morphological instability and roughen, adopting a characteristic broccoli-like morphology when they exceed a critical size. Analysis of a continuum “active fluid” model of the expanding colony reveals that this behavior originates from an interplay of competition for nutrients with growth-driven colony expansion, both of which vary spatially. These results shed light on the fundamental biophysical principles underlying growth in three dimensions. How do growing bacterial colonies get their shapes? While colony morphogenesis is well studied in two dimensions, many bacteria grow as large colonies in three-dimensional (3D) environments, such as gels and tissues in the body or subsurface soils and sediments. Here, we describe the morphodynamics of large colonies of bacteria growing in three dimensions. Using experiments in transparent 3D granular hydrogel matrices, we show that dense colonies of four different species of bacteria generically become morphologically unstable and roughen as they consume nutrients and grow beyond a critical size—eventually adopting a characteristic branched, broccoli-like morphology independent of variations in the cell type and environmental conditions. This behavior reflects a key difference between two-dimensional (2D) and 3D colonies; while a 2D colony may access the nutrients needed for growth from the third dimension, a 3D colony inevitably becomes nutrient limited in its interior, driving a transition to unstable growth at its surface. We elucidate the onset of the instability using linear stability analysis and numerical simulations of a continuum model that treats the colony as an “active fluid” whose dynamics are driven by nutrient-dependent cellular growth. We find that when all dimensions of the colony substantially exceed the nutrient penetration length, nutrient-limited growth drives a 3D morphological instability that recapitulates essential features of the experimental observations. Our work thus provides a framework to predict and control the organization of growing colonies—as well as other forms of growing active matter, such as tumors and engineered living materials—in 3D environments.
Collapse
|
25
|
Malmi-Kakkada AN, Sinha S, Li X, Thirumalai D. Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism. Biophys J 2022; 121:3719-3729. [PMID: 35505608 PMCID: PMC9617137 DOI: 10.1016/j.bpj.2022.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
We determine how intercellular interactions and mechanical pressure experienced by single cells regulate cell proliferation using a minimal computational model for three-dimensional multicellular spheroid (MCS) growth. We discover that emergent spatial variations in the cell division rate, depending on the location of the cells either at the core or periphery within the MCS, is regulated by intercellular adhesion strength (fad). Varying fad results in nonmonotonic proliferation of cells in the MCS. A biomechanical feedback mechanism coupling the fad and microenvironment-dependent pressure fluctuations relative to a threshold value (pc) determines the onset of a dormant phase, and explains the nonmonotonic proliferation response. Increasing fad from low values enhances cell proliferation because pressure on individual cells is smaller compared with pc. However, at high fad, cells readily become dormant and cannot rearrange effectively in spacetime, leading to arrested cell proliferation. Utilizing our theoretical predictions, we explain experimental data on the impact of adhesion strength on cell proliferation and find good agreement. Our work, which shows that proliferation is regulated by pressure-adhesion feedback mechanism, may be a general feature of multicellular growth.
Collapse
Affiliation(s)
| | - Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas
| | - Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
26
|
Day TC, Márquez-Zacarías P, Bravo P, Pokhrel AR, MacGillivray KA, Ratcliff WC, Yunker PJ. Varied solutions to multicellularity: The biophysical and evolutionary consequences of diverse intercellular bonds. BIOPHYSICS REVIEWS 2022; 3:021305. [PMID: 35673523 PMCID: PMC9164275 DOI: 10.1063/5.0080845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 04/29/2022] [Indexed: 11/16/2022]
Abstract
The diversity of multicellular organisms is, in large part, due to the fact that multicellularity has independently evolved many times. Nonetheless, multicellular organisms all share a universal biophysical trait: cells are attached to each other. All mechanisms of cellular attachment belong to one of two broad classes; intercellular bonds are either reformable or they are not. Both classes of multicellular assembly are common in nature, having independently evolved dozens of times. In this review, we detail these varied mechanisms as they exist in multicellular organisms. We also discuss the evolutionary implications of different intercellular attachment mechanisms on nascent multicellular organisms. The type of intercellular bond present during early steps in the transition to multicellularity constrains future evolutionary and biophysical dynamics for the lineage, affecting the origin of multicellular life cycles, cell-cell communication, cellular differentiation, and multicellular morphogenesis. The types of intercellular bonds used by multicellular organisms may thus result in some of the most impactful historical constraints on the evolution of multicellularity.
Collapse
Affiliation(s)
- Thomas C. Day
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | | | - Aawaz R. Pokhrel
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | | | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter J. Yunker
- School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
27
|
Drug-dependent growth curve reshaping reveals mechanisms of antifungal resistance in Saccharomyces cerevisiae. Commun Biol 2022; 5:292. [PMID: 35361876 PMCID: PMC8971432 DOI: 10.1038/s42003-022-03228-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
Microbial drug resistance is an emerging global challenge. Current drug resistance assays tend to be simplistic, ignoring complexities of resistance manifestations and mechanisms, such as multicellularity. Here, we characterize multicellular and molecular sources of drug resistance upon deleting the AMN1 gene responsible for clumping multicellularity in a budding yeast strain, causing it to become unicellular. Computational analysis of growth curve changes upon drug treatment indicates that the unicellular strain is more sensitive to four common antifungals. Quantitative models uncover entwined multicellular and molecular processes underlying these differences in sensitivity and suggest AMN1 as an antifungal target in clumping pathogenic yeasts. Similar experimental and mathematical modeling pipelines could reveal multicellular and molecular drug resistance mechanisms, leading to more effective treatments against various microbial infections and possibly even cancers. Combined growth curve experiments and quantitative modeling reveal antifungal responses of planktonic yeast, providing a future framework to examine antimicrobial drug resistance.
Collapse
|
28
|
Day TC, Höhn SS, Zamani-Dahaj SA, Yanni D, Burnetti A, Pentz J, Honerkamp-Smith AR, Wioland H, Sleath HR, Ratcliff WC, Goldstein RE, Yunker PJ. Cellular organization in lab-evolved and extant multicellular species obeys a maximum entropy law. eLife 2022; 11:e72707. [PMID: 35188101 PMCID: PMC8860445 DOI: 10.7554/elife.72707] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 01/04/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of multicellular organisms is due in part to their ability to form complex structures. How cells pack in these structures is a fundamental biophysical issue, underlying their functional properties. However, much remains unknown about how cell packing geometries arise, and how they are affected by random noise during growth - especially absent developmental programs. Here, we quantify the statistics of cellular neighborhoods of two different multicellular eukaryotes: lab-evolved 'snowflake' yeast and the green alga Volvox carteri. We find that despite large differences in cellular organization, the free space associated with individual cells in both organisms closely fits a modified gamma distribution, consistent with maximum entropy predictions originally developed for granular materials. This 'entropic' cellular packing ensures a degree of predictability despite noise, facilitating parent-offspring fidelity even in the absence of developmental regulation. Together with simulations of diverse growth morphologies, these results suggest that gamma-distributed cell neighborhood sizes are a general feature of multicellularity, arising from conserved statistics of cellular packing.
Collapse
Affiliation(s)
- Thomas C Day
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Stephanie S Höhn
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Seyed A Zamani-Dahaj
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Quantitative Biosciences Graduate Program, Georgia Institute of TechnologyAtlantaUnited States
| | - David Yanni
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Anthony Burnetti
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Jennifer Pentz
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Department of Molecular Biology, Umeå UniversityUmeåSweden
| | - Aurelia R Honerkamp-Smith
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hugo Wioland
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Hannah R Sleath
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
| | - Raymond E Goldstein
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, University of CambridgeCambridgeUnited Kingdom
| | - Peter J Yunker
- School of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
29
|
Love A, Wagner GP. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 2021; 76:394-413. [PMID: 34962651 PMCID: PMC9303342 DOI: 10.1111/evo.14421] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/19/2021] [Accepted: 10/24/2021] [Indexed: 11/30/2022]
Abstract
It is widely accepted that stressful conditions can facilitate evolutionary change. The mechanisms elucidated thus far accomplish this with a generic increase in heritable variation that facilitates more rapid adaptive evolution, often via plastic modifications of existing characters. Through scrutiny of different meanings of stress in biological research, and an explicit recognition that stressors must be characterized relative to their effect on capacities for maintaining functional integrity, we distinguish between: (1) previously identified stress‐responsive mechanisms that facilitate evolution by maintaining an adaptive fit with the environment, and (2) the co‐option of stress‐responsive mechanisms that are specific to stressors leading to the origin of novelties via compensation. Unlike standard accounts of gene co‐option that identify component sources of evolutionary change, our model documents the cost‐benefit trade‐offs and thereby explains how one mechanism—an immediate response to acute stress—is transformed evolutionarily into another—routine protection from recurring stressors. We illustrate our argument with examples from cell type origination as well as processes and structures at higher levels of organization. These examples suggest a general principle of evolutionary origination based on the capacity to switch between regulatory states related to reproduction and proliferation versus survival and differentiation.
Collapse
Affiliation(s)
- Alan Love
- Department of Philosophy, Minnesota Center for Philosophy of Science, University of Minnesota, Minneapolis, MN, USA
| | - Günter P Wagner
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT-06520.,Yale Systems Biology Institute, West Haven, CT-06516.,Department of Evolutionary Biology, University of Vienna, Austria
| |
Collapse
|
30
|
Bozdag GO, Libby E, Pineau R, Reinhard CT, Ratcliff WC. Oxygen suppression of macroscopic multicellularity. Nat Commun 2021; 12:2838. [PMID: 33990594 PMCID: PMC8121917 DOI: 10.1038/s41467-021-23104-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 04/14/2021] [Indexed: 02/04/2023] Open
Abstract
Atmospheric oxygen is thought to have played a vital role in the evolution of large, complex multicellular organisms. Challenging the prevailing theory, we show that the transition from an anaerobic to an aerobic world can strongly suppress the evolution of macroscopic multicellularity. Here we select for increased size in multicellular 'snowflake' yeast across a range of metabolically-available O2 levels. While yeast under anaerobic and high-O2 conditions evolved to be considerably larger, intermediate O2 constrained the evolution of large size. Through sequencing and synthetic strain construction, we confirm that this is due to O2-mediated divergent selection acting on organism size. We show via mathematical modeling that our results stem from nearly universal evolutionary and biophysical trade-offs, and thus should apply broadly. These results highlight the fact that oxygen is a double-edged sword: while it provides significant metabolic advantages, selection for efficient use of this resource may paradoxically suppress the evolution of macroscopic multicellular organisms.
Collapse
Affiliation(s)
- G Ozan Bozdag
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
| | - Eric Libby
- Integrated Science Lab, Umeå University, Umeå, Sweden
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM, USA
| | - Rozenn Pineau
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Interdisciplinary Graduate Program in Quantitative Biosciences, Georgia Institute of Technology, Georgia, USA
| | - Christopher T Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- NASA Astrobiology Institute, Alternative Earths Team, Riverside, CA, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA.
- NASA Astrobiology Institute, Reliving the Past Team, Atlanta, GA, USA.
| |
Collapse
|
31
|
Isaksson H, Conlin PL, Kerr B, Ratcliff WC, Libby E. The Consequences of Budding versus Binary Fission on Adaptation and Aging in Primitive Multicellularity. Genes (Basel) 2021; 12:661. [PMID: 33924996 PMCID: PMC8145350 DOI: 10.3390/genes12050661] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 01/21/2023] Open
Abstract
Early multicellular organisms must gain adaptations to outcompete their unicellular ancestors, as well as other multicellular lineages. The tempo and mode of multicellular adaptation is influenced by many factors including the traits of individual cells. We consider how a fundamental aspect of cells, whether they reproduce via binary fission or budding, can affect the rate of adaptation in primitive multicellularity. We use mathematical models to study the spread of beneficial, growth rate mutations in unicellular populations and populations of multicellular filaments reproducing via binary fission or budding. Comparing populations once they reach carrying capacity, we find that the spread of mutations in multicellular budding populations is qualitatively distinct from the other populations and in general slower. Since budding and binary fission distribute age-accumulated damage differently, we consider the effects of cellular senescence. When growth rate decreases with cell age, we find that beneficial mutations can spread significantly faster in a multicellular budding population than its corresponding unicellular population or a population reproducing via binary fission. Our results demonstrate that basic aspects of the cell cycle can give rise to different rates of adaptation in multicellular organisms.
Collapse
Affiliation(s)
- Hanna Isaksson
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
| | - Peter L. Conlin
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Ben Kerr
- Department of Biology, BEACON Center for the Study of Evolution in Action, University of Washington, Seattle, WA 98195, USA;
| | - William C. Ratcliff
- Georgia Institute of Technology, School of Biological Sciences, Atlanta, GA 30332, USA; (P.L.C.); (W.C.R.)
| | - Eric Libby
- Department of Mathematics and Mathematical Statistics, Umeå University, 90187 Umeå, Sweden;
- Integrated Science Lab, Umeå University, 90187 Umeå, Sweden
- Santa Fe Institute, Santa Fe, NM 87501, USA
| |
Collapse
|
32
|
Wang X, Zhang D, Dong F, Liu S, Zhang J, Zhao H. Cell differentiation and motion determine the Bacillus subtilis biofilm morphological evolution under the competitive growth. J Basic Microbiol 2021; 61:396-405. [PMID: 33682160 DOI: 10.1002/jobm.202000635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 12/23/2020] [Accepted: 01/12/2021] [Indexed: 11/06/2022]
Abstract
The growth discrepancy of Bacillus subtilis biofilms along different directions under the competitive growth drive the formation of anisotropic biofilm morphology directly. Two biofilms growing from two inoculating positions with different distances exhibit promoting or inhibiting growth behavior. Here we develop an optical imaging technology to observe the cell differentiation and the growth dynamics when the biofilm grows. It shows that the spatiotemporal distribution of different phenotypes affects the biofilm morphological evolution. We develop a program to calculate the velocity of cell motion within the biofilm, which is based on the feature point matching approach. We find the cell differentiation ununiformity in the neighboring region and its opposite region leads to the cell velocity difference in the competitive environment, the different cell motion further influences the biofilm morphology evolution. When biofilms grow with a long inoculating distance, there is always a gap between the them; when biofilms grow with a short inoculating distance, two biofilms gradually merge into a whole. Our work establishes a relationship between microscopic cells and macroscopic biofilm morphological which enables us to study the competitive growth process of biofilms from multiple perspectives.
Collapse
Affiliation(s)
- Xiaoling Wang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China.,School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, USA
| | - Duohuai Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Fulin Dong
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Song Liu
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Jinchang Zhang
- School of Mechanical Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hui Zhao
- University of Chinese Academy of Sciences, State Key Laboratory of Computer Science, Institute of Software, China
| |
Collapse
|
33
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
34
|
From protocells to prototissues: a materials chemistry approach. Biochem Soc Trans 2020; 48:2579-2589. [DOI: 10.1042/bst20200310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/29/2020] [Accepted: 10/05/2020] [Indexed: 12/16/2022]
Abstract
Prototissues comprise free-standing 3D networks of interconnected protocell consortia that communicate and display synergistic functions. Significantly, they can be constructed from functional molecules and materials, providing unprecedented opportunities to design tissue-like architectures that can do more than simply mimic living tissues. They could function under extreme conditions and exhibit a wide range of mechanical properties and bio-inspired metabolic functions. In this perspective, I will start by describing recent advancements in the design and synthetic construction of prototissues. I will then discuss the next challenges and the future impact of this emerging research field, which is destined to find applications in the most diverse areas of science and technology, from biomedical science to environmental science, and soft robotics.
Collapse
|
35
|
Larson BT, Ruiz-Herrero T, Lee S, Kumar S, Mahadevan L, King N. Biophysical principles of choanoflagellate self-organization. Proc Natl Acad Sci U S A 2020; 117:1303-1311. [PMID: 31896587 PMCID: PMC6983409 DOI: 10.1073/pnas.1909447117] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Inspired by the patterns of multicellularity in choanoflagellates, the closest living relatives of animals, we quantify the biophysical processes underlying the morphogenesis of rosette colonies in the choanoflagellate Salpingoeca rosetta We find that rosettes reproducibly transition from an early stage of 2-dimensional (2D) growth to a later stage of 3D growth, despite the underlying variability of the cell lineages. Our perturbative experiments demonstrate the fundamental importance of a basally secreted extracellular matrix (ECM) for rosette morphogenesis and show that the interaction of the ECM with cells in the colony physically constrains the packing of proliferating cells and, thus, controls colony shape. Simulations of a biophysically inspired model that accounts for the size and shape of the individual cells, the fraction of ECM, and its stiffness relative to that of the cells suffices to explain our observations and yields a morphospace consistent with observations across a range of multicellular choanoflagellate colonies. Overall, our biophysical perspective on rosette development complements previous genetic perspectives and, thus, helps illuminate the interplay between cell biology and physics in regulating morphogenesis.
Collapse
Affiliation(s)
- Ben T Larson
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Biophysics Graduate Group, University of California, Berkeley, CA 94720
| | - Teresa Ruiz-Herrero
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138
| | - Stacey Lee
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
| | - Sanjay Kumar
- University of California, Berkeley-University of California, San Francisco Graduate Program in Bioengineering, Department of Bioengineering, University of California, Berkeley, CA 94720
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720
| | - L Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138;
- Department of Physics, Harvard University, Cambridge, MA 02138
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138
- Kavli Institute for NanoBio Science and Technology, Harvard University, Cambridge, MA 02138
| | - Nicole King
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720;
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| |
Collapse
|
36
|
Durand PM, Barreto Filho MM, Michod RE. Cell Death in Evolutionary Transitions in Individuality. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:651-662. [PMID: 31866780 PMCID: PMC6913816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Programmed cell death (PCD) in cell groups and microbial communities affects population structures, nutrient recycling, and sociobiological interactions. A less explored area is the role played by PCD in the emergence of higher-level individuals. Here, we examine how cell death impacted evolutionary transitions in individuality (ETIs). The focus is on three specific ETIs - the emergence of the eukaryote cell, multicellularity, and social insects - and we review the theoretical and empirical evidence for the role of PCD in these three transitions. We find that PCD likely contributed to many of the processes involved in eukaryogenesis and the transition to multicellularity. PCD is important for the formation of cooperative groups and is a mechanism by which mutual dependencies between individuals evolve. PCD is also a conflict mediator and involved in division of labor in social groups and in the origin of new cell types. In multicellularity, PCD facilitates the transfer of fitness to the higher-level individual. In eusocial insects, PCD of the gonadal cells in workers is the basis for conflict mediation and the division of labor in the colony. In the three ETIs discussed here, PCD likely played an essential role, without which alternate mechanisms would have been necessary for these increases in complexity to occur.
Collapse
Affiliation(s)
- Pierre M. Durand
- Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, South Africa,To whom all correspondence should be addressed: Pierre M. Durand, Evolutionary Studies Institute, University of the Witwatersrand, Johannesburg, 2000, South Africa; ; ORCID number 0000-0002-9614-1371
| | - Marcelo M. Barreto Filho
- Post-Graduate Program in Ecology and Natural Resources, Department of Botany, Phycology Laboratory, Federal University of São Carlos, São Carlos, Brazil
| | - Richard E. Michod
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ
| |
Collapse
|
37
|
Gniewek P, Schreck CF, Hallatschek O. Biomechanical Feedback Strengthens Jammed Cellular Packings. PHYSICAL REVIEW LETTERS 2019; 122:208102. [PMID: 31172757 DOI: 10.1103/physrevlett.122.208102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Growth in confined spaces can drive cellular populations through a jamming transition from a fluidlike state to a solidlike state. Experiments have found that jammed budding yeast populations can build up extreme compressive pressures (over 1 MPa), which in turn feed back onto cellular physiology by slowing or even stalling cell growth. Using numerical simulations, we investigate how this feedback impacts the mechanical properties of model jammed cell populations. We find that feedback directs growth toward poorly coordinated regions, resulting in an excess number of cell-cell contacts that rigidify cell packings. Cell packings possess anomalously large shear and bulk moduli that depend sensitively on the strength of feedback. These results demonstrate that mechanical feedback on the single-cell level is a simple mechanism by which living systems may tune their population-level mechanical properties.
Collapse
Affiliation(s)
- Pawel Gniewek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Carl F Schreck
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| | - Oskar Hallatschek
- Departments of Physics and Integrative Biology, University of California, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Gulli JG, Herron MD, Ratcliff WC. Evolution of altruistic cooperation among nascent multicellular organisms. Evolution 2019; 73:1012-1024. [PMID: 30941746 PMCID: PMC6685537 DOI: 10.1111/evo.13727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/13/2019] [Accepted: 03/12/2019] [Indexed: 12/30/2022]
Abstract
Cooperation is a classic solution to hostile environments that limit individual survival. In extreme cases this may lead to the evolution of new types of biological individuals (e.g., eusocial super-organisms). We examined the potential for interindividual cooperation to evolve via experimental evolution, challenging nascent multicellular "snowflake yeast" with an environment in which solitary multicellular clusters experienced low survival. In response, snowflake yeast evolved to form cooperative groups composed of thousands of multicellular clusters that typically survive selection. Group formation occurred through the creation of protein aggregates, only arising in strains with high (>2%) rates of cell death. Nonetheless, it was adaptive and repeatable, although ultimately evolutionarily unstable. Extracellular protein aggregates act as a common good, as they can be exploited by cheats that do not contribute to aggregate production. These results highlight the importance of group formation as a mechanism for surviving environmental stress, and underscore the remarkable ease with which even simple multicellular entities may evolve-and lose-novel social traits.
Collapse
Affiliation(s)
- Jordan G. Gulli
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Matthew D. Herron
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - William C. Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
39
|
Jacobeen S, Graba EC, Brandys CG, Day TC, Ratcliff WC, Yunker PJ. Geometry, packing, and evolutionary paths to increased multicellular size. Phys Rev E 2018; 97:050401. [PMID: 29906891 DOI: 10.1103/physreve.97.050401] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Indexed: 01/09/2023]
Abstract
The evolutionary transition to multicellularity transformed life on earth, heralding the evolution of large, complex organisms. Recent experiments demonstrated that laboratory-evolved multicellular "snowflake yeast" readily overcome the physical barriers that limit cluster size by modifying cellular geometry [Jacobeen et al., Nat. Phys. 14, 286 (2018)10.1038/s41567-017-0002-y]. However, it is unclear why this route to large size is observed, rather than an evolved increase in intercellular bond strength. Here, we use a geometric model of the snowflake yeast growth form to examine the geometric efficiency of increasing size by modifying geometry and bond strength. We find that changing geometry is a far more efficient route to large size than evolving increased intercellular adhesion. In fact, increasing cellular aspect ratio is on average ∼13 times more effective than increasing bond strength at increasing the number of cells in a cluster. Modifying other geometric parameters, such as the geometric arrangement of mother and daughter cells, also had larger effects on cluster size than increasing bond strength. Simulations reveal that as cells reproduce, internal stress in the cluster increases rapidly; thus, increasing bond strength provides diminishing returns in cluster size. Conversely, as cells become more elongated, cellular packing density within the cluster decreases, which substantially decreases the rate of internal stress accumulation. This suggests that geometrically imposed physical constraints may have been a key early selective force guiding the emergence of multicellular complexity.
Collapse
Affiliation(s)
- Shane Jacobeen
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Elyes C Graba
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Colin G Brandys
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Thomas C Day
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - William C Ratcliff
- School of Biological Sciences, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| | - Peter J Yunker
- School of Physics, Georgia Institute of Technology, North Ave NW, Atlanta, GA 30332, USA
| |
Collapse
|
40
|
Rivera-Yoshida N, Arias Del Angel JA, Benítez M. Microbial multicellular development: mechanical forces in action. Curr Opin Genet Dev 2018; 51:37-45. [PMID: 29885639 DOI: 10.1016/j.gde.2018.05.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/11/2018] [Accepted: 05/20/2018] [Indexed: 12/11/2022]
Abstract
Multicellular development occurs in diverse microbial lineages and involves the complex interaction among biochemical, physical and ecological factors. We focus on the mechanical forces that appear to be relevant for the scale and material qualities of individual cells and small cellular conglomerates. We review the effects of such forces on the development of some paradigmatic microorganisms, as well as their overall consequences in multicellular structures. Microbes exhibiting multicellular development have been considered models for the evolutionary transition to multicellularity. Therefore, we discuss how comparative, integrative and dynamic approaches to the mechanical effects involved in microbial development can provide valuable insights into some of the principles behind the evolutionary transition to multicellularity.
Collapse
Affiliation(s)
- Natsuko Rivera-Yoshida
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan A Arias Del Angel
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico; Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mariana Benítez
- Laboratorio Nacional de Ciencias de la Sostenibilidad (LANCIS), Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico; Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México, Mexico City, Mexico.
| |
Collapse
|
41
|
von Bronk B, Götz A, Opitz M. Complex microbial systems across different levels of description. Phys Biol 2018; 15:051002. [PMID: 29757151 DOI: 10.1088/1478-3975/aac473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Complex biological systems offer a variety of interesting phenomena at the different physical scales. With increasing abstraction, details of the microscopic scales can often be extrapolated to average or typical macroscopic properties. However, emergent properties and cross-scale interactions can impede naïve abstractions and necessitate comprehensive investigations of these complex systems. In this review paper, we focus on microbial communities, and first, summarize a general hierarchy of relevant scales and description levels to understand these complex systems: (1) genetic networks, (2) single cells, (3) populations, and (4) emergent multi-cellular properties. Second, we employ two illustrating examples, microbial competition and biofilm formation, to elucidate how cross-scale interactions and emergent properties enrich the observed multi-cellular behavior in these systems. Finally, we conclude with pointing out the necessity of multi-scale investigations to understand complex biological systems and discuss recent investigations.
Collapse
Affiliation(s)
- Benedikt von Bronk
- Faculty of Physics and Center for NanoScience, Ludwig-Maximilians-Universität München, Geschwister-Scholl-Platz 1, D-80539 Munich, Germany
| | | | | |
Collapse
|