1
|
Bakke KM, Bousquet PA, Meltzer S, Bjørnetrø T, Rise F, Wilkins AL, Redalen KR, Ree AH. Serum metabolite levels identify incipient metastatic progression of rectal cancer. COMMUNICATIONS MEDICINE 2025; 5:142. [PMID: 40289234 PMCID: PMC12034819 DOI: 10.1038/s43856-025-00868-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/14/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND The cellular metabolism undergoes reprogramming during the metastatic process. We hypothesised that serum metabolites at the time of primary tumour diagnosis might identify rectal cancer patients prone to metastatic progression. METHODS One hundred twenty-three rectal cancer patients from a prospective observational biomarker study were followed up to 5 years after study entry. We have assessed metabolites in serum sampled at the time of diagnosis by 1H-nuclear magnetic resonance spectroscopy, using the internal reference trimethylsilylpropanoic acid for quantification. RESULTS Here we show that patients who develop overt metastatic disease more than 6 months after the primary tumour diagnosis have elevated serum levels (Kruskal-Wallis test) of alanine (P = 0.005), lactate (P = 0.023), pyruvate (P = 0.041) and citrate (P = 0.007) compared to those without metastases at the 5-year follow-up or with metastases already 6 months or sooner after the cancer diagnosis. Patients with serum citrate above 0.24 mmol/L have poorer progression-free survival compared to those with levels below (P < 0.001; log-rank test). CONCLUSIONS We observe a distinct serum metabolite profile, in particular involving citrate to the best of our knowledge shown for the first time clinically, in rectal cancer patients at heightened risk of metastasis already when the primary tumour is diagnosed, offering insights into the metabolism of metastatic progression.
Collapse
Affiliation(s)
- Kine M Bakke
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway.
- Department of Physics and Computational Radiology, Oslo University Hospital, Oslo, Norway.
| | - Paula A Bousquet
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Sebastian Meltzer
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Tonje Bjørnetrø
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
| | - Frode Rise
- Department of Chemistry, University of Oslo, Oslo, Norway
| | - Alistair L Wilkins
- School of Science and Engineering, University of Waikato, Hamilton, New Zealand
| | - Kathrine Røe Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne Hansen Ree
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
2
|
Wang X, Wang Z, Liu Z, Huang F, Pan Z, Zhang Z, Liu T. Nutritional strategies in oncology: The role of dietary patterns in modulating tumor progression and treatment response. Biochim Biophys Acta Rev Cancer 2025; 1880:189322. [PMID: 40228747 DOI: 10.1016/j.bbcan.2025.189322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/08/2025] [Accepted: 04/10/2025] [Indexed: 04/16/2025]
Abstract
Dietary interventions can influence tumor growth by restricting tumor-specific nutritional requirements, altering the nutrient availability in the tumor microenvironment, or enhancing the cytotoxicity of anticancer drugs. Metabolic reprogramming of tumor cells, as a significant hallmark of tumor progression, has a profound impact on immune regulation, severely hindering tumor eradication. Dietary interventions can modify tumor metabolic processes to some extent, thereby further improving the efficacy of tumor treatment. In this review, we emphasize the impact of dietary patterns on tumor progression. By exploring the metabolic differences of nutrients in normal cells versus cancer cells, we further clarify how dietary patterns influence cancer treatment. We also discuss the effects of dietary patterns on traditional treatments such as immunotherapy, chemotherapy, radiotherapy, and the gut microbiome, thereby underscoring the importance of precision nutrition.
Collapse
Affiliation(s)
- Xueying Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zeyao Wang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zihan Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Fanxuan Huang
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Zhaoyu Pan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Hunan, China
| | - Zhiren Zhang
- Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China; Departments of Cardiology and Pharmacy and Breast Cancer surgery, Harbin Medical University Cancer Hospital, Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, China.
| | - Tong Liu
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China; Departments of Cardiology and Critical Care Medicine, The First Affiliated Hospital of Harbin Medical University, NHC Key Laboratory of Cell Transplantation, Key Laboratories of Education Ministry for Myocardial Ischemia Mechanism and Treatment, Harbin, China.
| |
Collapse
|
3
|
Gand L, Lanzuolo C, Li M, Rosti V, Weber N, Lu D, Bär C, Thum T, Pich A, Kraft T, Amrute‐Nayak M, Nayak A. Calcium Handling Machinery and Sarcomere Assembly are Impaired Through Multipronged Mechanisms in Cancer Cytokine-Induced Cachexia. J Cachexia Sarcopenia Muscle 2025; 16:e13776. [PMID: 40183240 PMCID: PMC11969248 DOI: 10.1002/jcsm.13776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 04/05/2025] Open
Abstract
AbstractBackgroundCachexia is a severe form of muscle wasting disorder particularly observed in patients with advanced cancer. The absence of effective strategies to ameliorate cachexia indicates our poor understanding of the mechanisms of cachexia. By employing system‐wide approaches, we investigated molecular mechanisms underlying cancer secreted pro‐inflammatory cytokine‐induced cachexia (CIC).MethodsAs cellular model systems, we employed mouse satellite stem cell‐derived primary muscle cells, mouse C2C12 myoblast progenitor cell‐derived myotubes, and neonatal rat cardiomyocytes. We induced CIC by incubating striated muscle cells with pro‐inflammatory cytokines TNF‐α and IFN‐γ. To understand the physiological effects of CIC, we probed the contractile properties of muscle cells following electrical stimulation and measured intracellular calcium transients. Effects of CIC on sarcomere organization were monitored by confocal microscopy. Large‐scale quantitative proteomics and RNA sequencing assays enabled us to examine molecular mechanisms underlying CIC. Using chromatin immunoprecipitation experiments, chromatin signalling and modulation of epigenetic marks on muscle‐specific genes were investigated.ResultsHere, we observed a drastic loss of striated muscle cell contraction in CIC, primarily, due to acutely disorganized sarcomere structures and impeded calcium handling process. In calcium transients, the extent of calcium (Ca2+) release, as indicated by the calcium amplitude during the excitation–contraction coupling (ECC) process, was reduced (19.6 ± 2.35% in control to 8.6 ± 1.52% in CIC, p = 4.8 * 10−11). Kinetics of calcium transients, i.e., the Ca2+ release rate (26 ± 0.5 ms in control to 29 ± 5.1 ms in CIC, median p = 0.014), and calcium re‐uptake rate (137 ± 13 ms in control to 185 ± 24 ms in CIC, p = 0.032) were both prolonged. Proteomic analysis showed altered proteostasis in CIC, particularly related to sarcomere and sarcoplasmic reticulum (SR). Transcriptomic analysis unravelled upstream deregulation of global transcriptional events for sarcomeric and SR genes. Mechanistically, chromatin loading of transcriptionally active RNA Polymerase II on muscle‐specific genes, including Myh1 and Atp2a1, was impeded. This was due to diminished transcriptionally active epigenetic marks H3K4 trimethylation on Myh1 and Atp2a1, resulted in lower transcriptional activity of these muscle‐specific genes in CIC and ultimately reduced MyHC‐IId molecular motor protein and SERCA1 protein levels.ConclusionsOur top‐down approach elucidated that the altered transcriptional mechanism and proteomic state perturbed functionally related machinery responsible for calcium handling and sarcomere organization in CIC. Knowledge of the underlying cause of muscle mass loss and compromised muscle function is key for developing therapeutic solutions to ameliorate cachectic conditions.
Collapse
Affiliation(s)
- Luis Vincens Gand
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Mugeng Li
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | - Valentina Rosti
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’MilanItaly
- Institute of Biomedical TechnologiesNational Research CouncilMilanItaly
| | - Natalie Weber
- Institute of Molecular and Translational Therapeutic StrategiesHannover Medical SchoolHannoverGermany
| | - Dongchao Lu
- Institute of Molecular and Translational Therapeutic StrategiesHannover Medical SchoolHannoverGermany
| | - Christian Bär
- Institute of Molecular and Translational Therapeutic StrategiesHannover Medical SchoolHannoverGermany
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM)Fraunhofer Cluster of Excellence Immune‐Mediated Diseases (CIMD)HannoverGermany
| | - Thomas Thum
- Institute of Molecular and Translational Therapeutic StrategiesHannover Medical SchoolHannoverGermany
| | - Andreas Pich
- Institute of Toxicology, Core Facility ProteomicsHannover Medical SchoolGermany
| | - Theresia Kraft
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | - Mamta Amrute‐Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| | - Arnab Nayak
- Institute of Molecular and Cell PhysiologyHannover Medical SchoolHannoverGermany
| |
Collapse
|
4
|
Hamada T, Masuda A, Michihata N, Saito T, Tsujimae M, Takenaka M, Omoto S, Iwashita T, Uemura S, Ota S, Shiomi H, Fujisawa T, Takahashi S, Matsubara S, Suda K, Matsui H, Maruta A, Yoshida K, Iwata K, Okuno M, Hayashi N, Mukai T, Fushimi K, Yasuda I, Isayama H, Yasunaga H, Nakai Y. Comorbidity burden and outcomes of endoscopic ultrasound-guided treatment of pancreatic fluid collections: Multicenter study with nationwide data-based validation. Dig Endosc 2025; 37:413-425. [PMID: 39325002 PMCID: PMC11986896 DOI: 10.1111/den.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/25/2024] [Indexed: 09/27/2024]
Abstract
OBJECTIVES The appropriate holistic management is mandatory for successful endoscopic ultrasound (EUS)-guided treatment of pancreatic fluid collections (PFCs). However, comorbidity status has not been fully examined in relation to clinical outcomes of this treatment. METHODS Using a multi-institutional cohort of 406 patients receiving EUS-guided treatment of PFCs in 2010-2020, we examined the associations of Charlson Comorbidity Index (CCI) with in-hospital mortality and other clinical outcomes. Multivariable logistic regression analysis was conducted with adjustment for potential confounders. The findings were validated using a Japanese nationwide inpatient database including 4053 patients treated at 486 hospitals in 2010-2020. RESULTS In the clinical multi-institutional cohort, CCI was positively associated with the risk of in-hospital mortality (Ptrend < 0.001). Compared to patients with CCI = 0, patients with CCI of 1-2, 3-5, and ≥6 had adjusted odds ratios (95% confidence intervals) of 0.76 (0.22-2.54), 5.39 (1.74-16.7), and 8.77 (2.36-32.6), respectively. In the nationwide validation cohort, a similar positive association was observed; the corresponding odds ratios (95% confidence interval) were 1.21 (0.90-1.64), 1.52 (0.92-2.49), and 4.84 (2.63-8.88), respectively (Ptrend < 0.001). The association of higher CCI with longer length of stay was observed in the nationwide cohort (Ptrend < 0.001), but not in the clinical cohort (Ptrend = 0.18). CCI was not associated with the risk of procedure-related adverse events. CONCLUSIONS Higher levels of CCI were associated with a higher risk of in-hospital mortality among patients receiving EUS-guided treatment of PFCs, suggesting the potential of CCI in stratifying the periprocedural mortality risk. TRIAL REGISTRATION The research based on the clinical data from the WONDERFUL cohort was registered with UMIN-CTR (registration number UMIN000044130).
Collapse
Affiliation(s)
- Tsuyoshi Hamada
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Hepato‐Biliary‐Pancreatic Medicine, Cancer Institute HospitalJapanese Foundation for Cancer ResearchTokyoJapan
| | - Atsuhiro Masuda
- Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineHyogoJapan
| | - Nobuaki Michihata
- Department of Health Services Research, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Tomotaka Saito
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
| | - Masahiro Tsujimae
- Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineHyogoJapan
| | - Mamoru Takenaka
- Department of Gastroenterology and Hepatology, Faculty of MedicineKindai UniversityOsakaJapan
| | - Shunsuke Omoto
- Department of Gastroenterology and Hepatology, Faculty of MedicineKindai UniversityOsakaJapan
| | - Takuji Iwashita
- First Department of Internal MedicineGifu University HospitalGifuJapan
| | - Shinya Uemura
- First Department of Internal MedicineGifu University HospitalGifuJapan
| | - Shogo Ota
- Division of Gastroenterology, Department of Internal MedicineKobe University Graduate School of MedicineHyogoJapan
- Division of Hepatobiliary and Pancreatic Diseases, Department of GastroenterologyHyogo Medical UniversityHyogoJapan
| | - Hideyuki Shiomi
- Division of Hepatobiliary and Pancreatic Diseases, Department of GastroenterologyHyogo Medical UniversityHyogoJapan
| | - Toshio Fujisawa
- Department of Gastroenterology, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Sho Takahashi
- Department of Gastroenterology, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Saburo Matsubara
- Department of Gastroenterology and Hepatology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Kentaro Suda
- Department of Gastroenterology and Hepatology, Saitama Medical CenterSaitama Medical UniversitySaitamaJapan
| | - Hiroki Matsui
- Department of Clinical Epidemiology and Health Economics, School of Public HealthThe University of TokyoTokyoJapan
| | - Akinori Maruta
- Department of GastroenterologyGifu Prefectural General Medical CenterGifuJapan
| | - Kensaku Yoshida
- Department of GastroenterologyGifu Prefectural General Medical CenterGifuJapan
| | - Keisuke Iwata
- Department of GastroenterologyGifu Municipal HospitalGifuJapan
| | - Mitsuru Okuno
- Department of GastroenterologyGifu Municipal HospitalGifuJapan
| | - Nobuhiko Hayashi
- Third Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Tsuyoshi Mukai
- Department of Gastroenterological EndoscopyKanazawa Medical UniversityIshikawaJapan
| | - Kiyohide Fushimi
- Department of Health Policy and Informatics, Graduate School of Medical and Dental SciencesTokyo Medical and Dental UniversityTokyoJapan
| | - Ichiro Yasuda
- Third Department of Internal MedicineUniversity of ToyamaToyamaJapan
| | - Hiroyuki Isayama
- Department of Gastroenterology, Graduate School of MedicineJuntendo UniversityTokyoJapan
| | - Hideo Yasunaga
- Department of Clinical Epidemiology and Health Economics, School of Public HealthThe University of TokyoTokyoJapan
| | - Yousuke Nakai
- Department of Gastroenterology, Graduate School of MedicineThe University of TokyoTokyoJapan
- Department of Endoscopy and Endoscopic SurgeryThe University of Tokyo HospitalTokyoJapan
| |
Collapse
|
5
|
Gu X, Lu S, Xu S, Li Y, Fan M, Lin G, Liu Y, Zhao Y, Zhao W, Liu X, Dong X, Zhang X. Novel oral compound Z526 mitigates cancer-associated cachexia via intervening NF-κB signaling and oxidative stress. Genes Dis 2025; 12:101292. [PMID: 39759112 PMCID: PMC11697116 DOI: 10.1016/j.gendis.2024.101292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 01/07/2025] Open
Abstract
Cancer-associated cachexia (CAC) is a severe metabolic disorder syndrome mainly characterized by muscle and fat loss, which accounts for one-third of cancer-related deaths. No effective therapeutic approach that could fully reverse CAC is available. NF-κB signaling and oxidative stress play vital roles in both muscle atrophy and fat loss in CAC. Here, we showed that our developed oral compound Z526 exhibited potent anti-CAC efficacy by inhibiting NF-κB signaling and ameliorating oxidative stress. In vitro, Z526 alleviated C2C12 myotube atrophy and 3T3-L1 adipocyte lipolysis induced by conditioned mediums of multiple cachectic tumor cells or pro-cachectic inflammatory cytokines. In vivo, Z526 attenuated the cachectic symptoms of C26 or LLC tumor-bearing mice. Z526 treatment reduced weight loss without impacting tumor growth and improved muscle atrophy, fat loss, and impaired grip force. Besides, serum TNF-α and IL-6 levels were reduced after Z526 treatment in C26 tumor-bearing mice. Of note, Z526 significantly prolonged the survival of LLC tumor-bearing mice. Activated NF-κB signaling and oxidative stress in cachectic muscle and fat tissues were reversed by Z526. Furthermore, Z526 exhibited a promising preclinical safety profile. Thus, oral Z526, which exhibited potent anti-CAC activities in vitro and in vivo, multiple interventions in diverse pathogenic mechanisms (NF-κB signaling and oxidative stress), and a favorable preclinical safety profile, holds the promise to be developed into a novel and beneficial therapeutic option for CAC.
Collapse
Affiliation(s)
- Xiaofan Gu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shanshan Lu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Shuang Xu
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiwei Li
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Meng Fan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Guangyu Lin
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Yiyuan Liu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Yun Zhao
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Weili Zhao
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xuan Liu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaochun Dong
- Department of Medicinal Chemistry, School of Pharmacy, Fudan University, Shanghai 201210, China
| | - Xiongwen Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| |
Collapse
|
6
|
Zhang C. Neural pathways of nausea and roles in energy balance. Curr Opin Neurobiol 2025; 90:102963. [PMID: 39765206 PMCID: PMC11839311 DOI: 10.1016/j.conb.2024.102963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/18/2025]
Abstract
Our internal sensory systems encode various gut-related sensations, such as hunger, feelings of fullness, and nausea. These internal feelings influence our eating behaviors and play a vital role in regulating energy balance. Among them, the neurological basis for nausea has been the least well characterized, which has hindered comprehension of the connection between these sensations. Single-cell sequencing, along with functional mapping, has brought clarity to the neural pathways of nausea involving the brainstem area postrema. In addition, the newly discovered nausea sensory signals have deepened our understanding of the area postrema in regulating feeding behaviors. Nausea has significant clinical implications, especially in developing drugs for weight loss and metabolism. This review summarizes recent research on the neural pathways of nausea, particularly highlighting their contribution to energy balance.
Collapse
Affiliation(s)
- Chuchu Zhang
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
7
|
Hanahan D, Michielin O, Pittet MJ. Convergent inducers and effectors of T cell paralysis in the tumour microenvironment. Nat Rev Cancer 2025; 25:41-58. [PMID: 39448877 DOI: 10.1038/s41568-024-00761-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 10/26/2024]
Abstract
Tumorigenesis embodies the formation of a heterotypic tumour microenvironment (TME) that, among its many functions, enables the evasion of T cell-mediated immune responses. Remarkably, most TME cell types, including cancer cells, fibroblasts, myeloid cells, vascular endothelial cells and pericytes, can be stimulated to deploy immunoregulatory programmes. These programmes involve regulatory inducers (signals-in) and functional effectors (signals-out) that impair CD8+ and CD4+ T cell activity through cytokines, growth factors, immune checkpoints and metabolites. Some signals target specific cell types, whereas others, such as transforming growth factor-β (TGFβ) and prostaglandin E2 (PGE2), exert broad, pleiotropic effects; as signals-in, they trigger immunosuppressive programmes in most TME cell types, and as signals-out, they directly inhibit T cells and also modulate other cells to reinforce immunosuppression. This functional diversity and redundancy pose a challenge for therapeutic targeting of the immune-evasive TME. Fundamentally, the commonality of regulatory programmes aimed at abrogating T cell activity, along with paracrine signalling between cells of the TME, suggests that many normal cell types are hard-wired with latent functions that can be triggered to prevent inappropriate immune attack. This intrinsic capability is evidently co-opted throughout the TME, enabling tumours to evade immune destruction.
Collapse
Affiliation(s)
- Douglas Hanahan
- Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, Switzerland.
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland.
| | - Olivier Michielin
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Medicine, University of Geneva (UNIGE), Geneva, Switzerland
| | - Mikael J Pittet
- Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Cancer Center Léman (SCCL), Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch, Lausanne, Switzerland
- Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland
- Department of Pathology and Immunology, University of Geneva (UNIGE), Geneva, Switzerland
| |
Collapse
|
8
|
Chen LN, Ma X, Herzberg B, Henick BS, Biswas AK, Acharyya S, Shu CA. Weight loss in patients on osimertinib for metastatic EGFR-mutant non-small cell lung cancer. Oncologist 2024:oyae315. [PMID: 39703162 DOI: 10.1093/oncolo/oyae315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 09/21/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Cachexia is characterized by weight loss and decline in muscle mass and function and is a poor prognostic factor among patients with cancer. Patients with metastatic EGFR-mutant non-small cell lung cancer (NSCLC) derive remarkable survival benefits with osimertinib, a third-generation EGFR tyrosine kinase inhibitor. It is not known whether patients treated with osimertinib experience any weight loss or whether weight loss impacts patient outcomes. Therefore, we sought to describe the frequency and consequences of weight loss in this patient population. MATERIALS AND METHODS We conducted a single-center retrospective pilot study of 56 patients treated with first-line osimertinib for metastatic EGFR-mutant NSCLC. We defined on-treatment weight loss as a loss of ≥5% body weight at 6 or 12 months of treatment. We described the characteristics of patients with and without on-treatment weight loss and differences in progression-free survival (PFS), time on treatment with osimertinib, and overall survival (OS). RESULTS Forty-six percent (n = 26) of patients met the criteria for on-treatment weight loss. There were no significant differences in patient or disease characteristics between patients with and without weight loss. Compared to patients without weight loss, patients with weight loss had similar PFS and time on treatment with osimertinib. Yet, patients with weight loss had significantly worse overall survival (HR 4.91, 95% CI, 1.56-15.5, P = .007). CONCLUSION Weight loss was observed in nearly half of patients with metastatic EGFR-mutant NSCLC treated with osimertinib, and patients with weight loss had significantly worse overall survival.
Collapse
Affiliation(s)
- Lanyi Nora Chen
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Xin Ma
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Department of Statistics, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Benjamin Herzberg
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Brian S Henick
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| | - Anup K Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Swarnali Acharyya
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
- Institute for Cancer Genetics and Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY 10032, United States
| | - Catherine A Shu
- Division of Hematology and Oncology, Department of Medicine, Columbia University Irving Medical Center, New York, NY 10032, United States
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center New York, NY 10032, United States
| |
Collapse
|
9
|
Sun N, Krauss T, Seeliger C, Kunzke T, Stöckl B, Feuchtinger A, Zhang C, Voss A, Heisz S, Prokopchuk O, Martignoni ME, Janssen KP, Claussnitzer M, Hauner H, Walch A. Inter-organ cross-talk in human cancer cachexia revealed by spatial metabolomics. Metabolism 2024; 161:156034. [PMID: 39299512 DOI: 10.1016/j.metabol.2024.156034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Cancer cachexia (CCx) presents a multifaceted challenge characterized by negative protein and energy balance and systemic inflammatory response activation. While previous CCx studies predominantly focused on mouse models or human body fluids, there's an unmet need to elucidate the molecular inter-organ cross-talk underlying the pathophysiology of human CCx. METHODS Spatial metabolomics were conducted on liver, skeletal muscle, subcutaneous and visceral adipose tissue, and serum from cachectic and control cancer patients. Organ-wise comparisons were performed using component, pathway enrichment and correlation network analyses. Inter-organ correlations in CCx altered pathways were assessed using Circos. Machine learning on tissues and serum established classifiers as potential diagnostic biomarkers for CCx. RESULTS Distinct metabolic pathway alteration was detected in CCx, with adipose tissues and liver displaying the most significant (P ≤ 0.05) metabolic disturbances. CCx patients exhibited increased metabolic activity in visceral and subcutaneous adipose tissues and liver, contrasting with decreased activity in muscle and serum compared to control patients. Carbohydrate, lipid, amino acid, and vitamin metabolism emerged as highly interacting pathways across different organ systems in CCx. Muscle tissue showed decreased (P ≤ 0.001) energy charge in CCx patients, while liver and adipose tissues displayed increased energy charge (P ≤ 0.001). We stratified CCx patients by severity and metabolic changes, finding that visceral adipose tissue is most affected, especially in cases of severe cachexia. Morphometric analysis showed smaller (P ≤ 0.05) adipocyte size in visceral adipose tissue, indicating catabolic processes. We developed tissue-based classifiers for cancer cachexia specific to individual organs, facilitating the transfer of patient serum as minimally invasive diagnostic markers of CCx in the constitution of the organs. CONCLUSIONS These findings support the concept of CCx as a multi-organ syndrome with diverse metabolic alterations, providing insights into the pathophysiology and organ cross-talk of human CCx. This study pioneers spatial metabolomics for CCx, demonstrating the feasibility of distinguishing cachexia status at the organ level using serum.
Collapse
Affiliation(s)
- Na Sun
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Tanja Krauss
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Claudine Seeliger
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Thomas Kunzke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Barbara Stöckl
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany; Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Annette Feuchtinger
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Chaoyang Zhang
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andreas Voss
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Simone Heisz
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany
| | - Olga Prokopchuk
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Marc E Martignoni
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Klaus-Peter Janssen
- Department of Surgery, Klinikum rechts der Isar, University Hospital of the Technical University of Munich, Munich, Germany
| | - Melina Claussnitzer
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02114, USA; Institute of Nutritional Science, University of Hohenheim, 70599 Stuttgart, Germany; Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Hans Hauner
- Else Kröner Fresenius Center for Nutritional Medicine, School of Life Sciences, Technical University of Munich, Freising-Weihenstephan, Germany; ZIEL Institute for Food and Health, Technical University of Munich, Freising-Weihenstephan, Germany; Institute of Nutritional Medicine, School of Medicine, Technical University of Munich, Munich, Germany.
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
10
|
Li M, McKeon BA, Gu S, Prasad RR, Zhang H, Kumar S, Riddle S, Irwin DC, Stenmark KR. Honokiol and Nicotinamide Adenine Dinucleotide Improve Exercise Endurance in Pulmonary Hypertensive Rats Through Increasing SIRT3 Function in Skeletal Muscle. Int J Mol Sci 2024; 25:11600. [PMID: 39519152 PMCID: PMC11545838 DOI: 10.3390/ijms252111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/22/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024] Open
Abstract
Pulmonary hypertension (PH) significantly impairs exercise capacity and the quality of life in patients, which is influenced by dysfunctions in multiple organ systems, including the right ventricle, lungs, and skeletal muscles. Recent research has identified metabolic reprogramming and mitochondrial dysfunction as contributing factors to reduced exercise tolerance in PH patients. In this study, we investigated the therapeutic potential of enhancing mitochondrial function through the activation of the mitochondrial deacetylase SIRT3, using SIRT3 activator Honokiol combined with the SIRT3 co-factor nicotinamide adenine dinucleotide (NAD), in a Sugen/Hypoxia-induced PH rat model. Our results show that Sugen/Hypoxia-induced PH significantly impairs RV, lung, and skeletal muscle function, leading to reduced exercise capacity. Treatment with Honokiol and NAD notably improved exercise endurance, primarily by restoring SIRT3 levels in skeletal muscles, reducing proteolysis and atrophy in the gastrocnemius, and enhancing mitochondrial complex I levels in the soleus. These effects were independent of changes in cardiopulmonary hemodynamics. We concluded that targeting skeletal muscle dysfunction may be a promising approach to improving exercise capacity and overall quality of life in PH patients.
Collapse
Affiliation(s)
- Min Li
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | | | | | | | | | | | | | - Kurt R. Stenmark
- Cardiovascular Pulmonary Research Laboratories, Departments of Pediatrics and Medicine, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
11
|
Gicquel T, Marchiano F, Reyes-Castellanos G, Audebert S, Camoin L, Habermann BH, Giannesini B, Carrier A. Integrative study of skeletal muscle mitochondrial dysfunction in a murine pancreatic cancer-induced cachexia model. eLife 2024; 13:RP93312. [PMID: 39422661 PMCID: PMC11488855 DOI: 10.7554/elife.93312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC), the most common pancreatic cancer, is a deadly cancer, often diagnosed late and resistant to current therapies. PDAC patients are frequently affected by cachexia characterized by muscle mass and strength loss (sarcopenia) contributing to patient frailty and poor therapeutic response. This study assesses the mechanisms underlying mitochondrial remodeling in the cachectic skeletal muscle, through an integrative exploration combining functional, morphological, and omics-based evaluation of gastrocnemius muscle from KIC genetically engineered mice developing autochthonous pancreatic tumor and cachexia. Cachectic PDAC KIC mice exhibit severe sarcopenia with loss of muscle mass and strength associated with reduced muscle fiber's size and induction of protein degradation processes. Mitochondria in PDAC atrophied muscles show reduced respiratory capacities and structural alterations, associated with deregulation of oxidative phosphorylation and mitochondrial dynamics pathways. Beyond the metabolic pathways known to be altered in sarcopenic muscle (carbohydrates, proteins, and redox), lipid and nucleic acid metabolisms are also affected. Although the number of mitochondria per cell is not altered, mitochondrial mass shows a twofold decrease and the mitochondrial DNA threefold, suggesting a defect in mitochondrial genome homeostasis. In conclusion, this work provides a framework to guide toward the most relevant targets in the clinic to limit PDAC-induced cachexia.
Collapse
Affiliation(s)
- Tristan Gicquel
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | | | - Gabriela Reyes-Castellanos
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| | - Stephane Audebert
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | - Luc Camoin
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
| | | | | | - Alice Carrier
- Aix Marseille Univ, CNRS, INSERM, Institut Paoli-Calmettes, CRCMMarseilleFrance
- Nutrition And Cancer Research Network (NACRe Network)Jouy-en-JosasFrance
| |
Collapse
|
12
|
Khan B, Lanzuolo C, Rosti V, Santarelli P, Pich A, Kraft T, Amrute-Nayak M, Nayak A. Sorafenib induces cachexia by impeding transcriptional signaling of the SET1/MLL complex on muscle-specific genes. iScience 2024; 27:110913. [PMID: 39386761 PMCID: PMC11462028 DOI: 10.1016/j.isci.2024.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/27/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
Chemotherapeutics used in cancer therapy are often linked to muscle wasting or cachexia. Insights into the molecular basis of chemotherapy-induced cachexia is essential to improve treatment strategies. Here, we demonstrated that Sorafenib-tyrosine kinase inhibitor (TKI) class of chemotherapeutic agents-induced cachexia. System-wide analyses revealed that Sorafenib alters the global transcriptional program and proteostasis in muscle cells. Mechanistically, Sorafenib treatment reduced active epigenetic mark H3K4 methylation on distinct muscle-specific genes by impeding chromatin association of SET1A-catalytic component of the SET1/MLL histone methyltransferase complex. This mechanism favored transcriptional disorientation that led to disrupted sarcomere assembly, calcium homeostasis and mitochondrial respiration. Consequently, the contractile ability of muscle cells was severely compromised. Interestingly, the other prominent TKIs Nilotinib and Imatinib did not exert similar effects on muscle cell physiology. Collectively, we identified an unanticipated transcriptional mechanism underlying Sorafenib-induced cachexia. Our findings hold the potential to strategize therapy regimens to minimize chemotherapy-induced cachexia.
Collapse
Affiliation(s)
- Bushra Khan
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Chiara Lanzuolo
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Valentina Rosti
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Philina Santarelli
- Istituto Nazionale Genetica Molecolare ‘Romeo ed Enrica Invernizzi’, Milan, Italy
- Institute of Biomedical Technologies, National Research Council, Milan, Italy
| | - Andreas Pich
- Institute of Toxicology, Core Facility Proteomics, Hannover Medical School, Hannover, Germany
| | - Theresia Kraft
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Mamta Amrute-Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| | - Arnab Nayak
- Institute of Molecular and Cell Physiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
13
|
Yuan Q, Liu L, Wang K, Zhou S, Miao J, Gao B, Ding C, Guan W. Developing and validating a Modified Cachexia Index to predict the outcomes for colorectal cancer after radical surgery. Eur J Clin Nutr 2024; 78:880-886. [PMID: 38987657 PMCID: PMC11458475 DOI: 10.1038/s41430-024-01469-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 06/17/2024] [Accepted: 06/25/2024] [Indexed: 07/12/2024]
Abstract
BACKGROUND It was reported that the cachexia index (CXI:ALB * SMI NLR ) was an essential index for predicting the prognosis of tumor patients. However, since for SMI needs to be measured by CT imaging methods and its calculation was inconvenient. Thus, we developed a modified cachexia index (mCXI:ALB NLR * UCR ). The purpose of this study was to evaluate the association between mCXI and prognosis in patients with colorectal cancer. METHODS An analysis of 215 patients with newly diagnosed colorectal cancer was carried out retrospectively. An optimal cut-off value of mCXI was established by the receiver operating characteristic (ROC) curves for predicting prognosis. Prognostic implications of mCXI were investigated using Kaplan-Meier curves and Cox regression analysis. A comparative assessment of the predictive capacity between mCXI and the CXI was performed using time-dependent receiver operating characteristic analysis. RESULTS Patients were classified into two groups based on the cut-off value of mCXI: the LOW mCXI group (n = 60) and the HIGH mCXI group (n = 155). The 3-year Overall survival (OS) (76.6% vs 96.7%, p < 0.01) and 3-year Recurrence-free survival (RFS) (68.3% vs 94.1%, p < 0.01) were significantly worse in the LOW mCXI group in contrast to that in the HIGH mCXI group. In Cox multivariate regression analysis, mCXI was an independent prognostic factor for OS (HR = 8.951, 95%CI: 3.105-25.807, <0.01). Moreover, compared with CXI (AUC = 0.723), mCXI (AUC = 0.801) has better predictive efficacy, indicating that mCXI is more suitable for prognostic assessment. CONCLUSIONS The mCXI significantly correlated with survival outcomes for colorectal cancer patients after radical surgery.
Collapse
Affiliation(s)
- Qinggang Yuan
- Department of General Surgery, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China
| | - Lixiang Liu
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Kai Wang
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Shizhen Zhou
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Ji Miao
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China
| | - Bo Gao
- Department of Clinical Nutrition, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Chao Ding
- Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, China.
| | - Wenxian Guan
- Department of General Surgery, Nanjing Drum Tower Clinical College of Xuzhou Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
14
|
Madeddu C, Gramignano G, Lai E, Pinna G, Tanca L, Cherchi MC, Floris C, Farci D, Pretta A, Scartozzi M, Macciò A. Leptin as a surrogate immune-metabolic marker to predict impact of anti-cachectic therapy: results of a prospective randomized trial in multiple solid tumors. ESMO Open 2024; 9:103738. [PMID: 39389003 PMCID: PMC11693429 DOI: 10.1016/j.esmoop.2024.103738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 10/12/2024] Open
Abstract
DESCRIPTION OF THE WORK Leptin is a reliable predictive and surrogate marker of the efficacy of multitargeted treatment of cancer cachexia. PURPOSE To the best of our knowledge, no study has assessed the predictive role of biomarkers in establishing the effectiveness of anti-cachectic treatment, which remains a complex issue. Herein, we aimed to find a marker that can detect early response to anti-cachectic treatment. PATIENTS AND METHODS From January 2012 to December 2022, all consecutive eligible advanced cancer patients with cachexia were prospectively enrolled in an exploratory and validation cohort according to eligibility criteria. All patients received a combined anti-cachectic treatment consisting of megestrol acetate plus celecoxib plus l-carnitine plus antioxidants that showed efficacy in a previous phase III randomized study. Primary endpoints were an increase in lean body mass (LBM), a decrease in resting energy expenditure (REE), a decrease in fatigue, and improvement in global quality of life. RESULTS A total of 553 consecutive patients were recruited. Twenty patients dropped out, equally distributed over the exploratory (11 patients) and validation (9 patients) cohorts, for early death due to disease progression. Then, 533 patients were deemed assessable. Leptin level changes inversely correlated with circulating levels of inflammatory mediators and reflected the improvement of body composition, energy metabolism, functional performance, and quality of life. At multivariate regression analysis, at week 8, leptin change was an independent predictor of LBM, skeletal muscle index (SMI), grip strength increase, and REE; at week 16, leptin change was an independent predictor of the same parameters and improvement in Eastern Cooperative Oncology Group performance status. The ability of leptin to predict changes in LBM, SMI, REE, and grip strength was superior to that of other inflammatory markers when comparing the receiver operating curves. Moreover, increasing delta leptin values were associated with significantly better outcomes in LBM, SMI, REE, grip strength, and fatigue. CONCLUSIONS Leptin is a reliable predictive marker for multitargeted anti-cachectic treatment outcomes. Thus, it can be an ideal candidate for monitoring and predicting the effects of anti-cachectic treatment and a surrogate marker of the immune-metabolic actions of the selected drugs.
Collapse
Affiliation(s)
- C Madeddu
- Department of Medical Sciences and Public Health, Medical Oncology Unit, "Azienda Ospedaliero Universitaria" of Cagliari, University of Cagliari, Cagliari, Italy.
| | - G Gramignano
- Medical Oncology Unit, San Gavino Hospital, San Gavino, Italy
| | - E Lai
- Department of Medical Sciences and Public Health, Medical Oncology Unit, "Azienda Ospedaliero Universitaria" of Cagliari, University of Cagliari, Cagliari, Italy
| | - G Pinna
- Department of Medical Sciences and Public Health, Medical Oncology Unit, "Azienda Ospedaliero Universitaria" of Cagliari, University of Cagliari, Cagliari, Italy
| | - L Tanca
- Medical Oncology Unit, A. Businco Hospital, ARNAS G Brotzu, Cagliari, Italy
| | - M C Cherchi
- Medical Oncology Unit, A. Businco Hospital, ARNAS G Brotzu, Cagliari, Italy
| | - C Floris
- Medical Oncology Unit, "Nuova Casa di Cura", Decimomannu, Cagliari, Italy
| | - D Farci
- Medical Oncology Unit, "Nuova Casa di Cura", Decimomannu, Cagliari, Italy
| | - A Pretta
- Department of Medical Sciences and Public Health, Medical Oncology Unit, "Azienda Ospedaliero Universitaria" of Cagliari, University of Cagliari, Cagliari, Italy
| | - M Scartozzi
- Department of Medical Sciences and Public Health, Medical Oncology Unit, "Azienda Ospedaliero Universitaria" of Cagliari, University of Cagliari, Cagliari, Italy
| | - A Macciò
- Department of Surgical Sciences, Gynecologic Oncology Unit, ARNAS G. Brotzu, University of Cagliari, Cagliari, Italy
| |
Collapse
|
15
|
Yue C, Lu W, Fan S, Huang Z, Yang J, Dong H, Zhang X, Shang Y, Lai W, Li D, Dong T, Yuan A, Wu J, Kang L, Hu Y. Nanoparticles for inducing Gaucher disease-like damage in cancer cells. NATURE NANOTECHNOLOGY 2024; 19:1203-1215. [PMID: 38740934 DOI: 10.1038/s41565-024-01668-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 03/27/2024] [Indexed: 05/16/2024]
Abstract
Nutrient avidity is one of the most distinctive features of tumours. However, nutrient deprivation has yielded limited clinical benefits. In Gaucher disease, an inherited metabolic disorder, cells produce cholesteryl-glucoside which accumulates in lysosomes and causes cell damage. Here we develop a nanoparticle (AbCholB) to emulate natural-lipoprotein-carried cholesterol and initiate Gaucher disease-like damage in cancer cells. AbCholB is composed of a phenylboronic-acid-modified cholesterol (CholB) and albumin. Cancer cells uptake the nanoparticles into lysosomes, where CholB reacts with glucose and generates a cholesteryl-glucoside-like structure that resists degradation and aggregates into microscale crystals, causing Gaucher disease-like damage in a glucose-dependent manner. In addition, the nutrient-sensing function of mTOR is suppressed. It is observed that normal cells escape severe damage due to their inferior ability to compete for nutrients compared with cancer cells. This work provides a bioinspired strategy to selectively impede the metabolic action of cancer cells by taking advantage of their nutrient avidity.
Collapse
Affiliation(s)
- Chunyan Yue
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjing Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Shuxin Fan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Zhusheng Huang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jiaying Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Hong Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Xiaojun Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Yuxin Shang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Wenjia Lai
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, National Center for Nanoscience and Technology, Beijing, China
| | - Dandan Li
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Tiejun Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Ahu Yuan
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| | - Yiqiao Hu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.
- Institute of Drug R&D, School of Life Science, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory for Nano Technology, Nanjing University, Nanjing, China.
| |
Collapse
|
16
|
Alissa N, Fang WB, Medrano M, Bergeron N, Kozai Y, Hu Q, Redding C, Thyfault J, Hamilton-Reeves J, Berkland C, Cheng N. CCL2 signaling promotes skeletal muscle wasting in non-tumor and breast tumor models. Dis Model Mech 2024; 17:dmm050398. [PMID: 38973385 DOI: 10.1242/dmm.050398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/15/2024] [Indexed: 07/09/2024] Open
Abstract
Despite advancements in treatment, approximately 25% of patients with breast cancer experience long-term skeletal muscle wasting (SMW), which limits mobility, reduces drug tolerance and adversely impacts survival. By understanding the underlying molecular mechanisms of SMW, we may be able to develop new strategies to alleviate this condition and improve the lives of patients with breast cancer. Chemokines are small soluble factors that regulate homing of immune cells to tissues during inflammation. In breast cancers, overexpression of C-C chemokine ligand 2 (CCL2) correlates with unfavorable prognosis. Elevated levels of CCL2 in peripheral blood indicate possible systemic effects of this chemokine in patients with breast cancer. Here, we investigated the role of CCL2 signaling on SMW in tumor and non-tumor contexts. In vitro, increasing concentrations of CCL2 inhibited myoblast and myotube function through C-C chemokine receptor 2 (CCR2)-dependent mechanisms involving JNK, SMAD3 and AMPK signaling. In healthy mice, delivery of recombinant CCL2 protein promoted SMW in a dose-dependent manner. In vivo knockdown of breast tumor-derived CCL2 partially protected against SMW. Overall, chronic, upregulated CCL2-CCR2 signaling positively regulates SMW, with implications for therapeutic targeting.
Collapse
Affiliation(s)
- Nadia Alissa
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Wei Bin Fang
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Marcela Medrano
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Nick Bergeron
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yuuka Kozai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Qingting Hu
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Chloe Redding
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John Thyfault
- Department of Cell Biology and Physiology and Internal Medicine-Division of Endocrinology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jill Hamilton-Reeves
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Cory Berkland
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Nikki Cheng
- Department of Cancer Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
- University of Kansas Cancer Center, Kansas City, KS 66160, USA
| |
Collapse
|
17
|
Ramos CC, Pires J, Gonzalez E, Garcia-Vallicrosa C, Reis CA, Falcon-Perez JM, Freitas D. Extracellular vesicles in tumor-adipose tissue crosstalk: key drivers and therapeutic targets in cancer cachexia. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:371-396. [PMID: 39697630 PMCID: PMC11648493 DOI: 10.20517/evcna.2024.36] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/28/2024] [Accepted: 07/15/2024] [Indexed: 12/20/2024]
Abstract
Cancer cachexia is a complex metabolic syndrome characterized by unintentional loss of skeletal muscle and body fat. This syndrome is frequently associated with different types of cancer and negatively affects the prognosis and outcome of these patients. It involves a dynamic interplay between tumor cells and adipose tissue, where tumor-derived extracellular vesicles (EVs) play a crucial role in mediating intercellular communication. Tumor cells release EVs containing bioactive molecules such as hormones (adrenomedullin, PTHrP), pro-inflammatory cytokines (IL-6), and miRNAs (miR-1304-3p, miR-204-5p, miR-155, miR-425-3p, miR-146b-5p, miR-92a-3p), which can trigger lipolysis and induce the browning of white adipocytes contributing to a cancer cachexia phenotype. On the other hand, adipocyte-derived EVs can reprogram the metabolism of tumor cells by transporting fatty acids and enzymes involved in fatty acid oxidation, resulting in tumor growth and progression. These vesicles also carry leptin and key miRNAs (miR-155-5p, miR-10a-3p, miR-30a-3p, miR-32a/b, miR-21), thereby supporting tumor cell proliferation, metastasis formation, and therapy resistance. Understanding the intricate network underlying EV-mediated communication between tumor cells and adipocytes can provide critical insights into the mechanisms driving cancer cachexia. This review consolidates current knowledge on the crosstalk between tumor cells and adipose tissue mediated by EVs and offers valuable insights for future research. It also addresses controversial topics in the field and possible therapeutic approaches to manage cancer cachexia and ultimately improve patient outcomes and quality of life.
Collapse
Affiliation(s)
- Cátia C. Ramos
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
| | - José Pires
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | | | | | - Celso A. Reis
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto 4050, Portugal
- Faculty of Medicine, University of Porto (FMUP), Porto 4200, Portugal
| | - Juan M. Falcon-Perez
- Exosomes Laboratory, CIC bioGUNE-BRTA, CIBERehd, Derio 48160, Spain
- IKERBASQUE Research Foundation, Bilbao 48009, Spain
| | - Daniela Freitas
- i3S - Institute for Research and Innovation in Health, University of Porto, Porto 4200, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Porto 4200, Portugal
| |
Collapse
|
18
|
Tien SC, Chang CC, Huang CH, Peng HY, Chang YT, Chang MC, Lee WH, Hu CM. Exosomal miRNA 16-5p/29a-3p from pancreatic cancer induce adipose atrophy by inhibiting adipogenesis and promoting lipolysis. iScience 2024; 27:110346. [PMID: 39055920 PMCID: PMC11269291 DOI: 10.1016/j.isci.2024.110346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/20/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Over 80% of the patients with pancreatic ductal adenocarcinoma (PDAC) have cachexia/wasting syndrome. Cachexia is associated with reduced survival, decreased quality of life, and higher metastasis rates. Here, we demonstrate that fat loss is the earliest feature of PDAC-exosome-induced cachexia. MicroRNA sequencing of exosomal components from normal and cancer-derived exosomes revealed enrichment of miR-16-5p, miR-21-5p, miR-29a-3p, and miR-125b-5p in serum exosomes of mice harboring PDAC and patients with PDAC. Further, miR-16-5p and miR-29a-3p inhibited adipogenesis through decreasing Erlin2 and Cmpk1 expression which downregulates C/EBPβ and PPARγ. Synergistically, miR-29a-3p promotes lipolysis through increasing ATGL expression by suppressing MCT1 expression. Furthermore, PDAC-exosomes deprived of miR-16-5p and miR-29a-3p fail to induce fat loss. Hence, miR-16-5p and miR-29a-3p exosomal miRs are essential for PDAC-induced fat loss. Thus, we unravel that PDAC induces adipose atrophy via exosomal miRs. This knowledge may provide new diagnostic and therapeutic strategies for PDAC-induced cachexia.
Collapse
Affiliation(s)
- Sui-Chih Tien
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | - Chin-Chun Chang
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| | | | - Hsuan-Yu Peng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
| | - Yu-Ting Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- National Taiwan University Hospital Hsin-Chu Branch, Zhubei City, Hsinchu County 302058, Taiwan
| | - Ming-Chu Chang
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 100225, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, Taipei 100225, Taiwan
| | - Wen-Hwa Lee
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
- Drug Development Center, China Medical University, Taichung 406040, Taiwan
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Chun-Mei Hu
- Genomics Research Center, Academia Sinica, Taipei 115201, Taiwan
| |
Collapse
|
19
|
Jones AJ, Novinger LJ, Bonetto A, Davis KP, Giuliano MM, Mantravadi AV, Sim MW, Moore MG, Yesensky JA. Histopathologic Features of Mucosal Head and Neck Cancer Cachexia. Int J Surg Oncol 2024; 2024:5339292. [PMID: 38966634 PMCID: PMC11223910 DOI: 10.1155/2024/5339292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/16/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Objective Determine the histopathologic features that correlate with head and neck cancer (HNC) cachexia. Methods A single-institution, retrospective study was performed on adults with HPV-negative, mucosal squamous cell carcinoma of the aerodigestive tract undergoing resection and free flap reconstruction from 2014 to 2019. Patients with distant metastases were excluded. Demographics, comorbidities, preoperative nutrition, and surgical pathology reports were collected. Comparisons of histopathologic features and cachexia severity were made. Results The study included 222 predominantly male (64.9%) patients aged 61.3 ± 11.8 years. Cachexia was identified in 57.2% patients, and 18.5% were severe (≥15% weight loss). No differences in demographics were identified between the groups. Compared to control, patients with severe cachexia had lower serum hemoglobin (p=0.048) and albumin (p < 0.001), larger tumor diameter (p < 0.001), greater depth of invasion (p < 0.001), and elevated proportions of pT4 disease (p < 0.001), pN2-N3 disease (p=0.001), lymphovascular invasion (p=0.009), and extranodal extension (p=0.014). Multivariate logistic regression identified tumor size (OR [95% CI] = 1.36 [1.08-1.73]), oral cavity tumor (OR [95% CI] = 0.30 [0.11-0.84]), and nodal burden (OR [95% CI] = 1.16 [0.98-1.38]) as significant histopathologic contributors of cancer cachexia. Conclusions Larger, more invasive tumors with nodal metastases and aggressive histologic features are associated with greater cachexia severity in mucosal HNC.
Collapse
Affiliation(s)
- Alexander J. Jones
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Leah J. Novinger
- University of Colorado AnschutzDepartment of Pathology, Aurora, CO, USA
| | - Andrea Bonetto
- University of Colorado AnschutzDepartment of Pathology, Aurora, CO, USA
| | - Kyle P. Davis
- St. Louis University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, St. Louis, MO, USA
| | - Marelle M. Giuliano
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Avinash V. Mantravadi
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Michael W. Sim
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Michael G. Moore
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| | - Jessica A. Yesensky
- Indiana University School of MedicineDepartment of Otolaryngology-Head & Neck Surgery, Indianapolis, IN, USA
| |
Collapse
|
20
|
Zhou Z, Nan Y, Li X, Ma P, Du Y, Chen G, Ning N, Huang S, Gu Q, Li W, Yuan L. Hawthorn with "homology of medicine and food": a review of anticancer effects and mechanisms. Front Pharmacol 2024; 15:1384189. [PMID: 38915462 PMCID: PMC11194443 DOI: 10.3389/fphar.2024.1384189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 06/26/2024] Open
Abstract
Over the past few years, there has been a gradual increase in the incidence of cancer, affecting individuals at younger ages. With its refractory nature and substantial fatality rate, cancer presents a notable peril to human existence and wellbeing. Hawthorn, a medicinal food homology plant belonging to the Crataegus genus in the Rosaceae family, holds great value in various applications. Due to its long history of medicinal use, notable effects, and high safety profile, hawthorn has garnered considerable attention and plays a crucial role in cancer treatment. Through the integration of modern network pharmacology technology and traditional Chinese medicine (TCM), a range of anticancer active ingredients in hawthorn have been predicted, identified, and analyzed. Studies have shown that ingredients such as vitexin, isoorientin, ursolic acid, and maslinic acid, along with hawthorn extracts, can effectively modulate cancer-related signaling pathways and manifest anticancer properties via diverse mechanisms. This review employs network pharmacology to excavate the potential anticancer properties of hawthorn. By systematically integrating literature across databases such as PubMed and CNKI, the review explores the bioactive ingredients with anticancer effects, underlying mechanisms and pathways, the synergistic effects of drug combinations, advancements in novel drug delivery systems, and ongoing clinical trials concerning hawthorn's anticancer properties. Furthermore, the review highlights the preventive health benefits of hawthorn in cancer prevention, offering valuable insights for clinical cancer treatment and the development of TCM with anticancer properties that can be used for both medicinal and edible purposes.
Collapse
Affiliation(s)
- Ziying Zhou
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Yi Nan
- Key Laboratory of Ningxia Minority Medicine Modernization Ministry of Education, Ningxia Medical University, Yinchuan, China
| | - Xiangyang Li
- College of Traditional Chinese Medicine, Ningxia Medical University, Yinchuan, China
| | - Ping Ma
- Department of Pharmacy, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yuhua Du
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Guoqing Chen
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Na Ning
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Shicong Huang
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Qian Gu
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| | - Weiqiang Li
- Department of Chinese Medical Gastrointestinal, The Affiliated TCM Hospital of Ningxia Medical University, Wuzhong, China
| | - Ling Yuan
- College of Pharmacy, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
21
|
Su Z, Liu Y, Xia Z, Rustgi AK, Gu W. An unexpected role for the ketogenic diet in triggering tumor metastasis by modulating BACH1-mediated transcription. SCIENCE ADVANCES 2024; 10:eadm9481. [PMID: 38838145 PMCID: PMC11152127 DOI: 10.1126/sciadv.adm9481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 04/30/2024] [Indexed: 06/07/2024]
Abstract
We have found that the ketogenic (Keto) diet is able to, unexpectedly, promote the metastatic potential of cancer cells in complementary mouse models. Notably, the Keto diet-induced tumor metastasis is dependent on BTB domain and CNC homolog 1 (BACH1) and its up-regulation of pro-metastatic targets, including cell migration-inducing hyaluronidase 1, in response to the Keto diet. By contrast, upon genetic knockout or pharmacological inhibition of endogenous BACH1, the Keto diet-mediated activation of those targets is largely diminished, and the effects on tumor metastasis are completely abolished. Mechanistically, upon administration of the Keto diet, the levels of activating transcription factor 4 (ATF4) are markedly induced. Through direct interaction with BACH1, ATF4 is recruited to those pro-metastatic target promoters and enhances BACH1-mediated transcriptional activation. Together, these data implicate a distinct transcription regulatory program of BACH1 for tumor metastasis induced by the Keto diet. Our study also raises a potential health risk of the Keto diet in human patients with cancer.
Collapse
Affiliation(s)
- Zhenyi Su
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Yanqing Liu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Zhangchuan Xia
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| | - Anil K. Rustgi
- Division of Digestive and Liver Diseases, Department of Medicine, Herbert Irving Comprehensive Cancer Center Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY 10032 USA
| | - Wei Gu
- Institute for Cancer Genetics, and Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
- Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians and Surgeons, Columbia University, 1130 Nicholas Ave, New York, NY 10032, USA
| |
Collapse
|
22
|
Wu Y, Cao Y, Chen L, Lai X, Zhang S, Wang S. Role of Exosomes in Cancer and Aptamer-Modified Exosomes as a Promising Platform for Cancer Targeted Therapy. Biol Proced Online 2024; 26:15. [PMID: 38802766 PMCID: PMC11129508 DOI: 10.1186/s12575-024-00245-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Exosomes are increasingly recognized as important mediators of intercellular communication in cancer biology. Exosomes can be derived from cancer cells as well as cellular components in tumor microenvironment. After secretion, the exosomes carrying a wide range of bioactive cargos can be ingested by local or distant recipient cells. The released cargos act through a variety of mechanisms to elicit multiple biological effects and impact most if not all hallmarks of cancer. Moreover, owing to their excellent biocompatibility and capability of being easily engineered or modified, exosomes are currently exploited as a promising platform for cancer targeted therapy. In this review, we first summarize the current knowledge of roles of exosomes in risk and etiology, initiation and progression of cancer, as well as their underlying molecular mechanisms. The aptamer-modified exosome as a promising platform for cancer targeted therapy is then briefly introduced. We also discuss the future directions for emerging roles of exosome in tumor biology and perspective of aptamer-modified exosomes in cancer therapy.
Collapse
Affiliation(s)
- Yating Wu
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Medical Oncology, Fuzhou General Clinical Medical School (the 900th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Yue Cao
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Li Chen
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Xiaofeng Lai
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China
| | - Shenghang Zhang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| | - Shuiliang Wang
- Fujian Key Laboratory of Aptamers Technology, Affiliated Dongfang Hospital of School of Medicine, Xiamen University, Fuzhou, Fujian Province, P. R. China.
- Department of Clinical Laboratory Medicine, Fuzhou General Clinical Medical School (the 900 th Hospital), Fujian Medical University, Fujian Province, Fuzhou, P. R. China.
| |
Collapse
|
23
|
Wang R, Khatpe AS, Kumar B, Mang HE, Batic K, Adebayo AK, Nakshatri H. Mutant RAS-driven Secretome Causes Skeletal Muscle Defects in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1282-1295. [PMID: 38651826 PMCID: PMC11094532 DOI: 10.1158/2767-9764.crc-24-0045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/28/2024] [Accepted: 04/19/2024] [Indexed: 04/25/2024]
Abstract
Cancer-induced skeletal muscle defects differ in severity between individuals with the same cancer type. Cancer subtype-specific genomic aberrations are suggested to mediate these differences, but experimental validation studies are very limited. We utilized three different breast cancer patient-derived xenograft (PDX) models to correlate cancer subtype with skeletal muscle defects. PDXs were derived from brain metastasis of triple-negative breast cancer (TNBC), estrogen receptor-positive/progesterone receptor-positive (ER+/PR+) primary breast cancer from a BRCA2-mutation carrier, and pleural effusion from an ER+/PR- breast cancer. While impaired skeletal muscle function as measured through rotarod performance and reduced levels of circulating and/or skeletal muscle miR-486 were common across all three PDXs, only TNBC-derived PDX activated phospho-p38 in skeletal muscle. To further extend these results, we generated transformed variants of human primary breast epithelial cells from healthy donors using HRASG12V or PIK3CAH1047R mutant oncogenes. Mutations in RAS oncogene or its modulators are found in approximately 37% of metastatic breast cancers, which is often associated with skeletal muscle defects. Although cells transformed with both oncogenes generated adenocarcinomas in NSG mice, only HRASG12V-derived tumors caused skeletal muscle defects affecting rotarod performance, skeletal muscle contraction force, and miR-486, Pax7, pAKT, and p53 levels in skeletal muscle. Circulating levels of the chemokine CXCL1 were elevated only in animals with tumors containing HRASG12V mutation. Because RAS pathway aberrations are found in 19% of cancers, evaluating skeletal muscle defects in the context of genomic aberrations in cancers, particularly RAS pathway mutations, may accelerate development of therapeutic modalities to overcome cancer-induced systemic effects. SIGNIFICANCE Mutant RAS- and PIK3CA-driven breast cancers distinctly affect the function of skeletal muscle. Therefore, research and therapeutic targeting of cancer-induced systemic effects need to take aberrant cancer genome into consideration.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Henry Elmer Mang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Katie Batic
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Adedeji K. Adebayo
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
- Richard L Roudebush VA Medical Center, Indianapolis, Indiana
| |
Collapse
|
24
|
Karras P, Black JRM, McGranahan N, Marine JC. Decoding the interplay between genetic and non-genetic drivers of metastasis. Nature 2024; 629:543-554. [PMID: 38750233 DOI: 10.1038/s41586-024-07302-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 03/12/2024] [Indexed: 05/18/2024]
Abstract
Metastasis is a multistep process by which cancer cells break away from their original location and spread to distant organs, and is responsible for the vast majority of cancer-related deaths. Preventing early metastatic dissemination would revolutionize the ability to fight cancer. Unfortunately, the relatively poor understanding of the molecular underpinnings of metastasis has hampered the development of effective anti-metastatic drugs. Although it is now accepted that disseminating tumour cells need to acquire multiple competencies to face the many obstacles they encounter before reaching their metastatic site(s), whether these competencies are acquired through an accumulation of metastasis-specific genetic alterations and/or non-genetic events is often debated. Here we review a growing body of literature highlighting the importance of both genetic and non-genetic reprogramming events during the metastatic cascade, and discuss how genetic and non-genetic processes act in concert to confer metastatic competencies. We also describe how recent technological advances, and in particular the advent of single-cell multi-omics and barcoding approaches, will help to better elucidate the cross-talk between genetic and non-genetic mechanisms of metastasis and ultimately inform innovative paths for the early detection and interception of this lethal process.
Collapse
Affiliation(s)
- Panagiotis Karras
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - James R M Black
- Cancer Genome Evolution Research Group, UCL Cancer Institute, London, UK
| | | | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, VIB Center for Cancer Biology, KU Leuven, Leuven, Belgium.
- Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
25
|
Ru Q, Chen L, Xu G, Wu Y. Exosomes in the pathogenesis and treatment of cancer-related cachexia. J Transl Med 2024; 22:408. [PMID: 38689293 PMCID: PMC11062016 DOI: 10.1186/s12967-024-05201-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/14/2024] [Indexed: 05/02/2024] Open
Abstract
Cancer-related cachexia is a metabolic syndrome characterized by weight loss, adipose tissue decomposition, and progressive skeletal muscle atrophy. It is a major complication of many advanced cancers and seriously affects the quality of life and survival of cancer patients. However, the specific molecules that mediate cancer-related cachexia remain elusive, and the fundamental cellular and molecular mechanisms associated with muscle atrophy and lipidolysis in cancer patients still need to be investigated. Exosomes, a newly discovered class of small extracellular vesicles that facilitate intercellular communication, have a significant role in the onset and development of various cancers. Studies have shown that exosomes play a role in the onset and progression of cancer-related cachexia by transporting active molecules such as nucleic acids and proteins. This review aimed to provide an overview of exosome developments in cancer-induced skeletal muscle atrophy and adipose tissue degradation. More importantly, exosomes were shown to have potential as diagnostic markers or therapeutic strategies for cachexia and were prospected, providing novel strategies for the diagnosis and treatment of cancer-related cachexia.
Collapse
Affiliation(s)
- Qin Ru
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Lin Chen
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Guodong Xu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China
| | - Yuxiang Wu
- Institute of Intelligent Sport and Proactive Health,Department of Health and Physical Education, Jianghan University, Wuhan, 430056, China.
| |
Collapse
|
26
|
Suda Y, Nakamura K, Matsuyama F, Hamada Y, Makabe H, Narita M, Nagumo Y, Mori T, Kuzumaki N, Narita M. Peripheral-central network analysis of cancer cachexia status accompanied by the polarization of hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. Mol Brain 2024; 17:20. [PMID: 38685046 PMCID: PMC11059753 DOI: 10.1186/s13041-024-01091-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/12/2024] [Indexed: 05/02/2024] Open
Abstract
While the excessive inflammation in cancer cachexia is well-known to be induced by the overproduction of inflammatory mediators in the periphery, microflora disruption and brain dysfunction are also considered to contribute to the induction of cancer cachexia. Hypothalamic microglia play a crucial role in brain inflammation and central-peripheral immune circuits via the production of inflammatory mediators. In the present study, we evaluated possible changes in excessive secretion of gut microbiota-derived endotoxin and the expression timeline of several inflammation-regulatory mediators and their inhibiting modulators in hypothalamic microglia of a mouse model of cancer cachexia following transplantation of pancreatic cancer cells. We demonstrated that the plasma level of lipopolysaccharide (LPS) was significantly increased with an increase in anaerobic bacteria, especially Firmicutes, in the gut at the late stage of tumor-bearing mice that exhibited dramatic appetite loss, sarcopenia and severe peripheral immune suppression. At the early stage, in which tumor-bearing mice had not yet displayed "cachexia symptoms", the mRNA expression of pro-inflammatory cytokines, but not of the neurodegenerative and severe inflammatory modulator lipocalin-2 (LCN2), was significantly increased, whereas at the late "cachexia stage", the level of LCN2 mRNA was significantly increased along with significant decreases in levels of inhibitory immune checkpoint receptors programmed death receptor-1 (PD-1) and CD112R in hypothalamic microglia. In addition, a high density of activated neurons in the paraventricular nucleus (PVN) of the hypothalamus region and a significant increase in corticosterone secretion were found in cachexia model mice. Related to the cachexia state, released corticosterone was clearly increased in normal mice with specific activation of PVN neurons. A marked decrease in the natural killer cell population was also observed in the spleen of mice with robust activation of PVN neurons as well as mice with cancer cachexia. On the other hand, in vivo administration of LPS in normal mice induced hypothalamic microglia with low expression of inhibitory immune checkpoint receptors. These findings suggest that the induction of cancer cachexia may parallel exacerbation of the hypothalamic inflammatory status with polarization to microglia expressed with low levels of inhibitory immune checkpoint receptors following LPS release from the gut microflora.
Collapse
Affiliation(s)
- Yukari Suda
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Keiko Nakamura
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Department of Pharmacy, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Fukiko Matsuyama
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Japan Small Animal Medical Center, 1-10-4 Higashitokorozawawada, Tokorozawa-Shi, Saitama, 359-0023, Japan
| | - Yusuke Hamada
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Hitoshi Makabe
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Michiko Narita
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Yasuyuki Nagumo
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan
| | - Tomohisa Mori
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan
| | - Naoko Kuzumaki
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| | - Minoru Narita
- Department of Pharmacology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-Ku, Tokyo, 142-8501, Japan.
- Division of Cancer Pathophysiology, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-Ku, Tokyo, 104-0045, Japan.
| |
Collapse
|
27
|
Tanaka A, Miyazawa H, Yanagi T, Maeda T, Kitamura S, Ujiie H. Association between weight loss and death in patients with malignant melanoma: A retrospective study of 28 cases. J Dermatol 2024; 51:463-466. [PMID: 37753543 DOI: 10.1111/1346-8138.16982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 09/28/2023]
Abstract
Malignant melanoma (MM) is often associated with a poor prognosis due to metastasis and cancer death. The monitoring of prognostic factors is of vital importance, and among these factors, elevated lactate dehydrogenase (LDH) should be closely observed during the disease course. Important factors for predicting the survival of MM patients include tumor thickness, ulceration, the number of lymph node metastases, metastatic lesions, and the sites of metastasis. Weight loss is not generally included in the prognostic factors of MM, but it is monitored in other cancers, such as lung cancer and gastrointestinal cancer. The objective of this study was to investigate the association between weight loss and MM prognosis. Using data from MM patients who had been treated at our institution, we assessed the prognoses of two groups: weight loss of at least 5% body weight or weight loss not exceeding 5% body weight within a 12-month period. As a result, a higher mortality rate was found for the former group. Furthermore, the loss of at least 5% of body weight within a month was found to almost always adversely affect the patient's prognosis. The present study indicates that there may be an association between MM prognosis and weight loss of at least 5% within a year, and body weight could potentially serve as an informative factor for MM survival.
Collapse
Affiliation(s)
- Arisa Tanaka
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hajime Miyazawa
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Teruki Yanagi
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuya Maeda
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shinya Kitamura
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
28
|
Wang L, Wang X, Chen J, Liu Y, Wang G, Chen L, Ni W, Jia Y, Dai C, Shao W, Liu B. Low-intensity exercise training improves systolic function of heart during metastatic melanoma-induced cachexia in mice. Heliyon 2024; 10:e25562. [PMID: 38370171 PMCID: PMC10874746 DOI: 10.1016/j.heliyon.2024.e25562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/20/2024] Open
Abstract
Cardiac dysfunction frequently emerges in the initial stages of cancer cachexia, posing a significant complication of the disease. Physical fitness is commonly recommended in these early stages of cancer cachexia due to its beneficial impacts on various aspects of the condition, including cardiac dysfunction. However, the direct functional impacts of exercise on the heart during cancer cachexia largely remain unexplored. In this study, we induced cancer cachexia in mice using a metastatic B16F10 melanoma model. Concurrently, these mice underwent a low-intensity exercise regimen to investigate its potential role in cardiac function during cachexia. Our findings indicate that exercise training can help prevent metastatic melanoma-induced muscle loss without significant alterations to body and fat weight. Moreover, exercise improved the melanoma-induced decline in left ventricular ejection fraction and fractional shortening, while also mitigating the increase in high-sensitive cardiac troponin T levels caused by metastatic melanoma in mice. Transcriptome analysis revealed that exercise significantly reversed the transcriptional alterations in the heart induced by melanoma, which were primarily enriched in pathways related to heart contraction. These results suggest that exercise can improve systolic heart function and directly influence the transcriptome of the heart during metastatic melanoma-induced cachexia.
Collapse
Affiliation(s)
- Lin Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Xuchao Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Jingyu Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yang Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
- Liaoning University of Traditional Chinese Medicine, Chongshan East Road 79, Shenyang 110032, China
| | - Gang Wang
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Linjian Chen
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Ni
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Yijia Jia
- Zhoukou Central Hospital, Renmin Road 26, Zhoukou, 466000, China
| | - Cuilian Dai
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Wei Shao
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| | - Binbin Liu
- Xiamen Cardiovascular Hospital, School of Medicine, Xiamen University, Jinshan Road 2999, Xiamen, 361015, China
| |
Collapse
|
29
|
Diba P, Sattler AL, Korzun T, Habecker BA, Marks DL. Unraveling the lost balance: Adrenergic dysfunction in cancer cachexia. Auton Neurosci 2024; 251:103136. [PMID: 38071925 PMCID: PMC10883135 DOI: 10.1016/j.autneu.2023.103136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/05/2023] [Accepted: 11/30/2023] [Indexed: 01/23/2024]
Abstract
Cancer cachexia, characterized by muscle wasting and widespread inflammation, poses a significant challenge for patients with cancer, profoundly impacting both their quality of life and treatment management. However, existing treatment modalities remain very limited, accentuating the necessity for innovative therapeutic interventions. Many recent studies demonstrated that changes in autonomic balance is a key driver of cancer cachexia. This review consolidates research findings from investigations into autonomic dysfunction across cancer cachexia, spanning animal models and patient cohorts. Moreover, we explore therapeutic strategies involving adrenergic receptor modulation through receptor blockers and agonists. Mechanisms underlying adrenergic hyperactivity in cardiac and adipose tissues, influencing tissue remodeling, are also examined. Looking ahead, we present a perspective for future research that delves into autonomic dysregulation in cancer cachexia. This comprehensive review highlights the urgency of advancing research to unveil innovative avenues for combatting cancer cachexia and improving patient well-being.
Collapse
Affiliation(s)
- Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA
| | - Ariana L Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Tetiana Korzun
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA; Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA
| | - Beth A Habecker
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA; Department of Medicine, Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA
| | - Daniel L Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, SW Sam Jackson Park Rd, Mail Code L481 Portland, OR 97239, USA; Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA; Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA.
| |
Collapse
|
30
|
Rendón-Barrón MJ, Pérez-Arteaga E, Delgado-Waldo I, Coronel-Hernández J, Pérez-Plasencia C, Rodríguez-Izquierdo F, Linares R, González-Esquinca AR, Álvarez-González I, Madrigal-Bujaidar E, Jacobo-Herrera NJ. Laherradurin Inhibits Tumor Growth in an Azoxymethane/Dextran Sulfate Sodium Colorectal Cancer Model In Vivo. Cancers (Basel) 2024; 16:573. [PMID: 38339324 PMCID: PMC10854818 DOI: 10.3390/cancers16030573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is the third most common neoplasia in the world. Its mortality rate is high due to the lack of specific and effective treatments, metastasis, and resistance to chemotherapy, among other factors. The natural products in cancer are a primary source of bioactive molecules. In this research, we evaluated the antitumor activity of an acetogenin (ACG), laherradurin (LH), isolated from the Mexican medicinal plant Annona macroprophyllata Donn.Sm. in a CRC murine model. The CRC was induced by azoxymethane-dextran sulfate sodium (AOM/DSS) in Balb/c mice and treated for 21 days with LH or cisplatin. This study shows for the first time the antitumor activity of LH in an AOM/DSS CRC model. The acetogenin diminished the number and size of tumors compared with cisplatin; the histologic studies revealed a recovery of the colon tissue, and the blood toxicity data pointed to less damage in animals treated with LH. The TUNEL assay indicated cell death by apoptosis, and the in vitro studies exhibited that LH inhibited cell migration in HCT116 cells. Our study provides strong evidence of a possible anticancer agent for CRC.
Collapse
Affiliation(s)
- Michael Joshue Rendón-Barrón
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Pérez-Arteaga
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| | - Izamary Delgado-Waldo
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| | - Jossimar Coronel-Hernández
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
- Unidad de Investigación en Biomedicina, Laboratorio de Genómica, Facultad de Estudios Superiores Iztacala, Av. De los Barrios 1, Los Reyes Ixtacala, Tlalnepantla 54090, Mexico
| | - Frida Rodríguez-Izquierdo
- Unidad de Investigación Biomédica en Cancer, Instituto Nacional Nacional de Cancerología, Av. San Fernando 22, Belisario Domínguez Secc 16, Tlalpan, Ciudad de México 14080, Mexico; (J.C.-H.); (C.P.-P.); (F.R.-I.)
| | - Rosa Linares
- Unidad de Investigación en Biología de la Reproducción, Laboratorio de Endocrinología, Facultad de Estudios Superiores Zaragoza, Batalla 5 de Mayo S/N, Ejército de Oriente Zona Peñon, Iztapalapa, Ciudad de México 09230, Mexico;
| | - Alma Rosa González-Esquinca
- Laboratorio de Fisiología y Química Vegetal, Instituto de Ciencias Biológicas, Universidad de Ciencias y Artes de Chiapas, Libramiento Norte Poniente 1150, Lajas Maciel, Tuxtla Gutiérrez 29039, Mexico;
| | - Isela Álvarez-González
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Eduardo Madrigal-Bujaidar
- Unidad Profesional Adolfo López Mateos, Laboratorio de Genética, Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Zacatenco, Av. Wilfrido Massieu Esq Cda. Miguel Stampa S/N, Alcaldía Gustavo A. Madero, Ciudad de México 07738, Mexico; (I.Á.-G.); (E.M.-B.)
| | - Nadia Judith Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Av. Vasco de Quiroga 15, Col. Belisario Domínguez Sección XVI, Tlalpan, Ciudad de México 14080, Mexico; (M.J.R.-B.); (E.P.-A.); (I.D.-W.)
| |
Collapse
|
31
|
Yang X, Wang J, Chang CY, Zhou F, Liu J, Xu H, Ibrahim M, Gomez M, Guo GL, Liu H, Zong WX, Wondisford FE, Su X, White E, Feng Z, Hu W. Leukemia inhibitory factor suppresses hepatic de novo lipogenesis and induces cachexia in mice. Nat Commun 2024; 15:627. [PMID: 38245529 PMCID: PMC10799847 DOI: 10.1038/s41467-024-44924-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 01/08/2024] [Indexed: 01/22/2024] Open
Abstract
Cancer cachexia is a systemic metabolic syndrome characterized by involuntary weight loss, and muscle and adipose tissue wasting. Mechanisms underlying cachexia remain poorly understood. Leukemia inhibitory factor (LIF), a multi-functional cytokine, has been suggested as a cachexia-inducing factor. In a transgenic mouse model with conditional LIF expression, systemic elevation of LIF induces cachexia. LIF overexpression decreases de novo lipogenesis and disrupts lipid homeostasis in the liver. Liver-specific LIF receptor knockout attenuates LIF-induced cachexia, suggesting that LIF-induced functional changes in the liver contribute to cachexia. Mechanistically, LIF overexpression activates STAT3 to downregulate PPARα, a master regulator of lipid metabolism, leading to the downregulation of a group of PPARα target genes involved in lipogenesis and decreased lipogenesis in the liver. Activating PPARα by fenofibrate, a PPARα agonist, restores lipid homeostasis in the liver and inhibits LIF-induced cachexia. These results provide valuable insights into cachexia, which may help develop strategies to treat cancer cachexia.
Collapse
Affiliation(s)
- Xue Yang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Jianming Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Chun-Yuan Chang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Fan Zhou
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Huiting Xu
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Maria Ibrahim
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Maria Gomez
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Grace L Guo
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ, USA
- Environmental and Occupational Health Science Institute, Rutgers University, Piscataway, NJ, USA
- Department of Veterans Affairs New Jersey Health Care System, East Orange, NJ, USA
| | - Hao Liu
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ, USA
- Biostatistics Shared Resource, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
| | - Wei-Xing Zong
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Department of Chemical Biology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Fredric E Wondisford
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Xiaoyang Su
- Department of Medicine, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Metabolomics Core Facility, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA
- Ludwig Princeton Branch, Ludwig Institute for Cancer Research, Princeton University, Princeton, NJ, USA
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
32
|
Knapp B, Govindan A, Patel SS, Pepin K, Wu N, Devarakonda S, Buchowski JM. Outcomes in Patients with Spinal Metastases Managed with Surgical Intervention. Cancers (Basel) 2024; 16:438. [PMID: 38275879 PMCID: PMC10813971 DOI: 10.3390/cancers16020438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Spinal metastases are a significant cause of morbidity in patients with advanced cancer, and management often requires surgical intervention. Although prior studies have identified factors that influence outcomes with surgery, the ability of these factors to predict outcomes remains unclear in the era of contemporary therapies, and there is a need to better identify patients who are likely to benefit from surgery. METHODS We performed a single-center, retrospective analysis to evaluate risk factors for poor outcomes in patients with spinal metastases treated with surgery. The primary outcome was mortality at 180 days. RESULTS A total of 128 patients were identified. Age ≥ 65 years at surgery (p = 0.0316), presence of extraspinal metastases (p = 0.0110), and ECOG performance scores >1 (p = 0.0397) were associated with mortality at 180 days on multivariate analysis. These factors and BMI ≤ 30 mg/kg2 (p = 0.0008) were also associated with worse overall survival. CONCLUSIONS Age > 65, extraspinal metastases, and performance status scores >1 are factors associated with mortality at 180 days in patients with spinal metastases treated with surgery. Patients with these factors and BMI ≤ 30 mg/kg2 had worse overall survival. Our results support multidisciplinary discussions regarding the benefits and risks associated with surgery in patients with these risk factors.
Collapse
Affiliation(s)
- Brendan Knapp
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (B.K.)
| | - Ashwin Govindan
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (B.K.)
| | - Shalin S. Patel
- Department of Orthopaedic Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Kymberlie Pepin
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (B.K.)
| | - Ningying Wu
- Biostatistics Shared Resource, Division of Public Health Sciences, Department of Surgery, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Siddhartha Devarakonda
- Department of Medicine, Division of Oncology, Washington University School of Medicine, St. Louis, MO 63110, USA; (B.K.)
| | - Jacob M. Buchowski
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
33
|
Ramadan AM, ElDeeb AM, Ramadan AA, Aleshmawy DM. Effect of combined Kinesiotaping and resistive exercise on muscle strength and quality of life in breast cancer survivors: a randomized clinical trial. J Egypt Natl Canc Inst 2024; 36:1. [PMID: 38221574 DOI: 10.1186/s43046-023-00205-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024] Open
Abstract
BACKGROUND Breast cancer (BC) and its treatment affect women's tissue architecture and physiology, which leads to impaired muscle strength and joint dysfunction, affecting quality of life (QOL). Most evidence has focused on exercises; however, due to the complexity and heterogeneity of patients' rehabilitation needs, further research is required to investigate more adjunctive methods to help optimal rehabilitation according to patients' needs, preferences, and effective interventions. METHODS This study aimed to determine the effect of Kinesiotaping (KT) combined with resistive exercise on muscle strength and QOL in breast cancer survivors (BCS). Forty premenopausal BCS treated with chemotherapy postmastectomy participated in this study. Their age ranged from 40 to 55 years, and their body mass index (BMI) was 25-29.9 kg/m2. They were randomly distributed into two equal groups. The control group received resistive exercise two times/week for 12 weeks, while the study group received resistive exercise and KT applied to the lower limbs. Hip, knee, and ankle muscle strength were measured using a hand-held dynamometer, and QOL was evaluated using 36-Item Short Form (SF-36) before and after treatment. RESULTS Both groups showed a significant increase (p = 0.0001) in the strength of hip flexors, knee extensors, flexors, ankle plantar flexors, and dorsiflexors, as well as SF-36 score after treatment. However, the study group showed a more significant increase in strength of hip flexors (p = 0.005), knee extensors (p = 0.01) and flexors (p = 0.02), ankle plantar flexors (p = 0.01), and dorsiflexors (p = 0.01), as well as SF-36 score (p = 0.006) than the control group. CONCLUSIONS KT plus resistive exercise is more effective than exercise alone for improving muscle strength and QOL in BCS. So, the KT can be recommended as a non-invasive, adjunctive method added to the protocol therapy for BCS to help better outcomes during the rehabilitation period.
Collapse
Affiliation(s)
- Alaa M Ramadan
- Department of Physical Therapy for Obstetrics and Gynecology, Faculty of Physical Therapy, October 6 University, Giza, Egypt
| | - Abeer M ElDeeb
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt.
| | - Ahmed A Ramadan
- Department of Surgery, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Dina M Aleshmawy
- Department of Physical Therapy for Women's Health, Faculty of Physical Therapy, Cairo University, Giza, Egypt
| |
Collapse
|
34
|
Willbanks A, Seals M, Karmali R, Roy I. Harnessing the Systemic Biology of Functional Decline and Cachexia to Inform more Holistic Therapies for Incurable Cancers. Cancers (Basel) 2024; 16:360. [PMID: 38254849 PMCID: PMC10814065 DOI: 10.3390/cancers16020360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Options for treatment of incurable cancer remain scarce and are largely focused on limited therapeutic mechanisms. A new approach specific to advanced cancers is needed to identify new and effective treatments. Morbidity in advanced cancer is driven by functional decline and a number of systemic conditions, including cachexia and fatigue. This review will focus on these clinical concepts, describe our current understanding of their underlying biology, and then propose how future therapeutic strategies, including pharmaceuticals, exercise, and rehabilitation, could target these mechanisms as an alternative route to addressing incurable cancer.
Collapse
Affiliation(s)
| | - Mina Seals
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
| | - Reem Karmali
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
| | - Ishan Roy
- Shirley Ryan AbilityLab, Chicago, IL 60611, USA
- Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL 60611, USA
- Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
35
|
He Y, Liao WJ, Hu AQ, Li XY, Wang JG, Qian D. A nomogram based on clinical characteristics and nutritional indicators for relative and absolute weight loss during radiotherapy in initially inoperable patients with locally advanced esophageal squamous cell carcinoma. Nutrition 2024; 117:112227. [PMID: 38486479 DOI: 10.1016/j.nut.2023.112227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 03/19/2024]
Abstract
OBJECTIVE Radiation for locally advanced esophageal squamous cell carcinoma often is accompanied by radiation esophagitis, which interferes with oral intake. We aimed to develop a nomogram model to identify initially inoperable patients with relative and absolute weight loss who need prophylactic nutritional supplementation. METHODS A total of 365 initially inoperable patients with locally advanced esophageal squamous cell carcinoma receiving radiotherapy between January 2018 and December 2022 were included in the study, which was divided into discovery and validation cohorts. Receiver operating characteristic and Kaplan-Meier curve analyses were performed to compare the areas under the curve and survival benefits. RESULTS A total of 42.2% (154 of 365) of the patients had been diagnosed with cancer cachexia. The malnourished group had a higher interruption rate of radiotherapy and number of complication diseases (P < 0.05). Meanwhile, patients with malnutrition had lower lymphocytes and prognostic nutritional index (P < 0.05). The combined index showed a higher area under the curve value (0.67; P < 0.001) than number of complication diseases (area under the curve = 0.52) and prognostic nutritional index (area under the curve = 0.49) for relative weight loss (≥ 5%). Similarly, the combined index had a higher area under the curve value (0.79; P < 0.001) than number of complication diseases (area under the curve = 0.56), treatment regimens (area under the curve = 0.56), subcutaneous fat thickness (area under the curve = 0.60), pretreatment body weight (area under the curve = 0.61), neutrophils (area under the curve = 0.56), and prognostic nutritional index (area under the curve = 0.50) for absolute weight loss (≥ 5 kg). Absolute and relative weight loss remained independent prognostic factors, with short overall survival rates compared with the normal group (P < 0.05). Patients with high nomogram scores supported by nutritional intervention had less weight loss, better nutrition scores, and increased plasma CD8+ T cells, and interferon gamma. CONCLUSIONS We developed a nomogram model that was intended to estimate relative and absolute weight loss in initially inoperable patients with locally advanced esophageal squamous cell carcinoma during radiotherapy, which might help facilitate an objective decision on prophylactic nutritional supplementation.
Collapse
Affiliation(s)
- Yuan He
- Department of Radiation Oncology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Wen-Jun Liao
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - An-Qi Hu
- Department of Radiation Oncology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiao-Yang Li
- Department of Radiation Oncology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jian-Guo Wang
- Department of Radiation Oncology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Dong Qian
- Department of Radiation Oncology, The First Affiliated Hospital of the University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
36
|
Kumar V, Stewart JH. Editorial: Immunology of cachexia. Front Immunol 2023; 14:1339263. [PMID: 38116001 PMCID: PMC10728869 DOI: 10.3389/fimmu.2023.1339263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 11/28/2023] [Indexed: 12/21/2023] Open
Affiliation(s)
- Vijay Kumar
- *Correspondence: John H. Stewart IV, ; Vijay Kumar, ;
| | - John H. Stewart
- Department of Surgery, Laboratory of Tumor Immunology and Immunotherapy, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
37
|
Liu H, Cheng Y, Qu Y, Wu G. Unraveling the gut microbiota and short-chain fatty acids characteristics and associations in a cancer cachexia mouse model. Microb Pathog 2023; 183:106332. [PMID: 37673351 DOI: 10.1016/j.micpath.2023.106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/01/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
OBJECTIVE Cachexia is a common pathological condition in cancer patients, affecting prognosis and treatment outcomes. The relationship between cachexia and gut microbiota and short-chain fatty acids (SCFAs) remains understudied. This research aimed to establish a cachexia mouse model and explore the gut microbiota-SCFAs connection. The study provides fundamental insights into the regulatory mechanisms of cancer cachexia and potential therapeutic strategies. METHODS A cachexia mouse model was created using C26 cells, with relevant indicators measured. Histological and immunohistochemical analyses assessed muscle structure and protein expression. ELISA was performed to detect the levels of IL-1β, IL-6, TNF-α, and LPS in serum to evaluate inflammation.16S rDNA sequencing and GC-MS quantified gut microbiota and SCFAs. Bioinformatics analysis identified indicator species and explored microbiota-SCFAs correlations.ROC analysis was performed to assess the potential of gut microbiota and SCFAs in identifying cachexia. RESULTS The cachexia mouse model exhibited weight loss, muscle atrophy, and elevated inflammatory factors. Gut microbiota in cachexia mice showed decreased diversity and imbalance. Fourteen bacterial genera were identified as potential cachexia indicators. Functional prediction indicated alterations in the functional composition of gut microbial communities in cachexia mice, particularly in carbohydrate and lipid metabolism pathways. Four SCFAs showed significant changes, potentially serving as diagnostic factors. Specific microbial taxa were positively or negatively correlated with changes in SCFAs, and these microbial taxa and differential SCFAs were also correlated with inflammatory cytokines. CONCLUSION Our study uncovers the gut microbiota and SCFAs features in a cachexia mouse model, revealing novel correlations between them. These newfound insights into the interplay between cachexia, gut microbiota, and SCFAs provide a crucial foundation for understanding the mechanisms behind cancer cachexia development and potential therapeutic approaches.
Collapse
Affiliation(s)
- Hao Liu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuxi Cheng
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yidan Qu
- Department of Medicine, Shandong First Medical University (Shandong Academy of Medical Sciences) of China, Jinan, Shandong, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China
| | - Guohao Wu
- Department of General Surgery/Shanghai Clinical Nutrition Research Center, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
38
|
Ye L, Li Y, Zhang S, Wang J, Lei B. Exosomes-regulated lipid metabolism in tumorigenesis and cancer progression. Cytokine Growth Factor Rev 2023; 73:27-39. [PMID: 37291031 DOI: 10.1016/j.cytogfr.2023.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/10/2023]
Abstract
Increasing evidence highlights the role of lipid metabolism in tumorigenesis and tumor progression. Targeting the processes of lipid metabolism, including lipogenesis, lipid uptake, fatty acid oxidation, and lipolysis, is an optimal strategy for anti-cancer therapy. Beyond cell-cell membrane surface interaction, exosomes are pivotal factors that transduce intercellular signals in the tumor microenvironment (TME). Most research focuses on the role of lipid metabolism in regulating exosome biogenesis and extracellular matrix (ECM) remodeling. The mechanisms of exosome and ECM-mediated reprogramming of lipid metabolism are currently unclear. We summarize several mechanisms associated with the regulation of lipid metabolism in cancer, including transport of exosomal carriers and membrane receptors, activation of the PI3K pathway, ECM ligand-receptor interactions, and mechanical stimulation. This review aims to highlight the significance of these intercellular factors in TME and to deepen the understanding of the functions of exosomes and ECM in the regulation of lipid metabolism.
Collapse
Affiliation(s)
- Leiguang Ye
- Department of Oncology, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Yingpu Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin 150081, China
| | - Jinsong Wang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| | - Bo Lei
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin 150081, China.
| |
Collapse
|
39
|
Zhu X, Hao J, Zhang H, Chi M, Wang Y, Huang J, Xu R, Xincai Z, Xin B, Sun X, Zhang J, Zhou S, Cheng D, Yuan T, Ding J, Zheng S, Guo C, Yang Q. Oncometabolite D-2-hydroxyglutarate-dependent metabolic reprogramming induces skeletal muscle atrophy during cancer cachexia. Commun Biol 2023; 6:977. [PMID: 37741882 PMCID: PMC10518016 DOI: 10.1038/s42003-023-05366-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023] Open
Abstract
Cancer cachexia is characterized by weight loss and skeletal muscle wasting. Based on the up-regulation of catabolism and down-regulation of anabolism, here we showed genetic mutation-mediated metabolic reprogramming in the progression of cancer cachexia by screening for metabolites and investigating their direct effect on muscle atrophy. Treatment with 93 μM D-2-hydroxyglutarate (D2HG) resulted in reduced myotube width and increased expression of E3 ubiquitin ligases. Isocitrate Dehydrogenase 1 (IDH1) mutant patients had higher D2HG than non-mutant patients. In the in vivo murine cancer cachexia model, mutant IDH1 in CT26 cancer cells accelerated cachexia progression and worsened overall survival. Transcriptomics and metabolomics revealed a distinct D2HG-induced metabolic imbalance. Treatment with the IDH1 inhibitor ivosidenib delayed the progression of cancer cachexia in murine GL261 glioma model and CT26 colorectal carcinoma models. These data demonstrate the contribution of IDH1 mutation mediated D2HG accumulation to the progression of cancer cachexia and highlight the individualized treatment of IDH1 mutation associated cancer cachexia.
Collapse
Affiliation(s)
- Xinting Zhu
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Juan Hao
- Department of Endocrinology, Shanghai Traditional Chinese Medicine, Integrated Hospital, Shanghai University of Traditional Chinese Medicine, 230 Baoding Road, Shanghai, 200082, China
| | - Hong Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Mengyi Chi
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Yaxian Wang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jinlu Huang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Rong Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Zhao Xincai
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Bo Xin
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Xipeng Sun
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Jianping Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shumin Zhou
- Institution of microsurgery on extremities, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Dongdong Cheng
- Department of Bone Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of MedicineShanghai Shanghai, Shanghai, P. R. China
| | - Ting Yuan
- Department of Bone Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of MedicineShanghai Shanghai, Shanghai, P. R. China
| | - Jun Ding
- Department of Neurosurgery, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Shuier Zheng
- Department of Oncology, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China
| | - Cheng Guo
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| | - Quanjun Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital affiliated Shanghai Jiao Tong University School of Medicine, 600 Yishan Road, Shanghai, 200233, China.
| |
Collapse
|
40
|
Directo D, Lee SR. Cancer Cachexia: Underlying Mechanisms and Potential Therapeutic Interventions. Metabolites 2023; 13:1024. [PMID: 37755304 PMCID: PMC10538050 DOI: 10.3390/metabo13091024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 09/28/2023] Open
Abstract
Cancer cachexia, a multifactorial metabolic syndrome developed during malignant tumor growth, is characterized by an accelerated loss of body weight accompanied by the depletion of skeletal muscle mass. This debilitating condition is associated with muscle degradation, impaired immune function, reduced functional capacity, compromised quality of life, and diminished survival in cancer patients. Despite the lack of the known capability of fully reversing or ameliorating this condition, ongoing research is shedding light on promising preclinical approaches that target the disrupted mechanisms in the pathophysiology of cancer cachexia. This comprehensive review delves into critical aspects of cancer cachexia, including its underlying pathophysiological mechanisms, preclinical models for studying the progression of cancer cachexia, methods for clinical assessment, relevant biomarkers, and potential therapeutic strategies. These discussions collectively aim to contribute to the evolving foundation for effective, multifaceted counteractive strategies against this challenging condition.
Collapse
Affiliation(s)
| | - Sang-Rok Lee
- Department of Kinesiology, New Mexico State University, Las Cruces, NM 88003, USA;
| |
Collapse
|
41
|
Ni P, Yang L, Li F. Exercise-derived skeletal myogenic exosomes as mediators of intercellular crosstalk: a major player in health, disease, and exercise. J Physiol Biochem 2023; 79:501-510. [PMID: 37338658 DOI: 10.1007/s13105-023-00969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Exosomes are extracellular membrane vesicles that contain biological macromolecules such as RNAs and proteins. It plays an essential role in physiological and pathological processes as carrier of biologically active substances and new mediator of intercellular communication. It has been reported that myokines secreted by the skeletal muscle are wrapped in small vesicles (e.g., exosomes), secreted into the circulation, and then regulate the receptor cells. This review discussed the regulation of microRNAs (miRNAs), proteins, lipids, and other cargoes carried by skeletal muscle-derived exosomes (SkMCs-Exs) on the body and their effects on pathological states, including injury atrophy, aging, and vascular porosis. We also discussed the role of exercise in regulating skeletal muscle-derived exosomes and its physiological significance.
Collapse
Affiliation(s)
- Pinshi Ni
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, China
| | - Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
- Laboratory of Exercise and Neurobiology, College of Physical Education and Sports Science, South China Normal University, University Town, Guangzhou, 510006, China.
| | - Fanghui Li
- School of Sport Sciences, Nanjing Normal University, No. 1 Wenyuan Road, Qixia District, Nanjing, 210046, China.
- Zhaoqing University, Guangdong, Zhaoqing, 526061, China.
| |
Collapse
|
42
|
Rentz LE, Whetsell MA, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. Int J Mol Sci 2023; 24:11669. [PMID: 37511427 PMCID: PMC10380440 DOI: 10.3390/ijms241411669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis result in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that the isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest that these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within the muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Marcella A. Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV 26506, USA;
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
| | - Emily H. Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (L.E.R.); (M.A.W.); (S.A.C.)
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV 26506, USA; (A.D.M.); (M.G.C.); (T.D.E.)
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV 26506, USA;
| |
Collapse
|
43
|
Wang R, Xiong K, Wang Z, Wu D, Hu B, Ruan J, Sun C, Ma D, Li L, Liao S. Immunodiagnosis - the promise of personalized immunotherapy. Front Immunol 2023; 14:1216901. [PMID: 37520576 PMCID: PMC10372420 DOI: 10.3389/fimmu.2023.1216901] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023] Open
Abstract
Immunotherapy showed remarkable efficacy in several cancer types. However, the majority of patients do not benefit from immunotherapy. Evaluating tumor heterogeneity and immune status before treatment is key to identifying patients that are more likely to respond to immunotherapy. Demographic characteristics (such as sex, age, and race), immune status, and specific biomarkers all contribute to response to immunotherapy. A comprehensive immunodiagnostic model integrating all these three dimensions by artificial intelligence would provide valuable information for predicting treatment response. Here, we coined the term "immunodiagnosis" to describe the blueprint of the immunodiagnostic model. We illustrated the features that should be included in immunodiagnostic model and the strategy of constructing the immunodiagnostic model. Lastly, we discussed the incorporation of this immunodiagnosis model in clinical practice in hopes of improving the prognosis of tumor immunotherapy.
Collapse
Affiliation(s)
- Renjie Wang
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kairong Xiong
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhimin Wang
- Division of Endocrinology and Metabolic Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Di Wu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bai Hu
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinghan Ruan
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyang Sun
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ding Ma
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Li
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shujie Liao
- Department of Obstetrics and Gynecology, Cancer Biology Research Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
44
|
Rentz LE, Whetsell M, Clayton SA, Mizener AD, Holásková I, Chapa MG, Hoblitzell EH, Eubank TD, Pistilli EE. Sexual Dimorphism of Skeletal Muscle in a Mouse Model of Breast Cancer: A Functional and Molecular Analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.07.544049. [PMID: 37362158 PMCID: PMC10288531 DOI: 10.1101/2023.06.07.544049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Breast cancer incidence in men is statistically rare; however, given the lack of screening in males, more advanced stages at initial diagnosis results in lower 5-year survival rates for men with breast cancer compared to women. A sexual dimorphism, with respect to the effect of tumor growth on cachexia incidence and severity, has also been reported across cancer types. The purpose of this study was to examine the sexual dimorphism of breast cancer as it pertains to skeletal muscle function and molecular composition. Using female and male transgenic PyMT mice, we tested the hypothesis that isometric contractile properties and molecular composition of skeletal muscle would be differentially affected by breast tumors. PyMT tumor-bearing mice of each sex, corresponding to maximal tumor burden, were compared to their respective controls. RNA-sequencing of skeletal muscle revealed different pathway alterations that were exclusive to each sex. Further, differentially expressed genes and pathways were substantially more abundant in female tumor mice, with only minimal dysregulation in male tumor mice, each compared to their respective controls. These differences in the transcriptome were mirrored in isometric contractile properties, with greater tumor-induced dysfunction in females than male mice, as well as muscle wasting. Collectively, these data support the concept of sexually dimorphic responses to cancer in skeletal muscle and suggest these responses may be associated with the clinical differences in breast cancer between the sexes. The identified sex-dependent pathways within muscle of male and female mice provide a framework to evaluate therapeutic strategies targeting tumor-associated skeletal muscle alterations.
Collapse
Affiliation(s)
- Lauren E. Rentz
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Marcella Whetsell
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Stuart A. Clayton
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Alan D. Mizener
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Ida Holásková
- Office of Statistics, West Virginia Agriculture and Forestry Experiment Station, Davis College of Agriculture, Natural Resources and Design, West Virginia University, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Matthew G. Chapa
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - E. Hannah Hoblitzell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Timothy D. Eubank
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| | - Emidio E. Pistilli
- Division of Exercise Physiology, Department of Human Performance, West Virginia University School of Medicine, Morgantown, WV, 26506
- Cancer Institute, West Virginia University School of Medicine, Morgantown, WV, 26506
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506
| |
Collapse
|
45
|
Gilmore LA, Parry TL, Thomas GA, Khamoui AV. Skeletal muscle omics signatures in cancer cachexia: perspectives and opportunities. J Natl Cancer Inst Monogr 2023; 2023:30-42. [PMID: 37139970 PMCID: PMC10157770 DOI: 10.1093/jncimonographs/lgad006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/13/2023] [Accepted: 02/06/2023] [Indexed: 05/05/2023] Open
Abstract
Cachexia is a life-threatening complication of cancer that occurs in up to 80% of patients with advanced cancer. Cachexia reflects the systemic consequences of cancer and prominently features unintended weight loss and skeletal muscle wasting. Cachexia impairs cancer treatment tolerance, lowers quality of life, and contributes to cancer-related mortality. Effective treatments for cancer cachexia are lacking despite decades of research. High-throughput omics technologies are increasingly implemented in many fields including cancer cachexia to stimulate discovery of disease biology and inform therapy choice. In this paper, we present selected applications of omics technologies as tools to study skeletal muscle alterations in cancer cachexia. We discuss how comprehensive, omics-derived molecular profiles were used to discern muscle loss in cancer cachexia compared with other muscle-wasting conditions, to distinguish cancer cachexia from treatment-related muscle alterations, and to reveal severity-specific mechanisms during the progression of cancer cachexia from early toward severe disease.
Collapse
Affiliation(s)
- L Anne Gilmore
- Department of Clinical Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Center for Human Nutrition, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Traci L Parry
- Department of Kinesiology, University of North Carolina Greensboro, Greensboro, NC, USA
| | - Gwendolyn A Thomas
- Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
| | - Andy V Khamoui
- Department of Exercise Science and Health Promotion, Florida Atlantic University, Boca Raton, FL, USA
- Institute for Human Health and Disease Intervention, Florida Atlantic University, Jupiter, FL, USA
| |
Collapse
|
46
|
Muthamil S, Kim HY, Jang HJ, Lyu JH, Shin UC, Go Y, Park SH, Lee HG, Park JH. Understanding the relationship between cancer associated cachexia and hypoxia-inducible factor-1. Biomed Pharmacother 2023; 163:114802. [PMID: 37146421 DOI: 10.1016/j.biopha.2023.114802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/07/2023] Open
Abstract
Cancer-associated cachexia (CAC) is a multifactorial disorder characterized by an unrestricted loss of body weight as a result of muscle and adipose tissue atrophy. Cachexia is influenced by several factors, including decreased metabolic activity and food intake, an imbalance between energy uptake and expenditure, excessive catabolism, and inflammation. Cachexia is highly associated with all types of cancers responsible for more than half of cancer-related mortalities worldwide. In healthy individuals, adipose tissue significantly regulates energy balance and glucose homeostasis. However, in metastatic cancer patients, CAC occurs mainly because of an imbalance between muscle protein synthesis and degradation which are organized by certain extracellular ligands and associated signaling pathways. Under hypoxic conditions, hypoxia-inducible factor-1 (HIF-1α) accumulated and translocated to the nucleus and activate numerous genes involved in cell survival, invasion, angiogenesis, metastasis, metabolic reprogramming, and cancer stemness. On the other hand, the ubiquitination proteasome pathway is inhibited during low O2 levels which promote muscle wasting in cancer patients. Therefore, understanding the mechanism of the HIF-1 pathway and its metabolic adaptation to biomolecules is important for developing a novel therapeutic method for cancer and cachexia therapy. Even though many HIF inhibitors are already in a clinical trial, their mechanism of action remains unknown. With this background, this review summarizes the basic concepts of cachexia, the role of inflammatory cytokines, pathways connected with cachexia with special reference to the HIF-1 pathway and its regulation, metabolic changes, and inhibitors of HIFs.
Collapse
Affiliation(s)
- Subramanian Muthamil
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun Yong Kim
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Hyun-Jun Jang
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ji-Hyo Lyu
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Ung Cheol Shin
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea
| | - Younghoon Go
- Korean Medicine (KM)-application Center, Korea Institute of Oriental Medicine, Daegu, Republic of Korea
| | - Seong-Hoon Park
- Genetic and Epigenetic Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34141, Republic of Korea
| | - Hee Gu Lee
- Immunotherapy Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Jun Hong Park
- Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, Jeollanam-do, 58245, Republic of Korea; University of Science & Technology (UST), KIOM campus, Korean Convergence Medicine Major, Daejeon 34054, Republic of Korea.
| |
Collapse
|
47
|
Wang R, Kumar B, Bhat-Nakshatri P, Khatpe AS, Murphy MP, Wanczyk KE, Simpson E, Chen D, Gao H, Liu Y, Doud EH, Mosley AL, Nakshatri H. A human skeletal muscle stem/myotube model reveals multiple signaling targets of cancer secretome in skeletal muscle. iScience 2023; 26:106541. [PMID: 37102148 PMCID: PMC10123345 DOI: 10.1016/j.isci.2023.106541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 03/24/2023] [Indexed: 04/03/2023] Open
Abstract
Skeletal muscle dysfunction or reprogramming due to the effects of the cancer secretome is observed in multiple malignancies. Although mouse models are routinely used to study skeletal muscle defects in cancer, because of species specificity of certain cytokines/chemokines in the secretome, a human model system is required. Here, we establish simplified multiple skeletal muscle stem cell lines (hMuSCs), which can be differentiated into myotubes. Using single nuclei ATAC-seq (snATAC-seq) and RNA-seq (snRNA-seq), we document chromatin accessibility and transcriptomic changes associated with the transition of hMuSCs to myotubes. Cancer secretome accelerated stem to myotube differentiation, altered the alternative splicing machinery and increased inflammatory, glucocorticoid receptor, and wound healing pathways in hMuSCs. Additionally, cancer secretome reduced metabolic and survival pathway associated miR-486, AKT, and p53 signaling in hMuSCs. hMuSCs underwent myotube differentiation when engrafted into NSG mice and thus providing a humanized in vivo skeletal muscle model system to study cancer cachexia.
Collapse
Affiliation(s)
- Ruizhong Wang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Brijesh Kumar
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | - Aditi S. Khatpe
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael P. Murphy
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Kristen E. Wanczyk
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| | - Edward Simpson
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Duojiao Chen
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Hongyu Gao
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Yunlong Liu
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Emma H. Doud
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Amber L. Mosley
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Harikrishna Nakshatri
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- VA Roudebush Medical Center, Indianapolis, IN 46202, USA
| |
Collapse
|
48
|
Tao W, Ouyang Z, Liao Z, Li L, Zhang Y, Gao J, Ma L, Yu S. Ursolic Acid Alleviates Cancer Cachexia and Prevents Muscle Wasting via Activating SIRT1. Cancers (Basel) 2023; 15:cancers15082378. [PMID: 37190306 DOI: 10.3390/cancers15082378] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/10/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle wasting is the most remarkable phenotypic feature of cancer cachexia that increases the risk of morbidity and mortality. However, there are currently no effective drugs against cancer cachexia. Ursolic acid (UA) is a lipophilic pentacyclic triterpene that has been reported to alleviate muscle atrophy and reduce muscle decomposition in some disease models. This study aimed to explore the role and mechanisms of UA treatment in cancer cachexia. We found that UA attenuated Lewis lung carcinoma (LLC)-conditioned medium-induced C2C12 myotube atrophy and muscle wasting of LLC tumor-bearing mice. Moreover, UA dose-dependently activated SIRT1 and downregulated MuRF1 and Atrogin-1. Molecular docking results revealed a good binding effect on UA and SIRT1 protein. UA rescued vital features wasting without impacting tumor growth, suppressed the elevated spleen weight, and downregulated serum concentrations of inflammatory cytokines in vivo. The above phenomena can be attenuated by Ex-527, an inhibitor of SIRT1. Furthermore, UA remained protective against cancer cachexia in the advanced stage of tumor growth. The results revealed that UA exerts an anti-cachexia effect via activating SIRT1, thereby downregulating the phosphorylation levels of NF-κB and STAT3. UA might be a potential drug against cancer cachexia.
Collapse
Affiliation(s)
- Weili Tao
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ze Ouyang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhiqi Liao
- Reproductive Medicine Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lu Li
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yujie Zhang
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiali Gao
- Division of Respiratory and Critical Care Medicine, Department of Internal Medicine, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Ma
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shiying Yu
- Department of Oncology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
49
|
Gerstberger S, Jiang Q, Ganesh K. Metastasis. Cell 2023; 186:1564-1579. [PMID: 37059065 PMCID: PMC10511214 DOI: 10.1016/j.cell.2023.03.003] [Citation(s) in RCA: 328] [Impact Index Per Article: 164.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 03/02/2023] [Indexed: 04/16/2023]
Abstract
Most cancer-associated deaths occur due to metastasis, yet our understanding of metastasis as an evolving, heterogeneous, systemic disease and of how to effectively treat it is still emerging. Metastasis requires the acquisition of a succession of traits to disseminate, variably enter and exit dormancy, and colonize distant organs. The success of these events is driven by clonal selection, the potential of metastatic cells to dynamically transition into distinct states, and their ability to co-opt the immune environment. Here, we review the main principles of metastasis and highlight emerging opportunities to develop more effective therapies for metastatic cancer.
Collapse
Affiliation(s)
- Stefanie Gerstberger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Qingwen Jiang
- Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Karuna Ganesh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Molecular Pharmacology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
50
|
Wang D, Li X, Jiao D, Cai Y, Qian L, Shen Y, Lu Y, Zhou Y, Fu B, Sun R, Tian Z, Zheng X, Wei H. LCN2 secreted by tissue-infiltrating neutrophils induces the ferroptosis and wasting of adipose and muscle tissues in lung cancer cachexia. J Hematol Oncol 2023; 16:30. [PMID: 36973755 PMCID: PMC10044814 DOI: 10.1186/s13045-023-01429-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/19/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Cancer cachexia is a deadly wasting syndrome that accompanies various diseases (including ~ 50% of cancers). Clinical studies have established that cachexia is not a nutritional deficiency and is linked to expression of certain proteins (e.g., interleukin-6 and C-reactive protein), but much remains unknown about this often fatal syndrome. METHODS First, cachexia was created in experimental mouse models of lung cancer. Samples of human lung cancer were used to identify the association between the serum lipocalin 2 (LCN2) level and cachexia progression. Then, mouse models with LCN2 blockade or LCN2 overexpression were used to ascertain the role of LCN2 upon ferroptosis and cachexia. Furthermore, antibody depletion of tissue-infiltrating neutrophils (TI-Neu), as well as myeloid-specific-knockout of Lcn2, were undertaken to reveal if LCN2 secreted by TI-Neu caused cachexia. Finally, chemical inhibition of ferroptosis was conducted to illustrate the effect of ferroptosis upon tissue wasting. RESULTS Protein expression of LCN2 was higher in the wasting adipose tissue and muscle tissues of experimental mouse models of lung cancer cachexia. Moreover, evaluation of lung cancer patients revealed an association between the serum LCN2 level and cachexia progression. Inhibition of LCN2 expression reduced cachexia symptoms significantly and inhibited tissue wasting in vivo. Strikingly, we discovered a significant increase in the number of TI-Neu in wasting tissues, and that these innate immune cells secreted high levels of LCN2. Antibody depletion of TI-Neu, as well as myeloid-specific-knockout of Lcn2, prevented ferroptosis and tissue wasting in experimental models of lung cancer cachexia. Chemical inhibition of ferroptosis alleviated tissue wasting significantly and also prolonged the survival of cachectic mice. CONCLUSIONS Our study provides new insights into how LCN2-induced ferroptosis functionally impacts tissue wasting. We identified LCN2 as a potential target in the treatment of cancer cachexia.
Collapse
Affiliation(s)
- Dong Wang
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohui Li
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Defeng Jiao
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Ying Cai
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Liting Qian
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230031, Anhui, China
| | - Yiqing Shen
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yichen Lu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Yonggang Zhou
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Binqing Fu
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Rui Sun
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Zhigang Tian
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China
| | - Xiaohu Zheng
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| | - Haiming Wei
- Department of Geriatrics, First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
- CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China.
- Institue of Immunology, University of Science and Technology of China, Hefei, 230027, Anhui, China.
| |
Collapse
|