1
|
Srivastava S, Sekar G, Ojoawo A, Aggarwal A, Ferreira E, Uchikawa E, Yang M, Grace CR, Dey R, Lin YL, Guibao CD, Jayaraman S, Mukherjee S, Kossiakoff AA, Dong B, Myasnikov A, Moldoveanu T. Structural basis of BAK sequestration by MCL-1 in apoptosis. Mol Cell 2025; 85:1606-1623.e10. [PMID: 40187349 DOI: 10.1016/j.molcel.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/11/2024] [Accepted: 03/12/2025] [Indexed: 04/07/2025]
Abstract
Apoptosis controls cell fate, ensuring tissue homeostasis and promoting disease when dysregulated. The rate-limiting step in apoptosis is mitochondrial poration by the effector B cell lymphoma 2 (BCL-2) family proteins BAK and BAX, which are activated by initiator BCL-2 homology 3 (BH3)-only proteins (e.g., BIM) and inhibited by guardian BCL-2 family proteins (e.g., MCL-1). We integrated structural, biochemical, and pharmacological approaches to characterize the human prosurvival MCL-1:BAK complex assembled from their BCL-2 globular core domains. We reveal a canonical interaction with BAK BH3 bound to the hydrophobic groove of MCL-1 and disordered and highly dynamic BAK regions outside the complex interface. We predict similar conformations of activated effectors in complex with other guardians or effectors. The MCL-1:BAK complex is a major cancer drug target. We show that MCL-1 inhibitors are inefficient in neutralizing the MCL-1:BAK complex, requiring high doses to initiate apoptosis. Our study underscores the need to design superior clinical candidate MCL-1 inhibitors.
Collapse
Affiliation(s)
- Shagun Srivastava
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Giridhar Sekar
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Adedolapo Ojoawo
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Anup Aggarwal
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elisabeth Ferreira
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Emiko Uchikawa
- Dubochet Center for Imaging, EPFL, Lausanne 1015, Vaud, Switzerland
| | - Meek Yang
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | - Christy R Grace
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Raja Dey
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Yi-Lun Lin
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Cristina D Guibao
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105
| | - Seetharaman Jayaraman
- Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105; Pharmacology, Addiction Science, and Toxicology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Somnath Mukherjee
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Bin Dong
- Chemistry and Biochemistry, University of Arkansas Fayetteville, Fayetteville, AR 72701, USA
| | | | - Tudor Moldoveanu
- Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| |
Collapse
|
2
|
Gong JN, Djajawi TM, Moujalled DM, Pomilio G, Khong T, Zhang LP, Fedele PL, Low MS, Anderson MA, Riffkin CD, White CA, Lan P, Lessene G, Herold MJ, Strasser A, Spencer A, Grigoriadis G, Wei AH, van Delft MF, Roberts AW, Huang DCS. Re-appraising assays on permeabilized blood cancer cells testing venetoclax or other BH3 mimetic agents selectively targeting pro-survival BCL2 proteins. Cell Death Differ 2025:10.1038/s41418-025-01487-7. [PMID: 40204951 DOI: 10.1038/s41418-025-01487-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 01/23/2025] [Accepted: 03/18/2025] [Indexed: 04/11/2025] Open
Abstract
BH3 mimetic drugs that selectively target the pro-survival BCL2 proteins are highly promising for cancer treatment, most notably for treating blood cancers. Venetoclax, which inhibits BCL2, is now approved for treating chronic lymphocytic leukemia (CLL) and acute myeloid leukemia (AML). Preferably, robust and validated assays would identify patients most likely to benefit from therapy with venetoclax itself or with inhibitors of other pro-survival proteins. A sophisticated method that has been developed is the BH3 profiling assay. In this assay, permeabilized, instead of intact, cells are treated for a few hours with inhibitors of the pro-survival BCL2 proteins, and the resultant mitochondrial depolarization measured. Sensitivity to a specific inhibitor (e.g., venetoclax or other BH3 mimetics) is then used to infer the reliance of a tumor (e.g., CLL) on one or more pro-survival BCL2 proteins. However, we found that this methodology cannot reliably identify such dependencies. In part, this is because almost all cells express multiple pro-survival BCL2 proteins that restrain BAX and BAK which must be inhibited before mitochondrial depolarization and apoptosis can proceed. Using genetic and pharmacological tools across multiple cell line models of blood cancer, we demonstrated that selective BCL2 inhibitors have important flow-on effects that includes the redistribution of BH3-only proteins to ancillary pro-survival proteins not directly engaged by the inhibitor. These secondary effects, critical to the biological action of selective inhibitors, were not accurately recapitulated in permeabilized cells, probably due to the limited time frame possible in such assays or the altered biophysical conditions when cells are permeabilized. While we could consistently define the sensitivity of a tumor cell to a particular BH3 mimetic drugs using intact cells, this was not reliable with permeabilized cells. These studies emphasize the need to carefully evaluate assays on permeabilized cells undertaken with inhibitors of the pro-survival BCL2 proteins.
Collapse
Affiliation(s)
- Jia-Nan Gong
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Beijing, China.
| | - Tirta M Djajawi
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Donia M Moujalled
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
| | - Giovanna Pomilio
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
| | - Tiffany Khong
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, VIC, Australia
| | - Li-Ping Zhang
- NHC Key Laboratory of Human Disease Comparative Medicine, The Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, National Human Diseases Animal Model Resource Center, National Center of Technology Innovation for Animal Model, Beijing, China
| | - Pasquale L Fedele
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Michael S Low
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Haematology, Monash Health, Clayton, VIC, Australia
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Mary Ann Anderson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | | | - Christine A White
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- oNKo-Innate, Melbourne, VIC, Australia
| | - Ping Lan
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Institute for Advanced and Applied Chemical Synthesis, Jinan University, Jinan, China
| | - Guillaume Lessene
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, VIC, Australia
| | - Marco J Herold
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia
- School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia
| | - Andreas Strasser
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Spencer
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Malignant Haematology and Stem Cell Transplantation, The Alfred Hospital, Melbourne, VIC, Australia
| | - George Grigoriadis
- School of Clinical Sciences at Monash Health, Monash University, Clayton, VIC, Australia
| | - Andrew H Wei
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
- Australian Centre for Blood Diseases, Alfred Health-Monash University, Melbourne, VIC, Australia
- Department of Clinical Haematology, The Alfred Hospital, Melbourne, VIC, Australia
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Mark F van Delft
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew W Roberts
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
- Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia.
| | - David C S Huang
- Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.
- Departments of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.
| |
Collapse
|
3
|
Coussens NP, Dexheimer TS, Silvers T, Sanchez PR, Chen L, Hollingshead MG, Takebe N, Doroshow JH, Teicher BA. Combinatorial screen with apoptosis pathway targeted agents alrizomadlin, pelcitoclax, and dasminapant in multi-cell type tumor spheroids. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100230. [PMID: 40210129 DOI: 10.1016/j.slasd.2025.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/12/2025]
Abstract
Apoptosis, or programmed cell death, plays a critical role in maintaining tissue homeostasis by eliminating damaged or abnormal cells. Dysregulation of apoptosis pathways is a hallmark of cancer, allowing malignant cells to evade cell death and proliferate uncontrollably. Targeting apoptosis pathways has emerged as a promising therapeutic strategy in cancer treatment, aiming to restore the balance between cell survival and death. The MDM2 inhibitor alrizomadlin, the Bcl-2/Bcl-xL inhibitor pelcitoclax, and the IAP family inhibitor dasminapant were evaluated both individually and in combinations with standard of care and investigational anticancer small molecules in a spheroid model of solid tumors. The multi-cell type tumor spheroids were grown from human endothelial cells and mesenchymal stem cells combined with human malignant cells that were either established or patient-derived cell lines from the NCI Patient-Derived Models Repository. The malignant cell lines were derived from a range of solid tumors including uterine carcinosarcoma, synovial sarcoma, rhabdomyosarcoma, soft tissue sarcoma, malignant fibrous histiocytoma, malignant peripheral nerve sheath tumor (MPNST), pancreas, ovary, colon, breast, and small cell lung cancer. Interactions were observed from combinations of the apoptosis pathway targeted agents. Additionally, interactions were observed from combinations of the apoptosis pathway targeted agents with other agents, including PARP inhibitors, the XPO1 inhibitor eltanexor, and the PI3K inhibitor copanlisib. Enhanced activity was also observed from combinations of the apoptosis pathway targeted agents with MAPK pathway targeted agents, including the MEK inhibitor cobimetinib as well as adagrasib and MRTX1133, which specifically target the KRAS G12C and G12D variants, respectively.
Collapse
Affiliation(s)
- Nathan P Coussens
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA.
| | - Thomas S Dexheimer
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Thomas Silvers
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Phillip R Sanchez
- Molecular Pharmacology Laboratory, Applied and Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Li Chen
- Molecular Characterization Laboratory, Clinical Research Directorate, Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Melinda G Hollingshead
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Naoko Takebe
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - James H Doroshow
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Beverly A Teicher
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Steen TV, Espinoza I, Duran C, Casadevall G, Serrano-Hervás E, Cuyàs E, Verdura S, Kemble G, Kaufmann SH, McWilliams R, Osuna S, Billadeau DD, Menendez JA, Lupu R. Fatty acid synthase (FASN) inhibition cooperates with BH3 mimetic drugs to overcome resistance to mitochondrial apoptosis in pancreatic cancer. Neoplasia 2025; 62:101143. [PMID: 39999714 PMCID: PMC11908614 DOI: 10.1016/j.neo.2025.101143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/17/2025] [Indexed: 02/27/2025]
Abstract
Resistance to mitochondrial apoptosis is a major driver of chemoresistance in pancreatic ductal adenocarcinoma (PDAC). However, pharmacological manipulation of the mitochondrial apoptosis threshold in PDAC cells remains an unmet therapeutic goal. We hypothesized that fatty acid synthase inhibitors (FASNis), a family of targeted metabolic therapeutics recently entering the clinic, could lower the apoptotic threshold in chemoresistant PDAC cells and be synergistic with BH3 mimetics that neutralize anti-apoptotic proteins. Computational studies with TVB-3166 and TVB-3664, two analogues of the clinical-grade FASNi TVB-2640 (denifanstat), confirmed their uncompetitive behavior towards NADPH when bound to the FASN ketoacyl reductase domain. The extent of NADPH accumulation, a consequence of FASN inhibition, paralleled the sensitivity of PDAC cells to the apoptotic effects of TVB FASNis in conventional PDAC cell lines that naturally express varying levels of FASN. FASN inhibition dramatically increased the sensitivity of "FASN-high" expressing PDAC cells to the BCL2/BCL-XL/BCL-W inhibitor ABT-263/navitoclax and the BCL2-selective inhibitor ABT-199/venetoclax, both in vitro and in in vivo xenografted tumors. The ability of TVB FASNis to shift the balance of pro- and anti-apoptotic proteins and thereby push PDAC cells closer to the apoptotic threshold was also observed in cell lines developed from patient-derived xenografts (PDXs) representative of the classical (pancreatic) transcriptomic subtype of PDAC. Experiments in PDAC PDXs in vivo confirmed the synergistic antitumor activity of TVB-3664 with navitoclax and venetoclax, independent of the nature of the replication stress signature of patient-derived PDAC cells. The discovery that targeted inhibition of FASN is a metabolic perturbation that sensitizes PDAC cells to BH3 mimetics warrants further investigation to overcome resistance to mitochondrial apoptosis in PDAC patients.
Collapse
Affiliation(s)
- Travis Vander Steen
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ingrid Espinoza
- National Institute of Health, National Heart Lung and Blood Institute (NHLBI), Bethesda, MD 20817, USA; Lung Development and Pediatric Branch (HNH36), Bethesda, MD 20817, USA
| | - Cristina Duran
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Guillem Casadevall
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain
| | - Eila Serrano-Hervás
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Elisabet Cuyàs
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | - Sara Verdura
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain
| | | | - Scott H Kaufmann
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA
| | - Robert McWilliams
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN, 55905, USA
| | - Sílvia Osuna
- Institut de Química Computacional i Catàlisi and Departament de Química, Universitat de Girona, Girona 17003, Spain; ICREA, Barcelona 08010, Spain
| | - Daniel D Billadeau
- Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Division of Oncology Research, Mayo Clinic, Rochester, MN, 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA; Department of Immunology College of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Javier A Menendez
- Program Against Cancer Therapeutic Resistance (ProCURE), Catalan Institute of Oncology, Girona 17007, Spain; Metabolism and Cancer Group,Girona Biomedical Research Institute (IDIBGI), Salt 17190, Girona, Spain.
| | - Ruth Lupu
- Division of Experimental Pathology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 55905, USA; Mayo Clinic Cancer Center, Rochester, MN 55905, USA; Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
5
|
Gao T, Magnano S, Quadros M, Barroeta PH, Zisterer DM. The pan-BH-3 mimetic, obatoclax, synergistically enhances cisplatin-induced apoptosis in oral squamous cell carcinoma through a mechanism that involves degradation of the pro-survival protein Mcl-1. Arch Oral Biol 2025; 174:106250. [PMID: 40194355 DOI: 10.1016/j.archoralbio.2025.106250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/09/2025]
Abstract
OBJECTIVES The purpose of the study was to elucidate the role of the Bcl-2 family of proteins in mediating cisplatin resistance in oral squamous cell carcinoma (OSCC). The value of the BH3-mimetics venetoclax and obatoclax as sensitisers for cisplatin treatment in OSCC was also evaluated. DESIGN In this study the expression levels of a series of pro- and anti-apoptotic members of the Bcl-2 family in paired cisplatin-sensitive (SCC4) and resistant (SCC4cisR) tongue squamous carcinoma cell lines were examined by western blotting. The apoptotic rate induced by cisplatin and BH3-mimetics venetoclax and obatoclax alone or in combination in OSCC was also evaluated by Annexin V/Propidium Iodide double-stained flow cytometric assays. RESULTS Obatoclax was shown to synergistically enhance cisplatin-induced apoptosis, and this enhancement was associated with a marked degradation in pro-survival Mcl-1 and upregulation in conformationally active form of pro-apoptotic Bak. CONCLUSIONS Our study presents novel insights into the relationship between the Bcl-2 family and cisplatin efficacy in OSCC. It also demonstrates that targeted therapy with BH-3 mimetics, such as obatoclax, may represent a new strategy for OSCC therapy.
Collapse
Affiliation(s)
- Tianyi Gao
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| | - Stefania Magnano
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Molly Quadros
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Patricia Hannon Barroeta
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Daniela M Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Zhang L, Ramesh P, Atencia Taboada L, Roessler R, Zijlmans DW, Vermeulen M, Picavet-Havik DI, van der Wel NN, Vaz FM, Medema JP. UGT8 mediated sulfatide synthesis modulates BAX localization and dictates apoptosis sensitivity of colorectal cancer. Cell Death Differ 2025; 32:657-671. [PMID: 39580596 PMCID: PMC11982410 DOI: 10.1038/s41418-024-01418-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
Elevated de novo lipid synthesis is a remarkable adaptation of cancer cells that can be exploited for therapy. However, the role of altered lipid metabolism in the regulation of apoptosis is still poorly understood. Using thermal proteome profiling, we identified Manidipine-2HCl, targeting UGT8, a key enzyme in the synthesis of sulfatides. In agreement, lipidomic analysis indicated that sulfatides are strongly reduced in colorectal cancer cells upon treatment with Manidipine-2HCl. Intriguingly, this reduction led to severe mitochondrial swelling and a strong synergism with BH3 mimetics targeting BCL-XL, leading to the activation of mitochondria-dependent apoptosis. Mechanistically, Manidipine-2HCl enhanced mitochondrial BAX localization in a sulfatide-dependent fashion, facilitating its activation by BH3 mimetics. In conclusion, our data indicates that UGT8 mediated synthesis of sulfatides controls mitochondrial homeostasis and BAX localization, dictating apoptosis sensitivity of colorectal cancer cells.
Collapse
Affiliation(s)
- Le Zhang
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Prashanthi Ramesh
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Lidia Atencia Taboada
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Rebecca Roessler
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - Dick W Zijlmans
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
| | - Michiel Vermeulen
- Department of Molecular Biology, Faculty of Science, Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, The Netherlands
- Oncode Institute, Nijmegen, The Netherlands
- Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Daisy I Picavet-Havik
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nicole N van der Wel
- Medical Biology - MB Core Facility, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Frédéric M Vaz
- Amsterdam UMC location University of Amsterdam, Department of Laboratory Medicine and Pediatrics, Laboratory Genetic Metabolic Diseases, Emma Children's Hospital, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Inborn errors of metabolism, Amsterdam, The Netherlands
- Core Facility Metabolomics, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Jan Paul Medema
- LEXOR, Center for Experimental Molecular Medicine, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
| |
Collapse
|
7
|
Liu M, Guo J, Liu W, Yang Z, Yu F. Dual Targeting of Aurora-A and Bcl-xL Synergistically Reshapes the Immune Microenvironment and Induces Apoptosis in Breast Cancer. Cancer Sci 2025. [PMID: 40159464 DOI: 10.1111/cas.70072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
The Aurora-A kinase inhibitor MLN8237 has shown efficacy in clinical trials for advanced breast cancer; however, its use as a monotherapy is limited by significant side effects and modest efficacy. Therefore, combining MLN8237 with other agents at lower doses may provide a viable alternative. In this study, we evaluated the combination of MLN8237 with the BH3 mimetic ABT263 for the treatment of triple-negative breast cancer (TNBC). We found that this combination significantly suppressed tumor growth and metastasis in immunocompetent syngeneic mouse models, whereas its efficacy was attenuated in immunodeficient xenograft models. Mechanistic studies revealed that the combination enhanced anti-tumor immunity by increasing the presence of CD8+ T cells and NK cells, while reducing the number of immunosuppressive cells in the tumor microenvironment. This shift resulted in elevated levels of IFN-γ and granzyme B, which activated the extrinsic apoptotic pathways in cancer cells. Notably, the combination treatment did not affect tumor cell proliferation but promoted apoptosis with minimal toxicity. Furthermore, the synergistic effect of MLN8237 and ABT263 in inducing intrinsic apoptosis was primarily driven by the inhibition of the AKT-Mcl-1 and Bcl-xL survival pathways in cultured tumor cells. Together, these findings support the MLN8237-ABT263 combination as an effective treatment strategy for TNBC, promoting both immune-mediated extrinsic apoptosis and inactivation of Bcl-xL/Mcl-1-dependent intrinsic anti-apoptotic pathways.
Collapse
Affiliation(s)
- Mingxue Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jing Guo
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Weiyong Liu
- Department of Ultrasound, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhenye Yang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Fazhi Yu
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
8
|
Payne NL, Pang SHM, Freeman AJ, Ozkocak DC, Limar JW, Wallis G, Zheng D, Mendonca S, O'Reilly LA, Gray DHD, Poon IKH, Heng TSP. Proinflammatory cytokines sensitise mesenchymal stromal cells to apoptosis. Cell Death Discov 2025; 11:121. [PMID: 40148285 PMCID: PMC11950399 DOI: 10.1038/s41420-025-02412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 02/26/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025] Open
Abstract
Mesenchymal stromal cells (MSCs) exert broad therapeutic effects across a range of inflammatory diseases. Their mechanism of action has largely been attributed to paracrine signalling, orchestrated by an array of factors produced by MSCs that are collectively termed the "secretome". Strategies to enhance the release of these soluble factors by pre-exposure to inflammatory cytokines, a concept known as "licensing", is thought to provide a means of enhancing MSC efficacy. Yet, recent evidence shows that intravenously infused MSCs entrapped within the lungs undergo apoptosis, and their subsequent clearance by host phagocytes is essential for their therapeutic efficacy. We therefore sought to clarify the mechanisms governing regulated cell death in MSCs and how exposure to inflammatory cytokines impacts this process. Our results show that MSCs are relatively resistant to cell death induced via the extrinsic pathway of apoptosis, as well as stimuli that induce necroptosis, a form of regulated inflammatory cell death. Instead, efficient killing of MSCs required triggering of the mitochondrial pathway of apoptosis, via inhibition of the pro-survival proteins MCL-1 and BCL-XL. Apoptotic bodies were readily released by MSCs during cell disassembly, a process that was inhibited in vitro and in vivo when the apoptotic effectors BAK and BAX were genetically deleted. Licensing of MSCs by pre-exposure to the inflammatory cytokines TNF and IFN-γ increased the sensitivity of MSCs to intrinsic apoptosis in vitro and accelerated their in vivo clearance by host cells within the lungs after intravenous infusion. Taken together, our study demonstrates that inflammatory "licensing" of MSCs facilitates cell death by increasing their sensitivity to triggers of the intrinsic pathway of apoptosis and accelerating the kinetics of apoptotic cell disassembly.
Collapse
Affiliation(s)
- Natalie L Payne
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Swee Heng Milon Pang
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Andrew J Freeman
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Dilara C Ozkocak
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Justin W Limar
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Georgia Wallis
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Di Zheng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Senora Mendonca
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
| | - Lorraine A O'Reilly
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel H D Gray
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Ivan K H Poon
- Research Centre for Extracellular Vesicles, Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, Australia
| | - Tracy S P Heng
- Department of Anatomy and Developmental Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia.
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
9
|
Saxena K, Hung SH, Ryu E, Singh S, Zhang Tatarata Q, Zeng Z, Wang Z, Konopleva MY, Yee C. BH3 mimetics augment cytotoxic T cell killing of acute myeloid leukemia via mitochondrial apoptotic mechanism. Cell Death Discov 2025; 11:120. [PMID: 40140361 PMCID: PMC11947210 DOI: 10.1038/s41420-025-02375-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/29/2025] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8+ T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8+ T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, our data suggests that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the mitochondrial apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Kapil Saxena
- Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Gilead Sciences Inc., Foster City, CA, USA
| | - Shao-Hsi Hung
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX, USA
| | - Esther Ryu
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shailbala Singh
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Qi Zhang Tatarata
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY, USA
| | - Zhihong Zeng
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Zhe Wang
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Division of Immunobiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Marina Y Konopleva
- Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Oncology and Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Cassian Yee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
10
|
Naghdi S, Mishra P, Roy SS, Weaver D, Walter L, Davies E, Antony AN, Lin X, Moehren G, Feitelson MA, Reed CA, Lindsten T, Thompson CB, Dang HT, Hoek JB, Knudsen ES, Hajnóczky G. VDAC2 and Bak scarcity in liver mitochondria enables targeting hepatocarcinoma while sparing hepatocytes. Nat Commun 2025; 16:2416. [PMID: 40069152 PMCID: PMC11897174 DOI: 10.1038/s41467-025-56898-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 02/05/2025] [Indexed: 03/15/2025] Open
Abstract
Differences between normal tissues and invading tumors that allow tumor targeting while saving normal tissue are much sought after. Here we show that scarcity of VDAC2, and the consequent lack of Bak recruitment to mitochondria, renders hepatocyte mitochondria resistant to permeabilization by truncated Bid (tBid), a Bcl-2 Homology 3 (BH3)-only, Bcl-2 family protein. Increased VDAC2 and Bak is found in most human liver cancers and mitochondria from tumors and hepatic cancer cell lines exhibit VDAC2- and Bak-dependent tBid sensitivity. Exploring potential therapeutic targeting, we find that combinations of activators of the tBid pathway with inhibitors of the Bcl-2 family proteins that suppress Bak activation enhance VDAC2-dependent death of hepatocarcinoma cells with little effect on normal hepatocytes. Furthermore, in vivo, combination of S63845, a selective Mcl-1 inhibitor, with tumor-nectrosis factor-related, apoptosis-induncing ligand (TRAIL) peptide reduces tumor growth, but only in tumors expressing VDAC2. Thus, we describe mitochondrial molecular fingerprint that discriminates liver from hepatocarcinoma and allows sparing normal tissue while targeting tumors.
Collapse
Affiliation(s)
- Shamim Naghdi
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Piyush Mishra
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Soumya Sinha Roy
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - David Weaver
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Ludivine Walter
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Erika Davies
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Anil Noronha Antony
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Xuena Lin
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Gisela Moehren
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Mark A Feitelson
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Christopher A Reed
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Tullia Lindsten
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Craig B Thompson
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Hien T Dang
- Department of Surgery, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jan B Hoek
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA
| | - Erik S Knudsen
- Department of Cancer Biology, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine and Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Sun M, He L, Chen R, Lv M, Chen ZS, Fan Z, Zhou Y, Qin J, Du J. Rational design of peptides to overcome drug resistance by metabolic regulation. Drug Resist Updat 2025; 79:101208. [PMID: 39914188 DOI: 10.1016/j.drup.2025.101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/24/2025] [Accepted: 01/24/2025] [Indexed: 02/24/2025]
Abstract
Chemotherapy is widely used clinically, however, its efficacy is often compromised by the development of drug resistance, which arises from prolonged administration of drugs or other stimuli. One of the driven causes of drug resistance in tumors or bacterial infections is metabolic reprogramming, which alters mitochondrial metabolism, disrupts metabolic pathways and causes ion imbalance. Bioactive peptide materials, due to their biocompatibility, diverse bioactivities, customizable sequences, and ease of modification, have shown promise in overcoming drug resistance. This review provides an in-depth analysis of metabolic reprogramming and associated microenvironmental changes that contribute to drug resistance in common tumors and bacterial infections, suggesting potential therapeutic targets. Additionally, we explore peptide-based materials for regulating metabolism and their potential synergic effect with other therapies, highlighting the mechanisms by which these peptides reverse drug resistance. Finally, we discuss future perspectives and the clinical challenges in peptide-based treatments, aiming to offer insights for overcoming drug-resistant diseases.
Collapse
Affiliation(s)
- Min Sun
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Le He
- School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Ran Chen
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Mingchen Lv
- Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY 11439, USA
| | - Zhen Fan
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuxiao Zhou
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Jinlong Qin
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| | - Jianzhong Du
- Department of Gynaecology and Obstetrics, Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China; School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China; Department of Polymeric Materials, School of Materials Science and Engineering, Tongji University, 4800 Caoan Road, Shanghai 201804, China.
| |
Collapse
|
12
|
Sarkozy C, Tessoulin B, Chiron D. Unraveling MCL biology to understand resistance and identify vulnerabilities. Blood 2025; 145:696-707. [PMID: 38551811 DOI: 10.1182/blood.2023022351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/15/2024] [Indexed: 02/14/2025] Open
Abstract
ABSTRACT Mantle cell lymphoma (MCL) is a rare (5%-7%), aggressive B-cell non-Hodgkin lymphoma with well-defined hallmarks (eg, cyclin D1, SOX11), and its expansion is highly dependent on the tumor microenvironment (TME). Parallel drastic progress in the understanding of lymphomagenesis and improved treatments led to a paradigm shift in this B-cell malignancy with now prolonged disease-free survival after intensive chemotherapy and anti-CD20-based maintenance. However, this toxic strategy is not applicable in frail or older patients, and a small but significant part of the cases present a refractory disease representing unmet medical needs. Importantly, the field has recently seen the rapid emergence of targeted and immune-based strategies with effective combinations relying on biological rationales to overcome malignant plasticity and intratumor heterogeneity. In this review, we expose how unraveling the biology of MCL allows to better understand the therapeutic resistances and to identify neo-vulnerabilities in tumors, which are essential to offer efficient novel strategies for high-risk patients. We first highlight the tumor intrinsic resistance mechanisms and associated Achilles heels within various pathways, such as NF-κB, mitochondrial apoptosis, DNA repair, and epigenetic regulators. We then place the tumor in its complex ecosystem to decipher the dialog with the multiple TME components and show how the resulting protumoral signals could be disrupted with innovative therapeutic strategies. Finally, we discuss how these progresses could be integrated into a personalized approach in MCL.
Collapse
Affiliation(s)
- Clémentine Sarkozy
- Service d'Hématologie, Institut Curie, Saint Cloud, France
- Laboratoire d'Imagerie Translationnelle en Oncologie, U1288 Inserm/Institut Curie Centre de Recherche, Paris, France
| | - Benoit Tessoulin
- Service d'Hématologie, Centre Hospitalier Universitaire Nantes, Nantes, France
- reMoVE-B, Nantes Université, INSERM, Centre National de la Recherche Scientifique, Université d'Angers, CRCI2NA, Nantes, France
| | - David Chiron
- reMoVE-B, Nantes Université, INSERM, Centre National de la Recherche Scientifique, Université d'Angers, CRCI2NA, Nantes, France
| |
Collapse
|
13
|
Fonseca R, Zhu YX, Bruins LA, Ahmann J, de Bonolo Campos C, Braggio E, Chen X, Arribas M, Darvish S, Welsh S, Meermeier E, Mangalaparthi KK, Kandasamy RK, Ahmann G, Wiedmeier-Nutor JE, Pandey A, Chesi M, Bergsagel PL, Fonseca R. Exploring BCL2 regulation and upstream signaling transduction in venetoclax resistance in multiple myeloma: potential avenues for therapeutic intervention. Blood Cancer J 2025; 15:10. [PMID: 39910038 PMCID: PMC11799149 DOI: 10.1038/s41408-025-01215-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 12/21/2024] [Accepted: 01/21/2025] [Indexed: 02/07/2025] Open
Abstract
Investigating venetoclax (VTX) resistance in multiple myeloma (MM) is crucial for the development of novel therapeutic strategies to tackle resistance. We conducted a multi-omic characterization of established VTX-resistant isogenic human myeloma cell lines (HMCL) and primary MM patient samples pre- and post-VTX treatment. Transcriptomic and proteomic analysis revealed that resistance was largely associated with BCL-2 family protein dysregulation, including upregulation of anti-apoptotic proteins such as MCL-1, BCL-XL, BCL-2, and downregulation of pro-apoptotic members. Notably, the re-introduction of BIM into resistant cells restored VTX sensitivity and synergized with MCL-1 inhibitors. Upstream signaling pathways, including growth factor receptor tyrosine kinase (RTK) and phosphoinositide-3-kinase (PI3K) were implicated in this dysregulation. Simultaneous inhibition of MCL-1, BCL-XL, and upstream PI3K, RTK (FGF, EGF, and IGF1) mediated signaling enhanced VTX sensitivity. Post-translational modifications of MCL-1, particularly its stabilization via acetylation and phosphorylation, were investigated, although their inhibition only marginally increased VTX sensitivity. Lastly, the inhibition of AURKA and mitochondrial respiration also improved VTX sensitivity in some resistant HMCLs. Our findings suggest that combining VTX with MCL-1 and BCL-XL inhibitors or PIK3/RTK inhibitors holds potential for overcoming resistance. The study illustrates the importance of understanding molecular determinants of resistance to develop tailored therapeutic strategies.
Collapse
Affiliation(s)
| | - Yuan Xiao Zhu
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Laura A Bruins
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Joseph Ahmann
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | | | - Esteban Braggio
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Xianfeng Chen
- Division of Biomedical Statistics and Informatics, Department of Health Science Research, Mayo Clinic, Rochester, MN, USA
| | - Mariano Arribas
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Susie Darvish
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Seth Welsh
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Erin Meermeier
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | | | - Richard K Kandasamy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Greg Ahmann
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | | | - Akhilesh Pandey
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Marta Chesi
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - P Leif Bergsagel
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA
| | - Rafael Fonseca
- Division of Hematology and Medical Oncology, Mayo Clinic, AZ, USA.
| |
Collapse
|
14
|
Wei H, Wang H, Xiang S, Wang J, Qu L, Chen X, Guo M, Lu X, Chen Y. Deciphering molecular specificity in MCL-1/BAK interaction and its implications for designing potent MCL-1 inhibitors. Cell Death Differ 2025:10.1038/s41418-025-01454-2. [PMID: 39901037 DOI: 10.1038/s41418-025-01454-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 12/16/2024] [Accepted: 01/24/2025] [Indexed: 02/05/2025] Open
Abstract
The intricate interplay among BCL-2 family proteins governs mitochondrial apoptosis, with the anti-apoptotic protein MCL-1 primarily exerting its function by sequestering the pore-forming effector BAK. Understanding the MCL-1/BAK complex is pivotal for the sensitivity of cancer cells to BH3 mimetics, yet the precise molecular mechanism underlying their interaction remains elusive. Herein, we demonstrate that a canonical BH3 peptide from BAK inadequately binds to MCL-1 proteins, whereas an extended BAK-BH3 peptide with five C-terminal residues exhibits a remarkable 65-fold increase in affinity. By elucidating the complex structures of MCL-1 bound to these two BAK-BH3 peptides at 2.08 Å and 1.98 Å resolutions, we uncover their distinct binding specificities. Notably, MCL-1 engages in critical hydrophobic interactions with the extended BAK-BH3 peptide, particularly at an additional p5 sub-pocket, featuring a π-π stacking interaction between MCL-1 Phe319 and BAK Tyr89. Mutations within this p5 sub-pocket substantially disrupt the MCL-1/BAK protein-protein interaction. Furthermore, the p5 sub-pocket of MCL-1 significantly influences the efficacy of MCL-1 inhibitors. Overall, our findings elucidate the molecular specificity underlying MCL-1 binding to BAK and underscore the significance of the p5 hydrophobic sub-pocket in their high-affinity interaction, thus providing novel insights for the development of BH3 mimetics targeting the MCL-1/BAK interaction as potential therapeutics for cancer treatment.
Collapse
Affiliation(s)
- Hudie Wei
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haolan Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Shuang Xiang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China
| | - Jiaqi Wang
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Lingzhi Qu
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiaojuan Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ming Guo
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Xiaoyun Lu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Discovery of Chinese Ministry of Education, Guangzhou City Key Laboratory of Precision Chemical Drug Development, School of Pharmacy, Jinan University, Guangzhou, China.
| | - Yongheng Chen
- Department of Oncology, NHC Key Laboratory of Cancer Proteomics & State Local Joint Engineering Laboratory for Anticancer Drugs, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
15
|
You Y, Guo Z, Wolter T, Hu Q. Intracellular metal ion-based chemistry for programmed cell death. Chem Soc Rev 2025; 54:1552-1582. [PMID: 39744985 DOI: 10.1039/d4cs00930d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Intracellular metal ions play essential roles in multiple physiological processes, including catalytic action, diverse cellular processes, intracellular signaling, and electron transfer. It is crucial to maintain intracellular metal ion homeostasis which is achieved by the subtle balance of storage and release of metal ions intracellularly along with the influx and efflux of metal ions at the interface of the cell membrane. Dysregulation of intracellular metal ions has been identified as a key mechanism in triggering programmed cell death (PCD). Despite the importance of metal ions in initiating PCD, the molecular mechanisms of intracellular metal ions within these processes are infrequently discussed. An in-depth understanding and review of the role of metal ions in triggering PCD may better uncover novel tools for cancer diagnosis and therapy. Specifically, the essential roles of calcium (Ca2+), iron (Fe2+/3+), copper (Cu+/2+), and zinc (Zn2+) ions in triggering PCD are primarily explored in this review, and other ions like manganese (Mn2+/3+/4+), cobalt (Co2+/3+) and magnesium ions (Mg2+) are briefly discussed. Further, this review elaborates on the underlying chemical mechanisms and summarizes these metal ions triggering PCD in cancer therapy. This review bridges chemistry, immunology, and biology to foster the rational regulation of metal ions to induce PCD for cancer therapy.
Collapse
Affiliation(s)
- Yawen You
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zhaochen Guo
- Department of Biochemistry, College of Agriculture and Life Science, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Tyler Wolter
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Institute for Clinical and Translational Research, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin Madison, Madison, WI 53705, USA.
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
16
|
Kato A, Takahashi H, Asai H, Uehara S, Harata S, Fujii Y, Watanabe K, Yanagita T, Suzuki T, Ushigome H, Shiga K, Yamakawa Y, Ogawa R, Mitsui A, Matsuo Y, Takiguchi S. Bcl‑xL‑specific BH3 mimetic A‑1331852 suppresses proliferation of fluorouracil‑resistant colorectal cancer cells by inducing apoptosis. Oncol Rep 2025; 53:26. [PMID: 39717947 PMCID: PMC11718432 DOI: 10.3892/or.2024.8859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/14/2024] [Indexed: 12/25/2024] Open
Abstract
BH3 mimetics are small‑molecule inhibitors of the antiapoptotic Bcl‑2 family and have therapeutic efficacy against hematological malignancies. BH3 mimetic A‑1331852 suppresses colorectal cancer cell proliferation. Progressive resistance to the widely used anticancer agent fluorouracil (5‑FU) is a key reason for colorectal cancer recurrence; therefore, the present study tested if A‑1331852 can suppress the proliferation of 5‑FU‑resistant colorectal cancer cells. A 5‑FU‑resistant colorectal cancer cell line was derived from HCT116 cells and compared with the parental line. Expression levels of the antiapoptotic Bcl‑2 proteins Bcl‑xL and myeloid cell leukemia 1 (Mcl‑1) were determined via western blotting, proliferation in the presence of 5‑FU and following small interfering (si)RNA‑mediated Bcl‑xL or Mcl‑1 knockdown was assessed by WST‑1 assay and sensitivity to A‑1331852‑induced apoptosis was assessed via western blotting and DNA fragmentation assay. In addition, a xenograft mouse model of 5‑FU‑resistant colorectal cancer was established via subcutaneous inoculation of 5‑FU‑resistant HCT116 cells to examine the in vivo antitumor efficacy of A‑1331852. Compared with the parental line, 5‑FU‑resistant cells overexpressed Bcl‑xL. Knockdown of Bcl‑xL by siRNA and treatment with A‑1331852 suppressed proliferation and induced the apoptosis of both 5‑FU‑resistant and parental HCT116 cells, but the potency of both effects was stronger in 5‑FU‑resistant than parental HCT116 cells. Furthermore, A‑1331852 suppressed the growth of xenograft tumors derived from 5‑FU‑resistant cells by inducing apoptosis. Overall, the present findings suggested that Bcl‑xL upregulation contributes to 5‑FU resistance of colorectal cancer and targeted inhibition by A‑1331852 may be an effective treatment strategy.
Collapse
Affiliation(s)
- Akira Kato
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroki Takahashi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hiroyuki Asai
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuhei Uehara
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shinnosuke Harata
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoshiaki Fujii
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kaori Watanabe
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takeshi Yanagita
- Department of Gastroenterological Surgery, Toyokawa City Hospital, Toyokawa, Aichi 442-8561, Japan
| | - Takuya Suzuki
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Hajime Ushigome
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Kazuyoshi Shiga
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yushi Yamakawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Ryo Ogawa
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Akira Mitsui
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Yoichi Matsuo
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Shuji Takiguchi
- Department of Gastroenterological Surgery, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| |
Collapse
|
17
|
Tian L, Li X, Zhao Y, Yi H, Liu X, Yao R, Hou X, Zhu X, Huo F, Chen T, Liang L. DNMT3a Downregulation Ttriggered Upregulation of GABA A Receptor in the mPFC Promotes Paclitaxel-Induced Pain and Anxiety in Male Mice. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2407387. [PMID: 39679872 PMCID: PMC11791956 DOI: 10.1002/advs.202407387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/25/2024] [Indexed: 12/17/2024]
Abstract
Chemotherapeutic agents, such as paclitaxel (PTX), induce neuroplastic changes and alter gene expression in the prefrontal cortex (PFC), which may be associated with chemotherapy-induced pain and negative emotions. Notably, DNA methylation undergoes adaptive changes in neurological disorders, emerging as a promising target for neuromodulation. In this study, systemic administration of PTX leads to a decrease in the expression of the DNA methyltransferase DNMT3a, while concurrently upregulating the expression of Gabrb1 mRNA and its encoded GABAARβ1 protein in the medial PFC (mPFC) of male mice. Overexpression of DNMT3a in the mPFC alleviates PTX-induced pain hypersensitivity, and anxiety-like behavior in these mice. Additionally, it reverses the PTX-induced increase in inhibitory synaptic transmission in the pyramidal neurons of the mPFC. Mechanistically, the upregulation of GABAARβ1 in the mPFC is linked to the reduced expression of DNMT3a and DNA hypomethylation at the promoter region of the Gabrb1 gene. Furthermore, a long-term diet rich in methyl donors alleviates PTX-induced pain hypersensitivity and anxiety-like behavior in mice. These findings suggest that the DNMT3a-mediated upregulation of GABAARβ1 in the mPFC contributes to PTX-induced neuropathic pain and anxiety, highlighting DNA methylation-dependent epigenetic regulation as a potential therapeutic target for addressing chemotherapy-induced cortical dysfunction.
Collapse
Affiliation(s)
- Lixia Tian
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xu‐Hui Li
- Center for Neuron and DiseaseFrontier Institutes of Science and TechnologyXi'an Jiaotong UniversityXi'anShaanxi710061P. R. China
| | - Yu‐Long Zhao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Hui‐Yuan Yi
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xue‐Ru Liu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Rongrong Yao
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xue‐Mei Hou
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Xuan Zhu
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Fu‐Quan Huo
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| | - Tao Chen
- Department of Anatomy and K.K. Leung Brain Research CentreFourth Military Medical UniversityXi'an710032P. R. China
| | - Lingli Liang
- Department of Physiology and PathophysiologySchool of Basic Medical SciencesInstitute of NeuroscienceTranslational Medicine InstituteXi'an Jiaotong University Health Science CenterXi'anShaanxi710061P. R. China
| |
Collapse
|
18
|
Skalickova M, Hadrava Vanova K, Uher O, Leischner Fialova J, Petrlakova K, Masarik M, Kejík Z, Martasek P, Pacak K, Jakubek M. Injecting hope: the potential of intratumoral immunotherapy for locally advanced and metastatic cancer. Front Immunol 2025; 15:1479483. [PMID: 39850897 PMCID: PMC11754201 DOI: 10.3389/fimmu.2024.1479483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/17/2024] [Indexed: 01/25/2025] Open
Abstract
Despite enormous progress, advanced cancers are still one of the most serious medical problems in current society. Although various agents and therapeutic strategies with anticancer activity are known and used, they often fail to achieve satisfactory long-term patient outcomes and survival. Recently, immunotherapy has shown success in patients by harnessing important interactions between the immune system and cancer. However, many of these therapies lead to frequent side effects when administered systemically, prompting treatment modifications or discontinuation or, in severe cases, fatalities. New therapeutic approaches like intratumoral immunotherapy, characterized by reduced side effects, cost, and systemic toxicity, offer promising prospects for future applications in clinical oncology. In the context of locally advanced or metastatic cancer, combining diverse immunotherapeutic and other treatment strategies targeting multiple cancer hallmarks appears crucial. Such combination therapies hold promise for improving patient outcomes and survival and for promoting a sustained systemic response. This review aims to provide a current overview of immunotherapeutic approaches, specifically focusing on the intratumoral administration of drugs in patients with locally advanced and metastatic cancers. It also explores the integration of intratumoral administration with other modalities to maximize therapeutic response. Additionally, the review summarizes recent advances in intratumoral immunotherapy and discusses novel therapeutic approaches, outlining future directions in the field.
Collapse
Affiliation(s)
- Marketa Skalickova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Katerina Hadrava Vanova
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Ondrej Uher
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Jindriska Leischner Fialova
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Katerina Petrlakova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Michal Masarik
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
- Department of Physiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Zdeněk Kejík
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Pavel Martasek
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| | - Karel Pacak
- Section on Medical Neuroendocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, United States
| | - Milan Jakubek
- BIOCEV, First Faculty of Medicine, Charles University, Vestec, Czechia
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czechia
| |
Collapse
|
19
|
Zarrin P, Ates-Alagoz Z. Targeting Bcl-2 with Indole Scaffolds: Emerging Drug Design Strategies for Cancer Treatment. Mini Rev Med Chem 2025; 25:293-318. [PMID: 39385424 DOI: 10.2174/0113895575306176240925094457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 07/15/2024] [Indexed: 10/12/2024]
Abstract
The B-cell lymphoma-2 (Bcl-2) protein family plays a crucial role as a regulator in the process of apoptosis. There is a substantial body of evidence indicating that the upregulation of antiapoptotic Bcl-2 proteins is prevalent in several cancer cell lines and original tumour tissue samples. This phenomenon plays a crucial role in enabling tumour cells to avoid apoptosis, hence facilitating the development of resistant cells against chemotherapy. Therefore, the success rate of chemotherapy for cancer can be enhanced by the down-regulation of anti-apoptotic Bcl-2 proteins. Furthermore, the indole structural design is commonly found in a variety of natural substances and biologically active compounds, particularly those that possess anti-cancer properties. Due to its distinctive physicochemical and biological characteristics, it has been highly regarded as a fundamental framework in the development and production of anti-cancer drugs. As a result, a considerable range of indole derivatives, encompassing both naturally occurring and developed compounds, have been identified as potential candidates for the treatment of cancer. Several of these derivatives have advanced to clinical trials, while others are already being used in clinical settings. This emphasizes the significant role of indole in the field of research and development of anti-cancer therapeutics. This study provides an overview of apoptosis and the structural characteristics of Bcl-2 family proteins, and mainly examines the present stage and recent developments in Bcl-2 inhibitors with an indole scaffold embedded in their structure.
Collapse
Affiliation(s)
- Pouria Zarrin
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| | - Zeynep Ates-Alagoz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100, Ankara, Turkey
| |
Collapse
|
20
|
Ayoub M, Susin SA, Bauvois B. Tumor Cell Survival Factors and Angiogenesis in Chronic Lymphocytic Leukemia: How Hot Is the Link? Cancers (Basel) 2024; 17:72. [PMID: 39796700 PMCID: PMC11719013 DOI: 10.3390/cancers17010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Chronic lymphocytic leukemia (CLL) is characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes in the blood. These cells migrate to and proliferate in the bone marrow and lymphoid tissues. Despite the development of new therapies for CLL, drug resistance and disease relapse still occur; novel treatment approaches are therefore still needed. Inhibition of the angiogenesis involved in the progression of CLL might be a relevant therapeutic strategy. The literature data indicate that vascular endothelial growth factor, angiopoietin-2, and matrix metalloproteinase-9 are pro-angiogenic factors in CLL. A number of other CLL factors might have pro-angiogenic activity: fibroblast growth factor-2, certain chemokines (such as CXCL-12 and CXCL-2), tumor necrosis factor-α, insulin-like growth factor-1, neutrophil gelatinase-associated lipocalin, and progranulin. All these molecules contribute to the survival, proliferation, and migration of CLL cells. Here, we review the literature on these factors' respective expression profiles and roles in CLL. We also summarize the main results of preclinical and clinical trials of novel agents targeting most of these molecules in a CLL setting. Through the eradication of leukemic cells and the inhibition of angiogenesis, these therapeutic approaches might alter the course of CLL.
Collapse
Affiliation(s)
| | | | - Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS 1138, Drug Resistance in Hematological Malignancies Team, F-75006 Paris, France; (M.A.); (S.A.S.)
| |
Collapse
|
21
|
Palisse A, Cheung T, Blokhuis A, Cogswell T, Martins BS, Riemens R, Schellekens R, Battocchio G, Jansen C, Cottee MA, Ornell K, Sacchetto C, Leon L, van Hoek-Emmelot M, Bostock M, Brauer BL, Beaumont K, Lucas SCC, Ahmed S, Blackwell JH, Börjesson U, Gohlke A, Gramatikov IMT, Hargreaves D, van Hoeven V, Kantae V, Kupcova L, Milbradt AG, Seneviratne U, Su N, Vales J, Wang H, White MJ, Kinzel O. Structure-Based Discovery of a Series of Covalent, Orally Bioavailable, and Selective BFL1 Inhibitors. J Med Chem 2024; 67:22055-22079. [PMID: 39641779 DOI: 10.1021/acs.jmedchem.4c01995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
BFL1, a member of the antiapoptotic BCL2 family, has been relatively understudied compared to its counterparts despite evidence of its overexpression in various hematological malignancies. Across two articles, we describe the development of BFL1 in vivo tools. The first article describes the hit identification from a covalent fragment library and the subsequent evolution from the hit to compound 6.22 This work reports the structure-based optimization of compound 6 into a series of BFL1 inhibitors selective over the other BCL2 family members, with low nanomolar cellular activity when combined with AZD5991, exemplified by compound 20. Compound 20 demonstrated a cell death phenotype in SUDHL1 and OCILY10 cell lines and in the in vivo study, BFL1 stabilization and cleaved caspase 3 activation were observed in a dose-dependent manner. In addition, the enzymatic turnover studies with the BFL1 protein showed that compound 20 stabilized the protein, extending the half-life to 10.8 h.
Collapse
Affiliation(s)
- Adeline Palisse
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Tony Cheung
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Aileen Blokhuis
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Thomas Cogswell
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Bruna S Martins
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Riemens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Rick Schellekens
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Giovanni Battocchio
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Chimed Jansen
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Matthew A Cottee
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Kimberly Ornell
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Claudia Sacchetto
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Leonardo Leon
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Maaike van Hoek-Emmelot
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Mark Bostock
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Brooke Leann Brauer
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | | | - Simon C C Lucas
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Samiyah Ahmed
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - J Henry Blackwell
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Ulf Börjesson
- Hit Discovery, Discovery Sciences, R&D, AstraZeneca, Gothenburg SE-431 83, Sweden
| | - Andrea Gohlke
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - David Hargreaves
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Vera van Hoeven
- Bioscience, Oncology, R&D, Acerta B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| | - Vasudev Kantae
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lea Kupcova
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Alexander G Milbradt
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Uthpala Seneviratne
- Chemical Biology and Proteomics, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Nancy Su
- Mechanistic Biology and Profiling, Discovery Sciences, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - John Vales
- Mechanistic and Structural Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Haiyun Wang
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Michael J White
- Bioscience, Oncology, R&D, AstraZeneca, Waltham, Massachusetts 02451, United States
| | - Olaf Kinzel
- Medicinal Chemistry, Oncology, R&D, Acerta Pharma B.V., A member of the AstraZeneca Group, Oss 5349 AB, The Netherlands
| |
Collapse
|
22
|
Sanati M, Figueroa-Espada CG, Han EL, Mitchell MJ, Yavari SA. Bioengineered Nanomaterials for siRNA Therapy of Chemoresistant Cancers. ACS NANO 2024; 18:34425-34463. [PMID: 39666006 DOI: 10.1021/acsnano.4c11259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Chemoresistance remains a long-standing challenge after cancer treatment. Over the last two decades, RNA interference (RNAi) has emerged as a gene therapy modality to sensitize cancer cells to chemotherapy. However, the use of RNAi, specifically small-interfering RNA (siRNA), is hindered by biological barriers that limit its intracellular delivery. Nanoparticles can overcome these barriers by protecting siRNA in physiological environments and facilitating its delivery to cancer cells. In this review, we discuss the development of nanomaterials for siRNA delivery in cancer therapy, current challenges, and future perspectives for their implementation to overcome cancer chemoresistance.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 97178, Iran
| | - Christian G Figueroa-Espada
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Emily L Han
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
| | - Michael J Mitchell
- Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, Pennsylvania 19104, United States
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Penn Institute for RNA Innovation, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Saber Amin Yavari
- Department of Orthopedics, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, 3584 Utrecht, The Netherlands
| |
Collapse
|
23
|
Yee C, Saxena K, Ryu E, Hung SH, Singh S, Zhang Q, Zeng Z, Wang Z, Konopleva M. BH3 Mimetics Augment Cytotoxic T Cell Killing of Acute Myeloid Leukemia via Mitochondrial Apoptotic Mechanism. RESEARCH SQUARE 2024:rs.3.rs-5307127. [PMID: 39711535 PMCID: PMC11661303 DOI: 10.21203/rs.3.rs-5307127/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Adoptive cell therapy (ACT) can address an unmet clinical need for patients with relapsed/refractory acute myeloid leukemia (AML), but its effect is often modest in the setting of high tumor burden. In this study, we postulated that strategies to lower the AML apoptotic threshold will augment T cell killing of AML cells. BH3 mimetics, such as venetoclax, are a clinically approved class of compounds that predispose cells to intrinsic apoptosis by inhibiting anti-apoptotic mitochondrial proteins. We explored the anti-leukemic efficacy of BH3 mimetics combined with WT1-specific CD8 + T cells on AML cell lines and primary samples from patients with a diverse array of disease characteristics to evaluate if lowering the cellular apoptotic threshold via inhibition of anti-apoptotic mitochondrial proteins can increase leukemic cell sensitivity to T cell therapy. We found that the combination approach of BH3 mimetic and CD8 + T cells led to significantly increased killing of established AML lines as well as of adverse-risk primary AML leukemic blast cells. In contrast to the hypothesis that enhanced killing would be due to combined activation of the intrinsic and extrinsic apoptotic pathways, we found that CTL-mediated killing of AML cells was accomplished primarily through activation of the intrinsic/mitochondrial apoptotic pathway. This highly effective combinatorial activity due to convergence on the same apoptotic pathway was conserved across multiple AML cell lines and primary samples, suggesting that mitochondrial priming may represent a novel mechanism of optimizing adoptive cell therapy for AML patients.
Collapse
Affiliation(s)
- Cassian Yee
- The University of Texas MD Anderson Cancer Center
| | | | - Esther Ryu
- University of Texas MD Anderson Cancer Center
| | | | | | - Qi Zhang
- University of Texas MD Anderson Cancer Center
| | | | - Zhe Wang
- University of Texas MD Anderson Cancer Center
| | | |
Collapse
|
24
|
Bauvois B, Nguyen-Khac F, Merle-Béral H, Susin SA. CD38/NAD + glycohydrolase and associated antigens in chronic lymphocytic leukaemia: From interconnected signalling pathways to therapeutic strategies. Biochimie 2024; 227:135-151. [PMID: 39009062 DOI: 10.1016/j.biochi.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Chronic lymphocytic leukaemia (CLL) is a heterogenous disease characterized by the accumulation of neoplastic CD5+/CD19+ B lymphocytes. The spreading of the leukaemia relies on the CLL cell's ability to survive in the blood and migrate to and proliferate within the bone marrow and lymphoid tissues. Some patients with CLL are either refractory to the currently available therapies or relapse after treatment; this emphasizes the need for novel therapeutic strategies that improving clinical responses and overcome drug resistance. CD38 is a marker of a poor prognosis and governs a set of survival, proliferation and migration signals that contribute to the pathophysiology of CLL. The literature data evidence a spatiotemporal association between the cell surface expression of CD38 and that of other CLL antigens, such as the B-cell receptor (BCR), CD19, CD26, CD44, the integrin very late antigen 4 (VLA4), the chemokine receptor CXCR4, the vascular endothelial growth factor receptor-2 (VEGF-R2), and the neutrophil gelatinase-associated lipocalin receptor (NGAL-R). Most of these proteins contribute to CLL cell survival, proliferation and trafficking, and cooperate with CD38 in multilayered signal transduction processes. In general, these antigens have already been validated as therapeutic targets in cancer, and a broad repertoire of specific monoclonal antibodies and derivatives are available. Here, we review the state of the art in this field and examine the therapeutic opportunities for cotargeting CD38 and its partners in CLL, e.g. by designing novel bi-/trispecific antibodies.
Collapse
MESH Headings
- Humans
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- ADP-ribosyl Cyclase 1/metabolism
- ADP-ribosyl Cyclase 1/immunology
- Signal Transduction
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Membrane Glycoproteins/metabolism
- Membrane Glycoproteins/immunology
- Animals
Collapse
Affiliation(s)
- Brigitte Bauvois
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Florence Nguyen-Khac
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France; Sorbonne Université, Groupe Hospitalier Pitié-Salpêtrière, Assistance Publique-Hôpitaux de Paris, Service d'Hématologie Biologique, F-75013, Paris, France.
| | - Hélène Merle-Béral
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| | - Santos A Susin
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, Inserm UMRS1138, Drug Resistance in Hematological Malignancies Team, F-75006, Paris, France.
| |
Collapse
|
25
|
Taheri-Ledari R, Ghafori-Gorab M, Ramezanpour S, Mahdavi M, Safavi M, Akbarzadeh AR, Maleki A. MIL-101 magnetic nanocarrier for solid-phase delivery of doxorubicin to breast and lung cancer cells. Int J Biol Macromol 2024; 283:137615. [PMID: 39551314 DOI: 10.1016/j.ijbiomac.2024.137615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 11/04/2024] [Accepted: 11/11/2024] [Indexed: 11/19/2024]
Abstract
An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L2 (cyclic version) compared with the adsorption capacity of L1 (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe3O4/MIL-101-(C,L)C[RW]3) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe3O4/MIL-101-CC[RW]3. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.
Collapse
Affiliation(s)
- Reza Taheri-Ledari
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Mostafa Ghafori-Gorab
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, P.O. Box 15875-4416, Tehran, Iran
| | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Maliheh Safavi
- Department of Biotechnology, Iranian Research Organization for Science and Technology (IROST), P. O. Box 3353-5111, Tehran, Iran.
| | - Ali Reza Akbarzadeh
- Department of Chemistry, Iran University of Science and Technology, PO Box: 16846-13114, Tehran, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
26
|
Subbiahanadar Chelladurai K, Selvan Christyraj JD, Rajagopalan K, Vadivelu K, Chandrasekar M, Das P, Kalimuthu K, Balamurugan N, Subramanian V, Selvan Christyraj JRS. Ex vivo functional whole organ in biomedical research: a review. J Artif Organs 2024:10.1007/s10047-024-01478-4. [PMID: 39592544 DOI: 10.1007/s10047-024-01478-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 07/29/2024] [Indexed: 11/28/2024]
Abstract
Model systems are critical in biomedical and preclinical research. Animal and in vitro models serve an important role in our current understanding of human physiology, disease pathophysiology, and therapy development. However, if the system is between cell culture and animal models, it may be able to overcome the knowledge gap that exists in the current system. Studies employing ex vivo organs as models have not been thoroughly investigated. Though the integration of other organs and systems has an impact on many biological mechanisms and disorders, it can add a new dimension to modeling and aid in the identification of new possible therapeutic targets. Here, we have discussed why the ex vivo organ model is desirable and the importance of the inclusion of organs from diverse species, described its historical aspects, studied organs as models in scientific research, and its ex vivo stability. We also discussed, how an ex vivo organ model might help researchers better understand organ physiology, as well as organ-specific diseases and therapeutic targets. We emphasized how this ex vivo organ dynamics will be more competent than existing models, as well as what tissues or organs would have potentially viable longevity for ex vivo modeling including human tissues, organs, and/or at least biopsies and its possible advantage in clinical medicine including organ transplantation procedure and precision medicine.
Collapse
Affiliation(s)
- Karthikeyan Subbiahanadar Chelladurai
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
- School of Health Sciences, Purdue University, 550 Stadium Mall Drive, West Lafayette, IN, 47907, USA
| | - Jackson Durairaj Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| | - Kamarajan Rajagopalan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kayalvizhi Vadivelu
- Department of Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Meikandan Chandrasekar
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Puja Das
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Kalishwaralal Kalimuthu
- Rajiv Gandhi Centre for Biotechnology, Department of Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nivedha Balamurugan
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Vijayalakshmi Subramanian
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India
| | - Johnson Retnaraj Samuel Selvan Christyraj
- Molecular Biology and Stem Cell Research Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science & Technology, Chennai, Tamil Nadu, India.
| |
Collapse
|
27
|
Guo F, Ji X, Xiong C, Sun H, Liang Z, Yan-Do R, Gai B, Gao F, Huang L, Li Z, Kuang BY, Shi P. Single-cell encoded gene silencing for high-throughput combinatorial siRNA screening. Nat Commun 2024; 15:9985. [PMID: 39562763 DOI: 10.1038/s41467-024-53419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/09/2024] [Indexed: 11/21/2024] Open
Abstract
The use of combinatorial siRNAs shows great promise for drug discovery, but the identification of safe and effective siRNA combinations remains challenging. Here, we develop a massively multiplexed technology for systematic screening of siRNA-based cocktail therapeutics. We employ composite micro-carriers that are responsive to near infrared light and magnetic field to achieve photoporation-facilitated siRNA transfection to individual cells. Thus, randomized gene silencing by different siRNA formulations can be performed with high-throughput single-cell-based analyses. For screening anti-cancer siRNA cocktails, we test more than 1300 siRNA combinations for knocking down multiple genes related to tumor growth, discovering effective 3-siRNA formulations with an emphasis on the critical role of inhibiting Cyclin D1 and survivin, along with their complementary targets for synergic efficacy. This approach enables orders of magnitude reduction in time and cost associated with largescale siRNA screening, and resolves key insights to siRNA pharmacology that are not permissive to existing methods.
Collapse
Affiliation(s)
- Feng Guo
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Xianglin Ji
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Chuxiao Xiong
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Hailiang Sun
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
| | - Zhenghua Liang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Richard Yan-Do
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China
| | - Baowen Gai
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Feng Gao
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China
| | - Linfeng Huang
- Wang-Cai Biochemistry Lab, Division of Natural and Applied Sciences & Global Health Research Center, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Zhongping Li
- Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Becki Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, 999077, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Hong Kong Centre for Cerebro-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong SAR, 999077, China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518000, China.
| |
Collapse
|
28
|
Galassi C, Chan TA, Vitale I, Galluzzi L. The hallmarks of cancer immune evasion. Cancer Cell 2024; 42:1825-1863. [PMID: 39393356 DOI: 10.1016/j.ccell.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/27/2024] [Accepted: 09/16/2024] [Indexed: 10/13/2024]
Abstract
According to the widely accepted "three Es" model, the host immune system eliminates malignant cell precursors and contains microscopic neoplasms in a dynamic equilibrium, preventing cancer outgrowth until neoplastic cells acquire genetic or epigenetic alterations that enable immune escape. This immunoevasive phenotype originates from various mechanisms that can be classified under a novel "three Cs" conceptual framework: (1) camouflage, which hides cancer cells from immune recognition, (2) coercion, which directly or indirectly interferes with immune effector cells, and (3) cytoprotection, which shields malignant cells from immune cytotoxicity. Blocking the ability of neoplastic cells to evade the host immune system is crucial for increasing the efficacy of modern immunotherapy and conventional therapeutic strategies that ultimately activate anticancer immunosurveillance. Here, we review key hallmarks of cancer immune evasion under the "three Cs" framework and discuss promising strategies targeting such immunoevasive mechanisms.
Collapse
Affiliation(s)
- Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Timothy A Chan
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA; Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Ilio Vitale
- Italian Institute for Genomic Medicine, c/o IRCSS Candiolo, Torino, Italy; Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA; Sandra and Edward Meyer Cancer Center, New York, NY, USA; Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA; Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
29
|
Ji Y, Harris MA, Newton LM, Harris TJ, Fairlie WD, Lee EF, Hawkins CJ. Osteosarcoma cells depend on MCL-1 for survival, and osteosarcoma metastases respond to MCL-1 antagonism plus regorafenib in vivo. BMC Cancer 2024; 24:1350. [PMID: 39497108 PMCID: PMC11533409 DOI: 10.1186/s12885-024-13088-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/06/2024] Open
Abstract
Osteosarcoma is the most common form of primary bone cancer, which primarily afflicts children and adolescents. Chemotherapy, consisting of doxorubicin, cisplatin and methotrexate (MAP) increased the 5-year osteosarcoma survival rate from 20% to approximately 60% by the 1980s. However, osteosarcoma survival rates have remained stagnant for several decades. Patients whose disease fails to respond to MAP receive second-line treatments such as etoposide and, in more recent years, the kinase inhibitor regorafenib. BCL-2 and its close relatives enforce cellular survival and have been implicated in the development and progression of various cancer types. BH3-mimetics antagonize pro-survival members of the BCL-2 family to directly stimulate apoptosis. These drugs have been proven to be efficacious in other cancer types, but their use in osteosarcoma has been relatively unexplored to date. We investigated the potential efficacy of BH3-mimetics against osteosarcoma cells in vitro and examined their cooperation with regorafenib in vivo. We demonstrated that osteosarcoma cell lines could be killed through inhibition of MCL-1 combined with BCL-2 or BCL-xL antagonism. Inhibition of MCL-1 also sensitized osteosarcoma cells to killing by second-line osteosarcoma treatments, particularly regorafenib. Importantly, we found that inhibition of MCL-1 with the BH3-mimetic S63845 combined with regorafenib significantly prolonged the survival of mice bearing pulmonary osteosarcoma metastases. Together, our results highlight the importance of MCL-1 in osteosarcoma cell survival and present a potential therapeutic avenue that may improve metastatic osteosarcoma patient outcomes.
Collapse
Affiliation(s)
- Yanhao Ji
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Michael A Harris
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
| | - Lucas M Newton
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Swinburne University, Hawthorn, VIC, 3122, Australia
| | - Tiffany J Harris
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
| | - W Douglas Fairlie
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Erinna F Lee
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia
- Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, 3084, Australia
- School of Cancer Medicine, La Trobe University, Melbourne, VIC, 3086, Australia
| | - Christine J Hawkins
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, VIC, 3086, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
30
|
Chen CY, Ye YZ, Huang YH, Tzeng YM, Gurbanov R, Wang WL, Chang WW. Ovatodiolide inhibits endometrial cancer stemness via reactive oxygen species-mediated DNA damage and cell cycle arrest. Chem Biol Interact 2024; 403:111244. [PMID: 39276908 DOI: 10.1016/j.cbi.2024.111244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/01/2024] [Accepted: 09/12/2024] [Indexed: 09/17/2024]
Abstract
Endometrial cancer (EC) is a common gynecological cancer worldwide, often associated with a poor prognosis after recurrence or metastasis. Ovatodiolide (OVA) is a macrocyclic diterpenoid derived from Anisomeles indica that shows anticancer effects in various malignancies. This study aimed to evaluate the cytotoxic effects of OVA on EC cell proliferation and cancer stem cell (CSC) activity and explore its underlying molecular mechanisms. OVA treatment dose-dependently reduced the viability and colony formation of three EC cell lines (AN3CA, HEC-1A, and EMC6). It induced G2/M phase cell cycle arrest, associated with decreased cell division cycle 25C (CDC25C) expression and reduced activation of cyclin-dependent kinases 1 (CDK1) and 2 (CDK2). OVA also increased reactive oxygen species (ROS) production and DNA damage, activating the DNA damage-sensitive cell cycle checkpoint kinases 1 (CHK1) and 2 (CHK2) and upregulating the DNA damage marker γ-H2A.X variant histone (H2AX). It also suppressed the activation of mechanistic target of rapamycin kinase (mTOR) and nuclear factor kappa B (NF-κB) and downregulated glutathione peroxidase 1 (GPX1), an antioxidant enzyme counteracting oxidative stress. Moreover, OVA reduced the self-renewal capacity of CSCs, reducing the expression of key stemness proteins Nanog homeobox (NANOG) and octamer-binding transcription factor 4 (OCT4). The ROS inhibitor N-acetylcysteine attenuated the anti-proliferative and anti-CSC effects of OVA. Our findings suggest that OVA acts via ROS generation, leading to oxidative stress and DNA damage, culminating in cell cycle arrest and the suppression of CSC activity in EC. Therefore, OVA is a promising therapeutic agent for EC, either as a standalone treatment or an adjunct to existing therapies.
Collapse
Affiliation(s)
- Chun-Yu Chen
- Department of Emergency Medicine, Tungs' Taichung MetroHarbor Hospital, Taichung, 435403, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, 35664, Taiwan.
| | - Yu-Zhen Ye
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Yu-Hao Huang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan
| | - Yew-Min Tzeng
- Department of Applied Science, National Taitung University, Sec. 2, University Rd., Taitung, 95092, Taiwan.
| | - Ranal Gurbanov
- School of Medicine, Gazi University, Emniyet Mah., Bandırma Cad., No:6/1, 06560, Yenimahalle, Ankara, Turkey.
| | - Wen-Ling Wang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| | - Wen-Wei Chang
- Department of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Jianguo N.Rd., Taichung City, 402306, Taiwan.
| |
Collapse
|
31
|
Mo WT, Huang CF, Sun ZJ. Erythroid progenitor cell modulates cancer immunity: Insights and implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189209. [PMID: 39549879 DOI: 10.1016/j.bbcan.2024.189209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/18/2024]
Abstract
The emergence of immunotherapies such as immune checkpoint blockade (ICB) has markedly enhanced cancer treatment outcomes for numerous patients. Nevertheless, the effectiveness of immunotherapy demonstrates substantial variation across different cancer types and individual patients. The immunosuppressive characteristics of the tumor microenvironment (TME) play a crucial role in contributing to this variation. Typically, people focus on cells with immunosuppressive functions in the TME, such as tumor-associated macrophages (TAMs), but research on TAMs alone cannot fully explain the complex structure and composition of the TME. Recent studies have reported that tumors can induce erythroid progenitor cells (EPCs) to exert immunosuppressive functions, not only acting within the TME but also secreting artemin in the spleen to promote tumor progression. In this review, we summarize the recent research on EPCs and tumors in recent years. We elucidate the mechanisms by which EPCs exert immunosuppressive functions in tumor-bearing conditions. In this review, we further propose potential therapeutic strategies targeting EPCs and emphasize the importance of in-depth exploration of the mechanisms by which EPCs regulate tumors and the immune system, as well as the significant clinical value of developing corresponding drugs.
Collapse
Affiliation(s)
- Wen-Tao Mo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Cong-Fa Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
32
|
Dong X, Yu X, Lu M, Xu Y, Zhou L, Peng T. Quantitative chemical proteomics reveals that phenethyl isothiocyanate covalently targets BID to promote apoptosis. Cell Death Discov 2024; 10:456. [PMID: 39472556 PMCID: PMC11522290 DOI: 10.1038/s41420-024-02225-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 11/02/2024] Open
Abstract
Naturally occurring isothiocyanates (ITCs) found in cruciferous vegetables, such as benzyl isothiocyanate (BITC), phenethyl isothiocyanate (PEITC), and sulforaphane (SFN), have attracted significant research interest for their promising anti-cancer activity in vitro and in vivo. While the induction of apoptosis is recognized to play a key role in the anti-cancer effects of ITCs, the specific protein targets and associated upstream events underlying ITC-induced apoptosis remain unknown. In this study, we present a set of chemical probes that are derived from BITC, PEITC, and SFN and equipped with bioorthogonal alkynyl handles to systematically profile the target proteins of ITCs in live cancer cells. Using a competition-based quantitative chemical proteomics approach, we identify a range of candidate target proteins of ITCs enriched in biological processes such as apoptosis. We show that BID, an apoptosis regulator of the Bcl-2 family, is covalently modified by ITCs on its N-terminal cysteines. Functional characterization demonstrates that covalent binding to N-terminal cysteines of BID by PEITC results in conformational changes of the protein and disruption of the self-inhibitory interaction between N- and C-terminal regions of BID, thus unleashing the highly active C-terminal segment to exert downstream pro-apoptotic effects. Consistently, PEITC promotes the cleavage and mitochondrial translocation of BID, leading to a strong induction of apoptosis. We further show that mutation of N-terminal cysteines impairs the N- and C-terminal interaction of BID, relieving the self-inhibition and enhancing its apoptotic activity. Overall, our chemical proteomics profiling and functional studies not only reveal BID as the principal target of PEITC in mediating upstream events for the induction of apoptosis, but also uncover a novel molecular mechanism involving N-terminal cysteines within the first helix of BID in regulating its pro-apoptotic potential.
Collapse
Affiliation(s)
- Xiaoshu Dong
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Xinqian Yu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Minghao Lu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Yaxin Xu
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Liyan Zhou
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China
| | - Tao Peng
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
33
|
Nosouhian M, Rastegari AA, Shahanipour K, Ahadi AM, Sajjadieh MS. Anticancer potentiality of Hottentotta saulcyi scorpion curd venom against breast cancer: an in vitro and in vivo study. Sci Rep 2024; 14:24607. [PMID: 39427017 PMCID: PMC11490606 DOI: 10.1038/s41598-024-75183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 10/03/2024] [Indexed: 10/21/2024] Open
Abstract
Scorpion venom may include pharmacological substances that have the potential to provide benefits. Multiple scientific investigations have shown that particular scorpion venoms induce apoptosis and inhibit the development of cancerous cells. The present study investigated the potential anticancer properties of the crude venom derived from Hottentotta saulcyi (H. saulcyi) on both in vivo mice models and in vitro breast carcinoma cells. The venom of scorpions belonging to the species H. saulcyi was obtained with the application of electrical stimulation at voltages of 8 and 10 V. The determination of the Average Lethal Dose 50 (LD50) was conducted. The present work assessed the in vitro cytotoxicity and morphological characteristics of H. saulcyi venom using fluorescence microscopy, MTT assay, and flow cytometry assessment. Additionally, research was performed to assess the cytotoxic effects in vivo on a mouse model with breast cancer. The examination of MCF-7 cells treated with scorpion venom at a microscopic level revealed the existence of cells undergoing apoptosis. The venom of H. saulcyi has anticancer properties, as shown by the observation that MCF-7 cells had a 62.12% apoptotic rate when exposed to a dose of 1.47 mg/L. Based on the results obtained, it can be shown that the viability of MCF-7 cells has exhibited a substantial reduction (P < 0.01). Furthermore, the findings indicated that the venom of H. saulcyi resulted in a significant increase in the synthesis of TNF-α, IL-6, IL-10, TGF-β, and caspase (P < 0.05). The treatment groups administered with H. saulcyi venom exhibited a significant augmentation in the expression of proapoptotic genes compared to the control group of healthy individuals. The transcription of the BCL2 gene exhibited a statistically significant increase in the healthy control group compared to both the healthy venom-treated group (P < 0.05) and the malignant venom-treated group (P < 0.01). The crude venom of H. saulcyi has considerable promise in demonstrating anticancer properties. Further investigation may be warranted to explore the potential of using H. saulcyi crude venom as a medicinal platform for the prevention of breast cancer.
Collapse
Affiliation(s)
- Mahshid Nosouhian
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Asghar Rastegari
- Department of Molecular and Cell Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Kahin Shahanipour
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
| | - Ali Mohammad Ahadi
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
- Department of Genetics, Faculty of Science, Shahrekord University, Shahrekord, Iran
| | - Mohammadreza Sheikh Sajjadieh
- Department of Biochemistry, Falavarjan Branch, Islamic Azad University, Isfahan, Iran
- Clinical Immunology, Nobel Medical Laboratory, Isfahan, Iran
| |
Collapse
|
34
|
Gao S, Huang J, Zhao R, He H, Zhang J, Wen X. Comprehensive analysis of multiple regulated cell death risk signatures in lung adenocarcinoma. Heliyon 2024; 10:e38641. [PMID: 39398028 PMCID: PMC11471212 DOI: 10.1016/j.heliyon.2024.e38641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/15/2024] Open
Abstract
Background Regulated cell death (RCD) has considerable impact on tumor progress and sensitivity of treatment. Lung adenocarcinoma (LUAD) show a high resistance for conventional radiotherapies and chemotherapies. Currently, regulation of cancer cell death has been emerging as a new promising therapeutic avenue for LUAD patients. However, the crosstalk in each pattern RCD is unclear. Methods We integrated collected the hub-genes of 12 RCD subroutines and compressively analyzed these hub-genes synergistic effect in LUAD. The characters of RCD genes expression and prognosis were developed in The Cancer Genome Atlas (TCGA)-LUAD data. We developed and validated an RCD risk model based on TCGA and GSE70294 data set, respectively. Functional annotation and tumor immunotherapy based on the risk model were also investigated. Results 28 RCD-related genes and two LUAD molecular cluster were identified. Survival analysis revealed that the prognosis in high-risk group was worser than those in low-risk group. Functional enrichment analysis indicated that the RCD risk model correlated with immune responses. Further analysis indicated that the high-risk group in RCD risk model exhibited an immunosuppressive microenvironment and a lowly immunotherapy responder ratio. Conclusions We present an RCD risk model which have a promising ability in predicting LUAD prognosis and immunotherapy response.
Collapse
Affiliation(s)
| | | | - Rui Zhao
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiqi He
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jia Zhang
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaopeng Wen
- Department of Thoracic Surgery, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
35
|
Zheng H, Cheng J, Zhuang Z, Li D, Yang J, Yuan F, Fan X, Liu X. A disulfidptosis-related lncRNA signature for analyzing tumor microenvironment and clinical prognosis in hepatocellular carcinoma. Front Immunol 2024; 15:1412277. [PMID: 39434887 PMCID: PMC11491388 DOI: 10.3389/fimmu.2024.1412277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 09/19/2024] [Indexed: 10/23/2024] Open
Abstract
Introduction Disulfidptosis is a recently identified form of non-apoptotic programmed cell death which distinguishes itself from classical cell death pathways. However, the prognostic implications of disulfidptosis-related long non-coding RNAs (DRLs) and their underlying mechanisms in hepatocellular carcinoma (HCC) remain largely unexplored. Methods In this study, we leveraged RNA-sequencing data and clinical information of HCC patients from the TCGA database. Through expression correlation and prognostic correlation analyses, we identified a set of top-performing long non-coding RNAs. Subsequently, a 5-DRLs predictive signature was established by conducting a Lasso regression analysis. Results This signature effectively stratified patients into high- and low-risk groups, revealing notable differences in survival outcomes. Further validation through univariate and multivariate Cox regression analyses confirmed that the risk score derived from our signature independently predicted the prognosis of HCC patients. Moreover, we observed significant disparities in immune cell infiltration and tumor mutation burden (TMB) between the two risk groups, shedding light on the potential connection between immune-related mechanisms and disulfidptosis. Notably, the signature also exhibited predictive value in the context of chemotherapeutic drug sensitivity and immunotherapy efficacy for HCC patients. Finally, we performed experimental validation at both cellular and patient levels and successfully induced a disulfidptosis phenotype in HCC cells. Discussion In general, this multifaceted approach provides a comprehensive overview of DRLs profiles in HCC, culminating in the establishment of a novel risk signature that holds promise for predicting prognosis and therapy outcomes of HCC patients.
Collapse
Affiliation(s)
- Haishui Zheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jigan Cheng
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ziyun Zhuang
- Shantou University Medical College, Shantou, China
- Department of Breast Cancer, Cancer Center, Guangdong Provincial People's Hospital.Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Duguang Li
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jing Yang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fan Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoxiao Fan
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaolong Liu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
La Marca JE, Kelly GL, Strasser A, Diepstraten ST. Don't fear the reaper: The role of regulated cell death in tumorigenesis and BH3-mimetics for cancer therapy. Dev Cell 2024; 59:2532-2548. [PMID: 39378839 DOI: 10.1016/j.devcel.2024.06.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 10/10/2024]
Abstract
From its earliest characterization, it has been recognized that there is a role for regulated (programmed) cell death in cancer. As our understanding of the different types of programmed cell death processes and their molecular control has advanced, so have the technologies that allow us to manipulate these processes to, for example, fight against cancer. In this review, we describe the roles of the different forms of regulated cell death in the development of cancer as well as their potential therapeutic exploitation. In that vein, we explore the development and use of BH3-mimetics, a unique class of drugs that can directly activate the apoptotic cell death machinery to treat cancer. Finally, we address key challenges that face the field to improve the use of these therapeutics and the efforts that are being undertaken to do so.
Collapse
Affiliation(s)
- John E La Marca
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia; Genome Engineering and Cancer Modelling Program, Olivia Newton-John Cancer Research Institute, Heidelberg, VIC, Australia; School of Cancer Medicine, La Trobe University, Bundoora, VIC, Australia.
| | - Gemma L Kelly
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Andreas Strasser
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| | - Sarah T Diepstraten
- The Walter and Eliza Hall Institute, Parkville, VIC, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
37
|
Tan J, Yang L, Ye M, Geng Y, Guo Y, Zou H, Hou L. Effects of cortisone in zebrafish (Danio rerio): Insights into gut microbiota interactions and molecular mechanisms underlying DNA damage and apoptosis. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135576. [PMID: 39173371 DOI: 10.1016/j.jhazmat.2024.135576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/16/2024] [Accepted: 08/17/2024] [Indexed: 08/24/2024]
Abstract
Cortisone can enter aquatic ecosystems and pose a risk to organisms therein. However, few studies have explored the effects of cortisone on the gut microbiota of aquatic organisms. Here, we exposed zebrafish (Danio rerio) to cortisone at environmentally relevant concentrations (5.0, 50.0, or 500.0 ng L-1) for 60 days to explore its toxicological effects and their association with gut microbiota changes. The terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick-end labeling assay revealed that exposure to 50 ng L-1 cortisone significantly increased the intestinal cell apoptosis rate, 8-hydroxydeoxyguanosine contents, and caspase-3 and caspase-8 activities. Moreover, the transcriptome analysis results demonstrated a notable downregulation in the expression of most differentially expressed genes associated with apoptosis pathways, as well as changes in DNA replication, oxidative stress, and drug metabolism pathways; these results indicated the occurrence of cortisone-induced stress response in zebrafish. Molecular docking analysis revealed that cortisone can bind to caspase-3 through hydrogen bonds and hydrophobic interactions but that no such interactions occur between cortisone and caspase-8. Thus, cortisone may induce oxidative DNA damage and apoptosis by activating caspase-3. Finally, the 16S rRNA sequencing results demonstrated that cortisone significantly affected microbial community structures and functions in the intestinal ecosystem. These changes may indicate gut microbiota response to cortisone-induced intestinal damage and inflammation. In conclusion, the current results clarify the mechanisms underlying intestinal response to cortisone exposure and provide a basis for evaluating the health risks of cortisone in animals.
Collapse
Affiliation(s)
- Jiefeng Tan
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China; School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Lihua Yang
- School of Marine Sciences, Sun Yat-Sen University, Zhuhai 519082, China
| | - Meixin Ye
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yuxin Geng
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Yanfang Guo
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Hong Zou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China
| | - Liping Hou
- School of Life Sciences, Guangzhou University, Guangzhou 510655, China.
| |
Collapse
|
38
|
Long J, Chen H, Yan Z, Zhou L, Deng R, Wang J, Tang Z, Wan Y. Discovery and development of thiazolidine-2,4-dione derivatives as Bcl-2/Mcl-1 dual inhibitors. Bioorg Chem 2024; 151:107687. [PMID: 39096559 DOI: 10.1016/j.bioorg.2024.107687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Increasing the levels of antiapoptotic Bcl-2 proteins is an important way that cancer cells utilize to get out of apoptosis, underscoring their significance as promising targets for anticancer therapies. Lately, a primary compound 1 bearing thiazolidine-2,4-dione was discovered to exhibit comparable Mcl-1 inhibitory activity in comparison to WL-276. Herein, thirty-nine thiazolidine-2,4-dione analogs were yielded through incorporating different biphenyl moieties (R1), amino acid side chains (R2) and sulfonamides (R3) on 1. The findings indicated that certain compounds exhibited favorable inhibitory effects against Bcl-2/Mcl-1, while demonstrating limited or negligible binding affinity towards Bcl-xL. In particular, compounds 16 and 20 exhibited greater Bcl-2/Mcl-1 inhibition compared to AT-101, WL-276 and 1. Moreover, they demonstrated notable antiproliferative effects and significantly induced apoptosis in U937 cells. The western blot and co-immunoprecipitation assays confirmed that 20 could induce alterations in the expression of apoptosis-associated proteins to result in apoptosis through on-target Bcl-2 and Mcl-1 inhibition. In addition, 20 exhibited favorable stability profiles in both rat plasma and rat liver microsomes. In total, 20 could be used as a promising compound to discover Bcl-2/Mcl-1 dual inhibitors with favorable therapeutic properties.
Collapse
Affiliation(s)
- Jiabing Long
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Hongjuan Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Zixue Yan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Le Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Ritian Deng
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Jie Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Zilong Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China
| | - Yichao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule, Ministry of Education, School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201, PR China.
| |
Collapse
|
39
|
Chougoni KK, Neely V, Ding B, Oduah E, Lam VT, Hu B, Koblinski JE, Windle BE, Palit Deb S, Deb S, Nieva JJ, Radhakrishnan SK, Harada H, Grossman SR. Oncogenic Mutant p53 Sensitizes Non-Small Cell Lung Cancer Cells to Proteasome Inhibition via Oxidative Stress-Dependent Induction of Mitochondrial Apoptosis. CANCER RESEARCH COMMUNICATIONS 2024; 4:2685-2698. [PMID: 39302104 PMCID: PMC11474859 DOI: 10.1158/2767-9764.crc-23-0637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/17/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
SIGNIFICANCE NSCLC is the leading cause of cancer death due, in part, to a lack of active therapies in advanced disease. We demonstrate that combination therapy with a proteasome inhibitor, BH3-mimetic, and chemotherapy is an active precision therapy in NSCLC cells and tumors expressing Onc-p53 alleles.
Collapse
Affiliation(s)
- Kranthi Kumar Chougoni
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Victoria Neely
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Boxiao Ding
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Eziafa Oduah
- Division of Medical Oncology, Department of Medicine, Duke University School of Medicine, Duke Cancer Institute, Duke University, Durham, North Carolina.
| | - Vianna T. Lam
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
| | - Bin Hu
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Jennifer E. Koblinski
- VCU Cancer Mouse Models Core, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Bradford E. Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Swati Palit Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Sumitra Deb
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Biochemistry and Molecular Biology, VCU School of Medicine, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Jorge J. Nieva
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| | - Senthil K. Radhakrishnan
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
- Department of Pathology, VCU School of Medicine, Virginia Commonwealth University, Richmond, Virginia.
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry, Virginia Commonwealth University, Richmond, Virginia.
- VCU Massey Comprehensive Cancer Center, Virginia Commonwealth University, Richmond, Virginia.
| | - Steven R. Grossman
- Department of Medicine, Keck School of Medicine of USC, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California.
| |
Collapse
|
40
|
Lilja J, Kaivola J, Conway JRW, Vuorio J, Parkkola H, Roivas P, Dibus M, Chastney MR, Varila T, Jacquemet G, Peuhu E, Wang E, Pentikäinen U, Martinez D Posada I, Hamidi H, Najumudeen AK, Sansom OJ, Barsukov IL, Abankwa D, Vattulainen I, Salmi M, Ivaska J. SHANK3 depletion leads to ERK signalling overdose and cell death in KRAS-mutant cancers. Nat Commun 2024; 15:8002. [PMID: 39266533 PMCID: PMC11393128 DOI: 10.1038/s41467-024-52326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
The KRAS oncogene drives many common and highly fatal malignancies. These include pancreatic, lung, and colorectal cancer, where various activating KRAS mutations have made the development of KRAS inhibitors difficult. Here we identify the scaffold protein SH3 and multiple ankyrin repeat domain 3 (SHANK3) as a RAS interactor that binds active KRAS, including mutant forms, competes with RAF and limits oncogenic KRAS downstream signalling, maintaining mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) activity at an optimal level. SHANK3 depletion breaches this threshold, triggering MAPK/ERK signalling hyperactivation and MAPK/ERK-dependent cell death in KRAS-mutant cancers. Targeting this vulnerability through RNA interference or nanobody-mediated disruption of the SHANK3-KRAS interaction constrains tumour growth in vivo in female mice. Thus, inhibition of SHANK3-KRAS interaction represents an alternative strategy for selective killing of KRAS-mutant cancer cells through excessive signalling.
Collapse
Affiliation(s)
- Johanna Lilja
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - James R W Conway
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Joni Vuorio
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Hanna Parkkola
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Pekka Roivas
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | - Michal Dibus
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Megan R Chastney
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Taru Varila
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Guillaume Jacquemet
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Faculty of Science and Engineering, Cell Biology, Åbo Akademi University, FI-20520, Turku, Finland
- Turku Bioimaging, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, Åbo Akademi University, FI-20520, Turku, Finland
| | - Emilia Peuhu
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, Cancer Research Laboratory FICAN West, University of Turku, FI-20520, Turku, Finland
| | - Emily Wang
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Ulla Pentikäinen
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
| | | | - Hellyeh Hamidi
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
| | - Arafath K Najumudeen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
| | - Owen J Sansom
- CRUK Scotland Institute, Garscube Estate, Switchback Road, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow, G61 1QH, UK
| | - Igor L Barsukov
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daniel Abankwa
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland
- Department of Life Sciences and Medicine, University of Luxembourg, 4365, Esch- sur-Alzette, Luxembourg
| | - Ilpo Vattulainen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Marko Salmi
- Institute of Biomedicine, University of Turku, FI-20520, Turku, Finland
- MediCity Research Laboratory, University of Turku, FI-20520, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku, FI-20520, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, FI-20520, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, FI-00014, Helsinki, Finland.
- Western Finnish Cancer Center, University of Turku, Turku, FI-20520, Finland.
| |
Collapse
|
41
|
Surówka A, Żołnierczuk M, Prowans P, Grabowska M, Kupnicka P, Markowska M, Szlosser Z, Kędzierska-Kapuza K. The Effect of Chronic Immunosuppressive Regimen Treatment on Apoptosis in the Heart of Rats. Pharmaceuticals (Basel) 2024; 17:1188. [PMID: 39338354 PMCID: PMC11435130 DOI: 10.3390/ph17091188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/29/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Chronic immunosuppressive therapy is currently the only effective method to prevent acute rejection of a transplanted organ. Unfortunately, the expected effect of treatment brings a number of grave side effects, one of the most serious being cardiovascular complications. In our study, we wanted to investigate how treatment with commonly used immunosuppressive drugs affects the occurrence of programmed cardiac cell death. For this purpose, five groups of rats were treated with different triple immunosuppressive regimens. Cardiac tissue fragments were subjected to the TUNEL assay to visualize apoptotic cells. The expression of Bcl-2 protein, Bax protein, caspase 3 and caspase 9 was also assessed. This study indicates that all immunosuppressive protocols used chronically at therapeutic doses result in an increased percentage of cells undergoing apoptosis in rat heart tissue. The greatest changes were recorded in the TMG (rats treated with tacrolimus, mycophenolate mofetil and glucocorticosteroids) and CMG (rats treated with cyclosporin A, mycophenolate mofetil and glucocorticosteroids) groups. The TRG (rats treated with rapamycin, tacrolimus and glucocorticosteroids) group showed the lowest percentage of apoptotic cells. The internal apoptosis pathway was confirmed only in the TMG group; in the remaining groups, the results indicate programmed cell death via the receptor pathway.
Collapse
Affiliation(s)
- Anna Surówka
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland (Z.S.)
| | - Michał Żołnierczuk
- Department of Vascular Surgery, General Surgery and Angiology, Pomeranian Medical University, 70-111 Szczecin, Poland
| | - Piotr Prowans
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland (Z.S.)
| | - Marta Grabowska
- Department of Histology and Developmental Biology, Faculty of Health Sciences, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Patrycja Kupnicka
- Department of Biochemistry and Medical Chemistry, Pomeranian Medical University, 70-111 Szczecin, Poland;
| | - Marta Markowska
- Department of Plastic and Reconstructive Surgery, 109 Military Hospital, 71-422 Szczecin, Poland;
| | - Zbigniew Szlosser
- Department of Plastic, Endocrine and General Surgery, Pomeranian Medical University, 72-010 Szczecin, Poland (Z.S.)
| | - Karolina Kędzierska-Kapuza
- Department of Gastroenterological Surgery and Transplantology, National Medical Institute, Ministry of Interior Affairs and Administration, 02-507 Warsaw, Poland;
| |
Collapse
|
42
|
Glover HL, Schreiner A, Dewson G, Tait SWG. Mitochondria and cell death. Nat Cell Biol 2024; 26:1434-1446. [PMID: 38902422 DOI: 10.1038/s41556-024-01429-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024]
Abstract
Mitochondria are cellular factories for energy production, calcium homeostasis and iron metabolism, but they also have an unequivocal and central role in intrinsic apoptosis through the release of cytochrome c. While the subsequent activation of proteolytic caspases ensures that cell death proceeds in the absence of collateral inflammation, other phlogistic cell death pathways have been implicated in using, or engaging, mitochondria. Here we discuss the emerging complexities of intrinsic apoptosis controlled by the BCL-2 family of proteins. We highlight the emerging theory that non-lethal mitochondrial apoptotic signalling has diverse biological roles that impact cancer, innate immunity and ageing. Finally, we delineate the role of mitochondria in other forms of cell death, such as pyroptosis, ferroptosis and necroptosis, and discuss mitochondria as central hubs for the intersection and coordination of cell death signalling pathways, underscoring their potential for therapeutic manipulation.
Collapse
Affiliation(s)
- Hannah L Glover
- Cancer Research UK Scotland Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Annabell Schreiner
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Grant Dewson
- Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia.
| | - Stephen W G Tait
- Cancer Research UK Scotland Institute, Glasgow, UK.
- School of Cancer Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
43
|
Li Y, Li C, Yan J, Liao Y, Qin C, Wang L, Huang Y, Yang C, Wang J, Ding X, Yang YY, Yuan P. Polymeric micellar nanoparticles for effective CRISPR/Cas9 genome editing in cancer. Biomaterials 2024; 309:122573. [PMID: 38677222 DOI: 10.1016/j.biomaterials.2024.122573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 03/21/2024] [Accepted: 04/12/2024] [Indexed: 04/29/2024]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)-associated protein 9 (Cas9) gene editing has attracted extensive attentions in various fields, however, its clinical application is hindered by the lack of effective and safe delivery system. Herein, we reported a cationic micelle nanoparticle composed of cholesterol-modified branched small molecular PEI (PEI-CHO) and biodegradable PEG-b-polycarbonate block copolymer (PEG-PC), denoted as PEG-PC/PEI-CHO/pCas9, for the CRISPR/Cas9 delivery to realize genomic editing in cancer. Specifically, PEI-CHO condensed pCas9 into nanocomplexes, which were further encapsulated into PEG-PC nanoparticles (PEG-PC/PEI-CHO/pCas9). PEG-PC/PEI-CHO/pCas9 had a PEG shell, protecting DNA from degradation by nucleases. Enhanced cellular uptake of PEG-PC/PEI-CHO/pCas9 nanoparticles was observed as compared to that mediated by Lipo2k/pCas9 nanoparticles, thus leading to significantly elevated transfection efficiency after escaping from endosomes via the proton sponge effect of PEI. In addition, the presence of PEG shell greatly improved biocompatibility, and significantly enhanced the in vivo tumor retention of pCas9 compared to PEI-CHO/pCas9. Notably, apparent downregulation of GFP expression could be achieved both in vitro and in vivo by using PEG-PC/PEI-CHO/pCas9-sgGFP nanoparticles. Furthermore, PEG-PC/PEI-CHO/pCas9-sgMcl1 induced effective apoptosis and tumor suppression in a HeLa tumor xenograft mouse model by downregulating Mcl1 expression. This work may provide an alternative paradigm for the efficient and safe genome editing in cancer.
Collapse
Affiliation(s)
- Yuzhen Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chun Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Jiachang Yan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Ying Liao
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Chengyuan Qin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Lingyin Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Yi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China
| | - Chuan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore
| | - Jianwei Wang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Xin Ding
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China.
| | - Yi Yan Yang
- Bioprocessing Technology Institute, Agency for Science, Technology and Research (A*STAR), 20 Biopolis Way, Centros #06-01, Singapore, 138668, Republic of Singapore.
| | - Peiyan Yuan
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, 518107, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, 518107, China.
| |
Collapse
|
44
|
Saha S, Ghosh M, Li J, Wen A, Galluzzi L, Martinez LA, Montrose DC. Serine Depletion Promotes Antitumor Immunity by Activating Mitochondrial DNA-Mediated cGAS-STING Signaling. Cancer Res 2024; 84:2645-2659. [PMID: 38861367 PMCID: PMC11326969 DOI: 10.1158/0008-5472.can-23-1788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 03/06/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024]
Abstract
Serine is critical for supporting cancer metabolism, and depriving malignant cells of this nonessential amino acid exerts antineoplastic effects, in large part, through disrupting metabolic pathways. Given the intricate relationship between cancer metabolism and the immune system, the metabolic defects imposed by serine deprivation might impact tumor-targeting immunity. In this study, we demonstrated that restricting endogenous and exogenous sources of serine in colorectal cancer cells results in mitochondrial dysfunction, leading to mitochondrial DNA (mtDNA) accumulation in the cytosol and consequent cGAS-STING1-driven type I IFN secretion. Depleting mtDNA or blocking its release attenuated cGAS-STING1 activation during serine deprivation. In vivo studies revealed that serine deprivation limits tumor growth, accompanied by enhanced type I IFN signaling and intratumoral infiltration of immune effector cells. Notably, the tumor-suppressive and immune-enhancing effects of serine restriction were impaired by T-cell depletion and IFN receptor blockade. Moreover, disrupting cGAS-STING1 signaling in colorectal cancer cells limited the immunostimulatory and tumor-suppressive effects of serine deprivation. Lastly, serine depletion increased the sensitivity of tumors to an immune checkpoint inhibitor targeting PD-1. Taken together, these findings reveal a role for serine as a suppressor of antitumor immunity, suggesting that serine deprivation may be employed to enhance tumor immunogenicity and improve responsiveness to immune checkpoint inhibitors. Significance: Depriving cancer cells of serine provokes mitochondrial perturbations that induce cytosolic mitochondrial DNA accumulation and subsequent activation of cGAS-STING signaling, stimulating tumor-targeting immune responses that can be enhanced with PD-1 targeted therapy. See related commentary by Borges and Garg, p. 2569.
Collapse
Affiliation(s)
- Suchandrima Saha
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Monisankar Ghosh
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Jinyu Li
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Asher Wen
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
| | - Luis A. Martinez
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| | - David C. Montrose
- Department of Pathology, Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, USA
- Stony Brook Cancer Center, Stony Brook, NY, USA
| |
Collapse
|
45
|
Farheen J, Iqbal MZ, Mushtaq A, Hou Y, Kong X. Hippophae Rhamnoides-derived Phytomedicine Nano-System Modulates Bax/Fas Pathways to Reduce Proliferation in Triple-Negative Breast Cancer. Adv Healthc Mater 2024:e2401197. [PMID: 39132863 DOI: 10.1002/adhm.202401197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/12/2024] [Indexed: 08/13/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most common primary tumor of the breast with limited effectual drug availability. Therefore, the aim of the study is to develop an innovative phyto-nanomedicine (PNM) to cure TNBC with the least genotoxicity. Hereinafter, the sea buckthorn' extracted polyphenols (SBP), combine with metformin (MET), are synthesized as a novel PNM to evaluate its anti-tumor properties, effectiveness, and mechanism of action in TNBC in vitro and in vivo models. The SBP exhibits 16 new kinds of polyphenols that are been reported earlier which regulated cell development, proliferation, and programmed cell death (PCD) effectively. SBP-MET PNM inhibits MDA-MB-231 (47%), MDA-MB-436 (46%), and 4T1 (46%) cell proliferation but does not affect L929 normal murine cell development and successfully induce PCD (73.19%) in MDA-MB-231 cells. Mechanistically, in vivo SBP-MET proteome expression profiling reveals upregulation of proapoptotic Bax protein and activation of Fas signaling pathways convince downstream Daxx and FADD proteins, which further triggers Caspase-3 that prompts apoptosis in human TNBC cells by cleaving PARP-1 protein. Current findings establish innovative highly biocompatible phyto-nanomedicine that has significant potential to inhibit TNBC cell growth and induce regulated cell death (RCD) in vivo model, thereby opening a new arena for TNBC therapy.
Collapse
Affiliation(s)
- Jabeen Farheen
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - M Zubair Iqbal
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Asim Mushtaq
- Institute for Intelligent Bio/Chem Manufacturing, Zhejiang University-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, P. R. China
| | - Yike Hou
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| | - Xiangdong Kong
- Institute of Smart Biomedical Materials, School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, P. R. China
| |
Collapse
|
46
|
Schnekenburger M, Lorant A, Gajulapalli SR, Rajora R, Lee J, Mazumder A, Yang H, Christov C, Kang HJ, Pirotte B, Diederich M. Dual inhibition of sirtuins 1 and 2: reprogramming metabolic energy dynamics in chronic myeloid leukemia as an immunogenic anticancer strategy. Cancer Commun (Lond) 2024; 44:915-920. [PMID: 38976323 PMCID: PMC11337917 DOI: 10.1002/cac2.12590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/09/2024] Open
Affiliation(s)
| | - Anne Lorant
- Laboratoire de Biologie Moléculaire et Cellulaire du CancerLuxembourgLuxembourg
| | - Sruthi Reddy Gajulapalli
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Ridhika Rajora
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Jin‐Young Lee
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Present address:
Department of Biological SciencesKeimyung University, Daegu 42601, Republic of Korea
| | - Aloran Mazumder
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
- Present address:
Aging and Cancer Immuno‐OncologySanford Burnham Prebys Medical Discovery Institute, La Jolla, 92037, California, USA
| | - Haeun Yang
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| | - Christo Christov
- Faculté de MédecineUniversité de LorraineVandœuvre‐lès‐NancyFrance
| | - Hyoung Jin Kang
- Department of PediatricsSeoul National University College of Medicine, Seoul National University Cancer Research Institute, Seoul National University Children's HospitalSeoulRepublic of Korea
| | - Bernard Pirotte
- Laboratory of Medicinal ChemistryCenter for Interdisciplinary Research on Medicines (CIRM)University of LiègeLiègeBelgium
| | - Marc Diederich
- Research Institute of Pharmaceutical Sciences & Natural Products Research Institute, College of Pharmacy, Seoul National UniversitySeoulRepublic of Korea
| |
Collapse
|
47
|
Glorieux C, Liu S, Trachootham D, Huang P. Targeting ROS in cancer: rationale and strategies. Nat Rev Drug Discov 2024; 23:583-606. [PMID: 38982305 DOI: 10.1038/s41573-024-00979-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2024] [Indexed: 07/11/2024]
Abstract
Reactive oxygen species (ROS) in biological systems are transient but essential molecules that are generated and eliminated by a complex set of delicately balanced molecular machineries. Disruption of redox homeostasis has been associated with various human diseases, especially cancer, in which increased ROS levels are thought to have a major role in tumour development and progression. As such, modulation of cellular redox status by targeting ROS and their regulatory machineries is considered a promising therapeutic strategy for cancer treatment. Recently, there has been major progress in this field, including the discovery of novel redox signalling pathways that affect the metabolism of tumour cells as well as immune cells in the tumour microenvironment, and the intriguing ROS regulation of biomolecular phase separation. Progress has also been made in exploring redox regulation in cancer stem cells, the role of ROS in determining cell fate and new anticancer agents that target ROS. This Review discusses these research developments and their implications for cancer therapy and drug discovery, as well as emerging concepts, paradoxes and future perspectives.
Collapse
Affiliation(s)
- Christophe Glorieux
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Shihua Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | | | - Peng Huang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, China.
- Metabolic Innovation Center, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
48
|
Shen NX, Luo MY, Gu WM, Gong M, Lei HM, Bi L, Wang C, Zhang MC, Zhuang G, Xu L, Zhu L, Chen HZ, Shen Y. GSTO1 aggravates EGFR-TKIs resistance and tumor metastasis via deglutathionylation of NPM1 in lung adenocarcinoma. Oncogene 2024; 43:2504-2516. [PMID: 38969770 DOI: 10.1038/s41388-024-03096-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
Despite significantly improved clinical outcomes in EGFR-mutant lung adenocarcinoma, all patients develop acquired resistance and malignancy on the treatment of EGFR tyrosine kinase inhibitors (EGFR-TKIs). Understanding the resistance mechanisms is crucial to uncover novel therapeutic targets to improve the efficacy of EGFR-TKI treatment. Here, integrated analysis using RNA-Seq and shRNAs metabolic screening reveals glutathione S-transferase omega 1 (GSTO1) as one of the key metabolic enzymes that is required for EGFR-TKIs resistance in lung adenocarcinoma cells. Aberrant upregulation of GSTO1 confers EGFR-TKIs resistance and tumor metastasis in vitro and in vivo dependent on its active-site cysteine 32 (C32). Pharmacological inhibition or knockdown of GSTO1 restores sensitivity to EGFR-TKIs and synergistically enhances tumoricidal effects. Importantly, nucleophosmin 1 (NPM1) cysteine 104 is deglutathionylated by GSTO1 through its active C32 site, which leads to activation of the AKT/NF-κB signaling pathway. In addition, clinical data illustrates that GSTO1 level is positively correlated with NPM1 level, NF-κB-mediated transcriptions and progression of human lung adenocarcinoma. Overall, our study highlights a novel mechanism of GSTO1 mediating EGFR-TKIs resistance and malignant progression via protein deglutathionylation, and GSTO1/NPM1/AKT/NF-κB axis as a potential therapeutic vulnerability in lung adenocarcinoma.
Collapse
Affiliation(s)
- Ning-Xiang Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Ming-Yu Luo
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Wei-Ming Gu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Miaomiao Gong
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Hui-Min Lei
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Ling Bi
- Department of Medical Oncology & Cancer Institute of Integrative Medicine, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Cheng Wang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Mo-Cong Zhang
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Guanglei Zhuang
- State Key Laboratory of Oncogenes and Related Genes, Department of Thoracic Surgery, Shanghai Cancer Institute, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| | - Lu Xu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Liang Zhu
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China
| | - Hong-Zhuan Chen
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Shen
- Department of Pharmacology and Chemical Biology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai, 200025, China.
| |
Collapse
|
49
|
Tauchi T, Moriya S, Okabe S, Kazama H, Miyazawa K, Takano N. Vitamin K2 sensitizes the efficacy of venetoclax in acute myeloid leukemia by targeting the NOXA-MCL-1 pathway. PLoS One 2024; 19:e0307662. [PMID: 39052583 PMCID: PMC11271855 DOI: 10.1371/journal.pone.0307662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Promising outcomes have been reported in elder patients with acute myeloid leukemia (AML) using combined therapy of venetoclax (VEN) and azacytidine (AZA) in recent years. However, approximately one-third of patients appear to be refractory to this therapy. Vitamin K2 (VK2) shows apoptosis-inducing activity in AML cells, and daily oral VK2 (menaquinone-4, GlakayR) has been approved for patients with osteoporosis in Japan. We observed a high response rate to AZA plus VEN therapy, with no 8-week mortality in the newly diagnosed AML patients consuming daily VK2 in our hospital. The median age of the patients was 75.9 years (range 66-84) with high-risk features. Patients received AZA 75 mg/m2 on D1-7, VEN 400 mg on D1-28, and daily VK2 45 mg. The CR/CRi ratio was 94.7% (18/19), with a CR rate of 79%. Complete cytogenetic CR was achieved in 15 of 19 (79%) patients, and MRD negativity in 2 of 15 (13%) evaluable CR patients. Owing to the extremely high response rate in clinical settings, we further attempted to investigate the underlying mechanisms. The combination of VK2 and VEN synergistically induced apoptosis in all five AML cell lines tested. VK2, but not VEN, induced mitochondrial reactive oxygen species (ROS), leading to the transcriptional upregulation of NOXA, followed by MCL-1 repression. ROS scavengers repressed VK2 induced-NOXA expression and led to the cancellation of pronounced apoptosis and the downregulation of MCL-1 by VK2 plus VEN. Additionally, knockdown and knockout of NOXA resulted in abrogation of the MCL-1 repression as well as enhanced cytotoxicity by the two-drug combination, indicating that VK2 suppresses MCL-1 via ROS-mediated NOXA induction. These data suggest that the dual inhibition of BCL-2 by VEN and MCL-1 by VK2 is responsible for the remarkable clinical outcomes in our patients. Therefore, large-scale clinical trials are required.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Bridged Bicyclo Compounds, Heterocyclic/pharmacology
- Bridged Bicyclo Compounds, Heterocyclic/therapeutic use
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Aged
- Sulfonamides/pharmacology
- Sulfonamides/therapeutic use
- Vitamin K 2/pharmacology
- Vitamin K 2/analogs & derivatives
- Vitamin K 2/therapeutic use
- Myeloid Cell Leukemia Sequence 1 Protein/metabolism
- Female
- Male
- Aged, 80 and over
- Apoptosis/drug effects
- Cell Line, Tumor
- Signal Transduction/drug effects
- Drug Synergism
- Antineoplastic Combined Chemotherapy Protocols/pharmacology
- Antineoplastic Combined Chemotherapy Protocols/therapeutic use
- Reactive Oxygen Species/metabolism
- Azacitidine/pharmacology
- Azacitidine/therapeutic use
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
Collapse
Affiliation(s)
- Tetsuzo Tauchi
- Shinyurigaoka General Hospital, Asou-ku, Kawasaki, Kanagawa, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Seiichi Okabe
- Department of Hematology, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Hiromi Kazama
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| | - Naoharu Takano
- Department of Biochemistry, Tokyo Medical University, Shinjuku-ku, Tokyo, Japan
| |
Collapse
|
50
|
Rouchidane Eyitayo A, Daury L, Priault M, Manon S. The membrane insertion of the pro-apoptotic protein Bax is a Tom22-dependent multi-step process: a study in nanodiscs. Cell Death Discov 2024; 10:335. [PMID: 39043635 PMCID: PMC11266675 DOI: 10.1038/s41420-024-02108-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Membrane insertion of the pro-apoptotic protein Bax was investigated by setting up cell-free synthesis of full-length Bax in the presence of pre-formed nanodiscs. While Bax was spontaneously poorly inserted in nanodiscs, co-synthesis with the mitochondrial receptor Tom22 stimulated Bax membrane insertion. The initial interaction of Bax with the lipid bilayer exposed the hydrophobic GALLL motif in Hα1 leading to Bax precipitation through hydrophobic interactions. The same motif was recognized by Tom22, triggering conformational changes leading to the extrusion and the ensuing membrane insertion of the C-terminal hydrophobic Hα9. Tom22 was also required for Bax-membrane insertion after Bax was activated either by BH3-activators or by its release from Bcl-xL by WEHI-539. The effect of Tom22 was impaired by D154Y substitution in Bax-Hα7 and T174P substitution in Bax-Hα9, which are found in several tumors. Conversely, a R9E substitution promoted a spontaneous insertion of Bax in nanodiscs, in the absence of Tom22. Both Tom22-activated Bax and BaxR9E alone permeabilized liposomes to dextran-10kDa and formed ~5-nm-diameter pores in nanodiscs. The concerted regulation of Bax membrane insertion by Tom22 and BH3-activators is discussed.
Collapse
Affiliation(s)
| | - Laetitia Daury
- CNRS, Université de Bordeaux, UMR 5248, CBMN, Pessac, France
| | - Muriel Priault
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France
| | - Stéphen Manon
- CNRS, Université de Bordeaux, UMR 5095, IBGC, Bordeaux, France.
| |
Collapse
|