1
|
Xu Y, Li J, Xu W, Fan X, Yang S, Yin Y, Zhu J, Zhou D, Feng L, Zha C, Wang X, Lv Y, Wang L. Elucidating Interfacial Carrier Transfer Dynamics for Circularly Polarized Emission in Self-Assembled Perovskite Heterostructures. ACS NANO 2025; 19:15030-15039. [PMID: 40204749 DOI: 10.1021/acsnano.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
By integrating carrier transfer with spin-selectivity in mixed-dimensional perovskites heterostructures (HSs), exceptional chiroptical behaviors can be activated, offering avenues for advanced applications in spintronics and quantum information technologies. However, the critical role of interface effects in this photophysical process remains insufficiently explored. We demonstrate the fabrication of self-assembled chiral 2D/achiral nanocrystal (NC) HSs with different morphologies and chiroptical activities. Using femtosecond transient reflection spectroscopy, the underlying interface-dependent carrier transfer was unraveled. Spin-polarized holes generated in the chiral 2D component can transfer within an ultrafast time scale of ∼362 fs across the coherent heterointerface, inducing circularly polarized luminescence (CPL) in the intrinsically achiral NCs with a high Pc of ∼10.3%. Furthermore, interfacial halide exchange can be utilized to extend the CPL wavelength from green to near-infrared. Our findings reveal the correlation between interfacial properties, charge transfer, and CPL activity, providing insights for the development of high-quality HSs with optimized optical properties.
Collapse
Affiliation(s)
- Yao Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jian Li
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Wenheng Xu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xinlian Fan
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Shuai Yang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Yao Yin
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Jijie Zhu
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Dawei Zhou
- SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, School of Integrated Circuits, Southeast University, Nanjing 210096, China
| | - Linbo Feng
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Chenyang Zha
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Xiaoyong Wang
- National Laboratory of Solid State Microstructures, School of Physics, and Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China
| | - Yan Lv
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Lin Wang
- State Key Laboratory of Flexible Electronics (LoFE) & Institute of Advanced Materials (IAM), School of Flexible Electronics (Future Technologies), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| |
Collapse
|
2
|
Zhang T, Li M, Li X, Jiang X, Tao Y, Zheng S, Gu J, Zheng N, Bai G, Zhang M, Li C, Guan Y, Wang B, Fu Y. Tuning Interlayer Couplings and Stabilizing 2D Perovskite Lattices through Intercalation Chemistry. J Am Chem Soc 2025. [PMID: 40252046 DOI: 10.1021/jacs.5c04810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2025]
Abstract
Two-dimensional (2D) organic-inorganic hybrid lead halide perovskites are promising semiconductors for optoelectronics, spintronics, and ferroelectrics due to their versatile structural and physical properties enabled by a variety of organic spacer cations. While previous research has focused on new spacer cations for templating 2D perovskite structures and influencing their properties, the intercalation of functional molecules within the organic layers has been less explored. Here, we demonstrate the intercalation of iodine within the organic sublattice as an effective tool to tune interlayer electronic interactions and stabilize 2D perovskite structures that would otherwise not form. We synthesized and determined the single-crystal structures of seven new iodine-intercalated 2D perovskites with varying spacer cations and inorganic compositions. The intercalated iodine bridges neighboring inorganic layers via halogen bonding with the apical iodides, leading to interlayer vibrational and electronic couplings. The iodine intercalation enhances the lattice rigidity, which decreases phonon-phonon scattering and exciton-phonon coupling. Adjusting the inorganic composition further tunes the electronic band structures, because iodine's frontier orbitals contribute differently to the band edge states, leading to varied band alignments and photoluminescence quenching behaviors. Moreover, a decreased anisotropic emission polarization is observed after iodine intercalation due to the decreased in-plane confinement of the excitons. Our results demonstrate iodine intercalation as a powerful tool for tuning the structural and optoelectronic properties of 2D perovskites.
Collapse
Affiliation(s)
- Tianhao Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinyu Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Shixuan Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Nanlong Zheng
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Guangsheng Bai
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Meng Zhang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Chen Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Bingwu Wang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
3
|
Wu D, Wei J, Luo B, Zhou L, Chen P, Tian J, Pan J, Emeline AV, Zhang JZ, Pang Q. Circularly Polarized Luminescence in Achiral Tin-Based Perovskites via Structural Isomer-Driven Coordination Interaction. J Phys Chem Lett 2025:4181-4188. [PMID: 40251715 DOI: 10.1021/acs.jpclett.5c00713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2025]
Abstract
A chiral bidentate ligand, (R)-(-)-1-amino-2-propanol (denoted as R1) or (R)-(-)-2-amino-1-propanol (denoted as R2), was used to modify achiral 2D tin-based perovskite HDASnBr4 (HDA: 1,6-hexamethylenediamine) to form R1-HDASnBr4 or R2-HDASnBr4 by an acid precipitation method. R1-HDASnBr4 exhibits a near-unity photoluminescence quantum yield (PLQY) and strong yellow circularly polarized luminescence (CPL) with a luminescence asymmetry g-factor (|glum|) of 8.3 × 10-3, while R2-HDASnBr4 shows a PLQY of 95% and |glum| of 3.2 × 10-3. Both exhibit strong CPL activities, attributed to the significant centro-asymmetric distortion induced by the interaction between the chiral ligand and the inorganic lattice of 2D perovskites. The |glum| of R1-HDASnBr4 is 2.6× that of R2-HDASnBr4, resulting from the direct coordination of the hydroxyl group attached to the chiral carbons in R1 with the [SnBr6]4- inorganic framework, which induces a higher degree of distortion than the amino group in R2. Furthermore, we explored the potential of R1-HDASnBr4 as a chiral inducer and a CPL source to facilitate asymmetric polymerization. This work offers a simple strategy to introduce chirality to achiral perovskites.
Collapse
Affiliation(s)
- Dongmei Wu
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jianwu Wei
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Binbin Luo
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Liya Zhou
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Peican Chen
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jie Tian
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Jiahong Pan
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| | - Alexei V Emeline
- Physics, Saint-Petersburg State University, Ulyanovskaya Str. 1, Petergof, Saint-Petersburg 198504, Russia
| | - Jin Zhong Zhang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Qi Pang
- School of Chemistry and Chemical Engineering, State Key Laboratory of Featured Metal Materials and Life-Cycle Safety for Composite Structures, Key Laboratory of Electrochemical Energy Materials, Guangxi University, Nanning, Guangxi 530004, People's Republic of China
| |
Collapse
|
4
|
Haque MA, Beard MC. Spin effects in metal halide perovskite semiconductors. NANOSCALE 2025; 17:9895-9906. [PMID: 40181745 DOI: 10.1039/d5nr00127g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Metal halide perovskite semiconductors (MHSs) are emerging as potential candidates for opto-spintronic applications due to their strong spin-orbit coupling, favorable light emission characteristics and highly tunable structural symmetry. Compared to the significant advancements in the optoelectronic applications of MHSs, the exploration and control of spin-related phenomena remain in their early stages. In this minireview, we provide an overview of the various spin effects observed both in achiral and chiral MHSs, emphasizing their potential for controlling interconversion between spin, charge and light. We specifically highlight the spin selective properties of chiral MHSs through the chirality-induced spin selectivity (CISS) phenomena, which enable innovative functionalities in devices such as spin-valves, spin-polarized light-emitting diodes, and polarized photodetectors. Furthermore, we discuss the prospects of MHSs as spintronic semiconductors and their future development in terms of material design, device architecture and stability.
Collapse
Affiliation(s)
- Md Azimul Haque
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, Colorado 80401, USA.
| |
Collapse
|
5
|
VanOrman ZA, Kitzmann WR, Reponen APM, Deshpande T, Jöbsis HJ, Feldmann S. Chiral light-matter interactions in solution-processable semiconductors. Nat Rev Chem 2025; 9:208-223. [PMID: 39962270 DOI: 10.1038/s41570-025-00690-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2025] [Indexed: 02/20/2025]
Abstract
Chirality is a fundamental property widely observed in nature, arising in objects without a proper rotation axis, therefore existing as forms with distinct handedness. This characteristic can profoundly impact the properties of materials and can enable new functionality, especially for spin-optoelectronics. Chirality enables asymmetric light and spin interactions in materials, with widespread potential applications ranging from energy-efficient displays, holography, imaging, and spin-selective and enantio-selective chemistry to quantum information technologies. This Review focuses on the emerging material class of solution-processable chiral semiconductors, a broad material class comprising organic, inorganic and hybrid materials. These exciting materials offer the opportunity to design desirable light-matter interactions based on symmetry rules, potentially enabling the simultaneous control of light, charge and spin. We briefly discuss the various types of solution-processible chiral semiconductors, including small molecules, polymers, supramolecular self-assemblies and halide perovskites. We then examine the interplay between chirality and spin in these materials, the various mechanisms of chiral light-matter interactions, and techniques utilized to characterize them. We conclude with current and future applications of chiral semiconductors that take advantage of their chiral light-matter interactions.
Collapse
Affiliation(s)
- Zachary A VanOrman
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Winald R Kitzmann
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Tejas Deshpande
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Huygen J Jöbsis
- Rowland Institute, Harvard University, Cambridge, MA, USA
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sascha Feldmann
- Rowland Institute, Harvard University, Cambridge, MA, USA.
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
6
|
Zhang M, Jin L, Zhang T, Jiang X, Li M, Guan Y, Fu Y. Two-dimensional organic-inorganic hybrid perovskite quantum-well nanowires enabled by directional noncovalent intermolecular interactions. Nat Commun 2025; 16:2997. [PMID: 40148364 PMCID: PMC11950231 DOI: 10.1038/s41467-025-58166-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 03/14/2025] [Indexed: 03/29/2025] Open
Abstract
Layered 2D semiconductors, when grown into 1D nanowires, can exhibit excellent optical and electronic properties, promising for nanoscale optoelectronics and photonics. However, rational strategies to grow such nanowires are lacking. Here, we present a large family of quantum-well nanowires made from 2D organic-inorganic hybrid metal halide perovskites with tunable well thickness, organic spacer cations, halide anions, and metal cations, achieved by harnessing directional nonvalent intermolecular interactions present among certain spacer cations. The unusual 1D anisotropic growth within the 2D plane is induced by preferential self-assembly of selected spacer cations along the direction of stronger intermolecular interactions and further promoted by crystal growth engineering. Owing to the intrinsic 2D quantum-well-like crystal structures and 1D photon confinement at the subwavelength scale, these nanowires exhibit robust exciton-photon coupling, with Rabi splitting energies of up to 700 meV, as well as wavelength-tunable and more efficient lasing compared to exfoliated crystals.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Tianhao Zhang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Mingyuan Li
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yan Guan
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Nurdillayeva R, Moral RF, Pols M, Lee DK, Altoe V, Schwartz CP, Tao S, Sutter-Fella CM. Humidity Disrupts Structural and Chiroptical Properties of Chiral 2D Perovskites. ACS NANO 2025; 19:11348-11357. [PMID: 40089914 PMCID: PMC11948615 DOI: 10.1021/acsnano.5c00480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Chiral two-dimensional (2D) hybrid organic-inorganic metal halide perovskite semiconductors have emerged as an exceptional material platform with many design opportunities for spintronic applications. However, a comprehensive understanding of changes to the crystal structure and chiroptical properties upon exposure to atmospheric humidity has not been established. We demonstrate phase degradation to the 1D (MBA)PbI3 (MBA = methylbenzylammonium) and the hypothetical (MBA)3PbI5·H2O hydrate phases, accompanied by a reduction and disappearance of the chiroptical response. First-principle simulations show that water molecules preferentially locate at the interface between the organic cations and the inorganic framework, thereby disrupting the hydrogen bonding, impacting both the structural chirality and stability of the material. These findings provide critical insights into phase degradation mechanisms and their impact on chiroptical activity in chiral 2D perovskites.
Collapse
Affiliation(s)
- Raushan
N. Nurdillayeva
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Khoja
Akhmet Yassawi International Kazakh-Turkish University, Turkistan 161200, Kazakhstan
| | - Raphael F. Moral
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nevada
Extreme Conditions Laboratory, University
of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Mike Pols
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Do-Kyoung Lee
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nevada
Extreme Conditions Laboratory, University
of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Virginia Altoe
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Craig P. Schwartz
- Nevada
Extreme Conditions Laboratory, University
of Nevada, Las Vegas, Las Vegas, Nevada 89154, United States
| | - Shuxia Tao
- Materials
Simulation & Modelling, Department of Applied Physics and Science
Education, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Carolin M. Sutter-Fella
- Molecular
Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Zhang C, Wu Z, Zhang W, Guan Q, Ye H, Li R, Li H, Zhu ZK, Wang P, Wang Y, Fang Y, Luo J. Chiral-Polar Photovoltage-Driven Efficient Self-Powered Circularly Polarized Light Detection in Three-Dimensional Hybrid Perovskites. J Am Chem Soc 2025; 147:9686-9693. [PMID: 40040495 DOI: 10.1021/jacs.4c17796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The chiral-polar photovoltaic effect (CPPE), widely present in chiral hybrid perovskites, has brought an unprecedented opportunity for self-powered circularly polarized light (CPL) detection. However, on account of spatial limitations of the crystal structure, currently reported CPPE primarily focuses on low-dimensional hybrid perovskites, which have a low CPL photoresponse restricted by lower carrier transport efficiency compared to three-dimensional perovskites. For the first time, we reported chiral-polar photovoltage-driven efficient self-powered CPL detection in three-dimensional chiral-polar perovskites, MHyPbBr3 (MHy = Methylhydrazinium). Coupled with significant spontaneous polarization (17.1 μC cm-2) and superior semiconductor properties, MHyPbBr3 exhibits a large mobility-lifetime product (1.9 × 10-2 cm2 V-1) and stable bulk photovoltage (3.9 V). Furthermore, the devices indicate significant chiral-polar photovoltage for self-powered CPL detection with a robust angle anisotropy factor of 0.39. More importantly, benefiting from excellent carrier transport performance, high responsivity and detectivity values of up to 39.2 mA W-1 and 5.8 × 1012 Jones, respectively, are presented at zero bias, which fall around the highest values of hybrid perovskites. This work will contribute to the research of novel chiral-polar three-dimensional hybrid perovskite semiconductors and promote their application in efficient self-powered CPL detection.
Collapse
Affiliation(s)
- Chengshu Zhang
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhenyue Wu
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Wanning Zhang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qianwen Guan
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Huang Ye
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Ruiqing Li
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Hang Li
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Zeng-Kui Zhu
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Peng Wang
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yifei Wang
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Yuxi Fang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junhua Luo
- State Key Laboratory of Functional Crystals and Devices, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
9
|
Chowdhury R, Preuss MD, Cho HH, Thompson JJP, Sen S, K Baikie T, Ghosh P, Boeije Y, Chua XW, Chang KW, Guo E, van der Tol J, van den Bersselaar BWL, Taddeucci A, Daub N, Dekker DM, Keene ST, Vantomme G, Ehrler B, Meskers SCJ, Rao A, Monserrat B, Meijer EW, Friend RH. Circularly polarized electroluminescence from chiral supramolecular semiconductor thin films. Science 2025; 387:1175-1181. [PMID: 40080572 DOI: 10.1126/science.adt3011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/10/2024] [Accepted: 02/05/2025] [Indexed: 03/15/2025]
Abstract
Current organic light-emitting diode (OLED) technology uses light-emitting molecules in a molecular host. We report green circularly polarized luminescence (CPL) in a chirally ordered supramolecular assembly, with 24% dissymmetry in a triazatruxene (TAT) system. We found that TAT assembled into helices with a pitch of six molecules, associating angular momentum to the valence and conduction bands and obtaining the observed CPL. Cosublimation of TAT as the "guest" in a structurally mismatched "host" enabled fabrication of thin films in which chiral crystallization was achieved in situ by thermally triggered nanophase segregation of dopant and host while preserving film integrity. The OLEDs showed external quantum efficiencies of up to 16% and electroluminescence dissymmetries ≥10%. Vacuum deposition of chiral superstructures opens new opportunities to explore chiral-driven optical and transport phenomena.
Collapse
Affiliation(s)
| | - Marco D Preuss
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Hwan-Hee Cho
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Joshua J P Thompson
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Samarpita Sen
- The Gurdon Institute and the Department of Genetics, University of Cambridge, Cambridge, UK
| | - Tomi K Baikie
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Pratyush Ghosh
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Yorrick Boeije
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Xian Wei Chua
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, UK
| | - Kai-Wei Chang
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - Erjuan Guo
- State Key Laboratory of Materials Processing and Die and Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan, China
| | - Joost van der Tol
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bart W L van den Bersselaar
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Andrea Taddeucci
- B23 Beamline, Diamond Light Source Ltd, Didcot, UK
- Dipartimento di Chimica e Chimica Industriale, University of Pisa, Pisa, Italy
| | - Nicolas Daub
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Scott T Keene
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Ghislaine Vantomme
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Bruno Ehrler
- MPV-SEM Department, AMOLF, Amsterdam, Netherlands
| | - Stefan C J Meskers
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Akshay Rao
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
| | - Bartomeu Monserrat
- Department of Materials Science and Metallurgy, University of Cambridge, Cambridge, UK
| | - E W Meijer
- Institute for Complex Molecular Systems and Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology, Eindhoven, Netherlands
| | | |
Collapse
|
10
|
Niu X, Li Y, Lu H, Wang Z, Zhang Y, Shao T, Wang H, Gull S, Sun B, Zhang HL, Chen Y, Wang K, Du Y, Long G. Chiral europium halides with high-performance magnetic field tunable red circularly polarized luminescence at room temperature. Nat Commun 2025; 16:2525. [PMID: 40082417 PMCID: PMC11906753 DOI: 10.1038/s41467-025-57620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Accepted: 02/20/2025] [Indexed: 03/16/2025] Open
Abstract
Chiral organic-inorganic hybrid metal halides as promising circularly polarized luminescence (CPL) emitter candidates hold great potential for high-definition displays and future spin-optoelectronics. The recent challenge lies primarily in developing high-performance red CPL emitters. Here, coupling the f-f transition characteristics of trivalent europium ions (Eu3+) with chirality, we construct the chiral Eu-based halides, (R/S-3BrMBA)3EuCl6, which exhibit strong and predictable red emission with large photoluminescence quantum yield (59.8%), narrow bandwidth (≈2 nm), long lifetime (≈2 ms), together with large dissymmetry factor |glum| of 1.84 × 10-2. Compared with the previously reported chiral metal halides, these chiral Eu-based halides show the highest red CPL brightness. Furthermore, the degree of photoluminescence polarization in (R/S-3BrMBA)3EuCl6 can be manipulated by the external magnetic field. Particularly, benefiting from the field-generated Zeeman splitting and spin mixing at exciton states, an anomalously positive magneto-photoluminescence was observed at room temperature. This work provides an efficient strategy for constructing both high-performance and pure-red CPL emitters. It also opens the door for chiral rare-earth halides toward chiral optoelectronic and spintronic applications.
Collapse
Affiliation(s)
- Xinyi Niu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yang Li
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, China
| | - Haolin Lu
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Zhaoyu Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Yunxin Zhang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Tianyin Shao
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Hebin Wang
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Sehrish Gull
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China
| | - Bing Sun
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Hao-Li Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, China
| | - Yongsheng Chen
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- The Centre of Nanoscale Science and Technology and Key Laboratory of Functional Polymer Materials, College of Chemistry, Nankai University, Tianjin, China
| | - Kai Wang
- Key Laboratory of Luminescence and Optical Information, Ministry of Education, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China.
- Institute of Optoelectronics Technology, Beijing Jiaotong University, Beijing, China.
| | - Yaping Du
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| | - Guankui Long
- Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Frontiers Science Center for New Organic Matter, Haihe Laboratory of Sustainable Chemical Transformations, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, China.
| |
Collapse
|
11
|
Yao J, Huang Y, Sun H, Wang Z, Xue J, Huang Z, Dong S, Chen X, Lu H. Efficient Spin-Light-Emitting Diodes With Tunable Red to Near-Infrared Emission at Room Temperature. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2413669. [PMID: 39887568 PMCID: PMC11899487 DOI: 10.1002/adma.202413669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 01/14/2025] [Indexed: 02/01/2025]
Abstract
Spin light-emitting diodes (spin-LEDs) are important for spin-based electronic circuits as they convert the carrier spin information to optical polarization. Recently, chiral-induced spin selectivity (CISS) has emerged as a new paradigm to enable spin-LED as it does not require any magnetic components and operates at room temperature. However, CISS-enabled spin-LED with tunable wavelengths ranging from red to near-infrared (NIR) has yet to be demonstrated. Here, chiral quasi-2D perovskites are developed to fabricate efficient spin-LEDs with tunable wavelengths from red to NIR region by tuning the halide composition. The optimized chiral perovskite films exhibit efficient circularly polarized luminescence from 675 to 788 nm, with a photoluminescence quantum yield (PLQY) exceeding 86% and a dissymmetry factor (glum) ranging from 8.5 × 10-3 to 2.6 × 10-2. More importantly, direct circularly polarized electroluminescence (CPEL) is achieved at room temperature in spin-LEDs. This work demonstrated efficient red and NIR spin-LEDs with the highest external quantum efficiency (EQE) reaching 12.4% and the electroluminescence (EL) dissymmetry factors (gEL) ranging from 3.7 × 10-3 to 1.48 × 10-2 at room temperature. The composition-dependent CPEL performance is further attributed to the prolonged spin lifetime as revealed by ultrafast transient absorption spectroscopy.
Collapse
Affiliation(s)
- Jingwen Yao
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Yuling Huang
- SUSTech Energy Institute for Carbon NeutralityDepart of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Haifeng Sun
- Department of ChemistryThe Chinese University of Hong KongNew TerritoriesShatinHong Kong SAR999077P. R. China
| | - Zhiyu Wang
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Jie Xue
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Zhifeng Huang
- Department of ChemistryThe Chinese University of Hong KongNew TerritoriesShatinHong Kong SAR999077P. R. China
- Shenzhen Research InstituteThe Chinese University of Hong KongNo.10, 2nd Yuexing Road, NanshanShenzhenGuangdong Province518057P. R. China
| | - Shou‐Cheng Dong
- WISPO Advanced Materials (Suzhou) Co., Ltd.SuzhouJiangsu215000P. R. China
- State Key Laboratory of Advanced Displays and Optoelectronics TechnologiesDepartment of Electronic and Computer EngineeringThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| | - Xihan Chen
- SUSTech Energy Institute for Carbon NeutralityDepart of Mechanical and Energy EngineeringSouthern University of Science and TechnologyShenzhenGuangdong518055P. R. China
| | - Haipeng Lu
- Department of ChemistryThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
- Energy InstituteThe Hong Kong University of Science and TechnologyClear Water BayKowloonHong Kong SAR999077P. R. China
| |
Collapse
|
12
|
Dong J, Xu L, Qu A, Hao C, Sun M, Xu C, Hu S, Kuang H. Chiral Inorganic Nanomaterial-Based Diagnosis and Treatments for Neurodegenerative Diseases. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418723. [PMID: 39924754 DOI: 10.1002/adma.202418723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/27/2025] [Indexed: 02/11/2025]
Abstract
Chiral nanomaterials are widely investigated over recent decades due to their biocompatibility and unique chiral effects. These key properties have significantly promoted the rapid development of chiral nanomaterials in bioengineering and medicine. In this review, the basic principles of constructing chiral nanomaterials along with the latest progress in research are comprehensively summarized. Then, the application of chiral nanomaterials for the diagnosis of neurodegenerative diseases (NDDs) is systematically described. In addition, the significant potential and broad prospects of chiral nanomaterials in the treatment of NDDs are highlighted from several aspects, including the disaggregation of neurofibrils, the scavenging of reactive oxygen species, regulation of the microbial-gut-brain axis, the elimination of senescent cells, and the promotion of directed differentiation in neural stem cells. Finally, a perspective of the challenges and future development of chiral nanomaterials for the treatment of NDDs is provided.
Collapse
Affiliation(s)
- Jingqi Dong
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Liguang Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Aihua Qu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Changlong Hao
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Maozhong Sun
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chuanlai Xu
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shudong Hu
- Department of Radiology, Affiliated Hospital, Jiangnan University, No. 1000, Hefeng Road, Wuxi, Jiangsu, 214122, China
| | - Hua Kuang
- International Joint Research Laboratory for Biointerface and Biodetection, State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, 214122, China
| |
Collapse
|
13
|
Li Y, Stec GJ, Kim HK, Thapa S, Zheng SL, McClelland A, Mason JA. Self-assembly of chiroptical ionic co-crystals from silver nanoclusters and organic macrocycles. Nat Chem 2025; 17:169-176. [PMID: 39779970 DOI: 10.1038/s41557-024-01696-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 11/12/2024] [Indexed: 01/11/2025]
Abstract
Atomically precise nanoclusters can be assembled into ordered superlattices with unique electronic, magnetic, optical and catalytic properties. The co-crystallization of nanoclusters with functional organic molecules provides opportunities to access an even wider range of structures and properties, but can be challenging to control synthetically. Here we introduce a supramolecular approach to direct the assembly of atomically precise silver nanoclusters into a series of nanocluster‒organic ionic co-crystals with tunable structures and properties. By leveraging non-covalent interactions between anionic silver nanoclusters and cationic organic macrocycles of varying sizes, the orientation of nanocluster surface ligands can be manipulated to achieve in situ resolution of enantiopure nanocluster‒organic ionic co-crystals that feature large chiroptical effects. Beyond chirality, this co-crystal assembly approach provides a promising platform for designing functional solid-state nanomaterials through a combination of supramolecular chemistry and atomically precise nanochemistry.
Collapse
Affiliation(s)
- Yingwei Li
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Department of Chemistry, University of Hawai'i at Manoa, Honolulu, HI, USA
| | - Grant J Stec
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Hong Ki Kim
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Surendra Thapa
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Shao-Liang Zheng
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Arthur McClelland
- Center for Nanoscale Systems, Harvard University, Cambridge, MA, USA
| | - Jarad A Mason
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
14
|
Kim H, Lee K, Zan G, Shin E, Kim W, Zhao K, Jang G, Moon J, Park C. Chiroptical Synaptic Perovskite Memristor as Reconfigurable Physical Unclonable Functions. ACS NANO 2025; 19:691-703. [PMID: 39705594 DOI: 10.1021/acsnano.4c11753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2024]
Abstract
Physical unclonable functions (PUFs), often referred to as digital fingerprints, are emerging as critical elements in enhancing hardware security and encryption. While significant progress has been made in developing optical and memory-based PUFs, integrating reconfigurability with sensitivity to circularly polarized light (CPL) remains largely unexplored. Here, we present a chiroptical synaptic memristor (CSM) as a reconfigurable PUF, leveraging a two-dimensional organic-inorganic halide chiral perovskite. The device combines CPL sensitivity with photoresponsive electrical behavior, enabling its application in optoneuromorphic systems, as demonstrated by its ability to perform image categorization tasks within neuromorphic computing. Furthermore, by leveraging a 10 × 10 crossbar array of the CSMs, we develop a PUF capable of generating reconfigurable cryptographic keys based on the combination of neuromorphic potentiation and polarized light conditions. This work demonstrates an integrated approach to optoneuromorphic functionality, data storage, and encryption, providing an alternative approach for reconfigurable memristor-based PUFs.
Collapse
Affiliation(s)
- HoYeon Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kyuho Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Guangtao Zan
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - EunAe Shin
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
- Korea Packaging Center, Korea Institute of Industrial Technology, Bucheon 14449, Republic of Korea
| | - Woojoong Kim
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Kaiying Zhao
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jooho Moon
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Cheolmin Park
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
15
|
Gu J, Fu Y. Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites? ACS MATERIALS AU 2025; 5:24-34. [PMID: 39802148 PMCID: PMC11718535 DOI: 10.1021/acsmaterialsau.4c00101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 01/16/2025]
Abstract
Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions. Minimizing structural distortions, such as dynamic out-of-plane octahedral tilting and lone pair distortion, appears to be essential for achieving narrow photoluminescence (PL) emission peaks, high PL quantum yields, and rapid exciton diffusion by suppressing exciton-phonon coupling, as demonstrated in 2D perovskites based on phenylethylammonium cation or its derivatives. We propose that designing spacer cations with enhanced intermolecular interactions and denser packing, combined with the close packing of inorganic ions to minimize the motions of both organic and inorganic lattices, would be the ideal scenario for yielding the most favorable optoelectronic properties in these materials.
Collapse
Affiliation(s)
- Jiazhen Gu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongping Fu
- Beijing
National Laboratory for Molecular Science, State Key Laboratory of
Rare Earth Materials Chemistry and Applications, College of Chemistry
and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
16
|
Chakraborty R, Sercel PC, Qin X, Mitzi DB, Blum V. Design of Two-Dimensional Hybrid Perovskites with Giant Spin Splitting and Persistent Spin Textures. J Am Chem Soc 2024; 146:34811-34821. [PMID: 39627964 DOI: 10.1021/jacs.4c13597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Semiconductors with large energetic separation ΔE± of energy sub-bands with distinct spin expectation values (spin textures) represent a key target to enable control over spin transport and spin-optoelectronic properties. While the paradigmatic case of symmetry-dictated Rashba spin splitting and associated spin textures remains the most explored pathway toward designing future spin-transport-based quantum information technologies, controlling spin physics beyond the Rashba paradigm by accessing strategically targeted crystalline symmetries holds significant promise. In this paper, we show how breaking the traditional paradigm of octahedron-rotation based structure distortions in 2D organic-inorganic perovskites (2D-OIPs) can facilitate exceptionally large spin splittings (ΔE± > 400 meV) and spin textures with extremely short spin helix lengths (lPSH ∼ 5 nm). A simple bond angle difference captures the distortion-driven global asymmetry and correlates quantitatively with first-principles computed spin-splitting magnitudes. A multiband effective mass model that accounts for interlayer coupling provides a unified understanding of how specific symmetry elements dictate layer- and state-dependent spin polarizations within these multi-quantum-well structures. The general symmetry analysis methodology presented here, together with the potential for rationally creating 2D-OIPs with unique symmetry patterns, opens a pathway to design semiconductors with outstanding spin properties for next generation opto-spintronics.
Collapse
Affiliation(s)
- Rayan Chakraborty
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - Peter C Sercel
- Center for Hybrid Organic Inorganic Semiconductors for Energy, Golden, Colorado 80401, United States
| | - Xixi Qin
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Volker Blum
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, North Carolina 27708, United States
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
17
|
Zhang Y, Wei Y, Li C, Wang Y, Liu Y, He M, Luo Z, Chang X, Kuang X, Quan Z. Efficient circularly polarized luminescence from zero-dimensional terbium- and europium-based hybrid metal halides. Chem Commun (Camb) 2024; 61:85-88. [PMID: 39611219 DOI: 10.1039/d4cc05206d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
Zero-dimensional (0D) chiral hybrid metal halides (HMHs) with narrow-band circularly polarized luminescence (CPL) show considerable promise in three-dimensional displays. In this work, 0D (S/R-3MOR)3TbCl6 and (S/R-3MOR)3EuCl6 (abbreviated as S/R-TbCl, S/R-EuCl) enantiomers with characteristic rare-earth ion emissions are synthesized. S/R-TbCl and S/R-EuCl exhibit narrow-band green and red emissions with high photoluminescence quantum yields of (85-91)% and (48-52)%, respectively. These materials present distinct CPL signals with dissymmetry factors up to ±0.006 and ±0.009 for S/R-TbCl and S/R-EuCl, respectively. These chiroptical properties confer the potential for their applications in circularly polarized light-emitting diodes for future displays.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Yi Wei
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Chen Li
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Yuxuan Wang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Yulian Liu
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Meiying He
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Zhishan Luo
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Xiaoyong Chang
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| | - Xiaojun Kuang
- College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Zewei Quan
- Department of Chemistry, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
18
|
Hautzinger MP, Mihalyi-Koch W, Jin S. A-Site Cation Chemistry in Halide Perovskites. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:10408-10420. [PMID: 39554283 PMCID: PMC11562073 DOI: 10.1021/acs.chemmater.4c02043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/10/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024]
Abstract
Metal halide perovskites are an important class of semiconductors now being implemented as photovoltaic absorbers and explored for light emission, among other device applications. The semiconducting properties of halide perovskites are deeply intertwined with their composition and structure. Specifically the symmetry, tilting, and distortions of the metal halide octahedra impact the band structure and other optoelectronic properties. In this review, we examine the various compositions of monovalent A-site cations in three-dimensional (3D) halide perovskites AMX3 (M = divalent metal; X = halide). We focus on how the A-site cation templates the inorganic metal-halide perovskite framework, resulting in changes in the crystal structure symmetry, as well as M-X bonding parameters, summarized in a comprehensive table of AMX3 structures. The A-site cation motion, effects of alloying, and 2D Ruddlesden-Popper perovskite structures with unique A-site cations are further overviewed. Correlations are shown between these A-site cation dominated structural parameters and the resulting optoelectronic properties such as band gap. This review should serve as a reference for the A-site cation structural chemistry of metal halide perovskites and inspire continued research into less explored metal halide perovskite compositions and structures.
Collapse
Affiliation(s)
| | - Willa Mihalyi-Koch
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Song Jin
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
19
|
Haque MA, Grieder A, Harvey SP, Brunecky R, Ye JY, Addison B, Zhang J, Dong Y, Xie Y, Hautzinger MP, Walpitage HH, Zhu K, Blackburn JL, Vardeny ZV, Mitzi DB, Berry JJ, Marder SR, Ping Y, Beard MC, Luther JM. Remote chirality transfer in low-dimensional hybrid metal halide semiconductors. Nat Chem 2024:10.1038/s41557-024-01662-2. [PMID: 39455700 DOI: 10.1038/s41557-024-01662-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024]
Abstract
In hybrid metal halide perovskites, chiroptical properties typically arise from structural symmetry breaking by incorporating a chiral A-site organic cation within the structure, which may limit the compositional space. Here we demonstrate highly efficient remote chirality transfer where chirality is imposed on an otherwise achiral hybrid metal halide semiconductor by a proximal chiral molecule that is not interspersed as part of the structure yet leads to large circular dichroism dissymmetry factors (gCD) of up to 10-2. Density functional theory calculations reveal that the transfer of stereochemical information from the chiral proximal molecule to the inorganic framework is mediated by selective interaction with divalent metal cations. Anchoring of the chiral molecule induces a centro-asymmetric distortion, which is discernible up to four inorganic layers into the metal halide lattice. This concept is broadly applicable to low-dimensional hybrid metal halides with various dimensionalities (1D and 2D) allowing independent control of the composition and degree of chirality.
Collapse
Affiliation(s)
| | - Andrew Grieder
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jiselle Y Ye
- National Renewable Energy Laboratory, Golden, CO, USA
- Department of Physics, Materials Science Program, Colorado School of Mines, Golden, CO, USA
| | | | - Junxiang Zhang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Yifan Dong
- National Renewable Energy Laboratory, Golden, CO, USA
| | - Yi Xie
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
| | | | | | - Kai Zhu
- National Renewable Energy Laboratory, Golden, CO, USA
| | | | - Zeev Valy Vardeny
- Department of Physics and Astronomy, University of Utah, Salt Lake City, UT, USA
| | - David B Mitzi
- Thomas Lord Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, USA
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Joseph J Berry
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Seth R Marder
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, CO, USA
- Department of Chemical and Biological Engineering and Department of Chemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Yuan Ping
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Matthew C Beard
- National Renewable Energy Laboratory, Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Joseph M Luther
- National Renewable Energy Laboratory, Golden, CO, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
20
|
Xin M, Cheng P, Shi R, Guan J, Han X, Wang Z, Li Q, Li G, Zheng Y, Xu J, Bu XH. Macroscopic Twisting of Chiral Metal Halide Single Crystals Driven by Thermo-Induced Topochemical Dehydration. J Am Chem Soc 2024; 146:26534-26542. [PMID: 39255449 DOI: 10.1021/jacs.4c10507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Dynamic twisting crystals, combining the features of dynamic crystals and twisting crystals, promise advanced applications in targeted drug delivery, biosensors, microrobots, and spiral optoelectronics. However, the determination of dynamic twisting crystals with specific directions remains a formidable challenge in practical applications. Herein, based on organic-inorganic hybrid metal halide (OIHMH) single crystals, we have realized the chirality-induced macroscopic twisting of single crystals driven by a thermo-induced topochemical dehydration reaction. These crystals exhibit molecular-chirality-induced twisting upon heating, along with reversals in their linear chiroptical circular dichroism and nonlinear chiroptical second harmonic generation circular dichroism. Such an induced twisting has been attributed to the alteration of the helical arrangement of chiral cation post-topochemical dehydration. The feasibility of tuning the macroscopic twisting of OIHMH single crystals and the switching in their linear and nonlinear chiroptical properties might open up new avenues for developing dynamic crystals for microactuating and optoelectronic applications.
Collapse
Affiliation(s)
- Mingyang Xin
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Puxin Cheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Rongchao Shi
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Junjie Guan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Xiao Han
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Zhihua Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Quanwen Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Geng Li
- Key Laboratory of Rare Earths, Chinese Academy of Sciences, China Rare Earth Group Research Institute, Ganzhou, Jiangxi 341000, PR China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Jialiang Xu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| | - Xian-He Bu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Metal and Molecular Materials Chemistry, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, Tianjin 300350, PR China
| |
Collapse
|
21
|
Liu Y, Wei Y, Luo Z, Xu B, He M, Hong P, Li C, Quan Z. Boosting circularly polarized luminescence by optimizing off-centering octahedral distortion in zero-dimensional hybrid indium-antimony halides. Chem Sci 2024:d4sc04399e. [PMID: 39246347 PMCID: PMC11376097 DOI: 10.1039/d4sc04399e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/24/2024] [Indexed: 09/10/2024] Open
Abstract
Chiral zero-dimensional hybrid metal halides (0D HMHs) are being extensively studied as they can directly generate circularly polarized luminescence (CPL) with high photoluminescence quantum yields (PLQYs), yet improving their luminescence dissymmetry factor (g lum) remains a challenge. This study proposes a general strategy to boost the g lum value of chiral 0D HMHs by optimizing the off-centering distortion of inorganic octahedra. Accordingly, (R/S-MBA)2(2MA)In0.95Sb0.05Cl6 (MBA = α-methylbenzylammonium, 2MA = dimethylamine) and (R/S-MBA)2(3MA)In0.95Sb0.05Cl6 (3MA = trimethylamine) with near-unity PLQYs are accordingly synthesized. With increasing the from 0.012 to 0.020, the |g lum| is accordingly increased from 7.8 × 10-3 to 2.0 × 10-2. Notably, the |g lum| can be further boosted to an impressive value of 3.8 × 10-2 while maintaining near-unity PLQYs by continuously increasing the . Experimental results reveal that the choice of achiral ligands and varied Sb3+ dopant concentrations can modulate the distribution and strength of hydrogen bonds around indium-antimony halogen octahedra, respectively, thus regulating the parameter of octahedra in 0D hybrid metal halides. Additionally, light-emitting diodes with a polarization of 1.6% are fabricated. This work sheds light on the relationship between the distortion of inorganic octahedra and the g lum value.
Collapse
Affiliation(s)
- Yulian Liu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Yi Wei
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Zhishan Luo
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Bin Xu
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Meiying He
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Peibin Hong
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Chen Li
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| | - Zewei Quan
- Department of Chemistry, Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology China
| |
Collapse
|
22
|
Li Z, Xiao Y, Jiang C, Hou B, Liu Y, Cui Y. Engineering spin-dependent catalysts: chiral covalent organic frameworks with tunable electroactivity for electrochemical oxygen evolution. Natl Sci Rev 2024; 11:nwae332. [PMID: 39398293 PMCID: PMC11467994 DOI: 10.1093/nsr/nwae332] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/08/2024] [Accepted: 09/14/2024] [Indexed: 10/15/2024] Open
Abstract
The chiral-induced spin selectivity (CISS) effect offers promising prospects for spintronics, yet designing chiral materials that enable efficient spin-polarized electron transport remains challenging. Here, we report the utility of covalent organic frameworks (COFs) in manipulating electron spin for spin-dependent catalysis via CISS. This enables us to design and synthesize three three-dimensional chiral COFs (CCOFs) with tunable electroactivity and spin-electron conductivity through imine condensations of enantiopure 1,1'-binaphthol-derived tetraaldehyde and tetraamines derived from 1,4-benzenediamine, pyrene, or tetrathiafulvalene skeletons. The CISS effect of CCOFs is verified by magnetic conductive atomic force microscopy. Compared with their achiral analogs, these CCOFs serve as efficient spin filters, reducing the overpotential of oxygen evolution and improving the Tafel slope. Particularly, the diarylamine-based CCOF showed a low overpotential of 430 mV (vs reversible hydrogen electrode) at 10 mA cm-2 with long-term stability comparable to the commercial RuO2. This enhanced spin-dependent OER activity stems from its excellent redox-activity, good electron conductivity and effective suppression effect on the formation of H2O2 byproducts.
Collapse
Affiliation(s)
- Ziping Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yueyuan Xiao
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Jiang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Bang Hou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Bloom BP, Chen Z, Lu H, Waldeck DH. A chemical perspective on the chiral induced spin selectivity effect. Natl Sci Rev 2024; 11:nwae212. [PMID: 39144747 PMCID: PMC11321253 DOI: 10.1093/nsr/nwae212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/30/2024] [Accepted: 05/30/2024] [Indexed: 08/16/2024] Open
Abstract
This review discusses opportunities in chemistry that are enabled by the chiral induced spin selectivity (CISS) effect. First, the review begins with a brief overview of the seminal studies on CISS. Next, we discuss different chiral material systems whose properties can be tailored through chemical means, with a special emphasis on hybrid organic-inorganic layered materials that exhibit some of the largest spin filtering properties to date. Then, we discuss the promise of CISS for chemical reactions and enantioseparation before concluding.
Collapse
Affiliation(s)
- Brian P Bloom
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| | - Zhongwei Chen
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh 15260, USA
| |
Collapse
|
24
|
Son J, Jang G, Ma S, Lee H, Lee CU, Yang S, Lee J, Moon S, Jeong W, Park JH, Jung C, Kim J, Park J, Moon J. Fluorinated Organic Cations Derived Chiral 2D Perovskite Enabling Enhanced Spin-Dependent Oxygen Evolution Reaction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403326. [PMID: 38940393 PMCID: PMC11434140 DOI: 10.1002/advs.202403326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/13/2024] [Indexed: 06/29/2024]
Abstract
Chirality-induced spin selectivity observed in chiral 2D organic-inorganic hybrid perovskite holds promise to achieve spin-dependent electrochemistry. However, conventional chiral 2D perovskites suffer from low conductivity and hygroscopicity, limiting electrochemical performance and operational stability. Here, a cutting-edge material design is introduced to develop a stable and efficient chiral perovskite-based spin polarizer by employing fluorinated chiral cation. The fluorination approach effectively promotes the charge carrier transport along the out-of-plane direction by mitigating the dielectric confinement effect within the multi-quantum well-structured 2D perovskite. Integrating the fluorinated cation incorporated spin polarizer with BiVO4 photoanode considerably boosts the photocurrent density while reducing overpotential through a spin-dependent oxygen evolution reaction. Furthermore, the hydrophobic nature of fluorine in spin polarizer endows operational stability to the photoanode, extending the durability by 280% as compared to the device with non-fluorinated spin polarizer.
Collapse
Affiliation(s)
- Jaehyun Son
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Gyumin Jang
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Sunihl Ma
- Department of Chemical EngineeringUniversity of MichiganAnn ArborMI48109USA
| | - Hyungsoo Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Chan Uk Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Seongyeon Yang
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Junwoo Lee
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Subin Moon
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Wooyong Jeong
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Jeong Hyun Park
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| | - Chan‐Woo Jung
- Department of Energy ScienceSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Ji‐Hee Kim
- Department of PhysicsPusan National UniversityBusan46241Republic of Korea
| | - Ji‐Sang Park
- Department of Nano EngineeringSungkyunkwan UniversitySuwon16419Republic of Korea
| | - Jooho Moon
- Department of Materials Science and EngineeringYonsei UniversitySeoul03722Republic of Korea
| |
Collapse
|
25
|
Zhang B, Bai T, Han L, Che S, Duan Y. Chirality-Induced Memristor of Chiral Nanostructured Half-Metallic Fe 3O 4 Films. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403142. [PMID: 38923597 DOI: 10.1002/adma.202403142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/20/2024] [Indexed: 06/28/2024]
Abstract
Spintronic memristors, which combine the nonvolatile characteristics of memristors with the scalability of a spin-transfer torque device, are expected to play a crucial role in advancing quantitative information processing. This field commonly relies on magnetic tunnel junctions, domain wall motion, and spin waves. Here, the discovery of chirality-induced memristor behavior in chiral nanostructured Fe3O4 films (CNFFs) is reported. These CNFFs are grown on fluorine tin oxide (FTO) substrates using enantiomeric glutamic acid (Glu) as symmetry-breaking agents and consist of arrays of oriented twisted nanofibers. At 100 K, the L-CNFF exhibits memristor behavior as a pinched hysteresis loop in the I-V curve, while the D-CNFF exhibits semiconductor behavior with constant electrical resistance. The intrinsic spin polarization of half-metallic Fe3O4 and the chirality-induced spin selectivity (CISS) are speculated to contribute to the memristor in one handedness of the chiral structure. These findings present a novel spinristor that combines the functions of a memristor and a spin-filter based on chiral structures, which may promote the development of spintronic devices.
Collapse
Affiliation(s)
- Baiwen Zhang
- School of Physics Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Te Bai
- Department of Science and Technology, Wuxi Vocational College of Science and Technology, 8 Xinxi Road, Wuxi, Jiangsu Province, 214028, P. R. China
| | - Lu Han
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| | - Shunai Che
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory of Metal Matrix Composites, Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
| |
Collapse
|
26
|
Lu H, Fang WH, Long R. Nonadiabatic Molecular Dynamics in Momentum Space Beyond Harmonic Approximation: Hot Electron Relaxation in Photoexcited Black Phosphorus. J Am Chem Soc 2024; 146:19547-19554. [PMID: 38976802 DOI: 10.1021/jacs.4c06654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
We simulated hot-electron relaxation in black phosphorus using the nonadiabatic molecular dynamics (NA-MD) approach with a non-Condon effect in momentum space beyond the harmonic approximation. By comparing simulations at the Γ point in a large supercell with those using a few k-points in a smaller supercell─while maintaining the same number of electronic states within the same energy range, we demonstrate that both setups yield remarkably consistent energy relaxation times, regardless of the initial state energy. This consistency arises from the complementary effects of supercell size in real space and the number of k-points in the reciprocal space. This finding confirms that simulations at a single k-point in large size supercells are an effective approximation for NA-MD with a non-Condon effect. This approach offers significant advantages for complex photophysics, such as intervalley scattering and indirect bandgap charge recombination, and is particularly suitable for large systems without the need for a harmonic approximation.
Collapse
Affiliation(s)
- Haoran Lu
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, People's Republic of China
| |
Collapse
|
27
|
Hautzinger MP, Pan X, Hayden SC, Ye JY, Jiang Q, Wilson MJ, Phillips AJ, Dong Y, Raulerson EK, Leahy IA, Jiang CS, Blackburn JL, Luther JM, Lu Y, Jungjohann K, Vardeny ZV, Berry JJ, Alberi K, Beard MC. Room-temperature spin injection across a chiral perovskite/III-V interface. Nature 2024; 631:307-312. [PMID: 38898280 DOI: 10.1038/s41586-024-07560-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/13/2024] [Indexed: 06/21/2024]
Abstract
Spin accumulation in semiconductor structures at room temperature and without magnetic fields is key to enable a broader range of optoelectronic functionality1. Current efforts are limited owing to inherent inefficiencies associated with spin injection across semiconductor interfaces2. Here we demonstrate spin injection across chiral halide perovskite/III-V interfaces achieving spin accumulation in a standard semiconductor III-V (AlxGa1-x)0.5In0.5P multiple quantum well light-emitting diode. The spin accumulation in the multiple quantum well is detected through emission of circularly polarized light with a degree of polarization of up to 15 ± 4%. The chiral perovskite/III-V interface was characterized with X-ray photoelectron spectroscopy, cross-sectional scanning Kelvin probe force microscopy and cross-sectional transmission electron microscopy imaging, showing a clean semiconductor/semiconductor interface at which the Fermi level can equilibrate. These findings demonstrate that chiral perovskite semiconductors can transform well-developed semiconductor platforms into ones that can also control spin.
Collapse
Affiliation(s)
| | - Xin Pan
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Steven C Hayden
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Jiselle Y Ye
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Qi Jiang
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Mickey J Wilson
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | - Alan J Phillips
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
- Department of Physics, Colorado School of Mines, Golden, CO, USA
| | - Yifan Dong
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | | | - Ian A Leahy
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
| | | | | | - Joseph M Luther
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Yuan Lu
- Institut Jean Lamour, Université de Lorraine, CNRS, UMR 7198, Nancy, France
| | | | - Z Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, UT, USA
| | - Joseph J Berry
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
- Department of Physics, University of Colorado Boulder, Boulder, CO, USA
| | - Kirstin Alberi
- National Renewable Energy Laboratory (NREL), Golden, CO, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA
| | - Matthew C Beard
- National Renewable Energy Laboratory (NREL), Golden, CO, USA.
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
28
|
Blockmon AL, Lee M, Zhang S, Manson ZE, Manson JL, Zapf VS, Musfeldt JL. High Field Electrical Polarization and Magnetoelectric Coupling in Chiral Magnet [Cu(pym)(H 2O) 4]SiF 6·H 2O. Inorg Chem 2024; 63:11737-11744. [PMID: 38865158 DOI: 10.1021/acs.inorgchem.4c01249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
The Heisenberg antiferromagnetic chain is a canonical model for understanding many-body gaps that emerge in quantum magnets, and as a result, there has been significant work on this class of materials for much of the past century. Chiral chains, on the other hand, have received markedly less attention. [Cu(pym)(H2O)4]SiF6·H2O (pym = pyrimidine) is an S = 1/2 chiral antiferromagnet with an unconventional spin gap and no long-range ordering at zero field, features that distinguish it from more conventional spin chains that host simple phase diagrams and no magnetoelectric coupling. Here, we report pulsed magnetic field electrical polarization measurements, strong magnetoelectric coupling, and extraordinary magnetic field - temperature phase diagrams for this system. In addition to three low field transitions, we find a series of phase transitions between 40 and 70 T that depend on the magnetic field direction. The observation of electric polarization in a material with a nonpolar crystal structure implies symmetry-breaking magnetic ordering that creates a polar axis - a mechanism that we discuss in terms of significant interactions between the chiral chains as well as Dzyaloshinskii-Moriya effects. Further, we find second-order magnetoelectric coupling, allowing us to deduce the magnetic point group of the highest polarization phase. These findings are in contrast to expectations for an unordered one-dimensional spin chain and reveal a significantly greater complexity of behavior in applied field.
Collapse
Affiliation(s)
- Avery L Blockmon
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Minseong Lee
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Shengzhi Zhang
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Zachary E Manson
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Jamie L Manson
- Department of Chemistry, Biochemistry & Physics, Eastern Washington University, Cheney, Washington 99004, United States
| | - Vivien S Zapf
- National High Magnetic Field Laboratory, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Janice L Musfeldt
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996, United States
- Department of Physics and Astronomy, University of Tennessee, Knoxville, Tennessee 37996, United States
| |
Collapse
|
29
|
Zhang X, Xu Y, Alphenaar AN, Ramakrishnan S, Zhang Y, Babatunde AJ, Yu Q. Self-Powered Circularly Polarized Light Detection Enabled by Chiral Two-Dimensional Perovskites with Mixed Chiral-Achiral Organic Cations. ACS NANO 2024; 18:14605-14616. [PMID: 38771979 DOI: 10.1021/acsnano.4c02588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Direct detection of circularly polarized light (CPL) holds great promise for the development of various optical technologies. Chiral 2D organic-inorganic halide perovskites make it possible to fabricate CPL-sensitive photodetectors. However, selectively detecting left-handed circularly polarized (LCP) and right-handed circularly polarized (RCP) light remains a significant challenge. Herein, we demonstrate a greatly enhanced distinguishability of photodiode-type CPL photodetectors based on chiral 2D perovskites with mixed chiral aryl (R)-(+),(S)-(-)-α-methylbenzylammonium (R,S-MBA) and achiral alkyl n-butylammonium (nBA) cations. The (R,S-MBA0.5nBA0.5)2PbI4 perovskites exhibit a 10-fold increase in circular dichroism signals compared to (R,S-MBA)2PbI4 perovskites. The CPL photodetectors based on the mixed-cation perovskites exhibit self-powered capabilities with a specific detectivity of 2.45 × 1012 Jones at a 0 V bias. Notably, these devices show high distinguishability (gres) factors of -0.58 and +0.54 based on (R,S-MBA0.5nBA0.5)2PbI4 perovskites, respectively, surpassing the performance of (R-MBA)2PbI4-based devices by over 3-fold and setting a record for CPL detectors based on chiral 2D n = 1 perovskites.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yuanze Xu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Anna Niamh Alphenaar
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853, United States
| | - Shripathi Ramakrishnan
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Yugang Zhang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973, United States
| | - Adewale Joseph Babatunde
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Qiuming Yu
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
30
|
Feng LZ, Song YH, Li ZD, Zhu BS, Ma ZY, Yang JN, Yin YC, Hao JM, Ding GJ, Wang YR, Zhao Z, Zhou H, Fan F, Yao HB. Dimensional and Doping Engineering of Chiral Perovskites with Enhanced Spin Selectivity for Green Emissive Spin Light-Emitting Diodes. NANO LETTERS 2024; 24:6084-6091. [PMID: 38717110 DOI: 10.1021/acs.nanolett.4c01138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Chiral perovskites play a pivotal role in spintronics and optoelectronic systems attributed to their chiral-induced spin selectivity (CISS) effect. Specifically, they allow for spin-polarized charge transport in spin light-emitting diodes (LEDs), yielding circularly polarized electroluminescence at room temperature without external magnetic fields. However, chiral lead bromide-based perovskites have yet to achieve high-performance green emissive spin-LEDs, owing to limited CISS effects and charge transport. Herein, we employ dimensional regulation and Sn2+-doping to optimize chiral bromide-based perovskite architecture for green emissive spin-LEDs. The optimized (PEA)x(S/R-PRDA)2-xSn0.1Pb0.9Br4 chiral perovskite film exhibits an enhanced CISS effect, higher hole mobility, and better energy level alignment with the emissive layer. These improvements allow us to fabricate green emissive spin-LEDs with an external quantum efficiency (EQE) of 5.7% and an asymmetry factor |gCP-EL| of 1.1 × 10-3. This work highlights the importance of tailored perovskite architectures and doping strategies in advancing spintronics for optoelectronic applications.
Collapse
Affiliation(s)
- Li-Zhe Feng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yong-Hui Song
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zi-Du Li
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Bai-Sheng Zhu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhen-Yu Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun-Nan Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yi-Chen Yin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jing-Ming Hao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Guan-Jie Ding
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yan-Ru Wang
- Instruments Center for Physical Science Hefei National Laboratory for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhi Zhao
- Instruments Center for Physical Science Hefei National Laboratory for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongmin Zhou
- Instruments Center for Physical Science Hefei National Laboratory for Physical Science, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fengjia Fan
- CAS Key Laboratory of Microscale Magnetic Resonance and School of Physical Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hong-Bin Yao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
- Department of Applied Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
31
|
Ding Z, Chen Q, Jiang Y, Yuan M. Structure-Guided Approaches for Enhanced Spin-Splitting in Chiral Perovskite. JACS AU 2024; 4:1263-1277. [PMID: 38665652 PMCID: PMC11040671 DOI: 10.1021/jacsau.3c00835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/28/2024] [Accepted: 03/07/2024] [Indexed: 04/28/2024]
Abstract
Hybrid organic-inorganic perovskites with diverse lattice structures and chemical composition provide an ideal material platform for novel functionalization, including chirality transfer. Chiral perovskites combine organic and inorganic sublattices, therefore encoding the structural asymmetry into the electronic structures and giving rise to the spin-splitting effect. From a structural chemistry perspective, the magnitude of the spin-splitting effect crucially depends on the noncovalent and electrostatic interaction within the chiral perovskite, which induces the local site and long-range bulk inversion symmetry breaking. In this regard, we systematically retrospect the structure-property relationships in chiral perovskite. Insight into the rational design of chiral perovskites based on molecular configuration, dimensionality, and chemical composition along with their effects on spin-splitting manifestation is presented. Lastly, challenges in purposeful material design and further integration into chiral perovskite-based spintronic devices are outlined. With an understanding of fundamental chemistry and physics, we believe that this Perspective will propel the application of multifunctional spintronic devices.
Collapse
Affiliation(s)
- Zijin Ding
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Quanlin Chen
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yuanzhi Jiang
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Mingjian Yuan
- State
Key Laboratory of Advanced Chemical Power Sources, Key Laboratory
of Advanced Energy Materials Chemistry (Ministry of Education), Frontiers
Science Center for New Organic Matter, College of Chemistry, Nankai University, Tianjin 300071, P. R. China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300051, P. R. China
| |
Collapse
|
32
|
He X, Zheng Y, Luo Z, Wei Y, Liu Y, Xie C, Li C, Peng D, Quan Z. Bright Circularly Polarized Mechanoluminescence from 0D Hybrid Manganese Halides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309906. [PMID: 38228314 DOI: 10.1002/adma.202309906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/12/2024] [Indexed: 01/18/2024]
Abstract
Hybrid metal halides (HMHs) with efficient circularly polarized luminescence (CPL) have application prospects in many fields, due to their abundant host-guest structures and high photoluminescence quantum yield (PLQY). However, CPLs in HMHs are predominantly excited by light or electricity, limiting their use in multivariate environments. It is necessary to explore a novel excitation method to extend the application of chiral HMHs as smart stimuli-responsive optical materials. In this work, an enantiomeric pair of 0D hybrid manganese bromides, [H2(2R,4R)-(+)/(2S,4S)-(-)-2,4-bis(diphenylphosphino)pentane]MnBr4 [(R/S)-1] is presented, which exhibits efficient CPL emissions with near-unity PLQYs and high dissymmetry factors of ± 2.0 × 10-3. Notably, (R/S)-1 compounds exhibit unprecedented and bright circularly polarized mechanoluminescence (CPML) emissions under mechanical stimulation. Moreover, (R/S)-1 possess high mechanical force sensitivities with mechanoluminescence (ML) emissions detectable under 0.1 N force stimulation. Furthermore, this ML emission exhibits an extraordinary antithermal quenching effect in the temperature range of 300-380 K, which is revealed to originate from a thermal activation energy compensation mechanism from trap levels to Mn(II) 4T1 level. Based on their intriguing optical properties, these compounds as chiral force-responsive materials are demonstrated in multilevel confidential information encryption.
Collapse
Affiliation(s)
- Xin He
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yuantian Zheng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zhishan Luo
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yi Wei
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Yulian Liu
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chenlong Xie
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Chen Li
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| | - Dengfeng Peng
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education, and Guangdong Province College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Zewei Quan
- Department of Chemistry, and Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, 518055, China
| |
Collapse
|
33
|
Abhervé A, Allain M, Mercier N. Perovskite versus Nonperovskite: Modulating the Nature and Optical Properties of One-Dimensional Chiral Lead-Bromide Networks. Inorg Chem 2024; 63:5916-5923. [PMID: 38507564 DOI: 10.1021/acs.inorgchem.3c04424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In the last 5 years, low-dimensional chiral metal-halide semiconductors have attracted great interest in the generation of chiroptical activity. Among this new family of materials, one-dimensional (1D) networks have appeared as the best candidates for strong circular dichroism (CD) and circularly polarized luminescence (CPL). Here, we present a new family of 1D chiral lead-bromide materials prepared from organic S/R/rac-1-hydroxypropyl-2-ammonium (S/R/rac-HP2A) cations. The presence or absence of polarity in the crystal structure as well as the perovskite or nonperovskite nature of the inorganic network depends on the initial stoichiometry of metal-halide salt and chiral amine during the crystallization. The perovskite-type networks exhibit strong CD and second harmonic generation (SHG) responses, while the nonperovskite compounds show the presence of polymorphism in the crystal phase and weak natural optical activity in the final material. These results underline the impact of synthetic conditions and thin film morphology on the structural and optical properties of metal-halide hybrid networks.
Collapse
Affiliation(s)
- Alexandre Abhervé
- MOLTECH-Anjou, UMR 6200, University of Angers, CNRS, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Magali Allain
- MOLTECH-Anjou, UMR 6200, University of Angers, CNRS, 2 bd Lavoisier, 49045 Angers Cedex, France
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR 6200, University of Angers, CNRS, 2 bd Lavoisier, 49045 Angers Cedex, France
| |
Collapse
|
34
|
Mishra S, Bowes EG, Majumder S, Hollingsworth JA, Htoon H, Jones AC. Inducing Circularly Polarized Single-Photon Emission via Chiral-Induced Spin Selectivity. ACS NANO 2024; 18:8663-8672. [PMID: 38484339 DOI: 10.1021/acsnano.3c08676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
One of the central aims of the field of spintronics is the control of individual electron spins to effectively manage the transmission of quantized data. One well-known mechanism for controlling electronic spin transport is the chiral-induced spin-selectivity (CISS) effect in which a helical nanostructure imparts a preferential spin orientation on the electronic transport. One potential application of the CISS effect is as a transduction pathway between electronic spin and circularly polarized light within nonreciprocal photonic devices. In this work, we identify and quantify the degree of chiral-induced spin-selective electronic transport in helical polyaniline films using magnetoconductive atomic force microscopy (mcAFM). We then induce circularly polarized quantum light emission from CdSe/CdS core/shell quantum dots placed on these films, demonstrating a degree of circular polarization of up to ∼21%. Utilizing time-resolved photoluminescence microscopy, we measure the radiative lifetime difference associated with left- and right-handed circular polarizations of single emitters. These lifetime differences, in combination with Kelvin probe mapping of the variation of surface potential with magnetization of the substrate, help establish an energy level diagram describing the spin-dependent transport pathways that enable the circularly polarized photoluminescence.
Collapse
Affiliation(s)
- Suryakant Mishra
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Eric G Bowes
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Somak Majumder
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jennifer A Hollingsworth
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Han Htoon
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Andrew C Jones
- Center for Integrated Nanotechnologies, Materials Physics and Applications Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
35
|
Han X, Cheng P, Han S, Wang Z, Guan J, Han W, Shi R, Chen S, Zheng Y, Xu J, Bu XH. Multi-stimuli-responsive luminescence enabled by crown ether anchored chiral antimony halide phosphors. Chem Sci 2024; 15:3530-3538. [PMID: 38455020 PMCID: PMC10915841 DOI: 10.1039/d3sc06362c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Stimuli-responsive optical materials have provided a powerful impetus for the development of intelligent optoelectronic devices. The family of organic-inorganic hybrid metal halides, distinguished by their structural diversity, presents a prospective platform for the advancement of stimuli-responsive optical materials. Here, we have employed a crown ether to anchor the A-site cation of a chiral antimony halide, enabling convenient control and modulation of its photophysical properties. The chirality-dependent asymmetric lattice distortion of inorganic skeletons assisted by a crown ether promotes the formation of self-trapped excitons (STEs), leading to a high photoluminescence quantum yield of over 85%, concomitant with the effective circularly polarized luminescence. The antimony halide enantiomers showcase highly sensitive stimuli-responsive luminescent behaviours towards excitation wavelength and temperature simultaneously, exhibiting a versatile reversible colour switching capability from blue to white and further to orange. In situ temperature-dependent luminescence spectra, time-resolved luminescence spectra and theoretical calculations reveal that the multi-stimuli-responsive luminescent behaviours stem from distinct STEs within zero-dimensional lattices. By virtue of the inherent flexibility and adaptability, these chiral antimony chlorides have promising prospects for future applications in cutting-edge fields such as multifunctional illumination technologies and intelligent sensing devices.
Collapse
Affiliation(s)
- Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Shanshan Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Zhihua Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Songhua Chen
- College of Chemistry and Material Science, Longyan University Longyan 364012 Fujian P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University Tongyan Road 38 Tianjin 300350 P. R. China
| |
Collapse
|
36
|
Li X, Zhang S, Zhang X, Vardeny ZV, Liu F. Topological Nodal-Point Superconductivity in Two-Dimensional Ferroelectric Hybrid Perovskites. NANO LETTERS 2024; 24:2705-2711. [PMID: 38240732 DOI: 10.1021/acs.nanolett.3c04085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Two-dimensional (2D) hybrid organic-inorganic perovskites (HOIPs) with enhanced stability, high tunability, and strong spin-orbit coupling have shown great potential in vast applications. Here, we extend the already rich functionality of 2D HOIPs to a new territory, realizing topological superconductivity and Majorana modes for fault-tolerant quantum computation. Especially, we predict that room-temperature ferroelectric BA2PbCl4 (BA for benzylammonium) exhibits topological nodal-point superconductivity (NSC) and gapless Majorana modes on selected edges and ferroelectric domain walls when proximity-coupled to an s-wave superconductor and an in-plane Zeeman field, attractive for experimental verification and application. Since NSC is protected by spatial symmetry of 2D HOIPs, we envision more exotic topological superconducting states to be found in this class of materials due to their diverse noncentrosymmetric space groups, which may open a new avenue in the fields of HOIPs and topological superconductivity.
Collapse
Affiliation(s)
- Xiaoyin Li
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Shunhong Zhang
- International Center for Quantum Design of Functional Materials (ICQD), University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Xiaoming Zhang
- College of Physics and Optoelectronic Engineering, Ocean University of China, Qingdao, Shandong 266100, People's Republic of China
| | - Zeev Valy Vardeny
- Department of Physics & Astronomy, University of Utah, Salt Lake City, Utah 84112, United States
| | - Feng Liu
- Department of Materials Science and Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
37
|
Zhang Z, Liang W, Xue J, Li X, Wu K, Lu H. Induced Circularly Polarized Luminescence and Exciton Fine Structure Splitting in Magnetic-Doped Chiral Perovskites. ACS NANO 2024. [PMID: 38324334 DOI: 10.1021/acsnano.3c12851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Magnetic impurity doping in semiconductors has emerged as an important strategy to endow exotic photophysical and magnetic properties. While most reported hosts are centrosymmetric semiconductors, doping magnetic ions into a noncentrosymmetric chiral semiconductor can offer additional control of photonic and spin polarization. In this work, we synthesized a Mn2+-doped chiral two-dimensional (2D) perovskite, Mn2+:(R-MPA)2PbBr4 (R-MPA+ = R-methyl phenethylammonium). We found that the optical activity of chiral 2D perovskites is enhanced with an increased concentration of Mn2+ ions. Additionally, efficient energy transfer from the chiral host to the Mn2+ dopants is observed. This energy transfer process gives rise to circularly polarized luminescence from the excited state of Mn2+ (4T1 → 6A1), exhibiting a photoluminescence quantum yield up to 24% and a dissymmetry factor of 11%. The exciton fine structures of undoped and Mn2+-doped (R-MPA)2PbBr4 are further studied through magnetic circular dichroism (MCD) spectroscopy. Our analysis shows that chiral organic cations lead to an exciton fine structure splitting energy as large as 5.0 meV, and the splitting is further increased upon Mn2+ doping. Our results reveal the strong impacts of molecular chirality and magnetic dopants on the exciton structures of halide perovskites.
Collapse
Affiliation(s)
- Zixuan Zhang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR) 999077, China
| | - Wenfei Liang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Jie Xue
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR) 999077, China
| | - Xin Li
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR) 999077, China
| | - Kaifeng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
| | - Haipeng Lu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong (SAR) 999077, China
| |
Collapse
|
38
|
Wang Z, Chen A, Tao K, Han Y, Li J. MatGPT: A Vane of Materials Informatics from Past, Present, to Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306733. [PMID: 37813548 DOI: 10.1002/adma.202306733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/05/2023] [Indexed: 10/17/2023]
Abstract
Combining materials science, artificial intelligence (AI), physical chemistry, and other disciplines, materials informatics is continuously accelerating the vigorous development of new materials. The emergence of "GPT (Generative Pre-trained Transformer) AI" shows that the scientific research field has entered the era of intelligent civilization with "data" as the basic factor and "algorithm + computing power" as the core productivity. The continuous innovation of AI will impact the cognitive laws and scientific methods, and reconstruct the knowledge and wisdom system. This leads to think more about materials informatics. Here, a comprehensive discussion of AI models and materials infrastructures is provided, and the advances in the discovery and design of new materials are reviewed. With the rise of new research paradigms triggered by "AI for Science", the vane of materials informatics: "MatGPT", is proposed and the technical path planning from the aspects of data, descriptors, generative models, pretraining models, directed design models, collaborative training, experimental robots, as well as the efforts and preparations needed to develop a new generation of materials informatics, is carried out. Finally, the challenges and constraints faced by materials informatics are discussed, in order to achieve a more digital, intelligent, and automated construction of materials informatics with the joint efforts of more interdisciplinary scientists.
Collapse
Affiliation(s)
- Zhilong Wang
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - An Chen
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Kehao Tao
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yanqiang Han
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jinjin Li
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Thin Film and Microfabrication of Ministry of Education, Department of Micro/Nano Electronics, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
39
|
Dunlap-Shohl WA, Tabassum N, Zhang P, Shiby E, Beratan DN, Waldeck DH. Electron-donating functional groups strengthen ligand-induced chiral imprinting on CsPbBr 3 quantum dots. Sci Rep 2024; 14:336. [PMID: 38172244 PMCID: PMC10764765 DOI: 10.1038/s41598-023-50595-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
Chiral perovskite nanoparticles and films are promising for integration in emerging spintronic and optoelectronic technologies, yet few design rules exist to guide the development of chiral material properties. The chemical space of potential building blocks for these nanostructures is vast, and the mechanisms through which organic ligands can impart chirality to the inorganic perovskite lattice are not well understood. In this work, we investigate how the properties of chiral ammonium ligands, the most common organic ligand type used with perovskites, affect the circular dichroism of strongly quantum confined CsPbBr3 nanocrystals. We show that aromatic ammonium ligands with stronger electron-donating groups lead to higher-intensity circular dichroism associated with the lowest-energy excitonic transition of the perovskite nanocrystal. We argue that this behavior is best explained by a modulation of the exciton wavefunction overlap between the nanocrystal and the organic ligand, as the functional groups on the ligand can shift electron density toward the organic species-perovskite lattice interface to increase the imprinting.
Collapse
Affiliation(s)
| | - Nazifa Tabassum
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15213, USA
| | - Peng Zhang
- Department of Chemistry, Duke University, Durham, 27708, USA
| | - Elizabeth Shiby
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15213, USA
| | - David N Beratan
- Department of Physics, Duke University, Durham, 27705, USA
- Department of Biochemistry, Duke University, Durham, 27710, USA
| | - David H Waldeck
- Department of Chemistry, University of Pittsburgh, Pittsburgh, 15213, USA.
| |
Collapse
|
40
|
Abhervé A, Mercier N, Kumar A, Das TK, Even J, Katan C, Kepenekian M. Chirality Versus Symmetry: Electron's Spin Selectivity in Nonpolar Chiral Lead-Bromide Perovskites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305784. [PMID: 37527791 DOI: 10.1002/adma.202305784] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/29/2023] [Indexed: 08/03/2023]
Abstract
In the last decade, chirality-induced spin selectivity (CISS), the spin-selective electron transport through chiral molecules, has been described in a large range of materials, from insulators to superconductors. Because more experimental studies are desired for the theoretical understanding of the CISS effect, chiral metal-halide semiconductors may contribute to the field thanks to their chiroptical and spintronic properties. In this regard, this work uses new chiral organic cations S-HP1A and R-HP1A (HP1A = 2-hydroxy-propyl-1-ammonium) to prepare 2D chiral halide perovskites (HPs) which crystallize in the enantiomorphic space groups P43 21 2 and P41 21 2, respectively. The fourfold symmetry induces antiferroelectricity along the stacking axis which, combined to incomplete Rashba-like splitting in each individual 2D polar layer, results in rare spin textures in the band structure. As revealed by magnetic conductive-probe atomic force microscopy (AFM) measurements, these materials show CISS effect with partial spin polarization (SP; ±40-45%). This incomplete effect is efficient enough to drive a chiro-spintronic device as demonstrated by the fabrication of spin valve devices with magnetoresistance (MR) responses up to 250 K. Therefore, these stable lead-bromide HP materials not only represent interesting candidates for spintronic applications but also reveal the importance of polar symmetry-breaking topology for spin selectivity.
Collapse
Affiliation(s)
- Alexandre Abhervé
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, ANGERS, Cedex, 49045, France
| | - Nicolas Mercier
- MOLTECH-Anjou, UMR 6200, CNRS, UNIV Angers, 2 bd Lavoisier, ANGERS, Cedex, 49045, France
| | - Anil Kumar
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Tapan Kumar Das
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Jacky Even
- Univ Rennes, INSA Rennes, CNRS, Institut FOTON - UMR 6082, Rennes, F-35000, France
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR - UMR 6226, Rennes, F-35000, France
| | | |
Collapse
|
41
|
Guan J, Zheng Y, Cheng P, Han W, Han X, Wang P, Xin M, Shi R, Xu J, Bu XH. Free Halogen Substitution of Chiral Hybrid Metal Halides for Activating the Linear and Nonlinear Chiroptical Properties. J Am Chem Soc 2023. [PMID: 38039190 DOI: 10.1021/jacs.3c09395] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2023]
Abstract
Halogen substitution has been proven as an effective approach to the band gap engineering and optoelectronic modulation of organic-inorganic hybrid metal halide (OIHMH) materials. Various high-performance mixed halide OIHMH film materials have been primarily obtained through the substitution of coordinated halogens in their inorganic octahedra. Herein, we propose a new strategy of substitution of free halogen outside the inorganic octahedra for constructing mixed halide OIHMH single crystals with chiral structures, resulting in a boost of their linear and nonlinear chiroptical properties. The substitution from DMA4[InCl6]Cl (DMA = dimethylammonium) to DMA4[InCl6]Br crystals through a facile antisolvent vaporization method produces centimeter-scale single crystals with high thermal stability along with high quantum yield photoluminescence, conspicuous circularly polarized luminescence, and greatly enhanced second harmonic generation (SHG). In particular, the obtained DMA4[InCl6]Br single crystal features an intrinsic chiral structure, exhibiting a significant SHG circular dichroism (SHG-CD) response with a highest reported anisotropy factor (gSHG-CD) of 1.56 among chiral OIHMH materials. The enhancements in both linear and nonlinear chiroptical properties are directly attributed to the modulation of octahedral distortion. The mixed halide OIHMH single crystals obtained by free halogen substitution confine the introduced halogens within free halogen sites of the lattice, thereby ensuring the stability of compositions and properties. The successful employment of such a free halogen substitution approach may broaden the horizon of the regulation of structures and the optoelectronic properties of the OIHMH materials.
Collapse
Affiliation(s)
- Junjie Guan
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Yongshen Zheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Puxin Cheng
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Wenqing Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xiao Han
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Peihan Wang
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Mingyang Xin
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Rongchao Shi
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Jialiang Xu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| | - Xian-He Bu
- School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Frontiers Science Center for New Organic Matter, Nankai University, Tongyan Road 38, 300350 Tianjin, P. R. China
| |
Collapse
|
42
|
Stefani A, Bogdan A, Pop F, Tassinari F, Pasquali L, Fontanesi C, Avarvari N. Spin-dependent electrochemistry and electrochemical enantioselective recognition with chiral methylated bis(ethylenedithio)-tetrathiafulvalenes. J Chem Phys 2023; 159:204706. [PMID: 38014785 DOI: 10.1063/5.0171831] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/02/2023] [Indexed: 11/29/2023] Open
Abstract
Enantio-discrimination and spin-dependent electrochemistry (SDE), as a manifestation of the chirality-induced spin selectivity (CISS) effect, are important phenomena that can be probed by "chiral" electrochemistry. Here, we prepared chiralized surfaces of gold and nickel, to serve as working electrodes, through effective chemisorption of enantiopure dimethyl-bis(ethylenedithio)-tetrathiafulvalene (DM-BEDT-TTF) 1, tetramethyl-bis(ethylenedithio)-tetrathiafulvalene (TM-BEDT-TTF) 2, and their capped silver nanoparticle (AgNPs) aggregate by simple incubation of the metallic substrates. The effective chemisorption was checked by means of ultrahigh vacuum x-ray photoelectron spectroscopy (XPS) and by electro-desorption experiments, i.e., cyclic voltammetry (CV) scans showing a first electro-desorption peak at about -1.0 V. The Au|1 and Au|2 chiral electrodes were successfully used in CV experiments exploiting chiral redox probes. Finally, the hybrid interfaces Ni|enantiopure 1 or 2|AgNPs served as working electrodes in SDE experiments. In particular, the hybrid chiral interfaces Ni|(R)-2|AgNPs and Ni|(S)-2|AgNPs exhibited a significant spin-filtering ability, as a manifestation of the CISS effect, with average spin polarization values of 15%.
Collapse
Affiliation(s)
- Andrea Stefani
- Department of Physics, (FIM), University of Modena, Via Campi 213/A, 41125 Modena, Italy
| | - Alexandra Bogdan
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
- Faculty of Chemistry and Chemical Engineering, Department of Chemistry, SOOMCC, Babes-Bolyai University, 11 Arany Janos Str., 400028 Cluj-Napoca, Romania and SOOMCC, Romania
| | - Flavia Pop
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| | - Francesco Tassinari
- Department of Chemical and Earth Science, (DSCG), University of Modena, Via Campi 103, 41125 Modena, Italy
| | - Luca Pasquali
- Department of Engineering "Enzo Ferrari," (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy
- IOM-CNR, Strada Statale 14, Km. 163.5 in AREA Science Park, Basovizza, 34149 Trieste, Italy
- Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006, South Africa
| | - Claudio Fontanesi
- Department of Engineering "Enzo Ferrari," (DIEF), University of Modena, Via Vivarelli 10, 41125 Modena, Italy
| | - Narcis Avarvari
- University of Angers, CNRS, MOLTECH-Anjou, SFR MATRIX, F-49000 Angers, France
| |
Collapse
|
43
|
Azmy A, Konovalova DM, Lepore L, Fyffe A, Kim D, Wojtas L, Tu Q, Trinh MT, Zibouche N, Spanopoulos I. Synthesis and Optical Properties of One Year Air-Stable Chiral Sb(III) Halide Semiconductors. Inorg Chem 2023. [PMID: 38009949 DOI: 10.1021/acs.inorgchem.3c03098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Chiral hybrid metal-halide semiconductors (MHS) pose as ideal candidates for spintronic applications owing to their strong spin-orbit coupling (SOC), and long spin relaxation times. Shedding light on the underlying structure-property relationships is of paramount importance for the targeted synthesis of materials with an optimum performance. Herein, we report the synthesis and optical properties of 1D chiral (R-/S-THBTD)SbBr5 (THBTD = 4,5,6,7-tetrahydro-benzothiazole-2,6-diamine) semiconductors using a multifunctional ligand as a countercation and a structure directing agent. (R-/S-THBTD)SbBr5 feature direct and indirect band gap characteristics, exhibiting photoluminescence (PL) light emission at RT that is accompanied by a lifetime of a few ns. Circular dichroism (CD), second harmonic generation (SHG), and piezoresponse force microscopy (PFM) studies validate the chiral nature of the synthesized materials. Density functional theory (DFT) calculations revealed a Rashba/Dresselhaus (R/D) spin splitting, supported by an energy splitting (ER) of 23 and 25 meV, and a Rashba parameter (αR) of 0.23 and 0.32 eV·Å for the R and S analogs, respectively. These values are comparable to those of the 3D and 2D perovskite materials. Notably, (S-THBTD)SbBr5 has been air-stable for a year, a record performance among chiral lead-free MHS. This work demonstrates that low-dimensional, lead-free, chiral semiconductors with exceptional air stability can be acquired, without compromising spin splitting and manipulation performance.
Collapse
Affiliation(s)
- Ali Azmy
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Daria M Konovalova
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Leah Lepore
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Alexander Fyffe
- Department of Physics, University of South Florida, Tampa, Florida 33620, United States
| | - Doyun Kim
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Lukasz Wojtas
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| | - Qing Tu
- Department of Materials Science & Engineering, Texas A&M University, College Station, Texas 77840, United States
| | - Minh Tuan Trinh
- Department of Chemistry and Biochemistry, Utah State University, Logan, Utah 84322, United States
| | - Nourdine Zibouche
- Department of Chemistry, University of Lancaster, Lancaster LA1 4YW, U.K
| | - Ioannis Spanopoulos
- Department of Chemistry, University of South Florida, Tampa, Florida 33620, United States
| |
Collapse
|
44
|
Wang X, Xie X, Xiao S, Li C, Li J, He T. Nonlinear optical properties in chiral copper oxide nanosheets. OPTICS LETTERS 2023; 48:5939-5942. [PMID: 37966757 DOI: 10.1364/ol.501576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/21/2023] [Indexed: 11/16/2023]
Abstract
Chiral transition metal oxides (TMOs) are in the forefront of research as potential active materials in various optoelectronic applications. However, the nonlinear optical (NLO) properties of the chiral TMOs have not been fully understood. Here, several kinds of copper oxide nanosheets capped with different chiral amino acids are synthesized. Notably, we investigate the NLO activities of these materials, including broadband second harmonic generation and transformation of nonlinear optical properties from saturable absorption to reverse saturable absorption. This work will broaden the use of chiral TMO materials in nonlinear photonic devices.
Collapse
|
45
|
Zhou Y, Bai T, Duan Y. Chiral mesostructured NiFe 2O 4 films with chirality induced spin selectivity. Chem Commun (Camb) 2023; 59:13207-13210. [PMID: 37853755 DOI: 10.1039/d3cc03183g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Chiral mesostructured NiFe2O4 films (CMNFFs) were synthesized using L-/D-tyrosine as symmetry-breaking and structure-directing agents through a hydrothermal method. For the first time, chirality induced spin selectivity was directly observed in these ferrimagnetic materials using chirality-dependent magnetic-tip conducting atomic force microscopy (mc-AFM).
Collapse
Affiliation(s)
- Yiping Zhou
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| | - Te Bai
- Wuxi Vocational College of Science and Technology, 8 Xinxi Road, Wuxi, 214028, P. R. China
| | - Yingying Duan
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
| |
Collapse
|
46
|
Kitzmann WR, Freudenthal J, Reponen APM, VanOrman ZA, Feldmann S. Fundamentals, Advances, and Artifacts in Circularly Polarized Luminescence (CPL) Spectroscopy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2302279. [PMID: 37658497 DOI: 10.1002/adma.202302279] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 05/06/2023] [Indexed: 09/03/2023]
Abstract
Objects are chiral when they cannot be superimposed with their mirror image. Materials can emit chiral light with an excess of right- or left-handed circular polarization. This circularly polarized luminescence (CPL) is key to promising future applications, such as highly efficient displays, holography, sensing, enantiospecific discrimination, synthesis of drugs, quantum computing, and cryptography. Here, a practical guide to CPL spectroscopy is provided. First, the fundamentals of the technique are laid out and a detailed account of recent experimental advances to achieve highly sensitive and accurate measurements is given, including all corrections required to obtain reliable results. Then the most common artifacts and pitfalls are discussed, especially for the study of thin films, for example, based on molecules, polymers, or halide perovskites, as opposed to dilute solutions of emitters. To facilitate the adoption by others, custom operating software is made publicly available, equipping the reader with the tools needed for successful and accurate CPL determination.
Collapse
Affiliation(s)
- Winald R Kitzmann
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55122, Mainz, Germany
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - John Freudenthal
- Hinds Instruments Inc., 7245 NE Evergreen Parkway, Hillsboro, OR, 97124, USA
| | - Antti-Pekka M Reponen
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Zachary A VanOrman
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| | - Sascha Feldmann
- Rowland Institute, Harvard University, 100 Edwin H. Land Boulevard, Cambridge, MA, 02142, USA
| |
Collapse
|
47
|
Jiang X, Tao Y, Gu J, Jin L, Li C, Zhang W, Fu Y. Broadband emission originating from the stereochemical expression of 6s 2 lone pairs in two-dimensional lead bromide perovskites. Dalton Trans 2023; 52:15489-15495. [PMID: 37552134 DOI: 10.1039/d3dt01627g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
The stereochemical expression of the 6s2 lone pair on the lead atom has a significant impact on the crystal structures and physical properties of lead halide perovskites. Two-dimensional (2D) lead bromide perovskites often exhibit a broadband emission, yet the structural origin of the broadband emission has been under debate. Here, we report the synthesis and characterization of a 2D lead bromide hybrid (4-chlorophenylammonium)2PbBr4 that consists of a combination of the octahedral unit PbBr6 and the rarely observed capped octahedral unit PbBr7 through corner-sharing and edge-sharing linkages. The seven-coordination geometry indicates a strong stereo-active lone pair on the Pb2+ cation. By comparing this structure with two representative 2D perovskites, (benzylammonium)2PbBr4 and (4-aminotetrahydropyran)2PbBr4, we establish how the lone pair expression affects the local coordination geometry of the Pb2+ cation and the resulting optical and electronic properties. As the Pb-Br bond length increases, the lone pair expression leads to off-centering displacement of Pb2+ within the octahedra and then the formation of seven-coordination capped octahedra. Density functional theory calculations indicate that the off-centering distorted octahedra and capped octahedra are due to the asymmetric distribution of the Pb electrons that have both s and p orbital characteristics. Spectroscopic studies show the photoluminescence spectra evolving from narrowband emission to broadband emission with increasing LPE, as well as softer and more anharmonic lattice vibrations that facilitate exciton self-trapping. Our results demonstrate that lone pairs could be a powerful design rule for developing light emitting materials.
Collapse
Affiliation(s)
- Xiaofan Jiang
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yu Tao
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Jiazhen Gu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Leyang Jin
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Chen Li
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | - Wenkai Zhang
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Center for Advanced Quantum Studies, Beijing Normal University, Beijing 100875, China.
| | - Yongping Fu
- Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
48
|
Ren Y, Hore PJ. Conditions for EPR detection of chirality-induced spin selectivity in spin-polarized radical pairs in isotropic solution. J Chem Phys 2023; 159:145104. [PMID: 37819000 DOI: 10.1063/5.0171700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/19/2023] [Indexed: 10/13/2023] Open
Abstract
Chiral molecules can act as spin filters, preferentially transmitting electrons with spins polarized along their direction of travel, an effect known as chirality-induced spin selectivity (CISS). In a typical experiment, injected electrons tunnel coherently through a layer of chiral material and emerge spin-polarized. It is also possible that spin polarization arises in radical pairs formed photochemically when electrons hop incoherently between donor and acceptor sites. Here we aim to identify the magnetic properties that would optimise the visibility of CISS polarization in time-resolved electron paramagnetic resonance (EPR) spectra of transient radical pairs without the need to orient or align their precursors. By simulating spectra of actual and model systems, we find that CISS contributions to the polarization should be most obvious when at least one of the radicals has small g-anisotropy and an inhomogeneous linewidth larger than the dipolar coupling of the two radicals. Under these conditions there is extensive cancellation of absorptive and emissive enhancements making the spectrum sensitive to small changes in the individual EPR line intensities. Although these cancellation effects are more pronounced at lower spectrometer frequencies, the spectral changes are easier to appreciate with the enhanced resolution afforded by high-frequency EPR. Consideration of published spectra of light-induced radical pairs in photosynthetic bacterial reaction centres reveals no significant CISS component in the polarization generated by the conventional spin-correlated radical pair mechanism.
Collapse
Affiliation(s)
- Yi Ren
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| | - P J Hore
- Department of Chemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Fu W, Tan L, Wang PP. Chiral Inorganic Nanomaterials for Photo(electro)catalytic Conversion. ACS NANO 2023; 17:16326-16347. [PMID: 37540624 DOI: 10.1021/acsnano.3c04337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
Chiral inorganic nanomaterials due to their unique asymmetric nanostructures have gradually demonstrated intriguing chirality-dependent performance in photo(electro)catalytic conversion, such as water splitting. However, understanding the correlation between chiral inorganic characteristics and the photo(electro)catalytic process remains challenging. In this perspective, we first highlight the chirality source of inorganic nanomaterials and briefly introduce photo(electro)catalysis systems. Then, we delve into an in-depth discussion of chiral effects exerted by chiral nanostructures and their photo-electrochemistry properties, while emphasizing the emerging chiral inorganic nanomaterials for photo(electro)catalytic conversion. Finally, the challenges and opportunities of chiral inorganic nanomaterials for photo(electro)catalytic conversion are prospected. This perspective provides a comprehensive overview of chiral inorganic nanomaterials and their potential in photo(electro)catalytic conversion, which is beneficial for further research in this area.
Collapse
Affiliation(s)
- Wenlong Fu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Lili Tan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| | - Peng-Peng Wang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
50
|
Guo Z, Li J, Liu R, Yang Y, Wang C, Zhu X, He T. Spatially Correlated Chirality in Chiral Two-Dimensional Perovskites Revealed by Second-Harmonic-Generation Circular Dichroism Microscopy. NANO LETTERS 2023; 23:7434-7441. [PMID: 37552583 DOI: 10.1021/acs.nanolett.3c01863] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Understanding the chiral mechanism of chiral hybrid perovskites is a prerequisite for developing relevant chiroptoelectronic applications. Although conventional circular dichroism (CD) spectroscopy can be used to characterize chirality in chiral perovskites, it has a low signal-to-noise ratio and can provide only information about macroscopic chirality. Herein, with the aim of revealing the microscopic chiral mechanism in chiral perovskites, we utilize a spacer cation alloying strategy to construct chiral two-dimensional perovskites. For the first time, we demonstrate second-harmonic-generation CD microarea imaging in chiral perovskite thin films to unveil their spatially correlated chirality. In combination with theoretical calculations, it is revealed that the spatially correlated chirality is caused by localized out-of-plane supramolecular orientations. This work will not only advance the understanding of the mechanism of chiroptical activity in chiral perovskites but also provide inspiration for the rational design and synthesis of perovskites for chirality-related nonlinear optoelectronic devices.
Collapse
Affiliation(s)
- Zhihang Guo
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Junzi Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Rulin Liu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Changshun Wang
- State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xi Zhu
- School of Science and Engineering, Chinese University of Hong Kong, Shenzhen 518172, China
| | - Tingchao He
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|